
IxLoad

REST API Programming Guide

Version 9.00 Update 1

Notices
Copyright Notice
© Keysight Technologies 2015–2019

No part of this document may be
reproduced in any form or by any means
(including electronic storage and retrieval
or translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies, Inc.
as governed by United States and
international copyright laws.

Warranty
The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Keysight
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Keysight shall not
be liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or performance
of this document or of any information
contained herein. Should Keysight and the
user have a separate written agreement
with warranty terms covering the
material in this document that conflict
with these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses
The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

U.S. Government Rights
The Software is "commercial computer
software," as defined by Federal
Acquisition Regulation ("FAR") 2.101.
Pursuant to FAR 12.212 and 27.405-3 and
Department of Defense FAR Supplement
("DFARS") 227.7202, the U.S. government

acquires commercial computer software
under the same terms by which the
software is customarily provided to the
public. Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User License
Agreement (EULA), a copy of which can
be found at
http://www.keysight.com/find/sweula or
https://support.ixiacom.com/support-
services/warranty-license-agreements.
The license set forth in the EULA
represents the exclusive authority by
which the U.S. government may use,
modify, distribute, or disclose the
Software. The EULA and the license set
forth therein, does not require or permit,
among other things, that Keysight: (1)
Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the government
rights in excess of these rights
customarily provided to the public to use,
modify, reproduce, release, perform,
display, or disclose commercial computer
software or commercial computer
software documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except to
the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Keysight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR
27.401 or DFAR 227.7103-5 (c), as
applicable in any technical data. 52.227-
14 (June 1987) or DFAR 252.227-7015 (b)
(2) (November 1995), as applicable in any
technical data.

– ii –

http://www.keysight.com/find/sweula
https://support.ixiacom.com/support-services/warranty-license-agreements
https://support.ixiacom.com/support-services/warranty-license-agreements

This page intentionally left blank.

– iii –

Contacting Us

Ixia headquarters
26601 West Agoura Road
Calabasas, California 91302
+1 877 367 4942 – Toll-free North America
+1 818 871 1800 – Outside North America
+1.818.871.1805 – Fax
www.ixiacom.com/contact/info

Support

Global Support +1 818 595 2599 support@ixiacom.com

Regional and local support contacts:

APAC Support +91 80 4939 6410 support@ixiacom.com

Australia +61-742434942 support@ixiacom.com

EMEA Support +40 21 301 5699 support-emea@ixiacom.com

Greater China Region +400 898 0598 support-china@ixiacom.com

Hong Kong +852-30084465 support@ixiacom.com

India Office +91 80 4939 6410 support-india@ixiacom.com

Japan Head Office +81 3 5326 1980 support-japan@ixiacom.com

Korea Office +82 2 3461 0095 support-korea@ixiacom.com

Singapore Office +65-6215-7700 support@ixiacom.com

Taiwan (local toll-free number) 00801856991 support@ixiacom.com

– iv –

https://www.ixiacom.com/contact/info
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-emea@ixiacom.com?subject=Enquiry
mailto:support-china@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-india@ixiacom.com?subject=Enquiry
mailto:support-japan@ixiacom.com?subject=Enquiry
mailto:support-korea@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry

This page intentionally left blank.

– v –

C
O
N
TE
N
TS

Contacting Us iv

New in this Release xii

Before you Begin xiv

REST Resources 1

Supported Features 3

API version v1 4

Using the REST API over HTTPS 7

Self-signed certificates 7

Script changes required for HTTPS 8

Errors from REST UI clients 8

REST Authentication 9

Enabling authentication on Windows 9

Enabling authentication on Linux 10

Authenticating REST requests 11

Retrieving the api-key 12

Script changes required for authentication 12

Supporting Methods and Running Operations 15

REST representation 15

Preferences 16

IxLoad REST methods 17

GET 17

PATCH 18

– vi –

POST 19

DELETE 20

OPTIONS 21

Operations 23

Starting an operation 24

Getting an operation's status 24

Examples of common operations in the IxLoad REST API 26

Query strings 29

Collecting diagnostics 30

Deleting the results directory after running a test 32

extractDataModel operation 34

findURLs operation 36

IxLoad Session Handling 41

Creating a new session 41

New session with a specified version 41

New session with the latest version 45

Deleting a session 46

Uploading and downloading files 47

API Browser 49

How to find URLs in a REST API session 52

IxLoad Data Model 55

Communities 55

Timelines 56

Login name 56

DUTs 56

Expiration timer 58

Enabling Analyzer and downloading captures 59

– vii –

Modifying the activity user objective value on the fly 60

Chassis Chain/Port Assignment Operations 61

Adding a chassis 61

Connecting to a chassis 62

Removing a chassis 64

Assigning ports 64

Taking or clearing ownership of ports 66

Rebooting ports 66

Unassigning ports 66

IxVM chassis (ixChassisBuilder) 66

Upload and Download Diameter XML Configuration Files 71

Statistics 73

Viewing statistics 73

Statistics views 76

RunState stat source 78

Video client per-stream statistics 78

Modifying configured statistics 80

Filtering stats 82

Generated CSVs 84

Logging 85

REST Script Templates 89

AddNewCommand.py 89

ChangeAgentObjectives.py 90

ChangeIpType.py 90

CIFSfromScratch.py 91

Dhcpv4v6_config_from_scratch.py 91

DNS_with_DUT_from_scratch.py / DNS_config_from_scratch.py 91

– viii –

FTP_config_from_scratch.py 91

HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py 91

IMAP_config_from_scratch.py 91

POP3ConfigFromScratch.py 91

RepRunner.py 91

RTSP_config_from_scratch.py 91

SimpleRun.py 91

SimpleRunCapturesEnabled.py 92

SMTPfromScratch 92

StatelessPeerFS.py 92

TFTP_config_from_scratch.py 92

VoIPSIP_config_from_scratch.py 92

IxLoadRestUtils 93

class Connection(__builtin__.object) 93

class WebList(__builtin__.list) 94

class WebObject(__builtin__.object) 95

Functions 95

IxLoadUtils 97

addChassisList 97

addCommands 97

addDUT 97

assignPorts 98

changeActivityOptions 98

changeCardsInterfaceMode 98

changeIpRangesParams 99

clearAgentsCommandList 99

clearChassisList 99

– ix –

collectDiagnostics 100

collectGatewayDiagnostics 100

createSession 100

deleteSession 100

editDutConfig 101

editDutProperties 102

enableAnalyzerOnPorts 102

getCommandListUrlForAgentName 102

getIPRangeListUrlForNetworkObj 102

getTestCurrentState 103

getTestRunError 103

loadRepository 103

performGenericDelete 103

performGenericOperation 104

performGenericPatch 104

performGenericPost 104

pollStats 105

retrieveCaptureFileForPorts 105

runTest 105

saveRxf 106

setCardsAggregationMode 106

uploadFile 106

waitForActionToFinish 107

waitForAllCaptureData 107

– x –

This page intentionally left blank.

– xi –

New in this Release
The following features are new in this release:

findURLs A new operation, findURLs, enables you to find resources in a test configuratin.
See findURLs operation on page 36.

Starting a new
session

You can start a new session from the API Browser. See Creating a new session on
page 41.

– xii –

This page intentionally left blank.

– xiii –

Before you Begin
Before you begin using the REST API, review the sections below.

Authentication

If you want to use the REST API with authentication, an Ixia User Management server must be
available on the network. See REST Authentication on page 9 for more information.

Gateway Service

The IxLoad Gateway Service must be installed on the computer where you will use the REST API. The
Gateway Service is an optional component that is not installed by default.

To install the Gateway Service, select Custom Setup during IxLoad installation.

If you have already installed IxLoad, you can modify the installation to add it: Select IxLoad from the
list of installed applications (Control Panel > Programs and Features), right-click, and then
select Modify. The installer runs and you can install the IxLoad Gateway Service.

– xiv –

Before you Begin

– xv –

Before you Begin

– xvi –

This page intentionally left blank.

– xvii –

REST Resources
The IxLoad REST API allows you to start and configure an IxLoad session through HTTP requests.

A resource is a basic concept of a REST API. In the IxLoad REST API, a resource is a representation of
an IxLoad object for the user. Not all IxLoad objects are resources, and not all IxLoad object
functionality is available through the REST API.

A resource can have the following:

l Properties:
n Primitives: Simple types like bool, int, and string.
n Complex: Other resources like timeline resources and agent resources.

l Operations:
n Example of operations:

o RunTest
o AddChassis
o RefreshChassis

– 1 –

This page intentionally left blank.

– 2 –

Supported Features
The following features are supported in the current release of the IxLoad REST API:

l Create and start an IxLoad session.
l Load a configuration (.rxf) from a local path.
l View the data model tree through GET requests (including query string support).
l Add a new chassis or remove an existing chassis.
l Assign and unassign ports.
l Change the existing configuration and modify field values through PATCH requests.
l Support for L2-3 ranges.
l Support for L4-7 plugins.
l Save a configuration modified through the REST API.
l View, add, or delete the configured L2-3 and L4-7 statistics.
l Run a test.
l Poll L2-3 and L4-7 statistics.
l Upload repository (.rxf) files.
l Start remote IxLoad sessions.
l Automatically generate documentation.
l Query logs from REST API.
l Analyze.

The following list of features are not supported in the current release of the IxLoad REST API:

l AppLibrary protocols
l Resource Manager
l Profiles (for example, real files)
l IxReporter
l Adding (POST) or removing (DELETE) objects such as test communities, plugins, and ranges. Add
and remove operations are only supported on the chassis list, the port lists, and the configured
statistics.

l Creating or editing voice scenarios
l Creating or editing Diameter scenarios (except for importing or exporting XML files, which is
supported)

– 3 –

API version v1
Prior to IxLoad 8.50, all REST API requests were made on URLS that used API version v0, so the URLs
started with /api/v0.

Beginning with 8.50, the REST API version is v1, so the URLs now begin with /api/v1.

Version v0 is still available, and contains the same functionality as v1. Scripts that use v0 will
continue to function in the same way. The only things that differ are some response formats.

Version v1 contains the following changes:

Changed "links" responses for all fields:
l Changed "rel" field to "child" for most options
l Added "method":"GET" entry for all child nodes
l Added self node that has URL to self
l Add meta node for self with “method”:”OPTIONS”

applicationTypes response

A GET on api/vX/applicationtypes will return:

API version v1

– 4 –

v0 v1

{
"appName":
"8.40.0.277"
}

{
"name":
"8.40.0.277"
}

backendType and applicationType fields

Added backendType and applicationType fields on the session object (visible on GET on
/api/vX/sessions/X).

Start session parameter

Changed the name of the parameter required to create an IxLoad session for v1. Creating a session will
require the following payload:

v0 v1

{“ixLoadVersion”:”8.50.0.75”} {“applicationVersion”:”8.50.0.75”}

204 No Content response

Starting an operation returns status 204 No Content on v1 (on v0, it returned 202 Acccepted).

Multi-POST support

Added the ability to add multiple objects to a list. Instead of a dictionary that contains the options that
will define the object to be created, you can supply a list of dictionaries. This will create a new item for
each dictionary in the list. This option was introduced for v1, but is available in v0 also.

Example:

Adding one chassis : {“name”:”tomini”}

Adding two chassis: [{“name”:”tomini”},{“name”:”ixro-chassis”}]

Operation status URLs

Operation status URLs return the information in a different format. When retrieving the status of an
operation, the fields retrieved for v1 will be different than for v0. A get on the following URL will return
the following body
api/vX/sessions/0/ixload/chassischain/chassisList/0/operations/refreshConnection/1

API version v1

– 5 –

v0 v1

{
"status":
"Successful",
"actionName":
"refreshConnecti
on",
"state":
"finished",
"result": "",

"refreshedChassi
s": "tomini"
}

{
"url":
"/api/v1/sessions/0/ixload/chassischain/chassisList/0/operations/refresh
Connection/2",
"state": "SUCCES",
"result": "",
"progress": 100,
"type": "refreshConnection",
"id": 2,
"refreshedChassis": "tomini"
}

Possible values for state in v1: IN_PROGRESS, ERROR, SUCCESS

API version v1

– 6 –

Using the REST API over HTTPS
Requests made through IxLoad REST API are supported over both HTTP and HTTPS transport. The
HTTP requests are redirected by IxLoadGateway to the HTTPS server and translated into HTTPS
requests.

The default starting port for the IxLoadGateway HTTP server is 8080. Therefore, you can access
IxLoadGateway through HTTP requests on a URL in the following format:

http://<IP_ADDRESS>:8080/api/v0/sessions

The default starting port for the IxLoadGateway HTTPS server is 8443. Therefore, you can access
IxLoadGateway through HTTPS requests on a URL in the following format:

https://<IP_ADDRESS>:8443/api/v0/sessions

Self-signed certificates
HTTPS support over IxLoad REST API is offered through a self-signed certificate that is automatically
generated by the IxLoad Gateway component when it is installed as part of an IxLoad installation.

The self signed-certificate consists of two files:

l ixload_certificate.crt: The actual self-signed certificate.
l ixload_privkey.key: The private key used by the self-signed certificate.

Depending on the operating system on which the IxLoad build was installed, the self-signed certificate
and its corresponding private key can be found at the following locations:

l On Windows: <IxLoadGateway_Install_Path>\certificate
l On the IxLoad Linux OVA: /opt/ixia/ixloadgateway/certificate

The self-signed certificate is generated by using a 2048-bit RSA key pair and the SHA-256 signature
hash algorithm.

The self-signed certificate includes an X509 extension known as Subject Name Identifier (SNI)/Subject
Alternative Name (SAN). This extension allows the certificate to specify under which names (host
names and IP addresses) a user can access a secured web server that is using that certificate. This
prevents users from accessing IxLoad Gateway instances on different computers by using the same
self-signed certificate.

For this extension, the IxLoad Gateway generates a log file named san.log, which contains all the host
names and IPv4/IPv6 addresses under which the computer where IxLoad gateway is installed can be
accessed. This log file resides in the same location as the auto-generated certificate.

The certificate is regenerated automatically when one of the following occurs:

– 7 –

l The ixload_certificate.crt, ixload_privkey.key, or san.log files are deleted.
l The certificate has expired (it has a duration of 10 years).
l One of the entries required for SNI/SAN changes or disappears. For example, an IP address is
changed, a host name is changed, or a network interface disappears.

Script changes required for HTTPS
The IxLoad REST script samples have been updated to support HTTPS requests over IxLoad REST API.

The changes are as follows:

l kGatewayPort = 8443: Changed from 8080 to 8443.
l kResourcesUrl = 'https://%s:%s/api/v0/resources': Changed from http to https.

The utility files used by the IxLoad REST scripts samples have also been updated accordingly.

In Utils\IxRestUtils.py, the changes are as follows:

l connectionUrl = https://%s:%s/" % (server, port): Changed from http to https.
l result = self._getHttpSession().request(method, absUrl, data=str(data),
params=params, headers=headers, verify=False).

The verify parameter is provided by the requests library that is used in the REST scripts to generate
HTTP/HTTPS requests. This parameter can take three values:

l False, as specified in the preceding example. If set to False, the HTTPS request does not perform
any validation against a certificate.

l True, in this case, the HTTPS request performs a validation against a set of predefined certificate
bundles specific to the Python requests module.

l <certificate_path>: In this case, the HTTP request performs a validation against the
certificate specified at the path provided in the verify parameter.

To provide the certificate path, copy the certificate from the computer where the IxLoad gateway is
installed to the computer where the REST script is run. The location where the certificate is copied is
provided as the certificate path.

If the certificate is regenerated and the verify parameter is set to a certificate path in a REST script
on a remote computer, that certificate will have to be downloaded again.

To run the IxLoad REST API sample scripts, the python executable needs to have the pyOpenSSL
module installed.

Errors from REST UI clients
If you use a REST UI client such as Postman or Advanced REST client, trying to access a URL from the
IxLoad REST API might not work at first. This is because these two applications are tightly coupled to
the Google Chrome browser. To be able to access any URL from the IxLoad REST API, you must first
access one URL from the Google Chrome browser, accept the exception shown by the browser (because
the web server uses a self-signed certificate), and then proceed to use the REST client.

Using the REST API over HTTPS

– 8 –

REST Authentication
Authentication is optional in the REST API.

To use authentication:

l an Ixia User Management server must be configured and present on the network
and

l you must have an account on the User Management server.

User Management is a standalone application that you can download from the IxLoad section of Ixia’s
website (https://support.ixiacom.com/support-overview/product-support/downloads-
updates/versions/33).

After turning on authentication, most REST requests must include an api-key that is unique to each
user. See Retrieving the api-key on page 12.

Enabling authentication on Windows
To enable REST authentication on Windows, during the IxLoad installation , select Custom Setup and
choose the IxLoad Gateway feature.

To turn authentication on, select the Enable Authentication on IxLoadGateway check box.

– 9 –

https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33
https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33

Authentication can be turned on or off every time IxLoad and the IxLoad Gateway are installed.

For example, if you install one IxLoad/IxLoad Gateway version and turn on authentication, then you
install a newer version and you do not select the Enable Authentication on IxLoadGateway check
box, after the install is completed, authentication will be turned off.

Enabling authentication on Linux
To enable or disable authentication on Linux, run the configRestAuth.sh script in
/opt/ixia/ixloadgateway with the following switches:

bash configRestAuth.sh --um-
server 10.36.0.2

Enable authentication and set the address of the User
Management server

bash configRestAuth.sh --disable-
auth

Disable authentication

bash configRestAuth.sh --help List the available options

After enabling authentication on Linux, using REST requests on Linux is the same as on Windows.

REST Authentication

– 10 –

Authenticating REST requests
Most request headers contain an api-key. An api-key is generated by the user management
component based on a username and password pair. As a result, most requests need to have an api-
key present in their headers. The following figure shows an example of an api-key:

The only requests that do not need to contain an api-key are:

l Getting the list of all created sessions: GET https://localhost:8443/api/v0/sessions/

l Getting the general status of a particular session: GET
https://localhost:8443/api/v0/sessions/1

All other session-specific operations require the presence of an api-key.

After a session is created, the api-key provided is validated against the Ixia User Management
database through the User Management server. If the key is not valid, an appropriate message is
returned.

As part of all the other requests that manipulate a session, the api-key provided is compared with the
api-key used to create that particular session.

The possible results when executing a request are as follows:

l If the operation was successful, a 201 Created status or 200 OK status is received.
l If the api-key was not specified in the headers, a 403 Forbidden status is received, with the
following message:

{
"status": "POST operation failed",
"error": "X-Api-Key is not included in the header"
}

l If the api-key provided is not valid because it does not exist in the User Management database,
a 403 Forbidden status is received, with the following message:

{
"status": "POST operation failed",
"error": "The provided X-Api-Key is not valid"
}

(This response is possible only for the CREATE session operation.)

l If the api-key is not valid for a session because it is not the same as the one that is used to
create the session, a 403 Forbidden status is received, with the following message:

{

REST Authentication

– 11 –

"status": "POST operation failed",
"error": "X-Api-Key mismatch"
}

Users can delete only their own sessions (sessions that were created with the same api-key as the
one provided during the DELETE request).

Retrieving the api-key
You can retrieve the api-key from the IxLoad UI.

When authentication is turned on and you log on to Ixload with your Ixia User Management
credentials, you can retrieve the api-key value from the General section of the Preferences widow
(File > Preferences > General).

The value of the api-key automatically updates its value every time you change your password or
when another user logs on. The field is read-only, so you can copy the value of the api-key but you
cannot modify it.

Script changes required for authentication
The changes that need to made to IxLoad REST scripts for authentication are as follows:

l kApiKey = ‘’: If this value remains an empty string, the api-key will not be included in request
headers. Otherwise, it will be included in the request headers.

REST Authentication

– 12 –

l connection.setApiKey(kApiKey): Sets the api-key for the connection.

REST Authentication

– 13 –

This page intentionally left blank.

– 14 –

Supporting Methods and Running
Operations
This section describes how resources are represented, how they are accessed and changed, and the
exposed data model in the IxLoad REST API.

REST representation
The Ixload REST API handles many different object types. Each object has among its values the
following:

l Primitive values: These are basic values.
l Complex values: These are represented by lists or other REST resources.

Primitive values

Primitive values (numbers, string, and bool) are used as values for REST options in the request
payload. These should be represented as follows:

l Strings are enclosed in quotes. For example: "custom string," ""

l Numbers, integers, or float are not enclosed in quotes. For example: 1, 1.1

l Booleans are not enclosed in quotes, and are all lowercase. For example: true, false

List objects

The IxLoad data model contains numerous lists. To be able to identify a resource that is part of a list (it
must have a unique URL), the resource must have an ID associated with it, which is unique in the
containing list. For this reason, each resource that is contained in a list has a field that contains its ID.
This field is called objectID in IxLoad. However, this name can be retrieved programatically by
performing an OPTIONS request on the resource, and retrieving the value for the resourceIdName field.
This returns the objectID.

A resource's objectID can be retrieved by performing a GET request on the list, and iterating through
the results. Each element in the list (each resource) has this field set.

For example, for a list with the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList

an element with objectID = 10 is retrieved by the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/10

Other REST resources

– 15 –

Other REST resources are shown as links to another object. So each time an object is retrieved through
the REST API, it may have primitive values, lists, and other REST objects. The other REST objects are
shown as links that points to the data model location of the referenced REST object.

Case conventions

In IxLoad REST API, URLs are case-insensitive, except for the api string at the beginning of a URL.
This is not the case, however, for fields and values entered in request payloads. The field names
entered in the payload are actually option names in the IxLoad middleware, so the case defined must
be followed.

Preferences
You can change several global options directly from the REST API by using the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/preferences

The options that can be changed are shown in the following figure:

Note: IxLoad REST API sessions are started under the System user, not the user that you are
logged on as. Because all the global options except for Maximum Instances, License Model, and
License Server are saved per-user, this means that settings made in the IxLoad UI have no
effect on REST API runs, because the REST API is registered under the System user. Therefore,
for the Maximum Instances, License Model, and License Server options to have an effect on
REST API tests, you must set them from the REST API.

These options can be changed by performing PATCH requests on the ‘preferences’ URL, with a payload
as follows:

{“licenseServer”:”ipOrHostname”}

Supporting Methods and Running Operations

– 16 –

IxLoad REST methods
The IxLoad REST API supports the following HTTP methods: GET, PATCH, POST, DELETE, and
OPTIONS. The only content type supported for payloads is JSON. The payload applies to PATCH, POST,
and DELETE methods.

GET
A GET request receives the list of REST options for the requested resource. The GET request does not
contain a payload. If the request is successful, a 200 OK status is returned.

The result is a JSON dictionary containing the option names and values exposed by the resource. All
the primitive options (bool, string, and int) are in the root dictionary, while complex options (other
objects) are placed together, as a list, under the links option. Each element of the links list is a
dictionary that contains the following:

l rel: The child resource name.
l href: A URL where the child resource can be accessed.

The following figure shows the output of a GET reqiest applied to the activeTest REST resource in
IxLoad:

Supporting Methods and Running Operations

– 17 –

The preceding figure shows the output of a GET made through the Advanced REST Client in Google
Chrome. The actual representation will be different depending to the programming language used to
access the IxLoad REST API.

PATCH
A PATCH request changes field values on resources exposed by the IxLoad session. The PATCH
request receives as its payload a list of options that you can modify. Each pair in the dictionary
contains a field name and the new option for it. If the request is successful, a 204 No Content status
is returned.

The payload for a PATCH request must contain at least one field to be changed. This means one field
name:new value pair. The following figure shows a PATCH method made from the Advanced REST
client:

Supporting Methods and Running Operations

– 18 –

Most resources cannot be modified by using PATCH requests while a test is running. If a PATCH request
is made while a test is configuring or running, a 400 Bad Request status is returned.

{
status: "PATCH operation failed"
error: "Cannot change HTTPClient1 at this moment. Please try again later”
}

POST
A POST request adds elements to a list. The request is made on the list URL, and the actions that take
place behind the scenes are to instantiate a new object of the type given by the list, and then to add
the newly created object to the list. If the request is successful, a 201 Created status is returned.

The payload for a POST request represents the parameters used when creating the resource that will be
added to the list. Because not all resources (objects) require parameters in the constructor, the
payload for a POST request can be empty ({}).

The following figure shows the output of the POST method in the Advanced REST client:

Supporting Methods and Running Operations

– 19 –

In the response headers, there is a field called Location, which contains the URL address of the newly
created object.

Elements cannot be added to a list while a test is running. If a POST request is made while a test is
configuring or running, a 400 Bad Request status is returned.

{
status: "POST operation failed"
error: "Cannot perform the 'POST' operation at this moment. "
}

DELETE
A DELETE request deletes one or more of the elements of the list. If the request is successful, a 204
No Content status is returned.

DELETE requests do not require a payload.

If the DELETE request is made on a list URL, the list is cleared and all the elements are removed.

Supporting Methods and Running Operations

– 20 –

If the DELETE request is made on a URL that consists of the list URL and an object's unique ID
appended to the end, only the object with that objectID is removed.

Example 1: DELETE on http://127.0.0.1:8080/api/v0/sessions deletes all sessions.

Example 2: DELETE on http://127.0.0.1:8080/api/v0/sessions/2 deletes only the session with
objectID = 2.

Elements cannot be removed from a list while a test is running. If a DELETE request is made while a
test is configuring or running, a 400 Bad Request status is returned.

{
status: "DELETE operation failed"
error: "Cannot perform the 'DELETE' operation at this moment."
}

OPTIONS
An OPTIONS request returns information about the product and resource properties. You can make
OPTIONS requests on any resource. If the result is successful, a 200 OK status is returned.

OPTIONS requests do not require a payload.

In the OPTIONS response, there are two fields that specify the names of the unique object ID field and
the name under which all complex resources are kept on GET requests (the links option name).

The following figure shows the output of an OPTIONS request in the Advanced REST client:

Supporting Methods and Running Operations

– 21 –

Supporting Methods and Running Operations

– 22 –

Operations
In addition to the HTTP requests described in IxLoad REST methods on page 17 that are executed on
basic resources (objects or lists of the IxLoad data model), the IxLoad REST API also offers support for
operations. These are asynchronous actions performed on a certain resource (a URL) that change the
resource's state. They do not add, remove, or change the field values of the resources that they are
applied to. Some examples of operations are: starting an inactive IxLoad session, connecting to an
existing chassis, or running a test.

To find the operations that are available for a certain resource, perform a GET request on the resource
URL, with /operations added to the end of the URL. For example, the following figure shows the
operations available for the test REST resource:

The GET response contains the operations that are available, the parameters that they require, and the
default values for the parameters.

– 23 –

Starting an operation
To start an operation, perform a POST request on the following URL:
$resourceUrl/operations/$operationName

The request payload represents the parameters required by the operation, as shown in the preceding
figure. Some operations (such as runTest) may not require any parameters, so for them, an empty
payload must be sent: {}. The following figure shows the output of a POST command for the loadTest
operation:

Getting an operation's status
Because these operations are asynchronous methods, you must be able to check an operation's status
after starting it. To do this, when you start an operation (that is, execute the POST request), the
response header includes a field called Location that contains a URL. If you perform a GET request on
that URL, the operation's status will be returned. The following figure shows the output for getting the
operation status for the loadTest operation:

Operations

– 24 –

The following table lists the possible values for the state and status fields:

state Created: the operation was created.
Executing: the operation is in progress.
Finished: the operation is complete.

status Not started: the operation has not started yet. Operations are synchronous, and the
operatiuon might be waiting for other operations to finish.
In Progress: the operation is being executed.

If the operation fails (exits with an error), a new field is included in the preceding response that
contains the error message returned by the operation. For example:

{
status: "Error"
actionName: "loadTest"
state: "finished"
error: "File doesn't exist - F:\statsdfs.rxf"
}

Important! The URL that retrieves an operation's status has a lifetime of 10 minutes. If you
perform a GET request on an operation URL/operationID URL after this lifetime has expired, the
REST API returns a 400 Bad Request error.

Operations

– 25 –

Examples of common operations in the IxLoad REST
API
A list of the most commonly used operations for an IxLoad test in the REST API can be obtained by
performing a GET on:

http://localhost:8080/api/v0/sessions/0/ixload/test/operations.

The result lists the following operations (also shown in the figure below):

abortAndReleaseConfigWaitFinish Stop the currently running IxLoad test.

applyConfiguration Apply configuration on the current IxLoad test. The test will
go to the Configured state. This is equivalent to selecting
Apply Config in the IxLoad UI.

exportConfig Export the currently loaded configuration file as a .crf file.
The location of the archive needs to be passed as a
parameter.

importConfig Import a .crf file as the current test configuration. The
location of the .crf file and the location where the .rxf file
will be saved after the import must be passed as
parameters.

loadTest Load an IxLoad configuration file. The fullPath of the rxf to
be loaded must be passed as a parameter.

runTest Run the current IxLoad test. The test will go to the running
state directly. This action is equivalent to selecting Run
test in the IxLoad UI.

save Save the currently loaded configuration file.

saveAs Save the currently-loaded configuration file as a new file.
The new file path for the rxf must be passed as a parameter,
and the overwrite option in case the file already exists.

waitForAllCaptureData Wait for the test to capture all the port data that was
received after the test has finished running.

Operations

– 26 –

Example of loading a repository (.rxf) file

On an active session, do a POST on a URL similar to thefollowing:

http://localhost:8080/api/v0/sessions/[SESSIONID]/ixload/test/operations/loadTest/

In the payload or the body of the request, add the path to the .rxf file:

{"fullPath":"C:\\http_test.rxf"}

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Example of importing a .crf file

On an active session, do a POST on an URL similar to the following:

Operations

– 27 –

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/importConfig

In the payload and body of the request, add the path to the .rxf file:

{"srcFile": "C:\\mycrf.crf", "destRxf": "C:\\rxf_from_crf.rxf"}

Example of running a test

On an active session in which there is either a loaded configuration file or a new test has been created,
do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/[SESSIONID]/ixload/test/operations/runTest/

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Example of waiting to capture the port data

On an active session, do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/waitForAllCaptureData

Example of stopping a test

On an active session in which there is either a loaded configuration file or a new test has been created,
do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/abortAndReleaseConfigWaitFinish

Operations

– 28 –

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Query strings
You can search by using a filter with one or more parameters separated by commas. The format is as
follows:

http://resourceUrl?filter=”fieldName <operator> value

The query strings are inserted under the filter parameter at the end of the URL. The supported query
string operators are as follows:

eq equals

ne not equal to

lt lower than

gt greater than

le lower or equal to

ge greater or equal to

When the eq operator is used for string fields (for example, names of statistics), it automatically has a
contains effect. For example, this means that a GET request on
/configuredStats?filter=”caption eq HTTP” returns all statistics whose caption contains HTTP. If
you want a matches operation instead, you can still use eq, but the value must be enclosed in quote

Operations

– 29 –

marks (“”). This causes a GET on /configuredStats?filter=”caption eq “HTTP”” to return only
those statistics whose caption is exactly HTTP.

You can include multiple query string conditions in the same URL by separating them with commas.

For example, the following URL returns all enabled statistics whose objectID is less than or equal to
14:

http://localhost:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats?fil
ter="enabled eq True,objectID le 14"

Query Strings are only supported on list resources, with the following methods:

GET Returns all the elements of the list that satisfy the query string conditions.

PATCH Modifies the parameter list sent in the request payload with all the elements of the list that
satisfy the query string conditions.

DELETE Deletes every element in the list that satisfies the query string conditions.

Collecting diagnostics
IxLoad includes a diagnostics collection utility that collects log files and packages them into a ZIP file,
so that they can be stored or they can be sent over an email conveniently. In the GUI, access the
utility from File > Tools > Diagnostics. You can collect those same log files by using the REST API.

To collect diagnostics, ensure the following:

l At least one session must be active.
l The test must be in either the Configured or Unconfigured state.

To collect diagnostics, use the following command:

POST @ api/v0/sessions/72/ixload/test/activeTest/operations/collectDiagnostics

Specify the ZIP file location as the POST payload:

{"zipFileLocation": "<path to save ZIP file>"}

For example:

{"zipFileLocation": "C:\\Users\\ixia\\Desktop\\diags.zip"}

The following figure shows an example of a POST operation to collect diagnostics from a REST client:

Operations

– 30 –

The status of the POST operation to collect diagnostics should be 202:Accepted. The response to the
operation should include a location.

To query the status of the POST operation, use a GET operation and specify the location received in the
response to the POST.

For example:

GET @
http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectD
iagnostics/1

The following figure shows an example of a query to get the status of a diagnostics collection
operation:

Operations

– 31 –

Deleting the results directory after running a test
You can delete the results directory after running a test. This operation is available on the test
resource, and requires the following:

l The request to delete the results directory must be made on the same session used to run the
test that created the results directory.

l Only the results directory for the most recent test can be deleted.
l You did not unload the repository or load another repository after running the test.

To delete the test result directory, use the following command:

POST @ api/v0/sessions/72/ixload/test/operations/deleteTestResultDirectory

This request does not require any parameters, so the request body should be empty: {}

Operations

– 32 –

This operation is useful for ensuring that the machine disk does not fill up with results directories. This
is especially important for the IxLoad Linux solution.

After each test run, an automation script can use the APIs that are available to download any files of
interest (csv files, port captures, etc.) and then use this operation to delete the results directory before
closing the IxLoad session.

The status of the POST operation to collect diagnostics should be 202:Accepted. The response to the
operation should include a location.

To query the status of the POST operation, use a GET operation and specify the location received in the
response to the POST.

For example:

Operations

– 33 –

GET @
http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectD
iagnostics/1

The following figure shows an example of a query to get the status of a diagnostics collection
operation:

extractDataModel operation
The extractDataModelToFile operation exports all the URLs that are available under the currently
open IxLoad REST session. The operation is available to be executed (using a POST request) on the
URL listed below, and outputs the information to a file on the disk. The path to the file is sent in the
body of the operation (for example: : {“fullPath” : ”D:/file.txt”}.

Operations

– 34 –

The output file contains all the available URLs, and for each URL it specifies the options available under
it, their current values in the configuration, and whether an option is read-only or not. Below are
examples of how the test and ipRange resources appear in the output file.

Output for test resource:

Output for iprange resource:

Operations

– 35 –

findURLs operation
findURLs enables you to find the URLs where certain resources can be found. The resources you can
find are:

l Property names
l Property values
l URL contents

To use findURLs you must have an IxLoad REST API session open with a configuration already loaded
inside it.

findURLs is available on the ixload resource. To execute this operation, make a POST request on an
active IxLoad REST session, on the following URL:

https://IP:8443/api/v0/sessions/X/ixload/operations/findURLs

The body of the POST request must contain at least one of the following parameters:

l propertyName

l propertyValue

l urlContains

You can pass multiple parameters to findURLs. If you do, it returns all the resources that match all the
passed parameters. For example, if you send {“propertyName”:”count”, propertyValue=100},
IxLoad returns all the resources in the IxLoad session that contain a field named count that have a
value of 100.

Operations

– 36 –

propertyName

Searching by propertyName returns all the URLs that are available under the IxLoad session that
contain a property with the provided name. The results of the operation contain all the URLs that
satisfy this query, along with the value that property has for each URL.

The example below show all URLs that contain a property called commandType, which can be used to
find all L47 activity commands:

Operations

– 37 –

propertyValue

Searching by propertyValue returns all the resources in the currently open IxLoad REST session
datamodel that contain a property that has the provided value. The results of the operation contain all
the URLs that satisfy this condition, along with the name of the property that has that value.

The image below shows the results of a findURLs query to find all the URLs in the loaded rxf that have a
value of 100. The results in the image show that findURLs found that components such as rampUp ,
objectiveValue, and ipCount, and others to have the searched-for value of 100.

You can use propertyValue to find boolean, integer, and string properties.

Operations

– 38 –

urlContains

Searching by urlContains finds all the resources whose URL contains the string provided as a
parameter. For example, the image below shows the results of searching for vlanRange:

Operations

– 39 –

Operations

– 40 –

IxLoad Session Handling
Creating and handling IxLoad sessions is done through IxLoadGateway, which is an IxLoad service.
IxLoadGateway is installed with IxLoad as part of the custom install options (see Before you Begin on
page xiv).

Creating a new session
There three ways to create a session:

l By specifying the version of IxLoad to use to create the session.
To specify the version to use, perform a POST on /sessions with one of the following payloads,
appropriate for the URL type you are using:
n /api/v0 URLs: {“ixLoadVersion”:”8.XX.XX.XXX”}
n /api/v1 URLs: {“applicationVersion”:”8.XX.XX.XXX”}

then perform another POST on /sessions/X/operations/start to start the session.
l By automatically using the latest (or only) version installed to create the session
l By connecting to the API Browser (https://localhost:8443/) while no IxLoad REST sessions are
active.
If you connect to the API Browser while no IxLoad REST sessions are active, the page shown
below displays, which enables you to start a new session.

New session with a specified version
To create a new session with a specific version of IxLoad, do a POST on api/v0/sessions with a
payload of {“ixLoadVersion”:”version no.”}.

– 41 –

This action creates a session, but does not start it or make it active. This action does not take into
consideration the instance count limit on the client side. The instance count limit is only considered
when sessions are started.

The following figure shows an example of starting a new session with a specific IxLoad version in a
REST client:

The following figure shows the response for the POST request in the preceding figure. Note that the
status is 201 Created and Location points to the new session.

Starting a session

To start a specfied-version session, you use the start operation. This operation starts a new IxLoad
session based on the IxLoad version for which the session was created.

start is available on each individual session and requires no payload. The following figure shows how
a start operation appears in the REST client:

IxLoad Session Handling

– 42 –

The following figure shows the response for the start operation. The response is 202 Accepted and
Location shows the result for the operation.

The following figure shows how the operation result for start looks like when the session started
successfully. It contains the same information as the now deprecated create operation.

IxLoad Session Handling

– 43 –

The following figure shows an example a start operation that failed because the maximum number of
instances was already active:

IxLoad Session Handling

– 44 –

New session with the latest version
If you have only one IxLoad version installed, or you always want to use the latest installed version,
you can create and start a new IxLoad session with a single POST request using startNewSession as
shown in the following URL:

http://localhost:8080/api/v0/sessions/operations/startNewSession

startNewSession does not require a payload. As for every REST API operation, the headers of the
response contain a Location URL you can use to check the status of the startNewSession operation:

IxLoad Session Handling

– 45 –

After the startNewSession operation finishes, the status URL will display the application version that
was used, along with the ID of the session that was created:

Deleting a session
You delete an IxLoad session in the same way as for generic lists: you send a a DELETE request either
to the sessions list URL, or to the specific session's object ID.

l If you send the request to the sessions URL, all sessions will be closed.
l If you send the request to a specific session's object ID, only that session will be closed.

When deleting a session, the IxLoad process underneath it will also be closed.

IxLoad Session Handling

– 46 –

Uploading and downloading files
You can upload and download files to and from the machine where IxLoadGateway is running.

Uploading files

Files can be uploaded to the machine where IxLoadGateway is running using the resources URL. To
upload a file remotely, do a POST request in the following format:

https://10.114.198.17:8443/api/v0/resources?uploadPath=/mnt/ixload-
share/UploadRepository/demo.rxf&overwrite=true

The uploadPath parameter must be the absolute path where the file will be uploaded.

The overwrite parameter specifies if an existing file should be overwritten.

The POST request should contain the Content-Type header set to multipart/form-data:

The body of the POST request should represent the content of the file that will be uploaded, in binary
format. From a script, this file can be sent as follows:

with open(fileName, 'rb') as f:
headers = {'Content-Type': 'multipart/form-data'}
params = {"overwrite": overwrite, "uploadPath": uploadPath}
resp = requests.post(url, data=f, params=params, headers=headers, verify=False)

To upload a file from a tool like Postman, set the Body to binary and then choose the file to upload:

Downloading files

The downloadResource URL can be used to download files remotely from the machine where the
IxLoadGateway service is running. Any file that the IxLoadGateway service can access can be
downloaded.

Uploading and downloading files

– 47 –

To download a file, you perform a GET request on the following URL, where you will specify the IP of the
machine where IxLoad Gateway is running, and the path to the file on that machine that you want to
download.

https://IP:8443/api/v0/downloadResource?localPath=/mnt/ixload-share/file.rxf

This URL works for both Windows and Linux installations of IxLoadGateway, but you must specify the
path in the correct Windows or Linux format.

Uploading and downloading files

– 48 –

API Browser
The API Browser enables you to view and modify the contents of an open IxLoad REST API session.

The tool is available on the root URL of the IxLoadGateway service:

https://localhost:8443/

and

http://localhost:8080/

Displaying an IxLoad REST Session

To view the content of an IxLoad REST session, you select the desired session from the upper-left
corner of the API Browser page:

After selecting a session, the data model can be viewed by selecting nodes in the tree on the left of the
page. In the API Browser, you can:

View the data model in a tree structure:

API Browser

– 49 –

Edit field values, using the Edit button. This can be used to modify primitive values (numbers, strings,
Booleans) for all fields that are not read-only.

Add or remove elements from lists, using the Add and Remove buttons:

API Browser

– 50 –

Execute async operations, using the Operations button. This section contains all the actions available
under /resourceUrl/operations in the REST API.

API Browser

– 51 –

How to find URLs in a REST API session
Note:
There two methods to find URLs in a REST API session:

l The extractDataModelToFile method, described in this section.
l The findURLs method, described in findURLs operation on page 36.

extractDataModelToFile is the original method. findURLs is a newer, more efficient method.

The IxLoad data model is very large, and it can be difficult to find the REST API option that corresponds
to an option in the IxLoad GUI, either from scripts, the API Browser, or a tool such as Postman.

You can use the extractDataModelToFile operation to find options. To do this, you load the
repository in a REST session, and then use extractDataModelToFile to export all the available URLs
to a file on the disk.

For example, assume you want to find the sourceUdpPort inside an MME Range. In the GUI,
sourceUdpPort is in the following location:

If you search for either udpPort or its value, 2123, in the file created by extractDataModelToFile,
you will find the following information in the file:

How to find URLs in a REST API session

– 52 –

This shows the URL where the MME Range can be located in the REST session, and the name of the
field inside the REST session. You can copy the URL in the API Browser (or in a script), in the following
format:

https://{IP}:8443/#/rest/api/v1/sessions/{sessionID}/ + URL retrieved from the file

For the MME Range example above, copying the URL in the API Browser shows the correct resource:

You can use this workflow to find any parameter in the REST API, keeping in mind that when searching
in the exported data model file, a resource's label in the IxLoad GUI may not be identical to its name in
the REST API. For example, the Source UDP Port option in the GUI is srcUdpPort in the REST API.

How to find URLs in a REST API session

– 53 –

This page intentionally left blank.

– 54 –

IxLoad Data Model
You can use the REST API to browse the IxLoad data model to retrieve or modify the current
configuration. This section describes where to find resources such as L4-7 plugins, L2-3 ranges, and
timelines in the data model. In addition, it describes operations such as loading and saving
configurations and running a test.

Communities
You can find all the communities on the following path:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/

All the communities in the test are shown in this list, regardless of their role: client, server, or peer. In
addition, this list contains both enabled and disabled communities.

You can choose to only view client communities by performing a GET operation on the same list, but by
using query strings to filter the clients:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList?filter
="role eq client"

Community resources

Activities

All the activities under a community can be found in the following list:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/$commu
nityObjectID/activityList

An activity's command list can be found under the agent resource.

Port list

The ports assigned to a community can be found on the 'network' resource under the community
resource:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/netw
ork/portList

IP ranges

The IP ranges used by the community can be found under the network resource:

– 55 –

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/netw
ork/stack
/childrenList/1/childrenList/1/rangeList

stack is the entry point in the L2-3 data model.

Timelines
All the timelines used in the test are in the timelineList, located on the activeTest resource:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/timelineList

Plugins do not expose in REST a direct reference to their timeline (that is, the activities do not have a
timeline option exposed). Instead, they have a timelineId option. This option contains the
objectID of the required timeline in the test timeline list. If you want to change the timeline used by a
certain plugin, perform a PATCH request on the activity with the following payload:

{“timelineId”: "object ID of the desired timeline in the test timeline list”}

Login name
You can change the login name used by a running session by changing the loginName field on the
chassischain resource:

Perform a PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/

with a payload of: { "loginName" : "NewLoginName" }

DUTs
You can find the list of DUTs (devices under test) on the following path:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/

IxLoad Data Model

– 56 –

IxLoad supports 5 types of DUT:

l Firewall
l Server Load Balancer (SLB)
l External Server
l Packet Switch
l Virtual DUT

You can choose to view only a specific type of DUT by performing a GET operation on the DUT list, and
including a query string that specifies the DUT type.

For example, to view the list of firewall DUTs:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/?
filter="type eq firewall"

To add a new DUT, perform a POST operation on the same list, specifying the type.

IxLoad Data Model

– 57 –

For example, to add a new firewall DUT:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/
{“type” : “Firewall”}

To delete a DUT, perform a DELETE at the following address:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/$
dutObjectID

To modify the properties of a DUT, use the PATCH operation.

DUT resources

dutConfig

The configuration properties of the device (particular to that type of DUT) can be found in the following
list:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/$
dutObjectID/dutConfig

Expiration timer
The expirationTimer enables you to flag sessions for deletion after a fixed length of time has
elapsed. This option is useful for preventing stalled automation scripts from keeping IxLoad REST
sessions open infinitely.

If the timer expires and the session is in the Unconfigured state (that is, it was not running a test),
then the session is immediately deleted.

If the timer expires and the session is in a state other than Unconfigured (for example, the Running
state), then the session is first transition to the Unconfigured state, and then deleted.

expirationTimer is exposed as a field under a URL as follows:

http://<IP_ADDRESS>:8080/api/v0/sessions/{sessionId}/ixload/test/

To modify the value of this field, execute an HTTP PATCH request on the URL. The expiration timer
starts running when the PATCH request is executed.

The value formats for expirationTimer are as follows:

Format Description

1 day 1 day

n days n number of days

hh:mm:ss hours:minutes:seconds

For example:

IxLoad Data Model

– 58 –

Value Description

1:20:30 1 hour, 20 minutes and 30 seconds

2 days 2 days

2 days, 1:20:30 2 days, 1 hour, 20 minutes and 30 seconds

The expirationTimer can be updated to a new value at any time. The update resets the timer to a
new value, meaning that the session will be deleted after the new timer has expired.

To cancel the timer, execute a PATCH request with no value:

{“expirationTimer”: “”}

Enabling Analyzer and downloading captures
You can enable Analyzer and retrieve port captures from the IxLoad REST API.

To enable Analyzer on a port, execute a PATCH request on a URL of the form:

http://<IP_ADDRESS>:8080/api/v0/sessions/
{sessionId}/ixload/test/activeTest/communityList/{communityListId}/network/portList/
{portListId}

with the following payload:

{“enableCapture”: “True”}

Once capture is enabled on a port, a new URL will be available under the portList:

http://<IP_ADDRESS>:8080/api/v0/sessions/
{sessionId}/ixload/test/activeTest/communityList/{communityListId}/network/portList/
{portListId}/restCaptureFile

To download the capture file from the port after the test has finished running, execute a GET request on
the URL.

To ensure that the captures are ready to be downloaded, you should call the waitForAllCaptureData
operation after the test has finished running:

waitForAllCaptureData does not require any payload, and will block until all capture files have been
copied on the machine where the IxLoad client is running.

If the GET request is executed from a browser, then the browser will prompt for the location to
download the capture to. If the GET request is performed from the IxLoad sample scripts, then you can
provide the path where the captures should be downloaded to.

IxLoad Data Model

– 59 –

Ixia recommends downloading the captures either by using a browser or through scripts since UI REST
clients can hang or crash if the captures are too large.

If you use a UI REST client such as Postman, the captures will be downloaded to the Results folder on
both Windows and Linux.

Modifying the activity user objective value on the fly
While the test is running, you can change the user objective value for an activity by performing a
PATCH request on a URL similar to the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/acti
vityList/0

with the following payload:

{"userObjectiveValue": 100}

IxLoad Data Model

– 60 –

Chassis Chain/Port Assignment Operations
Through the IxLoad REST API, you can perform the following chassis and port operations:

l Add or remove a chassis
l Connect to a chassis
l Assign or unassign ports

The chassis list can be found on the chassisChain root object, at the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/chassisList

Adding a chassis
To add a chassis perform a POST as follows:

POST@ api/v0/sessions/0/ixload/chassischain/chassisList with {"name":"chassis ip or
name"}

The following figure shows the input for the REST client. The newly added chassis is not connected and
it has no cards or ports.

The response for the POST is shown in the following figure. The result is 201 Created.

– 61 –

Connecting to a chassis
To connect to a chassis, perform a POST as follows:

POST @
api/v0/sessions/0/ixload/chassischain/chassisList/2/operations/refreshConnection

No payload is required. The following figure shows how the POST looks in the REST client:

Status should be 202 Accepted as shown in the following figure:

Chassis Chain/Port Assignment Operations

– 62 –

The result of the refresh operation is as follows:

Note that there is a new field inserted that is named refreshedChassis. This refers to the IP or
hostname of the chassis that was refreshed.

Usually, this field contains the chassis that was refreshed. The only exception is when the loaded rxf
has more than one chassis and not all of them are refreshed. In this case, refreshedChassis holds all
the chassis in the rxf because the whole chassis chain has been refreshed.

To handle cases in which an rxf contains a chassis that no longer exists, a warning field in the
refreshConnection operation indicates that a chassis is missing and the refreshedChassis field
contains only those chassis that were successfully connected to. The figure below shows an example of
this: a GET on the status of the refreshConnection operation shows that no chassis were refreshed
and a warning message displays, describing the error.

Chassis Chain/Port Assignment Operations

– 63 –

Removing a chassis
To remove a chassis, you perform a simple DELETE operation on the chassis list. To remove all the
chassis in the list, the DELETE request must be performed on the chassis list URL.

To remove only a specific chassis, the DELETE request must be performed on the following URL:

api/v0/sessions/0/ixload/chassischain/chassisList/chassisObjectId

Removing a chassis is similar to DELETE operations on other IxLoad Data Model lists.

Assigning ports
To assign ports, you perform a POST operation on the network port list. The POST request requires
three parameters: chassisId, cardId, and portId. These parameters do not represent the unique
objectIDs used by the REST API to identify resources as part of a list. Instead, these three parameters
have the same meaning they have in the UI and TCL/Python/Perl scripting, where a port is identified by
a string such as 1.1.1 (chassis.card.port).

To obtain the chassisId, cardId, and portId, perform a GET request on the portList for each card
in a chassis, as shown in the following figure:

Chassis Chain/Port Assignment Operations

– 64 –

The values highlighted in the preceding figure are the ones that are used when assigning the port as
shown in the following figure:

Chassis Chain/Port Assignment Operations

– 65 –

Taking or clearing ownership of ports
To take or clear ownership of ports, you perform POST requests on the port object:

Take ownership

api/v0/sessions/0/ixload/chassischain/chassisList/chassis_ID/cardList/card_
ID/portList/port_ID/operations/takeOwnership

Clear ownership

api/v0/sessions/0/ixload/chassischain/chassisList/chassis_ID/cardList/card_
ID/portList/port_ID/operations/clearOwnership

If another user owns the port, you can forcefully clear their ownership of the port by setting the force
parameter to true in the body of the request. For example: {“force”:“true”}.

Rebooting ports
To reboot ports:

1. Call the refreshConnection operation on the card.
2. Reboot the ports by performing a POST operation on the port object:

api/v0/sessions/0/ixload/chassischain/chassisList/chassis_ID/cardList/card_
ID/portList/port_ID/operations/reboot

Unassigning ports
To unassign ports, you perform a DELETE request on the network port list. This is done the same as for
removing chassis - you can unassign either one of the ports (by using the port object ID), or all the
ports, by performing the DELETE operation on the list URL.

IxVM chassis (ixChassisBuilder)
Use the chassisBuilder object to configure and manage IxVM virtual chassis, and the cards and ports
on them.

To get the root chassisBuilder object, send a GET request to the following URL:

http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder

A response will be returned in the following form, which indicates the connected chassis:

Chassis Chain/Port Assignment Operations

– 66 –

To display the list of operations available, send the following request:

http://serverAddress:8080/api/v0/sessions/
{sessionId}/ixload/chassisBuilder/operations

To execute an operation, send a POST request with the operation URL:

POST

Chassis Chain/Port Assignment Operations

– 67 –

http://serverAddress:8080/api/v0/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings

You can retrieve the operation’s status by sending a GET with operation’s ID:

GET
http://serverAddress:8080/api/v0/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings/{operationId}

You can retrieve the operation’s result by sending the following URL:

GET
http://serverAddress:8080/api/v0/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings/{operationId}/
result }

The result is specified in the links dictionary from the action status URL.

The result is in the following form:

Chassis Chain/Port Assignment Operations

– 68 –

Chassis Chain/Port Assignment Operations

– 69 –

This page intentionally left blank.

– 70 –

Upload and Download Diameter XML
Configuration Files
The IxLoad REST API provides support for uploading and downloading Diameter XML configuration files.

Upload

Assume that you have saved an IxLoad Diameter configuration file, named hss_cx.xml.

To upload the file, send a POST command with the following characteristics:

1. Insert the header Content-Type: multipart/form-data.
2. Attach as Binary File the hss_cx.xml config from the REST client.

For example:

3. Send the entire command POST.
For example:
POST
http://localhost:8080/api/v1/sessions/0/ixload/test/activeTest/communityList/0
/network/stack/childrenList/2/childrenList/3/childrenList/4/DiameterPortgroupD
ata/upload/?overwrite=true&uploadPath=D:/New%20Folder/Rest/Upload/testDPGD.xml

The command can vary based on the test configuration.

– 71 –

The last part of the POST command (D:/New%20Folder/Rest/Upload/testDPGD.xml) identifies the
location and name under which the Diameter configuration will be saved on the REST Gateway
(localhost) and then imported in the rxf.

Right now the hss_cx.xml config file is applied to the current .rxf.

Download

To download the file, send a GET command (JSON format).

For example:

GET
http://localhost:8080/api/v1/sessions/0/ixload/test/activeTest/communityList/0/ne
twork/stack/childrenList/2/childrenList/3/childrenList/4/DiameterPortgroupData/do
wnload

The command can vary based on the test configuration.

The 200 OK message received as the response will contain the Diameter .xml configuration file.

Upload and Download Diameter XML Configuration Files

– 72 –

Statistics
The REST statistics component behaves similar to the StatCollectorUtils component used in TCL. You
can get the available statistics for the activities configured in a test. You can also apply filters on port,
nettraffic, and activity.

Your test must poll statistics from the web server. The web server holds all the statistics configured in
the test in a circular buffer for a default amount of polls of 20 timestamps. The number of default polls
is not configurable.

Viewing statistics
You can use the IxLoad REST API to obtain the statistics generated during a test.

l L2-3 statistics sources become available after the test enters the running state and continue to
be available after the test ends, until a new test is started or a new configuration is loaded. You
cannot configure L2-3 statistics sources.

l L4-7 statistics sources become available when a new configuration is loaded. You can configure
L4-7 statistics sources.

The root resource for statistics is the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats

To retrieve the list of statistics sources, perform a GET request on this URL, as shown in the following
figure:

– 73 –

A GET request on any of the returned statistics sources except RunState returns three lists:
availableStats, configuredStats, and values, as shown in the following figure:

Statistics

– 74 –

availableStats is a list of all the available statistics for the current test. This list is read-only; you
cannot remove the available statistics.

configuredStats is a list of the statistics that have been configured for the current test. Here, you
can choose to enable, disable, remove, or modify existing statistics. By default, configuredStats
includes all available statistics (that is, it contains the availableStats list).

Each configured statistics resource has the following fields:

l filterList

l enabled

l caption (this must be unique in the list)
l objectID (this must be unique)
l aggregationType

l statName

values is a dictionary that contains the actual statistics values during the IxLoad test run.

If a GET request is performed on values before the test actually runs, an empty dictionary is returned.

The format for the dictionary is as follows: {timestamp : { stat name : stat value } }

The values dictionary only retains the last 20 timestamps. If you do not poll the statistics frequently
enough, you might lose some timestamps.

The following figure shows the values obtained when running a query on the HTTP client statistics
values:

Statistics

– 75 –

Statistics views
REST API tests can display most of the statistics views that are currently displayed when running the
IxLoad client in the GUI. The list of statistics views displayed in a test depends on the protocols
enabled in the configuration.

Statistics views are displayed for both L2-3 and L4-7 protocols.

The REST Stat Views are available under the stats url:

http://127.0.0.1:8080/api/v0/sessions/sessionId/ixload/stats/restStatViews

Exceptions

The following types of statistics do not follow the same data format in REST as they do when viewed in
the GUI. The views for these statistics types are either not shown in REST, or they are shown in
aggregated form (not drilled-down):

l Per stream (for example, Video Client Per Stream)
l Per channel (for example, RTP Per Channel (VoIPSip))
l Per URL (for example, HTTP Client Per URL)

As in the GUI, the list of statistics views for the currently loaded configuration are only populated after
the test enters the running stage. At that point, performing a GET on the /restStatViews URL will
return the following result:

Statistics

– 76 –

Each statistics view object contains the list of statistics which are part of the view and the values for
those statistics (values which are populated when the test is running). To view the list of statistics,
navigate to the following link:

http://127.0.0.1:8080/api/v0/sessions/sessionId/ixload/stats/restStatViews/statView
Id/statList

Enabling stat view CSV logging

The stat values retrieved from restStatViews can be saved in csv format, in the results directory.
This functionality is enabled by setting the enableRestStatViewsCsvLogging property on the
preferences URL:

http://127.0.0.1:8080/api/v0/sessions/sessionId/ixload/preferences

Statistics

– 77 –

RunState stat source
The RunState statistics source is listed for all agents under a single statistics source called RunState.
There are no configurable options for RunState. You can only perform GET requests on it. The only
option for RunState is the values option. It does not have the availableStats or configuredStats
options.

The URL for the RunState statistics source is as follows:

http://IP:8080/api/v0/sessions/sessionId/ixload/stats/RunState

It simply contains a link to the values resource. The statistics values can be viewed at the following
URL:

http://IP:8080/api/v0/sessions/sessionId/ixload/stats/RunState/values

A‘GET on the values URL before the test starts running returns an empty dictionary. After the test starts
running, the dictionary is populated with the RunState statistics values for all agents.

Video client per-stream statistics
For the IPTV Video Client activity, you can query the VideoClientPerStream stats from the REST API.

Statistics

– 78 –

The values of the per-stream statistics can be retrieved by accessing the
@api/v0/sessions/0/ixload/stats/VideoClientPerStream/values URL during the test run.

Based on their aggregation type, there are two types of per-stream statistics:

l kString – there is one value for each configured user (for example, the Active statistic):

Statistics

– 79 –

l kSum – there is one value for all users (for example, the Stream Bit Rate statistic):

Modifying configured statistics
To change statistics, you perform a PATCH method on the configured statistics structure. You can turn
statistics on or off, or change the aggregation type.

The following figure shows the URL for getting a configured statistic:

The result of GET in the preceding request is shown in the following figure:

Statistics

– 80 –

To change a configured statistic, a PATCH method is issued as shown in the following figure. The
payload must contain the properties to be changed.

The following figure shows how the preceding PATCH method changed the configured statistics
structure by turning it off:

Statistics

– 81 –

Filtering stats
To obtain the filtered statistics, you perform a GET on the filter list from a specific configuredStat
item, as shown in the following figure:

A configured statistic contains filters that enable you to get values at various levels:

Statistics

– 82 –

l Card level
l Activity level
l Chassis level
l Port level

To add a port filter, you add a new port to the portFilter list, as shown in the following figure:

The following figure shows how the filter looks after it has been added:

Statistics

– 83 –

You can set multiple filters for multiple configured statistics according to how you want to view the
statistics. Aggregation and processing can be done in the client script after the statistics are coming in.

Adding an activity filter

To add activity filter to a statistic, you perform a POST request on a URL similar to the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats/0/f
ilterList/activityFilters

with the following payload:

{"value": "Traffic1@Network1 - HTTPClient1"}

where Traffic1@Network1 is the net traffic name (formed by the traffic and the network name) and
HTTPClient1 is the activity name.

Generated CSVs
During the IxLoad test run, CSVs files are also generated. If you do not change any settings regarding
the CSV path, they are generated in the default result directory, which can be configured in IxLoad UI.

If you want to save the generated CSVs on a custom path, use the following operation on the test
resource before running the configuration:

Perform a PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/

with the following payload:

outputDir : true (the default is 'false')

runResultDirFull : "F:\\path\\to\\the\\new\\result\\dir"

Statistics

– 84 –

Logging
You can retrieve log from the REST API that are equivalent to the entries seen in the IxLoad UI. The
URL where log entries are accessible is the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/logs

A GET applied to the logs URL returns a list of the last log entries. By default, the last 100 entries are
shown, but this number can be changed from the preferences URL. Each log entry contains the
moduleName, severity, timestamp, and message.

Deleting logs

Each session object has a property named deleteLogsOnSessionClose that is set to false by
default.

– 85 –

Deleting logs for an instance

To delete the logs for a instance, perform a PATCH operation on the session URL with a payload of
{“deleteLogsOnSessionClose” : true}. This will cause all the session logs (the IxLoadRest-x-
yy.log and all the client logs for the IxLoad instance used by the session) to be deleted when the
session is deleted (using the DELETE operation).

Deleting logs for a specific IxLoad version

To delete the logs for a specific IxLoad version, perform a POST operation on the following URL:

@api/v0/logs/operations/deleteVersionLogs

with a payload of:

{“appVersion” : IxLoad-version}

and a header of:

{“content-type”: ”application/json”}

Logging

– 86 –

This will delete all the logs (all IxLoadRest-x-yy.log files and all client logs resulting from all the
sessions that used the specified version of IxLoad) for the specified IxLoad version.

Deleting logs for all IxLoad versions

To delete the logs for versions of IxLoad installed, perform a POST operation on the following URL:

@api/v0/logs/operations/deleteAllLogs

with no payload but with the following header:

{“content-type”: ”application/json”}

This will delete all the logs (all IxLoadRest-x-yy.log files and all client logs) for all IxLoad versions
present on the machine.

Logging

– 87 –

This page intentionally left blank.

– 88 –

REST Script Templates
An installed IxLoad build contains a set of Python sample scripts that perform basic IxLoad operations
from REST.

The scripts are stored in the root installation folder of IxLoad in a subfolder named RestScripts.

You can use Python 2.7 or Python 3 to run the scripts. The scripts must be run with a Python
executable that has the requests and pyOpenSSL modules installed, as described in the README.txt
file included in the RestScripts folder. The scripts do not require any command line arguments. They
can be simply executed by performing python.exe SimpleRun.py.

Before you run the scripts, you must change the configuration data (IxLoad Version, chassis, rxf file
path) in the beginning of each script to match your configuration.

The REST scripts rely on two utility Python files:

l IxLoadUtils.py, which deals with specific IxLoad REST API functionality.
l IxLoadRestUtils.py, which deals with providing the underlying abstraction level that
IxLoadUtils uses to receive, interpret, and dispatch requests.

These two files are helper files that implement a Python script to handle REST communication with the
IxLoad REST framework.

The scripts are intended as guides to using IxLoad from REST. They expose basic workflow scenarios
as examples you can use to understand how to automatically configure IxLoad through REST. You do
not necessarily need to write your own scripts in Python; the IxLoad REST API is compatible with any
programming language that supports running HTTP requests.

AddNewCommand.py
This template does the following:

1. Creates a session
2. Loads an Rxf
3. Clears the chassis list
4. Adds a chassis
5. Assigns ports to the networks
6. Clears the command list for client activity
7. Updates the command list of the client HTTP activity by:

– 89 –

l Adding a GET command with custom properties
l Adding a POST command with custom properties

8. Saves the Rxf
9. Starts the test
10. Polls the stats
11. Closes the IxLoad session

ChangeAgentObjectives.py
This template does the following:

1. Creates a session
2. Loads an Rxf
3. Clears the chassis list
4. Adds a chassis
5. Assigns ports to the networks
6. Updates the activity options by:

Enabling constraints
Setting a constraint value
Changing the objective type
Setting a new objective type

7. Saves the Rxf
8. Starts the test
9. Polls the stats
10. Closes the IxLoad session

ChangeIpType.py
This template does the following:

1. Creates a session
2. Loads an Rxf
3. Clears the chassis list
4. Adds a chassis
5. Assigns ports to the networks
6. Updates the IP ranges by changing the count and the IP address
7. Saves the Rxf
8. Starts the test
9. Polls the stats
10. Closes the IxLoad session

REST Script Templates

– 90 –

CIFSfromScratch.py
This template creates a CIFS scenario starting from an empty configuration and runs it.

Dhcpv4v6_config_from_scratch.py
This template creates a DHCP configuration and runs it.

DNS_with_DUT_from_scratch.py / DNS_config_from_
scratch.py
This template creates a DNS scenario starting from an empty configuration and runs it.

FTP_config_from_scratch.py
This template creates an FTP scenario starting from and empty configuration and runs it.

HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py
This template creates an HTTP over IPSEC configuration and runs it.

IMAP_config_from_scratch.py
This template creates an IMAP scenario starting from an empty configuration and runs it.

POP3ConfigFromScratch.py
This template creates a POP3 scenario starting from an empty configuration and runs it.

RepRunner.py
This template runs a set of repositories in the same IxLoad session, one after the other.

RTSP_config_from_scratch.py
This template creates a RTSP scenario starting from an empty configuration and runs it.

SimpleRun.py
This template does the following:

1. Creates a session
2. Loads an Rxf
3. Clears the chassis list
4. Adds a chassis

REST Script Templates

– 91 –

5. Assigns ports to the networks
6. Saves the Rxf
7. Starts the test
8. Polls the stats
9. Closes the IxLoad session

SimpleRunCapturesEnabled.py
This template enables Analyzer on ports before starting a test.

After the test stops and the capture files are received from the ports, it downloads the captures locally.

SMTPfromScratch
This template creates a SMTP scenario starting from an empty configuration and runs it.

StatelessPeerFS.py
This template creates a Stateless Peer scenario starting from an empty configuration and runs it.

TFTP_config_from_scratch.py
This template creates a TFTP scenario starting from an empty configuration and runs it.

VoIPSIP_config_from_scratch.py
This template creates a VoIP SIP scenario starting from an empty configuration and runs it.

REST Script Templates

– 92 –

IxLoadRestUtils
This module defines the following utilities:

class Connection(__builtin__.object)
This class executes the HTTP requests to the application instance. It handles creation of the HTTP
session and execution of HTTP methods.

Methods

Methods defined in this class are as follows:

__init__(self, siteUrl, apiVersion)

Arguments:

siteUrl is the actual URL to which the connection instance will be made.

apiVersion is the actual version of the REST API that the connection instance will use.

The HTTP session will be created when the first HTTP request is made.

httpDelete(self, url='', data='', params={}, headers={})

Method for calling HTTP DELETE. Returns the HTTP reply.

httpGet(self, url='', data='', params={}, headers={})

Method for calling HTTP GET. Returns a WebObject that has the fields returned in JSON format by the
GET operation.

httpPatch(self, url='', data='', params={}, headers={})

Method for calling HTTP PATCH. Returns the HTTP reply.

httpPost(self, url='', data='', params={}, headers={})

Method for calling HTTP POST. Returns the HTTP reply.

httpRequest(self, method, url='', data='', params={}, headers={})

Method for making a HTTP request. The method type (GET, POST, PATCH, DELETE) will be sent as a
parameter. Along with the url and request data. The HTTP response is returned.

Arguments:

method (mandatory) represents the HTTP method that will be executed.

url (optional) is the URL that will be appended to the application URL.

IxLoadRestUtils

– 93 –

data (optional) is the data that needs to be sent along with the HTTP method as the JSON
payload.

params (optional) is the payload python dictionary (not necessary if data is used).

headers (optional) are the HTTP headers that will be sent along with the request. If left
blank, the default is used.

Class methods

Class methods defined here are as follows:

urljoin(cls, base, end) from __builtin__.type

Joins two URLs. If the second URL is absolute, the base is ignored.

Ixia recommends that you use urljoin instead of urlparse.urljoin for the following reasons:

1. Appends a/ to base if not present.
2. Casts end to a str as a convenience.

Data descriptors

Data descriptors defined here are as follows:

__dict__

Dictionary for instance variables (if defined)

__weakref__

List of weak references to the object (if defined)

Other attributes

Data and other attributes defined here are as follows:

kContentJson = 'application/json'

kHeaderContentType = 'content-type'

class WebList(__builtin__.list)
This class transforms a JSON list into a list of WebObject instances.

Methods

Methods defined in this class are:

__init__(self, entries=[])

Creates a WebList from a list of items that are processed by the _WebObject function.

IxLoadRestUtils

– 94 –

Data descriptors

Data descriptors defined in this class are as follows:

__dict__

Dictionary for instance variables (if defined).

__weakref__

List of weak references to the object (if defined).

class WebObject(__builtin__.object)
This class sets the fields of a WebObject instance to correspond to the JSON format received in a GET
request. For example, a response in the format: {"caption": "http"} returns an object that has
obj.caption="http.".

Methods

Methods defined in this class are as follows:

__init__(self, **entries)

Creates a WebObject instance by providing a dictionary having a property - value structure.

getOptions(self)

Gets the JSON dictionary which represents the WebObject instance.

Data descriptors

Data descriptors defined in this class are as follows:

__dict__

Dictionary for instance variables (if defined).

__weakref__

List of weak references to the object (if defined).

Functions
formatDictToJSONPayload(dictionary)

Converts a given Python dictionary instance to a string JSON payload that can be sent to a REST API.

getConnection(server, port)

IxLoadRestUtils

– 95 –

Gets a Connection instance, which will be used to make the HTTP requests to the application.

IxLoadRestUtils

– 96 –

IxLoadUtils
The IxLoadUtils module is a collection of specific functions that deal with common IxLoad workflows.

addChassisList
Adds one or more chassis to the chassis list.

Syntax: addChassisList(connection, sessionUrl, chassisList)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

chassisList is the list of chassis that will be added to the chassis chain.

addCommands
Adds commands to a certain list of provided agents.

Syntax: addCommands(connection, sessionUrl, commandDict

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

commandDict is the Python dictionary that holds the mapping between agent name and
specific commands. (commandDict format -> { agent name : [{ field : value }
] }).

addDUT
Adds a DUT resource to the active test on the given session.

Returns the ID of the newly added DUT.

Syntax: addDUT(connection, sessionUrl, dutDict=None)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

dutListUrl is the address that contains the list of DUTs.

dutDict contains a comment, the name or the type of the DUT (or all three).

IxLoadUtils

– 97 –

DUT types:

Firewall

ExternalServer

PacketSwitch

ServerLoadBalancer

VirtualDut

By default, when posting using dutDict=None, dutType will be SLB.

assignPorts
Assigns ports from a connected chassis to the required NetTraffics.

Syntax: assignPorts(connection, sessionUrl, portListPerCommunity)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

portListPerCommunity is the dictionary mapping NetTraffics to ports (format -> {
community name : [port list] })

changeActivityOptions
Changes certain properties for the provided activities.

Syntax: changeActivityOptions(connection, sessionUrl, activityOptionsToChange)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

activityOptionsToChange is the Python dictionary that holds the mapping between
agent name and specific properties (activityOptionsToChange format: { activityName : {
option : value } })

changeCardsInterfaceMode
Changes the interface mode on a list of cards from a chassis. To call this method, the required chassis
must be already added and connected.

Syntax: changeCardsInterfaceMode (connection, chassisChainUrl, chassisIp, cardIdList,
mode)

IxLoadUtils

– 98 –

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

chassisChainUrl is the address of the chassisChain resource.

chassisIp is the IP or host name of the chassis that contains the card(s).

cardIdList is a list of card IDs.

mode is the interface mode that will be set on the cards. Possible options are (depending
on card type): 1G, 10G, 40G, 100G, etc.

changeIpRangesParams
Changes certain properties on an IP Range.

Syntax: changeIpRangesParams(connection, sessionUrl, ipOptionsToChangeDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

ipOptionsToChangeDict is the Python dict holding the items in the IP range that will be
changed.

(ipOptionsToChangeDict format: { IP Range name : { optionName : optionValue
} })

clearAgentsCommandList
Clears all commands from the command list of the agent names provided.

Syntax: clearAgentsCommandList(connection, sessionUrl, agentNameList)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

agentNameList the list of agent names for which the command list will be cleared.

clearChassisList
Clears the chassis list. After execution, no chassis should be available in the chassisList.

Syntax: clearChassisList(connection, sessionUrl)

Arguments:

IxLoadUtils

– 99 –

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

collectDiagnostics
Performs a POST request to collect log files and packages them into a ZIP file.

Syntax: collectDiagnostics(connection, sessionUrl, zipFilePath, clientOnly=False)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to collect diagnostics for.

zipFilePath is the local zip path on the machine that holds the IxLoad instance.

collectGatewayDiagnostics
Performs a POST request to collect gateway log files and packages them into a ZIP file.

Syntax: collectGatewayDiagnostics(connection, zipFilePath)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

zipFilePath is the local zip path on the machine that holds the IxLoad instance.

createSession
Creates a new session. The return value is the URL of the new session.

Syntax: createSession(connection, ixLoadVersion)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

ixLoadVersion is the actual IxLoad version to start.

deleteSession
Deletes an existing session.

Syntax: deleteSession(connection, sessionUrl)

Arguments:

IxLoadUtils

– 100 –

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to delete.

editDutConfig
Modifies the settings found in the dutConfig page and its subpages.

The return value is a dictionary with the reply from the server for patch/delete and the objectId for
post actions as a value, and the corresponding networkDict as a key.

Syntax: editDutConfig(connection, dutUrl, configDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API

dutUrl is the address of the dut that needs to be changed/modified

configDict is a list that contains the actions needed to be performed on the target DUT,
and dictionaries with the information required for every action

Example dictionary:

{
"post":
{

"originateNetwork.<arbitraryIdentifier1>": {}
"originateNetwork.<arbitraryIdentifier2>":
{

"ipCount": "200",
"firstIp": "10.10.10.10"

}
}
"patch":
{

"terminateNetwork.<validObjectId1>":
{

"ipCount": "500"
}

}
}

Format for network/protocol names:

Server Load Balancer: slb.<identifier>

Packet Switch: originateNetwork.<id>, terminateNetwork.<id>,
terminateProtocolPort.<id>, originateProtocolPort.<id>

Virtual DUT: network.<id>, protocolPort.<id>

IxLoadUtils

– 101 –

editDutProperties
Modifies the DUT's name, comment, and type.

Syntax: editDutProperties(connection, sessionUrl, dutId, newInfoDict=None)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

dutUrl is the address of the dut that needs to be changed/modified.

newInfoDict is a dictionary that contains the updated DUT information.

enableAnalyzerOnPorts
Enables Analyzer for a specific port on a specific community.

Syntax: enableAnalyzerOnPorts(connection, sessionUrl, communityPortIdTuple)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

communityPortIdTuple is a tuple composed of (communityID and portName).

communityID is the id of the community list for which captures should be retrieved.

portName is the name of the port for which Analyzer will be enabled (in the format 'n.n.n',
not 'Port n.n.n').

sessionUrl is the address of the session on which the test was run.

getCommandListUrlForAgentName
Gets the commandList url for a provided agent name.

Syntax: getCommandListUrlForAgentName(connection, sessionUrl, agentName)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

agentName is the agent name for which the commandList address is provided.

getIPRangeListUrlForNetworkObj
Returns the IP Ranges associated with an IxLoad network component.

Syntax: getIPRangeListUrlForNetworkObj(connection, networkUrl)

IxLoadUtils

– 102 –

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

networkUrl is the REST address of the network object for which the network ranges will be
provided.

getTestCurrentState
Gets the test current state (for example: running, unconfigured).

Syntax: getTestCurrentState(connection, sessionUrl)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

getTestRunError
Gets the error that appeared during the last test run.

If no error appears, the test ran successfully and the return value is None.

Syntax: getTestRunError(connection, sessionUrl)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

loadRepository
Performs a POST request to load a repository.

Syntax: loadRepository(connection, sessionUrl, rxfFilePath)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to load the rxf for.

rxfFilePath is the local rxf path on the computer that holds the IxLoad instance.

performGenericDelete
Performs a generic DELETE method on a given URL.

IxLoadUtils

– 103 –

Syntax: performGenericDelete(connection, listUrl, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the Python dictionary with the parameters for the operation.

performGenericOperation
Performs a generic operation on the given URL, and waits for it to finish.

Syntax: performGenericOperation(connection, url, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the python dict with the parameters for the operation.

performGenericPatch
Performs a generic PATCH method on a given URL.

Syntax: performGenericPatch(connection, url, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the Python dictionary with the parameters for the operation.

performGenericPost
Performs a generic POST method on a given URL.

Syntax: performGenericPost(connection, listUrl, payloadDict)

Arguments:

connection is the connection object.

url is the address of where the operation will be performed.

payloadDict is the python dict with the parameters for the operation.

IxLoadUtils

– 104 –

pollStats
Polls for statistics. Polling statistics is per request, but this method does a continuous poll.

Syntax: pollStats(connection, sessionUrl, watchedStatsDict, pollingInterval=4)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

watchedStatsDict are the statistics that are being monitored.

pollingInterval is the polling interval. The default is 4 but can be overridden.

retrieveCaptureFileForPorts
Retrieves capture files from a REST session that had portCapture set to True.

Syntax: retrieveCaptureFileForPorts(connection, sessionUrl, communityPortIdTuple,
captureFile)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API

communityPortIdTuple is a tuple composed of (communityID and portName)

communityID is the ID of the community list for which captures should be retrieved.

portName is the name of the port for which capture will be enabled (in the format 'n.n.n',
not 'Port n.n.n')

sessionUrl is the address of the session on which the test was ran.

captureFile is the save path for the capture file

Error Codes:

0 No error

1 Invalid portId

2 Cannot create/open captureFile

runTest
Starts the currently loaded test. After starting the 'Start Test' action, wait for the action to complete.

Syntax: runTest(connection, sessionUrl)

Arguments:

IxLoadUtils

– 105 –

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

saveRxf
Saves the current rxf to the disk of the computer on which the IxLoad instance is running.

Syntax: saveRxf(connection, sessionUrl, rxfFilePath)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to save the rxf for.

rxfFilePath is the location where to save the rxf on the machine that holds the IxLoad
instance

setCardsAggregationMode
Changes the aggregation mode on a list of cards from a chassis. To call this method, the required
chassis must be already added and connected.

Syntax: setCardsAggregationMode(connection, chassisChainUrl, chassisIp, cardIdList,
mode)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

chassisChainUrl is the address of the chassisChain resource.

chassisIp is the IP or hostname of the chassis that contains the card(s).

cardIdList is a list of card IDs.

mode is the aggregation mode that will be set on the cards. Possible options are
(depending on card type): NA (Non Aggregated), 1G, 10G, 40G

uploadFile
This operation uploads a file from the computer where the script runs, on the computer where the
IxLoad client is running.

Syntax:uploadFile(connection, url, fileName, uploadPath,overWrite)

Arguments:

connection is the connection object that manages the HTTP data transfers between the

IxLoadUtils

– 106 –

client and the REST API.

url is the address of the resource that uploads the file. This url should be in the following
form:

http://ip:port/api/v0/resources.

filename contains the name (or absolute path to the file, if the file is not in the same
location as the executing script) of the file to be uploaded. This is the location on the
computer where the script is running.

Example: “file.txt”, r“D:\\examples\\file.txt”.

uploadPath is the path where the file should be copied to on the computer on which the
IxLoad client runs.

overWrite specifies the required behavior if the file to be uploaded already exists on the
remote computer. The default value is ‘True.’

waitForActionToFinish
Waits for an action to finish executing. After a POST request is sent to start an action, the HTTP reply
will contain, in the header, a 'location' field, that contains a URL.

The action URL contains the status of the action. This method performs a GET on that URL every 0.5
seconds until the action finishes with a success.

If the action fails, this will show an error and print the action's error message.

Syntax: waitForActionToFinish(connection, replyObj, actionUrl)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

replyObj the reply object holding the location.

actionUrl is the URL pointing to the operation.

waitForAllCaptureData
This method is used to wait for the test to capture all the port data that was received after the test has
finished running.

Syntax: waitForAllCaptureData(connection, sessionUrl)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

IxLoadUtils

– 107 –

This page intentionally left blank.

– 108 –

Ixia
26601 West Agoura Road
Calabasas, California 91302

	Contacting Us
	New in this Release
	Before you Begin
	REST Resources
	Supported Features
	API version v1
	Using the REST API over HTTPS
	Self-signed certificates
	Script changes required for HTTPS
	Errors from REST UI clients

	REST Authentication
	Enabling authentication on Windows
	Enabling authentication on Linux
	Authenticating REST requests
	Retrieving the api-key
	Script changes required for authentication

	Supporting Methods and Running Operations
	REST representation
	Preferences
	IxLoad REST methods
	GET
	PATCH
	POST
	DELETE
	OPTIONS

	Operations
	Starting an operation
	Getting an operation's status
	Examples of common operations in the IxLoad REST API
	Query strings
	Collecting diagnostics
	Deleting the results directory after running a test
	extractDataModel operation
	findURLs operation

	IxLoad Session Handling
	Creating a new session
	New session with a specified version
	New session with the latest version

	Deleting a session

	Uploading and downloading files
	API Browser
	How to find URLs in a REST API session
	IxLoad Data Model
	Communities
	Timelines
	Login name
	DUTs
	Expiration timer
	Enabling Analyzer and downloading captures
	Modifying the activity user objective value on the fly

	Chassis Chain/Port Assignment Operations
	Adding a chassis
	Connecting to a chassis
	Removing a chassis
	Assigning ports
	Taking or clearing ownership of ports
	Rebooting ports
	Unassigning ports
	IxVM chassis (ixChassisBuilder)

	Upload and Download Diameter XML Configuration Files
	Statistics
	Viewing statistics
	Statistics views

	RunState stat source
	Video client per-stream statistics

	Modifying configured statistics
	Filtering stats
	Generated CSVs

	Logging
	REST Script Templates
	AddNewCommand.py
	ChangeAgentObjectives.py
	ChangeIpType.py
	CIFSfromScratch.py
	Dhcpv4v6_config_from_scratch.py
	DNS_with_DUT_from_scratch.py / DNS_config_from_scratch.py
	FTP_config_from_scratch.py
	HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py
	IMAP_config_from_scratch.py
	POP3ConfigFromScratch.py
	RepRunner.py
	RTSP_config_from_scratch.py
	SimpleRun.py
	SimpleRunCapturesEnabled.py
	SMTPfromScratch
	StatelessPeerFS.py
	TFTP_config_from_scratch.py
	VoIPSIP_config_from_scratch.py

	IxLoadRestUtils
	class Connection(__builtin__.object)
	class WebList(__builtin__.list)
	class WebObject(__builtin__.object)
	Functions

	IxLoadUtils
	addChassisList
	addCommands
	addDUT
	assignPorts
	changeActivityOptions
	changeCardsInterfaceMode
	changeIpRangesParams
	clearAgentsCommandList
	clearChassisList
	collectDiagnostics
	collectGatewayDiagnostics
	createSession
	deleteSession
	editDutConfig
	editDutProperties
	enableAnalyzerOnPorts
	getCommandListUrlForAgentName
	getIPRangeListUrlForNetworkObj
	getTestCurrentState
	getTestRunError
	loadRepository
	performGenericDelete
	performGenericOperation
	performGenericPatch
	performGenericPost
	pollStats
	retrieveCaptureFileForPorts
	runTest
	saveRxf
	setCardsAggregationMode
	uploadFile
	waitForActionToFinish
	waitForAllCaptureData

