IXla

A Keysight Business

IxLoad

REST API Programming Guide

Version 9.00 Update 1

Notices

Copyright Notice
© Keysight Technologies 2015-2019

No part of this document may be
reproduced in any form or by any means
(including electronic storage and retrieval
or translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies, Inc.
as governed by United States and
international copyright laws.

Warranty

The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Keysight
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Keysight shall not
be liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or performance
of this document or of any information
contained herein. Should Keysight and the
user have a separate written agreement
with warranty terms covering the
material in this document that conflict
with these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

U.S. Government Rights

The Software is "commercial computer
software," as defined by Federal
Acquisition Regulation ("FAR") 2.101.
Pursuant to FAR 12.212 and 27.405-3 and
Department of Defense FAR Supplement
("DFARS") 227.7202, the U.S. government

acquires commercial computer software
under the same terms by which the
software is customarily provided to the
public. Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User License
Agreement (EULA), a copy of which can
be found at
http://www.keysight.com/find/sweula or
https://support.ixiacom.com/support-
services/warranty-license-agreements.
The license set forth in the EULA
represents the exclusive authority by
which the U.S. government may use,
modify, distribute, or disclose the
Software. The EULA and the license set
forth therein, does not require or permit,
among other things, that Keysight: (1)
Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the government
rights in excess of these rights
customarily provided to the public to use,
modify, reproduce, release, perform,
display, or disclose commercial computer
software or commercial computer
software documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except to
the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Keysight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR
27.401 or DFAR 227.7103-5 (c), as
applicable in any technical data. 52.227-
14 (June 1987) or DFAR 252.227-7015 (b)
(2) (November 1995), as applicable in any
technical data.

http://www.keysight.com/find/sweula
https://support.ixiacom.com/support-services/warranty-license-agreements
https://support.ixiacom.com/support-services/warranty-license-agreements

This page intentionally left blank.

Contacting Us

Ixia headquarters

26601 West Agoura Road

Calabasas, California 91302

+1 877 367 4942 - Toll-free North America
+1 818 871 1800 - Outside North America
+1.818.871.1805 - Fax
WWwWw.iXiacom.com/contact/info

Support
Global Support +1 818 595 2599

Regional and local support contacts:

APAC Support +91 80 4939 6410
Australia +61-742434942
EMEA Support +40 21 301 5699
Greater China Region +400 898 0598
Hong Kong +852-30084465
India Office +91 80 4939 6410
Japan Head Office +81 3 5326 1980
Korea Office +82 2 3461 0095
Singapore Office +65-6215-7700

Taiwan (local toll-free number) 00801856991

—iv -

support@ixiacom.com

support@ixiacom.com

support@ixiacom.com

support-emea@ixiacom.com

support-china@ixiacom.com

support@ixiacom.com

support-india@ixiacom.com

support-japan@ixiacom.com

support-korea@ixiacom.com

support@ixiacom.com

support@ixiacom.com

https://www.ixiacom.com/contact/info
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-emea@ixiacom.com?subject=Enquiry
mailto:support-china@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-india@ixiacom.com?subject=Enquiry
mailto:support-japan@ixiacom.com?subject=Enquiry
mailto:support-korea@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry

This page intentionally left blank.

CONTENTS

Contacting UsS ... iv

New in this Release Xii
Before you Begin .. . Xiv
REST RE@SOUICES L 1
Supported Features ... 3
AP version VI il 4
Using the REST API over HTTPS 7
Self-signed certificates il 7
Script changes required for HTTPS . . 8
Errors from REST UL Clients . L 8
REST Authentication 9
Enabling authentication on WindoWs 9
Enabling authentication on LinuxX 10
Authenticating REST requests 11
Retrieving the api-Key .. L 12
Script changes required for authentication 12
Supporting Methods and Running Operations 15
REST representation ... 15
Prel e eNCES 16
IXLoad REST mMethods .. . L 17
L 17

P AT CH 18

- Vi -

DELETE .. 20
OP T ION S 21
OPeratiONS 23
Starting an OperatioN . L 24
Getting an operation's StatUs L 24
Examples of common operations in the IxLoad REST API 26
QUENY SEIINGS ..o 29
Collecting diagnoStiCs .. o 30
Deleting the results directory after running a test 32
extractDataModel Operation ... 34
fINAURLS OperatioN 36
IxLoad Session Handling 41
Creating @ NEW SESSIONo L 41
New session with a specified Version 41
New session with the latest version 45
Deleting @ SeSSION . 46
Uploading and downloading files L 47
API BrOWS eI .. .o 49
How to find URLs in a REST API sesSSiON 52
IxLoad Data Model ... 55
CoOMMIUNII S L 55
TIMEIINES . 56
OGN M 56
DU TS Ll 56
EXDIratiON M 58
Enabling Analyzer and downloading captures il 59

- vii -

Modifying the activity user objective valueonthe fly 60

Chassis Chain/Port Assignment Operations 61
AddiNg @ ChaSSiS .. 61
Connecting to @ ChasSiS ... 62
RemMOVING @ ChasSiS . 64
ASSIONING PO S 64
Taking or clearing ownership of POrtS 66
ReDOOtiNG POItS L 66
UNassigning POIS .. 66
IXVM chassis (iXChassisBUIlder) .. L 66

Upload and Download Diameter XML Configuration Files 71

StatiStiCs .. . 73
VieWing statistiCs .. il 73

SHatiStiCS VIBWS il 76
RUNState Stat SOUNCE L 78
Video client per-stream statistics 78
Modifying configured statistics il 80
FIltering Stats .. il 82
Generated COV S . 84

Lo NG 85

REST Script Templates . . 89
AdANEeWCOMMANA. DY e 89
ChangeAgentOb) eCtiVeS. DY .. L 90
Changel DT Y P . DY ..o 90
CIF S romM S CratCN. DY oo 91
Dhcpv4v6e_config_from_scratCh. Py ... 91
DNS_with_DUT_from_scratch.py / DNS_config_from_scratch.py 91

— viii -

FTP_config_from_SCratCh. Py ..o L 91

HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py 91
IMAP_config_from_SCratCh. PY .. . 91
POP3CONfIgFrOmM S CratC. PY ... 91
R D RUNN T DY e 91
RTSP_config_from_scratCh.pyY ... L 91
SIMIPlIE RUN . DY .o 91
SimpleRunCapturesEnabled. PY oL 92
SMT P rOM S CratCh L 92
S At eSS P I S DY .. 92
TFTP_config_from _SCratCh. PY ... 92
VOIPSIP_config_from _SCratCh. PY ... o L 92
IxLoadRestUrilS . .. 93
class Connection(__builtin__.object) 93
class WebList(__ builtin__ . liSt) ... 94
class WebObject(__ builtin__.object) ... 95
FUNCRIONS . 95
IXLoadURIls il 97
AddChassislist .. . 97
AddCOMMANAS 97
AAADU T 97
ASSIANP OIS . 98
change ACtiVity OptiONS o L 98
changeCardsInterfaceMode L 98
changelpRaNgeSParam s . 99
clearAgentsCommandlist . . 99
ClearChassislist 99

—-ix -

COllectDiagnOStiCS L 100

collectGateway DiagnostiCs ... oo 100
CrEAtE S S S ON L 100
delete S eSS 0N 100
editDULCON I G L 101
it DU P OP eIt S . . 102
€NAableANAlY ZEerON P OIS 102
getCommandListUrlForAgentNamM e . 102
getIPRangeListUrlForNetworkObj 102
getTestCUrTeNt S At L 103
Gt S RUNE O L 103
ORGP OSI IO Y .. 103
performGeneriCDel et . . 103
performGeNeriCOPEratiON 104
pPerformMGeNeriCPatCh 104
pPerformGeNeriCPOSt 104
POI S aES 105
retrieveCaptureFileForP OIS | 105
PUN T S L 105
SAVERXE L 106
setCardsAggregationNMOde . . . L 106
UPIOAAFI IO .. 106
waitForActionToOFINiSh . .. 107
WaItFOr ANl CaptureData 107

This page intentionally left blank.

- Xi -

New in this Release

The following features are new in this release:

findURLs A new operation, findURLs, enables you to find resources in a test configuratin.
See findURLs operation on page 36.

Starting a new | You can start a new session from the API Browser. See Creating a new session on

session page 41.

= Xii -

This page intentionally left blank.

= Xiii =

Before you Begin

Before you begin using the REST API, review the sections below.

Authentication

If you want to use the REST API with authentication, an Ixia User Management server must be
available on the network. See REST Authentication on page 9 for more information.

Gateway Service

The IxLoad Gateway Service must be installed on the computer where you will use the REST API. The
Gateway Service is an optional component that is not installed by default.

To install the Gateway Service, select Custom Setup during IxLoad installation.

If you have already installed IxLoad, you can modify the installation to add it: Select IxLoad from the
list of installed applications (Control Panel > Programs and Features), right-click, and then
select Modify. The installer runs and you can install the IxLoad Gateway Service.

- Xiv -

Before you Begin

1) IxLoad 8.30.115.122 EB - Setup S

P —— -

[coomsen Xia

Select the program features you want

=

installed. IxLoad
Click on an icon in the list below to change how a featurs is installed.
Feature Description
- 3 =] User Documentation (PDF) @ i
________ "%~ | IxCatapult IxLoad Gateway component
P =) . required for performing REST
— ¥ - | Published Vulnerabilities and Malware requests to IxLoad,
: g - Sam
This feature requires 8432K8 on
your hard drive.

[~ | Enable Authentication on I oadGateway

C:\Program Files (x86)\Ixia\IxLoad\8. 30.115. 12268\
Instalishield

[tep [seaxce J[<Bak [next> J[concel |

— XV —

Before you Begin

ﬂ Ixload 8.30.115.122 EB - Setup _“E
| Custom setue IXia
Select the program features you want
installed. IxLoad
Click on an icon in the list below to change how a feature is installed.
Feature Description
- 3% = | User Documentation (PDF) 2 ?
........ %~ | IxCatapult IxLoad Gateway component
= : . required for performing REST
s ¥ = | Published Vulnerabilities and Malware requests to IxLoad,
: g - Sarrq:k_ls
This feature requires 84328 on
your hard drive,

[~ | Enable Authentication on IxloadGateway

C:'\Program Files (x86)\Ixia{IxLoad\g. 30.115. 122-E8),
InztalShield

| oree [sese | <Bax [Mext> J[concel |

- Xvi -

This page intentionally left blank.

- XVii -

REST Resources

The IxLoad REST API allows you to start and configure an IxLoad session through HTTP requests.

A resource is a basic concept of a REST API. In the IxLoad REST API, a resource is a representation of
an IxLoad object for the user. Not all IxLoad objects are resources, and not all IxLoad object

functionality is available through the REST API.
A resource can have the following:

« Properties:
m Primitives: Simple types like bool, int, and string.
m Complex: Other resources like timeline resources and agent resources.

o Operations:
m Example of operations:
o RunTest
o AddChassis
o RefreshChassis

This page intentionally left blank.

Supported Features

The following features are supported in the current release of the IxLoad REST API:

Create and start an IxLoad session.

Load a configuration (.rxf) from a local path.

View the data model tree through GET requests (including query string support).
Add a new chassis or remove an existing chassis.

Assign and unassign ports.

Change the existing configuration and modify field values through PATCH requests.
Support for L2-3 ranges.

Support for L4-7 plugins.

Save a configuration modified through the REST APL.

View, add, or delete the configured L2-3 and L4-7 statistics.

Run a test.

Poll L2-3 and L4-7 statistics.

Upload repository (.rxf) files.

Start remote IxLoad sessions.

Automatically generate documentation.

Query logs from REST API.

Analyze.

The following list of features are not supported in the current release of the IxLoad REST API:

AppLibrary protocols

Resource Manager

Profiles (for example, real files)

IxReporter

Adding (POST) or removing (DELETE) objects such as test communities, plugins, and ranges. Add
and remove operations are only supported on the chassis list, the port lists, and the configured
statistics.

Creating or editing voice scenarios

Creating or editing Diameter scenarios (except for importing or exporting XML files, which is
supported)

API version v1

API version vl

Prior to IxLoad 8.50, all REST API requests were made on URLS that used API version v0, so the URLs
started with /api/vo0.

Beginning with 8.50, the REST API version is v1, so the URLs now begin with /api/v1.

Version vO0 is still available, and contains the same functionality as v1. Scripts that use v0 will
continue to function in the same way. The only things that differ are some response formats.

Version v1 contains the following changes:

Changed "links" responses for all fields:
o« Changed "rel" field to "child" for most options
o Added "method":"GET" entry for all child nodes
o Added self node that has URL to self
o Add meta node for self with “method” : “OPTIONS”

"links": ["links: ’
: vO0 el v1
"href": "Japi/v@/sessions/1/ixload"” "href": "/api/vl/sessions/1/ixload”,
"rel": "ixload" "method": "GET",
I "rel™: "child"
{ }
"href": "/fapi/v@/sessions/1/docs", :J
"rel": "docs"” "href": "Japi/vl/sessions/1l/docs",
h "method": "GET",
1:) .) "rel™: "child"
1
"href": "fapi/vl/sessions/1",
"method": "GET",
"rel™: "self"
Is
"href": "fapi/vl/sessions/1",
"method™: "OPTIONS™,
"rel": "meta"
1

[LJ S R DR | SR R P,)

applicationTypes response

A GET on api/vX/applicationtypes will return:

API version v1

vO0 vl

"appName" : "name" :
"8.40.0.277" "8.40.0.277"
} }

backendType and applicationType fields

Added backendType and applicationType fields on the session object (visible on GET on
/api/vX/sessions/X).

Start session parameter

Changed the name of the parameter required to create an IxLoad session for v1l. Creating a session will
require the following payload:

vO0 vl

{“ixLoadVersion”:”8.50.0.75”} {“applicationVersion”:”8.50.0.75”}

204 No Content response

Starting an operation returns status 204 No Content on vl (on v0, it returned 202 Acccepted).

Multi-POST support

Added the ability to add multiple objects to a list. Instead of a dictionary that contains the options that
will define the object to be created, you can supply a list of dictionaries. This will create a new item for
each dictionary in the list. This option was introduced for v1, but is available in v0 also.

Example:
Adding one chassis : {“name”:”tomini”}

Adding two chassis: [{“name”:”tomini”}, {“name”:”ixro-chassis”}]

Operation status URLs

Operation status URLs return the information in a different format. When retrieving the status of an
operation, the fields retrieved for v1 will be different than for v0. A get on the following URL will return

the following body
api/vX/sessions/0/ixload/chassischain/chassisList/0/operations/refreshConnection/1

API version v1

vO vl
{ {
"status": "url":
"Successful”, "/api/vl/sessions/@/ixload/chassischain/chassisList/0@/operations/refresh
"actionName": Connection/2",
"refreshConnecti "state": "SUCCES",
on", "result": "",
"state": "progress": 100,
"finished", "type": "refreshConnection",
"result": "", "id": 2,
"refreshedChassis": "tomini"
"refreshedChassi }
s": "tomini"

Possible values for state in vl: IN PROGRESS, ERROR, SUCCESS

}

Using the REST API over HTTPS

Requests made through IxLoad REST API are supported over both HTTP and HTTPS transport. The
HTTP requests are redirected by IxLoadGateway to the HTTPS server and translated into HTTPS
requests.

The default starting port for the IxLoadGateway HTTP server is 8080. Therefore, you can access
IxLoadGateway through HTTP requests on a URL in the following format:

http://<IP_ADDRESS>:8080/api/v0/sessions

The default starting port for the IxLoadGateway HTTPS server is 8443. Therefore, you can access
IxLoadGateway through HTTPS requests on a URL in the following format:

https://<IP_ADDRESS>:8443/api/v0/sessions

Self-signed certificates

HTTPS support over IxLoad REST API is offered through a self-signed certificate that is automatically
generated by the IxLoad Gateway component when it is installed as part of an IxLoad installation.

The self signed-certificate consists of two files:

e ixload certificate.crt: The actual self-signed certificate.
« ixload privkey.key: The private key used by the self-signed certificate.

Depending on the operating system on which the IxLoad build was installed, the self-signed certificate
and its corresponding private key can be found at the following locations:

o On Windows: <IxLoadGateway Install Path>\certificate
o On the IxLoad Linux OVA: /opt/ixia/ixloadgateway/certificate

The self-signed certificate is generated by using a 2048-bit RSA key pair and the SHA-256 signature
hash algorithm.

The self-signed certificate includes an X509 extension known as Subject Name Identifier (SNI)/Subject
Alternative Name (SAN). This extension allows the certificate to specify under which names (host
names and IP addresses) a user can access a secured web server that is using that certificate. This
prevents users from accessing IxLoad Gateway instances on different computers by using the same
self-signed certificate.

For this extension, the IxLoad Gateway generates a log file named san.log, which contains all the host
names and IPv4/IPv6 addresses under which the computer where IxLoad gateway is installed can be
accessed. This log file resides in the same location as the auto-generated certificate.

The certificate is regenerated automatically when one of the following occurs:

Using the REST API over HTTPS

e The ixload certificate.crt, ixload_privkey.key, or san.log files are deleted.
o The certificate has expired (it has a duration of 10 years).

« One of the entries required for SNI/SAN changes or disappears. For example, an IP address is
changed, a host name is changed, or a network interface disappears.

Script changes required for HTTPS
The IxLoad REST script samples have been updated to support HTTPS requests over IxLoad REST API.
The changes are as follows:

o kGatewayPort = 8443: Changed from 8080 to 8443.
o kResourcesUrl = 'https://%s:%s/api/v0/resources': Changed from http to https.

The utility files used by the IxLoad REST scripts samples have also been updated accordingly.
In Utils\IxRestUtils.py, the changes are as follows:

e connectionUrl = https://%s:%s/" % (server, port): Changed from http to https.

e result =self. getHttpSession().request (method, absUrl, data=str(data),
params=params, headers=headers, verify=False).

The verify parameter is provided by the requests library that is used in the REST scripts to generate
HTTP/HTTPS requests. This parameter can take three values:

o False, as specified in the preceding example. If set to False, the HTTPS request does not perform
any validation against a certificate.

o True, in this case, the HTTPS request performs a validation against a set of predefined certificate
bundles specific to the Python requests module.

o <certificate path>: In this case, the HTTP request performs a validation against the
certificate specified at the path provided in the verify parameter.

To provide the certificate path, copy the certificate from the computer where the IxLoad gateway is
installed to the computer where the REST script is run. The location where the certificate is copied is
provided as the certificate path.

If the certificate is regenerated and the verify parameteris set to a certificate path in a REST script
on a remote computer, that certificate will have to be downloaded again.

To run the IxLoad REST API sample scripts, the python executable needs to have the pyOpenssL
module installed.

Errors from REST UI clients

If you use a REST UI client such as Postman or Advanced REST client, trying to access a URL from the
IxLoad REST API might not work at first. This is because these two applications are tightly coupled to
the Google Chrome browser. To be able to access any URL from the IxLoad REST API, you must first
access one URL from the Google Chrome browser, accept the exception shown by the browser (because
the web server uses a self-signed certificate), and then proceed to use the REST client.

REST Authentication

Authentication is optional in the REST API.

To use authentication:

« an Ixia User Management server must be configured and present on the network

and
o you must have an account on the User Management server.

User Management is a standalone application that you can download from the IxLoad section of Ixia’s
website (https://support.ixiacom.com/support-overview/product-support/downloads-
updates/versions/33).

After turning on authentication, most REST requests must include an api-key that is unique to each
user. See Retrieving the api-key on page 12.

Enabling authentication on Windows

To enable REST authentication on Windows, during the IxLoad installation , select Custom Setup and
choose the IxLoad Gateway feature.

To turn authentication on, select the Enable Authentication on IxLoadGateway check box.

https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33
https://support.ixiacom.com/support-overview/product-support/downloads-updates/versions/33

REST Authentication

¥ xLoad 8.30.115.122 EB - Setup

Custom Setup - _ix l a

Select the program features you want
installed. IxLoad

Click on an icon in the list below to change how a featurs is installed.

= Feature Description
-------- # - | User Documentation (PDF)
| % - | IxCatapult IxLoad Gateway component
~) . required for performing REST
L I ¥ - | Published Yulnerabilities and Malware requests to IxLoad.
| | g - Saml:*:_'ﬂ
(0 (= Ld | IxLoad Gateway
|
I' This feature requires 8432K8 on
i your hard drive.

[~ | Enable Authentication on I oadGateway

C:'Program Files (x86)\Ixia\IxLoad\8.30. 115. 122-E8),
InstaliShield

e) (s) [<ea J[_e>) [con

Authentication can be turned on or off every time IxLoad and the IxLoad Gateway are installed.

For example, if you install one IxLoad/IxLoad Gateway version and turn on authentication, then you
install a newer version and you do not select the Enable Authentication on IxLoadGateway check
box, after the install is completed, authentication will be turned off.

Enabling authentication on Linux

To enable or disable authentication on Linux, run the configRestAuth.sh scriptin
/opt/ixia/ixloadgateway with the following switches:

bash configRestAuth.sh --um- Enable authentication and set the address of the User
server 10.36.0.2 Management server

bash configRestAuth.sh --disable- Disable authentication

auth

bash configRestAuth.sh --help List the available options

After enabling authentication on Linux, using REST requests on Linux is the same as on Windows.

-10 -

REST Authentication

Authenticating REST requests

Most request headers contain an api-key. An api-key is generated by the user management
component based on a username and password pair. As a result, most requests need to have an api-
key present in their headers. The following figure shows an example of an api-key:

POST hropsyfocslhosn 844 3 splhvisessions

Headers (2 []

The only requests that do not need to contain an api-key are:

o Getting the list of all created sessions: GET https://localhost:8443/api/v0/sessions/

o Getting the general status of a particular session: GET
https://localhost:8443/api/v0/sessions/1

All other session-specific operations require the presence of an api-key.

After a session is created, the api-key provided is validated against the Ixia User Management
database through the User Management server. If the key is not valid, an appropriate message is
returned.

As part of all the other requests that manipulate a session, the api-key provided is compared with the
api-key used to create that particular session.

The possible results when executing a request are as follows:

« If the operation was successful, a 201 Created status or 200 OK status is received.

» Ifthe api-key was not specified in the headers, a 403 Forbidden status is received, with the
following message:

{
"status": "POST operation failed",

"error": "X-Api-Key is not included in the header"
}
o Ifthe api-key provided is not valid because it does not exist in the User Management database,
a 403 Forbidden status is received, with the following message:

{
"status": "POST operation failed",

"error": "The provided X-Api-Key is not valid"

}

(This response is possible only for the CREATE session operation.)

o Ifthe api-key is not valid for a session because it is not the same as the one that is used to
create the session, a 403 Forbidden status is received, with the following message:

{

-11 -

REST Authentication

"status": "POST operation failed",
"error": "X-Api-Key mismatch"

}

Users can delete only their own sessions (sessions that were created with the same api-key as the
one provided during the DELETE request).

Retrieving the api-key
You can retrieve the api-key from the IxLoad UL

When authentication is turned on and you log on to Ixload with your Ixia User Management
credentials, you can retrieve the api-key value from the General section of the Preferences widow
(File > Preferences > General).

The value of the api-key automatically updates its value every time you change your password or
when another user logs on. The field is read-only, so you can copy the value of the api-key but you
cannot modify it.

Ld Preferences =
I Ganeral General oplions for working with Ldoad =
License Settings Login
Aun Login Name: ROBLIC-VUASU-D/vuarsu
Port Manasgement Api Key
Actiities ApiKey: dGxhbm5pc3RlckBpeGIhY 2StLmkv b Xxhd Vi MG S bUBA GGV nRFWWAxMHZwb M
Logs Change User Directories
Statistics |
Configure custom user directonies [Setal defauit locations |
Advanced Settings |.r [k Fath]
Qu-cl: Tests Repositories O byles C'sers vursu\Dooumen bs s Yl oad \Repository 'l'_'per Change -
Results Ir.45 M Ca'sers vursu\Dooumen s\ Das Uxload @, 30, 115, 102... 'l'.'pr.-r Change -
Temp TRE SR KB Ca'sershvursuAopDats L ocalTTemp bas\d oad @, 5. .. r0|:.|n:1' Change -
Logs 18.57 M Casers hursulAppDatall ocallbas I oad\@®. 3. 115..... rl_"per {J‘r&'_.\fﬁ

‘ Dewe C: has 13,63 G5 free space.

oK Cancel Help

Script changes required for authentication

The changes that need to made to IxLoad REST scripts for authentication are as follows:

o kApiKey = ‘’: Ifthis value remains an empty string, the api-key will not be included in request
headers. Otherwise, it will be included in the request headers.

-12 -

REST Authentication

e connection.setApiKey (kApiKey): Sets the api-key for the connection.

-13 -

This page intentionally left blank.

~14 -

Supporting Methods and Running
Operations

This section describes how resources are represented, how they are accessed and changed, and the
exposed data model in the IxLoad REST API.

REST representation

The Ixload REST API handles many different object types. Each object has among its values the
following:

o Primitive values: These are basic values.
« Complex values: These are represented by lists or other REST resources.

Primitive values

Primitive values (numbers, string, and bool) are used as values for REST options in the request
payload. These should be represented as follows:

« Strings are enclosed in quotes. For example: "custom string," ""
« Numbers, integers, or float are not enclosed in quotes. For example: 1, 1.1
o Booleans are not enclosed in quotes, and are all lowercase. For example: true, false

List objects

The IxLoad data model contains numerous lists. To be able to identify a resource that is part of a list (it
must have a unique URL), the resource must have an ID associated with it, which is unique in the
containing list. For this reason, each resource that is contained in a list has a field that contains its ID.
This field is called objectID in IxLoad. However, this name can be retrieved programatically by
performing an OPTIONS request on the resource, and retrieving the value for the resourceIdName field.
This returns the objectID.

A resource's objectID can be retrieved by performing a GET request on the list, and iterating through
the results. Each element in the list (each resource) has this field set.

For example, for a list with the following URL.:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList

an element with objectID = 10 is retrieved by the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/10

Other REST resources

-15 -

Supporting Methods and Running Operations

Other REST resources are shown as links to another object. So each time an object is retrieved through
the REST API, it may have primitive values, lists, and other REST objects. The other REST objects are
shown as links that points to the data model location of the referenced REST object.

Case conventions

In IxLoad REST API, URLs are case-insensitive, except for the api string at the beginning of a URL.
This is not the case, however, for fields and values entered in request payloads. The field names
entered in the payload are actually option names in the IxLoad middleware, so the case defined must
be followed.

Preferences

You can change several global options directly from the REST API by using the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/preferences

The options that can be changed are shown in the following figure:

1=id
"continueTestOnloadModul eFail™: true,
“loglollectorSize”: 169,

4% “links*: [EER].

@ "maximumInstances": 3,
"enableDebuglogs™: false,
"overloagProtection™: true,
“autoRebootlrashedPorts™: false,

14 "detailedChassisMonitoring™: false,
“licensedodel™: “Subscription Mode™,

1 "checkLinkStatedtipplyConfig”: true,

1 “ntpServerd”: "18.215.178.63"°,

1 *ntpServerl®: "@",
"csvThroughputUnizs™: “Bps™,

"allewIPOverlapping”: false,
“allowRoutelonflicts”: true,
"restObjectType™: "ixRestPreferences®;
"enableAnonymousUsagestatistics™: false,
"licenseServar=; "¢

1

LT_| Note: IxLoad REST API sessions are started under the System user, not the user that you are
logged on as. Because all the global options except for Maximum Instances, License Model, and
License Server are saved per-user, this means that settings made in the IxLoad UI have no
effect on REST API runs, because the REST API is registered under the System user. Therefore,
for the Maximum Instances, License Model, and License Server options to have an effect on
REST API tests, you must set them from the REST API.

These options can be changed by performing PATCH requests on the ‘preferences’ URL, with a payload
as follows:

/i

{“licenseServer”:”ipOrHostname”}

-16 -

Supporting Methods and Running Operations

IxLoad REST methods

The IxLoad REST API supports the following HTTP methods: GET, PATCH, POST, DELETE, and
OPTIONS. The only content type supported for payloads is JSON. The payload applies to PATCH, POST,
and DELETE methods.

GET

A GET request receives the list of REST options for the requested resource. The GET request does not
contain a payload. If the request is successful, a 200 OK status is returned.

The result is a JSON dictionary containing the option names and values exposed by the resource. All
the primitive options (bool, string, and int) are in the root dictionary, while complex options (other
objects) are placed together, as a list, under the 1inks option. Each element of the 1inks listis a
dictionary that contains the following:

e rel: The child resource name.
« href: A URL where the child resource can be accessed.

The following figure shows the output of a GET reqiest applied to the activeTest REST resource in
IxLoad:

-17 -

Supporting Methods and Running Operations

¥ | hitpo/127.0.0.1:B080/apifvlsessions/ixloaditest/active Test

= GET FOST PUT FPATCH O DELETE HEAD CPTIONS Cther

Raw JSON Response

Copy to clipboard Save as file

{
comment: “"
networkFailureThreshold: 8
-links: [a]
-a: {
href: "fapifv@/sessions/@/ixload/test/activeTest/timelinelist"

rel: "timelinelList™

}
S1:
href: “fapifv@/sessions/@/ixload/test/activeTest/totallserdObjectiveInfolist™
rel: "totalUserObjectiveInfolist"
T
-2
href: "fapl/ve/sesslons/8/1ixload/test/activeTest/eventHandlersettings"™
rel: "eventHandlerSettings™
}
_3r {

ol

href: "fapifv@/sessions/@/ixload/test/activeTest/captureViewdptions”

rel: "captureViewOptions™

T
statViewThroughputUnits: "Kbps™
showlletworkDiagnosticsFromApplyConfig: false
csvThroughputScalingFactor: 1088
activitiesGroupedByObjective: false

The preceding figure shows the output of a GET made through the Advanced REST Client in Google
Chrome. The actual representation will be different depending to the programming language used to
access the IxLoad REST API.

PATCH

A PATCH request changes field values on resources exposed by the IxLoad session. The PATCH
request receives as its payload a list of options that you can modify. Each pairin the dictionary
contains a field name and the new option for it. If the request is successful, a 204 No Content status
is returned.

The payload for a PATCH request must contain at least one field to be changed. This means one field
name:new value pair. The following figure shows a PATCH method made from the Advanced REST
client:

-18 -

Supporting Methods and Running Operations

¥ hitpci!127.0.0.1-8080VapifvlVsessionsiliidoad testiactive Test

GET POST PUT @& PATCH O DELETE HEAD

Raw Form Files [0 Payload

{“name" :"CustomTesthame"}

O Response

Status 204 Mo Content Loading time: 30 ms

Raw Response
Word unwrap Copy to clipboard Save as file
Response does not comtain any data.

Most resources cannot be modified by using PATCH requests while a test is running. If a PATCH request
is made while a test is configuring or running, a 400 Bad Request status is returned.

{
status: "PATCH operation failed"

error: "Cannot change HTTPClientl at this moment. Please try again later”

}
POST

A POST request adds elements to a list. The request is made on the list URL, and the actions that take
place behind the scenes are to instantiate a new object of the type given by the list, and then to add
the newly created object to the list. If the request is successful, a 201 Created status is returned.

The payload for a POST request represents the parameters used when creating the resource that will be
added to the list. Because not all resources (objects) require parameters in the constructor, the
payload for a POST request can be empty ({}).

The following figure shows the output of the POST method in the Advanced REST client:

-19 -

Supporting Methods and Running Operations

¥ | mtpiir127 .0.0.1:8080/apiv0Vsessions

GET ™ POST PUT PATCH ' DELETE HEAD CPTIONS Cither

Raw Form Headers

Raw Fom Files (0] Payload

{"izbeadiersion” :"8.00.8. 1857}

applicationfjson = | Bel "Content-Type" header o overvmie this value
Chaar Sand
Status |ng time: 3 ms
Request Usar-Agent: MozillaS.0 (Windows NT 6.1, WOWE4) AppleWebKitS3T 36 (KHTML, like Gecko) ChromeaidS.0.2454. 101 SafariSiT.36
headers. Origin: chrome-axtension.thgmiocidafdnphipellikdbfbjeloo
Content-Type: applicabongson
Accept *”

Accept-Encoding: gzip, deflate
Accepl-Language: an-L1S eng=048
Cookie: JSESSIONID=6F4ATF2E464EDGR2 1CETRAF4O0BRALEL

Response Date: Fri, 13 Mov 2015 15:19:57 GMT
hiaders Contént-Length: 2
Content-Type: applicatongson
Location: fapivlisessionsD
Server: ChemyFy3.6.0

In the response headers, there is a field called Location, which contains the URL address of the newly
created object.

Elements cannot be added to a list while a test is running. If a POST request is made while a test is
configuring or running, a 400 Bad Request status is returned.

{
status: "POST operation failed"

error: "Cannot perform the 'POST' operation at this moment.

}
DELETE

A DELETE request deletes one or more of the elements of the list. If the request is successful, a 204
No Content status is returned.

DELETE requests do not require a payload.

If the DELETE request is made on a list URL, the list is cleared and all the elements are removed.

-20 -

Supporting Methods and Running Operations

If the DELETE request is made on a URL that consists of the list URL and an object's unique ID
appended to the end, only the object with that objectID is removed.

Example 1: DELETE on http://127.0.0.1:8080/api/v0/sessions deletes all sessions.

Example 2: DELETE on http://127.0.0.1:8080/api/v0/sessions/2 deletes only the session with
objectID = 2.

Elements cannot be removed from a list while a test is running. If a DELETE request is made while a
test is configuring or running, a 400 Bad Request status is returned.

{
status: "DELETE operation failed"

error: "Cannot perform the 'DELETE' operation at this moment."

}
OPTIONS

An OPTIONS request returns information about the product and resource properties. You can make
OPTIONS requests on any resource. If the result is successful, a 200 OK status is returned.

OPTIONS requests do not require a payload.

In the OPTIONS response, there are two fields that specify the names of the unique object ID field and
the name under which all complex resources are kept on GET requests (the 1inks option name).

The following figure shows the output of an OPTIONS request in the Advanced REST client:

-21 -

Supporting Methods and Running Operations

> hitp- 127 .0.0.1:8080/apivvsessions/Dixloadtest/activeTest/ieventHandlerSetings

OGET OPOST ©PUT © PATCH O DELETE ©OHEAD ® OPTIONS © Othe

Status 200 OK ¢ Loading time: 23ms

Raw JSON Response

Copy to clipboard Save asfile
{

-product: {
version: "1.8.8.8"

name: "eventhandlersettings"
custom: null
X

-properties: [4]

a "dizabledEvent{lasses™
1: "disabledPorts"

2: "objectID™

3: "objectType"

-features: {

-rest: {
multipost: false
multidelete: true
put: false
patch: true
typellame: "objectType"
resourcelddame: “objectID™
maxlist: null
linksMame: "links"™

1

-session: {
supported: true
multifpp: true

1

-gqueryParam: {
defaultEmbeddedValue: false
embedded: false
deepchild: false
links: false

includes: true

¥
-auth: {
authType: null
1

- 22 -

Operations

In addition to the HTTP requests described in IxLoad REST methods on page 17 that are executed on
basic resources (objects or lists of the IxLoad data model), the IxLoad REST API also offers support for
operations. These are asynchronous actions performed on a certain resource (a URL) that change the
resource's state. They do not add, remove, or change the field values of the resources that they are
applied to. Some examples of operations are: starting an inactive IxLoad session, connecting to an
existing chassis, or running a test.

To find the operations that are available for a certain resource, perform a GET request on the resource
URL, with /operations added to the end of the URL. For example, the following figure shows the
operations available for the test REST resource:

E

hitpoi127.0.0.1:8080/apifvOisessions/0fixloadftestioperations

= GET POST FUT FATCH O DELETE HEAD I

Raw Response

Copy to clipboard Save as file

i
-loadTest: {
fullPath: ""
}
runTes 11
-saveds: {
fullPath: "~
overlirite: false
}
abortéAndReleaseConfighaltFinish: {}
save: {}
I

The GET response contains the operations that are available, the parameters that they require, and the
default values for the parameters.

- 23 -

Operations

Starting an operation

To start an operation, perform a POST request on the following URL:
SresourceUrl/operations/$operationName

The request payload represents the parameters required by the operation, as shown in the preceding
figure. Some operations (such as runTest) may not require any parameters, so for them, an empty
payload must be sent: {}. The following figure shows the output of a POST command for the loadTest

operation:

* | hittp:127.0.0.1:8080/apiiv0isessions/Ofixloaditest/operationsload Test

GET @ POST PUT PATCH © DELETE HEAD OPTIONS O

Raw Form Files (O} Payload
{"fullPath”:"stats.rxf"} 0
Status 202 Accepted Loading time: 18 ms
Request User-Agent: Mozilla/>.0 (Windows NT 6.1, WOWE4) AppleWebKit/537.36 (K
headers Origin: chrome-extension.‘hgmioofddfidnphfgeellkdfbfbjeloo
Content-Type: applicationjson
Accept: **

Accept-Encoding: gzip, deflate
Accept-Language: ro-RO ro;g=0.8,en-US,9=05 en,g=0.4

Fesponse Date: Tue, 20 Oct 2015 21:00:12 GMT
headers Content-Length: 2

Getting an operation's status

Because these operations are asynchronous methods, you must be able to check an operation's status
after starting it. To do this, when you start an operation (that is, execute the POST request), the
response header includes a field called Location that contains a URL. If you perform a GET request on
that URL, the operation's status will be returned. The following figure shows the output for getting the
operation status for the 1oadTest operation:

_24 -

hitpoi127.0.0.1:8080/apifvlisessions/(fixloadtestioperationsload Tast2

= GET POST PUT FATCH O DELETE HEAD OPTICNS

Raw Foy Headers
Status 200 OK Loading time: 13 ms
Raw JSON Response

Copy to clipboard Save asfile

{
status: "Successful"
actionhame: "loadTest™
state: "finished"

T

The following table lists the possible values for the state and status fields:

state Created: the operation was created.
Executing: the operation is in progress.
Finished: the operation is complete.

Operations

status | Not started: the operation has not started yet. Operations are synchronous, and the

operatiuon might be waiting for other operations to finish.

In Progress: the operation is being executed.

If the operation fails (exits with an error), a new field is included in the preceding response that

contains the error message returned by the operation. For example:

{

status: "Error"

actionName: "loadTest"

state: "finished"

error: "File doesn't exist - F:\statsdfs.rxf"

}

! Important! The URL that retrieves an operation's status has a lifetime of 10 minutes. If you
perform a GET request on an operation URL/operationID URL after this lifetime has expired, the

REST API returns a 400 Bad Request error.

- 25 -

Operations

Examples of common operations in the IxLoad REST

API

A list of the most commonly used operations for an IxLoad test in the REST API can be obtained by

performing a GET on:

http://localhost:8080/api/v0/sessions/0/ixload/test/operations.

The result lists the following operations (also shown in the figure below):

abortAndReleaseConfigWaitFinish | Stop the currently running IxLoad test.

applyConfiguration

exportConfig

importConfig

loadTest

runTest

save

saveAs

waitForAllCaptureData

Apply configuration on the current IxLoad test. The test will
go to the Configured state. This is equivalent to selecting
Apply Config in the IxLoad UL

Export the currently loaded configuration file as a .crf file.
The location of the archive needs to be passed as a
parameter.

Import a .crf file as the current test configuration. The
location of the .crf file and the location where the .rxf file
will be saved after the import must be passed as
parameters.

Load an IxLoad configuration file. The fullpPath of the rxf to
be loaded must be passed as a parameter.

Run the current IxLoad test. The test will go to the running
state directly. This action is equivalent to selecting Run
test in the IxLoad UI.

Save the currently loaded configuration file.

Save the currently-loaded configuration file as a new file.
The new file path for the rxf must be passed as a parameter,
and the overwrite option in case the file already exists.

Wait for the test to capture all the port data that was
received after the test has finished running.

- 26 -

Operations

Example of loading a repository (.rxf) file
On an active session, do a POST on a URL similar to thefollowing:

http://localhost:8080/api/v0/sessions/ [SESSIONID]/ixload/test/operations/loadTest/

In the payload or the body of the request, add the path to the .rxf file:

{"fullPath":"C:\\http test.rxf"}

POST herpfocalhost 080 apivifsessions/IVidoad test/operations/loadTesy Params “

{“FullPath=: “C:\Whttp_testirxf=}

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Example of importing a .crf file

On an active session, do a POST on an URL similar to the following:

-27 -

Operations

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/importConfig

In the payload and body of the request, add the path to the .rxf file:

{"srcFile": "C:\\mycrf.crf", "destRxf": "C:\\rxf from crf.rxf"}

Example of running a test

On an active session in which there is either a loaded configuration file or a new test has been created,
do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/ [SESSIONID]/ixload/test/operations/runTest/

POST hapaflocalhozs B0 apitil sesaianeixload estioperationdlrun Test Params “

m
L

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Example of waiting to capture the port data
On an active session, do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/waitForAllCaptureData

Example of stopping a test

On an active session in which there is either a loaded configuration file or a new test has been created,
do a POST on a URL similar to the following:

http://localhost:8080/api/v0/sessions/
[SESSIONID]/ixload/test/operations/abortAndReleaseConfigWaitFinish

- 28 -

Operations

FOST Lgltde scalhostB080 apl v sessions/Dfixdoad test/operations/aborvAndRelease Conf fl-l-l--\.' tFinis Params “

As described in Getting an Operation's Status, query the status of the operation until the state is
Finished.

Query strings

You can search by using a filter with one or more parameters separated by commas. The format is as
follows:

http://resourceUrl?filter="fieldName <operator> value

The query strings are inserted under the filter parameter at the end of the URL. The supported query
string operators are as follows:

eq | equals

ne | not equal to

1t | lower than

gt | greater than

le | lower or equal to

ge | greater or equal to

When the eq operator is used for string fields (for example, names of statistics), it automatically has a
contains effect. For example, this means that a GET request on
/configuredStats?filter="caption eq HTTP” returns all statistics whose caption contains HTTP. If
you want a matches operation instead, you can still use eq, but the value must be enclosed in quote

- 29 -

Operations

marks (™). This causes a GET on /configuredStats?filter="caption eq “HTTP”” to return only
those statistics whose caption is exactly HTTP.

You can include multiple query string conditions in the same URL by separating them with commas.

For example, the following URL returns all enabled statistics whose objectID is less than or equal to
14:

http://localhost:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats?fil
ter="enabled eq True,objectID le 14"

Query Strings are only supported on list resources, with the following methods:

GET Returns all the elements of the list that satisfy the query string conditions.

PATCH | Modifies the parameter list sent in the request payload with all the elements of the list that
satisfy the query string conditions.

DELETE | Deletes every element in the list that satisfies the query string conditions.

Collecting diagnostics

IxLoad includes a diagnostics collection utility that collects log files and packages them into a ZIP file,
so that they can be stored or they can be sent over an email conveniently. In the GUI, access the
utility from File > Tools > Diagnostics. You can collect those same log files by using the REST API.

To collect diagnostics, ensure the following:

o At least one session must be active.
o The test must be in either the Configured or Unconfigured state.

To collect diagnostics, use the following command:

POST @ api/v0/sessions/72/ixload/test/activeTest/operations/collectDiagnostics
Specify the ZIP file location as the POST payload:

{"zipFileLocation": "<path to save ZIP file>"}

For example:

{"zipFileLocation": "C:\\Users\\ixia\\Desktop\\diags.zip"}

The following figure shows an example of a POST operation to collect diagnostics from a REST client:

- 30 -

Operations

¥ htp127.0.0.1:8080/api/v0/sessions/72/ixload//test/activeTest/operations/colleciDiagnostics

O cer @ posT O PuT O opELeTE Other methods ~ application/json -

Raw headers Headers form Headers sets

Content-Type: application/json

Raw payload Data form Files (0)
{"zipFilelocation™: “C:\\Users\\ixia\\Desktop\\diags.zip”}
Status: 202: Accepted Loading time: 27 ms
Response headers (5) Request headers (2) Redirects (0) Timings

Date: kon, 01 Aug 2016 08:50:50 GMT

Content-Length: 2

Content-Type: application/json

Location: apl/v0/sessions/72/ixlcad test/activeTest/operations/collectDiagnostics/1
Server: CherryPy/3.6.0

Raw JSON
D @
{}
The status of the POST operation to collect diagnostics should be 202:Accepted. The response to the

operation should include a location.

To query the status of the POST operation, use a GET operation and specify the location received in the
response to the POST.

For example:

GET @

http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectD
iagnostics/1

The following figure shows an example of a query to get the status of a diagnostics collection
operation:

- 31 -

Operations

wEE

> httpy127.0.0.1:8080/api/v0/sessions/7 2/ixload/test/activeTest/operations/collectDiagnostics/3

&

® ceT (O posT O PuT (O peELeTE Other methods -

Raw headers Headers form Headers sets

Content-Type: application/json

=1

Status: 200: OK Loading time: 25 ms

Response headers (4) Request headers (1) Redirects (0) Timings

Date: Mon, 01 Aug 2016 09:03:59 GMT
Content-Length: 118

Content-Type: applicationfjson
Server: CherryPy/3.6.0

Raw JSON

Deleting the results directory after running a test

You can delete the results directory after running a test. This operation is available on the test
resource, and requires the following:

o The request to delete the results directory must be made on the same session used to run the
test that created the results directory.

« Only the results directory for the most recent test can be deleted.

« You did not unload the repository or load another repository after running the test.

To delete the test result directory, use the following command:

POST @ api/v0/sessions/72/ixload/test/operations/deleteTestResultDirectory

This request does not require any parameters, so the request body should be empty: {}

- 32 -

Operations

This operation is useful for ensuring that the machine disk does not fill up with results directories. This
is especially important for the IxLoad Linux solution.

After each test run, an automation script can use the APIs that are available to download any files of

interest (csv files, port captures, etc.) and then use this operation to delete the results directory before
closing the IxLoad session.

» http127.0.0.1:8080/api/v0/sessions/ 72/ ixload Mest/activeTest/operations/collectDiagnostics

O cer @ PosT O PuT () DELETE Other methods ~ application/json -

Raw headers Headers form Headers sets

Content-Type: application/json

Raw payload Data form Files (0}
{"zipFilelocation™: “C:\\Users‘\\ixzia‘\\Desktop\\diags.zip”}
Status: 202: Accepted Loading time: 27 ms
Response headers (5) Request headers (2) Redirects (0} Timings

Date: Mon, 01 Aug 2016 08:50:50 GMT

Content-Length: 2

Content-Type: application/json

Location: apl/v0/sessions/ 72 ixload test/activeTest/operations/collectDiagnostics/1
Server: CherryPy/3.6.0

Fraw JSON

D a
0

The status of the POST operation to collect diagnostics should be 202:Accepted. The response to the
operation should include a location.

To query the status of the POST operation, use a GET operation and specify the location received in the
response to the POST.

For example:

- 33 -

Operations
GET @

http://127.0.0.1:8080/api/v0/sessions/72/ixload/test/activeTest/operations/collectD
iagnostics/1

The following figure shows an example of a query to get the status of a diagnostics collection
operation:

» httpy/127.0.0.1:8080/api/v0/sessions/7 2/ixload/test/activeTest/operaticns/collectDiagnostics/3 :

@ cer O posT QO PuT O pELeTE Other methods -

Raw headers Headers form Headers sets

Content-Type: application/json

=
Status: 200: QK Loading time: 25 ms

Response headers (4) Request headers (1) Redirects (0) Timings

Date: Mon, 07 Auwg 2016 09:03:59 GMT
Content-Length: 118

Content-Type: applicationfjson
Server: CherryPy/3.6.0

Raw JSON

O a

extractDataModel operation

The extractbDataModelToFile operation exports all the URLs that are available under the currently
open IxLoad REST session. The operation is available to be executed (using a POST request) on the
URL listed below, and outputs the information to a file on the disk. The path to the file is sent in the

body of the operation (for example: : {“fullPath” : "D:/file.txt"}.

- 34 -

Operations

GET https:/¥localhost:8443/apifvil/sessions/fixload/operations
1 {
2~ "extractDataModelToFile": {
3 "fullPath": ""
4 X
> [}

The output file contains all the available URLs, and for each URL it specifies the options available under
it, their current values in the configuration, and whether an option is read-only or not. Below are
examples of how the test and ipRange resources appear in the output file.

Output for test resource:

- readinly: Falas

-1

Current resource: /fizlsad/testc

3 Frimitives:
14 - expiracionTimer
85 - value:
| - readonly: False
BT = logs
- walue: []
= readtnly: False
- loadednxf
- value:
- readOnly: True
- runResultDirfull

S - wvalue: C:\ProgramData‘\Ixia‘\IxLoad\8.50.115.108\Resulcs
i - readOnly: False
i -~ restObjectType
- value: ixTestController
SH - readCnly: True
93 - gutputhic
- value: False
- peadonly: False

Current resource: Jsixloadszesslondvervieu

04 Primitives:

Output for iprange resource:

- 35 -

Operations

Current resource: fixload/testS/activeTest/communityList/O/network/stack/childrenList/2/childrenList/3/rangelList/1
Primitives:
= itemType
= value: IpV4V6Range
— raadfnly: Falas
- restObjectType
- value: ixNetIpViVERange
- readOnly: Trus
= name
= valus: IP=R1
= readimnlyr Falss
= gount
= walus: 100
= readdfily: Falasa
- ApTYRE
- wvalus: IPvd
- readOnly: Falsa
= ipAddress
= values: 10.10.0.1
= readinly: False
= anabled
- value: True
= readfnly: Falsse
- gatewaylnccemans
- wvalus: 0.0.0.0
- readOnly: Falss
= randomizeSesd
= walus: 3029468524
= readOnlyr Troue
- gatewajyiddress
= wvalue: 0.0.0.0
= readinly: Falsa

findURLs operation

findURLs enables you to find the URLs where certain resources can be found. The resources you can
find are:

« Property names
o Property values
« URL contents

To use £indURLs you must have an IxLoad REST API session open with a configuration already loaded
inside it.

findURLs is available on the ixload resource. To execute this operation, make a POST request on an
active IxLoad REST session, on the following URL:

https://IP:8443/api/v0/sessions/X/ixload/operations/findURLs

The body of the POST request must contain at least one of the following parameters:

e propertyName
e propertyValue

e urlContains

You can pass multiple parameters to £indURLs. If you do, it returns all the resources that match all the
passed parameters. For example, if you send {“propertyName”:”count”, propertyValue=100},
IxLoad returns all the resources in the IxLoad session that contain a field named count that have a
value of 100.

- 36 -

Operations

o A MNotwecwre | Mg locainost 24
IXla | s APl Browser
D
POAD Method - findURLs
PrOpEE T AT
Py sl
propertyName

Searching by propertyName returns all the URLs that are available under the IxLoad session that
contain a property with the provided name. The results of the operation contain all the URLs that
satisfy this query, along with the value that property has for each URL.

The example below show all URLs that contain a property called commandType, which can be used to
find all L47 activity commands:

- 37 -

Operations

“« C A Notsecure | haipe/localhostBA43 W restfapi v sessions T odoadTview instance « o@ & O :

IXia |isze" API Browser

i Method - findURLs

Operation Result

1 fapi/vi/sessions/8/ixload/operations/FindURLs/ 1 D
8
g
i@
11
12 {
3 [
1 {
15 - “eoanandType”,
15 “fixloadftestfactiveTest/communitylist/a/activityList/8ragentfactionList /@™,
1 “START™
1 e
19 {

“comsandType™,
“fixloadftestfactiveTest comsunitylist/@/activityList/@/agent/actionList /27,
“GET"

5 t “commandType™,

26 “MxloadftestfactiveTest/communitylist/e/activitylist/8/agent/factionList /1™,
P T TSTORT

28

29 1

L 3/ ixload/operations/FindURLs/1

31

32 .

33 ¥ 1ee,

34 "FindURLs™,
i

propertyValue

Searching by propertyvalue returns all the resources in the currently open IxLoad REST session
datamodel that contain a property that has the provided value. The results of the operation contain all
the URLs that satisfy this condition, along with the name of the property that has that value.

The image below shows the results of a findURLs query to find all the URLs in the loaded rxf that have a
value of 100. The results in the image show that findURLs found that components such as rampUp ,
objectiveValue, and ipCount, and others to have the searched-for value of 100.

You can use propertyValue to find boolean, integer, and string properties.

- 38 -

Operations

& 3 & A Notsecure | hitpsy/localhostB4d3 # frest/api vl /sessions/ T/ idoadiview=mstance

IXIa |22 API Browser

- Method - findURLs

Operation Result

spifvifsessions /e ixlosdfoperations /f indusLs 2

S U

8

i

il

15 pertyiim “lagcollectorsize”,

I *fixload/preferences”,

“lea”

20 . “raapupTine”,
21 ¢ *fixlosd testractiveTast /einalinat fot fa=,
22 = - “lga”

24 {
11 aliserdniectivevalue®,
“rixleagritestiactlvetestfoommundtyListia®,
] ¢ Tyva 100"
2B b
29 {
38 propertytise “timercracularity®,
1 “rinleadrtestlactiveTest/oommunt tyLLst /0 e tivityL 15T/,
] g ert - i
Ta
s “eonstraiatvalus®,

E £ *rinlosd test/activeTest foommunt tyl it rasactivityListre,
ar rope v “188*

<0 1 "BRCOAIIrFLongT
a1 "/ ixlead/ test/pen
sz rapert 100"

FebamuniTyLIst e TivItyLIET /",

& 1

25 pert “usertbiectivevaln®;

6 “fieload/test/activeTest foommund THLAST 0/ A TivTYLISTAY",
i iy P

0 b

'D i - I TR

urlContains

Searching by urlContains finds all the resources whose URL contains the string provided as a
parameter. For example, the image below shows the results of searching for vianRange:

- 39 -

Operations

& o A Mot secure | hites)Nocalhosta44

IXia | APl Browser

Method - findURLs

Operation Result

I

b

!
{
= FExload/Test/activeTest / communt tyList /0 Mnetwark/stack fenildreanist/ 2 vIanaangeListi1™,
cperti [
“incrementstep”,
"innerIncrement”,
“iteatypa”,
“uniguetount®,
“dorsT,

“innerFirstia”,
"innerIncrementstep”,
"priecity”,
"innerfriority”®,
“firstrd=,
“incresent®,
“restobiectType”,
“innarTpid”,
"inneruniguecount™,
“innerinable”,
"nane

"rixload test/activeTest /ooaminl tyLISt/ 1 fnetenrk stack /enlldrent LSt /5 v1anBangeL1st /2",

Z .

a1 “incrementstep”,

az “innerIncremant”,

a3 "iteaType”,

4 “eniguesount®,

a5 “#oest,
& "idincruode”,

47 “tedd”,

a8 “enabled=,

&9 “innereirstla”,

58 FienasTa s aman g tan®

~40 -

IxLoad Session Handling

Creating and handling IxLoad sessions is done through IxLoadGateway, which is an IxLoad service.
IxLoadGateway is installed with IxLoad as part of the custom install options (see Before you Begin on

page xiv).

Creating a new session

There three ways to create a session:

« By specifying the version of IxLoad to use to create the session.
To specify the version to use, perform a POST on /sessions with one of the following payloads,
appropriate for the URL type you are using:
m /api/v0 URLs: {“ixLoadVersion”:”8.XX.XX.XXX"}
m /api/vl URLs: {“applicationVersion”:”8.XX.XX.XXX"}
then perform another POST on /sessions/X/operations/start to start the session.
o By automatically using the latest (or only) version installed to create the session
« By connecting to the API Browser (https://localhost:8443/) while no IxLoad REST sessions are
active.
If you connect to the API Browser while no IxLoad REST sessions are active, the page shown
below displays, which enables you to start a new session.

< @ A Notsecure | locathostBa43/% anx o@e @ :

No IXLOAD session is currently active. Create a session to get started

Start new session

New session with a specified version

To create a new session with a specific version of IxLoad, do a POST on api/v0/sessions with a
payload of {“ixLoadVersion”:”version no.”}.

—41 -

IxLoad Session Handling

This action creates a session, but does not start it or make it active. This action does not take into
consideration the instance count limit on the client side. The instance count limit is only considered
when sessions are started.

The following figure shows an example of starting a new session with a specific IxLoad version in a
REST client:

» hitp:ir127.0.0.1:8080/apivdlsessions!

GET ™ POST PUT PATCH '~ DELETE HEAD OPTIONS Other

Raw Form Headers

Raw Farm Files (0) Payload

1"ixkoadVersion”:"8.90.0,195"}

The following figure shows the response for the POST request in the preceding figure. Note that the
status is 201 Created and Location points to the new session.

Status 201 Created Loading time: 7 ms
Request User-Agent: Mozilla/5.0 (Windows NT 6.1, WOWE4) AppleWebKit'537 .36 (KHTML, like Gecka) Chrome/45.0.2454 101 Safari/a37.36
headers Origin: chrome-extension:fhgmloofddffdnphfgcellkdbfbjeloo

Content-Type: applicationfjson

Accept: */*

Accept-Encoding: gzip, deflate
Accept-Language: en-US enq=08
Cookie: JSESSIONID=5F4ATF28464E06921C8T84F400B8A464

Respense Date: Wed, 07 Oct 2015 14:36:15 GMT
headers Content-Length: 2
Content-Type: applicationfjson
~ Location: /apifv0/sessions/?
Server. ChermyPy/3 6.0

Starting a session

To start a specfied-version session, you use the start operation. This operation starts a new IxLoad
session based on the IxLoad version for which the session was created.

start is available on each individual session and requires no payload. The following figure shows how
a start operation appears in the REST client:

_42 -

IxLoad Session Handling
* hetpei 270,001 08N pihvDVSeS SIonS 1 Operations stan

GET '™ POST PUT PATCH ' DELETE HEAD OPTIONS Oither

Raw Formi Headears

Raw Foam Files (00 Payload

The following figure shows the response for the start operation. The response is 202 Accepted and
Location shows the result for the operation.

Status 202 Accepted ¥ Loading time: 14 ms
Request User-Agent MozillasSs.0 (Windows NT 6.1 WOWSS) AppleWebkitS3T 36 (KHTML, like Gecko) Chromerd5.0. 2454 101 Safark537 36
headers. Origin: chrome-extensionathgmisofddfdnphigeelikdibfjeloo
Content-Type: apphoationfson
L Accept "

Accept-Encoding goip. deflate
Accept-Language. #n-LS eng=0.8
Cookie: JEESSIONID=6F4ATFI8464E0592 1C8TB4F450B2A454

Response Date: Wed, 07 Oct 2015 14:43:41 GMT
hnchirrs: Content-Lengih: 2
Content-Type: applcationison
Location: apivlisessions foperasons/san
Sarver: ChermyPy/3.6.0

The following figure shows how the operation result for start looks like when the session started
successfully. It contains the same information as the now deprecated create operation.

—43 -

IxLoad Session Handling

¥ hitp:12T.0.0.1:8080/apivisessions/1/operations/start/

®GET TPOST T PUT O PATCH O DELETE “'HEAD ' OPTIONS 2 Ciher

Rarw Farm Headers
e
Clear Send
Status 200 0K) Loading time: &ms
Request User-Agent Mozillass.0 (Vindows NT 6.1; WOWES4) AppleWebkitS 3T 36 (KHTML, like Gecko) Chromerd5.0.2454 101 SafarlS17.36
headers Content-Type: 1extplain; charsatsuthg
Accepl

Accept-Encoding gzp, deflale, sdch
Accept-Language: en-US eng=08
Cookie: JSESSIONID=6F4ATF 28464 E0692 1 CATA4F4B0BA454

Response Date: Wed, 07 Oct 2015 14:45:20 GMT
headers Content-Length: 105
Content-Type: apphcationjson
Server: ChemyPyE 6.0

Rarw JS0ON Response

Copy to chpboard Save as file
{

status: “Successful”
actionMame: “start™
stater “finished™
sessionld: 1

}

The following figure shows an example a start operation that failed because the maximum number of
instances was already active:

— 44 -

IxLoad Session Handling

¥ | htpo127.0.0.1;8080/apiviisessions Zoperationsistart2

®GET POST PUT PATCH ' DELETE HEAD OPTIONS (Mher

Raw Faimn Hisadiers
Clear Send
Status 200 0K @ Loading time: & ms
Request User-Agent MozZila5.0 (Windows NT 6.1, WOWS4) AppleWebkIUE3T7 35 (KHTML, likg Get ko) Chromeds 0.2454,101 Safai/537.36
headers Content-Type: textiplain; charsat=ut®-3
Accept °"

Accepl-Encoding. gIip, deflate, sdch
Accept-Languape an-Us eng=08
Cookie: JSESSIONID=6F4ATFIE464ED5921CATAIF400BRALG4

Response Date: Wed, 07 Oct 2015 14:48:43 GMT
headers Content-Length: 179

Content-Type: applicationisen

Server: ChemyPya 6.0

Rw JS0OM Response
Copy 1o clipboard Save as file
{
: "Successful”
sctionName: "start”™

: "finished™

zage: T"Already running maximum allowed copies of IxLoad.”

New session with the latest version

If you have only one IxLoad version installed, or you always want to use the latest installed version,
you can create and start a new IxLoad session with a single POST request using startNewSession as
shown in the following URL:

http://localhost:8080/api/v0/sessions/operations/startNewSession

startNewSession does not require a payload. As for every REST API operation, the headers of the
response contain a Location URL you can use to check the status of the startNewSession operation:

— 45 -

IxLoad Session Handling

Body Headers (5)

Content-Length — 2

Content-Type — application/json

Date — Mon, 18 Jun 2018 155845 GMT

Location — fapifv0/sessionsfoperations/startNewSession/1

Server — ChermyPyfunknown

After the startNewSession operation finishes, the status URL will display the application version that
was used, along with the ID of the session that was created:

Pretty JSON e
1- {

2 "status": "Successful",

3 "actionName”: "startMewSession",

4 "gpplicationVersion®: "8.58.8.298",
5 "sessionId™: @,

6 "state": "finished",

7 "result": "

8 1

Deleting a session

You delete an IxLoad session in the same way as for generic lists: you send a a DELETE request either
to the sessions list URL, or to the specific session's object ID.

« If you send the request to the sessions URL, all sessions will be closed.
o If you send the request to a specific session's object ID, only that session will be closed.

When deleting a session, the IxLoad process underneath it will also be closed.

_46 -

Uploading and downloading files

Uploading and downloading files

You can upload and download files to and from the machine where IxLoadGateway is running.

Uploading files

Files can be uploaded to the machine where IxLoadGateway is running using the resources URL. To
upload a file remotely, do a POST request in the following format:

https://10.114.198.17:8443/api/v0/resources?uploadPath=/mnt/ixload-
share/UploadRepository/demo.rxf&overwrite=true

The uploadPath parameter must be the absolute path where the file will be uploaded.
The overwrite parameter specifies if an existing file should be overwritten.

The POST request should contain the Content-Type header set to multipart/form-data:
POST ktrpst 10,1 14,198.17: 842 3 apifvfresources “u pload Pathe/mnvidoasd -share/UplcadRepos toryfdema rafiorverwTite=true

Headers (1}

Valus

Ky

-.". "-'.—.-:'rli.f mullipart form-dais

The body of the POST request should represent the content of the file that will be uploaded, in binary
format. From a script, this file can be sent as follows:

with open(fileName, 'rb') as f:
headers = {'Content-Type': 'multipart/form-data'}
params = {"overwrite": overwrite, "uploadPath": uploadPath}
resp = requests.post(url, data=f, params=params, headers=headers, verify=False)

To upload a file from a tool like Postman, set the Body to binary and then choose the file to upload:

=mint/ixload-share/LUploadReposkonydemo.rcfioverwrite=true

POST hitpsf 10,1 14,1581 7: 22 3fapivll resourcesTuploadPath

Choose Filas | dema.rxf

Downloading files

The downloadResource URL can be used to download files remotely from the machine where the
IxLoadGateway service is running. Any file that the IxLoadGateway service can access can be

downloaded.

- 47 -

Uploading and downloading files

To download a file, you perform a GET request on the following URL, where you will specify the IP of the
machine where IxLoad Gateway is running, and the path to the file on that machine that you want to

download.

https://IP:8443/api/v0/downloadResource?localPath=/mnt/ixload-share/file.rxf

This URL works for both Windows and Linux installations of IxLoadGateway, but you must specify the
path in the correct Windows or Linux format.

_48 -

API Browser

API Browser

The API Browser enables you to view and modify the contents of an open IxLoad REST API session.

The tool is available on the root URL of the IxLoadGateway service:
https://localhost:8443/

and

http://localhost:8080/

Displaying an IxLoad REST Session

To view the content of an IxLoad REST session, you select the desired session from the upper-left
corner of the API Browser page:

< C | A Not secure | bitps;//localhost:8443/#/rest/api/v1/sessions/1/ixload?view=instance

IXla |s5eEe™ APl Browser

1/ mload

1/ mload

2fmload
IALUAL

IXload tabie view JSON View

chassisBuilder

chassischain
preferences
test

VErsions

After selecting a session, the data model can be viewed by selecting nodes in the tree on the left of the
page. In the API Browser, you can:

View the data model in a tree structure:

_49 -

API Browser

APl Browser

1/ixload = | ftest | SfactiveTest = fcommunitylist /O = Sfactivitylist =~ /0 fagent | /actionlist = /2

IXLOAD

command rabieview JSON View

chassisBuilder

chassischain

preferences
- test >
Attribute
* activeTest
abort None
arguments
captureViewOptions
cmdMame Get 1
~ communityList
commandlype GET
* communityList/0
destination None
- activityList
enableDi 0
* activitylist/0
method -1

~ agent

namevalueargs
+ actionlist (count = 3)

pageObject MNaone
actionList/2
pingFreg 10
authProfileList (empty)
profile -1
cmdPercentagePool
restObjectType ixHttpCommand
headerList (count = 4)
sendingChunkSize None
ipMappinglList (empty)
sendMD5ChkSumHeader 0
methedProfilelist (em
sslProfile -1
profileList (empty)
streamlden 3
sslProfilelist (empty)
usess| 0
network
windowSize 65536
networkdctivitylList (empty)
traffic

eventHandlerSettings
sessionSpecificDatalist (count = 2)
timelineList
totalUserChbjectivalnfolist (empty)

Edit field values, using the Edit button. This can be used to modify primitive values (numbers, strings,
Booleans) for all fields that are not read-only.

command taleview JSON View “ m

Q_ Filter.

e e e

abert None w

Add or remove elements from lists, using the Add and Remove buttons:

- 50 -

API Browser

Table View

HTTP Client

Execute async operations, using the Operations button. This section contains all the actions available
under /resourceUrl/operations in the REST API.

test

JSON View
REST Operations

Q Search

expirationTimer
loadedRi
utputDir
restObjectType

runResultCirFull

abortandreleaseconfigwaitfinish This operation will deconfigure a configured IxLoad Test.
abortandreleaseconfigwaitfinish()

applyconfiguration This operation will run an apply configuration on the current IxLoad Test. The state of the test will be Configured if successfull.
applyconfiguration(]

exportconfig This operation exports the current c¢ t0a locatian as a comp: reprositary file.
exportconfig(string)

gracefulstoprun This is the operation used to gracefully stop an xLoad Test.
gracefulstoprun()

importconfig This aperation imperts the provided compressed repesitary file and saves the repository file to the specified location.
importconfig(string string)

Ioadtest This operation will load the provided repositary
loadtest(string)

runtest This is the operation used to start an IxLoad Test.
runtest()

save This aperation will save the current repositary to the default result location.
save()

saveas This eperation will save the current repsitery ta specific location.
saveas(string,boolean (trucffalse))

waitfaralicapturedata This is the operation used after a test runs, to wait until all capture data was received.
waitforalicapturedatal)

- 51 -

How to find URLs in a REST API session

How to find URLs in a REST API session

i| Note:
There two methods to find URLs in a REST API session:

e The extractDataModelToFile method, described in this section.
o The findURLs method, described in findURLs operation on page 36.

extractDataModelToFile is the original method. £indURLs is a newer, more efficient method.

The IxLoad data model is very large, and it can be difficult to find the REST API option that corresponds
to an option in the IxLoad GUI, either from scripts, the API Browser, or a tool such as Postman.

You can use the extractDataModelToFile operation to find options. To do this, you load the
repository in a REST session, and then use extractDataModelToFile to export all the available URLs
to a file on the disk.

For example, assume you want to find the sourceUdpPort inside an MME Range. In the GUI,
sourceUdpPort is in the following location:

| tetwork

HMME/eNB S11/S51-U/511-10
L] User Equipment
& e iﬁ MHE
el EETTTE

|| e [(o5 etk Grop et

BAT Type | Enable Enabie Foroed Enable Enable Uiz Bachwards Compatthie
| ChangeAeporting | changereparting | Message Mstory | Destribution of SGW [Ps SGW Destribulion

If you search for either udpPort orits value, 2123, in the file created by extractbDataModelToFile,
you will find the following information in the file:

Current resource:l fixloadftestfactiveTestfc.omnm.nityLis':1’0J’networkfstack!chi1drenListf33!children[.istf3fc.hi1drenListf35fmmeRangeListf1|
Primitives:
- modifyBearerCommandT3
- wvalue: 3
— readCnly: False
— controlPlaneCiotEpsCptimisationIsSupported
- wvalue: False
- readoply; False
- itemType
— walue: EGTPFMMERange
— readOnly: False
- srcUdpPort
- wvalue: 2123
— readCnly: False
- echoReqguestT3
- wvalue: 3
— readCnly: True
— createlndirectT3
- wvalue: 3
— readCnly: False
— enableMsgHistory
— walue: False
— readCOnlv: False

- 52—

How to find URLs in a REST API session

This shows the URL where the MME Range can be located in the REST session, and the name of the

field inside the REST session. You can copy the URL in the API Browser (orin a script), in the following
format:

https://{IP}:8443/#/rest/api/vl/sessions/{sessionID}/ + URL retrieved from the file

For the MME Range example above, copying the URL in the API Browser shows the correct resource:

€ C A Motsecure | httesy/localhostBad3 #/rest/apy/v1 fsessions/0/doad,te

MME-R1 Table View JSON View “ m
S
ensblef . false W

<Reparting

You can use this workflow to find any parameter in the REST API, keeping in mind that when searching
in the exported data model file, a resource's label in the IxLoad GUI may not be identical to its name in
the REST API. For example, the Source UDP Port option in the GUI is srcUdpPort in the REST API.

_53-

This page intentionally left blank.

- 54 -

IxLoad Data Model

You can use the REST API to browse the IxLoad data model to retrieve or modify the current
configuration. This section describes where to find resources such as L4-7 plugins, L2-3 ranges, and
timelines in the data model. In addition, it describes operations such as loading and saving
configurations and running a test.

Communities
You can find all the communities on the following path:
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/

All the communities in the test are shown in this list, regardless of their role: client, server, or peer. In
addition, this list contains both enabled and disabled communities.

You can choose to only view client communities by performing a GET operation on the same list, but by
using query strings to filter the clients:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList?filter
="role eq client"

Community resources
Activities
All the activities under a community can be found in the following list:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/$commu
nityObjectID/activityList

An activity's command list can be found under the agent resource.
Port list

The ports assigned to a community can be found on the 'network’ resource under the community
resource:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/netw
ork/portList

IP ranges

The IP ranges used by the community can be found under the network resource:

- 55 -

IxLoad Data Model

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/netw
ork/stack
/childrenList/1/childrenList/1/rangelList

stack is the entry point in the L2-3 data model.

Timelines
All the timelines used in the test are in the timelinelList, located on the activeTest resource:
http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/timelinelist

Plugins do not expose in REST a direct reference to their timeline (that is, the activities do not have a
timeline option exposed). Instead, they have a timelineId option. This option contains the
objectID of the required timeline in the test timeline list. If you want to change the timeline used by a
certain plugin, perform a PATCH request on the activity with the following payload:

{“timelineId”: "object ID of the desired timeline in the test timeline list”}

Login name

You can change the login name used by a running session by changing the 1oginName field on the
chassischain resource:

Perform a PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/

with a payload of: { "loginName" : "NewLoginName" }

DUTs

You can find the list of DUTs (devices under test) on the following path:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/

- 56 -

IxLoad Data Model

[
1
"comment™: "",
"name™: "DUTL1",
"opbjectID": @,
“links": [
i
"href": "Jfapifv@/sessions/@/ixload/test/activeTest/dutList/@/docs",
"rel™: "docs”
Ia
i
"href": "fapifve/sessions/@/ixload/test/activeTest/dutlist/@/dutConfig”,
"rel™: "dutConfig"
¥
1,
"restObjectType”: "ixDut",
“type”: "Firewall™,
"scenariloElementType™: "dut-basic”
s
1
"comment™: "",
“name™: "DUTZ2",
"objectID": 1,
"links": [
{
"href": "/apl/ve/sessions/8/1ixload/test/activeTest/dutlist/1/docs",
"rel": "docs"
¥a
{
"href": "/fapl/ve8/sessions/8/ixload/test/activeTest/dutlist/1/dutConfig™,
"rel™: "dutConfig"
¥
1.
"restObjectType™: "ixDut”,
"type": "ServerlLoadBalancer",
"ccenarioElementType™: "dut-basic”
s

IxLoad supports 5 types of DUT:

o Firewall

« Server Load Balancer (SLB)
« External Server

o Packet Switch

o Virtual DUT

You can choose to view only a specific type of DUT by performing a GET operation on the DUT list, and
including a query string that specifies the DUT type.

For example, to view the list of firewall DUTs:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutlList/?
filter="type eq firewall"

To add a new DUT, perform a POST operation on the same list, specifying the type.

- 57 -

IxLoad Data Model

For example, to add a new firewall DUT:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/
{“type” : “Firewall”}

To delete a DUT, perform a DELETE at the following address:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/$
dutObjectID

To modify the properties of a DUT, use the PATCH operation.

DUT resources
dutConfig

The configuration properties of the device (particular to that type of DUT) can be found in the following
list:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/dutList/$
dutObjectID/dutConfig

Expiration timer

The expirationTimer enables you to flag sessions for deletion after a fixed length of time has
elapsed. This option is useful for preventing stalled automation scripts from keeping IxLoad REST
sessions open infinitely.

If the timer expires and the session is in the Unconfigured state (that is, it was not running a test),
then the session is immediately deleted.

If the timer expires and the session is in a state other than Unconfigured (for example, the Running
state), then the session is first transition to the Unconfigured state, and then deleted.

expirationTimer is exposed as a field under a URL as follows:

http://<IP_ADDRESS>:8080/api/v0/sessions/{sessionlId}/ixload/test/

To modify the value of this field, execute an HTTP PATCH request on the URL. The expiration timer
starts running when the PATCH request is executed.

The value formats for expirationTimer are as follows:

Format Description
1 day 1 day
n days n number of days

hh:mm:ss | hours:minutes:seconds

For example:

- 58 -

IxLoad Data Model

Value Description
1:20:30 1 hour, 20 minutes and 30 seconds
2 days 2 days

2 days, 1:20:30 | 2 days, 1 hour, 20 minutes and 30 seconds

The expirationTimer can be updated to a new value at any time. The update resets the timer to a
new value, meaning that the session will be deleted after the new timer has expired.

To cancel the timer, execute a PATCH request with no value:

{“expirationTimer”: “"}

Enabling Analyzer and downloading captures

You can enable Analyzer and retrieve port captures from the IxLoad REST API.
To enable Analyzer on a port, execute a PATCH request on a URL of the form:

http://<IP_ADDRESS>:8080/api/v0/sessions/
{sessionId}/ixload/test/activeTest/communityList/{communityListId}/network/portList/
{portListId}

with the following payload:
{“enableCapture”: “True”}
Once capture is enabled on a port, a new URL will be available under the portList:

http://<IP_ADDRESS>:8080/api/v0/sessions/
{sessionId}/ixload/test/activeTest/communityList/{communityListId}/network/portList/
{portListId}/restCaptureFile

To download the capture file from the port after the test has finished running, execute a GET request on
the URL.

To ensure that the captures are ready to be downloaded, you should call the waitForAllCaptureData
operation after the test has finished running:

POST http:/flocalhostzB8080/apifvl/sessions/1/ixload/test/operations/waitForAllCapture Data

waitForAllCaptureData does not require any payload, and will block until all capture files have been
copied on the machine where the IxLoad client is running.

If the GET request is executed from a browser, then the browser will prompt for the location to
download the capture to. If the GET request is performed from the IxLoad sample scripts, then you can
provide the path where the captures should be downloaded to.

- 59 -

IxLoad Data Model
Ixia recommends downloading the captures either by using a browser or through scripts since Ul REST
clients can hang or crash if the captures are too large.

If you use a UI REST client such as Postman, the captures will be downloaded to the Results folder on
both Windows and Linux.

Modifying the activity user objective value on the fly

While the test is running, you can change the user objective value for an activity by performing a
PATCH request on a URL similar to the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/activeTest/communityList/0/acti
vityList/0

with the following payload:

{"userObjectiveValue": 100}

- 60 -

Chassis Chain/Port Assignment Operations

Through the IxLoad REST API, you can perform the following chassis and port operations:

« Add or remove a chassis
« Connect to a chassis
« Assign or unassign ports

The chassis list can be found on the chassisChain root object, at the following URL:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/chassischain/chassisList

Adding a chassis

To add a chassis perform a POST as follows:

POST@ api/v0/sessions/0/ixload/chassischain/chassisList with {"name":"chassis ip or
name"}

The following figure shows the input for the REST client. The newly added chassis is not connected and
it has no cards or ports.

" hpi27.0.0.1:8080 apiviisessiona Vidoad/chassischainchassisList

GET ™ pOsT PUT PATCH © DELETE HEAD OPTIONS Cither

Raw Fosm Headers

Raw Faorm Files (0) Payload

{“name®:~10.215.178.77"}

application/json * Sef "Content-Type™ header to overwnie this value

Clear Sand

The response for the POST is shown in the following figure. The resultis 201 Created.

- 61 -

Chassis Chain/Port Assignment Operations

Status 201 Created ¥ Loading time: 12 ms
Request User-Agent MoZillaS.0 (Windows NT 6.1, WOWE4) AppleWebKIvS3IT 36 (KHTML, like Gacko) Chrome'd5.0. 2454101 SatanS3T.36
headars Origin: chrome-gxtensionhgmioofddfdnphipoellkdfbbjeloo

Content-Type: applicaionison

Accept *F

Accept-Encoding: Qzip, defiate
Accept-Language: en-US eng=08
Cookie: JSESSIONID=AF4ATF2E464E06021 CETE4FAD0BEALES

Response Date: Wed, 07 Ot 2015 14:52:11 GMT

headears. Content-Length: 2
Content-Type: applicaiongson
Location: fapivilisessionsQixloadichassischainichassisList2
Server: CharmyPy3.6.0

Connecting to a chassis

To connect to a chassis, perform a POST as follows:

POST @
api/v0/sessions/0/ixload/chassischain/chassisList/2/operations/refreshConnection

No payload is required. The following figure shows how the POST looks in the REST client:
¥ nttpi127.0.0.1:8080/aplvvsessionsVideadichassischain/chassisList2ioperationsirefreshConnection

GET ®POST PUT FATCH ' DELETE HEAD CPTIONS Othar
Raw Form Headers

Rarw Form Files (0) Payload

Status should be 202 Accepted as shown in the following figure:

Status 202 Accepted W Loading time: 14 ms
Requast User-Agent Mozilas 0 (Windows NT 6.1 WOWS4) AppleWebitS3T 38 (RHTML, like Gecka) Chromedd5 0 2454 101 Safari/537 36
headers Origin: chromi-gxaansion imgmisoiddSinphige lldDdielon

Content-Type: applicationjson

Accept "

Accept-Encoding: gzip, deflate
AcceplLanguage: en-Us eng=08
Cookle: JSESSIONID=GF4ATFZE4G4EDSO21 CATE4F400BIA45S

Response Date: Wed, 07 Oct 2015 14:58:32 GMT

headesrs Content-Length: 2
Content-Type: applicationjson
Location: apit/sessionsaiaioadihassischainichassislist2ioperationsgfgshConnec ionD
Server: ChemyPy36.0

- 62 -

Chassis Chain/Port Assignment Operations

The result of the refresh operation is as follows:
F hitpii 27.0.0.1:6080/@pivIisessions IWidoadichassischain/chassisList2ioperationsrefreshConnection/d

® GET POST PUT PATCH ' DELETE HEAD OPTIONS Other

Rarw Form Headers
Clear Saxnd
Status 200 0K, Loading time: 16 ms
Request User-Agent MozillaS.0 (Windows NT 6.1, WOWE4) Apple'WebKIvS 3T 36 (KHTML, like Gecko) Chromesd5.0.2454.101 Safand/S37 36
headers Conbent-Type: 1extplain; charset=ul-g
Accept *”

Accept-Encoding: gzip, defate, sdch
Accepl-Language en-LS eng=08
Cookie: JEESSIONID=6F4ATF28454E0692 1CETB4F49)BEALGS

Response Date: Wed, 0T Oct 2015 150318 GMT
headars Content-Length: 135
Content-Type: applicationison
Server: ChermyPy3.6.0

Raw JEON Response

Copy to chipboard Save as file

Note that there is a new field inserted that is named refreshedChassis. This refers to the IP or
hostname of the chassis that was refreshed.

Usually, this field contains the chassis that was refreshed. The only exception is when the loaded rxf
has more than one chassis and not all of them are refreshed. In this case, refreshedChassis holds all
the chassis in the rxf because the whole chassis chain has been refreshed.

To handle cases in which an rxf contains a chassis that no longer exists, a warning field in the
refreshConnection operation indicates that a chassis is missing and the refreshedChassis field
contains only those chassis that were successfully connected to. The figure below shows an example of
this: a GET on the status of the refreshConnection operation shows that no chassis were refreshed
and a warning message displays, describing the error.

- 63 -

Chassis Chain/Port Assignment Operations

Status 200 0K Loading time: 16 ms
Requesi User-Agent Mozillafs 0 fiVindows WNT 617 WOWEd) AppleWWeb K537 36 (KHTNL, like Gecko) Chromedd5.0 2454 101 Satan/537.36
headers Content-Type: Wextiplain, charsal=uh-g

Accept

Accept-Encoding gzip, deflate, sdch

Accept.Language en-US eng=08

Cookie: JSESSIONID=SFIATFI8464E0602 1CATE4F400BEA464
Response Date: Wad, 07 Qct 2015 15:09:06 GMT
headers Content-Lemgth: 2497

Content-Type: applicationfson

Server: ChemyPy36.0

Raw JEOM Response

Copy to clipboard Save as file

Removing a chassis

To remove a chassis, you perform a simple DELETE operation on the chassis list. To remove all the
chassis in the list, the DELETE request must be performed on the chassis list URL.

To remove only a specific chassis, the DELETE request must be performed on the following URL:

api/v0/sessions/0/ixload/chassischain/chassisList/chassisObjectId

Removing a chassis is similar to DELETE operations on other IxLoad Data Model lists.

Assigning ports

To assign ports, you perform a POST operation on the network port list. The POST request requires
three parameters: chassisId, cardId, and portId. These parameters do not represent the unique
objectIDs used by the REST API to identify resources as part of a list. Instead, these three parameters
have the same meaning they have in the UI and TCL/Python/Perl scripting, where a port is identified by
a string such as 1.1.1 (chassis.card.port).

To obtain the chassisId, cardld, and portId, perform a GET request on the portList for each card
in a chassis, as shown in the following figure:

—64 -

Chassis Chain/Port Assignment Operations

® hittpo127.0.0.1:8080/apifvlsessions/0fixloadichassischainfchassisList 1/cardList'O/poriList
®GET COPOST O PUT O PATCH O DELETE O HEAD O OPTIONS O Other

Raw Foi Headers

Copy to clipboard file

[13]
—@: {

enableCapture: false

portId: 1

name: "Port 1.1.1"

ochjectID: 26

managementIp: "l@.8.1.1"

-links: [1]
_IE: 1:
href: "fapli/v@/sessions/B ixload/chassischain/chassislist/1/cardl
rel: "portPersistentSetting™
X
analyzerPartizlCapture: "False;2@"
cardType: "Xcellon-Ultra NP"

id: "1.1.1"
objectType: “ixPort"

I e;ableCaptL'e: false
portld: 2
mame: "Port 1.1.2"
ochjectID: 27

The values highlighted in the preceding figure are the ones that are used when assigning the port as
shown in the following figure:

¥ | hitpo/127.0.0.1:8080/apifvVsessions/Uixloadiest/active TesticommunityList/Odnetwork/partList
O GET ®POST ©PUT © PATCH O DELETE ©HEAD O OPTIONS © Other

Raw Form Files [0} Payload

- 65 -

Chassis Chain/Port Assignment Operations

Taking or clearing ownership of ports

To take or clear ownership of ports, you perform POST requests on the port object:

Take ownership

api/v0/sessions/0/ixload/chassischain/chassisList/chassis ID/cardList/card
ID/portList/port ID/operations/takeOwnership

Clear ownership

api/v0/sessions/0/ixload/chassischain/chassisList/chassis ID/cardList/card
ID/portlList/port ID/operations/clearOwnership

If another user owns the port, you can forcefully clear their ownership of the port by setting the force
parameter to true in the body of the request. For example: {“force”:“true”}.

Rebooting ports

To reboot ports:

1. Call the refreshConnection operation on the card.

Reboot the ports by performing a POST operation on the port object:
api/v0/sessions/0/ixload/chassischain/chassisList/chassis ID/cardList/card
ID/portlList/port ID/operations/reboot

Unassigning ports

To unassign ports, you perform a DELETE request on the network port list. This is done the same as for
removing chassis - you can unassign either one of the ports (by using the port object ID), or all the
ports, by performing the DELETE operation on the list URL.

IXVM chassis (ixChassisBuilder)

Use the chassisBuilder object to configure and manage IxVM virtual chassis, and the cards and ports
on them.

To get the root chassisBuilder object, send a GET request to the following URL:

http://serverAddress:8080/api/v0/sessions/{sessionId}/ixload/chassisBuilder

A response will be returned in the following form, which indicates the connected chassis:

- 66 -

Chassis Chain/Port Assignment Operations

1
"restObjectType™: "ixChassisBuilder™
"chassisName": "1@.215.122.98"
-"links™: [1]
-8: {
"href": "/fapi/ve/sessions/B/ixload/chassisBuilder/docs”
"rel™: “docs™
b
}

To display the list of operations available, send the following request:

http://serverAddress:8080/api/v0/sessions/
{sessionId}/ixload/chassisBuilder/operations

-"deleteCard™: {
1lcardId“: mm

}

- "updateChassisSettings™: {
"enablelLicenseCheck™: null

"ntpServer”: null
"licenseServer™: null
"txDelay™: null

}

"getChassissettings™: {}

"hardChassisReboot™: {}

- "getCardPorts™: {
" cardId™: "

}

- "updatePortById”: {
"promiscMode™: null

"portId”: "
"cardId"™: ""
"lineSpeed”: null
"mtu”: null

}

- "updateCard": {
"cardserverId"”:

"managementIp”: null

"keepAliveTimeout™: null

To execute an operation, send a POST request with the operation URL:

POST

- 67 -

Chassis Chain/Port Assignment Operations
http://serverAddress:8080/api/v0@/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings

You can retrieve the operation’s status by sending a GET with operation’s ID:

GET

http://serverAddress:8080/api/v0@/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings/{operationId}
¥ | hup:ilocalhost8080/apivDisessions/Qixload/chassisBuilder/operations/getChassisSettings/0/

® GET FOST PUT FATCH - DELETE HEAD OFTIONS Other

s Form Headers
Status: 200: OK Loading time:312ms
Response headers (4) Request headers (5)

Date: Mon, 21 Mar 2016 15:34:49 GMT
Content-Length: 272

Content-Type: application/json
Server: ChemyPy/3.6.0

Raw JS0H Response
COPY TO CLIPBEOARD SAVE AS FILE
{

"status™: "Successful”®

“actionhName™: “getChassisSettings™
“state”: “finished™
- “links“c [1]
™ H {
“href®: =fapifvd/sessions/@/ixload/chassisBuilder/operations/getChassisSettings/@8/result®

“"rel™: "result”
1
You can retrieve the operation’s result by sending the following URL:

GET

http://serverAddress:8080/api/v0@/sessions/
{sessionId}/ixload/chassisBuilder/operations/getChassisSettings/{operationId}/
result }

The result is specified in the links dictionary from the action status URL.

The result is in the following form:

- 68 -

Chassis Chain/Port Assignment Operations

“"EnableLicenseCheck™: 1
"links=: [1]
-8 {
*href=: "fapifve/sessions/@/ixload/chassisBuilder/operations/getChassisSettings/@/result/docs”
“"rel™: “docs™
}
“HtpServer™: T10.215%.179.157
"Tubelay™: "1-
“restObjectType™: “ixChassisSettings™
“LicenseServer™: "18.215.122.9087

- 69 -

This page intentionally left blank.

-70 -

Upload and Download Diameter XML
Configuration Files

The IxLoad REST API provides support for uploading and downloading Diameter XML configuration files.

Upload

Assume that you have saved an IxLoad Diameter configuration file, named hss_cx.xml.
To upload the file, send a POST command with the following characteristics:

1. Insert the header Content-Type: multipart/form-data.
2. Attach as Binary File the hss_cx.xml config from the REST client.

For example:

Authorization Header=s (1) Bodh Pre-request Script
KEY

Content-Type

W g i, e |

'\'\'\r“r

B e i S T B L T R i T o B e L T L L P

Authorization Headers (1) Body Pre-request Script esls

——
form-data x-www-form-urlencoded raw

Choose Files | hss_oxoomnl

b ey e e

i T L g e,

%
3
z
|

3. Send the entire command POST.

For example:

POST
http://localhost:8080/api/vl/sessions/0/ixload/test/activeTest/communitylList/0

/network/stack/childrenList/2/childrenList/3/childrenList/4/DiameterPortgroupD
ata/upload/?overwrite=true&uploadPath=D:/New%20Folder/Rest/Upload/testDPGD.xml

The command can vary based on the test configuration.

-71 -

Upload and Download Diameter XML Configuration Files

The last part of the POST command (D: /New%20Folder/Rest/Upload/testDPGD.xml) identifies the
location and name under which the Diameter configuration will be saved on the REST Gateway
(localhost) and then imported in the rxf.

Right now the hss_cx.xml config file is applied to the current .rxf.

Download
To download the file, send a GET command (JSON format).
For example:

GET
http://localhost:8080/api/vl/sessions/0/ixload/test/activeTest/communitylList/0/ne
twork/stack/childrenList/2/childrenList/3/childrenList/4/DiameterPortgroupData/do
wnload

The command can vary based on the test configuration.

The 200 OK message received as the response will contain the Diameter .xml configuration file.

-72 -

Statistics

The REST statistics component behaves similar to the StatCollectorUtils component used in TCL. You
can get the available statistics for the activities configured in a test. You can also apply filters on port,
nettraffic, and activity.

Your test must poll statistics from the web server. The web server holds all the statistics configured in
the test in a circular buffer for a default amount of polls of 20 timestamps. The number of default polls
is not configurable.

Viewing statistics
You can use the IxLoad REST API to obtain the statistics generated during a test.

o L2-3 statistics sources become available after the test enters the running state and continue to
be available after the test ends, until a new test is started or a new configuration is loaded. You
cannot configure L2-3 statistics sources.

o L4-7 statistics sources become available when a new configuration is loaded. You can configure
L4-7 statistics sources.

The root resource for statistics is the following URL:
http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats

To retrieve the list of statistics sources, perform a GET request on this URL, as shown in the following
figure:

-73 -

Statistics

> hitp:/127.0.0.1:8080/apifvW'sessions/fixload/stats/

@®GET OPOST ©PUT © PATCHO DELETE O HEAD OOPTIONS © Other

i
-links: [a]
-a: {
href: "/fapifve/sessions/a/ixload/stats/HITPServerPerURL"
rel: "HTTPSerwverPerURL"™
i
-1 1{
href: "/apifve/sessions/@/ixload/stats/HTTPServer”
rel: "HTTPS5erwver™
}
-2 {
href: "/fapifv@/sessions/a/ixload/stats/HITPClientPerURL"
rel: "HTTPClientPerURL"
}
I T
href: "fapifve/sessions/8/ixload/stats/HTTPClient"
rel: "HTTPClient™
i
objectType: "ixRestStatController™
1

A GET request on any of the returned statistics sources except RunState returns three lists:
availableStats, configuredStats, and values, as shown in the following figure:

» hitpoi127.0.0.1:80800apifvOrsessions/Ofixload/statsHT TRPClient

®GET O POST O PUfmg PATCH © DELETE O HEAD ©OPTIONS © Other
{ i;

-links: [3]

-a: {
href: "/apl/v@/sessions/@/ixload/stats/HTTPClient/values"

rel: "values"”

}
-1 {
href: "fapi/v@/sessions/@/ixload/stats/HTTPClient/availablestats™
rel: "available5tats"™
¥
-2 {
href: "fapi/vessessions/@/ixload/stats/HTTPClient/configuredstats”
rel: "confipuredstats"
1

objectType: "ixPersistentStatSource”

- 74 -

Statistics

availableStats is a list of all the available statistics for the current test. This list is read-only; you
cannot remove the available statistics.

configuredStats is a list of the statistics that have been configured for the current test. Here, you
can choose to enable, disable, remove, or modify existing statistics. By default, configuredStats
includes all available statistics (that is, it contains the availableStats list).

Each configured statistics resource has the following fields:

e filterList

¢ enabled

o caption (this must be unique in the list)
e objectID (this must be unique)

e aggregationType

¢ statName

values is a dictionary that contains the actual statistics values during the IxLoad test run.
If a GET request is performed on values before the test actually runs, an empty dictionary is returned.
The format for the dictionary is as follows: {timestamp : { stat name : stat value } }

The values dictionary only retains the last 20 timestamps. If you do not poll the statistics frequently
enough, you might lose some timestamps.

The following figure shows the values obtained when running a query on the HTTP client statistics
values:

¥ hittpcdi127.0.0.1:8080/apifvVsessions/0fixloadistats/HT TR Clientvalues

= GET POST PUT PATCH O DELETE HEAD CPTIONS Other

Raw JSOM

Copy to clipboard Save as
{

-a: .}

-2000: o}

_4p08: .}

- 5008 :
S5L Alerts Sent {unsupported_certificate): @
HTTP Client HTTP2.8 Continuation Frames Received: @
HTTP Client HTTP2.@ Connection Upgrade Succeeded: @
S5L Alerts Sent (certificate_expired): @
55L Alerts Receiwved (decryption_failed): @
HTTP Cookies Rejected - (Path Match Failed): @
Server Hello Received: @
55L Alerts Received (bad_record_mac): @
Deflate Content-Encoding Decode Failed - Decoding Error: @

=

o
g
Client Hello Received: @

- 75 -

Statistics

Statistics views

REST API tests can display most of the statistics views that are currently displayed when running the
IxLoad client in the GUI. The list of statistics views displayed in a test depends on the protocols
enabled in the configuration.

Statistics views are displayed for both L2-3 and L4-7 protocols.
The REST Stat Views are available under the stats url:

http://127.0.0.1:8080/api/v0/sessions/sessionld/ixload/stats/restStatViews

Exceptions

The following types of statistics do not follow the same data format in REST as they do when viewed in
the GUI. The views for these statistics types are either not shown in REST, or they are shown in
aggregated form (not drilled-down):

o Per stream (for example, Video Client Per Stream)
o Per channel (for example, RTP Per Channel (VoIPSip))
o Per URL (for example, HTTP Client Per URL)

As in the GUI, the list of statistics views for the currently loaded configuration are only populated after
the test enters the running stage. At that point, performing a GET on the /restStatviews URL will
return the following result:

apti HTTP Sarwer - Transactd Bt
links
ap e35i [asdiata srSTaTViews /et
& statilis
*mired™: =/apllvlrieisions B ixland/stats fredtSe AtV iows A/ 30cE",
] =docs
“hred=; =japi/vdrsessions /B ixload/stats restStatviows A values™,
& "valits

- @,
Type" I3
.
apil HITP Server ransaciilons
nks
“href=: =fapd/wdrsessions/d/ixlosd/stats /restitatviews 1/ st0tList",
€ statlist”
*mred=: =fapd vl sessions /8 ixloadsstats restitatviews 1/docs™
L docs
iy
"hred": =/api/vldSsessions/Brixload/stats /restStatviews 1 values”,
el "valits"

- 76 -

Statistics

Each statistics view object contains the list of statistics which are part of the view and the values for
those statistics (values which are populated when the test is running). To view the list of statistics,
navigate to the following link:

http://127.0.0.1:8080/api/v0/sessions/sessionId/ixload/stats/restStatViews/statView
Id/statlist

[

"ebjectID”: @,
"links": [
{

“href": “Sfepisvlrsessions 0/ ixloadsstats/restStatViews/ @/ statlist/ O/ docs™,
“rel®: “docs*

b
1.
"captlon™: "Requests Recelvedss™,
“restObjectType™: “ixStatviewStat~,
“aggregationType®: “kRate®,
“gtatMame®: “HTTP Reguests: Recelved®

“objectID": 1,
*links®: [
{
“nrefei “fapisfvessessions @/ ixload/stats restStatViews/ o/ statlist/ 1/ docs”™,
“rel”: “docs”
H
1
"eaption™: "Requests Successfulses™,
"restopjectType™: “ixStatViewStat™,
"aggregationType™: “kRate™,
“ctatMame": "HTTP Beguests Successful™

E.’

Enabling stat view CSV logging

The stat values retrieved from restStatViews can be saved in csv format, in the results directory.
This functionality is enabled by setting the enableRestStatViewsCsvLogging property on the
preferences URL:

http://127.0.0.1:8080/api/v0/sessions/sessionlId/ixload/preferences

[HTTP_Client_-_Transaction_Rates.cov

LZ’ HTTP_Clierit_-_Transactions.cov

Lzr HTTP_Server_-_Chunk_Encoding_(Request).cs
[..:.f HTTP Server_-_Chunk_Encading (Respende). csv
[.:E' HTTP_Senrver_-_Data_Rates.csv

IE HTTP Server_- HTTP Failures.cov

[HTTP Server_-_Per URL.exv

[HTTP Server_-_Responses_Sentcsv

[HTTP Server_-_S5L_Handshake Stats.exv

[HTTP Server_-_S5L_Throughput.csv

| HTTP_Server_-_TCP_Connections.cov

[HTTP Sasver_-_TCP Failures.cov

[HTTP_Server_-_Transaction_Rates.csv

[._"ﬁ' HTTP_Server_-_Transactions.cov

-77 -

Statistics

RunState stat source

The RunState statistics source is listed for all agents under a single statistics source called RunState.
There are no configurable options for Runstate. You can only perform GET requests on it. The only
option for RunState is the values option. It does not have the availableStats or configuredStats
options.

The URL for the RunState statistics source is as follows:

http://IP:8080/api/v0/sessions/sessionld/ixload/stats/RunState

It simply contains a link to the values resource. The statistics values can be viewed at the following
URL:

http://IP:8080/api/v0/sessions/sessionld/ixload/stats/RunState/values

A'GET on the values URL before the test starts running returns an empty dictionary. After the test starts
running, the dictionary is populated with the RunState statistics values for all agents.

Video client per-stream statistics

For the IPTV Video Client activity, you can query the VvideoClientPerStream stats from the REST API.

- 78 -

Statistics

"restObjectType”: "ixRestStatController®,

{
"links": [
{
"href":
"rel”:
Is
{
"href":
rrel":
Is
{
"href":
"rel”:
Is
{
"href":
"rel”:
Is
{
"href":
"rel”:
Is
{
"href":
"rel”:
Is
{
"href":
"rel”:
T
]
T

"fapi/fv@/sessions/@/ixload/stats/Inserver”,
"IxServer”

"fapi/fv@/sessions/@/ixload/stats/VideollientPerstream”,
"VideoClientPerStream™

"fapifv@/sessions/@/ixload/stats/docs™,
"docs"

"fapi/fv@/sessions/@/ixload/stats/Runstate”,
"RunState”

"fapi/fv@/sessions/@/ixload/stats/NideoServer”,
"VideoServer"”

"fapi/fv@/sessions/@/ixload/stats/VideollientIPTVPerStream”,
"VideoClientIPTVPerStream"

"fapi/v@/sessions/@/ixload/stats/Nideollient™,
"VideoClient"

The values of the per-stream statistics can be retrieved by accessing the
@api/v0/sessions/0/ixload/stats/VideoClientPerStream/values URL during the test run

Based on their aggregation type, there are two types of per-stream statistics:

o kString - there is one value for each configured user (for example, the Active statistic):

"href": "/fapi/v@/sessions/@/ixload/stats/VideoClientPerstream/availableStats/@/docs",
"rel”: "docs"

caption”: "Active",

"restObjectType”: "ixAvailableStat”,
"aggregationType"”: "kString",
"statlame": "Active"

i
"opbjectID": @,
"links"™: [
i
T
1,
s

- 79 -

Statistics

“Data Rcwvd™: 18,
"TVQM Int Awg Rel MOSV": @,
"Active™: [

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

"NO",

o kSum - there is one value for all users (for example, the stream Bit Rate statistic):
i
"objectID": 5,
"links": [
i
"href": "faplfve/sessions/8/ixload/stats/VideollientPerstream/availableStats/5/dacs",
"rel™: “"docs"
¥

1,

"caption™: “"Stream Bit Rate",

"restObjectType™: "ixfAvailableStat",

"aggregationType™: "kSum”,

"statMams": "Stream Bit Rate”

¥s

"JB Packets Accepted": 8,

"TVQM P Frames Impaired”: @,

"Stream Bit Rate": 2092580009,

"I Frames Impaired”: @,

"Gap Video Service Quality": @,

"Packstsz": 265033,

Modifying configured statistics

To change statistics, you perform a PATCH method on the configured statistics structure. You can turn
statistics on or off, or change the aggregation type.

The following figure shows the URL for getting a configured statistic:

F hitp: i1 27.0.0.1 2080 apiviisessionsUindoad/stats HTTPClient configured Statsid

® GET POST PUT PATCH ' DELETE HEAL: OPTIONS Oither

The result of GET in the preceding request is shown in the following figure:

- 80 -

Statistics

Raw J50H Response

Copy to clipboard Save as file
1
=links:z [1]
=8:

href: “fapl/vd/sessions/@/ixload/ stats/HTTPClient/ configuredstats/a/FilterList™

rel: “fillterList”®
enabled: true
caption: "HTTP Simulated Users™
aggregationType: "kSum™
statName: "MTTP Simulated Users™

objectType: “ixConfigureditat™

To change a configured statistic, a PATCH method is issued as shown in the following figure. The

payload must contain the properties to be changed.

P hitpci127.0.0.1:6080 apiviisessionsidoad/statsHT T PClenticonfigurad Stats/
GET ©POST OPUT ®PATCH ODELETE CHEAD ©OPTIONS O Other

R Form Files (0) Payload

{"enabled”:false}

applicationjson | Sef "Content-Type” header o overwnle this value
Satus 204 Mo Content ' Loading time: 43 ms
Request User-Agent MozillaS, 0 (Windows NT 6.1, WOWE4) AppleWebKIVS3T 36 (KHTML, like Gecko) Chromedd5.0.2454,101 Satan/537.36
TR Origin: chrome-extension thgmicoiddfidnphigcelikdfbibjelon
Content-Type: applicatianjson
' Accept "

Accepl-Encoding: gzip, deflate, sdch
Accept-Language: en-US eng=04
Cookia: JSESSIONID=6F4ATFZE4G4EDEE2 1CETRAFA00BRALEL

Response Date: Thu, 05 Nov 2015 14:59:59 GMT
Jeaders Content-Type: applicationjson
Server ChemyPy3.6.0

The following figure shows how the preceding PATCH method changed the configured statistics

structure by turning it off:

-81-

Statistics

¥ | hitpaii1 27 10.0.1:8080/apiviVsessions/indoad/statsHT TP Client/configured Satsid

®GET “POST JPUT U PATCH O DELETE “'HEAD ' OPTIONS “ Other

Raw J50M Response
Copy to clipboard Save as file
{
-links: [1]
-3
href: “fapifv@/sessions/ @ inload/stats/HTTPCLient/configuredStats/o@/ filterList™
rel: “filterList™
}
enabled: false
caption: "MTTP Simulated Users™
aggregationType: “kSum™
statHame: "HTTP Simulated Users™
objectType: “ixConfiguredStat™
H

Filtering stats

To obtain the filtered statistics, you perform a GET on the filter list from a specific configuredStat
item, as shown in the following figure:

k IS 12T 0 01 B0E0r a0 s aann 4 N Dooad st HT TRCEenbiconfiguned Stats D llerLad
= GET POSET LPuT FATCH ' DELETE HEAD ' OPTIONS Othar

Ham Foam Headers

i JE0N Renponis
Copy 1o clipboard Save as file

=links: [4]

-
href: =fapifvofsessions/8/ixload/stats/HTTPClient /configuredstats/a/filterlizst/cardFilters"
rel: “cardFilters®
-1 {
href: =“fapl/vefsessions/@/ixload/stats/HTTPClient/configuredstats/a/filterlist/activityFilters™
rel: “activityFilters™
}
=2
href: 'Iapiﬁvﬁf:e::iunsf@#ixlnad!stutsfHTTPClientf:nnfigurrdstatszfFiltrrlist#chnssisFilters'
rel: TchassisFilters™
¥
=3 {
href: “fapl/vefsessions/@/ixload/stats/HTTPClient/configuredstats/a/filterlist/portFilters”
rel: “portFilters™
¥

objectType: “ixzRestFilters”

A configured statistic contains filters that enable you to get values at various levels:

- 82 -

Statistics

o Card level
o Activity level
o Chassis level
o Portlevel

To add a port filter, you add a new port to the portFilter list, as shown in the following figure:

¥ | hpui127.0.0.1: 8080 apivisessions/ WViload/stats HTTPChent configurad Stata O/iterL st portFilters

JGET

Faw

Raw

= POST OPUT O PATCH O DELETE “HEAD ©OPTIONS ' Cther

Form Headers.

Form Files [0) Payload

applicationjson w | Set "Conlent-Type™ header fo overnrite this value.
Clear

Status 201 Created 0 Loading time: &7 ms
Request User-Agent MoZillaS 0 (&indows NT 6.1, WG) AppleWeDRitS T 36 (KHTML, ke Gecka) Chroma/d5.0.2454. 101 Safari5aT 36
haaders Origin: chrome-extension ihgmisotddsdnphige elikafmelon

Content.Type: applicationjson

Accept *"

Accepl-Encoding: gzip, deflate

AcceptLanguage en-USeng=08

Cookie: JSESSIONIDeEFAATFIE46JEDGH 1 CATA4F400BAALGS
Response Date: Thu, 05 Nev 2015 15:04:12 GMT
headers Content-Length: 2

Content-Type: applicationjson
Location: /apiteiisessionsOidoadstataHTTRCIentconiguredStateOiterListiportFilbe rad
Server: CharmyPy3.6.0

The following figure shows how the filter looks after it has been added:

Send

- 83 -

Statistics

¥ hnmpui1 270,01 808N SESSIONS 0o ad St H T TPCHenU configured SIS OMieLisUponFiers
* GET POST PUT PATCH W DELETE HEAD QPTIONS Ortiver

Raw JEON Responsa

Copy to chpboard Save as file

[2]

You can set multiple filters for multiple configured statistics according to how you want to view the
statistics. Aggregation and processing can be done in the client script after the statistics are coming in.

Adding an activity filter

To add activity filter to a statistic, you perform a POST request on a URL similar to the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/stats/HTTPClient/configuredStats/0/f
ilterList/activityFilters

with the following payload:
{"value": "Trafficl@Networkl - HTTPClientl"}

where Trafficl@Networkl is the net traffic name (formed by the traffic and the network name) and
HTTPClientl is the activity name.

Generated CSVs

During the IxLoad test run, CSVs files are also generated. If you do not change any settings regarding
the CSV path, they are generated in the default result directory, which can be configured in IxLoad UI.

If you want to save the generated CSVs on a custom path, use the following operation on the test
resource before running the configuration:

Perform a PATCH on http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/
with the following payload:
outputDir : true (the default is 'false')

runResultDirFull : "F:\\path\\to\\the\\new\\result\\dir"

_84 -

Logging

You can retrieve log from the REST API that are equivalent to the entries seen in the IxLoad UI. The
URL where log entries are accessible is the following:

http://127.0.0.1:8080/api/v0/sessions/0/ixload/test/logs

A GET applied to the logs URL returns a list of the last log entries. By default, the last 100 entries are
shown, but this number can be changed from the preferences URL. Each log entry contains the
moduleName, severity, timestamp, and message.

[

‘!-:'J

=,

(.

{
“moduleliame®: “imChassisChadin =,
“sEverity®: “Iafo™,
"abdectID™: 3,
“timeStasp™s "2016/06/02 19:83:35.838",
"links=: [

i
“head=: =/Epl v/ sessions /0 ixload/ tast/lags /3 /does",
maal®a Mdamem
k™ "docs
¥
48
“restibjectType®: “ldiestiogBntry™,
meisage”: "Validating that 18.215.122.32 hécepts incoming connections. Will try to connect For 18 Seconds.”®
I

“modulelinme™: “inChassisChain =,
"severity®: "Info~;
jectlD®: 4,

BEStaRn™ 1 “2016/06/02 19:83:36.852%,
"1inks=; [
{
*hed=: " /api/vd/sessions /@7 ixload/ test Jogs d/docs”,
"rel®: "docs®
b

1.
"restObjectType™: “lxRestlogEntry™,
“message”: “Validation for 10,231%.123.22 iz completed. IP is valid and comnection succeeded.”

Deleting logs

Each session object has a property named deletelLogsOnSessionClose thatis setto false by
default.

- 85 -

Logging

[
{
"ixloadVersion": "8.58.8.185",
"activeTime": "@:28:51",
"backendType™: "ixload"”,
“links"™: [
i
"href™: "Japifve/sessions/@/ixload",
"rel™: "ixload"
}.1
i
"href™: "Japi/fv@/sessions/@/docs",
"rel™: "docs"

1

4 7

"objectID": @,
"deletelLogsOnSessionClose™: falseJ
"remotePid”: 11224,

"sessionId": B,

"applicationType": "ixload",
"restObjectType”: "ixSession”,
"id": @,

"izsActive": true

Deleting logs for an instance

To delete the logs for a instance, perform a PATCH operation on the session URL with a payload of
{“deleteLogsOnSessionClose” : true}. This will cause all the session logs (the IxLoadRest-x-
yy.log and all the client logs for the IxLoad instance used by the session) to be deleted when the
session is deleted (using the DELETE operation).

PATCH ~ htrp:/flocalhoseB080/apifvl/sessions/0
Body @
form-data x-wvew-form-urlencoded ' raw binary JSON (application/json) =

1 |{rdeletelLogsOnSessionClose™: trueH

Deleting logs for a specific IxLoad version
To delete the logs for a specific IxLoad version, perform a POST operation on the following URL:
@api/v0/logs/operations/deleteVersionLogs
with a payload of:
{“appVersion” : IxLoad-version}
and a header of:

{“content-type”: “application/json”}

- 86 -

Logging

This will delete all the logs (all IxLoadRest-x-yy.1log files and all client logs resulting from all the
sessions that used the specified version of IxLoad) for the specified IxLoad version.

POST - http://localhost:8080/apifvl/logs/operations/deleteVersionLogs
Body @
form-data x-www-form-urlencoded '® raw binary |SOM (application/json)

1 |{"ap:‘v.-'-a"si|:|'1" : "B.50.8.166"}

Deleting logs for all IxLoad versions

To delete the logs for versions of IxLoad installed, perform a POST operation on the following URL:
@api/v0/logs/operations/deleteAllLogs

with no payload but with the following header:

{“content-type”: "application/json”}

This will delete all the logs (all IxLoadRest-x-yy.log files and all client logs) for all IxLoad versions
present on the machine.

- 87 -

This page intentionally left blank.

- 88 -

REST Script Templates

An installed IxLoad build contains a set of Python sample scripts that perform basic IxLoad operations
from REST.

The scripts are stored in the root installation folder of IxLoad in a subfolder named RestScripts.

You can use Python 2.7 or Python 3 to run the scripts. The scripts must be run with a Python
executable that has the requests and pyOpensSL modules installed, as described in the README . txt
file included in the RestScripts folder. The scripts do not require any command line arguments. They
can be simply executed by performing python.exe SimpleRun.py.

Before you run the scripts, you must change the configuration data (IxLoad Version, chassis, rxf file
path) in the beginning of each script to match your configuration.

The REST scripts rely on two utility Python files:

o« IxLoadUtils.py, which deals with specific IxLoad REST API functionality.

o« IxLoadRestUtils.py, which deals with providing the underlying abstraction level that
IxLoadUtils uses to receive, interpret, and dispatch requests.

These two files are helper files that implement a Python script to handle REST communication with the
IxLoad REST framework.

The scripts are intended as guides to using IxLoad from REST. They expose basic workflow scenarios
as examples you can use to understand how to automatically configure IxLoad through REST. You do
not necessarily need to write your own scripts in Python; the IxLoad REST API is compatible with any
programming language that supports running HTTP requests.

AddNewCommand.py

This template does the following:

1. Creates a session

Loads an Rxf

Clears the chassis list

Adds a chassis

Assigns ports to the networks

Clears the command list for client activity

Updates the command list of the client HTTP activity by:

NouhkwnN

- 89 -

REST Script Templates

o Adding a GET command with custom properties
o Adding a POST command with custom properties
8. Saves the Rxf
9. Starts the test
10. Polls the stats
11. Closes the IxLoad session

ChangeAgentObjectives.py

This template does the following:

1. Creates a session
Loads an Rxf
Clears the chassis list
Adds a chassis
Assigns ports to the networks
Updates the activity options by:
Enabling constraints
Setting a constraint value
Changing the objective type
Setting a new objective type
7. Saves the Rxf
8. Starts the test
9. Polls the stats
10. Closes the IxLoad session

ouhkwnN

ChangelpType.py

This template does the following:

=

Creates a session

Loads an Rxf

Clears the chassis list

Adds a chassis

Assigns ports to the networks

Updates the IP ranges by changing the count and the IP address
Saves the Rxf

Starts the test

Polls the stats

Ve NV A WN

'—L
©

Closes the IxLoad session

-90 -

REST Script Templates

CIFSfromScratch.py

This template creates a CIFS scenario starting from an empty configuration and runs it.

Dhcpv4v6_config_from_scratch.py

This template creates a DHCP configuration and runs it.

DNS_with_DUT_from_scratch.py / DNS_config_from_
scratch.py

This template creates a DNS scenario starting from an empty configuration and runs it.

FTP_config_from_scratch.py

This template creates an FTP scenario starting from and empty configuration and runs it.

HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py

This template creates an HTTP over IPSEC configuration and runs it.

IMAP_config_from_scratch.py

This template creates an IMAP scenario starting from an empty configuration and runs it.

POP3ConfigFromScratch.py

This template creates a POP3 scenario starting from an empty configuration and runs it.

RepRunner.py

This template runs a set of repositories in the same IxLoad session, one after the other.

RTSP_config_from_scratch.py

This template creates a RTSP scenario starting from an empty configuration and runs it.

SimpleRun.py

This template does the following:

1. Creates a session

2. Loads an Rxf

3. Clears the chassis list
4. Adds a chassis

- 91 -

REST Script Templates

Assigns ports to the networks
Saves the Rxf

Starts the test

Polls the stats

Closes the IxLoad session

O o N O WU

SimpleRunCapturesEnabled.py

This template enables Analyzer on ports before starting a test.

After the test stops and the capture files are received from the ports, it downloads the captures locally.

SMTPfromScratch

This template creates a SMTP scenario starting from an empty configuration and runs it.

StatelessPeerFS.py

This template creates a Stateless Peer scenario starting from an empty configuration and runs it.

TFTP_config_from_scratch.py

This template creates a TFTP scenario starting from an empty configuration and runs it.

VoIPSIP_config_from_scratch.py

This template creates a VoIP SIP scenario starting from an empty configuration and runs it.

~-92 -

IxLoadRestUtils

IxLoadRestUtils

This module defines the following utilities:

class Connection(___builtin___.object)

This class executes the HTTP requests to the application instance. It handles creation of the HTTP
session and execution of HTTP methods.

Methods

Methods defined in this class are as follows:
__init__ (self, siteUrl, apiVersion)

Arguments:
siteUrl is the actual URL to which the connection instance will be made.
apiVersion is the actual version of the REST API that the connection instance will use.

The HTTP session will be created when the first HTTP request is made.
httpDelete(self, url='", data='"', params={}, headers={})
Method for calling HTTP DELETE. Returns the HTTP reply.
httpGet(self, url=""', data='', params={}, headers={})

Method for calling HTTP GET. Returns a WebObject that has the fields returned in JSON format by the
GET operation.

httpPatch(self, url=""', data='"', params={}, headers={})

Method for calling HTTP PATCH. Returns the HTTP reply.

httpPost(self, url=""', data='"', params={}, headers={})

Method for calling HTTP POST. Returns the HTTP reply.

httpRequest(self, method, url='"', data='"', params={}, headers={})

Method for making a HTTP request. The method type (GET, POST, PATCH, DELETE) will be sent as a
parameter. Along with the url and request data. The HTTP response is returned.

Arguments:
method (mandatory) represents the HTTP method that will be executed.

url (optional) is the URL that will be appended to the application URL.

- 93 -

IxLoadRestUtils

data (optional) is the data that needs to be sent along with the HTTP method as the JSON

payload.

params (optional) is the payload python dictionary (not necessary if data is used).

headers (optional) are the HTTP headers that will be sent along with the request. If left

blank, the default is used.

Class methods

Class methods defined here are as follows:
urljoin(cls, base, end) from _ builtin__.type

Joins two URLs. If the second URL is absolute, the base is ignored.

Ixia recommends that you use urljoin instead of urlparse.urljoin for the following reasons:

1. Appends a/ to base if not present.
2. Casts end to a str as a convenience.

Data descriptors

Data descriptors defined here are as follows:
_dict__

Dictionary for instance variables (if defined)
__weakref__

List of weak references to the object (if defined)

Other attributes

Data and other attributes defined here are as follows:
kContentJson = 'application/json'

kHeaderContentType = 'content-type'

class WebList(___builtin___.list)

This class transforms a JSON list into a list of WebObject instances.

Methods

Methods defined in this class are:
__init__ (self, entries=[])

Creates a WeblList from a list of items that are processed by the WebObject function.

—94 -

IxLoadRestUtils

Data descriptors

Data descriptors defined in this class are as follows:
_dict__

Dictionary for instance variables (if defined).
__weakref__

List of weak references to the object (if defined).

class WebObject(___builtin___.object)

This class sets the fields of a WebObject instance to correspond to the JSON format received in a GET
request. For example, a response in the format: {"caption": "http"} returns an object that has
obj.caption="http.".

Methods

Methods defined in this class are as follows:

__init__(self, **entries)

Creates a WebObject instance by providing a dictionary having a property - value structure.
getOptions(self)

Gets the JSON dictionary which represents the WebObject instance.

Data descriptors

Data descriptors defined in this class are as follows:
_dict__

Dictionary for instance variables (if defined).
__weakref__

List of weak references to the object (if defined).

Functions
formatDictToJSONPayload(dictionary)
Converts a given Python dictionary instance to a string JSON payload that can be sent to a REST APL.

getConnection(server, port)

_95—

IxLoadRestUtils

Gets a Connection instance, which will be used to make the HTTP requests to the application.

- 96 -

IxLoadUtils

IxLoadUtils

The IxLoadUtils module is a collection of specific functions that deal with common IxLoad workflows.

addChassisList

Adds one or more chassis to the chassis list.

Syntax: addChassisList (connection, sessionUrl, chassisList)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

chassisList is the list of chassis that will be added to the chassis chain.

addCommands

Adds commands to a certain list of provided agents.
Syntax: addCommands (connection, sessionUrl, commandDict
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

commandDict is the Python dictionary that holds the mapping between agent name and
specific commands. (commandDict format -> { agent name : [{ field : value }

1 1)

addDUT

Adds a DUT resource to the active test on the given session.
Returns the ID of the newly added DUT.
Syntax: addDUT (connection, sessionUrl, dutDict=None)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

dutListUrl is the address that contains the list of DUTSs.

dutDict contains a comment, the name or the type of the DUT (or all three).

-97 -

IxLoadUtils

DUT types:

Firewall
ExternalServer
PacketSwitch
ServerLoadBalancer

VirtualDut

By default, when posting using dutDict=None, dutType will be SLB.

assignPorts

Assigns ports from a connected chassis to the required NetTraffics.
Syntax: assignPorts (connection, sessionUrl, portListPerCommunity)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

portListPerCommunity is the dictionary mapping NetTraffics to ports (format -> {
community name : [portlist] })

changeActivityOptions

Changes certain properties for the provided activities.

Syntax: changeActivityOptions (connection, sessionUrl, activityOptionsToChange)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

activityOptionsToChange is the Python dictionary that holds the mapping between
agent name and specific properties (activityOptionsToChange format: { activityName : {
option : value } })

changeCardsInterfaceMode

Changes the interface mode on a list of cards from a chassis. To call this method, the required chassis
must be already added and connected.

Syntax: changeCardsInterfaceMode (connection, chassisChainUrl, chassisIp, cardIdList,
mode)

- 08 -

IxLoadUtils

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

chassisChainUrl is the address of the chassisChain resource.
chassisIp is the IP or host name of the chassis that contains the card(s).
cardIdList is a list of card IDs.

mode is the interface mode that will be set on the cards. Possible options are (depending
on card type): 1G, 10G, 40G, 100G, etc.

changelpRangesParams

Changes certain properties on an IP Range.
Syntax: changeIpRangesParams (connection, sessionUrl, ipOptionsToChangeDict)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session that should run the test.

ipOptionsToChangeDict is the Python dict holding the items in the IP range that will be
changed.

(ipOptionsToChangeDict format: { IP Range name : { optionName : optionValue
b1

clearAgentsCommandList

Clears all commands from the command list of the agent names provided.
Syntax: clearAgentsCommandList (connection, sessionUrl, agentNameList)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

agentNameList the list of agent names for which the command list will be cleared.

clearChassislList

Clears the chassis list. After execution, no chassis should be available in the chassisList.
Syntax: clearChassisList (connection, sessionUrl)

Arguments:

- 99 -

IxLoadUtils

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

collectDiagnostics

Performs a POST request to collect log files and packages them into a ZIP file.
Syntax: collectDiagnostics (connection, sessionUrl, zipFilePath, clientOnly=False)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to collect diagnostics for.

zipFilePath is the local zip path on the machine that holds the IxLoad instance.

collectGatewayDiagnostics

Performs a POST request to collect gateway log files and packages them into a ZIP file.
Syntax: collectGatewayDiagnostics (connection, zipFilePath)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

zipFilePath is the local zip path on the machine that holds the IxLoad instance.

createSession

Creates a new session. The return value is the URL of the new session.
Syntax: createSession (connection, ixLoadVersion)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

ixLoadVersion is the actual IxLoad version to start.

deleteSession

Deletes an existing session.
Syntax: deleteSession (connection, sessionUrl)

Arguments:

-100 -

IxLoadUtils

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session to delete.

editDutConfig

Modifies the settings found in the dutConfig page and its subpages.

The return value is a dictionary with the reply from the server for patch/delete and the object1d for
post actions as a value, and the corresponding networkDict as a key.

Syntax: editDutConfig (connection, dutUrl, configDict)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API

dutUrl is the address of the dut that needs to be changed/modified

configDict is a list that contains the actions needed to be performed on the target DUT,
and dictionaries with the information required for every action

Example dictionary:

{
"post":
{
"originateNetwork.<arbitraryIdentifierl>": {}
"originateNetwork.<arbitraryIdentifier2>":

{
"ipCount": "200",
"firstIp": "10.10.10.10"
}
}
"patch":
{
"terminateNetwork.<validObjectIdl>":
{
"ipCount": "500"
}
}

}
Format for network/protocol names:
Server Load Balancer: slb.<identifier>

Packet Switch: originateNetwork.<id>, terminateNetwork.<id>,
terminateProtocolPort.<id>, originateProtocolPort.<id>

Virtual DUT: network.<id>, protocolPort.<id>

-101 -

IxLoadUtils

editDutProperties

Modifies the DUT's name, comment, and type.
Syntax: editDutProperties (connection, sessionUrl, dutId, newInfoDict=None)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

dutUrl is the address of the dut that needs to be changed/modified.

newInfoDict is a dictionary that contains the updated DUT information.

enableAnalyzerOnPorts

Enables Analyzer for a specific port on a specific community.
Syntax: enableAnalyzerOnPorts (connection, sessionUrl, communityPortIdTuple)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

communityPortIdTuple is a tuple composed of (communityID and portName).
communityID is the id of the community list for which captures should be retrieved.

portName is the name of the port for which Analyzer will be enabled (in the format 'n.n.n’,
not 'Port n.n.n").

sessionUrl is the address of the session on which the test was run.

getCommandListUriForAgentName

Gets the commandList url for a provided agent name.
Syntax: getCommandListUrlForAgentName (connection, sessionUrl, agentName)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

agentName is the agent name for which the commandList address is provided.

getIPRangelListUriIForNetworkObj

Returns the IP Ranges associated with an IxLoad network component.

Syntax: getIPRangeListUrlForNetworkObj (connection, networkUrl)

-102 -

IxLoadUtils

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

networkUrl is the REST address of the network object for which the network ranges will be
provided.

getTestCurrentState

Gets the test current state (for example: running, unconfigured).
Syntax: getTestCurrentState (connection, sessionUrl)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

getTestRunError

Gets the error that appeared during the last test run.

If no error appears, the test ran successfully and the return value is None.
Syntax: getTestRunError (connection, sessionUrl)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

loadRepository

Performs a POST request to load a repository.

Syntax: loadRepository (connection, sessionUrl, rxfFilePath)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to load the rxf for.

rxfFilePath is the local rxf path on the computer that holds the IxLoad instance.

performGenericDelete

Performs a generic DELETE method on a given URL.

-103 -

IxLoadUtils

Syntax: performGenericDelete (connection, 1listUrl, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the Python dictionary with the parameters for the operation.

performGenericOperation

Performs a generic operation on the given URL, and waits for it to finish.

Syntax: performGenericOperation (connection, url, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the python dict with the parameters for the operation.

performGenericPatch
Performs a generic PATCH method on a given URL.
Syntax: performGenericPatch (connection, url, payloadDict)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

url is the address of where the operation will be performed.

payloadDict is the Python dictionary with the parameters for the operation.

performGenericPost
Performs a generic POST method on a given URL.
Syntax: performGenericPost (connection, 1listUrl, payloadDict)

Arguments:
connection is the connection object.
url is the address of where the operation will be performed.

payloadDict is the python dict with the parameters for the operation.

- 104 -

IxLoadUtils

poliStats
Polls for statistics. Polling statistics is per request, but this method does a continuous poll.
Syntax: pollStats (connection, sessionUrl, watchedStatsDict, pollingInterval=4)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.
watchedStatsDict are the statistics that are being monitored.

pollingInterval is the polling interval. The default is 4 but can be overridden.

retrieveCaptureFileForPorts

Retrieves capture files from a REST session that had portCapture set to True.

Syntax: retrieveCaptureFileForPorts (connection, sessionUrl, communityPortIdTuple,
captureFile)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API

communityPortIdTuple is a tuple composed of (communityID and portName)
communityID is the ID of the community list for which captures should be retrieved.

portName is the name of the port for which capture will be enabled (in the format 'n.n.n’,
not 'Port n.n.n")

sessionUrl is the address of the session on which the test was ran.
captureFile is the save path for the capture file

Error Codes:

0 No error

1 Invalid portId

2 Cannot create/open captureFile

runTest
Starts the currently loaded test. After starting the 'Start Test' action, wait for the action to complete.
Syntax: runTest (connection, sessionUrl)

Arguments:

-105-

IxLoadUtils
connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

saveRxf

Saves the current rxf to the disk of the computer on which the IxLoad instance is running.
Syntax: saveRxf (connection, sessionUrl, rxfFilePath)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

sessionUrl is the address of the session to save the rxf for.

rxfFilePath is the location where to save the rxf on the machine that holds the IxLoad
instance

setCardsAggregationMode

Changes the aggregation mode on a list of cards from a chassis. To call this method, the required
chassis must be already added and connected.

Syntax: setCardsAggregationMode (connection, chassisChainUrl, chassisIp, cardIdList,
mode)

Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST API.

chassisChainUrl is the address of the chassisChain resource.
chassisIp is the IP or hostname of the chassis that contains the card(s).
cardIdList is a list of card IDs.

mode is the aggregation mode that will be set on the cards. Possible options are
(depending on card type): NA (Non Aggregated), 1G, 10G, 40G

uploadFile

This operation uploads a file from the computer where the script runs, on the computer where the
IxLoad client is running.

Syntax:uploadFile (connection, url, fileName, uploadPath,overWrite)
Arguments:

connection is the connection object that manages the HTTP data transfers between the

-106 -

IxLoadUtils

client and the REST API.

url is the address of the resource that uploads the file. This url should be in the following
form:

http://ip:port/api/v0/resources.

filename contains the name (or absolute path to the file, if the file is not in the same
location as the executing script) of the file to be uploaded. This is the location on the
computer where the script is running.

Example: “file.txt”, r“D:\\examples\\file.txt”.

uploadPath is the path where the file should be copied to on the computer on which the
IxLoad client runs.

overWrite specifies the required behavior if the file to be uploaded already exists on the
remote computer. The default value is ‘True.’

waitForActionToFinish

Waits for an action to finish executing. After a POST request is sent to start an action, the HTTP reply
will contain, in the header, a 'location’ field, that contains a URL.

The action URL contains the status of the action. This method performs a GET on that URL every 0.5
seconds until the action finishes with a success.

If the action fails, this will show an error and print the action's error message.
Syntax: waitForActionToFinish (connection, replyObj, actionUrl)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

replyObj the reply object holding the location.

actionUrl is the URL pointing to the operation.

waitForAllCaptureData

This method is used to wait for the test to capture all the port data that was received after the test has
finished running.

Syntax: waitForAllCaptureData (connection, sessionUrl)
Arguments:

connection is the connection object that manages the HTTP data transfers between the
client and the REST APL.

sessionUrl is the address of the session that should run the test.

-107 -

This page intentionally left blank.

-108 -

Ixia
26601 West Agoura Road
Calabasas, California 91302

	Contacting Us
	New in this Release
	Before you Begin
	REST Resources
	Supported Features
	API version v1
	Using the REST API over HTTPS
	Self-signed certificates
	Script changes required for HTTPS
	Errors from REST UI clients

	REST Authentication
	Enabling authentication on Windows
	Enabling authentication on Linux
	Authenticating REST requests
	Retrieving the api-key
	Script changes required for authentication

	Supporting Methods and Running Operations
	REST representation
	Preferences
	IxLoad REST methods
	GET
	PATCH
	POST
	DELETE
	OPTIONS

	Operations
	Starting an operation
	Getting an operation's status
	Examples of common operations in the IxLoad REST API
	Query strings
	Collecting diagnostics
	Deleting the results directory after running a test
	extractDataModel operation
	findURLs operation

	IxLoad Session Handling
	Creating a new session
	New session with a specified version
	New session with the latest version

	Deleting a session

	Uploading and downloading files
	API Browser
	How to find URLs in a REST API session
	IxLoad Data Model
	Communities
	Timelines
	Login name
	DUTs
	Expiration timer
	Enabling Analyzer and downloading captures
	Modifying the activity user objective value on the fly

	Chassis Chain/Port Assignment Operations
	Adding a chassis
	Connecting to a chassis
	Removing a chassis
	Assigning ports
	Taking or clearing ownership of ports
	Rebooting ports
	Unassigning ports
	IxVM chassis (ixChassisBuilder)

	Upload and Download Diameter XML Configuration Files
	Statistics
	Viewing statistics
	Statistics views

	RunState stat source
	Video client per-stream statistics

	Modifying configured statistics
	Filtering stats
	Generated CSVs

	Logging
	REST Script Templates
	AddNewCommand.py
	ChangeAgentObjectives.py
	ChangeIpType.py
	CIFSfromScratch.py
	Dhcpv4v6_config_from_scratch.py
	DNS_with_DUT_from_scratch.py / DNS_config_from_scratch.py
	FTP_config_from_scratch.py
	HTTP_ssl_ipsec_ipv4v6_config_from_scratch.py
	IMAP_config_from_scratch.py
	POP3ConfigFromScratch.py
	RepRunner.py
	RTSP_config_from_scratch.py
	SimpleRun.py
	SimpleRunCapturesEnabled.py
	SMTPfromScratch
	StatelessPeerFS.py
	TFTP_config_from_scratch.py
	VoIPSIP_config_from_scratch.py

	IxLoadRestUtils
	class Connection(__builtin__.object)
	class WebList(__builtin__.list)
	class WebObject(__builtin__.object)
	Functions

	IxLoadUtils
	addChassisList
	addCommands
	addDUT
	assignPorts
	changeActivityOptions
	changeCardsInterfaceMode
	changeIpRangesParams
	clearAgentsCommandList
	clearChassisList
	collectDiagnostics
	collectGatewayDiagnostics
	createSession
	deleteSession
	editDutConfig
	editDutProperties
	enableAnalyzerOnPorts
	getCommandListUrlForAgentName
	getIPRangeListUrlForNetworkObj
	getTestCurrentState
	getTestRunError
	loadRepository
	performGenericDelete
	performGenericOperation
	performGenericPatch
	performGenericPost
	pollStats
	retrieveCaptureFileForPorts
	runTest
	saveRxf
	setCardsAggregationMode
	uploadFile
	waitForActionToFinish
	waitForAllCaptureData

