

IxLoad

REST API Programming Guide

Version 8.30 Update 2

September 2017

ii IxLoad REST API Programming Guide

Copyright and Disclaimer

Copyright © 2017 Ixia. All rights reserved.

This publication may not be copied, in whole or in part, without Ixia's consent.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government is subject
to the restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Ixia, the Ixia logo, and all Ixia brand names and product names in this document are either
trademarks or registered trademarks of Ixia in the United States and/or other countries. All other
trademarks belong to their respective owners.

The information herein is furnished for informational use only, is subject to change by Ixia
without notice, and should not be construed as a commitment by Ixia. Ixia assumes no
responsibility or liability for any errors or inaccuracies contained in this publication.

IxLoad REST API Programming Guide iii

Table of Contents

New in this Release ... 1

Before you Begin ... 2

REST Resources ... 2

Supported Features... 3

Using the REST API over HTTPS ... 3

Self-signed certificates ... 3

Script Changes Required for HTTPS ... 4

Errors from REST UI Clients .. 5

REST Authentication.. 5

Prerequisites .. 5

Enabling Authentication ... 5

Ixia User Management .. 6

Authenticating REST Requests ... 6

Retrieving the api-key .. 7

Script Changes Required for Authentication ... 7

Supported methods and running operations .. 8

REST representation .. 8

Primitive values ... 8

List Objects.. 8

REST resources .. 8

Case conventions .. 9

Preferences .. 9

IxLoad REST Methods ... 9

GET .. 9

PATCH ... 11

POST .. 11

DELETE .. 12

OPTIONS ... 13

Operations .. 15

Starting an operation .. 15

uploadFile ... 16

Getting an Operation's Status ... 16

Examples of Common Operations in the IxLoad REST API .. 18

Query Strings .. 20

New in this Release

iv IxLoad REST API Programming Guide

Collecting Diagnostics ... 21

IxLoadGateway - IxLoad session handling ... 23

Creating a new session .. 23

Starting a session ... 24

Deleting a session .. 27

IxLoad Data Model .. 27

Communities .. 27

Timelines .. 28

Login name ... 28

Chassis Chain / Port Assignment Operations .. 28

Adding a chassis ... 29

Connecting to a chassis .. 30

Removing a chassis .. 32

Unassign ports ... 32

Assign ports .. 32

IxVM Chassis (ixChassisBuilder) ... 33

Statistics .. 36

Viewing statistics ... 36

RunState Stat Source ... 38

Modifying configured statistics .. 38

Filtering stats ... 40

Generated CSVs ... 43

Logging .. 43

REST Script Templates ... 44

AddNewCommand ... 44

ChangeAgentObjectives ... 44

ChangeIpType .. 45

SimpleRun .. 45

IxLoadRestUtils... 45

class Connection(__builtin__.object) ... 46

class WebList(__builtin__.list) .. 47

class WebObject(__builtin__.object) .. 47

Functions .. 48

IxLoadUtils.. 48

Functions .. 48

IxLoad REST API Programming Guide 1

New in this Release

The following features are new in this release:

HTTPS transport The REST API now uses HTTPS transport exclusively. Plaintext HTTP is no longer supported.
Existing REST scripts must be updated to use HTTPS.
See Using the REST API over HTTPS for details.

Authentication REST requests can optionally use Authentication.
See REST Authentication for details.

Before you Begin

2 IxLoad REST API Programming Guide

Before you Begin

The IxLoad REST API requires the IxLoad Gateway Service to be installed on the PC where you will use the REST API.
The Gateway Service is an optional component that is not installed by default. To install it, you must select Custom
Setup during IxLoad installation. If you have already installed IxLoad, you can select IxLoad from the list of installed
applications (Control Panel | Programs and Features), right-click and select Modify. The installer will run and you
can install the IxLoad Gateway service.

REST Resources

A resource is a basic concept in terms of Rest. This chapter will define the resource definition in terms of IxLoad.

A resource is a representation of an IxLoad object for the user. Not all IxLoad objects will be resources and not all
IxLoad object functionality will be exposed to the user.

A resource can have:

• Properties:
o Primitives: simple types like: bool , int ,string
o Complex: other resources: timeline resources, agent resources and so on.

• Operations:
o Example of operations

 RunTest
 AddChassis
 RefreshChassis

The IxLoad REST API enables starting and configuring an IxLoad session through REST API, via HTTP requests.

Supported Features

IxLoad REST API Programming Guide 3

Supported Features
Below is a list of features that is supported in this release of the IxLoad REST API:

• Create and start an IxLoad session
• Load a configuration (.rxf). The rxf will be loaded from a local path.
• View data model tree, via GET requests (including query string support)
• Remove existing chassis and add new chassis
• Assign and un-assign ports
• Change existing configuration - modify field values via PATCH requests
• L23 range support
• L47 plugin support
• Save configuration modified through REST API
• View / add / delete configured L23 and L47 statistics.
• Run test
• Poll L23 and L47 statistics
• Upload repository (.rxf) files
• Start remote IxLoad sessions
• Automatically generated documentation
• Querying logs from REST API
• Analyzer

The following list of features is not supported in this release of the IxLoad REST API:

• AppLibrary protocols/ Resource Manager / Profiles (e.g. Real Files)
• IxReporter
• Adding (POST) / removing (DELETE) objects such as test communities, plugins, ranges. Add and remove

operations are only supported officially on the chassis list, the port lists and configured stats.

Using the REST API over HTTPS
Starting with IxLoad 8.30 Update 2, requests done through IxLoad REST API are supported only through the HTTPS
transport. Plaintext HTTP is no longer supported.

Therefore, when you attempt to access a URL over IxLoad REST API, you must access it using an URL similar to:

https://<IP_ADDRESS>:8443/api/v0/sessions

The previously default port 8080 has been replaced with the default alternate HTTPS port 8443.

The HTTPS feature is not backwards-compatible with older IxLoad versions. After you install the IxLoad Gateway
deployed by IxLoad 8.30 Update 2, any previously-installed IxLoad versions installed on that particular machine will
not be available for use from the IxLoad REST API.

The HTTPS functionality changes apply to REST API used in with IxLoad running on Windows OS and Linux.

Self-signed certificates
HTTPS support over IxLoad REST API is offered through a self-signed certificate that is automatically generated by
the IxLoad Gateway component when it is installed as part of an IxLoad installation.

The self signed-certificate consists of two files:

• ixload_certificate.crt – this represents the actual self-signed certificate

Using the REST API over HTTPS

4 IxLoad REST API Programming Guide

• ixload_privkey.key – this represents the private key used by the self-signed certificate

Depending on the operating system on which the IxLoad build was installed, the self-signed certificate and its
corresponding private key can be found at the following locations:

• On a Windows OS, they can be found at <IxLoadGateway_Install_Path>\certificate

• On the IxLoad Linux OVA, they can be found at /opt/ixia/ixloadgateway/certificate

The self-signed certificate is generated using a 2048 bit RSA keypair and the SHA-256 signature hash algorithm.

The self-signed certificate includes an X509 extension known as SNI (Subject Name Identifier)/SAN (Subject
Alternative Name). This extension allows the certificate to specify under which names (hostnames, IP addresses,
etc) a user can access a secured web server that is using that certificate. This will prevent users from accessing
IxLoad Gateway instances on different machines using the same self-signed certificate.

For this extension, IxLoad Gateway generates a log file named san.log which contains all the hostnames and
IPv4/IPv6 addresses under which the machine where IxLoad Gateway is installed can be accessed. This log file
resides in the same location as the autogenerated certificate.

The certificate will be regenerated automatically when one of the following occurs:

• The ixload_certificate.crt, ixload_privkey.key or san.log files is deleted.

• The certificate has expired (it has a duration of 10 years).

• One of the entries required for SNI/SAN changes or disappears. For example, an IP address is changed, a
hostname is changed, or a network interface disappears.

Script Changes Required for HTTPS
The IxLoad REST scripts samples have been updated to support HTTPS requests over IxLoad REST API.

The changes are:

• kGatewayPort = 8443 – changed from 8080 to 8443

• kResourcesUrl = 'https://%s:%s/api/v0/resources' – changed from http to https

The utility files used by the IxLoad REST scripts samples have also been updated accordingly.

In Utils\IxRestUtils.py, the changesare:

• connectionUrl = "https://%s:%s/" % (server, port) – changed from http to https

• result = self._getHttpSession().request(method, absUrl, data=str(data), params=params,
headers=headers, verify=False)

The verify parameter is a parameter provided by the requests library that is used in the REST scripts to generate
HTTP/HTTPS requests. This parameter can take three values:

• False, as specified in the example above. If set to False, the HTTPS request will not perform any validation
against a certificate.

• True, in this case, the HTTPS request will perform a validation against a set of predefined certificate
bundles specific to the Python requests module.

• ‘<certificate_path>’. In this case, the HTTP request will perform a validation against the certificate
specified at the path provided in the verify parameter.

REST Authentication

IxLoad REST API Programming Guide 5

To provide the certificate path, you must copy the certificate from the machine where the IxLoad Gateway is
installed to the machine where the REST script is executed. The location where the certificate is copied will be
provided as the certificate path.

If the certificate is regenerated and the verify parameter is set to a certificate path in a REST script on a remote
machine, then that certificate will have to be downloaded again.

Errors from REST UI Clients
If you use a REST UI client such as Postman or Advanced REST Client, trying to access a URL from the IxLoad REST
API might not work at first. This is because these two applications are tightly coupled to the Google Chrome
browser. To be able to access any URL from the IxLoad REST API, you must first access one URL from the Google
Chrome browser, accept the exception thrown by the browser (since the web server is using a self-signed
certificate) and then proceed to using the REST client.

REST Authentication
Starting with the IxLoad 8.30 Update 2 release, you can use the IxLoad REST API with authentication. After
enabling authentication, most REST requests must include a unique user api-key. For the current release this
functionality is optional, integrated with Ixia User Management defined users only, and available for use with
IxLoad versions running on Windows. REST Authentication is not available when using IxLoad on Linux.

Prerequisites
Enabling Authentication
To enable REST Authentication, you must select Custom Setup during the IxLoad install process and choose the
IxLoad Gateway feature. After selecting the IxLoad Gateway, check the Enable Authentication on IxLoadGateway
checkbox to enable authentication.

The authentication feature can be enabled or disabled every time IxLoad and IxLoadGateway are installed. This
means that if you install one IxLoad/IxLoadGateway version and enable authentication, then you install a newer
version and you do not check the ‘Enable Authentication on IxLoadGateway’ checkbox, after the install is
completed, authentication will be disabled.

REST Authentication

6 IxLoad REST API Programming Guide

Ixia User Management
Another prerequisite is that an instance of an Ixia User Management server needs to be configured and present in
the network, since for the current release REST Authentication is only supported in conjunction with Ixia User
Management defined users.

User Management is a standalone application that you can download from the IxLoad section of Ixia’s website
(https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33).

Authenticating REST Requests
With 8.30 Update 2, an ‘api-key’ has been added to the request headers. This will be generated by the
UserManagement component based on a (username, password) pair. As a result, most requests will need to have
an api-key present in their headers (see below for the exceptions). An example can be seen in the screenshot
bellow taken from the REST UI Client Solution Postman.

The only requests allowed without including an api-key in the requests are:

• Getting the list of all created sessions: GET https://localhost:8443/api/v0/sessions/

• Getting the general status of a particular session: GET https://localhost:8443/api/v0/sessions/1

All other session-specific operations will require the presence of an api-key.

Once a session is created, the api-key provided is validated against the Ixia User Management database through
the User Management server. If the key is not valid, an appropriate message will be returned.

As part of all the other requests that manipulate a session, the api-key provided is compared with the api-key used
to create that particular session.

Possible results when executing a request are:

• If the operation was successful, a Status: 201 Created or 200 OK will be received;

• If the api-key was not specified in the headers, a Status: 403 Forbidden will be received, with the following
message:

{

 "status": "POST operation failed",

 "error": "X-Api-Key is not included in the header"

}

• If the api-key provided is not valid (does not exist in the UserManagement database), a Status: 403
Forbidden will be received, with the following message:

{

 "status": "POST operation failed",

 "error": "The provided X-Api-Key is not valid"

} (this response is possible only for the CREATE session operation)

https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33

REST Authentication

IxLoad REST API Programming Guide 7

• If the api-key is not valid for a session (not the same as the one used to create the session), a Status: 403
Forbidden will be received, with the following message:

{

 "status": "POST operation failed",

 "error": "X-Api-Key mismatch"

}

A user can delete only his/her own sessions (sessions that were created with the same api-key as the one provided
during the DELETE request).

Retrieving the api-key
You can retrieve an api-key from the IxLoad UI.

In Ixload, when authentication is enabled and you log in with your Ixia User Management credentials, the api-key
value can be retrieved from File->Preferences->General .

The value of the api-key will automatically update its value every time you change your password or another user
logs in. The field is read-only, so you can only copy the value of the api-key, but not modify it.

Script Changes Required for Authentication
The changes that need to made to IxLoad REST scripts for authentication are:

• kApiKey = ‘’ – if this value remains the empty string, the api-key will not be included in the header of the
requests; otherwise it will be part of it;

• connection.setApiKey(kApiKey) - setting the api-key for the connection

Supported methods and running operations

8 IxLoad REST API Programming Guide

Supported methods and running operations
The IxLoad REST API is defined by how the resources are represented, by how they are accessed and changed and
by the exposed data model.

REST representation

The Ixload REST api will handle a lot of different object types. Each object will have amongst its values:

- Primitive values, these are basic values;
- Complex values, these will be represented by lists or other REST resources.

Primitive values

Primitive values (numbers, string, bool) will be used as values for rest options in the requests payload. These should
be represented as follows:

• strings will be enclosed in quotes : "custom string", ""
• numbers, integer or float will not be enclosed in quotes : 1 , 1.1
• Booleans will not be enclosed in quotes, and will start with lowercase : true, false

List Objects

The IxLoad data model contains numerous lists. In order to be able to identify a resource that is part of a list (it
must have a unique URL), the resource must have an ID associated, that is unique in the containing list. For this
reason, each resource that is contained in a list has a field that contains its ID. This field is called 'objectID' in IxLoad.
However, this name can be retrieved programatically by performing an 'OPTIONS' request on the resource, and
retrieving the value for the 'resourceIdName' field - right now this will return 'objectID'.

A resource's objectID can be retrieved by performing a GET request on the list, and iterating through the results,
each element of the list (each resource) will have this field set.

For a list that has the following URL:

- http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList

An element with objectID = 10 will be retrieved the following URL:

- http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/10

The requests listed in the below screenshots were made from the Google Chrome 'Advanced REST Client' add-on.

IxLoad REST API supports the following HTTP methods:

REST resources

Other REST resources will be shown as links to another object. So each time an object will be retrieved through the
REST API, it may have primitive values, lists and other REST objects. The other REST objects will be shown as links
that will point to the data model location of the referenced REST object.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/10

Supported methods and running operations

IxLoad REST API Programming Guide 9

Case conventions

In IxLoad REST API URLs are case insensitive. This applies to all parts of any URL, with the exception of the 'api' string
at the beginning of the URL. .This is not the case, however, for fields and values entered in request payloads. The
field names entered in the payload are actually option names in IxLoad middleware, so the case defined must be
followed.

Preferences
You can change several Global Options directly from the REST API using the following URL:

- http://127.0.0.1:8080/api/v0/sessions/0/ixload/preferences

The options that can be changed are shown in the following image:

Note: IxLoad REST API sessions are started under the System user, not the user you are logged in as. As all the
Global Options except Maximum Instances, License Model, and License Server are saved per-user, this means that
settings made in the IxLoad UI will have no effect on REST API runs, since the REST API will be registered under the
‘System’ user. Therefore, for the Maximum Instances, License Model, and License Server options to have an effect
on REST API tests, you must set them from the REST API.

These options can be changed by performing PATCH requests on the ‘preferences’ URL, with a payload as below:

{“licenseServer”:”ipOrHostname”}

IxLoad REST Methods

The IxLoad REST API supports the following HTTP methods - GET, PATCH, POST, DELETE, OPTIONS. The only content
type we will support for payloads will be JSON. The Payload applies to PATCH, POST and DELETE methods.

GET

Users can make GET requests in order to receive the list of REST options for the requested resource. The GET
request will not contain any payload. If the request is successful, a '200 OK' status will be returned.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/preferences

Supported methods and running operations

10 IxLoad REST API Programming Guide

The result will be a JSON dictionary containing the option names and values exposed by the resource. All the
primitive options (bool, string, int) will be in the root dictionary, while complex options (other objects) will be placed
together, as a list, under the 'links' option. Each element of the 'links' list will be a dictionary that contains the
following:

• 'rel' : the child resource name
• 'href' : a URL at which the child resource can be accessed

 Figure 1 shows the output of a GET method applied to the activeTest REST resource in IxLoad.

FIGURE 1 GET METHOD

The above representation is only a demonstration of how the output of GET is provided in IxLoad REST API through
the use of the Advanced REST Client in Google Chrome. The actual representation will be different according to the
programming language that will be used to access the IxLoad REST API.

Supported methods and running operations

IxLoad REST API Programming Guide 11

PATCH

Users can perform PATCH requests in order to change field values on resources exposed by the IxLoad session. The
PATCH request will receive as payload a list of options that the user wishes to modify. Each pair in the dictionary will
contain a field name and the new option for it. If the request is successful, a '204 No Content' status will be
returned.

The payload for a PATCH request must contain at least one field that will be changed. This means one "field name”:
"new value" pair. Figure 2 shows the representation of the PATCH method in Advanced REST Client.

FIGURE 2 PATCH METHOD

Most resources cannot be modified using PATCH requests while a test is running. If a PATCH request is made while a
test is configuring / running, a '400 Bad Request' status will be returned.

{

status: "PATCH operation failed"

error: "Cannot change HTTPClient1 at this moment. Please try again later”

}

POST

Users can make POST requests in order to add elements to a list. The request is made on the list url , and the actions
that take place behind the scenes are to instantiate a new object of the type given by the list and then add the
newly created object to the list. If the request is successful, a '201 Created' status will be returned.

The payload for a POST request will represent the parameters used when creating the resource that will be added to
the list. Since not all resources (objects) require parameters in the constructor, the payload for a POST request can
be emtpy ({}).

Figure 3 Shows the output of the POST method in the Advanced REST Client.

Supported methods and running operations

12 IxLoad REST API Programming Guide

FIGURE 3 POST METHOD

In the response headers there will be a field called 'Location', which will contain the URL address of the newly
created object

Elements cannot be added to a list while a test is running. If a POST request is made while a test is configuring /
running, a '400 Bad Request' status will be returned.

{

status: "POST operation failed"

error: "Cannot perform the 'POST' operation at this moment. "

}

DELETE

Users can make DELETE requests in order to delete one (or all) of the elements of the list. If the request is
successful, a '204 No Content' status will be returned.

Supported methods and running operations

IxLoad REST API Programming Guide 13

DELETE requests don't require any payload.

If the DELETE request is made on a list URL, the list will be cleared - all the elements will be removed.

If the DELETE request is made on a URL that consists of the list URL and an object's unique ID appended at the end,
only the object with that objectID will be removed.

Example 1: DELETE on http://127.0.0.1:8080/api/v0/sessions will delete all sessions

Example 2: DELETE on http://127.0.0.1:8080/api/v0/sessions/2 will only delete the session with objectID = 2

Elements cannot be removed from a list while a test is running. If a DELETE request is made while a test is
configuring / running, a '400 Bad Request' status will be returned.

{
status: "DELETE operation failed"

error: "Cannot perform the 'DELETE' operation at this moment."

}

OPTIONS

Users can make OPTIONS requests on any resource. The output of the request will be a set of information about the
product and resource properties. If the result is successful, a '200 OK' status will be returned.

OPTIONS requests don't require any payload.

As previously stated, in the OPTIONS response there will be two fields that specify the names of the unique object id
field and the name under which all complex resources are kept on GET requests (the 'links' option name).

Figure 4 shows how the OPTIONS method output looks in the Advanced REST Client.

http://127.0.0.1:8080/api/v0/sessions
http://127.0.0.1:8080/api/v0/sessions/2

Supported methods and running operations

14 IxLoad REST API Programming Guide

FIGURE 4 OPTIONS METHOD

Operations

IxLoad REST API Programming Guide 15

 Operations
Besides the HTTP requests listed above, executed on basic resources (objects or lists of the IxLoad data model),
IxLoad REST API also offers support for operations. These are asynchronous actions performed on a certain resource
(URL), that do not add, remove or change field values for the resource they are applied to, but rather change its
state. Examples of operations are starting an inactive IxLoad session, connecting to an already existing chassis or
running a test.

In order to check when operations are available for a certain resource, a GET request can be performed on the
resource URL, adding '/operations' at the end of the URL.

Figure 5 shows how the operations available for the test REST resource are represented.

FIGURE 5 OPERATIONS GET

The available operations will be listed in the response, containing both the operation names and the parameters
they require. Default values for parameters will also be shown.

Starting an operation

Starting an operation is done by performing a POST request on the following URL:
$resourceUrl/operations/$operationName. The request payload represents the parameters required by the
operation, as shown in the screenshot above. Some operations (such as runTest) may not require any parameters,
so for them an empty payload must be sent: {} .

Figure 6 Shows the output of the post command for the loadTest operation.

Operations

16 IxLoad REST API Programming Guide

FIGURE 6 OPERATIONS POST

uploadFile

uploadFile(connection, url, fileName, uploadPath,overWrite)

This operation uploads a file from the machine where the script runs on the machine where the IxLoad client is
running.

connection is the connection object that manages the HTTP data transfers between the client and the REST API.

url is the address of the resource that uploads the file. This url should be in form of:
http://ip:port/api/v0/resources.

filename contains the name (or absolute path to the file, if the file is not in the same location as the executing
script) of the file to be uploaded. This is the location on the machine where the script is running. Example:
“file.txt”, r“D:\\examples\\file.txt”.

uploadPath is the path where the file should be copied to on the machine on which the IxLoad client runs.

overWrite specifies the desired behavior if the file to be uploaded already exists on the remote machine. The
default value is ‘True’.

Getting an Operation's Status

Since these operations are asynchronous methods, users must be able to check an operation's status after they
have started it. For this, when starting an operation (executing the POST request), in the response header there will
be a field called 'Location', that will contain a URL. While performing a GET request on that URL, the operation's
status will be returned. Figure 7 shows the output for getting the operation status belonging to the loadTest
operation.

Operations

IxLoad REST API Programming Guide 17

FIGURE 7 GET OPERATION STATUS

 Possible values for the 'state' field are:

• Created – implies the operation was created;
• Executing – implies the operation is in progress;
• Finished – implies operation is done;

Possible values for the 'status' field are:

• Not started – implies the operation has not started yet, as operations are synchronous probably it is
waiting for other operations to finish processing;

• In Progress – implies the operation is executed;
• Successful – implies the operations has finished and was successful;
• Error – implies the operation has finished but was not successful because an error has occurred.

In case the operation will fail (exit with an error), in the response above a new field will be introduced, that will
contain the error message returned by the operation:
{

status: "Error"

actionName: "loadTest"

state: "finished"

error: "File doesn't exist - F:\statsdfs.rxf"

}

Important: the URL where an operation's status can be retrieved is only active for a certain amount of time. At the
moment, this lifetime is of 10 minutes. If a GET request on the operationUrl/operationID URL is performed after this
period, the status will not be retrieved, but a '400 Bad Request' error will be returned.

Operations

18 IxLoad REST API Programming Guide

Examples of Common Operations in the IxLoad REST API
A list of the most commonly used operations for an IxLoad test in the REST API can be obtained by doing a GET on
http://localhost:8080/api/v0/sessions/0/ixload/test/operations . The result will list the following operations (also
shown in the image below):

• loadTest – Load an IxLoad configuration file. The fullPath of the rxf to be loaded will need to be passed on
as a parameter.

• saveAs – Save the currently-loaded configuration file as a new file. The new file path for the rxf will need
to be passed as a parameter, and the overwrite option in case the file path already exists.

• save – Save the currently loaded configuration file.
• applyConfiguration – Apply configuration on the current IxLoad test. The test will go to Configured state.

This is equivalent to clicking the Apply Config button in the IxLoad UI.
• runTest – Run the current IxLoad test. The test will go to running state directly. This action is equivalent

clicking the Run test button in the IxLoad UI.
• abortAndReleaseConfigWaitFinish – Stop the currently running IxLoad test.
• exportConfig – Exports the currently loaded configuration file as a .crf file. The location of the archive

needs to be passed as a parameter.

FIGURE 8 LIST OF OPERATIONS

Example for Loading a Repository (.rxf) File

On an already created and activated session do a POST on an URL similar to:
http://localhost:8080/api/v0/sessions/[SESSIONID]/ixload/test/operations/loadTest/

In the payload/body of the request, add the path to the .rxf file.

{"fullPath":"C:\\http_test.rxf"}

http://localhost:8080/api/v0/sessions/0/ixload/test/operations
http://localhost:8080/api/v0/sessions/%5bSESSIONID%5d/ixload/test/operations/loadTest/

Operations

IxLoad REST API Programming Guide 19

FIGURE 9 PATH TO RXF FILE

As described in Getting an Operation's Status, query the status of the operation until the state is Finished.

Example of Running a Test

On an already created and activated session in which there is either a loaded configuration file or a new test has
been created, do a POST on a URL similar to:
http://localhost:8080/api/v0/sessions/[SESSIONID]/ixload/test/operations/runTest/

FIGURE 10 RUNNING A TEST

As described in Getting an Operation's Status, query the status of the operation until the state is Finished.

Example of Stopping a Test

On an already created and activated session in which there is either a loaded configuration file or a new test has
been created, do a POST on a URL similar to:
http://localhost:8080/api/v0/sessions/[SESSIONID]/ixload/test/operations/abortAndReleaseConfigWaitFinish

http://localhost:8080/api/v0/sessions/%5bSESSIONID%5d/ixload/test/operations/runTest/
http://localhost:8080/api/v0/sessions/%5bSESSIONID%5d/ixload/test/operations/abortAndReleaseConfigWaitFinish

Operations

20 IxLoad REST API Programming Guide

FIGURE 11 STOPPING A TEST

As described in Getting an Operation's Status, query the status of the operation until the state is Finished.

Query Strings
You can search using a filter with one or more parameters separated by commas.

Note: The format for Query Strings changed between release 8.00 and 8.10:

For 8.00, the format was: http://resourceUrl?fieldName=value.

Beginning with 8.10, the format is http://resourceUrl?filter=”fieldName <operator> value

The query strings are inserted under the ‘filter’ param, at the end of the URL. The supported query string operators
are:

- eq - equals
- ne - not equal to
- lt - lower than
- gt - greater than
- le - lower or equal to
- ge - greater or equal to

When the ‘eq’ operator is used for string fields (like names of statistics, for example), it automatically has a
‘contains’ effect. This means that a GET request on /configuredStats?filter=”caption eq HTTP” will return all
statistics whose caption contains “HTTP”. If instead a ‘matches’ operation is desired, you can still use ‘eq’ but the
value must be enclosed in quote marks (“”). This will cause a GET on /configuredStats?filter=”caption eq “HTTP””
to return only statistics whose caption is exactly “HTTP”.

Multiple query string conditions can be introduced in the same URL, separated by commas.

For example, the following URL will return all enabled statistics whose objectID is less than or equal to 14:

- http://localhost:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats?filter="enabled eq
True,objectID le 14"

Query Strings are only supported on list resources, with the following methods:

- GET: Returns all the elements of the list which satisfy the query string conditions.

http://resourceurl/?fieldName=value
http://resourceurl/?filter=
http://localhost:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats?filter=%22enabled

Operations

IxLoad REST API Programming Guide 21

- PATCH: Modifies the list with the parameters sent in the request payload all the elements of the list which
satisfy the query string conditions.

- DELETE: Deletes from the list all the elements of the list which satisfy the query string conditions.

Collecting Diagnostics

IxLoad includes a diagnostics collection utility that collects log files and packages them into a ZIP file, so that they
can be stored or emailed conveniently. In the GUI, the utility can be accessed from the File > Tools > Diagnostics
menu. You can collect those same log files using the REST API.

To collect diagnostics:

- At least one session must be active.
- The test must be in either the Configured or Unconfigured state.

To collect diagnostics, use the following command:

POST @ api/v0/sessions/72/ixload/test/activeTest/operations/collectDiagnostics

Specify the ZIP file location as the POST payload:

{"zipFileLocation": "<path to save ZIP file>"}

For example:

{"zipFileLocation": "C:\\Users\\ixia\\Desktop\\diags.zip"}

Figure 12 shows an example of a POST operation to collect diagnostics from a REST client.

Operations

22 IxLoad REST API Programming Guide

FIGURE 12 COLLECTING DIAGNOSTICS

The status of the POST operation to collect diagnostics should be 202:Accepted. The response to the operation
should include a location.

To query the status of the POST operation, use a GET operation and specify the location received in the response
to the POST.

For example:

GET @ http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectDiagnostics/1

Figure 13 shows an example of a query to get the status of a diagnostics collection operation.

http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectDiagnostics/1

IxLoadGateway - IxLoad session handling

IxLoad REST API Programming Guide 23

FIGURE 13 GETTING THE STATUS OF THE DIAGNOSTICS COLLECTION OPERATION

IxLoadGateway - IxLoad session handling
Creating and handling IxLoad sessions is done through an IxLoad service, named IxLoadGateway.

IxLoadGateway is installed with IxLoad as part of the custom install options.

Creating a new session

In order to create a new session object a POST on api/v0/sessions with payload: {“ixLoadVersion”:”version no.”}
Needs to be performed.

Please note that this means the session is just created not started and not active.

This will not take into consideration the instance count limit on the client side. This will only work for sessions that
are started. Figure 14 shows how this looks from rest client.

IxLoadGateway - IxLoad session handling

24 IxLoad REST API Programming Guide

FIGURE 14 CREATE A NEW SESSION OBJECT

Figure 15 shows the response for the post above. Status is 201 created & location points to the session.

FIGURE 15 RESPONSE FOR CREATING A SESSION OBJECT

Starting a session

To start a session an operation is provided, named start. This operation is available on each individual session and
requires no payload.

Figure 16 shows how this looks in rest client. This operation will start a new IxLoad session based on the IxLoad
version for which the session was created.

IxLoadGateway - IxLoad session handling

IxLoad REST API Programming Guide 25

FIGURE 16 START AN EXISTING SESSION

Figure 17 shows the response for the start operation. Response is 202 Accepted. And the location shows the result
for the operation.

FIGURE 17 RESPONSE FOR START OPERATION

Figure 18 shows how the operation result for start looks like when the session started successfully

It contains the same information as the now deprecated create operation.

IxLoadGateway - IxLoad session handling

26 IxLoad REST API Programming Guide

FIGURE 18 SUCCESSFUL START

Figure 19 shows the unsuccessful start operation due to maximum number of instances.

IxLoad Data Model

IxLoad REST API Programming Guide 27

FIGURE 19 FAILED SESSION START

Deleting a session

Deleting an IxLoad session is done in the same way that was described for generic lists. A DELETE request can be
sent either to the sessions list URL, or to an actual session URL. If the request is sent to the sessions URL, all sessions
will be closed. If the request is sent to a specific session's object ID, only that session will be closed.

 When deleting a session, the IxLoad process underneath it will be closed.

IxLoad Data Model
Using REST API users can browse the IxLoad data model in order to retrieve or modify the current configuration. The
link below contains information on where to find in the data model the following resources: L47 plugins, L23 ranges,
timelines. Also, the link contains supported operations, such as loading and saving configurations and running a test.

 Communities

Users can find all the communities in the following path:

• http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/

All the communities in the test will be shown in this list, regardless of their role - client / server / peer. Also, this will
contain both enabled and disabled communities.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/

Chassis Chain / Port Assignment Operations

28 IxLoad REST API Programming Guide

Users can choose to only view client communities by performing a GET operation on the same list, but using query
strings:

• http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList?filter="role eq
client"

Community resources:

• activities: all the activities under a community can be found in the following list:
o http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/$communityObject

ID/activityList
o An activity's command list will be found under the 'agent' resource

• port list : the ports assigned to a community can be found on the 'network' resource under the community
resource:

o http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/network/portList
• IP ranges : the IP ranges used by the community will be found under the 'network' resource:

o http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/network/stack/c
hildrenList/1/childrenList/1/rangeList

o 'stack' is the entry point in the L23 data model.

Timelines

All the timelines used in the test will show under a single list, located on the 'activeTest' resource:

• http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/timelineList

Plugins will not expose in REST a direct reference to their timeline (the activities don't have a 'timeline' option
exposed), they will have a 'timelineId' option. This option will contain the 'objectID' of the desired timeline in the
test timeline list. If the user wants to change the timeline used by a certain plugin, he needs to perform a PATCH
request on the activity with the following payload: {“timelineId”: "object ID of the desired timeline in the test
timeline list”}

Login name

Users can change the login name that will be used by their session when running, by changing the 'loginName' field
on the chassis chain resource:

• PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/
• payload : { "loginName" : "NewLoginName" }

Chassis Chain / Port Assignment Operations
Through IxLoad REST API users can perform the following chassis / port operations:

• Add or remove a chassis
• Connect to a chassis
• Assign or un-assign ports

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList?filter=%22role
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/activityList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/activityList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/network/portList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/network/stack/childrenList/1/childrenList/1/rangeList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/network/stack/childrenList/1/childrenList/1/rangeList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/timelineList
http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/

Chassis Chain / Port Assignment Operations

IxLoad REST API Programming Guide 29

 The chassis list can be found on the 'chassisChain' root object, at the following URL:

• http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/chassisList

Adding a chassis

Adding a new chassis will be done like below:

POST@ api/v0/sessions/0/ixload/chassischain/chassisList with {"name":"chassis ip or name"}

Figure 20 shows the input for rest client.

The newly added chassis is not connected and it has no cards or ports.

FIGURE 20 POST ON CHASSIS LIST

The response for this is shown in Figure 21.

The result is 201 Created.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/chassisList

Chassis Chain / Port Assignment Operations

30 IxLoad REST API Programming Guide

FIGURE 21 RESULT FOR POST ON CHASSISLIST

Connecting to a chassis

To connect to a chassis:

POST @ api/v0/sessions/0/ixload/chassischain/chassisList/2/operations/refreshConnection

No payload is required.

Figure 22 shows how this looks in rest client.

FIGURE 22 POST ON REFRESHCONNECTION

Status should be 202 Accepted as in Figure 23.

FIGURE 23 STATUS FOR REFRESHCONNECTION

Chassis Chain / Port Assignment Operations

IxLoad REST API Programming Guide 31

The result to the refresh operation is posted below in Figure 24.

FIGURE 24 RESULT TO REFRESHCONNECTION OPERATION

FIGURE 25 FAILED TO CONNECT

There is a new field inserted that is named refreshedChassis. This is referring to the ip or hostname of the chassis
that was refreshed.

Chassis Chain / Port Assignment Operations

32 IxLoad REST API Programming Guide

Usually this will contain the chassis that was refreshed. The only exception is when the loaded rxf has more than one
chassis and all of them are not refreshed. In this case the refreshedChassis will hold all the chassis in the rxf because
the whole chassis chain is getting refreshed.

There are cases when the rxf will have older chassis that no longer exist. To handle this in the refreshConnection
operation a warning field was added that will instruct the user on what happened and the refreshedChassis field will
contain only the chassis that were successfully connected to. In Figure 25 a GET on the status of refreshConnection
operation will show that no chassis were refreshed and a warning message telling the user what happened.

Removing a chassis

This is done by performing a simple delete operation on the chassis list. In order to remove all the chassis in the list,
the DELETE request must be performed on the chassis list url.

In order to remove only a certain chassis, the DELETE request must be performed on the following URL :

api/v0/sessions/0/ixload/chassischain/chassisList/chassisObjectId.

This is consistent with DELETE operations on other IxLoad Data Model lists.

Unassign ports

Unassigning ports is done by performing a DELETE request on the network port list. This is done the same as for
removing chassis - the user can unassign either one of the ports (using the port object ID), or all the ports, by
performing the DELETE operation on the list URL.

Assign ports

Assigning ports is done by performing POST operations on the network port list. The POST request must receive
three parameters: chassisId, cardId, portId. These parameters do not represent the unique objectIDs used by REST
API to identify resources as part of a list. These three parameters have the same meaning they have from UI and
TCL/Python/Perl scripting, where a port is identified using a string such as "1.1.1".
The chassisId, cardId, portId can be seen on performing a GET request on the portList for each card of a chassis as
shown in Figure 26.

Chassis Chain / Port Assignment Operations

IxLoad REST API Programming Guide 33

FIGURE 26 PORT LIST

The values highlighted above are the ones that will be used when assigning the port as in Figure 27.

FIGURE 27 ASSIGN PORTS

IxVM Chassis (ixChassisBuilder)
You use the chassisBuilder object to configure and manage IxVM virtual chassis, and the cards and ports on them.

Chassis Chain / Port Assignment Operations

34 IxLoad REST API Programming Guide

To get the root chassisBuilder object, send a GET request to the following URL:

http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder

A response will be returned in the following form which indicates the connected chassis:

To display the list of operations available, send the following request:

http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder/o
perations

To execute an operation, send a POST request with the operation URL:

POST
http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder/o
perations/getChassisSettings

You can retrieve operation’s status by sending a GET with operation’s ID:

Chassis Chain / Port Assignment Operations

IxLoad REST API Programming Guide 35

GET
http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder/o
perations/getChassisSettings/{operationId}

You can retrieve the operation’s result by sending the following URL:

GET
http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder/o
perations/getChassisSettings/{operationId}/ result }

The result will be specified in the links dict from the action status URL.

The result will be in the following form:

Statistics

36 IxLoad REST API Programming Guide

Statistics

The REST stat component will behave similar to the StatCollectorUtils component used in TCL. The user will be able
to get available statistics for the activities configured in a test. He will also be able to apply filters on
port/nettrafic/activity.

The user will be responsible for polling statistics from the web server. We will hold all statistics configured in the test
in a circular buffer for a default amount of polls of 20 timestamps. As part for this release the number of default
polls is not configurable.

Viewing statistics

Using IxLoad REST API users can configure L47 statistics that will be available at run time.
IxLoad REST API offers support for configuring and polling statistics for L47 protocols.

The root resource for stats in REST mode is found at the following URL:

• http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats

 When a repository is loaded that contains L47 protocols, a GET request on this URL will return a list of stat sources,
as seen below in Figure 28.

FIGURE 28 STAT SOURCES

A GET request on any of the returned stat sources except RunState will return three lists: availableStats,
configuredStats and values as below in Figure 29.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats/

Statistics

IxLoad REST API Programming Guide 37

FIGURE 29 GET STAT SOURCE

In Figure 29 there are several complex objects available that refer to how stats work in IxLoad REST framework:

• availableStats: this is the list that contains all available stats for the current test. This list is read-only -
users can't remove available stats

• configuredStats: this is the list that contains the stats that have been configured for the current test.
Here users can choose to enable / disable / remove / modify existing stats, by default configuredStats
will include all availableStats

• Each configured stat resource has the following fields:
o filterList
o enabled
o caption -> (this must be unique in the list)
o objectID -> (also must be unique)
o aggregationType
o statName

• values : this is a dictionary that will contain the actual stat values during the IxLoad test run
o If a GET request is performed on 'values' before the test actually runs, an empty dictionary

will be returned

Statistics

38 IxLoad REST API Programming Guide

o The format for the dictionary will be: {timestamp : { stat name : stat value } } The 'values'
dictionary will only keep, at all times, the last 20 timestamps. If the user does not poll stats in
due time, he might lose some timestamps.

Figure 30 shows the values obtained when running a query on the HTTP Client stat values.

FIGURE 30 STAT VALUES

RunState Stat Source
The RunState stat source is listed for all agents under a single stat source called ‘RunState’. There are no
configurable options for the RunState stat source, you can only perform ‘GET’ requests on it. The only option for
RunState is the ‘values’ option; it does not have the ‘availableStats’ or ‘configuredStats’ options.

The URL for the RunState stat source is:

http://IP:8080/api/v0/sessions/sessionId/ixload/stats/RunState

which simply contains a link to the ‘values’ resource. The stat values can be viewed at the following URL:

http://IP:8080/api/v0/sessions/sessionId/ixload/stats/RunState/values

A ‘GET’ on the values URL before the test starts running will return an empty dictionary. After the test starts
running, the dictionary will be populated with the RunState stat values for all agents.

Modifying configured statistics

Changing statistics is done by running the PATCH method on the configured statistics structure.

Statistics can be enabled or disabled and the aggregation type can also be changed.

http://ip:8080/api/v0/sessions/sessionId/ixload/stats/RunState
http://ip:8080/api/v0/sessions/sessionId/ixload/stats/RunState/values

Statistics

IxLoad REST API Programming Guide 39

Figure 31 shows the url for getting a configured stat.

FIGURE 31 GET CONFIGURED STATS

The result of the get in the above request is shown in Figure 32.

FIGURE 32 GET CONFIGURED STATS DATA

To change a configured stat a PATCH method will be issued like in Figure 33. The payload must contain the
properties that require to be changed.

FIGURE 33 PATCH ON CONFIGURED STATS

Figure 34 shows how the PATCH method above changed the configured stat structure by disabling it.

Statistics

40 IxLoad REST API Programming Guide

FIGURE 34 CONFIGURED STATS AFTER PATCH

Filtering stats

The filter stats are accessed like in Figure 35 Configured stats – filter Listby issuing a GET command on the filterlist
from a specific configuredStat item.

Statistics

IxLoad REST API Programming Guide 41

FIGURE 35 CONFIGURED STATS – FILTER LIST

A configured stat contains several filters each enabling the option to get the values at:

- Card level
- Activity level
- Chassis level
- Port level

Adding a port filter is demonstrated in Figure 36 by adding a new port to the portFilter list.

Statistics

42 IxLoad REST API Programming Guide

FIGURE 36 POST ON PORT FILTERS

Figure 37 shows how the filter looks after it was added above.

FIGURE 37 GET PORT FILTER

Several filters can beset for multiple configured stats according to how the user will need to see the statistics.
Aggregations and processing can be done in the client script once the stats are coming in.

Logging

IxLoad REST API Programming Guide 43

Generated CSVs

During the IxLoad test run, CSVs files will also be generated. If the user does not change any settings regarding the
CSV path, they will be generated in the default result directory which can be configured in IxLoad UI.

If the user wants to save the generated CSVs in a custom path, he must set the following two variables on the 'test'
resource, before running the configuration:

• PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/
• payload:

o outputir : true (the default is 'false')
o runResultDirFull : "F:\\path\\to\\the\\new\\result\\dir"

Logging
You can retrieve log messages by accessing a URL. The logs available from the REST API will be equivalent to the
entries seen in the IxLoad UI. The URL where log entries are accessible is the following:

- http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/logs

A GET applied to the logs URL will return a list of the last log entries. By default, the last 100 entries will be shown,
but this number can be changed from the ‘preferences’ URL. Each log entry will contain the moduleName, severity,
timestamp and message:

FIGURE 38 LOGS

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/logs

REST Script Templates

44 IxLoad REST API Programming Guide

REST Script Templates
Scripts that create and use an IxLoad session in REST mode can be written in any language that supports performing
REST requests. An installed IxLoad build contains a set of sample scripts that perform basic IxLoad operations from
REST using python. The samples can be found in root installation folder of IxLoad in a subfolder named RestScripts.

 The sample folder contains 4 python scripts. The 4 scripts located in the samples folder need to be run with a
Python executable that has the 'requests' module installed, as it is described in the README.txt file included in the
RestScripts folder. The scripts do not require any command line arguments. They can be simply executed by
performing'python.exe SimpleRun.py'.

Before running the scripts please change the configuration data (IxLoad Version, chassis, rxf file path) in the
beginning of each script accordingly.

The provided templates act as guidance, the IxLoad REST API is compatible with any programming language that
supports running HTTP requests.

The REST script templates are relying on 2 utility python files:

- IxLoadUtils.py which deals with specific IxLoad REST API functionality

- IxLoadRestUtils.py which deals with providing the underlying abstraction level that IxLoadUtils is using to
receive, interpret and dispatch requests.

The two files are helpers to implement a Python script to handle REST communication with the IxLoad REST
framework. The template files expose basic workflow scenarios as examples for users to understand how to
automatically configure IxLoad through REST.

AddNewCommand
This template will:

- Create a session
- Load an Rxf
- Clear the chassis list
- Add a chassis
- Assign ports to the networks
- Clear the command list for client activity
- Update the command list of the client HTTP activity by:

o Adding a GET command with custom properties
o Adding a POST command with custom properties

- Save the Rxf
- Start the test
- Poll the stats
- Close the IxLoad session

ChangeAgentObjectives

This template will:

- Create a session

REST Script Templates

IxLoad REST API Programming Guide 45

- Load an Rxf
- Clear the chassis list
- Add a chassis
- Assign ports to the networks
- Update the activity options by:

o Enabling constraings
o Setting a constraint value
o Changing th objective type
o Setting a new objective type

- Save the Rxf
- Start the test
- Poll the stats
- Close the IxLoad session

ChangeIpType

This template will:

- Create a session
- Load an Rxf
- Clear the chassis list
- Add a chassis
- Assign ports to the networks
- Update the ip Ranges changing the count and the ipAddress
- Save the Rxf
- Start the test
- Poll the stats
- Close the IxLoad session

SimpleRun

This template will:

- Create a session
- Load an Rxf
- Clear the chassis list
- Add a chassis
- Assign ports to the networks
- Save the Rxf
- Start the test
- Poll the stats
- Close the IxLoad session

IxLoadRestUtils

This module defines the following

REST Script Templates

46 IxLoad REST API Programming Guide

class Connection(__builtin__.object)

This is the class that executes the HTTP requests to the application instance. It handles creating the HTTP session
and executing HTTP methods.

Methods defined here:
- __init__(self, siteUrl, apiVersion)

Args:

o siteUrl is the actual url to which the Connection instance will be made.
o apiVersion is the actual version of the REST API that the Connection instance will use.
o The HTTP session will be created when the first http request is made.

- httpDelete(self, url='', data='', params={}, headers={})

Method for calling HTTP DELETE. Will return the HTTP reply.

- httpGet(self, url='', data='', params={}, headers={})

Method for calling HTTP GET. This will return a WebObject that has the fields returned in JSON format by
the GET operation.

- httpPatch(self, url='', data='', params={}, headers={})

Method for calling HTTP PATCH. Will return the HTTP reply.

- httpPost(self, url='', data='', params={}, headers={})

Method for calling HTTP POST. Will return the HTTP reply.

- httpRequest(self, method, url='', data='', params={}, headers={})

Args:

o Method (mandatory) represents the HTTP method that will be executed.
o url (optional) is the url that will be appended to the application url.
o data (optional) is the data that needs to be sent along with the HTTP method as the JSON payload
o params (optional) the payload python dict not necessary if data is used.
o headers (optional) these are the HTTP headers that will be sent along with the request. If left blank will

use default

Method for making a HTTP request. The method type (GET, POST, PATCH, DELETE) will be sent as a
parameter. Along with the url and request data. The HTTP response is returned

Class methods defined here:
- urljoin(cls, base, end) from __builtin__.type

Join two URLs. If the second URL is absolute, the base is ignored. Use this instead of urlparse.urljoin directly so
that we can customize its behavior if necessary.

Currently differs in that it

 1. Appends a / to base if not present.

 2. Casts end to a str as a convenience

REST Script Templates

IxLoad REST API Programming Guide 47

Data descriptors defined here:
- __dict__

dictionary for instance variables (if defined)

- __weakref__

list of weak references to the object (if defined)

Data and other attributes defined here:
- kContentJson = 'application/json'
- kHeaderContentType = 'content-type'

class WebList(__builtin__.list)

By using this class a JSON list will be transformed in a list of WebObject instances.

Methods defined here:
- __init__(self, entries=[])

Create a WebList from a list of items that are processed by the _WebObject function

Data descriptors defined here:
- __dict__

dictionary for instance variables (if defined)

- __weakref__

list of weak references to the object (if defined)

class WebObject(__builtin__.object)

A WebObject instance will have its fields set to correspond to the JSON format received on a GET request. For
example: a response in the format: {"caption": "http"} will return an object that has obj.caption="http"

 Methods defined here:

- __init__(self, **entries)

Create a WebObject instance by providing a dict having a property - value structure.

- getOptions(self)

Get the JSON dictionary which represents the WebObject Instance

Data descriptors defined here:
- __dict__

REST Script Templates

48 IxLoad REST API Programming Guide

dictionary for instance variables (if defined)

- __weakref__

list of weak references to the object (if defined)

Functions

- formatDictToJSONPayload(dictionary)

Converts a given python dict instance to a string JSON payload that can be sent to a REST API.

- getConnection(server, port)

 Gets a Connection instance, which will be used to make the HTTP requests to the application

IxLoadUtils

The IxLoadUtils module is a collection of specific functions that deal with common IxLoad workflows.

Functions

- addChassisList(connection, sessionUrl, chassisList)

This method is used to add one or more chassis to the chassis list.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o chassisList is the list of chassis that will be added to the chassis chain.

- addCommands(connection, sessionUrl, commandDict)

This method is used to add commands to a certain list of provided agents.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o commandDict is the Python dict that holds the mapping between agent name and specific commands.

(commandDict format -> { agent name : [{ field : value }] })
- assignPorts(connection, sessionUrl, portListPerCommunity)

This method is used to assign ports from a connected chassis to the requred NetTraffics.

 Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test

REST Script Templates

IxLoad REST API Programming Guide 49

o portListPerCommunity is the dictionary mapping NetTraffics to ports (format -> { community name : [
port list] })

- changeActivityOptions(connection, sessionUrl, activityOptionsToChange)

This method will change certain properties for the provided activities.

 Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o activityOptionsToChange is the Python dict that holds the mapping between agent name and specific

properties (activityOptionsToChange format: { activityName : { option : value } })

- changeCardsInterfaceMode (connection, chassisChainUrl, chassisIp, cardIdList, mode)

This method is used to change the interface mode on a list of cards from a chassis. In order to call this
method, the desired chassis must be already added and connected.

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o chassisChainUrl is the address of the chassisChain resource
o chassisIp is the IP or hostname of the chassis that contains the card(s)
o cardIdList is a list of card IDs
o mode is the interface mode that will be set on the cards. Possible options are (depending on card

type): 1G, 10G, 40G, 100G

- changeIpRangesParams(connection, sessionUrl, ipOptionsToChangeDict)

This method is used to change certain properties on an IP Range.

 Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o ipOptionsToChangeDict is the Python dict holding the items in the IP range that will be changed.
o (ipOptionsToChangeDict format -> { IP Range name : { optionName : optionValue } })

- clearAgentsCommandList(connection, sessionUrl, agentNameList)

This method clears all commands from the command list of the agent names provided.

 Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o agentNameList the list of agent names for which the command list will be cleared.

- clearChassisList(connection, sessionUrl)

REST Script Templates

50 IxLoad REST API Programming Guide

This method is used to clear the chassis list. After execution no chassis should be available in the chassisList.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test

- createSession(connection, ixLoadVersion)

This method is used to create a new session. It will return the url of the newly created session

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o ixLoadVersion this is the actual IxLoad Version to start

- deleteSession(connection, sessionUrl)

This method is used to delete an existing session.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the seession to delete

- getCommandListUrlForAgentName(connection, sessionUrl, agentName)

This method is used to get the commandList url for a provided agent name.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o agentName is the agent name for which the commandList address is provided

- getIPRangeListUrlForNetworkObj(connection, networkUrl)

This method will return the IP Ranges associated with an IxLoad Network component.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o networkUrl is the REST address of the network object for which the network ranges will be provided.

REST Script Templates

IxLoad REST API Programming Guide 51

- getTestCurrentState(connection, sessionUrl)

This method gets the test current state. (for example - running, unconfigured, ..)

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test.

- getTestRunError(connection, sessionUrl)

This method gets the error that appeared during the last test run.

If no error appeared (the test ran successfully), the return value will be 'None'.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API.

o sessionUrl is the address of the session that should run the test.

- loadRepository(connection, sessionUrl, rxfFilePath)

This method will perform a POST request to load a repository.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session to load the rxf for
o rxfFilePath is the local rxf path on the machine that holds the IxLoad instance

- performGenericDelete(connection, listUrl, payloadDict)

This will perform a generic DELETE method on a given url

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o url is the address of where the operation will be performed
o payloadDict is the python dict with the parameters for the operation

- performGenericOperation(connection, url, payloadDict)

This will perform a generic operation on the given url, it will wait for it to finish.

Args:

REST Script Templates

52 IxLoad REST API Programming Guide

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o url is the address of where the operation will be performed
o payloadDict is the python dict with the parameters for the operation

- performGenericPatch(connection, url, payloadDict)

This will perform a generic PATCH method on a given url

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o url is the address of where the operation will be performed
o payloadDict is the python dict with the parameters for the operation

- performGenericPost(connection, listUrl, payloadDict)

This will perform a generic POST method on a given url

Args:

o connection is the connection object
o url is the address of where the operation will be performed
o payloadDict is the python dict with the parameters for the operation

- pollStats(connection, sessionUrl, watchedStatsDict, pollingInterval=4)

This method is used to poll the stats. Polling stats is per request but this method does a continous poll.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session that should run the test
o watchedStatsDict these are the stats that are being monitored
o pollingInterval the polling interval is 4 by default but can be overridden.

- runTest(connection, sessionUrl)

This method is used to start the currently loaded test. After starting the 'Start Test' action, wait for the action to
complete.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

REST Script Templates

IxLoad REST API Programming Guide 53

o sessionUrl is the address of the session that should run the test.

- saveRxf(connection, sessionUrl, rxfFilePath)

This method saves the current rxf to the disk of the machine on which the IxLoad instance is running.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o sessionUrl is the address of the session to save the rxf for
o rxfFilePath is the location where to save the rxf on the machine that holds the IxLoad instance

- setCardsAggregationMode(connection, chassisChainUrl, chassisIp, cardIdList, mode)

This method is used to change the aggregation mode on a list of cards from a chassis. In order to call this
method, the desired chassis must be already added and connected

Args:

 - connection is the connection object that manages the HTTP data transfers between the client and the REST
API

o chassisChainUrl is the address of the chassisChain resource
o chassisIp is the IP or hostname of the chassis that contains the card(s)
o cardIdList is a list of card IDs
o mode is the aggregation mode that will be set on the cards. Possible options are (depending on card

type): NA (Non Aggregated), 1G, 10G, 40G

- waitForActionToFinish(connection, replyObj, actionUrl)

This method waits for an action to finish executing. After a POST request is sent in order to start an action,

The HTTP reply will contain, in the header, a 'location' field, that contains an URL.

The action URL contains the status of the action. This will perform a GET on that URL every 0.5 seconds until the
action finishes with a success.

If the action fails, this will throw an error and print the action's error message.

Args:

o connection is the connection object that manages the HTTP data transfers between the client and the
REST API

o replyObj the reply object holding the location
o actionUrl - the url pointing to the operation

The IxLoad REST templates provide a basic way of doing common tasks with IxLoad. The same can be achieved in
other programming languages, not necessarily python.

	New in this Release
	Before you Begin
	REST Resources
	Supported Features
	Using the REST API over HTTPS
	Self-signed certificates
	Script Changes Required for HTTPS
	Errors from REST UI Clients

	REST Authentication
	Prerequisites
	Enabling Authentication
	Ixia User Management

	Authenticating REST Requests
	Retrieving the api-key
	Script Changes Required for Authentication

	Supported methods and running operations
	REST representation
	List Objects
	REST resources
	Case conventions

	Preferences
	IxLoad REST Methods
	GET
	PATCH
	POST
	DELETE
	OPTIONS

	Operations
	Starting an operation
	uploadFile
	Getting an Operation's Status
	Examples of Common Operations in the IxLoad REST API
	Query Strings
	Collecting Diagnostics

	IxLoadGateway - IxLoad session handling
	Creating a new session
	Starting a session
	Deleting a session

	IxLoad Data Model
	Communities
	Timelines
	Login name

	Chassis Chain / Port Assignment Operations
	Adding a chassis
	Connecting to a chassis
	Removing a chassis
	Unassign ports
	Assign ports
	IxVM Chassis (ixChassisBuilder)

	Statistics
	Viewing statistics
	RunState Stat Source
	Modifying configured statistics
	Filtering stats
	Generated CSVs

	Logging
	REST Script Templates
	AddNewCommand
	ChangeAgentObjectives
	ChangeIpType
	SimpleRun
	IxLoadRestUtils
	class Connection(__builtin__.object)
	Methods defined here:
	Class methods defined here:
	Data descriptors defined here:
	Data and other attributes defined here:

	class WebList(__builtin__.list)
	Methods defined here:
	Data descriptors defined here:

	class WebObject(__builtin__.object)
	Methods defined here:
	Data descriptors defined here:

	Functions

	IxLoadUtils
	Functions

