IXla

A Keysight Business

IxLoad

Tcl API Programming Guide

Includes Python and PERL Support

Release 9.00

Notices

Copyright Notice
© Keysight Technologies 2004-2019

No part of this document may be
reproduced in any form or by any means
(including electronic storage and retrieval
or translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies, Inc.
as governed by United States and
international copyright laws.

Warranty

The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Keysight
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Keysight shall not
be liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or performance
of this document or of any information
contained herein. Should Keysight and the
user have a separate written agreement
with warranty terms covering the
material in this document that conflict
with these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

U.S. Government Rights

The Software is "commercial computer
software," as defined by Federal
Acquisition Regulation ("FAR") 2.101.
Pursuant to FAR 12.212 and 27.405-3 and
Department of Defense FAR Supplement
("DFARS") 227.7202, the U.S. government

acquires commercial computer software
under the same terms by which the
software is customarily provided to the
public. Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User License
Agreement (EULA), a copy of which can
be found at
http://www.keysight.com/find/sweula or
https://support.ixiacom.com/support-
services/warranty-license-agreements.
The license set forth in the EULA
represents the exclusive authority by
which the U.S. government may use,
modify, distribute, or disclose the
Software. The EULA and the license set
forth therein, does not require or permit,
among other things, that Keysight: (1)
Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the government
rights in excess of these rights
customarily provided to the public to use,
modify, reproduce, release, perform,
display, or disclose commercial computer
software or commercial computer
software documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except to
the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Key-sight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR
27.401 or DFAR 227.7103-5 (c), as
applicable in any technical data. 52.227-
14 (June 1987) or DFAR 252.227-7015 (b)
(2) (November 1995), as applicable in any
technical data.

http://www.keysight.com/find/sweula
https://support.ixiacom.com/support-services/warranty-license-agreements
https://support.ixiacom.com/support-services/warranty-license-agreements

This page intentionally left blank.

Contacting Us

Ixia headquarters

26601 West Agoura Road

Calabasas, California 91302

+1 877 367 4942 - Toll-free North America
+1 818 871 1800 - Outside North America
+1.818.871.1805 - Fax
WWwWw.iXiacom.com/contact/info

Support
Global Support +1 818 595 2599

Regional and local support contacts:

APAC Support +91 80 4939 6410
Australia +61-742434942
EMEA Support +40 21 301 5699
Greater China Region +400 898 0598
Hong Kong +852-30084465
India Office +91 80 4939 6410
Japan Head Office +81 3 5326 1980
Korea Office +82 2 3461 0095
Singapore Office +65-6215-7700

Taiwan (local toll-free number) 00801856991

—iv -

support@ixiacom.com

support@ixiacom.com

support@ixiacom.com

support-emea@ixiacom.com

support-china@ixiacom.com

support@ixiacom.com

support-india@ixiacom.com

support-japan@ixiacom.com

support-korea@ixiacom.com

support@ixiacom.com

support@ixiacom.com

https://www.ixiacom.com/contact/info
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-emea@ixiacom.com?subject=Enquiry
mailto:support-china@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-india@ixiacom.com?subject=Enquiry
mailto:support-japan@ixiacom.com?subject=Enquiry
mailto:support-korea@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry

This page intentionally left blank.

CONTENTS

Contacting UsS ... iv

About this Guide .. 1
CoNVENTIONS ... L 1
Related Documentation 2

Chapter 1 Introduction . . 3
Background Reading il 3

UsiNg @ LiCEeNSe SerVer . 3
NEEWOIK SOTUD ... 5
Configuring a Network Address on the IxLoad Development Station 5
Testing the Development Station’s Routing 6
Configuring a Permanent Route to Ixia Ports 7
Setting Ixia Chassis Base Addresses 8
Backward Compatibility L 9
Deprecated Commands L 9
PYthoN SUPPOIt 10
PERL SUPPOI . 13

Chapter 2 Quick Start ... 17

WV INAOWS L 17
Using The Sample Tcl Scripts 18
Running the sample scripts 19
Monitoring Status and Retrieving Results 19

Ui/ LiNUX 20

- Vi -

Installing IxXLoad Tl ... 21

Editing the setup_simple.tcl sCript .. L 22
Running the sample SCripts .. 23
Monitoring Status and Retrieving Results 23
Chapter 3 API OVeIrVIiOW . 25
Tl APT SErUCRUNe L 26
Mandatory Objects to Complete a Script 27
MUIti Version SUPPOIt L 28
General APL ConNVeNtiONS . L 28
O S 28
Lists Of ObJeCES . 30
CONSEaNES L 33
Strings and NUMIDEIS L 33
TCL API Internal OVerVieW . 33
WiNAOWS OV eIV EW 33
UNiX OV VI W . 34
O eCt SUrUCTUN e L 35
Building an IXLoad TSt . 36
Step L: Initial Overhead 36
Step 2: Define the TraffiCFIoOW ..l 39
Step 3: Define the TrafficColumn 39
Step 4: Define the NetTraffic ... 40
Step 5: Define ixSubscriberNetTraffic 42
Step 6: Define the NetworkGroup 42
Step 7: Define the NetworkGroup ... 42
Step 8: Define the NetworkRange 48
Step 9: Define the IXTimMeliNe Lo 49

- vii -

Step 10: Prepare to Run the Test ... 50

Step 11: Start the Test 61
Stopping a Test by Pressing Enter .o 62
Running an IxLoad Tl SCript 63
WNAOW S . 63
UNiX /iU 64
Maximum Numbers of Scripts That Can Be Run 65
Modifying Older SCriPtS ... e 66
AP DS P ON .. 66
Network Commands .. . 67
DUT COMMaANAS .. 71
Traffic ComMmMaNAS . 72
Test Structure CommMaNnds ... 73
Test Operation ComMmMaNnds ..o 74
DEDUGGING L 76
Sample Scripts Shipped with IXLoad 78
EXample Program . 82
Chapter 4 IxLoad Tcl API Commands 115
LI IXLOAA 115
IXChassisCNaiN L 117
IXCNASSISBUIIAr L 120
IXCUSEOM P O L 126
Steps for Custom Traffic Mappingo 127
X P aY IS S 128
X PO 131
X U A D L 133
IXSUDMAPRANGE 134

— viii -

XTI R ANG 135

X RO PO OTY 135
IXSendEventComMmMaNd . L 137
IXStatCatal oGl e m L 139
DS =l ol = 140
X O A S DO C L 141
LD =] 143
IXTESECONE Ol O 146
iIXTestControllerMoONi O . 153
statCollectorUtils .. 154
XS O D G N 163
IXTIMEIINE L 165
IXSUbsCriberNetTraffiC . L 170
IXN Tl i C . 171
ACHIVIEY LISt 177
XTIl CF OW 177
IXTraffiCCOIUMIN L 178
XN WO K G OUD ... 179
X DU 181
IXDULCON I GV T UGl L 182
IXDUENEtWOrKRANGE . . 183
IXDUEProtoColPOrt RANGE . 185
IXDULCON I GV D 186
IXDUECONfIGS LB 187
XV W il 188
IXCHeNtNE WO K . 189
IXCHeNtTraffiC . 193

—-ix -

iXClientTrafficNetworkMapping 195

IXNEEWOIrKRANGE . . 203
XSV erN e WO K 206
IXServerTralfiC 210
ixServerTrafficNetworkMapping ..o o L 212
IXWaitEVentComMMaNd .o 214
Chapter 5 Internal Commands L 217
AUP I CAY 217
X CON TG il 218
IXCoNfigSequenCeCoNtaiNer .. . 218
ixConfigSortedNamedItem it . . 221
Chapter 6 Network Stack API .. 225
Network Stack OVerVieW . 225
Network Stack HierarChy ... 225
Test, scenario, and COlUMIN .. 226
NetwOork GroUup OVEIVIEW ... 226
Global PIUGINS . 227
Stacks and Protocol PIUGINS . L 228
Global OPtiONS . . 228
NetWOrkK GroUp SettingSo 230
L2 PIUGIN 230
Ethernet PlUGiN . 231
Ethernet ELM OptioNS o 234
Physical Layer EXample oo 235
Layer 2 Protocols (MAC / VLAN) 237
L2E e et PIUG N L 237
L2 Ethernet (MAC/VLAN) Port Group Data 239

MAC SESSION Data oo 239

MA C RaANGE 240
VLAN I RaANGE L 242
Layer 2 EXAMIDIE o 245
Emulated Router PlUGIN .. 249
EmulatedRoUter RaANGE . . 250
Emulated Router EXample oo 253
I PIUGIN 258
POt GroUD Data . oL 258
IP SessioN Data 259
IV AV O PIUGIN 260
IP PIUGiN EXamMIDle . 261
SEatiCARP . 266
DHCP Client and SerVer o 267
DHCP Client PIUGIN il 267
DHCP Server PIUGIN . 269
Authentication EXtension PlUGINS ... L 270
W e AU P UG N L 270
802, 1X PIUGIN L. 271
EAPOU D PP PIUGIN 275
TP PlUG N 278
I PairRANGE . 279
I P T PrOf i 281
Impair Plugin EXample ool 292
TP S EC PIUGIN 298
P S CRANGE 300
NetwWork Config ..o L 305

- Xi -

AUthentiCatioN 310

TKE PRase & .. 314
TKE PRase 2 o 318
Identification ... 322
TKE CONtrOl o 326
K BY S oo 331
TUNNEl SO U ..l 335
CertifiCateS il 338
BAP COmMMON .. 341
AP A A . 342
B AP ST 344
LIPS EC EXaMIPI O 345
PP P OX PlUGIN . 351
PPPOXPOrtGroOUP DAt 352
PLSesSioNDataBaseo L 355
PPPOXRANGE LISt . . 356
PPPOXACNAME LIS . 356
PPPOXACM AL St 357
PPpPOX Plugin EXample . 358
L2 P PIUGI N il 363
NetWOrk GroUp Settings 365
L2EP S S SIOND At <. 367
BasSiC ParamM e e S L 368
L2 P Control Plane ... 371
L2 P Data Plane 376
L2 P Authentication ... 380
LN S . 383

- Xii -

L2t PlUGIN EXaMIDIE 386

G P S PIUGIN . 392
GTP SGSN PlUGIN 394
GTP GGSN PlUGIN .. 394

EG T P PIUGIN L 394
eGTP Plugin MME eNB S1 S11 commands 394
eGTP Plugin Network Commands oo 395
eGTP eGTP PGW S5 S8 commands 395
eGTP eGTP SGSN RNC S4 commaNnds 395
eGTP SGW S1 S11 COMMaNdsS L 395
eGTP Plugin DNS COmMMaNdsS ..o L 395
€GP Base 0D ECES 395

DS Lite PlIUGIN 395
DS Lite RANGE il 395

Global Services PIUGINS .o 398
FIlter PlUGIN L 398
Gratuitous ARP PlUGIN .. 400
DN S PIUGIN 401
TCP PIUGI N L 403
ROULES PlUGIN e 411
Dynamic Control Plane plugin . 412

Mobile Subscribers PIUGINS .. L 413
MobileSUbSCribersPIUGIN L 413
Radius PlUGIN 414
Mobile Subscribers EXampleo oo L 416

Chapter 7 APPREPIAY .. 425

O IV S 425

= Xiii =

Application Replay Peer AQent . . 427

Flow Definition 428
LoopBeginCommand ... 437
LOOPENdC oMM .. 438
TR 439
availableTosList L 440
Advanced OpPtiONS .o 442
Global StatistiCs 445
Chapter 8 APPMIX .. 453
Creating an AppPMixX ObJeCt ... 454
Adding Flows to an AppMix ObjeCt 455
Setting FlOW Parameters oo 456
Configuring FIow CommMands ... L 457
FloOW ProtOCOlS . L 458
Setting FIoW ENApPOiNtS ... 460
FlOW ENAPOIiNtS . 461
Chapter 9 Bulk MG P ... L 463
AP OV IV W il 463
MGCP Client AP 463
O IV S .. 464
MG P SerVer APl 469
MGCP Server AQeNt |l 469
ParamM e IS 472
MGCP Client ANt 475
Param et ers 476
Low Level Parameters . . 478
DN S RECOINA . . L 479

- Xiv =

ENAPOint NamMES L 480

Media Setlings . o 483
COMIMIANAS . 488
Custom ENdpoint Names ... 491
MGCP SerVer AQENE 492
Param et erS 493
Low Level Parameters . . 495
DN S Updates .. L 496
ENAPOint NamM S L 499
Custom ENdpoint Names .. 502
BUlk MGCP StatistiCs . . 503
Bulk MGCP Client Statistics 504
Bulk MGCP Server StatistiCs 512
Chapter 10 BuUlk SIP ...l 517
OV BV W 517
O IV S 518
SIP Client CommMaNnds 519
SIP Client AGENE 520
General SettiNgsS 521
CoNtENt Of MESSAGES .. 522
RU S . 523
State Machine 524
Media Setlings ..o 525
AUdio CliPS POOI L 527
ViIdE0 SEUiNGS .o L 528

S CBNaAN O .o 529
SIP Server COMMaNGSo oL 530

- XV —

General SettiNgS ... 532
Content Of MESSAGES . .. oL 533
RUIS . 534
State Machine 535
Media Settings ... L 536
AUdio Clips POOI .. 537

S CBNaAN O . 538
SIP Client AGeNt 539
General SettiNgS ... 543
Content Of MESSAGES . .. L 547
State Machine 550
Media Setlings ..o 552
Vide0 Settings . . 559

S CNAIOS . 560
ST P SVl AGENt 570
General SettiNgsS .. . 573
CoNtENt Of MESSAGES .. 574
State MacChine .. 575
Media SettiNgS ... 576

S CBNaAN O .o 577
Using Variables in SIP Fields 580
BUIK SIP StatistiCs ... 582
Bulk SIP Client Statistics 583
Bulk SIP Server StatistiCs 598
Chapter 11 CIFS . 613
AP OV IV W L 613

- XVi —

O IV S .. 613

CIFS Client ANt 615
CIFS Client CommMands 616
CIFS Basic coNfiguration ... 617
CIFS Advanced configuration L 620

CIFS Server AQeNt il 624
CIFS ConfigUIratioN oo 625
USer INf0 627
Advanced CoNfigUIratiON o 629
Shared POOl L 631

S ISt CS L 635
CIFS Client Statistics 636
CIFS Server Statistics 646

Chapter 12 DHOCP . 651

OV BV W 651
O IV S 651

DHCP Client AQeNt L 652

DHCP Command LISt L 654

Advanced OpPtiONS .. 662

Ry AGONE 664

O ON L 666
Ot ON SOt L L 672
OptioN Set Manager .. 674
OPtiON ChOICES .. 675

I AdAr eSS 677

Using Variables in DHCP Fields 678

DHCP StatistiCs ... 680

- XVii =

Effect of Options on DHCP Packet Size 692

Chapter 13 DINS il 693
OV BV W L 693
O IV S .. 693
DN S Client ANt 694
DN S Client QUEIY oo 696
DNS Client Advanced OplioNs 698
DN S SerVer AQENE L 700
DNS Server Zone Management il 702
DNS Server Zone Configuration ... 704
DNS Server Advanced OptioNs ... 706
DNS Server Resource ReCOrd 707
DN S StatistiCs .. L 710
DNS Client StatistiCs 711
DNS Server StatistiCs 720
Chapter 14 FT P 725
OV BV W 725
O OO IV S . . 725
FTP Client AGeNt 726
FTP Client ACtiON ..o . 727
FTP Server AQeNE oL 728
realFileList 729
FTP Client AGeNt e 730
FTP Client AT ON L 734
FTP Server AQeNt il 737
F TP S atistiCS ... o 740
FTP Client StatistiCs 741

- xviii =

FTP Server StatistiCs ... 744

Chapter 15 HT TP 747
OV BV W L 747
O IV S ..o 747
HT TP Client ANt e 749
HTTP Client Profile 759
HT TP Client ACtiON L . 761
HT TP Server AQeNt L 765
IXC00KIECON Nt 771
IXC00KIEOD OO ... 773
IXRESPONSEHEAAET 775
Page O Ot 778
CustomPayloadOb et 781
SUPPOrted CiPNerS ..l 783
Using Sequence Generators in HTTP Client Commands and Server Header Name=Value
Felds oL 787
Using System Variables ... 789
St StiCS | 790
HTTP Server StatistiCs 791
HT TP Client Statistics 800
TCP Reset StatistiCs ... il 824
IxLoad Statistics Interpolation ... 824
Chapter 16 IMAP 827
AP OV IV W il 827
O e IV S . . 827
IMAP Client AQeNt L 829
IMAP ComMMaNds .. . 831

- XiX -

IMAP Client Advanced OpltioNns 837

IMA P ServVer AQeNE oo 839
IMAP Server Advanced OptioNs L 842
IMAP Server CoNfig .o 844
MaIlS 845
Mail Message Instance List .. . 847
All Ml MESSAQESl 851

Using Auto-Generated Strings ... o 852

IM AP StatistiCS il 853
IMAP Client Statistics 854
IMAP Server StatistiCs ... 859

Chapter 17 IPTV/ VideoO ... 863

OV BV W L 863
VIO il 863
L TN 863
O e IV S .. 864
Video Client APT StruCtUre . L 864

ViideO Client AGeNt . 866
COMIMIANAS . 870
AAVaNCEA 883
HeadOr 887
SIANA NG 888
PrOf Il S 891
ANl VI eW L 893
P TV O i ONS ... 894
0] = | 895

ViidE0 Server AQeNt L 898

— XX —

VB0 ProP eI S 901

Advanced OpPtiONS oo 904
VidE0 CONFIg 907
IPTV / Video Statistics .. . 908
IPTV / Video Client Statistics L 909
IPTV / Video Server Statistics 948
Chapter 18 1SCSI 953
AP OV O VI W . L 953
ISCSI ClieNt AQeNt L 956
ISCSI Client ComMmMands ... 957
=00 958
ISCS T ANt L 960
AAVOD I ONS . L 962
ISCSI Server ANt il 964
1t 965
ISCS T A GOt L 968
AAVOD I ONS . L 970
Chapter 19 IXTO L 973
AP OV VI W il 973
IXIO Nt AGENt 975
Client file 1St . 976
advanced configuration . . 978
Arive LISt L 979
IXIO Client ComMMaNds il 980
Chapter 20 LD AP . 985
OV IV W L 985
O IV S . 986

- XXi —

LDAP Client Commands ..o 986

LD AP Client ANt . 989
Command LISt L. 991
Global OptiONS ... 999
GO0l 1002
MoOdifiCation 1003
A DU .. 1005
Attribute Type and Values ... 1006

LD AP StatiStiCS . il 1007

Chapter 21 Peer-to-Peer Application 1015

O IV S L 1015

Peer-to-Peer Application AQent .. 1016
FloW D efiNitiON 1017
INDUINEF OW 1018

Peer-to-peer Global StatistiCs o L 1020

Chapter 22 POP B L 1027

OV VI W 1027
O IV S .. 1027
POP 3 Client AQeNt . 1028
POP 3 Server AQeNt L 1028

POP 3 Client ANt . 1030
POPBCOMMaANd ... 1033

POP 3 SarvVer AQeNt L 1037
Ml B OX I M 1039

Using Auto-Generated Strings ... L 1040

POP3 StatistiCs | . .. 1041
POP3 Client Statisticsl 1042

- Xxii -

Chapter 23 Published Vulnerabilities and Malware 1049
CONFI L 1050
AAV O ONS 1052
attacksCmdLiSt 1053

attacksCmdList nodelist .. . L 1055
AdAATACKS 1059
AttaCk LISt COUNE . 1060
Create Attacklist ool 1061
CreatePlay liSt 1062
DatabaseV ersiON .l 1063
Delete Attack it . 1064
Delete A aCKS 1065
EX PO A ACKS 1066
Gt AP U 1067
ImportAttacks (.zatk format) 1068
ImportUserDefinedAttacKS 1069
Rename At ack LSt .l 1070
RetrieVe A tACKS 1071
SearCh A aCKS 1072

Chapter 24 QT L 1075
Running a QuickTest from Tl ... L 1076
SEAr QUICK T Ot 1077
CheCKTeStRUNNING . 1078
SEOPQUICKT ST L 1079
QuUicKTest Sample SCriPt .. 1080

Chapter 25 RadiUs L 1083

- XXiii =

OV IV W e 1083

O IV S . 1084
Radius Client Agent _ 1087
Radius Command List . . 1088
Global CoNfig o 1094
SPECITIC SOOI YIS 1096

N eNdOr LISt 1098
ALt bUte LISt il 1099
AccessALtri DS et LISt . . 1101
ACCENGATEI DS i St L 1102
RADIUS Client Statistics 1103
Chapter 26 RTSP . . 1111
OV BV W L 1111
O IV S 1111
RIS P Client ANt . 1112
RIS P ServVer AQeNt 1113
RIS P Client AQeNt 1116
RESPCOMMIANG 1120
RESPHEAAIS . 1123
RtspsetParamOptioNList .. 1125
RtspgetParam OptiON LISt 1127
RIS P Server AQeNt | .. 1129
PresentationItem .o 1133

S A 1134
L0 | =] o | 1136
RSP StatistiCs | .. 1137
RTSP Client Statisticsl 1138

- XXiv -

RTSP Server StatistiCs ... 1147

Chapter 27 SMT P 1151
OV BV W L 1151
O IV S .. 1151
SMT P Client AGeNt 1152
SMT P Server AQeNt .. 1154
SMT P ClieNt AGENT 1155
SMEPCOMMaANG 1158
Header . 1161
AttaChmM et 1163
MailM eSS A . . 1166
ST P SerVer ANt L 1169
ST P S ati S iCS .. 1171
SMTP Client Statistics ... 1172
SMTP Server StatistiCs 1176
Chapter 28 SSH . 1179
AP OV VI W il 1179
O eIV S .. 1180
SSH Client AgeNt .o . 1182
SSH Command List _ . L 1183
Ot ON SOt 1190
Option Set Manager il 1191
Global CONfIg .. 1194
SSH Client Statistics .. . 1195
Chapter 29 Stateless Peer ... 1201
Stateless Peer OVerVieW . . . 1201
O IV S 1201

— XXV —

Stateless Peer CommaNnds .. 1202

Stateless Pear AQeNt .. 1203
Stateless Peer Advanced OptioNs ... 1206
Stateless Peer Protocol FIOWS . 1207

Chapter 30 HTTP Streaming o 1215

AP OV O VI W . L 1215
O IV S .. 1215

HTTP Streaming Client AQent .. i 1216
CNALI St . 1217
Global OPtiONS L 1219
HT TP SettiNGS .. 1222
availableTosList . . . 1224
Streaming Client StatistiCs ... 1226

Chapter 31 Telnet . 1233

AP OV IV W il 1233
O e IV S .. 1233
Telnet Client AGeNt 1234
Telnet Server ANt ..l 1236

Telnet Client AQeNt 1238
Telnet Client Basic OptioNS 1240
Telnet Client Advanced OptioNs ... i 1241
Telnet Client CommMaNnd ... L 1242

Telnet Server AQENT .. 1245
Telnet Server Basic OptioNs .. .o 1247
Telnet Server Advanced OptioNSl 1249

Telnet Statistics 1250
Telnet Client Statistics 1251

- XXVi -

Telnet Server StatistiCs ..o 1257

Chapter 32 T TP 1263
OV BV W . 1263
O IV S .. 1263
TP Client AGeNt L 1266
TFTP Command List .. 1267
TFTP Client Advanced 1271
TP SerVer ANt 1273
LIEE L= I o 1275
AAVANCEA 1277
TFTP Client StatistiCs .. . 1279
TFTP Server Statistics 1283
Chapter 33 Trace File Replay oo 1287
OV VI W 1287
O IV S .. 1287
Trace File Replay Client Commands L 1287
Trace File Replay Server Commands o 1289
Trace File Replay Client AQent _ oo o 1292
Ot ONS 1293
Filter LISt 1295
Enable Filter . 1297
Trace File Replay Server Agent ... 1298
Trace File OptioNs .o e 1299
Server NetwWork List oo 1301
Advanced OpPtiONS ..o 1302

S At St CS . 1303
Trace File Replay Client StatistiCs 1304

- XXVii =

Trace File Replay Server Statisticso oL 1306

Chapter 34 VDI . 1309
APT OV IV W . 1309
VDT Client AGENE 1310

SO NG S . 1311
VDI Client ComMmMands 1312

Chapter 35 VOIP H.248 P eI ... o 1313
LMt atiONS il 1313
VOIP H248 Peer APT ComMmMaNnds o 1314

VoIP H248 MGC/MGW Peer APL Objects 1316

VOIP H248 TermGroup Peer API Objects 1317
VOIP H248 Peer ANt oL 1318
Simulated MG L. 1325
SimuUlated MG 1327
H248 TermGrOUDS oo 1329
MGW AUOM At C L. 1331
MGC AULOM AT C .. 1334
PrOf I S . 1339
PaCKaGES . . L 1340
BV NS 1342
PO S . . 1343
S ONAIS il 1344
SHAtISTICS L. 1345
H248 Setlings .o oo 1346
CodecC SettingS .. 1348
Data CodeCS .. L 1349
GO . 1351

— XXViii =

Other SettiNgS . 1357

SO SetliNGS 1359
R P SetliNgS oo 1361
AUAIO SEUINGS L 1363
EXECULION SettiNGS L 1367
Scenario Settings . 1369
Chapter 36 VOIP H.323 PO ... 1371
AP OV O VI W . L 1371
LimitatiONS Lo . 1371
VOIP H323 Peer APT COMMaANAS . ..o 1372
VOIP H323 Peer API ObjeCts . 1373
VOIP H323 Peer ANt oL 1374
C0deC SetiNGS ... 1385
GO ... 1386
Data CodeCS .. L 1391
Other Settings ... o L 1393
R P SetliNgS oL 1395
AUAIO SEUINGS L 1397
Video Settings .o . 1401
Alternative Capability Value Set List ... 1406
Capability LISt L 1407
Custom Activity Link Settings 1408
EXeCULiON SetliNgS . o L 1410
Simultaneous Capability ... L 1412
H323 SetliNgS o oo 1413
Simultaneous Capability Value Set List ... 1417
Alternative Capability List . ..ol 1418

- XXiX =

Alternative Capability 1419

DAl PlaN 1420
Terminal Capability Set .. 1423
Simultaneous Capability List ...l 1424
SCeNArio S iNGS . 1425
CUSTOM ParamMe S 1426
Chapter 37 VoIP MG CP . 1429
LimiEatiONS 1429
VOIP MGCP Peer API CommMaNds .. . o 1430
VoIP MGCP CA/MGW Peer API Objects 1432
VoIP MGCP Endpoint Peer API Objects 1433
MGCP GW AGeNt il 1434
MGCP Settings (G W) .. 1443
Automatic Settings (GW) oo 1445
ENADOINES 1447
MG P CA AGCNE 1448
MGCP Settings (CA) 1450
AULOMaAtiC SettiNgs (CA) . 1452
ENAPOINES 1454
Ga WY S 1456
SCeNArio S iNGS . 1457
EXeCUtiON Settings . il 1458
Custom Activity Link Settings ... 1460
Simulated ENApOiNtS | 1464
Data CoAeCS ..l 1466
GO .. 1468
SO SttiNGS 1472

— XXX —

R P SettiNgS oL 1473

AUAIO SEUINGS L 1475
Other Settings ... o L 1479
Chapter 38 VOIP SIP Cloud il 1481
LimitatiONS il 1481
VOIP SIP Cloud APT CommMaNnds 1482
AP OB OCtS o 1483
VOIPSIP Cloud AGeNt L 1484
StING S o 1486
SIP Server LISt 1487
Chapter 39 VOIP SIP PeeI . . 1489
LimitatiONS L L 1489
VOIP SIP Peer AP Commands ... 1490
VOIP SIP Peer API ObjeCts ... L 1491
VoI P SIP Peer AQeNt 1493
Codec SettingS .o 1515
Data CoAeCS ..l 1516
GO .. 1518
Other Settings L 1524
SIgNaling SettiNgS .. 1527
Edit CoNtact ... L 1531
R P Settings . 1533
AUAIO SEUUINGS L 1535
Vide0 Settings .o 1539
T 38 SetliNgS L 1543
T30 SetliNGS <o 1547
Timer Settings il 1553

— XXXi =

SRTP SEtINGS oo 1555

MO R P S tiNgS - 1557
MSRP GUI FileS L 1560
MO R P ReIAY S . 1562
Custom Activity Link Settings ... 1563
EXCULION SettiNGS L 1566
Transfer AdAressS . 1569
SCeNAN O S iNGS . 1571
DAl Plan il 1572
TS SetliNgS L 1575
TLS CYPNOIS L 1578
Custom Parameters ..o L 1579
Advanced SetliNgsS ... o 1582
ClOUd SOV IS il 1583
Server RUIES 1585
Cloud RUIES .. 1586
RUIE DAt L 1588
Chapter 40 VOIP SKiNNY Peer ... 1591
LimMiEatiONS 1591
VOIP Skinny Peer AP Commands oo 1592
VOIP SKinny APT ObJeCtS .. 1593
VOIP SKiNNy Peer AQeNt L 1594
SCENANIO S LtINGS .. 1610
EXECULION SettiNGS L 1611
DAl Plan il 1613
SKINNY SettiNGS 1617
Call MaNAGEIS ... 1619

— XXXii =

COodeC SEMINGS ... 1621

Data CodeCS ..l 1622
GO . 1624
R P SettiNgS oL 1630
AUAIO SettiNGS L 1632
Other Settings ... L 1636
Custom Activity Link Settings ... 1638
Custom Parameters | 1640
Chapter 41 VOIP No Call Control Peer i, 1643
LimiEatiONS 1643
VoIP No Call Control Peer API Commands 1644
VOIP No Call Control Peer APT ObjJeCts, 1645
VOIP No Call Control Peer AQeNt .o o 1646
NoCallControl VOIP Statistics 1648
SCENAN O SN .. 1663
EXECULION SettiNGS L 1664
DAl Plan L 1666
C0deC SeMINGS . ..o 1668
COABCS .. 1669
Data CodeCS ..l 1675
AUAIO SettiNGS L 1677
Video Settings . . 1681
.30 SetiNGS <o 1685
.38 SetliNGS .o 1691
R P SettiNgS oL 1695
SR P S NG ..ol 1697
Other Settings L 1699

- XXXiii =

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU

Statistics . 1701
Per-Interface and TCP Statistics il 1702
TCP StatistiCs . 1703
Advanced TCP StatistiCs ... L 1711
Per-Interface Statistics 1712
RUN State Statistics il 1713
Curve Segment StatistiCs ... 1715
Connection LatenCy StatistiCs ... 1716
IXServer Layer 2-3 StatistiCs . o 1718
IxServer Port CPU StatistiCs 1720
INDEX 1721

— XXXiV =

This page intentionally left blank.

— XXXV —

About this Guide

This section contains information that explains the typographical conventions used in this
documentation. This information will aid you in using the documentation most effectively. Also
provided is a list of related documentation that you may find useful.

Conventions

The following typographical conventions are used in this documentation:

Italics are used to indicate the names of software fields and parameters, titles of books or
documents, and first references to words, terms, phrases, or concepts that have a special
meaning or require special identification or emphasis. For example:

In the userid field, enter your assigned user identification number.
Norton’s Telecom Dictionary is a helpful reference tool.

The term tolerance level refers to the standard deviation setting.
The variable n represents any numerical value.

Menu names and options appear as bold blue text in online Help, and appear in small capital
letters in documents. For example:

To save your input, choose the File>Save menu option.

Bold black type is used to indicate the names of buttons, commands, and files that are part of
procedures, as well as to identify field and parameter options. In addition, bold text emphasizes
important information in text or in caution, warning, or danger statements. For example:

To proceed to the next step, click OK.

Use the copy command to duplicate the field entry.

Save and close the books.xml file.

Always save your test configuration.

Courier text is used to indicate typed text input. For example:
Access the new file name at the command line: ¢ = newbook.gif.
Enter the setup.ini location: setupini = Ixia\Code\New.

PC keys are indicated in all caps, using the following conventions:

Simultaneous keystrokes are shown by joining the key names with a plus sign (+), For example,
CTRL+Q.

Sequential keystrokes are shown by joining the key names with a comma (,). For example,
SHIFT, F7.

About this Guide

The following table describes the note icons and messages used in this document.

Name Icon Description

Note LT_| Indicates information that emphasizes or supplements important points in the
main text.

Important | g Indicates information that is essential to the completion of a task.

Tip [:_"}\ Provides supplemental suggestions for applying techniques and procedures to

accomplish a task.

Related Documentation

The following documentation may be helpful in gaining more understanding of IxLoad. The
documentation is available from the Help pull-down menu in IxLoad or from the IxLoad CD.

Ixia user documentation is also available in the Support>User Guides area of ixiacom.com
(http://www.ixiacom.com). User registration is required to view this online documentation.

Getting Started with Aptixia IxLoad
IxLoad User Guide

http://www.ixiacom.com/

CHAPTER 1 Introduction

The IxLoad Tcl API is a set of Tcl commands that enable you to run IxLoad tests from Tcl scripts. The
API provides most of the same capabilities available from the GUI.

Background Reading

In order to use the Tcl API, you should also have the following other documents:

The IxLoad User Guide should be read and understood before attempting to use the API. In particular,
the following two chapters are essential:

o Introduction discusses the background to understand Internet protocol testing in general and the
manner in which Ixia approaches it specif

o Creating and Running an IxLoad Test describes how to create the test infrastructure. Care must
be taken to assign IP addresses correctly and to provide required routes.

The Creating and Running an IxLoad Test chapter uses the term Management Station to refer to the
host that runs the IxLoad GUI application. In this guide, that host is the host that runs a Tcl program
using the IxLoad Tcl API is in this same position. We shall refer to this as the Development Station in
the remainder of this manual.

The Ixia Tcl Development Guide describes the general method for developing Tcl scripts for use with
Ixia equipment. Only a few of the commands described in that guide are necessary to construct an
IxLoad Tcl API-based test, but you should review the entire guide to familiarize yourself with the
general structure and functioning of Tcl-based tests.

Using a License Server

If you are using a central license server with IxLoad, make sure to set the name of the serverin
IxLoad's Settings > Preferences menu choice.

To allow use of a central license server by the TCL API, the system environment variable IXN_
LICENSE _SERVER must be set on the client PC.

Chapter 1 Introduction

If you are running your Tcl program on a Unix client, the IXN_LICENSE_SERVER environment variable
must be set on the Windows host running the Tcl Server, and on the Unix client through the user shell
initialization script.

To set the License Server environment variable on a Windows host:

Right-click on the My Computer icon on the desktop, then select Properties.

Click the Advanced tab.

Click Environment Variables.

In either the User variables for... or System variables lists, click New to add a new variable.
Name the variable IXN LICENSE SERVER.

Set the variable value to the name or IP address of the license server host.

Nouhswbd=

Click OK to close the window.

Configuring the ixMachineOptions.ini File

The ixMachineOptions.ini file contains parameters for configuring the license server used for Tcl
scripts. In order to run IxLoad from Tcl scripts, you must configure these parameters, because there is
no way to define a license server from an IxLoad Tcl API script.

The ixMachineOptions.ini file is created the first time you start IxLoad, and is stored in the following
directory on the IxLoad client PC:

« Windows XP: C:\Documents and Settings\All Users\Application
Data\Ixia\IxLoad\<version>\

« Windows Vista and later: c:\Programbata\Ixia\IxLoad\<version>\

License server parameters

[GlobalOptions]

license_ Specifies whether the license is stored on the test chassis or on an external
server license server.
enabled = False: The license is stored on the same Ixia chassis that is being used by the Tcl

script (Default).

True: The license is stored on an external license server. Specify the license
server’s host name or IP address in the license_server parameter.

license If the license is stored on an external license server, specify its host name or IP
server = address.

Chapter 1 Introduction

License Server Parameters

The [GlobalOptions] section of the IXAppOptions.ini file contains two parameters that define the
license server being used. In order to run IxLoad from Tcl scripts, you must configure these
parameters, because there is no way to define a license server from an IxLoad Tcl API script. The
license server parameters are:

[GlobalOptions]

license_server_ @ Specifies whether the license is stored on the test chassis or on an external
enabled = license server.

False: The license is stored on the same Ixia chassis that is being used by the Tcl
script (Default).

True: The license is stored on an external license server. Specify the license
server’s host name or IP address in the license_server parameter.

license_server | Ifthe license is stored on an external license server, specify its host name or IP
= address.

Network Setup

You may need to configure IP addresses or routes for IxLoad Tcl API testing. Review the following
sections to see if you need to set or change any addresses:

o To change the IxLoad Tcl API development station’s IP address, see Configuring a Network
Address on the IxLoad Development Station (see "Configuring a Network Address on the IxLoad
Development Station").

« If the route to your Ixia chassis includes one or more routers, see Configuring a Permanent Route
to Ixia Ports (see "Configuring a Permanent Route to Ixia Ports").

o If you need to change the internal network used by an Ixia chassis, see Setting Ixia Chassis Base
Addresses (see "Setting Ixia Chassis Base Addresses").

Configuring a Network Address on the IxLoad Development
Station

To use the IxLoad Tcl API, you must configure your development station with an address on its local
network that is routeable to all of the Ixia chassis that you will use for testing.

To configure routing:

Chapter 1 Introduction

1. Click Windows' Start button and select Settings | Network and Dial-up Connections.
Windows displays the connections currently configured on your PC.

2. Right-click Local Area Connection and select Properties.Windows displays the Local Area
Connections Properties window.

3. Click Internet Protocol (TCP/IP), then click Properties.Windows displays the LAN
connection’s TCP/IP properties.

4. Click the Use the following IP address button, then enter addresses in the following fields:

o IP address: Enter an IP address that is routeable to all the Ixia chassis that you will use for
IxLoad testing.

o Subnet mask: Enter a subnet mask appropriate to the IP address you entered.

o Default gateway: Enter the IP address of the gateway you will use to access the network that the
Ixia chassis are on.

5. If you want to use DNS, enter the DNS servers’ IP addresses in the Preferred DNS server and
Alternate DNS server fields.

6. Click OK to close the window.

Testing the Development Station’s Routing

After you have configured the development station’s IP address, you should test its routing to ensure it
can communicate with the Ixia chassis you will use with IxLoad.

To test the routing:
1. Click Windows’ Start button and select Programs > Accessories > ComPrompt.
Windows displays a Command Prompt window.

Equation 1: -1.Ping Command

ommand Prompt

Hinimum = 100m=, Maximum =

Chapter 1 Introduction

2. Use the ping command to test that your development station can communiwith each chassis:
ping aaa.bbb.ccc.ddd

(replace aaa.bbb.ccc.ddd with the IP address of the Ixia chassis).

3. Repeat the ping command for each chassis. Each chassis should return a reply. If any do not,
check their TCP/IP configurations.

Note: You cannot ping Ixia ports (the chassis’ internal 10.0.0.0 network) until you have started a
test. Refer to Configuring a Permanent Route to Ixia Ports on page 1-6 on how to set up
routing so you can access the addresses assignhed to Ixia ports.

Configuring a Permanent Route to Ixia Ports

You must configure a route from the IxLoad development station to the Ixia port management base
addresses.

To establish a permanent route on a Windows system, you can either use the IxLoad GUI or the
following procedure:

To establish a permanent route:

1. Atthe IxLoad development station, click Windows’ Start button and select Programs >
Accessories > Command Prompt.

Windows displays a Command Prompt window.

Equation 2: -2.Route Command

ommand Prompt

Microzoft Windows ZHBA [Uerszion 5.80.21951
CC» Copyright 1?85-2000 Microsoft Corp.

C:%>route —p ADD 18.8.8.8 mask 255.255.8.8 1?22 _168.8.2 nmetric 1

2. Use the route command to create a permanent route:
route -p ADD 10.0.0.0 mask 255.255.0.0 aaa.bbb.ccc.ddd metric 1
« If the Ixia chassis is on the same subnet as the development station, replace aaa.bbb.ccc.ddd
with the IP address of the Ixia chassis.
o Many IxLoad test environments resemble the one shown in the figure below: IxLoad Tcl API
running on a PC connected to a corporate production network, an Ixia chassis connected to a test
or QA network behind one or more routers, and a DUT network connected only to the Ixia chassis.

Chapter 1 Introduction

Corporate production network

== ===
— —
= : e
Royter i Permanent route R°”i|e"
| through router to |
| Ixia chassis | Ixi .
| I Xia chassis
[|
: IX\Web Development Station :
| |
| |
Public network | | Test / QA network

[|
1 1

If the Ixia chassis is not on the same subnet as the development station, as shown in the figure above,
replace aaa.bbb.ccc.ddd with the address of the router that will provide a connection to the Ixia
chassis. That router, and all other intermediate routers to the chassis, should contain routes for the
10.0.0.0 (or modified) address range. These routes in the last router should refer to the Ixia chassis as
a gateway.

Note that in a network shown like the one shown in the figure, the router(s) may be configured to
disallow access from the production network, or they may route IxLoad requests intended for the Ixia
ports (by default, a 10.0.0.0 network) elsewhere (usually to the Internet) or may drop them altogether.

Ensure that no other addresses assigned in IxLoad fall into this range. This setup may be tested using
the ping command as described in Testing the Development Station’s Routing (see "Testing the
Development Station’s Routing"), but only in the final stages of running a test.

Setting Ixia Chassis Base Addresses

All ports on an Ixia chassis are initially configured so that they may be internally addressed, for IxLoad

management purposes, as:
10.0.<card>.<port>

For example, card 2 port 3 has an internal IP address of 10.0.2.3. These addresses must be routeable
from the development stations to the Ixia chassis.

The first two octets of the address (10.0) are called the base address. If you are using IxLoad on an
existing network, you may want to change the base address to conform to your existing network

Chapter 1 Introduction

layout. If two or more chassis are used for IxLoad GUI or IxLoad Tcl API testing, all but one of the
chassis base addresses will need to be changed.

Note that the Ixia ports on a chassis will use only a limited range of addresses on their subnet. For
example, if the base address is 10.0, and there are sixteen 8-port cards in the chassis, then the range

of addresses used will be:
10.0.1.1 - 10.0.16.8

To change the base address of a chassis, use IXExplorer:

1. Open IxExplorer.

2. Select the Chassis Chain object in the tree and right click and choose Add Chassis. Enter the
name or IP address of the chassis that will be used.

3. Right-click on the newly created chassis and select Properties.
Select the IxRouter tab.

5. You may change the base address in the IP Network field. Make sure to only modify the top two
octets and do not change the Mask field.

Backward Compatibility

IxLoad Tcl provides backward compatibility for:

« Scripts that configure and run tests.
o Scripts that run tests from a repository.

« Scripts that modify repositories, as long as the script was written for and tested with repositories
from the same IxLoad release as the script, or an earlier release.

For example, if you write a script for IxLoad 4.0, that script can modify any repository created in IxLoad
4.0 or earlier.

IxLoad Tcl does not provide backwards compatibility for scripts that modify repositories that were
created or saved from releases after the release that the script was written for and tested on.

For example, if you write a script for IxLoad 4.0, that script should not modify a repository created in a
release later than IxLoad 4.0.

Deprecated Commands

The following items are no longer supported:
« Agent sharing

In previous releases, the Tcl API allowed sharing of objects between NetTraffics. For example, in the
following code fragment, Trafficl is shared between two NetTraffics:

STrafficl Network3 config \
-traffic [$Trafficl Networkl cget -traffic]

Chapter 1 Introduction
Beginning with the 5.30 release, agents can no longer be shared. If you try to run a script that includes
agent sharing, an error will be thrown and the script will stop.

Instead of agent sharing, the Tcl API includes a new command, duplicate, that makes copies of
networks, traffics (agents) and DUTs. The following example shows duplicate being used to copy
agents from Trafficl to Traffic3:

set Trafficl [STrafficl Networkl cget -traffic]
set Traffic3 [$Trafficl duplicate]

$Trafficl Network3 config \
-traffic S$Traffic3

duplicate is described in duplicate.

Python Support

In addition to Tcl, you can create native Python scripts that run IxLoad tests. You can either write the
Python scripts by hand, or you can use ScriptGen to create a Python script natively from an existing
test configuration. For more information on using ScriptGen, see the IxLoad User Guide.

Note: Python is not included with the IxOS or IxLoad installers. You need to install Python separately
before you can run Python scripts.

Configuring Python Support
When you install IxOS Tcl support for Linux, python wrappers are also installed. On the following path:
<IxOsTclInstallationPath>/bin
an ixpython file is installed.
You need to edit this file to specify the python properties:
1. Openthe ixpython file, and edit the following lines:

PYTHON_HOME= Python install directory. Usually, this is /usr/bin.

PYTHONver= Python version.
Example: PYTHONver=2.7

PYTHONLibPath= | IxLoad path, including version.
Example: PYTHONLibPath=$IXIA HOME/lib/IxLoad6.60.0.109-EB

2. Save thefile.
3. To run a python script, type:

ixpython <pythonScript>

Python Commands

-10 -

Chapter 1 Introduction

All the commands that are available in Tcl are also available in Python. In most cases, you use the
same command, but written in Python syntax.

However, there are some Python-specific commands. These are listed in the table below.

There are two sample Python scripts installed with IxLoad that you can use as examples of how to write

an IxLoad Python script. They are installed on the following path:
<ixload install path>\<version>\PythonScripts\Samples

The following table describes the Python-specific IxLoad commands.

Python Command Description
Equivalents to ::IxLoad

IxLoad.connect(remoteServer) Connect to a remote Tcl Windows server when running from a
non-Windows client.

Tcl equivalent: : :IxLoad connect
Example:

IxLoad = IxLoad()
IxLoad.connect 10.200.55.39

IxLoad.new Create a new object.
Tcl equivalent: ::IxLoad new
Example:
logger = IxLoad.new("ixLogger", logtag, 1)
IxLoad.loadAppPlugin(plugin) Load a plugin.
Tcl equivalent: sixAppPluginManager load "HTTP"
Example:

IxLoad.loadAppPlugin ("HTTP")

IxLoad.delete(element) Delete an element of an IxLoad test.
Tcl equivalent: ::IxLoad delete
Example:

IxLoad.delete (chassisChain)

IxLoad.disconnect() Disconnect from the remote server.
Tcl equivalent: ::IxLoad disconnect
Example:

IxLoad = IxLoad()
IxLoad.connect 10.200.55.39

IxLoad.disconnect ()

-11 -

Chapter 1 Introduction

IxLoad.waitForCaptureDataReceived

0

IxLoad.waitForTestFinish()

Equivalents to statCollectorUtils

StatUtils.Initialize(test_server_
handle)

StatUtils.ClearStats()

StatUtils.AddStat()

StatUtils.StartCollector()

StatUtils.StopCollector()

Wait for the data capture (for Analyzer application) to finish.
Tcl equivalent: vwait ::ixCaptureMonitor

Example:
IxLoad.waitForCaptureDataReceived ()

Wait for the test to finish.
Tcl equivalent: vwait ::ixTestControllerMonitor

Example:
IxLoad.waitForTestFinish ()

Initialize the statistics collection utilities.
Tcl equivalent: ${NS}::Initialize
Example:

test server

handle=testController.getTestServerHandle ()
StatUtils.Initialize(test server handle)

Clear the statistics from a previous test run.
Tcl equivalent: ${NS}::ClearStats

Example:
StatUtils.ClearStats ()

Add a statistic to the list of statistics to be collected.
Tcl equivalent: ${NS}::AddStat

Example:

StatUtils.AddStat (caption = "Watch Stat 1",
statSourceType = "HTTP Client",

statName = "HTTP Bytes Sent",
aggregationType = "kSum",

filterList = {})

Start collecting statistics.

Tcl equivalent: ${NS}::StartCollector -command ::my
stat collector command

Example:
StatUtils.StartCollector (my stat collector python

command)

Stop collecting statistics.
Tcl equivalent: ${NS}::StopCollector

Example:
StatUtils.StopCollector ()

-12 -

Chapter 1 Introduction

Enums

IxLoad.<element>.<enum> Change an enumerated value.
Tcl equivalent: $::<element>(enum)
Example:

svr network.networkRangeList.appendItem (name =

"svr range",

enable = 1,
firstIp = "198.18.200.1", \
ipIncrStep =

IxLoad.ixNetworkRange.kIpIncrOctetForth,
-)

PERL Support

In addition to Tcl, you can create native Perl scripts that run IxLoad tests. You can either write the Perl
scripts by hand, or you can use ScriptGen to create a Perl script natively from an existing test
configuration. For more information on using ScriptGen, see the IxLoad User Guide.

Perl support, including the Perl interpreter and supporting modules, are automatically installed when
you install IxLoad. IxLoad Perl modules are installed the following location: C:\Program Files
(x86) \Ixia\Perl.

Sample Scripts

Sample Perl scripts are installed in <ixload install path>\PerlScripts\Samples. YOuU can review
these scripts to help you in creating your own scripts, or you can edit them to reflect your specific
configuration (chassis IP address, card IDs, port IDs, etc.) and run them.

Running Scripts
To run an IxLoad Perl script:

» If yourscriptis on the path <ixload install path>\PerlScripts\Samples, you can runa
script with the command perl <script name>.pl.
o Ifyourscriptis on a different path, add the following line to the script header, so that it finds the

path the IxLoad build that it should use:
use lib '<ixload install path>/version/PerlScripts/lib';

For example:

use warnings;
use strict;
use lib '.';

-13 -

Chapter 1 Introduction

use lib 'C:/Program Files (x86)/Ixia/IxLoad/6.70.0.56-EB/PerlScripts/lib"';

use IxLoad;

Perl Commands

All the commands that are available in Tcl are also available in Perl. In most cases, you use the same

command, but written in Perl syntax.

However, there are some Perl-specific commands. These are listed in the table below.

Perl Command
Equivalents to ::IxLoad

IxLoad.connect(remoteServer)

IxLoad.new

IxLoad.loadAppPlugin(plugin)

IxLoad.delete(element)

IxLoad.disconnect()

IxLoad.waitForCaptureDataReceived

0

Description

Connect to a remote Tcl Windows server when running from a
non-Windows client. Tcl equivalent: ::IxLoad connect

Example:

use IxLoad;
IxLoadConnect—->connect ('1.2.3.4");

Create a new object.
Tcl equivalent: ::IxLoad new

Example:
my $logger = IxLoad->new('ixLogger', $logtag, 1);

Load a plugin.
Tcl equivalent: $ixAppPluginManager load "HTTP"

Example:
IxLoad->pluginManager ('load', 'HTTP');

Delete an element of an IxLoad test. Tcl equivalent:
::IxLoad delete

Example:
IxLoad->delete ($SchassisChain) ;

Disconnect from the remote server.
Tcl equivalent: ::IxLoad disconnect

Example:
use IxLoad;IxLoadConnect->connect

("10.200.25.39");...IxLoad->disconnect () ;

Wait for the data capture (for Analyzer application) to finish.
Tcl equivalent: vwait ::ixCaptureMonitor

Example:
IxLoad->waitForCaptureDataReceived() ;

~14 -

IxLoad.waitForTestFinish()

Equivalents to statCollectorUtils

StatUtils.Initialize(test_server_
handle)

StatUtils.ClearStats()

StatUtils.AddStat()

StatUtils.StartCollector()

StatUtils.StopCollector()

Enums

Chapter 1 Introduction

Wait for the test to finish.
Tcl equivalent: vwait ::ixTestControllerMonitor

Example:
IxLoad: :TestControllerWait () ;

Initialize the statistics collection utilities.
Tcl equivalent: ${NS}::Initialize

Example:
my Stest server handle = StestController-

>getTestServerHandle () ; SNS->Initialize (Stest
server handle) ;

Clear the statistics from a previous test run.
Tcl equivalent: ${NS}::ClearStats

Example:
SNS->ClearStats () ;

Add a statistic to the list of statistics to be collected.
Tcl equivalent: ${NS}::AddStat

Example:

SNS->AddStat ({ filterList => {}, caption
=> "Watch Stat 1", statSourceType => "HTTP
Client", statName => "HTTP Bytes Sent",

aggregationType => "kSum"});

Start collecting statistics.

Tcl equivalent: ${NS}::StartCollector —-command
::my stat collector command

Example:
SNS->StartCollector ({command => \&my stat

collector command}) ;

Stop collecting statistics.
Tcl equivalent: ${NS}::StopCollector
Example: SNS->StopCollector () ;

-15 -

Chapter 1 Introduction

IxLoad.<element>.<enum> Change an enumerated value.
Tcl equivalent: $::<element> (enum)
Example:

$svr network->networkRangeList->appendItem ({

name => "svr range", enable => 1, firstIp =>
"198.18.200.1", ipIncrStep =>
SIxLoad::Info::ixNetworkRange
{kIpIncrOctetForth},...});

Examples

Below are some examples of functions written in TCL and in Per, for comparison.

Tcl Perl
Creating set chassisChain [::IxLoad new my SchassisChain = IxLoad->new
an object ixChassisChain] ("ixChassisChain") ;
Calling a $chassisChain addChassis 10.215.170.83 | $chassisChain->addChassis
method -- or -- ("10.215.170.83");

S$Networkl portList.appendItem \- -- or --

chassisId 1 \-cardId 2 \-portId 1 SNetworkl->portList-

>appendItem ({ chassisId => 1,
cardId => 2, portId => 1});

Setting $Settings 1 config \- $Settings 1->config({

properties teardownInterfaceWithUser false \—_ teardownInterfaceWithUser =>

on an Stale false \-interfaceBehavior 0 "False",

object ~Stale => "False",
interfaceBehavior => 0});

12

-16 -

CHAPTER 2 Quick Start

This section describes how to modify a sample script to run an IxLoad Tcl API test. You can use this
section to quickly familiarize yourself with the basic steps required to run a simple IxLoad script. Once
you have modified and run a sample script, you can refer to the following sections in this guide to learn

about the IxLoad Tcl API in greater detail.

e To run a sample script from Windows, see Windows (see "Windows").
o To run a sample script from Unix/Linux, see Unix/Linux (see "Unix/Linux").

Windows

The section describes how to run a sample Tcl script included with IxLoad on Windows. To run IxLoad
Tcl scripts, you must install the IxLoad Tcl 8.4 shell, which is an option in the IxLoad Windows client

installation package.

Note: The IxOS wish console cannot be used to execute IxLoad Tcl scripts.

Windows PC Ixia chassis

IxLoad client IxLoad chassis component
IxLoad Tcl client

-17 -

Chapter 2 Quick Start

Using The Sample Tcl Scripts

The Tcl scripts require either the IxLoad Tcl 8.4 wish console or the Tcl shell to run. Choose one of the
following:

o Double-click the IxLoad Wish shell icon for the version of IxLoad that you want to run

« Execute the following in a console window: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe,
and then source IxiaWish.tcl from C:\Program Files\Ixia\IxLoad\<version>\TclScripts\bin.

The included sample Tcl scripts can be found in the following subdirectories under C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\Samples:

« Samples\Application Features contains scripts that demonstrate various IxLoad features
« Samples\Network contains scripts that create various network configurations

« Samples\Protocols contains scripts that generate different types of protocol traffic

o Samples\Stats contains scripts that demonstrate how to retrieve statistics

One script from the Samples directory, setup_simple.tcl, must be modified to work with your network
topology. See Editing the setup_simple.tcl script (see "Editing the setup_simple.tcl script").

Note: When you source the IxiaWish.tcl script, it sets the auto path value so that when you
execute a package req IxLoad command, the Tcl shell can find the IxLoad packages.

Editing the setup_simple.tcl script
You must edit the setup_simple.Tcl script to include the correct addresses in use on your network.

« On Windows, the file is located at : ..\IxLoad\<version>\TclScripts\Samples
« On Unix/Linux, the file is located at: ../IxLoadTclApi<version>/Samples/

To edit the setup_simple.tcl script:

1. 1In an editor, open the setup_simple.tcl script.

2. Set the Tcl server address:
variable ::IxLoadPrivate::SimpleSettings::remoteServer n.n.n.n

Tcl server must run on a Windows host, not on the chassis. When running a script from Unix, change
this value to the IP address of the IxLoad client that the script will run on. When running a script from
Windows, this variable must still be set, but its value is not used.

3. Set chassisName to the hostname or IP address of the chassis you will use:
variable ::IxLoadPrivate::SimpleSettings::chassisName n.n.n.n

4. CARD_ID and PORT_ID are local variables used between the setup_simple.tcl script and all Ixia-
provided sample Tcl scripts. Set CARD_ID and CARD_PORT (in the serverPort and clientPort
array) to the card and port you will use:

-18 -

Chapter 2 Quick Start

array set ::IxLoadPrivate::SimpleSettings::clientPort {
CARD ID"4"

PORT ID"5" }
array set ::IxLoadPrivate::SimpleSettings::serverPort {CARD ID "3"PORT_ID
"2" }

5. Save and close the file.

Running the sample scripts

Follow the instructions below to launch the ixwish shell, and call the Tcl script. In the procedure below,
replace (replace <version> with the correct directory name).

To run a sample script:

1. Choose one:
« Double-click the IxLoad Wish shell icon for the version of IxLoad that you want to run

o Execute the following in a console window: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe,
and then source IxiaWish.tcl from C:\Program Files\Ixia\IxLoad\<version>\TclScripts\bin.

2. Change the path to the directory that contains the script that you want to run. Scripts are stored
in directories under <installDir>/IxLoad/<version>/TclScripts/Samples.

« Samples/Application Features contains scripts that demonstrate various IxLoad features
« Samples/Network contains scripts that create various network configurations

« Samples/Protocols contains scripts that generate different types of protocol traffic

« Samples/Stats contains scripts that demonstrate how to retrieve statistics

For example, to change to the Protocols directory, type:
cd Samples/Protocols

3. To start the script, use the source command to run it.

For example, to run the HTTP.tcl script, type
source HTTP.tcl

Monitoring Status and Retrieving Results

While a test is running, status messages display in the wish console window.

The results (in CSV format) are placed in the Results\<Tclscriptname> subfolder where your Tcl
script is located.

For example: C:\Program Files\Ixia\IxLoad\<version>\Results\simplehttpclientandserver

During the test run, a log file is created and stored in the current working directory.

-19 -

Chapter 2 Quick Start

Unix/Linux

On Unix/Linux, two types of installers are availalble: .bin and PIT. The .bin installers automatically
install all the required dependent packages on the following paths:

IxLoad /opt/ixia/ixload/version/

IxOS-API /opt/ixia/ixos/version/

TCL /opt/ixia/TCL/version/
Python /opt/ixia/Python/version
Perl /opt/ixia/Perl/version

For the PIT installer, an equivalent dependencies bundle is available.

There are a number of IxLoad Tcl .bin installers available for Unix/Linux; use the version appropriate
for your distribution:

IxLoad Tcl Client Installation File | Description
IxLoadTclAPI<version>linux.bin Fedora Core 14, RedHat Enterprise 5.0
IxLoadTclAPI<version>linux_x64.bin 64-bit version of supported Linux distributions

IxLoadTclAPI<version>FreeBSD.bin FreeBSD 6.3

Unix / Linux PC Windows PC Ixia chassis
8 IxOS Tcl client 8 IxLoad client 8 IxLoad chassis component
8 IxLoad Tcl client 8 Ixia Tcl server

Unix/Linux:

See the Installing IxLoad Tcl

- 20 -

Chapter 2 Quick Start

Windows PC:

Install IxLoad on the Windows PC and select the optional Tcl components during installation.
Install IxOS with the Client and Tcl Server options.

Ixia chassis:

Install the IxLoad IxOS chassis components as for normal IxLoad installation.

Installing IxLoad Tcl
This section describes how to install the Unix/Linux version of IxLoad Tcl.

LT_| Note: In addition to installing IxLoad on Unix/Linux using the Java-based installer, you can also
install it using tarballs. See Installing IxLoad Tcl with Tarballs.

LT_| Note: You must login as root when you install IxLoad Tcl. Also, ensure that you reboot the
system after installation so that the new environment variables take effect.

To install Unix/Linux IxLoad Tcl:

1. Copy the IxLoadTclAPI<version>Linux.bin file to the Linux system.
Change the attribute to make it executable.
Example: chmod +x IxLoadTclAPI<version>Linux.bin

3. Execute the installer file. If your Linux version supports a Graphical User Interface (GUI), use the
—-gui option . Otherwise, the installer will run in console mode.

Example (console mode): ./IxLoadTclAPI<version>Linux.bin
Example (GUI mode): ./IxLoadTclAPI<version>Linux.bin -gui
4. Follow the prompts to complete the installation.
The default installation path is /opt/ixia/ixload/IxLoadVersion/.
5. Reboot the system so that the environment variables added by the installer can take effect.

Installing IxLoad Tcl with Tarballs

As an alternative to the Java-based Unix/Linux installer, Ixia also provides the IxLoad Unix/Linux Tcl
files as tarballs. The tarball installer provides a more flexible solution to installing and running IxLoad
Tcl scripts.

LT_| Note: The tarball installer requires the comm v4.x third-party library to be installed before you
install IxLoad Tcl.

LT_| Note: You must login as root when you install IxLoad Tcl. Also, ensure that you reboot the
system after installation so that the new environment variables take effect.

If you intend to write Python scripts, you should:

-21 -

Chapter 2 Quick Start

1. Install your own Python2x version along with the tkinter library.

2. Afterinstalling Python, change the PYTHONBinPath environment variable so that it points to the
Python2x version that you installed (by default it points to ixpython).

To install Unix/Linux IxLoad Tcl Using Tarballs:

1. Unpack IxLoadTclApi <version>.tar file.

2. Set the environment variable IXLOAD IXLOADFULLVERSION INSTALLDIR to the path to where the
stackManagerStaticClasses.tcl file is located.

e« stackManagerStaticClasses.tcl is located in the same folder as the IxLoad.tcl file
(<INSTALL DIRECTORY>/1lib/IxLoad/).

o IXLOADFULLVERSION is the complete IxLoad version number, with the major, minor, branch,
and build numbers separated by underscores (_).

For example, a sample environment variable might be: IXLOAD 5 10 151 20
INSTALLDIR=/home/ixload5.10.ea/lib/ixload/

You can lookup the the exact name of the environment variable by searching the IxLoad.tcl file
for the string IXLOAD X Y , where X and Y are the major and minor version numbers. For
example, IXLOAD 5 10

3. Reboot the system so that the environment variables added by the installer can take effect.

Editing the setup_simple.tcl script

You must edit the setup_simple.Tcl script to include the correct addresses in use on your network.

« On Windows, the file is located at : ..\IxLoad\<version>\TclScripts\Samples
o On Unix/Linux, the file is located at: ../opt/ixia/ixload/IxLoadVersion/Samples/

To edit the setup_simple.tcl script:

1. 1In an editor, open the setup_simple.tcl script.

2. Set the Tcl server address:
variable ::IxLoadPrivate::SimpleSettings::remoteServer n.n.n.n

Tcl server must run on a Windows host, not on the chassis. When running a script from Unix, change
this value to the IP address of the IxLoad client that the script will run on. When running a script from
Windows, this variable must still be set, but its value is not used.

3. Set chassisName to the hostname or IP address of the chassis you will use:
variable ::IxLoadPrivate::SimpleSettings::chassisName n.n.n.n

4. CARD_ID and PORT_ID are local variables used between the setup_simple.tcl script and all Ixia-
provided sample Tcl scripts. Set CARD_ID and CARD_PORT (in the serverPort and clientPort
array) to the card and port you will use:

array set ::IxLoadPrivate::SimpleSettings::clientPort {
CARD_ID"4"

PORT ID"5" }
array set ::IxLoadPrivate::SimpleSettings::serverPort {CARD ID "3"PORT_ID
"2" }

5. Save and close the file.

- 22 -

Chapter 2 Quick Start

Running the sample scripts

Once the setup_simple.tcl script is configured, use the following procedure to launch the Tcl shell
and run a sample script.

To run a sample script:

1. Change to the bin directory where IxOS Tcl is installed.
2. Copy /bin/ixwish to bin/ixTclsh.
3. Start the Tcl shell:

./bin/ixTclsh

4. Scripts are stored in directories under /etc/ixosTcl8.4/IxLoadTclAPI<version>/Samples.
« Samples/Application Features contains scripts that demonstrate various IxLoad features
« Samples/Network contains scripts that create various network configurations
« Samples/Protocols contains scripts that generate different types of protocol traffic
o Samples/Stats contains scripts that demonstrate how to retrieve statistics

Change your path to the directory that contains the script that you want to run.

For example, to change to the Protocols directory, type:
cd /etc/ixosTcl8.4/IxLoadTclAPI<version>/Samples/Protocols

5. Source the sample script that you want to run. For example, to run the HTTP.tcl script, type:
source HTTP.tcl

Monitoring Status and Retrieving Results

While a test is running, status messages display in the Linux shell.

The log files are stored on the Windows host. The log file name is determined by the set LogName
command in the script.

« If you specify no path or a partial path, the log file is stored relative to the
\remoteScriptingService directory on the IxLoad installation path.

o If you specify an absolute path, the log file is stored in that location.

The log file will be prefixed with the specified name, followed by “-x-00” where x is a session ID from 1

through 4. The sample scripts all set the log name to be the same as the script name. For example:
C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\remoteScriptingService\RESULTS\<scriptname>

- 23 -

This page intentionally left blank.

_24 -

CHAPTER 3 API Overview

An IxLoad test consists of one or more Client Communities sending traffic through the DUT (Device
Under Test) to Server Communities. The structure of both a client and server community is the same:
Traffic sent over a network. Traffic is generated or handled by one or more agents.

The conceptual view of an IxLoad test is shown in the figure below.

Client Network(s) %} Server Network(s)

DUT
(] [y |
Agent Agent Agent Agent get get get get
Client Traffic Server Traffic
Client Server
Community Community
Server Network
=l=l=
===
=i = = =

_25-

Chapter 3 API Overview

Tcl API Structure

The Tcl API's main components are shown in the figure below.

ixTestController

-

ixAgent
(protocol agents)

ixSubscriber
or ixActivity
ixNetTraffic

L——- WOl
ixTimeline

ixNetworkGroup

Network Stack

plugins ixChassisChain

The table below describes the components of the API shown in the figure.

Component Description

ixTestController | testController controls the running of a test. No test can run successfully without
this object. It has no relationship with any other object.

To run the test, you pass run <test variable name> to the test controller
command.

ixTest The top level object which co-ordinates the client and server communities. It
holds separate lists of each type of communities.

ixScenario This object represents the traffic flow (as shown in the GUI).

There can be multiple traffic flows. The traffic flows are referenced through the
scenarioList sub-object of an ixTest object.

ixTrafficColumn | This is a container of ixNetTraffic, ixSubscriber, and ixDut objects.
This is accessed through the columnList element of an ixScenario object.

ixNetTraffic This object joins a network configuration to a traffic configuration.

This object is accessed through an index into the columnList of an ixScenario
object.

ixNetworkGroup | This object describes a network configuration that is unique within the test.
This object is accessed through the network element of an ixNetTraffic object.

- 26 -

Chapter 3 API Overview

ixActivity This object configures the high-level properties that are common to all agents,

such as the timeline, and the test objective type and value.

Activities are accessed through an index into the activityList of an ixNetTraffic
or ixSubscriber object.

ixAgent The ixAgent elements generate and handle protocol specific traffic. Some client

agents use Protocol Actions to describe their operation.

Agent configuration can be accessed through the ActivityList of the
ixNetTraffic and ixScenario objects

Network Stack Protocol and associated extensions that provide the network that the traffic
plugins protocols run over.

Protocol Actions | Some of the Protocol Agents describe their operation in terms of specific actions.

These protocol dependent objects detail those operations.

ixChassisChain | This independent object describes the list of chassis that will be used in a test.

ixDut This object holds the type and type-specific information about a DUT.

ixTimeline This object configures the time in the test when the activities in the NetTraffics
come online, and how long they stay up for. It is also used to configure the test’s
objectives.

ixSubscriber The ixSubscriberNetTraffic objectis a special type of NetTraffic that

simulates the traffic patterns created by residential customers that receive voice,
video, and data service (Triple-play) over a single physical connection (usually a
cable or DSL connection).

ixImpairment The ixImpairment object impairs one or more types of traffic from a client and

server network.

activityList Generates traffic for one side of a particular protocol.

Mandatory Objects to Complete a Script

The following mandatory objects are required to complete a script:

an ixTestController

an ixRepository or an ixChassisChain (ixRepository includes a chassis chain)
ixViewOptions

ixTest

ixTrafficFlow

-27 -

Chapter 3 API Overview

o ixTrafficColumn
o ixNetTraffic

o iXTimeline

o activityList

Multi Version Support

You can install and use multiple versions of IxLoad on the client PC and on the chassis. Installing
multiple versions allows you to try out the new features in a new release of IxLoad without having to
overwrite your existing copy of IxLoad.

Refer to API Quick Start and Running an IxLoad Tcl Program for more information.

General API Conventions

IxLoad’s Tcl API is somewhat different from other Ixia Tcl APIs that you might have used. Rather than a
single set of global commands that are associated with an Ixia port, IxLoad uses the concept of
instances of commands—called objects. This guide uses the words command and object to refer to the
same thing.

Objects

This section describes how to work with objects in the IxLoad Tcl API.

IxLoad represents every object with a Tcl command. When you create an object, you receive a
command that must then be used with subcommands to modify the object.

Similarly, when you retrieve a property of an object that is itself an object, you can use subcommands
to manipulate that sub-object. Generally, it is better to save the sub-objects in a Tcl variable instead
of retrieving them repeatedly. This is because every time you retrieve it, you receive a different
command (though they reference the same underlying object).

Every object command should also be deleted as described in the next section.

Object Creation and Desctruction

The general paradigm for the creation of IxLoad objects is to make a ‘new’ copy of a command, saving
the result in a Tcl variable:

set my network [::IxLoad new ixClientNetwork Schain)\
-name “my client network4”]

- 28 -

Chapter 3 API Overview
The variable my network is an instance of the ixClientNetwork object. Each instance occupies its
own area of memory. Multiple objects of the same type can be created and added to lists of items.

The ::IxLoad reference is to a utility routine that allows new objects of any type to be created. The

w,

::” means in the global context and is a safe means of referring to ixLoad from any program location.

The ixLoad command provides a convenient means of creating an object and set its options at the
same time. One need only append option names and values to the end of the command. See the
following example:

set my network [::IxLoad new ixClientNetwork \
-name “my client network4”

This is the standard means by which IxLoad objects are created.

When an object is no longer needed, its command should be destroyed as shown in the following
example:
::IxLoad delete $my network

After a command is destroyed, it can no longer be used. If it is a sub-object, then the object can be
accessed again by fetching a new command from the original object.

Subcommands

Synopsis
$anyIxLoadObject subcommand options...

Each option is a name/value pair, with the name preceded by a hyphen (-).

The return value is of a type appropriate for the option. If the option is a sub-object, the return value
will be a command representing that object. Otherwise, it will be a simple string value (though the
string may represent a built-in value, such as an INT).

Common subcommands

In addition to command/object-specific subcommands, each IxLoad command/object supports a set of
subcommands described in the following table.

Subcommand | Usage

config Allow any option of the command to be set.
cget Read the value of any command option.
getOptions Get the names of all of a command’s options.

- 29 -

Chapter 3 API Overview

cget option

This subcommand is used to obtain the current value of any option. The option must begin with a
hyphen (-). The return value is of a type appropriate for the option.

config option value option value...

The config subcommand may be used to set the value of one or more options in a command. The
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

getOptions

This subcommand returns a Tcl list with all of the options available for a command/object including an
initial hyphen for each option.

EXAMPLE
Sobject cget -name$object config -name “media” -value “mp3”set optionList [Sobject
getOptions]

Subobjects
Some IxLoad objects can contain other objects, making them subobjects.

The type of the sub-object will be described under the documentation for the sub-object. For example,
the following code fetches a sub-object into a command, and then invokes a subcommand on the

resulting sub-object:
set $my network [$my nettraffic cget -network]$my network config -name networkl

If you only need to access a single property of a sub-object, you can avoid storing the command for the
sub-object in a separate variable by using the 'dot' (.) notation. For example, for the name option in

ixClientNetwork, you can reference the subobject’s option as follows:
$my nettraffic network.config -name 1k hosts

In this case, network.config causes the config subcommand of the network sub-object to be called
with the desired options.

The sub-command can be preceded by more than one sub-object, much like a directories can be
nested to create a path of sub-directories.

Lists of Objects
Synopsis

If you know the index of an item in a list, it may be directly manipulated by the common configuration
commands listed in the table under Object Creation (see "Object Creation and Desctruction"). For
example, to configure the first item in a list:

- 30 -

Chapter 3 API Overview

$my_netTraffic traffic.agentList(0).config -name httpAgent

Note that the preceding example also shows that an element of a list can be a sub-object in a path
leading to a subcommand.

Most IxLoad commands contain one or more options that are lists of other objects. For example,
networkRangelList in ixClientNetwork is a list of items of type ixNetworkRange. Such lists are
commonly built up using the appendItem subcommand. For example:

$my_network portList.appendItem \
-chassisld 1\

-cardld 2\

-port 3

As in the ::IxLoad new command, you can set the values of a list member’s options while creating the
item. All such lists have a number of associated sub-commands, described in the following table.

Subcommand | Usage
clear Remove all elements from the list.

appendIltem Add an item to the end of the list.

configltem Configure the options of one item of the list.
deleteltem Delete an item from the list.
getltem Return an instance reference to an element of a list. This can be used to directly

manipulate that list member.
insertltem Add an item into the middle of the list.

find Search for an item in a list. The indexes of all matching list members is returned.

indexCount Returns a count of the number of items in a list.

SUBCOMMANDS

The following subcommands are available to handle options. Except where noted, no value is returned;
an exception is raised in the case of an error. In all cases where they are used the option must begin
with a hyphen (-). The value must be of a type appropriate for the option.

appendItem option value option value...

The appendItem subcommand may be used to add an item to a list. Any number of options in the listed
item may be set as part of the append.

- 31 -

Chapter 3 API Overview

configItem index option value option value...

The configItem subcommand may be used to configure a particularitemin a list. Any number of
options in the list item may be set. The index argument is used to indicate which item in the list is to
be configured.

clear

The clear subcommand may be used to delete all listed items from a list.

deleteltem index

The deleteItem subcommand may be used to delete a listed item from a list. The index argument is
used to indicate which item in the list is to be configured.

find mode option value option value...

The find subcommand may be used to search a list for matching criterion. The mode argument may be
one of:

Option Usage
exact Match the value fields exactly.
regexp Use regular expressions in the matching.

uppercase | Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indiA list of indexes of matching items is returned.

getItem index

Unsorted lists: The getItem subcommand may be used to retrieve an item from a list. The
index argument is used to indicate which item in the list is to be retrieved. This subcommand returns
the object from the list.

Sorted lists: The getItem subcommand may be used to retrieve an item from a list. The
name argument is used to indicate which item in the list is to be retrieved. This subcommand returns
the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

insertItem index option value option value...

The insertItem subcommand may be used to insert an item in a list. Any number of options in the list
item may be set. The index argument is used to indicate the insertion point in the list.The new item
will be inserted before the index’ th itemin the list.

- 32 -

Chapter 3 API Overview

Constants

Predefined constants within the IxLoad Tcl API are associated with particular commands and placed in
an array corresponding to a command. For example, the ixCard object holds a definition for different

Ixia card types, one of which is kCard1000Txs4. The proper means of referencing this constant is:
$::ixCard (kCardl1000Txs4)

Text strings may frequently be set using provided strings. Refer to the various reference pages to
determine availability.

Strings and Numbers

Tcl variables are considered type-less. That is, no special distinction is made between the string of
characters “1.0” and the numeric value 1.0. Within the IxLoad Tcl API, however, items that look like
numbers (for example, 111) are converted to numbers. In the specification of arguments and values to
the IxLoad Tcl APIs, it is best to enclose these items in quotes if they are not to be interpreted as
numbered values.

For example, if you want to name an IxLoad element 123, you should enclosed the name in quotes:
\\123".

TCL API Internal Overview

The following sections provide an overview of how the Tcl API functions or Windows or Unix/Linux
platforms.

Windows Overview

When running scripts on Windows:

o For IxLoad Unit Limit:

o User Interface counts as two

« Scripts count as one

o TCL Serveris not required

o The :IxLoad connect/disconnect command is ignored
o Log files are stored in the same directory as the script

« Relative files depend on the Client directory path

- 33 -

Cha

pter 3 API Overview

Command Shell IxLoad Ul —
TCL
Teepee
% Test Server
IxLoad CAL A
CSVs
Windows Client PC
v |
. . Stats
Ixia Chassis

Unix Overview

When running scripts on Unix:

Unix script counts the same as a Windows script

TCL Serveris required on Client PC

::IxLoad connect/disconnect command is required

Log files go to PC

C:\Program Files\Ixia\IxLoad\Client\tclext\remoteScriptingService directory

Or, internal debug file c:rssN.1log (N is session # (0-4))

Result files go to PC

Path is on Windows system.

If path is relative, then path is relative to the remoteScriptingService directory

_ 34—

Chapter 3 API Overview

r
| Unix Host Windows Client PC
| Command Shell ‘.4 IXxXOS TCL Server
| Iyl
: ﬂ j TCL
| TCL igh
| ﬂ J=epes Test Server
| igh A
| IxLoad TCL Library IxLoad CAL
| | CSVs
L _ _— _ _ _ _ _
Y
Stats
Ixia Chassis

Object Structure

The figure below shows the current TCL object structure.

- 35 -

Chapter 3 API Overview

wTrafficColumn slermanilist

colurmnList

eScenario

% Candnalis]

S cenanoElament

™ L2

ETestCommunity

u
A

e Rt o et _l ixBt enarioE lemeantFactory I

aetivityList I ity

agant

MTasl

wclientCommunityList s
+zaryerCommuntyList

T dutList

ra /
IE'E.;IS.I [Eﬁ’;ﬁ

«sirgietons
iReposibony

mMNEtT rame:

traffic

+ClientilstavarkList e orkGroup
il LisE
M " ' E @i Tkl
+Clel Trathiclist
egerver TrafficList ageniList

chassisChain chassisChaln portList

/

HChassisChain

%
=

R epository owns the
tRailist plus any Duts,
nabwinrks, o fraic
elemenls that are not traficList = ACIvyMOogel
used in any tasis

Building an IxLoad Test

The following set of steps is a suggestion for the manner in which the Tcl API may be used to create a
complete test. These steps mirror our suggested use of the IxLoad GUI. This is by no means the only
manner in which a test may be developed. The code fragments used in this discussion are from a
complete example, included at the end of this chapter.

Step 1: Initial Overhead

This section performs the necessary overhead steps to get a test started. This includes:

« Add the Ixwish or tclsh installer location. This script, when sourced, sets the auto path so that
package req IxLoad loads the version from which Ixiaw was sourced. The IxiaWish.tcl is
sourced from different path depending on a multiversion or non-multiversion release.

o Connect to the remote server. When running an IxLoad Tcl program on a hon-Windows client it is
necessary to use a Windows machine as a remote server. This may either be the Ixia chassis or
some other Windows client. When run on a Windows machine, the localhost specification
should be used. A catch { ... } constructis used to ensure that a matching disconnect
operation is invoked at the end of the script.

- 36 -

Chapter 3 API Overview

o A package require for the statistics utilities:

« to retrieve only the application protocol statistics, use the standard IxLoad package:
package require ixload
« to retrieve additional statistics such as network stack statistics and port CPU statistics, use the

ixloadcsv package:
package require ixloadcsv

When the script runs, the ixloadcsv package will run the IxLoad GUI in a hidden mode in the
background.

« Load the protocols needed for the test. A separate call to $ixAppload should be performed for
each protocol required. See the table below for the protocols and corresponding string to be
passed.

o Creation of a chassis chain to include a list of test related chassis.

o Creation of the top level ixTest object.

Protocol String to Pass
HTTP HTTP

FTP FTP

POP3 POP3
RTSP RTSP

IMAP IMAP
LDAP ldap

MGCP MGCP
QuickHTTP QuickHTTP
QuickTCP QuickTCP
SIP SIP

Telnet Telnet
Video Video
DDOS DDoS
DHCP dhcp
RADIUS radius

SSH ssh

- 37 -

Chapter 3 API Overview

Capture Replay capturereplay
Application Test verify
Vulnerability Attacks | nessus

TFTP TFTP

o Creation of a chassis chain to include a list of test related chassis.
o Creation of the top level ixTest object.

to find Tcl API#-—————————— -
---set MY IXLOAD INSTALL "C:\\Program Files\\Ixia\\IxLoad"lappend ::auto path [file
join SMY IXLOAD INSTALL "client" "tclext" "teepee" "stage"]

the following if you'll be using the Ixia Standard Tcl APIf#--———————————————————————
—— #set MY IXTCLHAL INSTALL "C:\\Program
Files\\Ixia\\TclScripts"#lappend ::auto path [file join $MY IXTCLHAL INSTALL "1lib"
"ixTcll.0"]

running on Unix clients, it's necessary to connect to a remote# server. For Windows
clients, this is unnecessary. In the line below, # change localhost to the IP address
of your remote serverff-—-—-—-—-—--—--——-— -

This catch is used to ensure that we disconnect from the remote# server regardless
of how we exitcatch {

- #
package require the stat collection utilities o
————————————————————————————————————— package require statCollectorUtils
global ixAppPluginManager $ixAppPluginManager load "HTTP"

- #
Build Chassis Chain -
——————————— set chassisName birdie set chassisChain [::IxLoad new
ixChassisChain] SchassisChain addChassis $chassisName

- e #
Create the test e bt
——————— set test [::IxLoad new ixTest \ -name "my test" \
-statsRequired 0 \ -enableResetPorts 0]

- 38 -

Chapter 3 API Overview

Step 2: Define the TrafficFlow

In this step, we create the TrafficFlow that will list the test scenario.
This involves:

o Creation ofan ixTrafficFlow instance.
« Appending the client, server and DUT object of ixTrafficColumn.

set TrafficFlowl [::IxLoad new ixTrafficFlow]
$TrafficFlowl config \

-name "TrafficFlow1"

$TrafficFlowl columnList.appendItem -object $Client
set Client [::IxLoad new ixTrafficColumn]
$Client config \

-name "Client"

Step 3: Define the TrafficColumn

This is a container of ixNetTraffic and ixDut objects.
This involves:

o Creation of an ixTrafficColumn instance
o Defining and configuring client, server and DUT.

set DUT [::IxLoad new ixTrafficColumn]$DUT config \-name

- 39 -

Chapter 3 API Overview

" DUT "

Step 4: Define the NetTraffic

This step involves the configuration of client and server activities, configuring traffic, mapping traffic to
network.

This involves:

o Creation of an ixNetTraffic instance

« Configuring traffic

« Configuring the client or server network

o Appending activityagent

« Defining and configuring the activity. For each protocol:
. Define and append an agent to its agentList.

« Perform protocol dependent settings; for example, add actions to the agent’s operation by
creating an instance of ixHttpAction and defining the options.

« Declare a timeline for each activity.

set HTTP client client network [::IxLoad new ixNetTraffic]

newAgentl of NetTraffic HTTP client@client networkff—————----"-"-"-"-"-"-"-"----------—-——
—————————————————————————————————————— set Activity newAgentl [SHTTP client client

network activityList.appendItem \-protocolAndType "HTTP
Client"™]

e e # Defining
Activity newAgentl#-—--—--—--——-——"————"———-——— -
—————— SActivity newAgentl config \-enable 1 \-name
"newClientActivityl" \-enableConstraint false \-
userObjectiveValue 100 \-constraintValue

100 \-userObjectiveType "simulatedUsers" \-timeline

$Timelinel

oo #

$Activity newAgentl agent.config \-vlanPriority 0 \-
enableHttpsProxy 0 \-enableSsl
0 \-cookieRejectProbability 0.0 \-enableUnidirectionalClose

~40 -

Chapter 3 API Overview

false \-ipPreference 2 \-loopValue

true \-maxPersistentRequests 1 \-enableEsm

0 \-certificate "" \-sequentialSessionReuse
0 \-tos 0 \-maxPipeline

1 \-maxHeaderLen 1024 \-maxSessions

3 \-enableHttpProxy 0 \-enableTos

false \-enable 1 \-browserEmulation
1 \-cookieJarSize 10 \-privateKey

"" \-privateKeyPassword "" \-urlStatsCount

10 \-followHttpRedirects 0 \-tcpCloseOption

0 \-enableVlanPriority false \-esm

1460 \-httpVersion 0 \-sslVersion

3 \-name "newClientActivityl"™ \-
enableCookieSupport 0 \-enablelargeHeader

false \-clientCiphers "DEFAULT" \-httpProxy
":80" \-keepAlive 0 \-httpsProxy

":443"

$Activity newAgentl agent.actionList.clear

B
Add actions to this client agent
o set my

ixHttpAction [::IxLoad new ixHttpAction]S$my ixHttpAction config \

-profile -1 \
-namevalueargs "" \
-destination "HTTP server newServerActivityl:80" \

-abort "None" \
—command "GET" \

-arguments "" \

-pageObject "/4k.html"

$Activity newAgentl agent.actionList.appendItem -object $Smy ixHttpAction

—41 -

Chapter 3 API Overview

Step 5: Define ixSubscriberNetTraffic

The ixSubscriberNetTraffic is a special type of NetTraffic that simulates the traffic patterns created
by residential customers that receive voice, video, and data service (Triple-play) over a single
physical connection (usually a cable or DSL connection).

A Subscriber NetTraffic allows you to control the interactions between protocols for each user. This
produces a traffic pattern that more accurately reproduces the pattern created by actual triple-play
customers.

This involves:

o Creation of an ixSubscriber NetTraffic instance
o Configuring an ixBandwidthLimit object

o The restis similarto ixNetTraffic described in Step 4: Define the NetTraffic (see "Step 4:
Define the NetTraffic").

Step 6: Define the NetworkGroup
This step involves the global network configuration.
This involves:

o Creation of an ixNetworkGroup client and server network instance
« Clearing the global plugins list

set Network1l [::IxLoad new ixNetworkGroup $chassisChain]

$Networkl config \

-comment "\
-name "Network1" \
-macMappingMode 1\

-linkLayerOptions 0

$Network1 globalPlugins.clear

Step 7: Define the NetworkGroup

This step involves the network stack configuration.

This involves:

_42 -

Chapter 3 API Overview

o Creating the network stack, including any extension protocols, appending the network stack

plugins to the global plugin list, and then configuring them.
« Configuring the global settings (Dynamic Control plane)

set Filter [::IxLoad new ixNetFilterPlugin]
ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendltem -object $Filter

$Filter config \

-all false \
-pppoecontrol false \
-isis false \
-name "Filter" \
-auto true \
-udp "\

-tep A

-mac "\
-pppoenetwork false \
-ip "\

-icmp e

set GratARP [::IxLoad new ixNetGratArpPlugin]
ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $GratARP
$GratARP config \
-enabled true \

-name "GratARP"

set TCP [::IxLoad new ixNetTCPPlugin]

ixNet objects needs to be added in the list before they are configured!

_43 -

Chapter 3 API Overview

$Network1 globalPlugins.appendItem -object $TCP

$TCP config \

-name
-tcp_orphan_retries
-tcp_max_tw_buckets
-tcp_wmem_default
-tcp_low_latency
-tcp_rmem_min
-tcp_adv_win_scale
-tcp_wmem_min
-tcp_port_min
-tcp_stdurg
-tcp_port_max
-tcp_fin_timeout
-tcp_no_metrics_save
-tcp_dsack
-tcp_mem_high
-tcp_frto
-tcp_app_win
-ip_no_pmtu_disc
-tcp_window_scaling
-tcp_max_orphans
-tcp_mem_pressure

-tcp_syn_retries

"TCP" \
0\
180000 \
4096 \
0\
4096 \
2\
4096 \
1024\
false \
65535\
60 \
false \
true \
49152\
0\
31\
false \
false \
8192\
32768\
5

set DNS [::IxLoad new ixNetDnsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $DNS

$DNS config \

-domain

nmn \

- 44 -

-name "DNS" \

-timeout 5

$DNS hostList.clear

$DNS searchList.clear

$DNS nameServerlList.clear

set Settings [::IxLoad new ixNetIxLoadSettingsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendltem -object $Settings

$Settings config \

-teardownInterfaceWithUser false \
-name "Settings" \
-interfaceBehavior 0

set Ethernet_1 [$Network1 getL1Plugin]

set my_ixNetEthernetELMPIlugin [::IxLoad new ixNetEthernetELMPIlugin]
$my_ixNetEthernetELMPlugin config \
-negotiationType "master" \

-negotiateMasterSlave true

$Ethernet_1 config \

-advertise10Full true \
-name "Ethernet-1" \
-autoNegotiate true \
-advertise100Half true \
-advertise10Half true \

- 45 -

Chapter 3 API Overview

Chapter 3 API Overview

-speed "k100FD" \
-advertise1000Full true \

-advertise100Full true \

-cardElm $my_ixNetEthernetELMPlugin

$Ethernet_1 childrenList.clear
set MAC_VLAN_2 [::IxLoad new ixNetL2EthernetPlugin]
ixNet objects needs to be added in the list before they are configured!

$Ethernet_1 childrenList.appendItem -object $MAC_VLAN_2

$MAC_VLAN_2 config \
-name "MAC/VLAN-2"

$MAC_VLAN_2 childrenList.clear

set IP_3 [::IxLoad new ixNetIpV4V6Plugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_2 childrenList.appendItem -object $IP_3

$IP_3 config \

-name "Ip-3"

$IP_3 childrenList.clear

$IP_3 extensionList.clear

$MAC_VLAN_2 extensionList.clear

$Ethernet_1 extensionList.clear

_46 -

HHHHH B R HHH B HHH SRR U BB BB HH BB HHH B R BB SRR R B R B RS HH
Setting the ranges starting with the plugin on top of the stack
HHHHHRBHHHBRHHHHBRHHH B BHH BB RH BB BHHH BB HH BB HHHHH

$IP_3 rangelist.clear
set IP_R3 [::IxLoad new ixNetIlpV4V6Range]
ixNet objects needs to be added in the list before they are configured!

$IP_3 rangelist.appendItem -object $IP_R3

$IP_R3 config \

-count 1\

-name "IP-R3" \
-gatewayAddress "0.0.0.0" \
-enabled true \
-autoMacGeneration true \
-mss 1460 \
-incrementBy "0.0.0.1"\
-prefix 16\
-gatewaylIncrement "0.0.0.0" \
-gatewaylIncrementMode "perSubnet" \
-generateStatistics false \
-ipAddress "10.10.0.4" \
-ipType "IPv4"

set MAC_R2 [$IP_R3 getLowerRelatedRange "MacRange"]

$MAC_R2 config \

-count 1\

-name "MAC-R2" \
-enabled true \
-mtu 1500\

- 47 -

Chapter 3 API Overview

Chapter 3 API Overview

-mac

-incrementBy

"00:0A:0A:00:04:00" \
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R3 getLowerRelatedRange "VlanldRange"]

$VLAN_R1 config \
-incrementStep
-uniqueCount
-name
-innerIncrement
-innerUniqueCount
-enabled
-innerFirstld
-increment
-priority

-firstld
-innerIncrementStep
-idIncrMode
-innerEnable

-innerPriority

1\
4094 \
"WVLAN-R1" \
1\

4094 \
true \
1\
1\
1\
1\
1\
2\
false \

1

Step 8: Define the NetworkRange

This step involves the creation of IP and MAC addresses.

This involves:

o Creation of an ixNetworkRange instance

« Configuring the network range used in a network
set Network Range 1 in client network 198 18 0 1 100 [::IxLoad new

ixNetworkRange] $Network Range 1 in client network 198 18 0 1 100 config \-

rangeType
0 \-vlanEnable

\-innerVlanUniqueCount

0
1 \-networkMask
1 \-gateway

"Ethernet" \-vlanPriority
0 \-innerVlanPriority
4094 \-innerVlanIncrStep
"255.255.0.0" \-vlanIncrStep
"0.0.0.0" \-vlanIncrementMode

_48 -

Chapter 3 API Overview

"inner-first" \-gatewayIncrStep "None" \-mssEnable

0 \-mss 1460 \-enableStats

false \-firstMac "00:C6:12:00:01:00" \-ipType

1 \-type 0 \-firstlIp

"198.18.0.1" \-enable 1 \-vlanId

1 \-vlanCount 1 \-ipCount

100 \-vlanUniqueCount 4094 \-macIncrStep
"00:00:00:00:01:00" \-name "Network Range 1 in
client network (198.18.0.1+100)" \-innerVlanCount 1 \-
ipIncrStep "0.0.0.1" \-innerVlanId

1 \-innerVlanEnable false \-rxBandwidthLimit

Smy ixBandwidthLimit \-txBandwidthLimit $my ixBandwidthLimitl

Step 9: Define the ixTimeline

This object configures the time in the test when the activities in the NetTraffics come online, and how
long they stay up for. It is also used to configure the test’s objectives. This involves:

o Creating an instance of ixTimeline object
« Configuring the timeline and objectives

HHUHBHRHY
Timelinel for activities HTTPClient1

HHAHB B R B H AR B R R HHAR B R B H AR BB B R HH BB BB H AR B R B R AR BB RS HH
set Timelinel [::IxLoad new ixTimeline]

$Timelinel config \

-rampUpValue 10\
-rampUpType 0\
-offlineTime 0\
-rampDownTime 20\
-standbyTime 0\
-iterations 1\
-rampUpInterval 1\
-sustainTime 20\
-timelineType 0\
-name "Timelinel"

_49 -

Chapter 3 API Overview

Step 10: Prepare to Run the Test

In this step, we will perform all operations necessary before starting the actual test. This involves:

o Creating an instance of the ixTestController, defining where the results should be placed.
o Initializing the statCollectorUtils, by using its ITnitialize command.

o Clear all statistics with ClearsStats.

o Add statistics that we are interested in via the Addstat command.

« Define a callback command to receive statistics update. A trivial routine is included in this
example.

Create a test controller bound to the previously allocated
chassis chain. This will eventually run the test

we created earlier.

set testController [::IxLoad new ixTestController -outputDir 1]

$testController setResultDir "[pwd]/RESULTS/simplehttpclientandserver"
HUHHHBBBHHHBBHHH BB BHH BB HH BB B BB RSB BHH BB HHH SRR HHHH
Create the test controller to run the test

HAHHHBHHHH B BB HH BB BB BB R BB BB SR BHH SRR R BB SR HHH SR H RS HH
set testController [::IxLoad new ixTestController -outputDir True]
$testController setResultDir "[pwd]/RESULTS/simpleHTTP_3"

set NS statCollectorUtils

set test_server_handle [$testController getTestServerHandle]

${NS}::Initialize -testServerHandle $test_server_handle

${NS}::ClearStats
$Testl clearGridStats

set HTTP_Client_Per_URL_StatList { \

- 50 -

{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"
{"HTTP Client Per URL"

b

"HTTP Aborted After Request" "kMax"} \

"HTTP Aborted Before Request” "kMax"} \
"HTTP Requests Failed" "kMax"} \

"HTTP Requests Failed (400)" "kMax"} \

"HTTP Requests Failed (401)" "kMax"} \

"HTTP Requests Failed (403)" "kMax"} \

"HTTP Requests Failed (404)" "kMax"} \

"HTTP Requests Failed (407)" "kMax"} \

"HTTP Requests Failed (408)" "kMax"} \

"HTTP Requests Failed (4xx other)" "kMax"} \
"HTTP Requests Failed (4xx)" "kMax"} \

"HTTP Requests Failed (505)" "kMax"} \

"HTTP Requests Failed (5xx other)" "kMax"} \
"HTTP Requests Failed (5xx)" "kMax"} \

"HTTP Requests Failed (Aborted)" "kMax"} \
"HTTP Requests Failed (Bad Header)" "kMax"} \
"HTTP Requests Failed (Read)" "kMax"} \
"HTTP Requests Failed (Timeout)" "kMax"} \
"HTTP Requests Failed (Write)" "kMax"} \
"HTTP Requests Sent" "kMax"} \

"HTTP Requests Successful" "kMax"} \

"HTTP Responses Received With Match" "kMax"} \
"HTTP Responses Received Without Match" "kMax"} \

set HTTP_Client_StatList { \

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

"Client Hello Sent" "kMax"} \

"HTTP Aborted After Request" "kMax"} \
"HTTP Aborted Before Request" "kMax"} \
"HTTP Bytes" "kMax"} \

"HTTP Bytes Received" "kMax"} \

"HTTP Bytes Sent" "kMax"} \

- 51 -

Chapter 3 API Overview

Chapter 3 API Overview

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

"HTTP Concurrent Connections" "kMax"} \

"HTTP Connect Time (us)" "kAverageRate"} \

"HTTP Connection Attempts" "kMax"} \

"HTTP Connections" "kMax"} \

"HTTP Content Bytes Received" "kMax"} \

"HTTP Content Bytes Sent" "kMax"} \

"HTTP Cookie headers Rejected - (Memory Overflow)" "kMax"} \
"HTTP Cookies Received" "kMax"} \

"HTTP Cookies Rejected" "kMax"} \

"HTTP Cookies Rejected - (Cookiejar Overflow)" "kMax"} \
"HTTP Cookies Rejected - (Domain Match Failed)" "kMax"} \
"HTTP Cookies Rejected - (Path Match Failed)" "kMax"} \
"HTTP Cookies Rejected - (Probabilistic Reject)" "kMax"} \
"HTTP Cookies Sent" "kMax"} \

"HTTP Requests Failed" "kMax"} \

"HTTP Requests Failed (400)" "kMax"} \

"HTTP Requests Failed (401)" "kMax"} \

"HTTP Requests Failed (403)" "kMax"} \

"HTTP Requests Failed (404)" "kMax"} \

"HTTP Requests Failed (407)" "kMax"} \

"HTTP Requests Failed (408)" "kMax"} \

"HTTP Requests Failed (4xx other)" "kMax"} \

"HTTP Requests Failed (4xx)" "kMax"} \

"HTTP Requests Failed (505)" "kMax"} \

"HTTP Requests Failed (5xx other)" "kMax"} \

"HTTP Requests Failed (5xx)" "kMax"} \

"HTTP Requests Failed (Aborted)" "kMax"} \

"HTTP Requests Failed (Bad Header)" "kMax"} \

"HTTP Requests Failed (Read)" "kMax"} \

"HTTP Requests Failed (Timeout)" "kMax"} \

"HTTP Requests Failed (Write)" "kMax"} \

- 52 -

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

"HTTP Requests Sent" "kMax"} \

"HTTP Requests Successful" "kMax"} \

"HTTP Session Timeouts (408)" "kMax"} \

"HTTP Sessions Rejected (503)" "kMax"} \

"HTTP Simulated Users" "kSum"} \

"HTTP Time To First Byte (us)" "kAverageRate"} \
"HTTP Time To Last Byte (us)" "kAverageRate"} \
"HTTP Transactions" "kMax"} \

"HTTP Transactions Active" "kMax"} \

"HTTP Users Active" "kMax"} \

"SSL Alerts Received" "kMax"} \

"SSL Alerts Received (access_denied)" "kMax"} \
"SSL Alerts Received (bad_certificate)" "kMax"} \
"SSL Alerts Received (bad_record_mac)" "kMax"} \
"SSL Alerts Received (certificate_expired)" "kMax"} \
"SSL Alerts Received (certificate_revoked)" "kMax"} \
"SSL Alerts Received (certificate_unknown)" "kMax"} \
"SSL Alerts Received (close_notify)" "kMax"} \

"SSL Alerts Received (decode_error)" "kMax"} \

"SSL Alerts Received (decompression_failure)" "kMax"} \
"SSL Alerts Received (decrypt_error)" "kMax"} \

"SSL Alerts Received (decryption_failed)" "kMax"} \
"SSL Alerts Received (export_restriction)" "kMax"} \
"SSL Alerts Received (handshake_failure)" "kMax"} \
"SSL Alerts Received (illegal_parameter)" "kMax"} \
"SSL Alerts Received (insufficient_security)" "kMax"} \
"SSL Alerts Received (internal_error)" "kMax"} \

"SSL Alerts Received (no_certificate)" "kMax"} \

"SSL Alerts Received (no_renegotiation)" "kMax"} \
"SSL Alerts Received (protocol_version)" "kMax"} \
"SSL Alerts Received (record_overflow)" "kMax"} \

- 53 -

Chapter 3 API Overview

Chapter 3 API Overview

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

"SSL Alerts Received (unexpected_message)" "kMax"} \

"SSL Alerts Received (unknown_ca)" "kMax"} \

"SSL Alerts Received (unsupported_certificate)" "kMax"} \

"SSL Alerts Received (user_canceled)" "kMax"} \
"SSL Alerts Sent" "kMax"} \

"SSL Alerts Sent (access_denied)" "kMax"} \

"SSL Alerts Sent (bad_certificate)" "kMax"} \

"SSL Alerts Sent (bad_record_mac)" "kMax"} \
"SSL Alerts Sent (certificate_expired)" "kMax"} \
"SSL Alerts Sent (certificate_revoked)" "kMax"} \
"SSL Alerts Sent (certificate_unknown)" "kMax"} \
"SSL Alerts Sent (close_notify)" "kMax"} \

"SSL Alerts Sent (decode_error)" "kMax"} \

"SSL Alerts Sent (decompression_failure)" "kMax"} \
"SSL Alerts Sent (decrypt_error)" "kMax"} \

"SSL Alerts Sent (decryption_failed)" "kMax"} \
"SSL Alerts Sent (export_restriction)" "kMax"} \
"SSL Alerts Sent (handshake_failure)" "kMax"} \
"SSL Alerts Sent (illegal_parameter)" "kMax"} \
"SSL Alerts Sent (insufficient_security)" "kMax"} \
"SSL Alerts Sent (internal_error)" "kMax"} \

"SSL Alerts Sent (no_certificate)" "kMax"} \

"SSL Alerts Sent (no_renegotiation)" "kMax"} \
"SSL Alerts Sent (protocol_version)" "kMax"} \
"SSL Alerts Sent (record_overflow)" "kMax"} \

"SSL Alerts Sent (unexpected_message)" "kMax"} \
"SSL Alerts Sent (unknown_ca)" "kMax"} \

"SSL Alerts Sent (unsupported_certificate)" "kMax"} \
"SSL Alerts Sent (user_canceled)" "kMax"} \

"SSL Bytes Received" "kMax"} \

"SSL Bytes Sent" "kMax"} \

- 54 -

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

"SSL Concurrent Sessions" "kMax"} \

"SSL Errors Received" "kMax"} \

"SSL Errors Received (bad certificate)" "kMax"} \
"SSL Errors Received (no certificate)" "kMax"} \
"SSL Errors Received (no cipher)" "kMax"} \

"SSL Errors Received (undefined error)" "kMax"} \
"SSL Errors Received (unsupported certificate)" "kMax"} \
"SSL Errors Sent" "kMax"} \

"SSL Errors Sent (bad certificate)" "kMax"} \

"SSL Errors Sent (no certificate)" "kMax"} \

"SSL Errors Sent (no cipher)" "kMax"} \

"SSL Errors Sent (undefined error)" "kMax"} \

"SSL Errors Sent (unsupported certificate)" "kMax"} \
"SSL Negotiation Finished Successfuly" "kMax"} \
"SSL Session Reuse Failed" "kMax"} \

"SSL Session Reuse Success" "kMax"} \

"SSL Throughput Bytes" "kMax"} \

"Server Hello Received" "kMax"} \

"TCP Accept Queue Entries" "kMax"} \

"TCP Connection Requests Failed" "kMax"} \

"TCP Connections Established" "kMax"} \

"TCP Connections in CLOSE STATE" "kMax"} \

"TCP Connections in CLOSE-WAIT State" "kMax"} \
"TCP Connections in CLOSING State" "kMax"} \
"TCP Connections in ESTABLISHED State" "kMax"} \
"TCP Connections in FIN-WAIT-1 State" "kMax"} \
"TCP Connections in FIN-WAIT-2 State" "kMax"} \
"TCP Connections in LAST-ACK State" "kMax"} \
"TCP Connections in LISTENING State" "kMax"} \
"TCP Connections in SYN-RECEIVED State" "kMax"} \
"TCP Connections in SYN-SENT State" "kMax"} \

- 55 -

Chapter 3 API Overview

Chapter 3 API Overview

{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"
{"HTTP Client"

b

"TCP Connections in TIME-WAIT State" "kMax"} \
"TCP FIN Received" "kMax"} \

"TCP FIN Sent" "kMax"} \

"TCP FIN-ACK Received" "kMax"} \

"TCP FIN-ACK Sent" "kMax"} \

"TCP Listen Queue Drops" "kMax"} \
"TCP Resets Received" "kMax"} \

"TCP Resets Sent" "kMax"} \

"TCP Retries" "kMax"} \

"TCP SYN Failed" "kMax"} \

"TCP SYN Sent" "kMax"} \

"TCP SYN-ACK Sent" "kMax"} \

"TCP SYN_SYN-ACK Received" "kMax"} \
"TCP Timeouts" "kMax"} \

set HTTP_Server_Per_URL_StatList { \

{"HTTP Server Per URL"
{"HTTP Server Per URL"
{"HTTP Server Per URL"
{"HTTP Server Per URL"
{"HTTP Server Per URL"
{"HTTP Server Per URL"

be

"HTTP Requests Failed" "kMax"} \

"HTTP Requests Failed (404)" "kMax"} \

"HTTP Requests Failed (50x)" "kMax"} \

"HTTP Requests Failed (Write Error)" "kMax"} \
"HTTP Requests Received" "kMax"} \

"HTTP Requests Successful" "kMax"} \

set HTTP_Server_StatList { \

{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"

"Client Hello Received" "kMax"} \

"HTTP Bytes Received" "kMax"} \

"HTTP Bytes Sent" "kMax"} \

"HTTP Content Bytes Received" "kMax"} \
"HTTP Content Bytes Sent" "kMax"} \

- 56 -

Chapter 3 API Overview

{"HTTP Server" "HTTP Cookies Received" "kMax"} \

{"HTTP Server" "HTTP Cookies Received With Matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Received With Non-matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Sent" "kMax"} \

{"HTTP Server" "HTTP Requests Failed" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (50x)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (Write Error)" "kMax"} \
{"HTTP Server" "HTTP Requests Received" "kMax"} \

{"HTTP Server" "HTTP Requests Successful" "kMax"} \

{"HTTP Server" "HTTP Session Timeouts (408)" "kMax"} \

{"HTTP Server" "HTTP Sessions Rejected (503)" "kMax"} \

{"HTTP Server" "HTTP Transactions Active" "kMax"} \

{"HTTP Server" "SSL Alerts Received" "kMax"} \

{"HTTP Server" "SSL Alerts Received (access_denied)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (bad_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (bad_record_mac)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_expired)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_revoked)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_unknown)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (close_notify)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decode_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decompression_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decrypt_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decryption_failed)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (export_restriction)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (handshake_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (illegal_parameter)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (insufficient_security)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (internal_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (no_certificate)" "kMax"} \

- 57 -

Chapter 3 API Overview

{"HTTP Server" "SSL Alerts Received (no_renegotiation)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (protocol_version)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (record_overflow)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unexpected_message)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unknown_ca)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unsupported_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (user_canceled)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (access_denied)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (bad_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (bad_record_mac)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_expired)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_revoked)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_unknown)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (close_notify)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decode_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decompression_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (decrypt_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decryption_failed)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (export_restriction)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (handshake_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (illegal_parameter)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (insufficient_security)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (internal_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (no_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (no_renegotiation)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (protocol_version)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (record_overflow)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (unexpected_message)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (unknown_ca)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (unsupported_certificate)" "kMax"} \

- 58 -

{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"

"SSL Alerts Sent (user_canceled)" "kMax"} \

"SSL Bytes Received" "kMax"} \

"SSL Bytes Sent" "kMax"} \

"SSL Concurrent Sessions" "kMax"} \

"SSL Errors Received" "kMax"} \

"SSL Errors Received (bad certificate)" "kMax"} \
"SSL Errors Received (no certificate)" "kMax"} \
"SSL Errors Received (no cipher)" "kMax"} \

"SSL Errors Received (undefined error)" "kMax"} \
"SSL Errors Received (unsupported certificate)" "kMax"} \
"SSL Errors Sent" "kMax"} \

"SSL Errors Sent (bad certificate)" "kMax"} \

"SSL Errors Sent (no certificate)" "kMax"} \

"SSL Errors Sent (no cipher)" "kMax"} \

"SSL Errors Sent (undefined error)" "kMax"} \

"SSL Errors Sent (unsupported certificate)" "kMax"} \
"SSL Negotiation Finished Successfuly" "kMax"} \
"SSL Session Reuse Failed" "kMax"} \

"SSL Session Reuse Success" "kMax"} \

"SSL Throughput Bytes" "kMax"} \

"Server Hello Sent" "kMax"} \

"TCP Accept Queue Entries" "kMax"} \

"TCP Connection Requests Failed" "kMax"} \

"TCP Connections Established" "kMax"} \

"TCP Connections in CLOSE STATE" "kMax"} \
"TCP Connections in CLOSE-WAIT State" "kMax"} \
"TCP Connections in CLOSING State" "kMax"} \
"TCP Connections in ESTABLISHED State" "kMax"} \
"TCP Connections in FIN-WAIT-1 State" "kMax"} \
"TCP Connections in FIN-WAIT-2 State" "kMax"} \
"TCP Connections in LAST-ACK State" "kMax"} \

- 59 -

Chapter 3 API Overview

Chapter 3 API Overview

{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"
{"HTTP Server"

¥

"TCP Connections in LISTENING State" "kMax"} \
"TCP Connections in SYN-RECEIVED State" "kMax"} \
"TCP Connections in SYN-SENT State" "kMax"} \
"TCP Connections in TIME-WAIT State" "kMax"} \
"TCP FIN Received" "kMax"} \

"TCP FIN Sent" "kMax"} \

"TCP FIN-ACK Received" "kMax"} \

"TCP FIN-ACK Sent" "kMax"} \

"TCP Listen Queue Drops" "kMax"} \

"TCP Resets Received" "kMax"} \

"TCP Resets Sent" "kMax"} \

"TCP Retries" "kMax"} \

"TCP SYN Failed" "kMax"} \

"TCP SYN Sent" "kMax"} \

"TCP SYN-ACK Sent" "kMax"} \

"TCP SYN_SYN-ACK Received" "kMax"} \

"TCP Timeouts" "kMax"} \

set statList [concat \

$HTTP_Client_Per_URL_StatList \

$HTTP_Client_StatList \

$HTTP_Server_Per_URL_StatList \

$HTTP_Server_StatList \

]

set count 1

foreach statltem $statList {

set caption

[format "Watch_Stat_%s" $count]

set statSourceType [lindex $statitem 0]

set statName

[lindex $statltem 1]

- 60 -

Chapter 3 API Overview

set aggregationType [lindex $statltem 2]

${NS}::AddStat \

-caption $caption \
-statSourceType $statSourceType \
-statName $statName \
-aggregationType $aggregationType \
-filterList {}

incr count

b

proc ::my_stat_collector_command {args} {

puts "INCOMING STAT RECORD >>> $args"
puts "Len = [llength $args]"

puts [lindex $args 0]

puts [lindex $args 1]

${NS3}::StartCollector -command ::my_stat_collector_command

Step 11: Start the Test

In this step, we’ll actually start and stop the test. The steps involved are:

» Start the statistics collector using startCollector.
o Use the ixTestController instance to run the test.
o Wait for the test complete.

« Stop the statistics collector using stopCollector.

« Disconnect from the remote server. See Initial Overhead for more details.
${NS}::StartCollector -command ::my stat collector command

- 61 -

Chapter 3 API Overview

script (v)wait until the test is over#--------- - - ——————""-"-"——"—— - —————
————————————————————————— vwait ::ixTestControllerMonitor;puts

collector (running in the tcl event loop)#----------"""""""""""-"""-"-"—"—"-"-"—-"—"—"—"—"—"—~—"—~—"—\——
————————————————————————————— ${NS}::StopCollector

e T et # Cleanup#--
——— StestController
generateReport -detailedReport 1 -format "PDF;HTML"

StestController releaseConfigWaitFinish::IxLoad delete $chassisChain::IxLoad delete
$clnt network::IxLoad delete $svr network::IxLoad delete $clnt traffic::IxLoad
delete $svr traffic::IxLoad delete $clnt t n mapping::IxLoad delete S$svr t n
mapping::IxLoad delete S$test::IxLoad delete S$testController::IxLoad delete

$logger: :IxLoad delete $logEngine

#-mmm #
Disconnect#------—-----—---——-"—-"—"—-"—"—"—"—"—"—"—"—~—"—— - }]
{ puts SerrorInfol## Disconnect/Release application lock#::IxLoad disconnect

Stopping a Test by Pressing Enter
You can configure a test to stop when the ENTER key is pressed. See below is the sample code.

For an example of a complete script that stops when ENTER is pressed, see the sample script
C:\Program Files\Ixia\IxLoad\Client\TclApi\Samples\simplehttp-abortrun.tcl.

stdin for polling#-----------——-"""-"------—-—--
————— fconfigure stdin -blocking 0 -buffering none# wait for the first sample or test

stopwhile {$::ixTestControllerMonitor == "" && [read stdin] == ""} { after 100
set wakeup 1 # the script must call vwait or update while test runs # to keep
TCL event loop going. Otherwise, no stat collector # callbacks will be made, and

- 62 -

Chapter 3 API Overview

ixTestControllerMonitor will # never be set. vwait wakeup}f----------------—-—-
—— # if aborted, then stop test
gracefullyffi———————————=———"—"—"—"—"—"—"—"—"—"—~"—(—(— if
{S::ixTestControllerMonitor == ""} { puts "" puts "!!!Aborting test at
earliest opportunity!!!" puts "" # stop the run StestController stopRun

(v)wait until the test really stops # vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor}## Stop the collector#${NS}::StopCollectorf-----——---
—— # Cleanup#------------

Running an IxLoad Tcl Script

The following sections describe how to run an IxLoad Tcl script test.
Windows (see "Windows") describes how to run a script on Windows.

Unix / Linux (see "Unix / Linux") describes how to run a script on Unix/Linux.

Windows
To run an IxLoad Tcl script, you can use either of the following Tcl shells:

« Wish shell: C:\Program Files\Ixia\Tcl\<version>\bin\wish.exe

o Tcl shell: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe
The IxLoad TCL code resides under C:\Program Files\Ixia\IxLoad\<version>\TclScripts. The code in
the setup ixload paths.tcl script used in earlier releases is no longer used. Instead, the current

method used by all Ixia applications is to source TclScripts\bin\IxiaWish.tcl for the application,
and follow that with a package require command.

Note: If more than one version of IxLoad is installed, the package require command uses the

highest-numbered version. To select a different version, include the complete version numberin
the command. For example:

package require ixload 4.20.0.88

- 63 -

Chapter 3 API Overview

Windows PC Ixia chassis

IxLoad client IxLoad chassis component
IxLoad Tcl client

Unix / Linux
To run an IxLoad Tcl script on Unix/Linux:

o You must use the ixwish shell or IxTclsh provided in the bin directory of the IxOS installation.
o You must install the IxOS Unix Tcl Client, and the IxLoad Unix Tcl client.

The package require command used in the sample scripts will only succeed if you have a version of
IxLoad installed on the Unix/Linux machine that matches the one you request in the package require
statement, and the environment is set up correctly

For multiversion support on Unix / Linux, the installer creates a 1ib/IxLoad<version> directory with a
pkglndex.tcl for each version of IxLoad that you install. The version number is the same one reported
to TCL when the package is required. All normal package require logic applies to this.

Note: If more than one version of IxLoad is installed, the package require command uses the
highest-numbered version. To select a different version, include the complete version numberin
the command. For example:

package require ixload 4.20.0.88

o You must install and run the IxLoad client on a Windows machine. When you run the TCL scripts
on the Unix/Linux host, the TCL scripts are sent to the Windows machine and executed there. The
results are also saved on the Windows host.

—64 -

Chapter 3 API Overview

Ixia Tcl Server must be running on a Windows-based host, not the chassis.The Tcl Server machine is
specified in a call to connect in the ::IxLoad command. The ::IxLoad connect call will only
succeed if the specified client is:

« Running a compatible Tcl Server (release notes will detail the IxOS version that is compatible
with a particular IxLoad version),

« Has the identical version of IxLoad installed that was actually loaded by the package require
statement on the Unix machine (i.e. returned by the Unix package require IxLoad command).

o The ::IxLoad connect command also performs the IXOS ixConnectToTclServer, SO a separate
call is not necessary to access the ixTclHal commands on the client machine.

16

Unix / Linux PC Windows PC Ixia chassis
8 IxOS Tcl client 8 IxLoad client 8 IxLoad chassis component
8 IxLoad Tcl client 8 Ixia Tcl server

Maximum Numbers of Scripts That Can Be Run

A maximum of four instances of IxLoad can run on a Windows client PC.

o Each copy of the IxLoad GUI counts as 2 instances.
o Each Tcl script counts as 1 instance.

If you receive the following error:
Error: exceptions.Exception: Already running maximum allowed copies of IxLoad.

the most likely cause is running more scripts than allowed (that is, from multiple shells orin the
background).

Unix Tcl scripts are executed on the Windows client PC. If a Unix script is terminated (killed), the
Windows client might take a few seconds to notice and kill the corresponding tclsh, but it still counts
as a copy of IxLoad until the tclsh is killed.

Scripts running on the Windows client do not launch their own tclsh, but still count as an instance. Ifa
Windows Tcl script running in wish crashes during execution, it still counts as a running copy until the
wish shell is killed.

- 65 -

Chapter 3 API Overview

Modifying Older Scripts

Multi-version support enables you to install multiple versions of IxLoad on the same client PC. Multi-
version support was added to IxLoad beginning with release 3.40. If you want to run a non-
multiversion (pre-3.40) script in a multi-version release, you must modify it.

To modify a multi-version script:

1. Open the script in an editor.
2. Remove following code from the old script:

if {$::tcl platform(platform) == "windows"} {package require registry lset
IXLOAD INSTALL ROOT [registry get {HKEY_LOCAL_MACHINE\Software\Ixia
Communications\IxLoad\InstallInfo} HOMEDIR]set :: IXLOAD PKG DIR [file join $::

IXLOAD INSTALL ROOT Client tclext teepee stage]lappend ::auto path $:: IXLOAD PKG
DIR}

3. Replace the removed code with either of the following lines (replace <version> with the IxLoad

version number):
source "C:\\Program Files\\Ixia\\IxLoad\\<version>\\TclScripts\\bin\\IxiaWish.tcl"

source "C:\\Program Files\\Ixia\\IxLoad\\<version>\\TclScripts\\bin\\IxiaWish.tcl"
4. Save and close the file.

API Description

The following sections of this chapter are an overview of the Tcl API, by topic. They are described in
the same order as the suggested steps in Building an IxLoad Test.

o Network Commands—Defines the client and server networks.
o ixNetworkGroup—Configure the global network.
o ixChassisChain—Indicates the chassis that are used in the test.
DUT Commands
o ixDut—Creates a DUT entry.
Traffic Commands
o ixNetTraffic—Configures client and server traffic.
o« activityList—Generates traffic for one side of a particular protocol.
o ixTimeline—Configures the time in the test when the activities in the NetTraffics come online,
and how long they stay up for. It is also used to configure the test’s objectives.
Test Structure Commands
o ixTimeline—Configures the timeline and objectives for client and server.
o« ixTest—Creates a complete test structure.
o ixView—Configures capture options in test repositories.
o ixTrafficFlow—Lists the test scenario.
e ixTrafficColumn—A container of ixNetTraffic and ixDut objects.

Test Operation Commands

e ixTestController—Starts and stops test.

- 66 -

Chapter 3 API Overview

e« ixTestControllerMonitor—A global variable to watch for test completion.
e statCollectorUtils—Utilities for collecting statistics.

Reference pages for each of the IxLoad Tcl API commands are included in the following chapters:

e IxLoad Tcl API Commands. This includes a discussion of the most often used commands.

e IxLoad Tcl API Internal Commands. This includes a discussion of the behind-the-scenes
commands on which most other commands are based.

o Each of the remaining chapters describes one of the supported protocols.

The remainder of this section is an overview of these commands, including brief descriptions of
command operation, options, and subcommands.

Network Commands

The commands in this section are the high-level used to create the networks used to support client and
server traffic. There are minor differences between client and server net

The bulk of the network-related commands are described in the Network Stack API section.

iXNetworkGroup

The ixNetworkGroup command is used to construct a client or server network, which is used as part of
an ixNetTraffic object. A chassis chain object, as created in the ixChassisChain command, must
be used in the construction of this object.

A list of network ranges, as defined in the ixNetworkRange object is associated with the client
network. Network ranges are added to the client network through the use of the
networkRangeList.appendItem command.

A list of Ixia ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associated with the network
through the emulatedRouterIpAddressPool option. The pool is defined in the
ixEmulatedRouterIpAddressRange object. These are added to the object through the use of the em
command.

Refer to ixNetworkGroup for a full description of this command. The important subcommands and
options of this command are listed below.

ixClientNetwork Subcommands

Subcommand | Usage

- 67 -

Chapter 3 API Overview

checkConfig

reset

Checks the configuration of this object, raising an exception in the case of an error.

Disassociates the network from all of the Ixia ports used in this network.

ixClientNetwork Options

Option
name

networkRangelist

portList

cardType

macMappingMode

emulatedRouterIp
AddressPool

emulatedRouter
Gateway

dnsParameters

arpSettings
tcpParameters

impairment

ixChassisChain

Usage
The name associated with this object.

The networks that are defined for this object—a list of ixNetworkRange objects.

The Ixia ports that will carry traffic for this network.

The card type for all of the ports in this network. Cards of a similar type must be
used for all ports in a network. The cardType option is now used only for
error/diag messages, and is automatically selected. Please refer to cardType
for the list of card types.

Indicates whether one MAC address will be associated with each IP address or
with each Ixia port. The use of the latter option indicates that an emulated
router is to be used.

If the macMappingMode indicates that one MAC is used per port, then this is a
list of addresses ranges— a list of ixEmulatedRouterIpAddressRange objects.

If the macMappingMode indicates that one MAC is used per port, then this is the
gateway for the emulated router.

An object of type ixDns, which defines DNS operation for this network.

An object of type ixArpSettings, which defines ARP operation for this network.
An object of type ixTcpParameters, which defines TCP options for this network.

An object of type ixImpairment, which Impairs one or more types of traffic from
a client and server network.

Before defining client and server networks, it is necessary to define a chassis chain. This command is
used to construct a chain of Ixia chassis, whose ports may be used in the ixNetworkGroup command.

- 68 -

Chapter 3 API Overview

Chassis are assigned chassis IDs starting at 1; these are used in the network commands to define the
chassis associated with the port.

Refer to ixChassisChain for a full description of this command. The important subcommands of this
command are listed in the table below.

Subcommand

addChassis

setLoginName
getLoginName

isValidChassisName
getChassisNames

deleteChassisByName

refresh
refreshChassis

Usage

Adds a chassis, by hame or address, to the chassis chain.

Sets and retrieves the user login name.

Checks to see whether a chassis name/address is valid.
Returns the names of all of the chassis, ordered by their chassis IDs.

Deletes a chassis, by name, from the list. The IDs of other chassis remain
unaffected.

Rereads chassis information from one or all chassis.

ixEmulatedRouterIpAddressRange

The ixEmulatedRouterIpAddressRange command is used to construct an list of IP addresses
assigned on a per-port basis for emulated routers, as used in the ixNetworkGroup command.

Refer to ixEmulatedRouterIpAddressRange for a full description of this command. The important
options of this command are listed below.

ixEmulatedRouterIpAddressRange Options

Option Usage

enable Enables the use of this address range.

ipType Type of address (IPv4 or IPv6).

firstlp Controls the range of IP addresses generated.
lastlp

networkMask | The network mask for the IP addresses.

- 69 -

Chapter 3 API Overview

ixDns

The ixDns command is used to define DNS behavior on a network. A DNS object is set through the
dnsParameters option of the ixNetworkGroup object.

Refer to ixDns for a full description of this command. The important options of this command are listed
below:
ixDns Options

Option Usage

enable Enables the use of this DNS specification.

serverList A list of DNS servers to check at run time. This list consists of items of type
ixDnsServerItem.

suffixList A list of DNS suffixes to add to partial host names. This list consists of items of type
ixDnsSuffixList.

cacheTimeout | The time-out value used for cached DNS lookups.

ixDnsServerItem

The ixDnsServerItem command is used to define a DNS server on a network. A DNS server item
object is appended to the serverList option of the ixDns object. For example,

set dns [::IxLoad new ixDns options...]

Stest.dns.serverList appendItem \
-datal9%2.168.3.1

Refer to ixDnsServerItem on page 4-36 for a full description of this command. The important options
of this command are listed below.

ixDnsServerItem Options
Option | Usage

data The IP address of a DNS server.

-70 -

Chapter 3 API Overview

ixDnsSuffixList

The ixDnsSuffixItem command is used to define a DNS suffix. A DNS suffix item object is appended
to the suffixList option of the ixDns object. For example,

set dns [::IxLoad new ixDns options...]

Stest.dns.suffixList appendItem \
-data“.ixiacom.com”

Refer to ixDnsServerItem for a full description of this command. The important options of this
command are:

ixDnsSuffixItem Options
Option | Usage

data A domain name suffix.

ixTcpParameters

The ixTcpParameters command is used to define TCP options on a network. A TCP parameters object
is set in the tcpParameters option of an ixNetworkGroup object.

Refer to ixTcpParameters for a full description of this command. A wide range of low level TCP options
are exposed in this command.

ixEmulatedRouterIpAddressRange

The ixEmulatedRouterIpAddressRange command is used to construct an list of IP addresses
assigned on a per-port basis for emulated routers, as used in the ixNetworkGroup command for both
client and server.

Refer to ixEmulatedRouterIpAddressRange for a full description of this command.

DUT Commands

In many cases, it is not necessary to define your DUT in an IxLoad test. Two cases are necessary,
however:

o If your DUT is a Server Load Balancer (SLB) and the IP address of the DUT itself is the destination
of client requests.

o If your DUT is a caching device, and direct server return is desired.

-71 -

Chapter 3 API Overview

ixDut

The ixDut command is used to define a DUT used in the test. The DUTs are used to resolve symbolic
references to them in traffic destinations in the various protocol agents. It also controls several DUT
specific features.

Refer to ixDut for a full description of this command. The important options of this command are listed
below.
ixDut Options

Option Usage

name The name associated with the DUT.

type The type of the DUT—external server, SLB or firewall.

ipAddress The IP address, virtual IP address, or host name to be used to access the DUT.
serverNetwork If the DUT is an SLB, this is the network that will be balanced.

enableDirectServer | If the DUT is an SLB, this option allows balanced servers to send their return
Return traffic directly back to the source of the request.

Traffic Commands

The commands in this section relate to the generation of traffic by clients and the handling of traffic by
servers.

ixNetTraffic

The ixNetTraffic command is used to configure client or server traffic. Two separate ixNetTraffic
objects have to be created for client and server traffic. The ixNetTraffic configuration also declares the
ixNetworkGroup Object. The activityList is appended to the ixNetTraffic object.

Refer to ixNetTraffic fora full description of this command.

activityList

Generates traffic for one side of a particular protocol. For example, an HTTP client Activity generates
HTTP client requests, simulating a web browser. The activityList is appended to the ixNetTraffic
object.

Refer to activityList for a full description of this command.

-72 -

Chapter 3 API Overview

ixTimeline

Configures the time in the test when the activities in the NetTraffics come online, and how long they
stay up for. It is also used to configure the test’s objectives. The ixTimeline object is added to the
timeline options of the activityList config.

Refer to ixTimeline for a full description of this command.

Test Structure Commands

The commands in this section coordinate networks with traffic into communities, and communities into
an entire test structure. These commands also define the operational parameters of the test.

ixTest

The ixTest command is used to construct a complete IxLoad test structure. It consist of a list of client
traffic-network and server traffic-network mappings, called communities. In addition to the two lists,
several options control global operations. An ixTest command is used in conjunction with a
ixTestController to operthe test and collect statistics.

A test is generally built via:

set test [::IxLoad new IxTest -name “my test”]
$test clientCommunityList.appendItem -object Smy clients
Stest serverCommunityList.appendItem -object $my servers

Refer to ixTest for a full description of this command.

ixView

Configures capture options in test repositories. It is added as an object instance to the
captureViewOptions in ixTest.

Refer to ixView for a full description of this command.

ixTrafficFlow

Lists the test scenario. The ixTrafficFlow command is used to list the test scenarios. Traffic Flow
object is appended to the ixTest object.

Refer to ixTrafficFlow for a full description of this command.

~73-

Chapter 3 API Overview

ixTrafficColumn
This is a container of ixNetTraffic and ixDut objects.

Refer to ixTrafficColumn for a full description of this command.

Test Operation Commands

The commands in this section relate to the actual test and statistics gathering operations.

ixTestController

The ixTestController command is used to setup, start, and stop an IxLoad test. It references the
ixTest objectin its run subcommand.

Refer to ixTestController for a full description of this command. The important subcommands and
options of this command are listed below:

ixTestController Subcommands

Subcommand Usage

run Run the test. The name of an ixTest object is a required argument.
setResultDir Specifies the location of where CSV files from the run are saved.
isBusy Returns true while the test is running.

getTestServerHandle Returns a value necessary for the statistics collection routines.

- 74 -

Chapter 3 API Overview

releaseConfigWaitFinish | Releases all IxLoad configurations and waits for it to complete.

Beginning with the IxLoad 8.00 release, releaseConfigWaitFinish will
no longer be included in scripts created by ScriptGen.

Instead, the following code will be included:

$testController releaseConfig
vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor

This new method is asnychronous, meaning that after it is called, a script
can execute other code between the call for releaseConfig and the
vwait statement.

Existing scripts that use releaseConfigWaitFinish will continue to
function as before.

generateReport Generates report from TCL.

ixTestController Options

Options Usage

outputDir | This should be set to a non-null value if you wish to save statistics in CSV files during
the run. The actual directory used is set in the setResultbDir subcommand.

ixTestControllerMonitor

This is a global variable whose state may be used in a vwait to determine when a test has completed.
Refer to ixTestControllerMonitor for a full description of this command.

statCollectorUtils

The statCollectorUtils is a library containing several commands to gather statistics during a test
run. Refer to statCollectorUtils on page for a full description of this library. The important
commands of this library are:

statCollectorUtils Commands

- 75 -

Chapter 3 API Overview

Subcommand

Initialize

AddStat
AddL2L3Stat

AddNetworkStat
AddPerInterfaceStat

AddSIPPerStreamStat
AddVideoPerStreamStat
ClearStats

StartCollector

StopCollector

Debugging

Usage

Initializes the statistics utility package. Requires the result of a call to
ixTest getTestServerHandle.

Adds a statistic to the list of desired statistics to follow.
Adds a Layer 2 or 3 statistic to the list of desired statistics to follow.

Adds a dynamic range network statistic to the list of desired statistics to
follow.

Adds a per-range network statistic to the list of desired statistics to
follow.

Adds a SIP per-stream statistic to the list of desired statistics to follow.
Adds a video per-stream statistic to the list of desired statistics to follow.
Clears the statistics values from any previous run.

Starts the statistics gathering process. The name of a user’s callback
command is passed in here.

Stops the statistics gathering process.

During the normal operation of the Tcl API, only errors and warnings are logged. To increase the level
of debugging, you should use the following code fragment:

set logtag "IxLoad-api"

set logName "simplehttpclientandserver"

set logger [$::CMD new ixLogger $logtag 1]

set logEngine [$logger getEngine]

$logEngine setlLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevellnfo)

$logEngine setFile $logName 2 256 1

The above fragment specifies that the log file name is prefixed with simplehttpclientandserver.
The actual log file name is generated as fol

logName-<instance number>-<log file number>.log

- 76 -

Chapter 3 API Overview

where “instance number” is the number assigned to your session, with the first session being 1 up to a
maximum of 4. “log file number” is a two digit number which is usually 00. Long or complicated tests
may produce more log data than will fit in a single file, in which case a file ending with 01 will also
exist. Extremely large logs may cause the sequence to start over, overwriting the original contents of
log 00.

If the link is down on any of the ports in the test, the Tcl API logs the errorin the log files but it does
not display an error in the wish console. Although IxLoad allows the test to enter the “Configured” state
with a link down, it will not allow the test to run.

Logging Levels

In the code snippet, the following line defines an example of the settings of the setLevels API on the

logger object.
$logEngine setlLevels $::ixLogger (kLevelDebug) $::ixLogger (kLevelInfo)

The log levels are accessed using $::ixLogger(kLevelxxx). The first value is the file level and the
second value is the console level.

File Level: The file level should always be kLevelDebug. Otherwise, the log files will not contain
enough information, in the event of a problem with the script.

Console Level: The second level is typically kLevellnfo, but can be set to the other levels as desired.
Setting it to kLevelDebug is not recommended as it is likely to flood the console with internal
messages.

The following are some of the other options for the Console Level:

:.:ixLogger value | Messages Logged
kLevelError Error messages only.
kLevelWarning Error and warning messages.

kLevellnfo Error, warning, and informational messages.

Log File Parameters

The following line defines the parameters of the log files:
$logEngine setFile $logName 2 256 1

2 is the number of log files to use before wrapping and overwriting the existing log files. The value 2
results in log files named $logName-#-00.log and $logName-#-01.log (the # is the session number

- 77 -

Chapter 3 API Overview

and is determined dynamically by IxLoad. This also corresponds to the /S#/ in the login name for
taking owner

256 is the size limit of each file, in KB.

1 is the truncate flag. 1 indicates to start the logging cycle over, using file -00, and deleting any
previous log files. 0 causes logging to resume from where it left off.

Log File Locations

For Windows scripts, the log file is stored in the current working directory of the Tcl shell. For Unix
scripts, the file is stored on the intermediate Windows client hosting your remote script, in the
directory C:\Program Files\Ixia\Ixload\Client\tclext\remoteScriptingService. To retrieve
the log file from your Unix session, use the following script at the end of the test:

set fullLogName [file join "c:/Progra~1/IxLoad/Client/tclext/remoteScriptingService"
[$logEngine getFileName]]puts [::IxLoad retrieveFile $fullLogName]

Sample Scripts Shipped with IxLoad

The table below lists the files in the C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\Samples directory, which are shipped with IxLoad. The
sample files are grouped under four folders under Samples: Application Features, Network, Protocols,
and Stats.

File Description
Application Features

FTP_ Example of how to set up traffic on multiple (2) ports.
MixedTrafficMaps.tcl

FTP_ Example on how to modify on the fly test objective value.
ModifyOnTheFly.tcl

HTTP_AbortRun.tcl Example of how to stop a test before completion.

HTTP_ Example of how to configure IP addresses on a per-activity basis.
ActivityIpMapping.tcl

HTTP_Capture.tcl Example of how capture test traffic.

- 78 -

HTTP_
CaptureCustom.tcl

HTTP_
CaptureManual.tcl

HTTP_
ConfigStopRun.tcl

HTTP_
CustomTrafficMap.tcl

HTTP_
RetrieveResultsAPI.tcl

RepNewHTTP.tcl

RepRun.tcl

setup_ixload_paths.tcl

setup_simple.tcl

SIP_
RenamedObjective.tcl

Network
HTTP_DHCP.tcl

HTTP_
EmulatedRouter.tcl

HTTP_IPDHCPRelay.tcl
HTTP_IPSec.tcl
HTTP_IPv6.tcl
HTTP_PPPoE.tcl

HTTP_VLAN_
Impairment.tcl

Chapter 3 API Overview

Similar to HTTP Capture.tcl but with the default filter set to TCP.

Example of how capture test traffic by starting within the test script itself.

Example of how to stop and restart a test.

Example of how to set up a custom traffic pattern on a symbolic
destination (IxLoad server or client).

Example of how to retrieve the test results.

Example of how to create a new repository and configure with a basic HTTP
protocol test.

Example of how to load a repository and start a test.

Example of how to set up paths to IxLoad tcl code relative to install
directory.

Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

Example of how to rename a Test Objective for a SIP protocol test.

Example of how to configure a DHCP network range.

Example of how to configure an emulated router.

Example of how to configure a IPDHCPRelay network range.
Example of how to configure a IPSec network range.
Example of how to configure a IPv6 network range.
Example of how to configure a PPPoE network range.

Example of how to configure impairment with VLANSs.

- 79 -

Chapter 3 API Overview

setup_ixload_paths.tcl

setup_simple.tcl

Protocols

2.1.10_src_trace_
http.cap

ApplicationTest.pft
ApplicationTest.tcl
DDoS.tcl

DHCP.tcl

DNS.tcl

FTP.tcl
FTP_POP3.tcl
HTTP.tcl
HTTP_SSL.tcl
IMAP.tcl

LDAP.tcl

MGCP.tcl
MGCP_Signaling.tcl

MGCP_Signaling_
RTP.tcl

POP3.tcl
QUIickHTTP.tcl
QuickTCP.tcl

RTSP.tcl

Example of how to set up paths to IxLoad tcl code relative to install
directory.

Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

Capture file for use with Trace File Replay test.

Sample .pft file for use with Application Test protocol.
Sample .tcl file for use with Application Test protocol.
Example of a basic LDAP protocol test.

Example of a basic DHCP protocol test.

Example of a basic DNS protocol test.

Example of a basic FTP protocol test.

Example of a basic FTP-POP3 protocol test.

Example of a basic HTTP protocol test.

Example of a basic HTTP_SSL protocol test.

Example of a basic IMAP protocol test.

Example of a basic LDAP protocol test.

Example of a basic MGCP protocol test.

Example of a basic MGCP_Signaling protocol test.

Example of a basic MGCP_Signaling_RTP protocol test.

Example of a basic POP3 protocol test.
Example of a basic QuickHTTP protocol test.
Example of a basic QuickTCP protocol test.

Example of a basic RTSP protocol test.

- 80 -

setup_ixoad_paths.tcl

setup_simple.tcl

SIP.tcl
sip_demo.wav
SIP_DTMF.tcl
SMTP.tcl

SPTS1-no_
discontinuity

TraceFileReplay.tcl
Video.tcl

Video_Configurable_
Pid.tcl

Video_Control_TS_
Per_UDP.tcl

Video_I Join_
Latency.tcl

Video_IGMPv1.tcl

Video_MLDv1.tcl
Video_MLDv2.tcl
Video_Multicast_
Profiles.tcl

Video_Poisson.tcl

VulnerabilityAttacks.tcl

Stats

Chapter 3 API Overview

Example of how to set up paths to IxLoad tcl code relative to install
directory.

Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

Example of a basic SIP protocol test.

Audio file for SIP testing.

Example of a SIP protocol test that uses DTMF tones.
Example of a basic SMTP protocol test.

Video file for video testing.

Example of a basic Trace File Replay (capture replay) test.
Example of a basic Video protocol test.

Example of configuring Package Identifiers (PIDs) for Video protocol tests.

Example of configuring the number of transport stream (TS) packets
contained in each UDP packet for Video protocol tests.

Example of how to measure the IGMP I Join latency in a Video protocol
test.

Example of how to use IGMPv1 in a Video protocol test.

Example of how to configure version 1 of Multicast Listener Discovery
(MLD) in a Video protocol test.

Example of how to configure version 2 of Multicast Listener Discovery
(MLD) in a Video protocol test.

Example of how to configure a multicast video test that uses profiles.
Example of how to configure the Poisson distribution in a Video protocol
test.

Example of a basic Vulnerability (Nessus) test.

- 81 -

Chapter 3 API Overview
HTTP_
PerInterfaceStats.tcl

HTTP_
PerUrlPerIpStats.tcl

HTTP_RepRun_
Stats.tcl

HTTP_StateStats.tcl
HTTP_StatFilter.tcl

setup_ixload_paths.tcl

setup_simple.tcl

SIP_PerStreamStats.tcl

Video__
PerStreamStats.tcl

Example of how to configure per-interface statistics fora HTTP protocol
test.

Example of how to configure per-url and per-IP statistics fora HTTP
protocol test.

Example of how to load a repository, run an HTTP test, and retrieve the
statistics.

Example of how to retrieve the Run State and Iteration Count statistics.
Example of how to filter statistics by activity.

Example of how to set up paths to IxLoad tcl code relative to install
directory.

Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

Example of how to configure per-stream statistics for a SIP protocol test.

Example of how to configure per-stream statistics for a Video protocol test.

Examples in the samples/. .. directory should be run from that directory.

Example Program

The following is the complete example used in the Building an IxLoad Test section cof this
chapter. This example is similar to, but not identical to the C:\Program
Files\Ixia\IxLoad\Client\TclApi\Samples\

simplehttpclientandserver.tcl file. This file is self-contained and omits some advanced usage

features.

e e e e e e e e e e e e e
IxLoad ScriptGen created TCL script

Testl serialized using version 4.10.0.79

simpleHTTP.tcl made on Aug 29 2008 15:03
e e e e e

S e e e e e e e e e e e e e e e e e
Copy content of setup_ixload _paths.tcl
e e e e e e e e e e e e e

- 82 -

Chapter 3 API Overview

package require IxLoad
::IxLoad connect 1.2.3.4
if [catch {

set logtag "IxLoad-api”

set logName "simpleHTTP"

set logger [::IxLoad new ixLogger $logtag 1]

set logEngine [$logger getEngine]

$logEngine setLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)
$logEngine setFile $logName 2 256 1

global ixAppPluginManager
$ixAppPluginManager load "HTTP"

e e e e e e e
Build chassis chain

SRR e e e e e e e
set chassisChain [::IxLoad new ixChassisChain]

set my_ixViewOptions [::IxLoad new ixViewOptions]
$my ixViewOptions config \

-runMode 1\
-captureRunDuration 0\
-captureRunAfter 0\
-collectScheme 0\
-allocatedBufferMemoryPercentage 30

set Testl [::IxLoad new ixTest]

$Testl config \

-comment "M\
-csvInterval 4 \
-networkFailureThreshold 0\

-name "Testl" \
-statsRequired 1\
-enableResetPorts 0\
-enableNetworkStats false \
-enableForceOwnership false \
-enableReleaseConfigAfterRun 0\
-currentUniqueIDForAgent 2\
-allowMultiplelGAggregatedPorts false \
-captureViewOptions $my_ixViewOptions

$Testl scenariolList.clear

set TrafficFlowl [::IxLoad new ixTrafficFlow]

- 83 -

Chapter 3 API Overview

$TrafficFlowl config \
-name "TrafficFlowl"

$TrafficFlowl columnList.clear

set Client [::IxLoad new ixTrafficColumn]
$Client config \
-name "Client"

$Client elementList.clear
set HTTP_client_client _network [::IxLoad new ixNetTraffic]

e e e

Activity newClientActivityl of NetTraffic HTTP client@client network
e e e e e

set Activity_newClientActivityl [$HTTP_client_client_network
activitylList.appendItem \

-protocolAndType "HTTP Client"]

e e e
Timelinel for activities newClientActivityl
SRR e e e
set Timelinel [::IxLoad new ixTimeline]
$Timelinel config \

-rampUpValue 5\

-rampUpType 0\

-offlineTime 0\

-rampDownTime 20 \

-standbyTime 0\

-iterations 1\
-rampUpInterval 1\

-sustainTime 60 \

-timelineType 0\

-name "Timelinel"
$Activity newClientActivityl config \

-enable 1\

-name "newClientActivityl" \
-userIpMapping "1:1" 0\
-enableConstraint false \
-userObjectiveValue 100 \
-constraintValue 100 \
-userObjectiveType "simulatedUsers" \
-timeline $Timelinel

$Activity_newClientActivityl agent.config \
-vlanPriority 0\

-84 -

Chapter 3 API Overview

-enableDecompressSupport false \
-enableHttpsProxy 0\
-enableSsl 0\
-enableUnidirectionalClose 0\
-uniquelD 1\
-ipPreference 2\
-loopValue 1\
-maxPersistentRequests 1\
-enableEsm 0\
-certificate "M\
-sequentialSessionReuse 0\
-tos 0\
-maxPipeline 1\
-maxHeaderLen 1024 \
-maxSessions 3\
-enableHttpProxy 0\
-enableTos false \
-cookieRejectProbability 0.0 \
-browserEmulation 1\
-cookieJarSize 10 \
-privateKey "M\
-commandTimeout 600 \
-enableIntegrityCheckSupport false \
-commandTimeout_ms 0\
-privateKeyPassword "M\
-urlStatsCount 10 \
-followHttpRedirects 0\
-tcpCloseOption 0\
-enableVlanPriority 0\
-esm 1460 \
-httpVersion 0\
-sslVersion 3\
-enableCookieSupport 0\
-enablelLargeHeader 0\
-clientCiphers "DEFAULT" \
-httpProxy ":80" \
-keepAlive 0\
-enableCRCCheckSupport false \
-httpsProxy ":443"

$Activity newClientActivityl agent.actionList.clear

set my_ ixHttpAction [::IxLoad new ixHttpAction]
$my_ixHttpAction config \

-profile -1\

-namevalueargs "N\

-destination "HTTP server_newServerActivityl:80" \
-abort "None" \

- 85 -

Chapter 3 API Overview

-command "GET" \
-arguments "M\
-pageObject "/4k.html"

$Activity newClientActivityl agent.actionList.appendItem -object $my ixHttpAction
$Activity newClientActivityl agent.headerList.clear

set my_ixHttpHeaderString [::IxLoad new ixHttpHeaderString]
$my ixHttpHeaderString config \
-data "Accept: */*"

$Activity newClientActivityl agent.headerList.appendItem -object $my
ixHttpHeaderString

set my_ixHttpHeaderStringl [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderStringl config \
-data "Accept-Language: en-us"

$Activity newClientActivityl agent.headerList.appendItem -object $my
ixHttpHeaderStringl

set my_ixHttpHeaderString2 [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderString2 config \
-data "Accept-Encoding: gzip, deflate”

$Activity newClientActivityl agent.headerList.appendItem -object $my
ixHttpHeaderString2

set my_ixHttpHeaderString3 [::IxLoad new ixHttpHeaderString]

$my_ ixHttpHeaderString3 config \

-data "User-Agent: Mozilla/4.0 (compatible;
MSIE 5.01; Windows NT 5.0)"

$Activity newClientActivityl agent.headerList.appendItem -object $my_
ixHttpHeaderString3

$Activity newClientActivityl agent.profilelList.clear

e e e e e e

Network client network of NetTraffic HTTP client@client network
e e e e e e e e e

set client_network [::IxLoad new ixNetworkGroup $chassisChain]
$client_network config \

-comment "M\

-name "client network" \
-macMappingMode 0\
-linkLayerOptions 0

- 86 -

Chapter 3 API Overview

$client network globalPlugins.clear

set Filter [::IxLoad new ixNetFilterPlugin]

ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $Filter

$Filter config \

-all false \
-pppoecontrol false \
-isis false \
-name "Filter" \
-auto true \
_udp nmn \
_tcp nn \
-mac mwun \
-pppoenetwork false \
_ip mn \
_icmp mn

set GratARP [::IxLoad new ixNetGratArpPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $GratARP

$GratARP config \
-enabled true \
-name "GratARP"

set TCP [::IxLoad new ixNetTCPPlugin]
ixNet objects needs to be added in the list before they are configured!

$client_network globalPlugins.appendItem -object $TCP

$TCP config \

-tcp_bic 0\
-tcp_tw _recycle true \
-tcp_retries2 15 \
-tcp_retriesl 3\
-tcp_keepalive_time 9\
-tcp_moderate_rcvbuf 0\
-tcp_rfc1337 false \
-tcp_ipfrag_time 30 \
-tcp_rto_max 60000 \
-tcp_vegas_alpha 2\
-tcp_ecn false \
-tcp_westwood 0\
-tcp_rto_min 1000 \
-tcp_reordering 3\
-tcp_vegas_cong_avoid 0\

- 87 -

Chapter 3 API Overview

-tcp_keepalive_intvl 7200 \
-tcp_rmem_max 262144 \
-tcp_orphan_retries 0\
-tcp_max_tw_buckets 180000 \
-tcp_wmem_default 4096 \
-tcp_low_latency 0\
-tcp_rmem_min 4096 \
-tcp_adv_win_scale 2\
-tcp_wmem_min 4096 \
-tcp_port_min 1024 \
-tcp_stdurg false \
-tcp_port_max 65535 \
-tcp_fin_timeout 60 \
-tcp_no_metrics_save false \
-tcp_dsack true \
-tcp_mem_high 49152 \
-tcp_frto 0\
-tcp_app_win 31\
-ip_no_pmtu_disc false \
-tcp_window_scaling false \
-tcp_max_orphans 8192 \
-tcp_mem_pressure 32768 \
-tcp_syn_retries 5\
-hame "TCP" \
-tcp_max_syn_backlog 1024 \
-tcp_mem_low 24576 \
-tcp_fack true \
-tcp_retrans_collapse true \
-tcp_rmem_default 4096 \
-tcp_keepalive_ probes 75 \
-tcp_abort_on_overflow false \
-tcp_tw_reuse false \
-tcp_wmem_max 262144 \
-tcp_vegas_gamma 2\
-tcp_synack_retries 5\
-tcp_timestamps true \
-tcp_vegas beta 6 \
-tcp_sack true \
-tcp_bic_fast_convergence 1\
-tcp_bic_low window 14

set DNS [::IxLoad new ixNetDnsPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $DNS

$DNS config \
-domain "\
-name "DNS" \

- 88 -

Chapter 3 API Overview

-timeout 30000

$DNS hostList.clear

$DNS searchlList.clear

$DNS nameServerList.clear

set Settings [::IxLoad new ixNetIxLoadSettingsPlugin]

ixNet objects needs to be added in the list before they are configured!

$client network globalPlugins.appendItem -object $Settings

$Settings config \

-teardownInterfaceWithUser false \
-name "Settings" \
-interfaceBehavior 0

set Ethernet_1 [$client_network getL1Plugin]

set my_ixNetEthernetELMPlugin [::IxLoad new ixNetEthernetELMPlugin]
$my_ixNetEthernetELMPlugin config \

-negotiationType "master” \
-negotiateMasterSlave true

$Ethernet_1 config \

-advertiselOFull true \

-name "Ethernet-1" \
-autoNegotiate true \

-advertisel@oHalf true \

-advertisel@OHalf true \

-speed "k100FD" \
-advertisel000Full true \

-advertisel@oFull true \

-cardElm $my ixNetEthernetELMPlugin

$Ethernet 1 childrenList.clear

set MAC_VLAN_1 [::IxLoad new ixNetL2EthernetPlugin]

ixNet objects needs to be added in the list before they are configured!
$Ethernet_1 childrenList.appendItem -object $MAC_VLAN_ 1

$MAC_VLAN_1 config \
-hame "MAC/VLAN-1"

$MAC_VLAN_1 childrenList.clear

set IP_1 [::IxLoad new ixNetIpV4V6Plugin]
ixNet objects needs to be added in the list before they are configured!

- 89 -

Chapter 3 API Overview

$MAC_VLAN_1 childrenList.appendItem -object $IP_1

$IP_1 config \
-name "Ip-1"

$IP_1 childrenList.clear

$IP 1 extensionList.clear

$MAC_VLAN_1 extensionList.clear

$Ethernet_1 extensionList.clear

e e e

Setting the ranges starting with the plugin on top of the stack
e e e e e

$IP_1 rangelList.clear

set IP_R1 [::IxLoad new ixNetIpV4V6Range]

ixNet objects needs to be added in the list before they are configured!

$IP_1 rangelist.appendItem -object $IP_R1

$IP_R1 config \

-count 100 \

-name "IP-R1" \
-gatewayAddress "9.0.0.0" \
-enabled true \
-autoMacGeneration true \

-mss 1460 \
-incrementBy "9.0.0.1" \
-prefix 16 \
-gatewayIncrement "0.0.0.0" \
-gatewayIncrementMode "perSubnet" \
-generateStatistics false \
-ipAddress "198.18.0.1" \
-ipType "IPv4"

set MAC_R1 [$IP_R1 getLowerRelatedRange "MacRange"]

$MAC_R1 config \

-count 100 \

-name "MAC-R1" \

-enabled true \

-mtu 1500 \

-mac "00:C6:12:00:01:00" \
-incrementBy "00:00:00:00:00:01"

set VLAN_R1 [$IP_R1 getLowerRelatedRange "VlanIdRange"]

-90 -

Chapter 3 API Overview

$VLAN_R1 config \

-incrementStep 100 \
-uniqueCount 4094 \
-name "VLAN-R1" \
-innerIncrement 1\
-innerUniqueCount 4094 \
-enabled false \
-innerFirstId 1\
-increment 1\
-priority 0\
-firstId 1\
-innerIncrementStep 1\
-idIncrMode 1\
-innerEnable false \
-innerPriority 0

$HTTP_client client network config \
-enable 1\
-network $client_network

$HTTP_client_client_network traffic.config \
-name "HTTP client”

$Client elementList.appendItem -object $HTTP_client client network
$TrafficFlowl columnList.appendItem -object $Client

set DUT [::IxLoad new ixTrafficColumn]

$DUT config \

-name "DuUT"

$DUT elementList.clear

$TrafficFlowl columnList.appendItem -object $DUT

set Server [::IxLoad new ixTrafficColumn]

$Server config \

-name "Server"

$Server elementList.clear

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
SRR e e e e e

Activity newServerActivityl of NetTraffic HTTP server@server network
e e e e e e e e e

~-91 -

Chapter 3 API Overview

set Activity_newServerActivityl [$HTTP_server_server_network
activitylList.appendItem \
-protocolAndType "HTTP Server"]

set Match Longest [::IxLoad new ixMatchLongestTimeline]

$Activity_newServerActivityl config \

-enable 1\
-name "newServerActivityl" \
-timeline $ Match_Longest

$Activity newServerActivityl agent.config \

-vlanPriority 0\
-maxResponseDelay 0\
-uniquelD 2\
-enableEsm 0\
-certificate "\
-tos 0\
-enableMD5Checksum false \
-httpPort "80" \
-httpsPort "443" \
-esm 1460 \
-enableTos false \
-integrityCheckOption "Custom MD5" \
-privateKey "\
-privateKeyPassword "\
-urlStatsCount 10 \
-tcpCloseOption 0\
-enableVlanPriority 0\
-docrootfile "N
-dhParams "\
-requestTimeout 300 \
-ServerCiphers "DEFAULT" \
-acceptSslConnections 0\
-enablePerServerPerURLstat 0\
-enableDHsupport 0\
-minResponseDelay 0

$Activity newServerActivityl agent.webPagelist.clear

set 200_OK [::IxLoad new ResponseHeader]
$200 OK config \

-mimeType "text/plain” \
-expirationMode 0\

-code "200" \

-name "200_OK" \
-lastModifiedMode 1\
-lastModifiedIncrementEnable false \

~-92 -

Chapter 3 API Overview

-lastModifiedDateTimeValue
-lastModifiedIncrementFor
-expirationDateTimeValue
-expirationAfterRequestValue
-expirationAfterLastModifiedValue
-lastModifiedIncrementBy
-description

$200 OK responselList.clear

"2005/02/02 21:55:04" \
1\

"2005/03/04 21:55:04" \
3600 \

3600 \

5\

"OK"

set my PageObject [::IxLoad new PageObject]

$my_PageObject config \
-Md50ption

-payloadSize
-customPayloadId
-payloadType
-payloadFile

-page

-response

0\

"1-1" \

-1\

"range" \
"<specify file>" \
"/1b.html" \

$200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my_PageObject

set my_PageObjectl [::IxLoad new PageObject]

$my PageObjectl config \
-Md50ption

-payloadSize
-customPayloadId
-payloadType
-payloadFile

-page

-response

0\

"4096-4096" \

-1\

"range" \
"<specify file>" \
"/4k.html" \
$200_0OK

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObjectl

set my PageObject2 [::IxLoad new PageObject]

$my PageObject2 config \
-Md50ption

-payloadSize
-customPayloadId
-payloadType
-payloadFile

-page

-response

0\

"8192-8192" \

-1\

"range" \
"<specify file>" \
"/8k.html" \

$200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject2

set my_PageObject3 [::IxLoad new PageObject]

$my PageObject3 config \

- 903 -

Chapter 3 API Overview

-Md50ption 0\

-payloadSize "16536-16536" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/16k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject3

set my PageObject4 [::IxLoad new PageObject]
$my PageObject4 config \

-Md50ption 0\

-payloadSize "32768" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/32k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject4

set my_PageObject5 [::IxLoad new PageObject]
$my PageObject5 config \

-Md50ption 0\

-payloadSize "65536" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/64k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject5

set my PageObject6 [::IxLoad new PageObject]
$my PageObject6 config \

-Md50ption 0\

-payloadSize "131072" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/128k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject6

set my_PageObject7 [::IxLoad new PageObject]
$my PageObject7 config \

- 94 -

Chapter 3 API Overview

-Md50ption 0\

-payloadSize "262144" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/256k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject?7

set my PageObject8 [::IxLoad new PageObject]
$my PageObject8 config \

-Md50ption 0\

-payloadSize "524288" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/512k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject8

set my_PageObject9 [::IxLoad new PageObject]
$my PageObject9 config \

-Md50ption 0\

-payloadSize "1048576" \
-customPayloadId -1\

-payloadType "range" \
-payloadFile "<specify file>" \
-page "/1024k.html" \
-response $200 0K

$Activity newServerActivityl agent.webPagelist.appendItem -object $my PageObject9
$Activity newServerActivityl agent.cookielList.clear

set UserCookie [::IxLoad new CookieObject]
$UserCookie config \

-mode 3\
-type 2\
-name "UserCookie" \
-description "Name of User"

$UserCookie cookieContentList.clear

set firstName [::IxLoad new ixCookieContent]
$firstName config \
-domain "\

- 95 -

Chapter 3 API Overview

-name "firstName" \
-maxAge "M\

-value "Joe" \
-other "\

-path "

$UserCookie cookieContentList.appendItem -object $firstName

set lastName [::IxLoad new ixCookieContent]
$lastName config \

-domain "\

-name "lastName" \
-maxAge "M\

-value "Smith" \
-other "\

-path "

$UserCookie cookieContentList.appendItem -object $lastName
$Activity newServerActivityl agent.cookielist.appendItem -object $UserCookie

set LoginCookie [::IxLoad new CookieObject]
$LoginCookie config \

-mode 2\

-type 2\

-name "LoginCookie" \
-description "Login name and password”

$LoginCookie cookieContentList.clear

set name [::IxLoad new ixCookieContent]
$name config \

-domain "\

-name "name" \
-maxAge "\

-value "joesmith" \
-other "\

-path "

$LoginCookie cookieContentList.appendItem -object $name

set password [::IxLoad new ixCookieContent]
$password config \

-domain "M\

-name "password" \
-maxAge "N\

-value "foobar" \
-other "\

- 96 -

Chapter 3 API Overview

-path "

$LoginCookie cookieContentList.appendItem -object $password

$Activity newServerActivityl agent.cookielList.appendItem -object $LoginCookie
$Activity newServerActivityl agent.customPayloadList.clear

set AsciiCustomPayload [::IxLoad new CustomPayloadObject]
$AsciiCustomPayload config \

-repeat false \

-name "AsciiCustomPayload" \
-asciiPayloadValue "Ixia-Ixload-Http-Server-Custom-Payload"
\

-payloadmode 0\

-offset 1\

-hexPayloadValue "M\

-payloadPosition "Start With" \

-id 0

$Activity newServerActivityl agent.customPayloadList.appendItem -object
$AsciiCustomPayload

set HexCustomPayload [::IxLoad new CustomPayloadObject]
$HexCustomPayload config \

-repeat 0\

-name "HexCustomPayload" \

-asciiPayloadValue "N\

-payloadmode 1\

-offset 1\

-hexPayloadValue "49 78 69 61 2d 49 78 6¢c 6Ff 61 64 2d 48
74 74 70 2d 53 65 72 76 65 72 2d 43 75 73 74 6f 6d 2d 50 61 79 6¢c 6f 61 64" \
-payloadPosition "Start With" \

-id 1

$Activity newServerActivityl agent.customPayloadList.appendItem -object
$HexCustomPayload

$Activity newServerActivityl agent.responseHeaderlList.clear

set 200_0OK1 [::IxLoad new ResponseHeader]
$200_OK1 config \

-mimeType "text/plain™ \
-expirationMode 0\

-code "200" \

-name "200_OK" \
-lastModifiedMode 1\
-lastModifiedIncrementEnable false \

-97 -

Chapter 3 API Overview

-lastModifiedDateTimeValue "2005/02/02 21:55:04" \
-lastModifiedIncrementFor 1\
-expirationDateTimeValue "2005/03/04 21:55:04" \
-expirationAfterRequestValue 3600 \
-expirationAfterLastModifiedValue 3600 \
-lastModifiedIncrementBy 5\

-description "OK"

$200_0OK1 responselList.clear
$Activity newServerActivityl agent.responseHeaderlList.appendItem -object $200 OK1

set 404 PageNotFound [::IxLoad new ResponseHeader]
$404 PageNotFound config \

-mimeType "text/plain" \
-expirationMode 0\

-code "404" \

-name "404_PageNotFound" \
-lastModifiedMode 1\
-lastModifiedIncrementEnable false \
-lastModifiedDateTimeValue "2005/02/02 21:55:04" \
-lastModifiedIncrementFor 1\
-expirationDateTimeValue "2005/03/04 21:55:04" \
-expirationAfterRequestValue 3600 \
-expirationAfterLastModifiedValue 3600 \
-lastModifiedIncrementBy 5\

-description "Page not found”

$404 PageNotFound responselList.clear

$Activity _newServerActivityl agent.responseHeaderList.appendItem -object $404_
PageNotFound

e e e

Network server network of NetTraffic HTTP server@server network
e e e e e e

set server_network [::IxLoad new ixNetworkGroup $chassisChain]
$server_network config \

-comment "\

-name "server network" \
-macMappingMode 0\
-linkLayerOptions 0

$server_network globalPlugins.clear

set Filter_1 [::IxLoad new ixNetFilterPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $Filter_1

- 908 -

Chapter 3 API Overview

$Filter_1 config \
-all
-pppoecontrol
-isis

-name

-auto

-udp

-tcp

-mac
-pppoenetwork
-ip

-icmp

set GratARP_1 [::IxLoad new ixNetGratArpPlugin]

false \
false \
false \
"Filter-1" \
true \

"\

"\

"\

false \

"\

ixNet objects needs to be added in the list before they are configured!

$server_network globalPlugins.appendItem -object $GratARP_1

$GratARP_1 config \
-enabled
-name

true \
"GratARP-1"

set TCP_1 [::IxLoad new ixNetTCPPlugin]

ixNet objects needs to be added in the
$server_network globalPlugins.appendItem

$TCP_1 config \
-tcp_bic
-tcp_tw_recycle
-tcp_retries2
-tcp_retriesl
-tcp_keepalive_time
-tcp_moderate_rcvbuf
-tcp_rfcl337
-tcp_ipfrag_time
-tcp_rto_max
-tcp_vegas_alpha
-tcp_ecn
-tcp_westwood
-tcp_rto_min
-tcp_reordering
-tcp_vegas_cong_avoid
-tcp_keepalive_intvl
-tcp_rmem_max
-tcp_orphan_retries
-tcp_max_tw_buckets
-tcp_wmem_default
-tcp_low_latency

0\
true \
15 \
3\

9\

0\
false \
30 \
60000 \
2\
false \
0\
1000 \
3\

0\
7200 \
262144 \
0\
180000 \
4096 \
0\

list before they are configured!
-object $TCP_1

- 99 -

Chapter 3 API Overview

-tcp_rmem_min 4096 \
-tcp_adv_win_scale 2\
-tcp_wmem_min 4096 \
-tcp_port_min 1024 \
-tcp_stdurg false \
-tcp_port_max 65535 \
-tcp_fin_timeout 60 \
-tcp_no _metrics_save false \
-tcp_dsack true \
-tcp_mem_high 49152 \
-tcp_frto 0\
-tcp_app_win 31\
-ip_no_pmtu_disc false \
-tcp_window_scaling false \
-tcp_max_orphans 8192 \
-tcp_mem_pressure 32768 \
-tcp_syn_retries 5\
-name "TCP-1" \
-tcp_max_syn_backlog 1024 \
-tcp_mem_low 24576 \
-tcp_fack true \
-tcp_retrans_collapse true \
-tcp_rmem_default 4096 \
-tcp_keepalive probes 75 \
-tcp_abort_on_overflow false \
-tcp_tw_reuse false \
-tcp_wmem_max 262144 \
-tcp_vegas_gamma 2\
-tcp_synack_retries 5\
-tcp_timestamps true \
-tcp_vegas_beta 6 \
-tcp_sack true \
-tcp_bic_fast_convergence 1\
-tcp_bic_low_window 14

set DNS_1 [::IxLoad new ixNetDnsPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $DNS_1

$DNS_1 config \

-domain "\
-name "DNS-1" \
-timeout 30000

$DNS_1 hostList.clear

$DNS_1 searchlList.clear

-100 -

Chapter 3 API Overview

$DNS_1 nameServerlList.clear

set Settings_1 [::IxLoad new ixNetIxLoadSettingsPlugin]

ixNet objects needs to be added in the 1list before they are configured!
$server_network globalPlugins.appendItem -object $Settings_1

$Settings 1 config \

-teardownInterfaceWithUser false \
-name "Settings-1" \
-interfaceBehavior 0

set Ethernet_2 [$server_network getL1Plugin]

set my_ixNetEthernetELMPluginl [::IxLoad new ixNetEthernetELMPlugin]
$my_ixNetEthernetELMPluginl config \

-negotiationType "master"” \
-negotiateMasterSlave true

$Ethernet 2 config \

-advertisel@Full true \

-name "Ethernet-2" \
-autoNegotiate true \

-advertisel@oHalf true \

-advertisel@Half true \

-speed "k100FD" \
-advertisel@00Full true \

-advertisel@0Full true \

-cardElm $my_ixNetEthernetELMPluginil

$Ethernet_2 childrenList.clear

set MAC_VLAN_ 2 [::IxLoad new ixNetL2EthernetPlugin]

ixNet objects needs to be added in the list before they are configured!
$Ethernet 2 childrenList.appendItem -object $MAC VLAN 2

$MAC_VLAN_2 config \
-name "MAC/VLAN-2"

$MAC_VLAN_2 childrenList.clear
set IP_2 [::IxLoad new ixNetIpV4V6Plugin]
ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_2 childrenlList.appendItem -object $IP_2

$IP_2 config \
-name "IP-2"

$IP_2 childrenList.clear

-101 -

Chapter 3 API Overview

$IP_2 extensionList.clear
$MAC_VLAN_ 2 extensionList.clear
$Ethernet_2 extensionlList.clear

e e e e e

Setting the ranges starting with the plugin on top of the stack
e e e e e e e e e

$IP_2 rangelList.clear

set IP_R2 [::IxLoad new ixNetIpV4V6Range]
ixNet objects needs to be added in the list before they are configured!
$IP_2 rangelist.appendItem -object $IP_R2

$IP_R2 config \

-count 1\

-name "IP-R2" \
-gatewayAddress "9.0.0.0" \
-enabled true \
-autoMacGeneration true \

-mss 1460 \
-incrementBy "9.0.0.1" \
-prefix 16 \
-gatewayIncrement "9.0.0.0" \
-gatewayIncrementMode "perSubnet" \
-generateStatistics false \
-ipAddress "198.18.1.1" \
-ipType "IPv4"

set MAC_R2 [$IP_R2 getLowerRelatedRange "MacRange"]

$MAC_R2 config \

-count 1\

-name "MAC-R2" \

-enabled true \

-mtu 1500 \

-mac "00:C6:12:01:01:00" \
-incrementBy "00:00:00:00:00:01"

set VLAN_R2 [$IP_R2 getlLowerRelatedRange "VlanIdRange"]

$VLAN_R2 config \

-incrementStep 1\
-uniqueCount 4094 \
-name "VLAN-R1" \
-innerIncrement 1\

-102 -

Chapter 3 API Overview

-innerUniqueCount 4094 \
-enabled false \
-innerFirstId 1
-increment
-priority

-firstId
-innerIncrementStep
-idIncrMode
-innerEnable
-innerPriority

= - - s

alse \

© hkRPrRRO®R

$HTTP_server_server_network config \
-enable 1\
-network $server_network

$HTTP_server_server_network traffic.config \
-name "HTTP server"

$Server elementList.appendItem -object $HTTP_server_ server_network
$TrafficFlowl columnList.appendItem -object $Server

$TrafficFlowl links.clear

$Testl scenariolList.appendItem -object $TrafficFlowl

e e e

Destination newServerActivityl for newClientActivityl

e e e e e
set destination [$HTTP_client_client_network getDestinationForActivity

"newClientActivityl" "HTTP server_newServerActivityl"]
$destination config \
-portMapPolicy "portMesh"

e e e e e e e e e

Session Specific Settings
L e L e e

set my_ixNetMacSessionData [$Testl getSessionSpecificData "L2EthernetPlugin"]
$my ixNetMacSessionData config \

-duplicateCheckingScope 2

set my_ixNetIpSessionData [$Testl getSessionSpecificData "IpV4VePlugin"]
$my_ixNetIpSessionData config \
-duplicateCheckingScope 2

ittt A A
Create the test controller to run the test
ittt A

-103 -

Chapter 3 API Overview

set testController [::IxLoad new ixTestController -outputDir True]

$testController setResultDir "RESULTS/simpleHTTP"
set NS statCollectoruUtils

set test_server_handle [$testController getTestServerHandle]
${NS}::Initialize -testServerHandle $test_server_handle

${NS}::ClearStats
$Testl clearGridStats

set HTTP_Client_Per_URL_StatList { \

{"HTTP Client Per URL" "HTTP Aborted After Request” "kMax"} \

{"HTTP Client Per URL"™ "HTTP Aborted Before Request" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (400)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (401)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (403)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (407)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (408)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (4xx other)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (4xx)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (505)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (5xx other)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (5xx)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Aborted)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Bad Header)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Read)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Timeout)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Write)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Sent" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Successful" "kMax"} \

{"HTTP Client Per URL" "HTTP Responses Received With Match" "kMax"} \
{"HTTP Client Per URL"™ "HTTP Responses Received Without Match" "kMax"} \

}

set HTTP_Client_StatlList { \

{"HTTP Client" "Client Hello Sent" "kMax"} \

{"HTTP Client" "HTTP Aborted After Request" "kMax"} \
{"HTTP Client" "HTTP Aborted Before Request" "kMax"} \
{"HTTP Client" "HTTP Bytes" "kMax"} \

{"HTTP Client" "HTTP Bytes Received" "kMax"} \

{"HTTP Client" "HTTP Bytes Sent" "kMax"} \

{"HTTP Client" "HTTP Concurrent Connections"” "kMax"} \
{"HTTP Client" "HTTP Connect Time (us)" "kAverageRate"} \
{"HTTP Client" "HTTP Connection Attempts" "kMax"} \
{"HTTP Client" "HTTP Connections" "kMax"} \

- 104 -

Chapter 3 API Overview

{"HTTP Client" "HTTP Content Bytes Received" "kMax"} \

{"HTTP Client" "HTTP Content Bytes Sent"™ "kMax"} \

{"HTTP Client" "HTTP Cookie headers Rejected - (Memory Overflow)" "kMax"} \
{"HTTP Client" "HTTP Cookies Received" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected - (Cookiejar Overflow)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected (Domain Match Failed)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected - (Path Match Failed)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected (Probabilistic Reject)" "kMax"} \
{"HTTP Client" "HTTP Cookies Sent" "kMax"} \

{"HTTP Client" "HTTP Requests Failed" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (400)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (401)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (403)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (407)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (408)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (4xx other)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (4xx)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (505)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (5xx other)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (5xx)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Aborted)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Bad Header)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Read)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Timeout)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Write)" "kMax"} \

{"HTTP Client" "HTTP Requests Sent" "kMax"} \

{"HTTP Client" "HTTP Requests Successful"” "kMax"} \

{"HTTP Client" "HTTP Session Timeouts (408)" "kMax"} \

{"HTTP Client" "HTTP Sessions Rejected (503)" "kMax"} \

{"HTTP Client" "HTTP Simulated Users" "kSum"} \

{"HTTP Client" "HTTP Time To First Byte (us)" "kAverageRate"} \

{"HTTP Client"™ "HTTP Time To Last Byte (us)" "kAverageRate"} \

{"HTTP Client" "HTTP Transactions" "kMax"} \

{"HTTP Client" "HTTP Transactions Active" "kMax"} \

{"HTTP Client" "HTTP Users Active" "kMax"} \

{"HTTP Client" "SSL Alerts Received" "kMax"} \

{"HTTP Client" "SSL Alerts Received (access_denied)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (bad_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (bad_record_mac)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (certificate_expired)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (certificate_revoked)" "kMax"} \
{"HTTP Client"™ "SSL Alerts Received (certificate_unknown)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (close_notify)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decode_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decompression_failure)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (decrypt_error)" "kMax"} \

- 105 -

Chapter 3 API Overview

{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP

Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™

"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL

Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts
Alerts

Received (decryption_failed)" "kMax"} \
Received (export_restriction)" "kMax"} \
Received (handshake_failure)" "kMax"} \
Received (illegal parameter)" "kMax"} \
Received (insufficient_security)" "kMax"} \
Received (internal_error)" "kMax"} \
Received (no_certificate)" "kMax"} \
Received (no_renegotiation)" "kMax"} \
Received (protocol_version)" "kMax"} \
Received (record_overflow)" "kMax"} \
Received (unexpected message)" "kMax"} \
Received (unknown_ca)" "kMax"} \

Received (unsupported certificate)” "kMax"} \
Received (user_canceled)" "kMax"} \

Sent" "kMax"} \

Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent
Sent

(access_denied)" "kMax"} \
(bad_certificate)"” "kMax"} \
(bad_record_mac)" "kMax"} \
(certificate_expired)" "kMax"} \
(certificate_revoked)" "kMax"} \
(certificate_unknown)" "kMax"} \
(close_notify)" "kMax"} \
(decode_error)" "kMax"} \
(decompression_failure)" "kMax"} \
(decrypt_error)" "kMax"} \
(decryption_failed)" "kMax"} \
(export_restriction)"” "kMax"} \
(handshake_failure)" "kMax"} \
(illegal parameter)™ "kMax"} \
(insufficient_security)" "kMax"} \
(internal_error)" "kMax"} \
(no_certificate)" "kMax"} \
(no_renegotiation)" "kMax"} \
(protocol _version)" "kMax"} \
(record_overflow)" "kMax"} \
(unexpected _message)" "kMax"} \
(unknown_ca)" "kMax"} \
(unsupported_certificate)"” "kMax"} \
(user_canceled)" "kMax"} \

Bytes Received" "kMax"} \

Bytes Sent" "kMax"} \

Concurrent Sessions™ "kMax"} \

Received" "kMax"} \

Received (bad certificate)" "kMax"} \
Received (no certificate)” "kMax"} \

Received (no cipher)" "kMax"} \

Received (undefined error)" "kMax"} \
Received (unsupported certificate)"” "kMax"} \

Errors
Errors
Errors
Errors
Errors
Errors

- 106 -

Chapter 3 API Overview

{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP

}

Client™
Client"
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"
Client™
Client"
Client™
Client”
Client"
Client"
Client™
Client"

"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL

"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP
"TCP

Errors
Errors
Errors
Errors
Errors Sent
Errors Sent
Negotiation

Sent
Sent
Sent

Sent" "kMax"} \

(bad certificate)” "kMax"} \
(no certificate)"” "kMax"} \
(no cipher)" "kMax"} \

(undefined error)" "kMax"} \

(unsupported certificate)"” "kMax"} \

Finished Successfuly" "kMax"} \

Session Reuse Failed" "kMax"} \
Session Reuse Success" "kMax"} \
Throughput Bytes" "kMax"} \

"Server Hello Received" "kMax"} \

Accept Queue Entries"™ "kMax"} \
Connection Requests Failed" "kMax"} \

Connections
Connections
Connections
Connections
Connections
Connections
Connections
Connections
Connections
Connections
Connections
Connections

Established"” "kMax"} \

in CLOSE STATE" "kMax"} \

in CLOSE-WAIT State" "kMax"} \
in CLOSING State"™ "kMax"} \

in ESTABLISHED State" "kMax"} \
in FIN-WAIT-1 State" "kMax"} \
in FIN-WAIT-2 State" "kMax"} \
in LAST-ACK State" "kMax"} \

in LISTENING State" "kMax"} \
in SYN-RECEIVED State" "kMax"} \
in SYN-SENT State" "kMax"} \

in TIME-WAIT State" "kMax"} \

FIN Received" "kMax"} \

FIN Sent" "kMax"} \

FIN-ACK Received" "kMax"} \
FIN-ACK Sent" "kMax"} \
Listen Queue Drops" "kMax"} \
Resets Received" "kMax"} \
Resets Sent"” "kMax"} \
Retries™ "kMax"} \

SYN Failed"

"kMax"} \

SYN Sent" "kMax"} \
SYN-ACK Sent" "kMax"} \

SYN_SYN-ACK

Received" "kMax"} \

Timeouts" "kMax"} \

set HTTP_Server_ Per_ URL_StatList { \

{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP

}

Server
Server
Server
Server
Server
Server

Per URL"™ "HTTP Requests Failed" "kMax"} \

Per URL"™ "HTTP Requests Failed (404)" "kMax"} \

Per URL"™ "HTTP Requests Failed (50x)" "kMax"} \

Per URL" "HTTP Requests Failed (Write Error)" "kMax"} \
Per URL" "HTTP Requests Received" "kMax"} \

Per URL"™ "HTTP Requests Successful” "kMax"} \

-107 -

Chapter 3 API Overview

set HTTP_Server_StatList { \

{"HTTP Server" "Client Hello Received" "kMax"} \

{"HTTP Server" "HTTP Bytes Received" "kMax"} \

{"HTTP Server" "HTTP Bytes Sent" "kMax"} \

{"HTTP Server" "HTTP Content Bytes Received" "kMax"} \

{"HTTP Server" "HTTP Content Bytes Sent" "kMax"} \

{"HTTP Server" "HTTP Cookies Received" "kMax"} \

{"HTTP Server" "HTTP Cookies Received With Matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Received With Non-matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Sent" "kMax"} \

{"HTTP Server" "HTTP Requests Failed" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (50x)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (Write Error)" "kMax"} \

{"HTTP Server" "HTTP Requests Received" "kMax"} \

{"HTTP Server" "HTTP Requests Successful" "kMax"} \

{"HTTP Server" "HTTP Session Timeouts (408)" "kMax"} \

{"HTTP Server" "HTTP Sessions Rejected (503)" "kMax"} \

{"HTTP Server" "HTTP Transactions Active" "kMax"} \

{"HTTP Server" "SSL Alerts Received" "kMax"} \

{"HTTP Server" "SSL Alerts Received (access_denied)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (bad_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (bad _record mac)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (certificate_expired)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_revoked)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_unknown)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (close notify)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decode_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decompression_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decrypt_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decryption_failed)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (export_restriction)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (handshake_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (illegal_parameter)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (insufficient_security)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (internal_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (no_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (no_renegotiation)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (protocol_version)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (record_overflow)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unexpected_message)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unknown_ca)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (unsupported_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (user_canceled)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (access_denied)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (bad certificate)" "kMax"} \

-108 -

Chapter 3 API Overview

{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP
{"HTTP

Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"
Server"

"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL
"SSL

"TCP
"TCP
"TCP
"TCP
"TCP
"TCP

Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent
Alerts Sent

(bad_record _mac)" "kMax"} \
(certificate_expired)" "kMax"} \
(certificate_revoked)" "kMax"} \
(certificate_unknown)" "kMax"} \
(close_notify)" "kMax"} \
(decode_error)" "kMax"} \
(decompression_failure)" "kMax"} \
(decrypt_error)" "kMax"} \
(decryption_failed)" "kMax"} \
(export_restriction)" "kMax"} \
(handshake_failure)" "kMax"} \
(illegal parameter)" "kMax"} \
(insufficient_security)" "kMax"} \
(internal_error)" "kMax"} \
(no_certificate)"” "kMax"} \
(no_renegotiation)" "kMax"} \
(protocol version)" "kMax"} \
(record_overflow)" "kMax"} \
(unexpected_message)" "kMax"} \
(unknown_ca)" "kMax"} \
(unsupported certificate)"” "kMax"} \
(user_canceled)" "kMax"} \

Bytes Received" "kMax"} \

Bytes Sent"

"kMax"} \

Concurrent Sessions™ "kMax"} \

Errors Received" "kMax"} \

Errors Received (bad certificate)" "kMax"} \

Errors Received (no certificate)" "kMax"} \

Errors Received (no cipher)" "kMax"} \

Errors Received (undefined error)" "kMax"} \

Errors Received (unsupported certificate)" "kMax"} \
Errors Sent" "kMax"} \

Errors Sent
Errors Sent
Errors Sent
Errors Sent
Errors Sent
Negotiation

(bad certificate)" "kMax"} \

(no certificate)"” "kMax"} \

(no cipher)" "kMax"} \

(undefined error)" "kMax"} \
(unsupported certificate)"” "kMax"} \
Finished Successfuly" "kMax"} \

Session Reuse Failed" "kMax"} \
Session Reuse Success" "kMax"} \
Throughput Bytes" "kMax"} \

"Server Hello Sent™ "kMax"} \

Accept Queue Entries™ "kMax"} \
Connection Requests Failed" "kMax"} \

Connections
Connections
Connections
Connections

Established" "kMax"} \

in CLOSE STATE" "kMax"} \

in CLOSE-WAIT State" "kMax"} \
in CLOSING State"™ "kMax"} \

- 109 -

Chapter 3 API Overview

{"HTTP Server" "TCP Connections in ESTABLISHED State" "kMax"} \
{"HTTP Server" "TCP Connections in FIN-WAIT-1 State" "kMax"} \
{"HTTP Server" "TCP Connections in FIN-WAIT-2 State" "kMax"} \
{"HTTP Server" "TCP Connections in LAST-ACK State" "kMax"} \
{"HTTP Server" "TCP Connections in LISTENING State" "kMax"} \
{"HTTP Server" "TCP Connections in SYN-RECEIVED State" "kMax"} \
{"HTTP Server" "TCP Connections in SYN-SENT State" "kMax"} \
{"HTTP Server" "TCP Connections in TIME-WAIT State" "kMax"} \
{"HTTP Server" "TCP FIN Received" "kMax"} \

{"HTTP Server" "TCP FIN Sent" "kMax"} \

{"HTTP Server" "TCP FIN-ACK Received" "kMax"} \

{"HTTP Server" "TCP FIN-ACK Sent"™ "kMax"} \

{"HTTP Server" "TCP Listen Queue Drops" "kMax"} \

{"HTTP Server" "TCP Resets Received" "kMax"} \

{"HTTP Server" "TCP Resets Sent" "kMax"} \

{"HTTP Server" "TCP Retries" "kMax"} \

{"HTTP Server" "TCP SYN Failed" "kMax"} \

{"HTTP Server" "TCP SYN Sent" "kMax"} \

{"HTTP Server" "TCP SYN-ACK Sent" "kMax"} \

{"HTTP Server" "TCP SYN_SYN-ACK Received" "kMax"} \

{"HTTP Server" "TCP Timeouts" "kMax"} \

}

set statlList [concat \
$HTTP_Client_Per_ URL_StatList \
$HTTP_Client StatList \
$HTTP_Server_Per_ URL_StatList \
$HTTP_Server_ StatList \

]

set count 1
foreach statItem $statList {

set caption [format "Watch_Stat_%s" $count]
set statSourceType [lindex $statItem 0]
set statName [lindex $statItem 1]

set aggregationType [lindex $statItem 2]

${NS}::AddStat \

-caption $caption \
-statSourceType $statSourceType \
-statName $statName \
-aggregationType $aggregationType \
-filterlList {}

incr count

}

proc ::my_stat_collector_command {args} {

-110 -

Chapter 3 API Overview

puts "=====================================
puts "INCOMING STAT RECORD >>> $args"

= [1llength $args]"

puts [lindex $args 0]

puts [lindex $args 1]

puts "=====================================

puts "Len

}

${NS}::StartCollector -command ::my_stat collector_command

$testController run $Testl

vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor

${NS}::StopCollector

HEFHFHEHHFHFFHEEHF RS R R R

Cleanup

b e e e e e e e e

Release config is only strictly necessary if enableReleaseConfigAfterRun is 0.
$testController releaseConfigWaitFinish

::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad
::IxLoad

delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete

$chassisChain

$Testl

$my ixViewOptions
$TrafficFlowl

$Client
$HTTP_client_client_network

$Activity newClientActivityl

$Timelinel
$my_ixHttpAction
$my_ixHttpHeaderString
$my ixHttpHeaderStringl
$my ixHttpHeaderString2
$my ixHttpHeaderString3
$client_network

$Filter

$GratARP

$TCP

$DNS

$Settings

$Ethernet_1

$my ixNetEthernetELMPlugin
$MAC_VLAN_1

$IP 1

$IP R1

$MAC_R1

$VLAN_R1

$DUT

-111 -

Chapter 3 API Overview

::IxLoad delete $Server

::IxLoad delete $HTTP_server_server_network
::IxLoad delete $Activity newServerActivityl

::IxLoad delete $ Match_Longest_
::IxLoad delete $my PageObject
::IxLoad delete $200 OK
::IxLoad delete $my PageObjectl
::IxLoad delete $my PageObject2
::IxLoad delete $my PageObject3
::IxLoad delete $my PageObject4
::IxLoad delete $my PageObject5
::IxLoad delete $my PageObject6
::IxLoad delete $my PageObject?
::IxLoad delete $my PageObject8
::IxLoad delete $my PageObject9
::IxLoad delete $UserCookie
::IxLoad delete $firstName
::IxLoad delete $lastName
::IxLoad delete $LoginCookie
::IxLoad delete $name

::IxLoad delete $password

::IxLoad delete $AsciiCustomPayload
::IxLoad delete $HexCustomPayload

::IxLoad delete $200 OK1
::IxLoad delete $404 PageNotFound
::IxLoad delete $server_network
::IxLoad delete $Filter_ 1
::IxLoad delete $GratARP_1
::IxLoad delete $TCP_1

::IxLoad delete $DNS_1

::IxLoad delete $Settings_1
::IxLoad delete $Ethernet_2

::IxLoad delete $my_ixNetEthernetELMPluginl

::IxLoad delete $MAC_VLAN_2
::IxLoad delete $IP 2
::IxLoad delete $IP_R2
::IxLoad delete $MAC_R2
::IxLoad delete $VLAN_R2
::IxLoad delete $destination

::IxLoad delete $my_ ixNetMacSessionData
::IxLoad delete $my_ixNetIpSessionData

::IxLoad delete $testController

e e e e e e e e e e e e e
Disconnect / Release application lock
T

A

puts $errorInfo

Chapter 3 API Overview

}

::IxLoad disconnect

-113 -

This page intentionally left blank.

- 114 -

CHAPTER 4 IxLoad Tcl API Commands

This section describes the commands used to create the test infrastructure.

:IxLoad

::IxLoad-Top level IxLoad utility.

SYNOPSIS

set object [::IxLoad new ixObject options]

DESCRIPTION

The ixLoad command is the means by which other top level objects are created. Its new subcommand
is documented in each of the created objects' commands. In addition, the connect and disconnect
commands are used to connect to a remote server when running from a non-Windows client.

Although the connect operation is not needed for Windows clients, the disconnect operation is
required. It is best to always use the following structure:

::IxLoad connect <server>
catch {

remainder of program ...
} connectResults
::IxLoad disconnect

When operating on a Windows client, you can use localhost as a convenient placeholder for
<server>.

When using a Unix host to run IxLoad Tcl API programs, the Windows-based host referred to in the
connect subcommand must have the following software installed:

e« The Tcl run-time environment from the IxOS installation.
o The IxLoad client component from the IxLoad client installation.

-115-

Chapter 4 IxLoad Tcl API Commands

SUBCOMMANDS
::IxLoad connect server (port)

On non-Windows client, connect to a remote IxTcl server process on server. (port) is an optional
argument that forces the command to connect on a specific port number. If you do not supply a port
number, the command selects a random port above 10,000. This command has no effect on Windows
clients.

::IxLoad disconnect

Disconnect from the last remote server used in a connect subcommand. This statement must be
executed before exiting any IxLoad Tcl script.

i:IxLoad leval command

Evaluates the command in the context of IxLoad. When running on a Windows system, this evaluates
locally. When run on a Unix system, it is evaluated on the target system.

::IxLoad retrieveFile path
This subcommand is intended to be used by a Unix/Linux client to retrieve files from a Windows host.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

retrieveFile returns the contents of the file as a string.

::IxLoad retrieveFileCopy sourcePath destPath

This subcommand is intended to be used by a Unix/Linux client to retrieve files from a Windows host.
retrieveFileCopy copies a file from the Windows host, and creates (or overwrites) it on the
Unix/Linux host.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

sourcePath is the file name and path on the Windows host.

destPath is the file name and path on the Unix/Linux host.

::IxLoad retrieveResults path

This subcommand is intended to be used by a Unix/Linux client to retrieve .csv files from a Windows
host. retrieveResults tracks the path of the windows files internally, fetches the files, and places
them in the unix machine; in the folder mentioned along with the retrieveResults subcommand.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

path is the folder name and path on the Unix/Linux host.

-116 -

Chapter 4 IxLoad Tcl API Commands

puts "*****UnixResultDir = $UnixResultDir"

#::IxLoad retrieveResults $::IxLoadPrivate::SimpleSettings::RESULTDIR
::IxLoad retrieveResults $UnixResultDir

::IxLoad sendFileCopy sourcePath destPath

This subcommand is intended to be used by a Unix/Linux client to send files to a Windows host for use
in an IxLoad test. For example, you can use this subcommand to send files such as HTTP server pages
and FTP server files.

The Windows host, which is the target of this subcommand, is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

sourcePath is the file name and path on the Unix/Linux host.
destPath is the file name and path on the Windows host.
OPTIONS

None.

EXAMPLE

See above.

ixChassisChain

ixChassisChain-Builds a set of Ixia chassis.

SYNOPSIS

set chassisChain [::IxLoad new ixChassisChain]
SchassisChain subcommand options...

DESCRIPTION

The ixChassisChain command is used to construct a chain of Ixia chassis, whose ports may be used
in the ixNetworkGroup command for both client and server networks. Chassis are assigned chassis
IDs starting at 1; these are used in the network commands to define the chassis associated with the
port.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands

-117 -

Chapter 4 IxLoad Tcl API Commands

are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

addChassis chassisName

Adds a new chassis to the chassis chain. chassisName is the IP address or host name of a chassis.
Each new chassis is assigned a c, starting at 1, which must be used to identify ports on that chassis.

changeCardsInterfaceMode

Changes the interface mode on CloudStorm, PerfectStorm and Lava/XM cards. To use this method,
pass the hostname or IP address of the chassis, the card number that you want to change the interface
mode on, and the mode. The mode can be:

CloudStorm 100G or 40G
PerfectStorm | 1G, 10G, or 40G
Lava SingleMode or DualMode

XM 100G or 3x40GMode

To change multiple cards at once, separate the card numbers separated with commas.
Example: $chassisChain changeCardsInterfaceMode 10.20.83.90 1,2 40G

Call this method only after the testController object has been created, and only on ports that are not
already assigned to the test. After the card interface mode is changed, you need to add the ports to the
test. If you use this method on a port in a configured test, the test configuration will be released.

deleteChassisByName chassisName

Deletes the chassis whose name is chassisName from the chassis chain. All other chassis IDs remain
unaffected.

getChassisNames
Returns a list of all of the chassis hames, ordered by their chassisIDs.

getLoginName

Returns the user's login name.

isValidChassisName chassisName

Checks to see whether chassisName is a valid IP address or host name. True is returned if the name
is valid and false otherwise.

refresh

Refreshes all of the chassis in the chassis chain-retrieving current card and port configuration.

-118 -

Chapter 4 IxLoad Tcl API Commands

refreshChassis chassisName

Refreshes the chassis whose name is chassisName-retrieving current card and port configuration.

setLoginName name

Sets the user's login name to name. If this call is not made, then the name of the chassis is used when
port ownership is taken.

OPTIONS

None.

EXAMPLE

#set chassisChain [::IxLoad new ixChassisChain]

#SchassisChain addChassis $chassisName

#H4 A A 4 Build chassis
chain##### #4444 4444 HHHHHHHHHHHHHSHHHHHSHHSHHSHHSHHSHHS

set chassisChain [::IxLoad new ixChassisChain]
SchassisChain addChassis 10.205.29.101

set client network [::IxLoad new ixNetworkGroup $SchassisChain]
$client network config \

-comment AN

-name "client network™ \
-emulatedRouterSubnetIPv6b "FFFF:FFFF:FFFF:FFFF:FFFF:FFFF: : 0" \
-linkLayerOptions 0\

-ipSourcePortFrom 1024 \
-emulatedRouterGatewayIPv6 Moo\

-cardType "ALM1000T8-1GB" \
-emulatedRouterGateway "0.0.0.0" \
-ipSourcePortTo 65535 \
-emulatedRouterSubnet "255.255.255.0" \
-macMappingMode 0\

-dnsParameters $my ixDns \
-tcpParameters $my ixTcpParameters \
-impairment Smy ixImpairment \
-arpSettings $my:ixArpSettings

$client network portList.appendItem \
-chassisId 1 \

-cardId 3 \
-portId 7

SEE ALSO

ixNetworkGroup (see "ixNetworkGroup")

-119 -

Chapter 4 IxLoad Tcl API Commands

IxChassisBuilder

chassisBuilder - Configure and manage an IxVM chassis.

SYNOPSIS

set chassisBuilder [::IxLoad new ixChassisBuilder]

DESCRIPTION
chassisBuilder is a a set of APIs that enable you to configure and manage an IxVM chassis.

You can use chassisBuilder to perform most of the same tasks as the IxVM Chassis Builder application,
such as adding, changing, or removing cards or ports from a chassis, setting the license server,
enabling or disabling promiscuous mode, setting the NTP server, etc..

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS
Creating a Chassis
To create a chassis, use the following API:
set chassisBuilder [::IxLoad new ixChassisBuilder]
Connecting to a Chassis
To connect to a chassis, use the following API:
$chassisBuilder connectToChassis -chassisName "chassis name"
Changing the Chassis Settings
To change the chassis settings, you first need to issue a get command.
set chassisSettings [$chassisBuilder getChassisSettings]
The chassisSettings objects has 4 parameters which can be inspected

¢ LicenseServer

¢ EnablelicenseCheck
e NtpServer

¢ TxDelay

To get a parameter, use the cget method. For example: [SchassisSettings cget -NtpServer]

You can change the value of a specific parameter by issuing a cset. For example: [$chassisSettings
cset -NtpServer 10.215.10.99]

-120 -

Chapter 4 IxLoad Tcl API Commands

When you have finished changing the settings, to make them permanent, you will need to do the
following:

[$chassisBuilder setChassisSettings -chassisSettings $chassisSettings]
Adding a Card
To add a card, use the following API:

[$chasssisBuilder addCard -managementIp "127.0.0.1" -cardServerId 2 -
keepAliveTimeout 100]

Clearing Ownership

To clear ownership, use the following API:
[$chassisBuilder clearOwnership -cardId cardid]

Adding a Port

To add a port to a specific card ID, use the following API:

[$chassisBuilder addPort -cardld 2 -portld 1 -interfaceName "eth0" -promiscMode true/false -mtu 5000
-lineSpeed "1000"]

Adding and Removing Credentials

To remove credentials for a specific server, use the following API:
[$chassisBuilder removeCredentials -serverName "10.215.10.99"]

To add a specific credential set, use the following API:

[$chassisBuilder addCredentials -serverName "10.215.10.99" -enable true -user
userl -password passwordl -applianceType "Qemu"]

applianceType is the VM type, and can be one of the following:

° "N/All
° "Qemu"
o "VMWare"

Connecting a Card

To connect a disconnected card, use the following API:
[$chassisBuilder connectCard - cardId 1]

Deleting a Card

To delete a card, use the following API:

[$chassisBuilder deleteCard -cardId 1]

Disconnecting a Card

To disconnect a card, use the following API:

-121 -

Chapter 4 IxLoad Tcl API Commands

[$chassisBuilder disconnectCard -cardId 1]
Getting Card Info
To get the card Information by card ID, use the following API:
set card [$chassisBuilder getCardById -cardId 3]
The card object has the following properties which can only be retrieved (using cget):

¢ CardName

¢ CardServerId

¢ KeepAliveTimeout
¢ ManagementlIp

e Status

Getting a List of Ports
To get a list of all ports of a specific card, the user should use the following API.

set portList [$chassisBuilder getCardPorts -cardId 1]

portList is a list of portInfo objects. Each portInfo object has the following properties, which can

only be retrieved (using cget):

¢ InterfaceName
e MTU

e PortName

¢ PortServerId
e PromiscMode

e Status

Getting the Chassis Topology
To get a list of the chassis topologies, use the following API:

set topologies [$chassisBuilder getChassisTopology]

topologies is a list of ixTopology objects. Each object has the following properties, which can only

be retrieved (using cget):

e CardServerId

¢ InterfaceName

¢ IPAddress

o KeepAliveTimeout
e LineSpeed

¢ MAC

e MTU

e PortServerId

¢ PromiscMode

Getting Credentials

-122 -

Chapter 4 IxLoad Tcl API Commands

To get a list of discovered credentials, use the following API:

set credentials [$chassisBuilder getDiscoveredCredentials]

credentials is alist of ixServerInfo objects. Each object has the following properties, which can
only be retrieved (using cget):

¢ Enabled

¢ ErrorMessage

e HasError

¢ ServerName

e ServerPassword
¢ ServerType

e ServerUser

Getting a Card ID
To get a card ID based on a management IP, use the following API:
set cardId [$chassisBuilder getIxVMCardByIP -managementIp "10.215.10.100"]
Rebooting a Chassis
To perform a hard reboot of a chassis, use the following API:
[$chassisBuilder hardChassisReboot]
Loading Topology from a File
To load a topology from a csv file, use the following API:
[$chassisBuilder loadTopologyFromCsv -path "path to the file"]
Rebuilding the Topology
To rebuild the chassis topology, use the following API:

[$chassisBuilder rebuildChassisTopology -usePreviousSlotId true -promiscMode true
appVersion ""]

Rediscovering Applicances
To rediscover the appliances, use the following API:
[$chassisBuilder rediscoverAppliances]
Removing a Port
To remove a port by id, use the following API:
[$chassisBuilder removePortById -cardId 1 -portId 2]
Updating a Card

To update a card by ID, use the following API:

-123 -

Chapter 4 IxLoad Tcl API Commands

[$chassisBuilder updateCard -cardServerId -managementIp="10.215.11.11" -
keepAliveTimeout true]

Updating a Port
To update a port by id, use the following API:

[$chassisBuilder updatePortById -cardId 1 -portId 1 promiscMode false mtu 1000
lineSpeed "5000"]

Getting a List of Virtual Machines
To get a list of discovered machines, use the following API:

set machines [$chassisBuilder getDiscoveredMachines]

machines is a list of ixDiscoveredMachine objects. Each object has the following properties, which
can only be retrieved (using cget):

e ApplianceName
o Interfaces, whichis a list of ixDiscoveredInterface objects. Each object has the following
properties:
¢ InterfaceName
o State, which can have one of the following values:
m "Available"
m "Assigned"
m "Unusable"
¢ InterfaceNumber
¢ ManagementIp

o Type, which can have one of the following values:

™ "N/A"
™ "Qemu"
m "VMWare"

Rebooting Cards
To reboot specific cards by their ID, use the following API:

[$chassisBuilder hwRebootCardByIDs -cardIDs "a list of card ids"]

EXAMPLE

package require IxLoad

::IxLoad connect 1.2.3.4

set logtag "IxLoad-api”

set logName "simplehttp"

set logger [::IxLoad new ixLogger $logtag 1]
set logEngine [$logger getEngine]

- 124 -

Chapter 4 IxLoad Tcl API Commands

$logEngine setlLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)
$logEngine setFile $logName 2 256 1

#Create a new chassis builder
set chassisBuilder [::IxLoad new ixChassisBuilder]

connect to a chassis
$chassisBuilder connectToChassis -chassisName "10.215.122.90"

#getting a chassis topology and showing properties
set topologies [$chassisBuilder getChassisTopology]
set count [$topologies indexCount]

set index ©

set topology [$topologies getItem 0]

set CardServerId [$topology cget -CardServerId]

set InterfaceName [$topology cget -InterfaceName]
set IPAddress [$topology cget -IPAddress]

set KeepAliveTimeout [$topology cget -KeepAliveTimeout]
set LineSpeed [$topology cget -LineSpeed]

set MAC [$topology cget -MAC]

set MTU [$topology cget -MTU]

set PortServerId [$topology cget -PortServerId]

set PromiscMode [$topology cget -PromiscMode]

#add a card and a port example

set cardIp "10.215.122.96"

$chassisBuilder addCard -managementIp $cardIp -keepAliveTimeout 300

set cardId [$chassisBuilder getIxVMCardByIP $cardIp]

$chassisBuilder addPort -cardId $cardId -portId 1 -interfaceName "ethl" -
promiscMode False -lineSpeed "1000"

#changing the license server on a virtual chassis
$chassisSettings cset -LicenseServer "10.215.122.90"
$chassisBuilder setChassisSettings $chassisSettings

#get cardId and connect it to the chassis
set cardId [$chassisBuilder getIxVMCardByIP $cardIp]
$chassisBuilder connectCard -cardId $cardId

#disconnecting a card
$chassisBuilder disconnectCard -cardId $cardId

#getting discovered machines

puts "Getting discovered machines"

set machines [$chassisBuilder getDiscoveredMachines]

set count [$machines indexCount]

if { $count == 0} {

puts "No machines discovered ! Should do a rediscovery !"

-125-

Chapter 4 IxLoad Tcl API Commands

} else {

set index ©

puts $count

puts "There are $count machines discovered"

set machineInfo [$machines getItem 0]

set ApplianceName [$machineInfo cget -ApplianceName]
set Interfaces [$machineInfo cget -Interfaces]

set ManagementIp [$machineInfo cget -ManagementIp]
set Type [$machineInfo cget -Type]

set InterfaceNumber [$machineInfo cget -InterfaceNumber]
::IxLoad disconnect

ixCustomPortMap

ixCustomPortMap-Customizes the order and frequency, by which client IPs will access server IPs.

SYNOPSIS
$destinationl config -portMapPolicy $ixPortMap(kPortMapCustom)
set customPortMap [$destinationl cget customPortMap]

$customPortMap subcommand options

DESCRIPTION

The ixCustomPortMap command is used to map a range of client and server traflt is used to map client
IPs onto server IPs or client VLANs onto server VLANSs.

A custom port map is associated with a specific symbolic destination.

To create a Custom traffic map, the client and server network ranges, rangeType parameter can be
anything, except IPSec. For DHCP and PPPoOE ranges, VLAN must be enabled on both the client and
server networks to use a custom traffic map.

SUBCOMMANDS

None.

OPTIONS

submapsIPv4

This is an ixConfigSequenceContainer holding a list of Submap objects.
submapsIPv6

This is an ixConfigSequenceContainer holding a list of Submap objects.

-126 -

Chapter 4 IxLoad Tcl API Commands

Steps for Custom Traffic Mapping

To setup a Custom Traffic Map:

1. Set up the custom Traffic Map for symbolic destination. After creating the test object and

assigning traffic-network mappings, setup the custom traffic map for the symbolic destination.
set destinationl [$clnt t n mapping getDestinationForActivity my http client svr

traffic my http server]

2. Set up the client or server traffic-network mapping. Set the client or server traffic-network
mapping for a custom traffic. Set the port for a destination to kPortMapCustom. Now it is
possible to access the customPortMap property on the destination object.

Sdestinationl config -portMapPolicy S$ixPortMap (kPortMapCustom)

3. Include the custom port map object. This includes the custom port map object into a local

variable for convenience of scripting.

set customMap [$destinationl cget -customPortMap]

4. Setthe submaps. A submap is a portion of a customPortMap that describes a simple relationship
between a set of source addresses and a set of destination addresses. Complex relationships can
be described using multiple ixPort objects.

set submap [ScustomMap submapsIPv4.getItem 0]

5. Set the submap's mesh type to be IP range pairs:
$Ssubmap config -meshType $ixSubmap (kMeshTypeIpRangePairs)

IP mesh types start out with ixSubmapRange objects that correspond to network ranges in the client
and server networks for the symbolic destination. In this mode, ixSubmapRange IDs are the row
numbers of the corresponding ranges in the networks. ixSubmapRange can be split into smaller, equal
subranges using the split command. Referto Split and Merge Submaps.

VLAN mesh types start out with ixSubmapRange objects that correspond to VLAN IDs (one
ixSubmapRange per vLAN) in the client and server networks for the symbolic destination. In this mode,
ixSubmapRange IDs are the same as the VLAN IDs they represent. Each ixSubmapRange can
potentially span portions of many network ranges, depending on how the VLANs are specified on those
ranges.

6. Specify the interconnections. You can now specify which server submap range that each client
submap range communicates with. In the following example, the numbers next to the source

range and the destination range show the mapping pattern.
wire second source range to first destination range# and vise versa$submap

sourceRanges (0) .config -destinationId 3$submap sourceRanges(l).config -destinationId
1$submap sourceRanges (2) .config -destinationId 1$submap sourceRanges (3) .config -
enable 0

7. Split and merge submaps. For IP meshes, you can split a range in the list into subranges by
calling the split method on that range. Once split, a range can be merged by calling merge on it.
Merge doesn't need a parameter because it removes all of the child nodes originally created by
using the split.

split some rangesS$Ssubmap sourceRanges (0) .split 2Ssubmap destinationRanges (0) .split
2

EXAMPLE
o # Set up the custom

-127 -

Chapter 4 IxLoad Tcl API Commands

traffic map for the symbolic destination.# This must be done after creating the test
object and assigning# traffic-network mappings#------—------"-"""""-"""-"-"-"-"—"-~—-"——~—"—~—~—~————

set destinationl [$clnt t n mapping getDestinationForActivity my http client svr
traffic my http server]Sdestinationl config -portMapPolicy $ixPortMap
(kPortMapCustom)

setting custom port map creates and initializes the custom port map object# get it
so we can modify it

set customMap [$destinationl cget -customPortMap]

the default has a single submap range available. Modify itset submap [S$ScustomMap
submapsIPv4d.getItem 0]

set it to an IP range pair typeS$submap config -meshType $ixSubmap
(kMeshTypeIpRangePairs)# split some ranges#S$submap sourceRanges (0).split 2#S$submap
destinationRanges (0) .split 2# wire second source child to first destination child#
and vise versa

$submap sourceRanges (0) .config -destinationId 3$submap sourceRanges(l).config -
destinationId 1S$submap sourceRanges (2) .config -destinationId 1S$submap sourceRanges
(3) .config -enable 0

SEE ALSO

ixClientTrafficNetworkMapping

ixPlaylists

ixPlaylist - Configure a playlist.

SYNOPSIS
set Playlistl [::IxLoad new ixPlaylist]
$Playlistl config \

DESCRIPTION

ixPlaylist configures a playlist, a list of files to played.

-128 -

Chapter 4 IxLoad Tcl API Commands
A playlist is added to the activity in a ixNetTraffic object using appendItem subcommand. To
configure the playlist, use the config subcommand.

Only certain protocols support playlists. Ensure that the protocol in the activity you are adding the
playlist to supports playlists.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command. In addition the following commands are available.
Unless otherwise described, no values are returned and an exception is raised for any error found.

OPTIONS
splitMethod

Determines how the playlist is distributed among the ports in the test.

Value Description
sameFileOnEachPort (Default) The entire playlist is duplicated on each port
splitFileAcrossPorts The playlist is divided equally among the ports.

splitFileAcrossPortsAsFixedSlices | The playlist is divided into chunks containing the number of
entries you specify, and distributes one chunk to each port.

Specify the number of entries in the entryCountOnEachPort
parameter.

name

Name of the playlist.

Default = "Playlistn" where n is a sequential integer starting with 1.
filename

Name of the CSV file to use as the source of the playlist data.
Default = "" (None)

indexIncrementMethod

If userSequencing is set to sequential or uniqueOffset, this option determines the order that
entries are loaded from the playlist.

Value Description
perlteration (Default) All commands access the same resource in the playlist.

perCommand | Each command access a different resource in the playlist, in order.

poolType

-129 -

Chapter 4 IxLoad Tcl API Commands
Entry in the playlist each user begins executing with.

Value Description

specificPool | (Default) Defines a fixed, repeatable pattern for distributing the playlist resources
among the users.

If you select this option, you must specify values for the userSequencing and
indexIncrementMethod parameters.

globalPool The playlist is accessed in order, without regard to which user accesses a particular
entry.

entryCountOnEachPort

If splitMethod is splitFileAcrossPortsAsFixedSlices, this parameter determines the number of
entries for each port.

Default = 1
userSequencing

Method used to initially distribute the resources among the users. See the description in the User
Guide for a full description of the parameters.

Value Description

sequential (Default) Users access resources based on their order in the playlist.
uniqueOffset | Users access resources based on their user ID.

randomOffset | Users access resources randomly.

firstRowIsColumnHeader

If true, the entries in the first row of each column are used as headings for each column. If false,
default entries are used for column headings.

Values = true (default), false

EXAMPLE

$Activity_IPTV_VideoClientl playlists.clear

set Playlistl [::IxLoad new ixPlaylist]
$Playlistl config \
-splitMethod "sameFileOnEachPort" \

-name "Playlist1" \

-130 -

Chapter 4 IxLoad Tcl API Commands

-filename "C:\\Users\\userli\\Desktop\\playlist.csv" \
-indexIncrementMethod "perlteration” \

-poolType "specificPool" \

-entryCountOnEachPort 1\

-userSequencing "sequential" \

-firstRowIsColumnHeader true

$Activity_IPTV_VideoClientl playlists.appendItem -object $Playlistl

$Activity_IPTV_VideoClientl agent.pm.commands.appendItem \

-commandType "PlayMediaCommand" \

-media "\{\{playlist.Playlist1.\$Media\}\}" \
-symServerlIP "\{\{playlist.Playlist1.\$Site\}\}" \
-cmdName "Play Media 1"

ixPort

ixPort - retrieves the ID of an Ixia port and controls the port capture.

SYNOPSIS

$network portList.appendItem -chassisld 1 -cardId 1 - portld 1
set port [$network portList.getltem 0]

DESCRIPTION

The ixPort command is used to define and retrieve the attributes of an Ixia port that is a member of a

portList object. For example:
puts “Added card [$clnt network portList (0).getId]”

SUB-COMMANDS

None.

OPTIONS

getId

-131-

Chapter 4 IxLoad Tcl API Commands

Returns a string indicating the chassis ID, card ID, and port ID of a port, in the following format:
chassisID.cardID.portID

getOwner
Returns a string indicating the current owner of the port. Returns an empty string if there is no owner.
isLinkUp
Returns a flag indicating, whether a cable is connected to another live port.
isPortCaptureEnabled
This returns a flag indicating the capture is enabled on the port.
setPortCaptureEnable
This enables the port capture. It is also enabled during the traffic-network map
setPortCaptureFileName

This enables the port capture and saves the details in a file on the hard disk.

EXAMPLE

set chassisChain [::IxLoad new ixChassisChain]$chassisChain addChassis myChassis#---
——— # Build client Network#--

$clnt network portList.appendItem \-chassisId 1 \-cardId 1\-portId 1#-——---—-
—— # Get the port back and

puts [$clnt network portList (0).getId]
SEE ALSO

ixChassisChain

-132 -

Chapter 4 IxLoad Tcl API Commands

ixSubmap
SYNOPSIS

set submap [$customMap submapsIPv4.getitem 0]

$submap config -meshType $ixSubmap(kMeshTypelpRangePairs)

DESCRIPTION

A portion of a customportmap that describes a relationship between a set of source addresses and
destination addresses. Arbitrarily complex relationships can be described using multiple ixSubmaps.

Options
name
This is the user-defined name for the submap.
destinationRanges
List of ixSubmapRange objects representing the server IPs.
sourceRanges
List of ixSubmapRange objects representing the server IPs.
ipType
IP version (IPv4 or IPv6) used on the submap (read-only).
allowsIpMesh
Returns 1 if IP meshTypes are allowed (read-only).
allowsVlanMesh
Returns 1 if the VLAN meshTypes are allowed (read-only).
meshType

This defines the relationship between the sourceRanges and destinationRanges. Can be one of:

Option Usage

$::ixSubmap A pattern based on IP addresses, where each enabled client range
(kMeshor communicates to all enabled server ranges.

“ipRangeMesh”

-133 -

Chapter 4 IxLoad Tcl API Commands

$::ixSubmap A pattern based on IP addresses, where each enabled client range

(kMeshor communicates with a single server range, as specified by the client range's
“ipRangePairs” destinationId option (see ixSubmapRange command).

$::ixSubmap A pattern based on VLAN IDs, where each enabled client range communicates

(kMeshTypeVlanor | with all enabled server ranges.
“vlanRange”

$::ixSubmap A pattern based on VLAN IDs, where each enabled client range communicates
(kMeshTypeVlanor | with all enabled server ranges.
“vlanRange”

ixSubmapRange

DESCRIPTION

A group of IPs, specified by either VLAN or IP (as determined by the ixSubmap meshType option). A
submap range is the smallest unit of client or server IPs for specifying the traffic flow between clients
and servers.

OPTION

id

This is the IxLoad-assigned ID for the submap. This is read-only.
enable

This enables or disables traffic for the submap range. In full mesh modes, enable applies to both the
client and server submap ranges. In range pair modes, enable affects the submap ranges only. All
enabled client submap ranges will talk to their specified destination submap range, whether enabled or
not.

destinationId

This is enabled for client submap ranges in a range pair meshType mode. It specifies the destination
submap range to be communicated with. It can handle a list of destination IDs

childRanges

This is for IP meshTypes only. This is an ixConfigSequenceContainer with a list of ixSubmapRanges
for nodes created via the split command. This list cannot be extended manually via appendItem.

- 134 -

Chapter 4 IxLoad Tcl API Commands

ixIntRange

DESCRIPTION

This holds the items of comma separated list of ports defined in portRanges of
ixDutProtocolPortRange. These items can either be a single integer value or a range of integers.

set my ixIntRange [::IxLoad new ixIntRange]

$my ixIntRange config \

-intRange "16-80"
OPTION

intRange

The value of portRanges of ixDutProtocolPortRange.

EXAMPLE

set destination [$Trafficl Networkl getDestinationForActivity "HTTPClientl"
"DUT1l:custom"]$destination config \-portMapPolicy

"customMesh"

Sdestination portRangeList.clear

set my ixIntRange [::IxLoad new ixIntRange]S$my ixIntRange config \-intRange
"16"

$destination portRangelList.appendItem -object Smy ixIntRange

set my ixIntRangel [::IxLoad new ixIntRange]$my ixIntRangel config \-intRange
"18"

$destination portRangeList.appendItem -object Smy ixIntRangel
set my ixCustomPortMap [Sdestination cget -customPortMap]

set Submapl [$my ixCustomPortMap submapsIPv6.getItem 0]$Submapl config \-name
"Submapl" \-meshType "ipRangeMesh"

iXRepository

ixRepository-Creates a repository object (RXF file).

-135-

Chapter 4 IxLoad Tcl API Commands

SYNOPSIS

set ::repository [::IxLoad new ixRepository -name path]

DESCRIPTION

The repository (.RXF file) object is a set of lists that represents the tree shown in the IxLoad GUI. There
are six lists, one for each top-level node in the GUI tree: clientNetworkList, serverNetworkList, dutList,
clientTrafficList, serverTraffiand testList.

In order to create a repository, all test components (networks, traffic, activities, traffic-network
mappings, and tests) to be saved in a repository must be created in these lists.

Similarly, the contents of an existing repository can be manipulated by manipulating the objects in
these lists. The lists are of type ixConfigSortedNamedItemList.

For examples of repository usage, see the following scripts in the \Samples directory.

« reprun.tcl - Runs all tests in a repository.
o repNewHTTP.tcl - Creates a new repository.
o reprunhttpstats.tcl - Runs all tests in a repository and collects http stats.

SUBCOMMANDS

The options for this command are configured and read using the subcommands defined in the
ixConfigSortedNamedItemList command.

OPTIONS

name

Specifies the path to the file.
activeTest

The name of the active test in the repository. This test should be selected when the repository is
loaded into the IxLoad GUI.

clientNetworkList

List of the client networks in the repository. This is a list of type ixConfigSortedNamedItemList.
serverNetworkList

List of the server networks in the repository. This is a list of type ixConfigSortedNamedItemList.
dutlList

List of the DUTs in the repository. This is a list of type ixConfigSortedNamedItemList.
clientTrafficlist

List of the client activities in the repository. This is a list of type ixConfigSortedNamedItemList.
serverTrafficlList

List of the server activities in the repository. This is a list of type ixConfigSortedNamedItemList.

-136 -

Chapter 4 IxLoad Tcl API Commands

testList

List of the test configurations (traffic-network mappings, timelines, port selections in the repository.
This is a list of type ixConfigSortedNamedItemList.

write

Save the repository to a file. -write takes the following arguments:

- The path to the file. Can be omitted to rewrite an existing repository opened with the
destination | -name option.

-overwrite | If true, overwrites an existing file, provided it is accessible and not write-protected.
(Defaults = false).

EXAMPLE

#Create an empty repository and save itset ::newRepository [::IxLoad new
ixRepository]$::newRepository write -destination newRepository -overwrite 1
SEE ALSO

ixSendEventCommand

ixSendEventCommand - trigger a waiting command

SYNOPSIS
$my_ixSendEventCommand config \

-optionvalue

DESCRIPTION

ixSendEventCommand and ixWaitEventCommand synchronize the command lists of two or more
activities within a Subscriber NetTraffic. ixWaitEventCommand stops command list execution until an
ixSendEventCommand with a matching eventId is called. ixSendEventCommand causes all command
lists within a Subscriber NetTraffic that are currently stopped by an ixWaitEventCommand with a
matching eventld to resume execution.

ixSendEventCommand and ixWaitEventCommand are added to an actionList using the appendItem
command.

For example, if Command2 must be executed only after Command1l has been executed:

1. An ixWaitEventCommand is inserted preceding Command?2.

-137 -

Chapter 4 IxLoad Tcl API Commands

2. A ixSendEventCommand is added after Command1, with the same eventID as in the
ixWaitEventCommand.

When Command1 finishes executing, the ixSendEventCommand ends the ixWaitEventCommand for
Command?2, causing Command?2 to be executed.

ixSendEventCommand and ixWaitEventCommand can only be used with Subscriber activities.

OPTIONS

commandType

Command type. The only value is "SendEventCommand".
eventID

ID of the corresponding ixWaitEventCommand. Default value = 1.

EXAMPLE

set my_ixSendEventCommand [::IxLoad new ixSendEventCommand]
$my_ixSendEventCommand config \
-commandType"SendEventCommand" \

-eventldl

$Subscriber_Activity_ HTTPClientl agent.actionList.appendItem -object $my_ixSendEventCommand

$Subscriber_Activity_FTPClientl agent.actionList.clear

set my_ixWaitEventCommand [::IxLoad new ixWaitEventCommand]
$my_ixWaitEventCommand config \
-commandType"WaitEventCommand" \

-eventld1

$Subscriber_Activity_FTPClientl agent.actionList.appendItem -object $my_ixWaitEventCommand

-138 -

Chapter 4 IxLoad Tcl API Commands

SEE ALSO

ixWaitEventCommand

ixStatCatalogItem

ixStatCatalogltem-Describes a single item in a stat catalog.

SYNOPSIS
set statCatalog [$ixTestObject getStatCatalog]lputs [[lindex S$statCatalog 0]

statSpecList (0) .cget -name]
DESCRIPTION

The ixStatCatalogItem objectis a returned element of a list from the ixTest g command. It
describes a statistics source and all of the statistics and filters available from that source.

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS
statFilterList

(Read Only) . The list of all filters available from the agent. Each item of the list is of type
ixStatFilter. Referto ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list.

statSourceType

(Read Only). The agent from which statistics originate, of the form:
Protocol Client/Server

Where Protocol is one of the supported protocols-for example, HTTP or FTP, and Client/Server is

one of those two values. Some examples are:
“HTTP Client”“FTP Server”

statSpecList

(Read Only) . The list of all statistics available from the agent. Each item of the list is of type
ixStatSpec. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list.

EXAMPLE
puts [[lindex $statCatalog 0] statSpecList (0).cget -name]

SEE ALSO

ixTest

-139 -

Chapter 4 IxLoad Tcl API Commands

ixStatFilter

ixStatSpec

ixStatFilter

ixStatFilter-Describes a single statistics filter in a stat catalog.

SYNOPSIS
set statCatalog [$ixTestObject getStatCatalog]
puts [[lindex $statCatalog 0] statFilterList(0).cget -type]

DESCRIPTION

The ixStatFilter objectis one element of the statFilterList option of the ixStatCatalogItem
object. It describes a single filter available for a protocol agent (statSourceType).

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS

type

(Read Only) . The type of the filter available. One of:

Option Usage

$::ixStatFilter(kTypePort) | A filter operation may be performed across the port described in the
or “Port” value field.

$::ixStatFilter(kTypeCard) | A filter operation may be performed across the card described in the
or “Card” value field.

$::ixStatFilter A filter operation may be performed across the chassis described in the
(kTypeChassis) value field.

or “Chassis”

$::ixStatFilter A filter operation may be performed across the activity described in the
(kTypeActivity) value field.

or “Activity”

- 140 -

$::ixStatFilter

(kTypeCommunity)

or “Traffic-

NetworkMapping”

value

Chapter 4 IxLoad Tcl API Commands

A filter operation may be performed across the community described in
the value field.

(Read Only) . A value corresponding to the value of the type option. One of:

Option

$::ixStatFilter
(kTypePort)
or “Port”

$::ixStatFilter
(kTypeCard)
or “Card”

$::ixStatFilter
(kTypeChassis)
or “Chassis”

$::ixStatFilter
(kTypeActivity)
or “Activity”

$::ixStatFilter

(kTypeCommunity)

or “Traffic-

NetworkMapping”

EXAMPLE

Usage

A port specification in the form:
chassis/card/port

A port specification in the form:
chassis/card

A port specification in the form:
chassis

The name associated with an ixCustomPortMap Or ixServerTraffic object
in the test.

The name associated with an ixClientTrafficNetworkMapping Or
ixServerTrafficNetworkMapping objectin the test.

puts [[lindex S$statCatalog 0] statFilterList (0).cget -typel

SEE ALSO

ixTest

ixStatCatalogltem

ixStatSpec

ixStatSpec-Describes a single statistic in a stat catalog.

- 141 -

Chapter 4 IxLoad Tcl API Commands

SYNOPSIS
set statCatalog [$ixTestObject getStatCatalog]
puts [[lindex $statCatalog 0] statSpecList(0).cget -type]

DESCRIPTION

The ixStatSpec objectis one element of the statSpecList option of the ixStatCatalogItem
object. It describes a single statistic available for a protocol agent (statSourceType).

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS

aggregationFunctionCode

(Read Only) . The type of statistic which this represents. One of:

Option Usage
“Raw”

“Interpolated”

“Interpolated Rate”

“Rate”

“Smooth”

“Interval Maximum”
“Interval Minimum”
“Interval Average”

“Interval Weighted Average”
“Sum over ports"

“Maximum over ports”
“Minimum over ports”
“Average over ports”

“Weighted Average over ports”

- 142 -

Chapter 4 IxLoad Tcl API Commands

enablePortAggregation
(Read Only). If true, thenitis possible to aggregate this statistic for all agents on a port.
name

(Read Only) . The name of the statistic. This is the same name that is used in the name field of the
iistatCollectorUtils::AddStat -statName argument.

path

(Read Only) . The internal full-path name of the statistic.

EXAMPLE
puts [[lindex S$statCatalog 0] statSpecList (0).cget -typel

SEE ALSO
ixTest

ixStatCatalogltem

ixTest

ixTest-Builds a complete IxLoad test.

SYNOPSIS
set Testl [::IxLoad new ixTest]

$test subcommand options...

DESCRIPTION

The ixTest command is used to construct a complete IxLoad test structure. It consists of a list of
client traffic-network and server traffic-network mappings, called communities. In addition to the two
lists, several options control global operation. An ixTest command is used in conjunction with a
ixTestController to operate the test and collect statistics.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

getStatCatalog

This subcommand returns a list of objects of type ixStatCatalogItem that define all of the statistics
available, along with all possible filters. Refer to ixConfigSequenceContainer for a list of commands
that may be used to manipulate this list.

- 143 -

Chapter 4 IxLoad Tcl API Commands

getCommunitylList

This subcommand returns all the communities in the test in no particular order. It is provided for
convenience. It is essentially equivalent to getting the clientCommand serverCommunityList and
concatenating them.

set the chassis chain on the repository
since there is no chassisChain clear,
it's easiest to start with a new one

myChassisChain = new ixChassisChain
myChassisChain.addChassis (“myChassis”)
repository.chassisChain = myChassisChain

set ports on all the networks in the tests
for test in repository.testList:
or pick a specific test

for community in test.getCommunityList():
community.network.portList.clear ()

update x & y with next card and port to assign
(assuming single chassis)
community.network.portList.appendItem(chassisId = 1, \ cardId = x, portId = y)

For an example of how to load a repository, see RepRun.tcl in the Samples directory.

OPTIONS
clientCommunityList

A list of objects of type ixClientTrafficNetworkMapping that define the client agent to network
mappings used to generate client traffic. Refer to ixConfigSequenceContainer for a list of commands
that may be used to manipulate this list. (Default = {}).

comment
A comment associated with the test. (Default = “V“).
csvInterval

The interval, in seconds, at which the CSV statistics files are updated. In the GUI, this parameter is on
the Test Options pane and is labeled CSV Polling Interval. This parameter does not set the
statistics callback interval, which you must define manually for each script (see statCollectorUtils
on page 4-60). (Default = 4).

enableForceOwnerShip

If true, at the beginning of the test, any ports that are selected for the test but owned by another user
are rebooted and their previous ownership cleared. This parameter corresponds to the GUI option
“Forcefully Take Ownership.” (Default = false).

enableReleaseConfigAfterRun

- 144 -

Chapter 4 IxLoad Tcl API Commands

If true, purges the test configuration from the ports after a test completes, releases ownership of them,
and the ports will no longer respond to ARPs and PINGs from the DUT. (Default = false).

enableResetPorts

If true, IxLoad reboots the ports before downloading the test configuration to them. To ensure the
integrity of your testing, it is always safest to reboot the ports before running a test. However,
rebooting the ports does increase the amount of time required to prepare the ports for a test.

If you are developing a test and making incremental changes to it and then run it to see the effect of
your changes, it may be safe to save time by not rebooting the ports before each run.

If you do not want to reboot the ports for every test, you should at least reboot the ports the first time
you load a repository; this will ensure that any software structures remaining from a previous test or
other application are properly removed. (Default = false).

name
The name associated with this object. (Default = “TestEnvelope”).
serverCommunityList

A list of objects of type ixServerTrafficNetworkMapping that define the server agent to network
mappings used to simulate network servers. Refer to ixConfigSequenceContainer for a list of
commands that may be used to manipulate this list. (Default = {}).

statsRequired

If true, statistics will be collected for the test. (Default = 1).

EXAMPLE

o m # Create the test#---
——— set Testl [::IxLoad new
ixTest]$Testl config \-comment """ \-csvInterval

4 \-name "Testl" \-statsRequired

1 \-enableResetPorts 0 \-enableForceOwnership

false \-enableReleaseConfigAfterRun 0 \-captureViewOptions

$my ixViewOptions

STestl scenariolList.clear

$Testl scenariolist.appendItem -object $TrafficFlowl
SEE ALSO

ixTestController

ixDut

- 145 -

Chapter 4 IxLoad Tcl API Commands

ixXTestController

ixTestController-Controls execution of an IxLoad test.

SYNOPSIS

set testController [::IxLoad new ixTestController options]

$testController subcommand options...

DESCRIPTION

The ixTestController command is used to control the execution of an IxLoad test. The ixTest
object is referenced in this command's run subcommand.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

OPTIONS
addReportFile

Adds a file to the IxReporter test results folder. This option corresponds to adding files to the Files tab
in IxReporter. You can add the following types of files: BMP, JPG, CSV, PNG, GIF. For example:
"c:/temp/reportFiles/http.csv" or "c:/temp/images/http.bmp". If you add a CSV file, you must add the
metadeta file in the same folder as well. You can call this API after the test is stopped. See
generateReport for more information.

nn

Values: Full path and name of file to add. Default = "" (none).

addReportFilesFromFolder

Adds all the files in a folder to the IxReporter test results folder. This option corresponds to adding files
to the Files tab in IxReporter. You can add the following types of files: BMP, JPG, CSV, PNG, GIF. For
example: "c:/temp/reportFiles". If you add a CSV file, you must add the metadeta file in the same
folder as well. You can call this API after the test is stopped. See generateReport for more
information.

Values: Full path of the folder to add. Default = "" (none).
applyConfig
Downloads the test configuration to the Ixia ports. The syntax is the same as for the run subcommand.

applyObjectiveValues

Applies the new objective values that are configured on the activity when the test is running. See the
example for canSetObjectiveValue.

- 146 -

Chapter 4 IxLoad Tcl API Commands

autorepository

Automatically creates a repository that is used as the source of data for the “Test Configuration”
section in a generated report. The repository is created in the results ($SresultDir) directory.

The autorepository and repository subcommands can both be used to create repositories that are
the source of data for the “Test Configuration” section of reports.

« autorepository creates a repository based on IxLoad's internal, ephemeral repository.
o repository creates a copy of the repository specified by $repository (created using
ixRepository).

The choice of which one to use depends on whether or not you are using an srepository objectin
your test:

o Ifyou are using Srepository, use repository.
o If you are not using $repository, use autorepository.

autorepository requires the repository file name as an argument.

For example, the following generates a repository named My Rep.rxf:
StestController run $test -autorepository "My Rep.rxf"

canSetObjectiveValue

Checks whether the objective value can be set on the activity when the test is running. The objective
value can be changed only during the Ramp-up and Sustain phases of the test.

For a result equivalent to changing the objective values in the GUI ("modify-on-the-fly"), make sure
your script changes the objectivevalue, not the userObjectivevalue. Your script must call
canSetObjectiveValue before changing the objective value because changing the objective value is

not allowed during some run states such as ramp down.
Modify objective value on the fly every 40s (3rd one should give a warning)

set maxObjectiveValue [$Activity newClientActivityl getMaxObjectiveValue]puts "Max
objective value - SmaxObjectiveValue"

set objectiveValue 733100for {set j 0} {$3J < 3} {incr j} { sleep 40 puts
"Trying to change objective to $objectivevValue..." $Activity newClientActivityl
config -objectiveValue S$objectiveValue set canSetObjectiveValue [$Activity
newClientActivityl canSetObjectiveValue] if { S$canSetObjectiveValue } {
$Activity newClientActivityl applyObjectiveValues } incr objectiveValue 100}

collectDebuglLogs

This command places the debug logs in the DebugInfo\Logs directory of the configured results
directory of the test configuration on the PC running the IxLoad client GUIL. For example:

<ResultsDirectory >\ DebuglInfo\Logs

Example:
StestController collectDebuglLogs

-147 -

Chapter 4 IxLoad Tcl API Commands

enableAutoGenerateReport

Automatically generates a report after the test stops. You must call this API before the test is
configured. See generateReport for more information.

Values: 0 = false (default), 1 = true.

getTestServerHandle

This subcommand returns a string used for statistics collection using the
statCollectorUtils::Initialize command. IOR stands for Interoperable Object Refname given to a
network-addressable reference as defined by CORBA.

getMaxObjectiveValue

Fetches the maximum objective value that can be configured on the activity when the test is running.
This value is shown as the maximum value that can be set using the Objective slider in the IxLoad GUL.
See the example below and the example for canSetObjectiveValue.

Example:

proc ::my stat collector command {args} {
set ::ixStatCollectorMonitor "statsReceived"
}

${NS}::StartCollector -command ::my stat collector command -interval 4

set ::1ixTestControllerMonitor ""
StestController run S$Testl

wait till we get stats, indicating test is starting to run
vwait ::ixStatCollectorMonitor

set maxObjectiveValue [$Activity newClientActivityl getMaxObjectiveValue]
puts "Max objective value - $maxObjectiveValue"

generateReport

This command performs the report generation from TCL. The generateReport function is called after a
test is run and completed. The test run generates certain CSV files. These files are stored in the result
directory and contain the test statistics. IxReporter processes the resulted CSVs and generates the
PDF file.

A new version of IxReporter, the report generation application, was introduced with IxLoad 6.0. This
new version provides new report options, but requires a slightly different workflow. The legacy (pre-
6.0) report generation options are still supported.

Legacy (pre-6.0) Report Generation

The legacy report generation options do not require the IxReporter GUI to be running in the
background, and the only package that is required is the ixload package (package require
ixload). The only legacy report generation options are:

-detailedReport
-format

- 148 -

Chapter 4 IxLoad Tcl API Commands

To generate a legacy report, specify the .rxf file for the test, and the report options:

StestController run S$test -autorepository <rxf Name>vwait
::ixTestControllerMonitorS$StestController releaseConfigWaitFinishS$StestController
generateReport -detailedReport 1 -format PDF

IxLoad 6.0 Report Generation

To use the IxLoad 6.0 report generation options, you use the same generateReport command with
options you want, plus the following additional options:

o enableAutoGenerateReport automatically generates a report after the test stops.
o addReportFile adds a files to the report.
o addReportFilesFromFolder adds all the files in a folder to the report.

As an alternative to using the report generation APIs, you can use IxReporter standalone to manipulate
test results and generate a report.

The IxLoad 6.0 report options require the ixloadcsv package to be loaded (package require
ixloadcsv).

The complete code workflow for generating reports is as follows:

1. Launch the ixWish console from the installed build menu.
2. Call "package require IxLoadCsv".

3. Call "source xxx.tcl" where xxx.tcl is the file that contains the TCL reporter APIs for your
test.

4. Determine when you want to call the report generation APIs:
Explicitly, after the test stops: | Automatically:

Call generateReport. Call enableAutoGenerateReport.

5. Call the optional report generation APIs:
addReportFile
addReportFilesFromFolder

6. Access the location where the generated report is stored to retrieve the report file.
generateReport options

-detailedReport

Type of report: summary or detailed. Summary reports are named "IxLoad Summary Report", detailed
reports are named "IxLoad Detailed Report".

Values: 0 = summary (default), 1 = detailed.
-format
File format of report.
Values = "PDF" (default), "HTML", "PDF;HTML" (generates both), or HTML;PDF (generates both)

-orientation

- 149 -

Chapter 4 IxLoad Tcl API Commands

Orientation of report.
Values: "Portrait" (default), "Landscape"
-outputFile

Path to which the test report is saved. If no path is specified, the report is saved in the default test
results folder. For Unix users, report file is saved on the machine running the Tcl scripts.

Values: Full directory path, and file name without an extension. For example: "c:/temp/httpReport"
-mailTo
Email address to which the report is automatically mailed after generation.

Value: Valid email address. For example: "testerl@company.com". The default value is empty (null
string).

-testName

Name of test in report.

Value: String. For example: "httpTest". The default value is the active test name in the rxf.
-testerName

Name of tester identified in report.

Value: String. For example: "ixia". The default is the tester name in the rxf.

-dutName

Name of the DUT in the report

Value: String. For example: "firewall". The default value is empty (null string).
-highlights

Applies highlighting-style formatting all instances of the specified string in the report.

Value: String. For example, if you specify: "Performance testing", all instances of the string
"Performance testing" are highlighted in the report. The default is the active test comments in the rxf.

-coverPageImageFile

Image file to be used as the report's cover page.
Value: Full path of the image file.

-gaCsv

Reserved for internal use.

getRunResultDirFull

The getRunResultDirFull returns the directory into which the generated report has been placed.
StestController generateReport -detailedReport lset resultDir [StestController

getRunResultDirFull]

-150 -

Chapter 4 IxLoad Tcl API Commands

isBusy

Following a call to the run subcommand, this subcommand returns true while the test is still running.

repository

Creates the repository that is used as the source of data for the “"Test Configuration” section in a
generated report. The repository is created in the results ($SresultDir) directory.

For example, the following generates a repository using the configuration specified by the ixRepository

object:
StestController run S$test -repository Srepository

The autorepository and repository subcommands can both be used to create repositories that are the
source of data for the “Test Configuration” section of reports. For a description of the differences
between them, see autorepository.

retrieveFileCopy

Copies files from Windows to Linux. You can use retrieveFileCopy to retrieve files from the Windows

file system.
set resultDir [$StestController getRunResultDirFull]set remoteFile

“SresultDir\\IxLoad Detailed Report.pdf”::IxLoad retrieveFileCopy S$remoteFile
/root/Reportl.pdf

run $test

This command causes the test specified in Stest, which must be an object of type ixTest, to start.
After calling the TestController run function, your script must call vwait
::ixTestControllerMonitor to ensure that the Tcl event loop is processed. Otherwise, IxLoad will
not call your statistics callback command, and you will not be able to tell when the test ends.

If you have a lot of processing to do after calling run, but before the test ends, your code may be
executing when IxLoad sets the ::ixTestController monitor variable. Example 2 (see below) shows how
to correctly handle detecting the end of test if this possibility exists.

setResultDir $dir

Specifies the location of where the execution results will be kept. If this subcommand is not called, no
results will be stored. When running from a Unix client, this is a directory on the intermediate Windows
host that the client connected to using the connect subcommand of : : IxLoad. The retrieveFile or
retrieveFileCopy subcommands of : : IxLoad can be used to retrieve the files from the Windows
host.

Within the directory you specify for setResultDir, IxLoad stores the following files for the current

test:
Test Client.csvTest Server.csv<Protocol> <Client|Server>.csv<Protocol>
<Client|Server> - Default CSV Logs <activity name> <traffic name>@<network

name>.csvTest Client.csvTest Server.csv

-151 -

Chapter 4 IxLoad Tcl API Commands

<Protocol> is the name of the protocol (for example, HTTP). There will be a set of files for each
protocol used in the test.

<Client|Server> is the side of the connection, client or server. There will be a set of files for each
side used in the test.

<activity name> is the name of the activities (agents) appended to the agentList of the traffic.

<traffic name> is the name of the ixCustomPortMap Or ixServerTraffic element created in the
test.

<network name> is the name of the ixDHCP or ixStatCatalogItem element created in the test.

startCapture

Starts packet capture. IxLoad automatically calls startCapture before the test starts running (when
the nettraffics are being configured). If your script calls startCapture explicitly, you can start (or
restart) capturing packets at any point in the test (provided you have first called stopCapture to stop
a capture that is already running).

stopCapture

Stops packet capture. IxLoad automatically calls stopCapture when the test finishes running. You can
use stopCapture to stop capture at any point during the test, such as when the test enters the
Configured state.

For example, the following script fragment captures only the packets generated during the Apply Config
process:

Start the test

$testController applyConfig $test
vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor
$testController stopCapture

#

Wait for the rest of the capture data
#

if {$::ixCaptureMonitor == ""} {

puts "Waiting for last capture data to arrive."
vwait ::ixCaptureMonitor
puts "Capture data received."

}

stopRun

Stops the test. Any protocol sessions running at the time stopRun is issued are terminated as quickly
as possible. To stop the test gracefully, use stopRunGraceful.

stopRunGraceful

Stops the test, allowing the DUT to end any remaining protocol sessions. Because stopRunGraceful
allows sessions to terminate naturally, the ramp-down phase of the test may be longer than if you use

-152 -

Chapter 4 IxLoad Tcl API Commands

stopRun.

OPTIONS

outputDir

If this is empty (*"), then no result CSV files are saved. If this is not empty (for example, “1”), then
CSV files are saved. (Default = ““).

EXAMPLE
Example 1: First method of using vwaitset testController [::IxLoad new
ixTestController -outputDir 1]$testController setResultDir \

"[pwd] /RESULTS/simplehttpclientandserver"
Run the testS$testController run S$Stestvwait ::ixTestController

#Example 2: Second method of using vwait. This method is useful if you have
processing you wish to do while the test is running.# Code to set up and define test
and testController#

The following function is useful to delay while running# the Tcl event loop.proc
sleep {duration} { after $duration {set wakeUp 1} vwait wakeUp}

set ::ixTestControllerMonitor ""StestController run S$test

Other activities here. While waiting you must call# either vwait or update to
ensure your statCollector command# is called.

wait, if necessary, until the test is over#while {[lsearch
$::ixTestControllerMonitor TEST STOPPED] == -1} { sleep 1000}

puts $::ixTestControllerMonitor
SEE ALSO

ixTest

ixXTestControllerMonitor

ixTestControllerMonitor-Global variable to wait on for test completion.

SYNOPSIS

vwait ::ixTestControllerMonitor

-153 -

Chapter 4 IxLoad Tcl API Commands

DESCRIPTION

The global variable ixTestControllerMonitor is maintained by ixTestController while a testis
running. Its value may be vwait'd to determine when the test is complete.

ixTestControllerMonitor is set by IxLoad either at the end of the last ixTestController command (using
either the applyConfig or run options). ixTestControllerMonitor will only be set while inside a vwait
command or an update command.

The reason you should initialize ixTestControllerMonitor prior to issuing the test command is because it
is vwaiting on something other than ixTestConmonitor, so you need to be able to detect the end of the
test by examining the value of ::ixTestControllerMonitor. Also, because it is not set by IxLoad prior to
the end of the test (or applyConfig), it will be undefined otherwise.

Usually, you can use vwait or ixTestControllerMonitor directly, but if the script needs to do some other
processing while the test is running, the following example from the simplehttpconfigstoprun.tcl
sample script shows how this can be done.

In this example, the code waits for the first statistic to arrive, and then falls through if the test stops or
the event occurs:

set ::ixTestControllerMonitor "" # initialize to known valueS$testController run
Stest# do the command# wait for the first sample or test stopwhile
{$::ixTestControllerMonitor == "" && $::gotOneStat == 0} {after 1000 set wakeup 1

vwait wakeup# you have to call vwait (or update)
periodically to allow IxLoad to run

}

While waiting for the test to finish, the script must call either vwait (as in the example) or update to
allow the Tcl event loop to function.

ixTestControllerMonitor returns one of the following values:
{eventType TEST STOPPED status OK}{eventType TEST STOPPED status ERROR description

{1}}

If an error occurs, refer to the log file to determine the cause.

EXAMPLE

See the example under statCollectorUtils.

SEE ALSO

statCollectorUtils

ixTestController

statCollectorUtils

statCollectorUtils-Handles statistics gathering.

- 154 -

Chapter 4 IxLoad Tcl API Commands

SYNOPSIS

package require statCollectorUtils

::statCollectorUtils: :command args

DESCRIPTION

The statCollectorUtils is a library containing several commands to gather statistics during a test
run. The model for usage of these commands is:

Initialize -Initializes the statistics utilities.

ClearsStats - Clears statistics from a previous run.

Addstat - Adds a statistic to the list of statistics to be retrieved. Call this once per statistic.
AddL2L3Stat - Adds a layer 2 or 3 statistic to the list of statistics to be retrieved. Call this once
per statistic.

AddPerInterfaceStat - Adds a per-range statistic to the list of statistics to be retrieved. Call
this once per statistic.

AddSIPPerStreamStat - Adds a SIP per-stream statistic to the list of statistics to be retrieved.
Call this once per statistic.

AddvVideoPerStreamStat - Adds a video per-stream statistic to the list of statistics to be
retrieved. Call this once per statistic.

AddNetworkStat - Adds a network statistic to the list of network statistics to be retrieved. Call
this once per statistic.

SetCsvVersion - Allows the stat names written to the CSV to be the same as would be the case if
generated by the given buildNumber or special constant.

SetCsvThroughputUnits - Defines the units used for throughput statistics written to the CSV
files.

StartCollector —-command callbackCommand -Starts the statistics collection process and
indicates a callback command to invoke when statistics are delivered.

Use ixTestController run to run the test.

Use vilait ::ixTestControllerMonitor to wait for the test to end. During the run, the callback
command indicated in StartCollector is called.

StopCollector - Stops the statistics collection process.

Note: QoE Detective stats and the Network overview with their associated drill-downs are not
supported in the Tcl APL.

COMMANDS

Unless otherwise described, no values are returned and an exception is raised for any error found.

-155-

Chapter 4 IxLoad Tcl API Commands

AddStat arguments

Adds a statistic to the list of desired responses. The arguments to this command are -option value

pairs:

Option

Usage

aggregationType | Specifies how statistics for multiple ports, as indicated in the filter argument,

caption

enumerated

filterList

are combined. One of:
o "kSum”-Adds all of the statistics together.
o “"kMax” -Determines the maximum value.
o “kMin”-Determines the minimum value.
o “"kAverage”-Determines the average value.

o "kWeightedAverage”-This type is for use with weighted statistics. The
statistics descriptions indicate whether they are weighted or not.

o “"kRate” -Determines the rate of change of the sum of all the statistics.
« “"kMaxRate” -Determines the maximum rate.

o "kMinRate”-Determines the minimum rate.

« “kAverageRate”-Determines the average rate.

o “kString”-Treats as a string.

The caption associated with the statistic. This is not currently used by the Tcl
API, but a comment must be supplied.

If true, returns a list of stats as follows:

« HTTP Client: Returns one stat in the callback for each different URL in the
client's command list.

o« HTTP Server: Returns one stat in the callback for each defined server page.
If false (default), returns a single stat for all URLs.

A list of filter items that specifies the origin of the statistics to be filtered. You can
format the filterList to gather statistics from one of the following components
in the test:

{Port {Chassis<chassis id>/Card<card id>/Port<port id> ... } }
{Card {Chassis<chassis id>/Card<card id> ... } }

{Chassis {Chassis<chassis id> ... } }

{Community {<net traffic name> ... } }

{Activity {<net traffic name> - <activity name> ... }

For the Activity filter, the spaces on either side of the "-" are required. Also, for
net traffic name, use the full name of the nettraffic. For example, "client
traffic@client network". Foractivity name, use the configured name of the
activity. For example, "HTTPClient1".

If filterList is empty, no statistics are filtered out.

-156 -

Chapter 4 IxLoad Tcl API Commands

statName The name of a specific statistic, as listed in the Statistics topic of the statistics
page for the protocol client or server agent. For example, the list of statistics for
HTTP Clients can be found in the Statistics topic at HTTP Client Agent.

statSourceType | The agent type that generates the statistics. This is a two part name of the form:
Protocol Client|Server

Where Protocol is one of the supported protocols-for example, HTTP or FTP,

and Client/Server is one of those two values. Some examples are:
“HTTP Client”“FTP Server”

AddL2L3Stat arguments
Adds a layer 2 or 3 statistic to the list of network statistics to be retrieved.

The arguments to this command are similar to those for AddStat. The arguments to this command are
-option value pairs:

Option Usage
aggregationType | See AddStat for description.
caption See AddStat for description.

filterList A list of filter items that specifies the origin of the statistics to be filtered.

Unlike the other Add<>Stat commands, AddL2L3Stat only allows filtering
statistics from ports, and requires the chassis IP address in the filter instead of

the chassis ID. The format for filtering L2/L3 statistics from a port is:
{Port {<chassis ip>/Card<card number>/Port<port number> .. }}

For example, to filter statistics from ports 2 and 3 on card 2 of a chassis whose IP
address is 10.200.1.1:

-filterList {Port {10.200.1.1/Card2/Port2 10.200.1.1/Card2/Port3}}
statName See AddStat for description.
statSourceType | The network plugin that generates the statistics.

For AddL21L.3Stat, the only available statSourceType is:
"PortMonitor"

AddNetworkStat arguments

Adds a dynamic range network statistic to the list of network statistics to be retrieved.

-157 -

Chapter 4 IxLoad Tcl API Commands

Note: If you want to create a sample script using ScriptGen, the network statistics are not available
until the test configuration has been downloaded to the Ixia ports. You can use the Apply Config
command to download the test configuration to the ports without starting the test.

The arguments to this command are similar to those for AddStat. The arguments to this command are
-option value pairs:

Option Usage

aggregationType | See AddStat for description.

caption See AddStat for description.
filterList See AddStat for description.
statName See AddStat for description.

statSourceType | The network plugin that generates the statistics.

For example:
"IPSec"

The list of network plugin names is:

o WebAuth

o 802.1x

o EAPoOUDP

o IPSec

o L2TP_PPP/PPP
e« L2TP_PPP/PPPoOE
« GTP

o« 3GPP

o IMPAIR

AddPerInterfaceStat arguments
This is the utility for per-range interface statistics.

To activate this statistics for the client and the server, enable IP interface (enablesStats) statistics in
the client and the server network.

Option Usage

-158 -

Chapter 4 IxLoad Tcl API Commands

statSourceType | The agent type that generates the per interface statistics. This is a two part name

of the form:
Interface Protocol - Client|Server

Where Protocol is IPV4 or IPV6 and Client|Server is one of those two values.

Some examples are:
“Interface IPv4 Client”“Interface IPv4 Server”“Interface IPv6

Client”“Interface IPv6 Server”

statList This is a list of statistical names and aggregations function pair.

An example of IPV4:
-statList {{"Packets Sent"™ "kSum"} {"Packets Received" "kSum"}} \

ipList This is the list of IPs specified for the client and the server for collecting the

statistics.
-ipList {"198.18.2.1" "198.18.2.2"}

For each address that you specify in ipList, IxLoad records the statistics specified in statList.

For example, if you specify an ipList and statList as follows:
-statList {{"Packets Sent™ "kSum"} {"Packets Received" "kSum"}} \-ipList

{"198.18.2.1" "198.18.2.2"}

and a returned list of statistics contains the following:
{{kInt 28112} {kInt 0} {kInt 31973} {kInt O0}}

{kInt 28112} is the statistic for Packets Sent for address 198.18.2.1.
{kInt 0} is the statistic for Packets Received for address 198.18.2.1.
{kInt 31973} is the statistic Packets Sent for address 198.18.2.2.

{kInt 0} is the statistic for Packets Received for address 198.18.2.2.

Because IxLoad adds the statistics in the order specified by statList for every address in ipList, you can
parse the list of statistics returned by callback (see the StartCollector command) to obtain any specific
statistic.

AddSIPPerStreamsStat arguments

This is the utility for SIP per stream statistics.

Option Usage

statSourceType | The agent type that generates the per stream statistics. This is a two part name of

the form:
SIP Client/Server Per Stream

Some examples are:
"SIP Client Per Stream""SIP Server Per Stream"

-159 -

Chapter 4 IxLoad Tcl API Commands

statList This is a list of statistic name and aggregation function pair.
statList - list of {statName, aggregationFunction} like {"Packets"
"kSum"} {"Mos Value" "kString"}

instancelList This is the list of packets specified for the SIP port for collectthe statistics.
list of {port, sipClientAgentName, index of Caller or Called}

AddVideoPerStreamStat arguments

This is the utility for video per stream statistics.
Option Usage

statSourceType | The agent type that generates the per stream statistics. This is a two part name of
the form:
Video Client/Server Per Stream

For example:
"Video Client Per Stream""Video Server Per Stream"

statList This is a list of statistic name and aggregation function pair.
list of {statName, aggregationFunction}\

instancelList This is the list of packets specified for the video port for collecting the statistics.
list of {port, videoClientAgentName, index of User, index of Entry}

ClearStats

Clears all statistical data from a previous or aborted run.

Initialize -testIOR $testIOR

Initializes the statistics utility package. StestIOR is the value returned from a call to
ixTestController's getTestServerHandle subcommand. See the following example:

set tc [::IxLoad new ixTestController]
::statCollectorUtils::Initialize -testIOR [Stc getTestServerHandle]

SetCsvVersion <buildNumber>

Allows the stat names written to the CSV to be the same as would be the case if generated by the
given buildNumber or special constant. The build number must be in dotted-quad notation (a.b.c.d).
The build number is part of the installation path when IxLoad is installed, and is also available in the
release notes for that release. buildNumber must be 5.0.117.0 or greater. If set to anything less than
5.0.117.0, the value is ignored.

-160 -

Chapter 4 IxLoad Tcl API Commands

Special Description

Constant

rxf Uses the build number of the version of IxLoad that most recently saved the
repository.

If the TCL API does not load a repository, then it uses the build number of the current
instance of IxLoad.

current Uses the build number of current instance of IxLoad in all cases.

set tc [::IxLoad new ixTestController]
::statCollectorUtils::SetCsvVersion 5.0.280.0

SetCsvThroughputUnits <throughputUnits>

Defines the units used for throughput statistics written to the CSV files. throughputUnits can be one
of: Bps (bytes per second, the legacy unit), Kbps, Mbps, or Gbps.

This overrides any IxAppOption.ini entry, allowing allowing your script to determine the units used for
throughput statistics written to the CSV files.

StartCollector -command tclCommand -interval value

Initiates the operation of the statistics collection process, registering the name of a user supplied
command (tclCommand), which will be called at -interval when new statistics are received.
Callback Command Invocation

The statistics callback interval (-interval) must be set manually. It is not set by the csvInterval
parameter (see ixTest). To invoke the statistics callback, define the statistics as a set of name-value
pair arguments of the form:

{timestamp 1102900690000 stats {{kInt 1659316} {kInt 58998232}}}

The pairs are:

Option Usage
timestamp | The number of milliseconds from the time that the test started.

stats A list of pairs, one per statistic registered with Addstat in the order registered. The
first member of each pair indicates the data type of the value, one of:

o kInt -an integer value.
o kStr -a string. For example: {this is a string}.

StopCollector

Stops the operation of the statistics collector.

OPTIONS

None.

-161-

Chapter 4 IxLoad Tcl API Commands

EXAMPLE

stat Collection#-------—----—-—————————"—"—~ "~~~
---set NS statCollectorUtilsset ::test server handle [$testController
getTestServerHandle] ${NS}::Initialize -testServerHandle $::test server handle#------
——— # Clear any stats
that may have been registered previously#--—-—-—-—-————-——-——-—"—~—"——"——~—"—~—"—~—~—~—~—~—~—~—~—~—\—~——~——
———————————————————————————— ${NS}::ClearStats#-—————————————————————————————————————

—— ${NS}::AddStat \-
caption "Watch Stat 1" \-statSourceType "HTTP Client" \-statName "HTTP Bytes Sent"
\-aggregationType kSum \-filterList {}

${NS}::AddStat \-caption "Watch Stat 2" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Received" \-aggregationType kSum \-filterList {}

${NS}::AddStat \-caption "Watch Stat 3" \-statSourceType "HTTP Client" \-statName
"HTTP Time To Last Byte (ms)" \-aggregationType kWeightedAverage \-filterList {}

${NS}::AddStat \-caption "Watch Stat 4" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Sent" \-aggregationType kRate \-filterList ({}

${NS}::AddStat \-caption "Watch Stat 5" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Received" \-aggregationType kRate \-filterList {}#----————---"-"-"-"-"-""-"----—-
——— # Define the L2/L3 stats we would
like to collectff———————————————— -
---${NS}::AddL2L3Stat \-caption "Watch Stat L2L3 3" \-statSourceType "PortMonitor"
\-statName "Frames Sent" \-aggregationType kNone \-filterList {}#-—-—-—----"---------—-
—— # Define the network stats we

set ::netstatList { \{"IPSec" "Interface ID" "kString"} \{"IPSec" "Status"
"kString"} \{"IPSec" "NAT-T" "kString"} \{"IPSec" "DPD" "kString"} \{"IPSec"
"Total Retries" "kSum"} \{"IPSec" "Total Latency" "kSum"} \{"IPSec"
"Encapsulation Protocols" "kString"} \{"IPSec" "Encapsulation Mode"™ "kString"}
\{"IPSec" "Initiator Subnet" "kString"} \{"IPSec" "Initiator IP Address"
"kString"} \{"IPSec" "Responder IP Address" "kString"} \{"IPSec" "Responder
Subnet" "kString"} \}

foreach statItem $::netstatlList { set caption [format "Watch
Stat %s" Scount]set statSourceType [lindex $statItem O]set statName [lindex

SstatItem 1]set aggregationType [lindex S$statltem 2]

-162 -

Chapter 4 IxLoad Tcl API Commands

${NS}::AddNetworkStat \-caption Scaption \-statSourceType
$SstatSourceType \-statName $SstatName \-aggregationType SaggregationType
\-filterList {}

incr count}

Start the collector (runs in the tcl event loop) #proc ::my stat collector command

{args} { puts " " puts "INCOMING STAT
RECORD >>> Sargs" puts "Len = [llength $args]" puts [lindex $args 0] puts
[lindex Sargs 1] puts " "}

${NS}::StartCollector -command ::my stat collector command -interval 2

Run the test -
- StestController run Stest

have the script (v)wait until the test is over fomm

vwait ::ixTestControllerMonitor;
puts $::ixTestControllerMonitor

Stop the collector (running in the tcl event loop)

${NS}::StopCollector
SEE ALSO

ixTestController

ixTestControllerMonitor

ixTest

ixScriptGen

ixScriptGen-Generates a tcl script (TCL file).
SYNOPSIS

set scriptGenObj [::IxLoad new ixScriptGen]

-163 -

Chapter 4 IxLoad Tcl API Commands

DESCRIPTION
A scriptGen object is created and configured. scriptGen can generate a Tcl script for the following:

« Complete test
o NetTraffics

o Activities

o Networks

SUBCOMMANDS

None.

OPTIONS

fileName

Specifies the name and path of the script to be generated.
includeStats

If true, the script includes code to record the default statistics for each activity in the test. If false,
the script does not include any code to record statistics.

configSetting

This option determines whether or not the generated script includes code that sets the test control
options to their default values.

Option Usage

kConfigWriteAll Generates a script that includes all the test control code, including code that sets
the configuration options to their default val

kConfigComment | Generates a script that comments out test control code that sets options to their
default values.

kConfigOmit Generates a script that only includes test control code for options set to non-
default values.

EXAMPLE

Scriptgen for a complete script#------——-"-"-"----""-"-"""""""""""---—-""-"" """~
————————— “if {$::tcl platform(platform) == "windows"} {package require registry lset
:: IXLOAD INSTALL ROOT [registry get {HKEY LOCAL MACHINE\Software\Ixia
Communications\IxLoad\InstallInfo} HOMEDIR]set :: IXLOAD PKG DIR [file join $::
IXLOAD INSTALL ROOT Client tclext teepee stage]

lappend ::auto path $:: IXLOAD PKG DIR}package require IxLoad::IxLoad connect
1.2.3.4if [catch {set logtag "IxLoad-api"set logName "scriptgen"set logger [::IxLoad

- 164 -

Chapter 4 IxLoad Tcl API Commands

new ixLogger S$logtag 1l]set logEngine [$logger getEngine]$logEngine setLevels
$::ixLogger (kLevelDebug) $::ixLogger (kLevelInfo)$logEngine setFile $logName 2 256 1

- # Create a test
controller bound to the previosuly allocated# chassis chain. This will eventually
run the test we created earlier.#---------"----""-"—"-"-"-"——"—"——"——"—~—~—~—~—~\—~—~—(—(—~—(—————————————

——————————— set testController [::IxLoad new ixTestController -outputDir
1] $testController setResultDir " [pwd]/RESULTS/reprun"## Load the repository#set
repository [::IxLoad new ixRepository -name {E:\ixweb\ixweb\3.20\automation\B2B 310

IMAP RTSP_TELNET POP\Repository\IMAP dns all atomic level cmd ipv4.rxf}]

set testName [$repository testList (0).cget -name]lset test [Srepository
testlList.getItem S$testName]

set scriptGenObj [::IxLoad new ixScriptGen]$scriptGenObj config \

-fileName {E:\ixweb\ixweb\3.20\automation\B2B 310 IMAP RTSP TELNET
POP\Repository\IMAP dns all atomic level cmd ipv4 new.tcl} \

-includeStatsFalse \

-configSetting$::ixScriptGen (kConfigWriteAll)
SscriptGenOb]j scriptGen Stest}] {puts SerrorInfo}::IxLoad disconnect

SEE ALSO
ixNetTraffic

iXTimeline

ixTimeline-Configures the time in the test when the activities in the NetTraffics come online, and how
long they stay up for. It is also used to configure the test's objectives.

SYNOPSIS

set Activity_HTTPClientl [$Trafficl_Network1 activityList.appendItem options...]
set Timeline [::IxLoad new ixTimeline] options...

DESCRIPTION

The ixTimeline command is used to create a test scenario. It controls the times and rates at which
Activities come online (rampUp), the length of time they stay up for (sustainTime), and the rate at
which they go offline (rampDown).

-165-

Chapter 4 IxLoad Tcl API Commands

There are two types of Timelines:

Basic: A Basic timeline controls activities linearly -- the rampUp, sustain, and rampDown phases are
straight lines, and the rampUp, sustain, and rampDown occur at steady rates, either increasing
(rampUp), static (sustain) or decreasing (rampDown).

Advanced: An advanced timeline allows you to plan the traffic shape to the objectValue, such as
pulses or bursts. An Advanced timeline displays the rampUp, sustain, and rampDown phases as
segments. There are five types of segments:

Linear: a constant-slope segment that starts with the current objective value and ends at the End
Objective Value value.

Step: a classic stair step pattern that starts with the current objective value and ending after a number
of fixed deltas.

Burst: a burst segment starts with the current objective value and ends to the same objective value.
Burst segments produce a symmetrical triangular shape fluctuation.

Pulse: a pulse segment starts with the current objective value and ends to the same objective value.
Pulse segments produce a symmetrical pulse shape fluctuation, with an increase in rate,a duration of
time spent at the new peak and then drop to the starting value.

Poisson: a poisson segment introduces a logarithmic noise element into the objective value.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS (BASIC TIMELINE)

rampUpValue

Value applied to rampUpType to either bring up users at a certain rate (Users per second or to maintain
a pool of users waiting to establish connections (MaxUsers).

rampUpType

Ramp-up type used by timeline. One of:

Value @ Description

-2 Mixed (may be displayed when ramp-up value is retrieved for a community of mixed
activities)

-1 N/A

0 Users per second

1 Maximum pending users

2 Smooth users

-166 -

Chapter 4 IxLoad Tcl API Commands

offlineTime

The amount of time agents are idle between iterations. (Default = 0). This is also applicable to
advanced timeline.

rampDownTime

Amount of time used for closing any TCP connections that are still open after all transactions are
complete. rampDownTime applies only to client activities.

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. The valid range is from 0 to 1,000 hours (3,600,000).
(Default = 0). Thisis also applicable to advanced timeline.

iterations

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1). This is also applicable to advanced
timeline.

rampUpInterval

This field accepts integer values. The value for this option will be considered only when rampUpType is
usersPerSecond. You can edit the value to increment or decrement the number of users to be started
at every rampUplInterval. (Default = 1).

sustainTime

Amount of time when all users are up and performing the central test objectives, such as retrieving or
serving pages (HTTP), or sending or receiving files (FTP).

timelineType

Denotes the type of phase in a section of the timeline. This is also used with the advanced timeline
options.

name

Name of the Timeline.

OPTIONS (ADVANCED TIMELINE)
ixLinearTimeSegment

duration

The length of time that the segment lasts.
noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

-167 -

Chapter 4 IxLoad Tcl API Commands

endObjectiveScale

The value of the objective at the end the segment.

ixPoissonTimeSegment

duration

The length of time that the segment lasts

averageScale

Number used to compute the Poisson distribution for the segment
noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

ixXPulsesTimeSegment

amplitudeIncrementStepScale

Additional gain in height (amplitude) from one pulse to the next.
pulseRampDownDuration

Amount of time allocated to the ramping-down of the pulse.
pulseRampUpDuration

Amount of time allocated to the rising edge of the pulse.
numberOfRepetitions

Number of steps. Minimum of 1.

pulseOfflineDuration

Time between pulses.

pulseSustainDuration

Length of time that the pulse occupies at the new peak value.
noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value.

startingPulseAmplitudeScale

Height (amplitude) of the first pulse.

-168 -

Chapter 4 IxLoad Tcl API Commands

ixBurstsTimeSegment
noiseAmplitudeScale
Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

numberOfRepetitions

Number of steps. Minimum of 1

startingBurstHeightScale

Height (amplitude) of the first burst.

burstIncrementStepScale
Additional gain in height (amplitude) from one burst to the next.

burstDuration

Length of time that the burst occupies

burstSkew

Bias applied to the burst curve:

Symmetric: No bias (curve has identical slopes on both sides).

Left: Curve is biased to the left (left side of the curve is steeper than the right).
Right: Curve is biased to the right. (right side of the curve is steeper than the right)
burstOfflineDuration

Time between bursts.

ixStepsTimeSegment
stepHeightScale
Height of the step.
noiseAmplitudeScale
Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

stepSustainDuration
Length of time spent at the new peak objective value.
stepRampDuration

Length of time allocated to the rise to the new peak value.

-169 -

Chapter 4 IxLoad Tcl API Commands

numberOfRepetitions

Number of steps. Minimum of 1.

EXAMPLE

set Steps Segment 0 [::IxLoad new ixStepsTimeSegment]$Steps Segment 0 config \ -
stepHeightScale 0.1 \ -noiseAmplitudeScale

0.0 \ -stepSustainDuration 20 \ -stepRampDuration

20 \ -numberOfRepetitions 3

$my ixAdvancedIteration appendSegment $Steps Segment 0

set Bursts_Segment 1 [::IxLoad new ixBurstsTimeSegment]$Bursts Segment 1 config \ -
noiseAmplitudeScale 0.0 \ —-numberOfRepetitions

3 \ -startingBurstHeightScale 0.1 \ -burstIncrementStepScale

0.1 \ -burstDuration 20 \ -burstSkew

0 \ -burstOfflineDuration 20

$my ixAdvancedIteration appendSegment SBursts Segment 1

set Pulses Segment 2 [::IxLoad new ixPulsesTimeSegment]$Pulses Segment 2 config \ -
amplitudeIncrementStepScale 0.1 \ -pulseRampDownDuration t

SEE ALSO

ixNetTraffic

ixXSubscriberNetTraffic

ixSubscriberNetTraffic-Special type of NetTraffic that simulates the traffic patterns created by
residential customers that receive voice, video, and data service (Triple-play) over a single physical
connection (usually a cable or DSL connection).

SYNOPSIS

set Subscriberl Networkl [::IxLoad new ixSubscriberNetTraffic]

DESCRIPTION

Configuring an ixSubscriberNetTraffic is similar to configuring an ixNetTraffic. However, there
are some differences:

Network and Protocols: Configuring a Subscriber is similar to configuring a NetTraffic. However, only
the following protocols are supported:

DHCP FTP HTTP | IMAP

IPTV/ Video | LDAP MGCP | POP3

-170 -

Chapter 4 IxLoad Tcl API Commands

RADIUS RTSP SIP SMTP

SSH TraceFileReplay @ Telnet | DNS

objectiveType: The only objectiveType available for a Subscriber is simulatedUsers.

OPTIONS

Refer ixNetTraffic for information on the options.

EXAMPLE

set Subscriberl Networkl [::IxLoad new ixSubscriberNetTraffic]set Subscriber
Activity HTTPClientl [$Subscriberl Networkl activityList.appendItem \-
protocolAndType "HTTP Client"]S$Subscriberl Networkl config
\-enable true \-network

SNetworklS$SSubscriberl Networkl traffic.config \-name

"Subscriberl"

SEE ALSO

ixNetTraffic

ixBandwidthLimit

ixNetTraffic

ixNetTraffic-Define client and server traffic.

SYNOPSIS

set HTTP client client network [::IxLoad new ixNetTraffic]
DESCRIPTION

The ixNetTraffic command is used to configure client or server traffic. Two separate ixNetTraffic
objects have to be created for client and server traffic. The ixNetTraffic configuration also declares the
ixNetworkGroup object. The activityList options are also configured.

You can copy objects from used NetTraffic to another. See duplicate (see "duplicate").

OPTIONS
Enabling Options
enable
This enables the client or server network.
network

This specifies the name of the client or server network object.

-171 -

Chapter 4 IxLoad Tcl API Commands

activityList Configuration Options

enable

If true, this mapping is included in the IxLoad test. (Default = true).
name

Name of the activityList config object. Default = "newClientActivity1".

enableConstraint

Currently, constraints can be set on activities that run rate-based objectives, like connectionRate,
transactionRate, throughput objectives. This option enables the constraint. Default = false.

constraintValue

If enableConstraint is true, this option defines the constraint value. Default =100.

timeline

Represents the name of the ixTimeline object.

userObjectiveType

userObjectiveType is the recommended way to set the objective. This is the Objective Type that is
displayed in the GUI, and should be the most meaningful. Changing the userObjectiveType will result
in an automatic change to the objectiveType.

For most protocols, the userObjectiveType and the objectiveType are the same, but protocols can
define their own userObjectiveTypes when it makes sense to do so. For example, SIP defines the
channels userObjectiveType that corresponds to an underlying objectiveType of simulatedUsers.
See the individual protocols for a description of the userObjectiveTypes they accept and how they
are translated to the objectiveType.

Option Usage

userAgents The objective is to sustain some number of SIP calls simultaneously.
Specify the desired number of UserAgents in the objectiveValue option.

callsPerSecond The objective is to establish a certain number of SIP calls per second.
Specify the desired number of calls to establish per
second in the objectiveValue option.

bhca The objective is to establish a certain number of SIP calls per hour.
Specify the desired number of calls to establish per hourin the
objectiveValue option.

Busy hour call attempts (BHCA) is a standard measure of the number of
calls completed during a busy hour, the 60-minute period when the
maximum traffic load occurs within a given 24-hour period.

registrationsinitiated The objective is to establish a certain number of call registrations of SIP.
Specify the desired number of registrations in the objectiveValue option.

-172 -

redirectionsinitiated

transactionAttemptRate

queriespersecond

connectionAttemptRate

streams

userObjectiveValue

Chapter 4 IxLoad Tcl API Commands

The objective is to establish a certain number of call redirections of SIP.
Specify the desired number of redirections in the objectiveValue option.

The objective is to issue some number of DNS query per second.
The number of DNS query is mentioned in the userObjectiveValue option.

The desired number of DNS query per second.

The objective is achieved if IxLoad succeeds in making the specified
number of attempts to connect to the HTTP server or DUT.

Specify the desired number of attempted connections per second in the
userObjectiveValue option.

The objective is to monitor some number of multicast or unicast video or
audio streams. Specify the desired number of streams in the
userObjectiveValue option.

The test objective value applied to the userObjectiveType. Default=100.

Note that some protocol-specific ocbjectiveTypes apply scaling values to the value.

o bhca is mapped to transactionRate with a scaling factor of 3600.
e callsPerSec is mapped to transactionRate with a scaling factor of 1.
o userAgents is mapped to simulatedUsers with a scaling factor of 1.

e registrationsinitiated is mapped to transactionRate with a scaling factor of 1.

o redirectionsinitiated is mapped to transactionRate with a scaling factor of 1.

objectiveValuePercent

Expresses the objective of the NetTraffic or agent as a percentage of the userObjectiveValue.

(Default="")

If you use ScriptGen to create a Tcl script, the ScriptGen allows you to script the test objective values
as absolute values or as percentages of the overall test objective.

If you choose to script the objectives as percentages, the output depends on how the activities are
grouped. If the activities are grouped by NetTraffic, the script will contain a user objective for the
NetTraffic (the community) and a percentage value for each activity:

$Trafficl Networkl config \

-enable true \

-totalUserObjectiveValue 200 \

-userObjectiveType

"simulatedUsers" \

-tcpAccelerationAllowedFlag true \

-network $Networkl

$Activity HTTPClientl config \
-secondaryConstraintValue 100 \

-173 -

Chapter 4 IxLoad Tcl API Commands

-enable true \

-name "HTTPClientl" \

-userIpMapping "1:1" \

-enableConstraint false \

-objectivePercent 50.0 \

-timerGranularity 100 \
-secondaryEnableConstraint false \
-constraintValue 100 \
-secondaryConstraintType "TransactionRateConstraint" \
-constraintType "ConnectionRateConstraint"” \
-destinationIpMapping "Consecutive" \
-timeline $Timelinel

If the grouping is by objective type, the script will contain a totalUserObjectiveValue that sets the
total of the objective values for all the activities, followed by a list of <objective type, objective
value> pairs and an objectivePercent option that sets the percentage value assigned to each
activity.

$Testl totalUserObjectiveInfolList.clear

set my_ixTotalUserObjectiveInfo [::IxLoad new ixTotalUserObjectiveInfo]
$my_ixTotalUserObjectiveInfo config \

-userObjectiveType "Simulated Users" \

-totalUserObjectiveValue 200

$Testl totalUserObjectiveInfolList.appendItem -object $my ixTotalUserObjectivelInfo

$Activity HTTPClientl config \
-secondaryConstraintValue 100 \

-enable true \

-name "HTTPClientl" \

-userIpMapping "1:1" \

-enableConstraint false \

-objectivePercent 50.0 \

-timerGranularity 100 \
-secondaryEnableConstraint false \
-constraintValue 100 \
-secondaryConstraintType "TransactionRateConstraint" \
-constraintType "ConnectionRateConstraint"” \
-userObjectiveType "simulatedUsers" \
-destinationIpMapping "Consecutive" \
-timeline $Timelinel

totalUserObjectiveValue

Total objective value of all the activities in the NetTraffic that have the same objective type. See
objectiveValuePercent. (Default="")

- 174 -

Chapter 4 IxLoad Tcl API Commands

Traffic Map Setup Options

portMapPolicy

This option controls the sequence in which the client ports connect to the server ports. One of:

Option

$::ixPortMap
(kPortMapRoundRobin)
or “portPairs”

$::ixPortMap
(kPortMapFullMesh)
or “portMesh”

$::ixPortMap
(kPortMapIpPair)
or “ipPair”

$::ixPortMap
(kPortMapCustom)
or “custom”

Usage

(Default) . Client agents connect to server agents on a one-to-one
basis.

Agents on every client port connect to every server port.

Each simulated user on the client side comwith only one server IP address.
This choice is only valid for SIP agents.

Each custom port map has a list of IPv4 suband IPv6 submaps. You can
create a Custom traffic map. In a Custom traffic map, you select the client
and server IP address ranges that will send traffic to each other.

To create a Custom traffic map, the subnet's rangeType parameter must be
setto IP Only (Ethernet).

For large numbers of ports, the Port Pair sequence scales performance better than the Port Mesh

sequence.

The operation of Port Pairs can be described by three scenarios:

« If the number of client ports is equal to the number of server agents, client ports will establish
connections to server ports on a one-to-one basis.

o If the number of client ports is less than the number of server ports, the client ports will establish
connections to the server ports on a one-to-one basis until all client ports are paired with server
ports. The remaining server ports will not be used.

« If the number of client ports is greater than the number of server ports, the client ports will
establish connections to the server ports on a one-to-one basis until all server ports are paired
with client ports. Then, the remaining client ports will return to the first server port and continue
pairing themselves with server ports.

The ixCustomPortMap customizes the order and frequency, by which client IPs will access server IPs.

Each custom port map has a list of IPv4 submaps and IPv6 submaps. There will be a list for the
appropriate IP type if any ranges of that type appear in the network for the symbolic destination. When
a submap list is initialized, it will have a single submap that will be a full IP mesh, if that type is
available. If only VLAN maps are allowed, then it will be a vVLAN pairs map instead. If a submap is

-175-

Chapter 4 IxLoad Tcl API Commands

appended to the list, by default it will be a copy of the last submap in the list, unless values are passed

in.
set destination [$HTTP client client network getDestinationForActivity

"newClientActivityl" "HITP server newServerActivityl"]Sdestination config \-
portMapPolicy "portMesh"

Configuring Traffic
name

The configuration that is set in the protocolAndType option for activityList.
SHTTP client client network traffic.config \-name

"HTTP client"$Client elementList.appendItem -object S$HTTP client client network
EXAMPLE

set HTTP_client_client_network [::IxLoad new ixNetTraffic]

$HTTP_client_client_network config \

-enable 1\

-network $client_network

$HTTP_client_client_network traffic.config \

-name "HTTP client"

$Activity_newAgentl config \

-enable 1\

-name "newClientActivity1" \
-enableConstraint false \
-userObjectiveValue 100\
-constraintValue 100\
-userObjectiveType "simulatedUsers" \
-timeline $Timelinel

$Client elementList.appendItem -object $HTTP_client_client_network

ks gk E g EE L E s T s EEEEE EEE E EE E T T E g EEEE
Destination newServerActivity1 for newClientActivity1

HHAHB B R B H AR B R B HHAR B R B H AR BB B R HH BB RSB H AR B R B R AR BB RS HH

set destination [$HTTP_client_client_network getDestinationForActivity "newClientActivity1" "HTTP
server_newServerActivity1"]

$destination config \

-portMapPolicy "portMesh"

-176 -

Chapter 4 IxLoad Tcl API Commands

SEE ALSO

ixSubscriberNetTraffic

activitylList

activityList-Generates traffic for one side of a particular protocol. For example, an HTTP client Activity
generates HTTP client requests, simulating a web browser.

SYNOPSIS

set HTTP client client network [::IxLoad new ixNetTraffic]set Activity newAgentl
[SHTTP client client network activityList.appenoptions..]

DESCRIPTION

The activityList is used to generate traffic for one side of a particular protocol.

An Activity is added to the ixNetTraffic object using appendItem subcommand. Agents are added to
the activity using the agent.config subcommand.

The protocolAndType is a required field. These define a particular type of agent; and the side of the
communication. The agent definition should include options which are specific to a particular protocol,
and defined in their respective appendix.

OPTIONS

protocolAndType

Protocol is the name of the protocol (for example, HTTP). Type denotes the side of the connection, that
is, client or server.

EXAMPLE

set HTTP client client network [::IxLoad new ixNetTrafficl#-------———----"-----—————-
————————————————————————————————————— # Activity newAgentl of NetTraffic HTTP
client@client network#---------------"-"-"-"-"-"-"—"—"—~—~—~—~"—~—~—~—~—~—~—~—~(—(set
Activity newAgentl [SHTTP client client network activityList.appendItem \-
protocolAndType "HTTP Client"]

SEE ALSO

ixNetTraffic

ixTrafficFlow

ixTrafficFlow-Lists the test scenario.

SYNOPSIS

set TrafficFlowl [::IxLoad new ixTrafficFlow]$TrafficFlowl config \ options...

-177 -

Chapter 4 IxLoad Tcl API Commands

DESCRIPTION

The ixTrafficFlow command is used to list the test scenario. Traffic Flow object is appended to the
ixTest object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

This represents the name of the trafficflow object.

EXAMPLE
set TrafficFlowl [::IxLoad new ixTrafficFlow]S$TrafficFlowl config \

-name "TrafficFlowl"
STrafficFlowl columnList.clear

SEE ALSO

ixTrafficColumn

ixTrafficFlow-A container of ixNetTraffic and ixDut objects.
SYNOPSIS

set TrafficFlowl [::IxLoad new ixTrafficFlow]

$TrafficFlowl config \ options...

DESCRIPTION

The ixTrafficColumn command is used to define and configure client, server and DUT objects. The
client, server and DUT objects are appended to the ixTrafficFlow object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

-178 -

Chapter 4 IxLoad Tcl API Commands

This represents the name of the trafficcolumn object.

EXAMPLE

set Client [::IxLoad new ixTrafficColumn]$Client config \

-name "Client"
$Client elementList.clear$TrafficFlowl columnList.appendItem -object $Clientset DUT
[::IxLoad new ixTrafficColumn]$DUT config \

—-name "DUT"

SDUT elementlList.clear$TrafficFlowl columnList.appendItem -object $DUTset Server
[::IxLoad new ixTrafficColumn]$Server config \-name

"Server"$Server elementlList.clear$STrafficFlowl columnList.appendItem -object S$Server

SEE ALSO

ixTrafficFlow

iXNetworkGroup

ixNetworkGroup-Configures the client and server network.

SYNOPSIS

set network [::IxLoad new ixNetworkGroup options]S$network config \ options...

DESCRIPTION

The ixNetworkGroup object is used to configure the client and server network. The client or server
network is used by the ixNetTraffic object to map to the nettraffic.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

The main options for this command are described in ixDHCP and ixStatCatalogItem. Additional
options are listed below.

aggregation

On a card that supports aggregating ports such as the ASM1000XMV12X, this option sets the port
aggregation. If you set the aggregation mode to 1G, you must set the active port (see
activePortList).

The following values are supported for aggregation:

-179 -

Chapter 4 IxLoad Tcl API Commands

Value Enum Description
kNonAggregated | O (default) | Not aggregated
k1GAggregated 1 1G Aggregated

k10GAggregated | 2 10G Aggregated

For example:
$Net_Trafficl config \
-aggregation 1

For an example of how to use an aggregating load module in a script, see the example in the Tcl API \
Samples \ Network directory.

activePortList

List of active ports in a group of 1G aggregated ports. For each NetTraffic that uses 1G aggregated
ports, there must be an activePortList that defines the active port. If ports from multiple cards are
aggregated, there must be an active port for each card. Example:

$Net_Trafficl activePortList.appendItem \
-chassisld 1\

-cardId 2 \

-portld 1

Aggregation on Novus Load Modules can be performed only at card level. In this scenario the above
rule to set aggregation as an option does not apply. In order to set aggregation on Novus Load Module
the setCardsAggregationMode API needs to be called. This is exposed on the chassisChain object
and receives as parameters the chassis IP or hosthame, the ID of the card and the aggregation mode.
For Novus, this is 10G in order to set 10G aggregated and Na in order to set the board in non
aggregated mode.

An example on how to set the card in 10G Aggregated mode is:

$chassisChain setCardsAggregationMode "10.215.122.231" "2"™ "10G"

EXAMPLE

- # Network client
network of NetTraffic HTTP client@client network#------- - - ———————---—————————————————
————————————————————————— set client network [::IxLoad new ixNetworkGroup
$chassisChain] $client network config \-comment "o\ -
name "client network" \-emulatedRouterSubnetIPv6
"FFFF:FFFF:FFFF:FFFF:FFFF:FFFF: : 0" \-linkLayerOptions 0 \-
ipSourcePortFrom 1024 \-emulatedRouterGatewayIPv6

-180 -

"::" \-cardType
emulatedRouterGateway

65535 \-emulatedRouterSubnet

0 \-dnsParameters

$my ixTcpParameters \-impairment
arpSettings

SEE ALSO

ixNetworkRange

ixDut

ixDut-Defines a DUT.

SYNOPSIS

set DUT1 [::IxLoad new ixDut]
$DUT1 subcommand options...

DESCRIPTION

Chapter 4 IxLoad Tcl API Commands

"ALM1000T8-1GB" \-
"0.0.0.0" \-ipSourcePortTo
"255.255.255.0" \-macMappingMode
$my_ians \-tcpParameters
$my ixImpairment \-
$my ixArpSettings

The ixDut command is used to define a DUT used in the test. The DUTs are used to resolve symbolic
references in traffic destinations in the various protocol agents. It also controls several DUT specific

features. DUTs are added to the ixTest object using appendItem. For example,
set DUT1 [::IxLoad new ixDut]$DUT1 config \

—-comment "" \
-type "VirtualDut" \

-name "DUT1" \

—dutConfig $my ixDutConfigVirtual

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

comment

A comment associated with this DUT. (Default = “V“).

name

The name associated with the DUT. (Default

type
The type of DUT in use. One of:

“DUT1”) .

-181 -

Chapter 4 IxLoad Tcl API Commands

Option Usage
ExternalServer The DUT is a protocol server.

ServerLoadBalancer | The DUT is a server load balancer.(Default)

Firewall The DUT is a firewall.
VirtualDut The DUT is a virtual DUT
dutConfig

The object instance of the DUT type.

EXAMPLE

set DUT1 [::IxLoad new ixDut]$DUT1 config \-comment

""" \-type "VirtualDut" \-name

"DUT1" \-dutConfig $my ixDutConfigVirtual$DUT

elementList.appendIitem -object $DUT1SNew Traffic Flow columnList.appendItem -object
$DUT

SEE ALSO
ixTest

ixStatCatalogltem

ixDutConfigVirtual

ixDutConfigVirtual-Configures a virtual DUT.

SYNOPSIS

set my ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]
$my ixDutConfigVirtual subcommand options...

DESCRIPTION

The ixDutConfigVirtual command is used to:

« Define a range of IP addresses for the DUT, instead of the single address that the other DUT
Types allow.

o Specify the TCP/UDP ports that the Virtual DUT listens on, on a per-protocol basis.

Virtual DUTs are added to the ixDut object as an option. For example,
set my ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]$my ixDutConfigVirtual

config$my ixDutConfigVirtual networkRangeList.clearset DUT1 [::IxLoad new
ixDut]$DUT1 config \

—-comment "" \

-182 -

Chapter 4 IxLoad Tcl API Commands

-type "VirtualDut" \
-name "DUT1" \

-dutConfig Smy ixDutConfigVirtual

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

ixDutNetworkRange and ixDutProtocolPortRange are appended to the ixDutConfigVirtual object.

EXAMPLE

set my ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]$my ixDutConfigVirtual
config$my ixDutConfigVirtual networkRangelist.clearset Network Range 1 in DUT1 1 1
1 1 100 [::IxLoad new ixDutNetworkRange}$Network_Range_l_in_DUTl__l_l_l_l_lOO_
config \-vlanUniqueCount 4094 \-firstlIp

"1.1.1.1" \-enable true \-name

"Network Range 1 in DUT1 (1.1.1.1+100)" \-vlanEnable

true \-vlanId 1 \-innerVlanEnable

false \-ipIncrStep "0.0.0.1" \-networkMask
"255.255.0.0" \-ipType 1 \-vlanIncrStep

1 \-vlanCount 1 \-ipCount

100$my ixDutConfigVirtual networkRangelList.appendItem -object $Network Range 1 in

ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]Smy
ixDutProtocolPortRange config \

-portRanges "1001,1002,1003-1006" \

-protocol "HTTP"

$my ixDutConfigVirtual protocolPortRangelList.appendItem -object Smy
ixDutProtocolPortRangeset DUT1 [::IxLoad new ixDut]$DUT1 config \-comment
" \-type "VirtualDut" \-name

"DUT1" \-dutConfig $my ixDutConfigVirtualS$SDUT
elementList.appendItem -object $DUT1

SEE ALSO
ixDut

ixDutNetworkRange

ixDutNetworkRange-Defines the one range of IP addresses (a subnet) that the Virtual DUT will have.
Subnets defined here should match the subnets configured on the actual DUT.

SYNOPSIS

-183 -

Chapter 4 IxLoad Tcl API Commands

DESCRIPTION

Defines the one range of IP addresses (a subnet) that the Virtual DUT will have. Subnets defined here
should match the subnets configured on the actual DUT.

The Range of IP addresses are added to the ixRepository object. For example,

set Network Range 1 in DUT1 1 1 1 1 100 [::IxLoad new ixDutNetworkRange]SNetwork
Range 1 in DUT1 1 1 1 1 100 config
SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

vlanUniqueCount
Specifies the number of VLAN IDs to create.
firstIp

This is the First IP address on the subnet, and subnet mask. Enter the subnet in /<bits> format,
following the IP address.

For example, to specify an address of 198.162.0.1 with a subnet of 255.255.0.0, enter: 198.162.0.1/16
(Default = "1.1.1.1").

enable

If true this makes a subnet active. Only traffic from active subnets can be meshed meshed; inactive
subnets are not used. Default = true.

name
Specifies the name of the Network Range.

vlanEnable

Enable this if the actual DUT uses VLANS. Default = false.
vlanId

Value of first 802.1Q VLAN tag.

ipIncrStep

Amount of increase in the IP address used to create additional IP addresses on the subnet, and octet
that will be incremented. Default = "0.0.0.1".

networkMask
This specifies the subnet mask. Default = "255.255.0.0".

ipType

- 184 -

Chapter 4 IxLoad Tcl API Commands
Specifies the type of addressing for the subnet: I1pv4 or IPv6. IxLoad supports all forms of IPv6
addressing except ::dotted-quad notation (for example, “::1.2.3.4").

You must select the same type of addressing used on the corresponding subnet on the actual DUT.
Default = 1.

vlanIncrStep

Amount of increase in the VLAN ID. IxLoad applies this value to the ID to create the complete list of
VLAN IDs that will be meshed. Default = 1.

vlanCount
Number of VLAN IDs to create. Default = 1.
ipCount

Number of IP addresses on this subnet.

EXAMPLE

set Network Range 1 in DUT1 1 1 1 1 100 [::IxLoad new ixDutNetworkRange]SNetwork
Range 1 in DUT1 1 1 1 1 100 config \-vlanUniqueCount 4094
\-firstlIp "1.1.1.1" \-enable

true \-name "Network Range 1 in DUTL
(1.1.1.1+4100)"™ \-vlanEnable true \-vlanId

1 \-innerVlanEnable false \-ipIncrStep

"0.0.0.1" \-networkMask "255.255.0.0" \-ipType

1 \-vlanIncrStep 1 \-vlanCount

1 \-ipCount 100

SEE ALSO

ixDut

ixDutConfigVirtual

ixDutProtocolPortRange

ixDutProtocolPortRange-defines a protocol that the Virtual DUT listens for, and the ports that it listens
of for that protocol.

SYNOPSIS

set my ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]
$my ixDutProtocolPortRange subcommand options...

DESCRIPTION

Defines a protocol that the Virtual DUT listens for, and the ports that it listens of for that protocol.

-185-

Chapter 4 IxLoad Tcl API Commands

The ProtocolPortRange object is appended to the ixDutConfigVvirtual object. For example,
$my ixDutConfigVirtual protocolPortRangelList.appendItem -object Smy

ixDutProtocolPortRange
SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS
portRanges

Specifies the port numbers that the Virtual DUT listens on for the protocols in the protocol field.

protocol

Defines a protocol to listen for. A virtual dut supports the following protocols:
FTP HTTP @ IMAP IPTV/Video
LDAP | POP3 | RADIUS | RTSP

SMTP | SSH | DNS All

EXAMPLE

set my ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]$my
ixDutProtocolPortRange config \-portRanges "o\ -
protocol "AlLl"

SEE ALSO

ixDut

ixDutConfigVirtual

ixDutConfigVip

ixDutConfigVip-DUT Configuration class for firewall and external server.
SYNOPSIS

set my ixDutConfigVip [::IxLoad new ixDutConfigVip]

$my ixDutConfigVip subcommand options...

DESCRIPTION

This class is associated with ixbut for DUT types - Firewall and External Server.

-186 -

Chapter 4 IxLoad Tcl API Commands

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS
ipAddress

Specifies the IP address used to access the DUT.

EXAMPLE

set my ixDutConfigVip [::IxLoad new ixDutConfigVip]$my ixDutConfigVip config \-
ipAddress "1.1.1.1"

SEE ALSO

ixDut

ixDutConfigSLB

ixDutConfigSLB-DUT Configuration class for server load balancer.

SYNOPSIS

set my ixDutConfigSLB [::IxLoad new ixDutConfigSLB]
$my ixDutConfigSLB subcommand options...

DESCRIPTION

This class is associated with ixDut for DUT types - Server Load Balancer.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enableDirectServerReturn

Enables the Direct Server Run. In a topology using Direct Server Return, the responses are sent
directly from the servers to the clients; they do not go through the SLB. Default = false.

ipAddress

Specifies the IP address used to access the DUT.

SUB-OBJECTS

serverNetwork

-187 -

Chapter 4 IxLoad Tcl API Commands

If type is “Server Load Balancer (SLB)” and the SLB is balancing Ixia emulated servers, set this

option to the server network that is being balanced. This must be an object of type
ixStatCatalogItem. (Default = {}).

Note: Ixia Server Network is not supported in SLB options.

EXAMPLE

set my ixDutConfigSLB [::IxLoad new ixDutConfigSLB]S$my ixDutConfigSLB config \-
enableDirectServerReturn false \-ipAddress

"198.18.0.101"

SEE ALSO

ixDut

ixView

ixViewOptions-Configures capture options.

SYNOPSIS

set my ixViewOptions [::IxLoad new ixViewOptions]$my ixViewOptions config options...
DESCRIPTION

The ixViewOptions command configures the capture (IxAnalyzer) options. Use the ixConfig
subcommand to configure this command. It is added as an object instance to the captureviewOptions
in ixTest.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

runMode
Specifies when capture starts, and how long it continues for. Values are:

1 Automatic

2 | Manual

3 | Start capture after a delay of captureRunAfter time and capture for captureRunDuration.
captureRunDuration

If runMode type is 3, this parameter specifies the capture duration, in seconds.

captureRunAfter

-188 -

Chapter 4 IxLoad Tcl API Commands
If runMode type is 3, this parameter specifies the delay (after the test start) before capture begins.
Specify the delay in seconds.

collectScheme

Specifies whether or not packets are displayed as they are captured during a test, and whether newer
captured data overwrites older data, or not. This parameter combines the functions of two GUI
parameters, Capture View Display Mode and Buffer Full Behavior, into a single Tcl command.

Values are:

0 (default) | Stream (real-time capture) + Stop Capture

1 Upload captured packet after capture stops + Stop Capture
2 Stream (real-time capture) + Overwrite oldest packets(circular buffer)
3 Upload captured packets after capture stops + Overwrite oldest packets(circular buffer)

allocatedBufferMemoryPercentage
Percentage of the available memory on the Ixia port allocated for capturing packets.

The memory available for capturing packets is the total amount of memory available on the port, less
the amount required for the IxLoad test configuration. Of this remaining amount, you can reserve up to
70% for capturing packets.

EXAMPLE

set my ixViewOptions [::IxLoad new ixViewOptions]Smy ixViewOptions config \-runMode
1 \-captureRunDuration 0 \-captureRunAfter

0 \-collectScheme 0 \-allocatedBufferMemoryPercentage
30set Testl [::IxLoad new ixTest]$Testl config \-comment

"" \-csvInterval 4 \-name

"Testl" \-statsRequired 1 \-enableResetPorts

0 \-enableForceOwnership false \-enableReleaseConfigAfterRun
0 \-captureViewOptions Smy ixViewOptions

SEE ALSO

ixTest

ixClientNetwork

ixClientNetwork-Defines a network for client agents.

SYNOPSIS

set clientNetwork [::IxLoad new ixClientNetwork S$chassisChain options]

SclientNetwork subsubcommandcommand options...

-189 -

Chapter 4 IxLoad Tcl API Commands

DESCRIPTION

The ixClientNetwork command is used to construct a client network, which is used as part of an
ixClientTrafficNetworkMapping object. A chassis chain object, as created in the ixChassisChain
command, must be used in the construction of this object.

A list of network ranges, as defined in the ixRepository object is associated with the client network.
Network ranges are added to the client network through the use of the networkRangelList.appendItem
command.

A list of ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associated with the network
through the emulatedRouterIpAddressPool option. The pool is defined in the
ixEmulatedRouterIpAddressRange Object. These are added to the object through the use of the
appendItem command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addithe following commands are
available. Unless otherwise described, no values are returned and an exception is raised for any error
found.

checkConfig

Checks the configuration of the client network object.

reset

Disassociates the network from all of the Ixia ports currently in the portList option. Ownership of the
ports is cleared.

OPTIONS
chassisChain

This must be a chassis chain object, as created in the ixChassisChain command. It represents the set
of chassis used in the test and defines the chassis IDs used in the portList component. This option
should not be changed after portList is set. (Default = None) .

comment
A commentary string for the object. (Default = ““).
emulatedRouterGateway

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This is the gateway to be used for that router. (Default = 0.0.0.0).

emulatedRouterGatewayIPv6

-190 -

Chapter 4 IxLoad Tcl API Commands

If macMappingMode is set to kMacMappingModePort and ipType in ixEmulat is set to “IPv6” for any
addresses, then an IPv6 address is also required for the emulated router inserted between the clients
and the external port. This is the IPv6-format address of the gateway to be used for that router. IxLoad

supports all forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4").
(Default = “::C212:0001").

emulatedRouterSubnetIPv6

Subnet mask applied to emulatedRouterGatewayIPv6 address. (Default =
“FFFF:FFFF:FFFF:FFFF:FFFF:FFFF: :07)

emulatedRouterIpAddressPool

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This option is a list of ixEmulatedRouterIpAddressRange objects which
define the routers' source addresses that will be used. One IP address is taken from the list and used
for each Ixia port. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {})

emulatedRouterSubnet

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This is the network mask to be used for that router. (Default =
255.255.255.0) .

ipSourcePortFrom

Defines the beginning of the range of ephemeral port numbers used to establish connections to the
server. The end of the range is specified by ipSourcePortTo.

The first port in the range that IxLoad uses for traffic is 1 greater than the value you specify for
ipSourcePortFrom. For example, if you specify 1,024, traffic originates from port 1025; no traffic
originates from port 1,024. The minimum value for ipSourcePortFrom is 1024. (Default = 1,024).

ipSourcePortTo

Defines the end of the range of ephemeral port numbers used to establish connecto the server. The
beginning of the range is specified by ipSourcePortFrom. (Default = 65,535).

linkLayerOptions

The link layer options to be associated with the ports associated with this client network. Only Ethernet
options are currently supported. (Default = kLink

macMappingMode

The mapping between IP addresses and MAC addresses. One of:

Option Usage
$::ixClientNetwork (Default) One MAC address is associated with each IP
(kMacMappingModelp) address.

-191 -

Chapter 4 IxLoad Tcl API Commands

$::ixClientNetwork One MAC address is used for all IP addresses on the port.
(kMacMappingModePort)

name

The name associated with this object. (Default = “newNetwork”) .

networkRangelList

A list of ixRepository objects that define the networks from which addresses will be associated with
the clients. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

portList

A list of ports associated with the client network. Refer to ixConfigSequenceContainer for a list of
commands that may be used to manipulate this list. Ports are added directly into this object; see the

following example:
SclientNetwork portList.appendItem \

-chassisId 1 \

-cardId 2 \
-portId 2

SUB-OBJECTS
arpSettings

This is an object of type ixArpSettings, which specifies the mannerin which ARP is handled on this

network. (Default = <see ixArpSettings>). The options of this object should be set directly via:
SclientNetwork arpSettings.config options...

dnsParameters

This is an object of type ixDns, which specifies the manner in which specifies the DNS operation
associated with clients on this network. (Default = <see ixDns>). The options of this object

should be set directly via:
SclientNetwork dnsParameters.config options...$clientNetwork

dnsParameters.serverList.appendItem options...
tcpParameters

This is an object of type ixTcpParameters that specifies the manner in which TCP traffic is handled on
this network. (Default = <see ixTcpParameters>). The options of this object should be set

directly via:

SclientNetwork tcpParameters.config options...

EXAMPLE

set clnt network [::IxLoad new ixClientNetwork $chassisChain]$Sclnt network config -

name "clnt network" \

-cardType $::ixCard(kCardl1000Txs4)
-ipSourcePortFrom 1024 \

-ipSourcePortTo 65536 \
$clnt network networkRangeList.appendItem \ -name "clnt range" \

-192 -

Chapter 4 IxLoad Tcl API Commands

-enable 1\ -firstIp "198.18.2.1" \ -ipCount 100
\ -networkMask "255.255.0.0" \ -gateway "0.0.0.0" \ -
firstMac "00:C6:12:02:01:00" \ -vlanEnable 0\ -vlanId

1\ -mssEnable 0\ -mss 100

$clnt network portList.appendItem \ -chassisId 1 \ -cardId 2\
-portId 1

SEE ALSO

ixClientTrafficNetworkMapping

ixChassisChain

ixRepository

ixClientTraffic

ixClientTraffic-Builds a list of client agents to generate client traffic.

SYNOPSIS
set clientTraffic [::IxLoad new ixClientTraffic options]

$clientTraffic subcommand options...

DESCRIPTION

The ixClientTraffic command is used to construct the model for client traffic to be applied during a
test. Itis used in the ixClientTrafficNetworkMapping comto co-ordinate networks with client agent
traffic. Its primary option is the agentList list of agents which will generate client traffic.

Agents are added to the agentList using the appendItem subcommand and may be otherwise
manipulated using the commands supported by the ixConfigSequenceContainer command. All

agents are added in the same manner:
set clientTraffic [::IxLoad new ixClientTraffic \

-name “Traffic”]
SclientTraffic agentList.appendItem \

-name“my protocol traffic” \
-protocol“<PROTOCOL>" \

-type“Client” \
<other per-protocol options>

The name, protocol, and type are required fields. These define a particular type of agent; the
protocol field should be drawn from the table above. In addition to the required fields, the agent
definition should include options which are specific to a particular protocol, and defined in their
respective appendix.

-193 -

Chapter 4 IxLoad Tcl API Commands

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

checkConfig

Checks the configuration of the client traffic object.

OPTIONS

name

The name associated with the agentList object. (Default = “newActivityModel”) .
agentlList

A list of agent objects which define the agents that will be used to generate client traffic. Refer to the
various appendixes listed above to determine the options that the agents offer. Refer to

ixConfigSequenceContainer for a list of commands that may be used to manipulate this list.
(Default = {}).

EXAMPLE

- # Construct Client
Traffic#-----—--"-""-"-"""""""""""""""""""""""“"~"—"~"—"—~" "~ set clnt
traffic [::IxLoad new ixClientTraffic \

-name "client traffic"]

- # Create a HTTP
client agent#----—-——-—-—--"""""""""""""""—"""—"—"—~"—"—~\ "~ ——— $clnt
traffic agentList.appendItem \ -name "my http client"” \
-protocol "HTTP" \ -type "Client™ \ -
maxSessions 3\ -httpVersion $::HTTP Client
(kHttpVersionlO) \ -keepAlive 0\ -maxPersistentRequests
3\ -followHttpRedirects 0\ -enableCookieSupport 0\ -
enableHttpProxy 0\ -enableHttpsProxy 0\ -
browserEmulation $::HTTP Client (kBrowserTypeIES5) \ -enableSsl

0 -
--—-# Add actions to this client agent#-------——----"""""""-"""""-"""-""—~"—"~—~—~—~\—~—~—~—~—~——————
————————————————— foreach {pageObject destination} { "/4k.htm" "svr traffic
my http server" "/8k.htm" "svr traffic my http server"} ({ $clnt traffic
agentList (0) .actionList.appendIitem \ —command "GET" \
-destination Sdestination \ -pageObject SpageObject }

SEE ALSO

ixClientTrafficNetworkMapping (see "ixClientTrafficNetworkMapping")

- 194 -

Chapter 4 IxLoad Tcl API Commands

ixClientTrafficNetworkMapping

ixClientTrafficNetworkMapping-Ties a client network to traffic model.

SYNOPSIS

set clientMapping [::IxLoad new ixClientTrafficNetworkMapping options]
$clientMapping subcommand options...

DESCRIPTION

The ixClientTrafficNetworkMapping command is used to map a set of agents that generate client
traffic (in an ixCustomPortMap object) to the set of networks, which will carry the traffic (in an ixDHCP
object).

A number of additional options control the manner in which the client traffic is applied to the networks.

The objectiveType and objectValue options allow the application of traffic to achieve a particular
objective-for example, connections per second.

The setObjectiveTypeForActivity and setObjectiveValueForActivity options allow you set objectives
and values for individual activities within a traffic-network mapping.

The rampUpType, rampUpValue, rampDownTime, standbyTime, offlineTime, sustainTime, and
totalTime options determine the timeline for application of traffic.

portMapPolicy controls the manner in which client traffic is sent to servers.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

If true, this mapping is included in the IxLoad test. (Default = true).
getUserObjectiveTypeForActivity

Objective type for user objective activity within a traffic-network mapping. You must specify the

activity name. See the following example:
set objType [$clnt t n mapping getUserObjectiveTypeForActivity("my sip client")]

getUserObjectiveValueForActivity

Objective type for user objective value within a traffic-network mapping. You must specify the activity
name. See the following example:

set objValue [$cInt_t_n_mapping getUserObjectiveValueForActivity

iterations

-195-

Chapter 4 IxLoad Tcl API Commands

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1).

name

The name associated with this object. This is read-only and cannot be set from the API. (Default =

"NetworkTrafficMapping") .

objectiveType

The objective to be achieved for this traffic to network mapping. One of:

Option
\\N/All

$::ixObjective
(kObjectiveTypeSimulatedUsers)
or “simulatedUsers”

$::ixObjective
(kObjectiveTypeConcurrentConnections)
or “concurrentConnections”

$::ixObjective
(kObjectiveTypeConcurrentSessions)
or “concurrentSessions”

$::ixObjective
(kObjectiveTypeConnectionRate)
or “connectionRate”

$::ixObjective
(kObjectiveTypeThroughputMBps)
or “throughputMBps”

$::ixObjective
(kObjectiveTypeThroughputMbps)
or “throughputMbps”

Usage

(Default) .

The objective is to simulate some number of users. If you
select this objective, remember that a 'user' does not
necessarily mean one human user. For example, a Web
browser used by one person may open several
connections to a Web site simultaneously; each
connection counts as one 'user,' because each connection
was initiated by the same source simultaneously. Specify
the desired number of users in the objectivevalue
option.

The objective is to sustain some number of connections
simultaneously. Specify the desired number of
connections in the objectivevalue option.

The objective is to sustain some number of sessions
simultaneously. Specify the desired number of
connections in the objectivevalue option.

The objective is to create connections at a certain rate.
For example, if the traffic in this mapping is HTTP client
traffic, this objective will attempt to generate the
specified number of HTTP connections per second.
Specify the desired number of connections per second in
the objectivevalue option.

As of IxLoad 5.00, this option has been deprecated. Use
throughputMbps instead.

The objective is to achieve a certain level of throughput,
measured in megabits per second (Mbps). Specify the
amount of throughput in the ocbjectivevalue option.

-196 -

Chapter 4 IxLoad Tcl API Commands

$::ixObjective As of IxLoad 5.00, this option has been deprecated. Use
(kObjectiveTypeThroughputKBps) throughputKbps instead.

or “throughputkBps”

$::ixObjective The objective is to achieve a certain level of throughput,
(kObjectiveTypeThroughputKbps) measured in kilobits per second (Kbps). Specify the

or “throughputkKbps” amount of throughput in the ocbjectivevalue option.
$::ixObjective The objective is to achieve a certain level of throughput,
(kObjectiveTypeThroughputGbps) measured in gigabits per second (Kbps). Specify the

or “throughputGbps” amount of throughput in the ocbjectivevalue option.
$::ixObjective The objective is to complete transactions at a certain
(kObjectiveTypeTransactionRate) rate. For example, if the traffic in this mapping is HTTP
or “transactionRate” client traffic, this objective will attempt to complete the

specified number of transaction per second. The
definition of what constitutes one complete HTTP
transaction depends on whether you select HTTP 1.0 or
1.1:

HTTP 1.0: open socket - issue GET - GET response -
close socket. HTTP 1.1: Open socket (if closed) - send
request - Get response.

Specify the desired number of transactions per second in
the objectiveValue option.

objectiveValue
Value for the choice made in the objectiveType option.
objectiveConstraints

Currently, constraints can be set on activities that run rate-based objectives, like connectionRate,
transactionRate, throughput objectives.

The following API can be used to set the constraint value. The constraint needs to be enabled on the
activity.
$clnt t n mapping setconstraints "my http client" 200 true

This sets the constraint value to 200 and true enables the constraint. If the activity is running a rate

based activity, then the number of simulated users will be limto 200.
$clnt t n mapping setconstraints "my http client" 200 false

This sets the constraint value to 200 and false does not enable the constraint. The number of
simulated users will not be limited here.

offlineTime
The amount of time agents are idle between iterations. (Default = 0).
portMapPolicy

This option controls the sequence in which the client ports connect to the server ports. One of:

-197 -

Chapter 4 IxLoad Tcl API Commands

Option Usage

$::ixPortMap (Default) . Client agents connect to server agents on a one-to-one
(kPortMapRoundRobin) | basis.
or “portPairs”

$::ixPortMap Agents on every client port connect to every server port.
(kPortMapFullMesh)

or “portMesh”

$::ixPortMap Each simulated user on the client side communicates with only one server
(kPortMaplIpPair) IP address.

or “ipPair” This choice is only valid for SIP agents.

$::ixPortMap Each custom port map has a list of IPv4 suband IPv6 submaps. You can
(kPortMapCustom) create a Custom traffic map. In a Custom traffic map, you select the client
or “custom” and server IP address ranges that will send traffic to each other.

To create a Custom traffic map, the subnet's rangeType parameter must be
setto IP Only (Ethernet).

For large numbers of ports, the Port Pair sequence scales performance better than the Port Mesh
sequence.

The operation of Port Pairs can be described by three scenarios:

« If the number of client ports is equal to the humber of server agents, client ports will establish
connections to server ports on a one-to-one basis.

« If the number of client ports is less than the number of server ports, the client ports will establish
connections to the server ports on a one-to-one basis until all client ports are paired with server
ports. The remaining server ports will not be used.

o If the number of client ports is greater than the number of server ports, the client ports will
establish connections to the server ports on a one-to-one basis until all server ports are paired
with client ports. Then, the remaining client ports will return to the first server port and continue
pairing themselves with server ports.

The ixCustomPortMap customizes the order and frequency, by which client IPs will access server IPs.

Each custom port map has a list of IPv4 submaps and IPv6 submaps. There will be a list for the
appropriate IP type if any ranges of that type appear in the network for the symbolic destination. When
a submap list is initialized, it will have a single submap that will be a full IP mesh, if that type is
available. If only vLAN maps are allowed, then it will be a VLAN pairs map instead. If a submap is
appended to the list, by default it will be a copy of the last submap in the list, unless values are passed
in.

rampDownTime

The amount of time used for closing any TCP connections that are still open after all transactions are
complete. When the ramp downtime expires, IxLoad terminates any remaining users.

-198 -

Chapter 4 IxLoad Tcl API Commands

If IxLoad terminates any client users that are still running after the ramp down expires, statistics for
servers and clients that should match may not. This is an indication that the ramp downtime may be
too short. (Default = 20).

rampUpTime

(Read-only) . The amount of time that the test will spend bringing users online and initiating their
first TCP connections. IxLoad calculates this time based on the number of users and the rampUpType
option.

rampUpType

The method used to apply the rampUpvalue. One of:

Option Usage
$::ixTimeline (Default). IxLoad applies the rampUpValue to bring up the specified number
(kRampUpType of users per second.

UsersPerSecond) | For example, if you select Users/Second and you specify 10 for the
rampUpValue, IxLoad brings up 10 new users every second until all the users
are up and running.

$::ixTimeline IxLoad applies the rampUpValue to maintain a pool of users waiting to create
(kRampUpType connections. Regardless of how quickly the servers complete connections,
MaxPendingUsers) | IxLoad will always be ready with one or more new clients waiting to connect. As
each user successfully creates a connection, IxLoad adds a new user to the
pending pool until all the users are up and running.
For example, if you select Max. Pending Users and you specify 10 for the
rampUpValue, IxLoad maintains 10 users waiting to establish connections until
all the users are up and running.

rampUpValue

A value dependent on the setting of rampUpType. One of:

Option Usage

$::ixTimeline(kRampUpType @ The specified number of users per second to bring up.
UsersPerSecond)

$::ixTimeline(kRampUpType | The size of the pool of pending users awaiting con
MaxPendingUsers)

rampUpInterval

This field accepts integer values. The value for this option will be considered only when rampUpType is
usersPerSecond. You can edit the value to increment or decrement the number of users to be started

at every rampUplInterval. (Default = 1).

o # Create a client and
server mapping and bind into the# network and traffic that they will be employing#--
—— set clnt t n mapping

-199 -

Chapter 4 IxLoad Tcl API Commands

[::IxLoad new ixClientTrafficNetworkMapping \ -network $clnt
network \ -traffic $clnt traffic \ -objectiveType
$::1x0Objective (kObjectiveTypeSimulatedUsers) \ -objectiveValue 20 \ -
rampUpValue 5\ -rampUpInterval 10 \ -sustainTime

20 \ -rampDownTime 20

In this example, 5 simulated users will be started every 10 seconds until the configured total nhumber of
simulated users are started.

setObjectiveTypeForActivity

Objective type for a single activity within a traffic-network mapping. You must specify the activity and
the objective type. The objectives available are the same as for objectiveType. See the following
example:

setObjectiveTypeForActivity "my http client" \ $::ixObjective
(kObjectiveTypeConnectionRate)

setObjectiveValueForActivity

Objective value for a single activity within a traffic-network mapping. You need to specify the activity

and the value. See the following example:
setObjectiveTypeForActivity setObjectiveValueForActivity \ "my http client" 200

setPortMapForActivity

Port mapping for a single activity within a traffic-network mapping. You need to specify the activity and

the portMapPolicy. See the following example:
setObjectiveTypeForActivitsetPortMapForActivity \ "my http client" $::ixPortMap

(kPortMapFullMesh)
setUserObjectiveTypeForActivity

Objective type for user objective activity within a traffic-network mapping. You need to specify the

activity name and the userObjectiveType. See the following example:
$clnt t n mapping setUserObjectiveTypeForActivity("my sip client", "bhca")

setUserObjectiveValueForActivity

Objective type for user objective value within a traffic-network mapping. You need to specify the

activity name and the userObjectiveType. See the following example:
$clnt t n mapping setUserObjectiveValueForActivity ("my sip client", 3600)

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. If you have multiple traffic-network pairs in your test,
you can use this parameter to stagger their start times. A value of 0 causes the test to begin
immediately. The valid range is from 0 to 1,000 hours (3,600,000). (Default = 0).

sustainTime

The amount of time, in seconds, when all users are up and performing the central test objectives, such
as establishing and closing connections (TCP), retrieving or serving pages (HTTP), or sending or
receiving files (FTP). The valid range is from 0 to 1,000 hours (3,600,000). (Default = 20).

- 200 -

Chapter 4 IxLoad Tcl API Commands

totalTime

The total time required to run the test, including Ramp Up, Ramp Down, Sustain, and Offline times for
all iterations. (Default = 60).

userObjectiveType

UserObjectivetypes are basically alternate representations of the basic ocbjectiveType -
simulatedUsers, transactionRate, concurrentSessions, concurconnectionsPerSecond,

throughputMbps, throughputKbps. They can have a scaling factor associated with them. For
example, bhca has a scaling factor of 3,600. This means that, 3,600 busy hour call attempts (BHCA)
userObrepresents 1 transactionRate objectiveValue.

userAgents represents simulatedUsers with scaling factor of 1.
callsPerSec represents transactionRate with scaling factor of 1.
Registrationsinitiated represents transactionRate with scaling factor of 1.

Redirectionsinitiated also represents transactionRate with scaling factor of 1.

set clnt t n mapping [::IxLoad new ixClientTrafficNetworkMapping \

-network $clnt network \-traffic $clnt traffic \-
standbyTime 30 \-userObjectiveType "bhca™ \-userObjectiveValue

3600 \-rampUpValue 1 \-sustainTime 40 \-rampDownTime

20

Option Usage

userAgents” The objective is to sustain some number of SIP calls simultaneously.

Specify the desired number of UserAgents in the objectiveValue option.

callsPerSecond The objective is to establish a certain number of SIP calls per second.

Specify the desired number of calls to establish per second in the
objectiveValue option.

bhca The objective is to establish a certain number of SIP calls per hour.
Specify the desired number of calls to establish per hourin the
objectiveValue option.

Busy hour call attempts (BHCA) is a standard measure of the number of
calls completed during a busy hour, the 60-minute period when the
maximum traffic load occurs within a given 24-hour period.

registrationsinitiated The objective is to establish a certain number of call registrations of SIP.
Specify the desired number of registrations in the objectiveValue option.

-201-

Chapter 4 IxLoad Tcl API Commands

redirectionsinitiated The objective is to establish a certain number of call redirections of SIP.
Specify the desired number of redirections in the objectiveValue option.

transactionAttemptRate | The objective is to issue some number of DNS query per second.
The number of DNS query is mentioned in the userObjectiveValue option.

connectionAttemptRate | The objective is achieved if IxLoad succeeds in making the specified
number of attempts to connect to the HTTP server or DUT.

Specify the desired number of attempted connections per second in the
userObjectiveValue option.

userObjectiveValue

A value related to the choice made in the userObjectiveType option. One of:

Option Usage

Calls The desired number of calls.

Callspersecond The desired number of calls to establish per second.
Bhca The desired number of calls to establish per hour.
Useragents The desired number of user agents to be simulated.

Registrationinitiated | The desired number of registrations to be initiated during the test.
Redirectionsinitiated | The desired number of call redirections initiated during the test.

Queriespersecond The desired number of DNS query per second.

SUB-OBJECTS
network

An object instance of type ixDHCP, which provides the networks from which the traffic will be
generated. (Default = {}).

traffic

An object of type ixCustomPortMap, which provides the model of traffic to be generated. (Default
{1 .

EXAMPLE

- # Create the client
traffic to network mappingff-——————-——————-"————""—"—"———
————— set clnt mapping [::IxLoad new ixClientTrafficNetworkMapping \ -network
$clnt network \ -traffic $clnt traffic \ -objectiveType
$::1x0Objective (kObjectiveTypeSimulatedUsers) \ -objectiveValue 20 \ -
rampUpValue 5\ -sustainTime 20 \ -rampDownTime

20]

-202 -

Chapter 4 IxLoad Tcl API Commands

SEE ALSO
ixTest

ixCustomPortMap

iXNetworkRange

ixNetworkRange-Defines a range of IP and MAC addresses.

Note: This item has been deprecated.

SYNOPSIS
set networkRange [::IxLoad new ixNetworkRange options]

$networkRange subcommand options...

DESCRIPTION

The ixNetworkRange command is used to construct a network range consisting of a set of IP, MAC,
and vLAN addresses. This is used in the ixDHCP and ixStatCatalogItem commands. If the
ixDHCP/ixStatCatalogItem command speca "MACPerPort” mapping mode in its macMappingMode
option, then the gateway, firstMac, and macIncrStep options are not relevant; all network ranges
route to the emulated router and a single MAC addresses emanates from each Ixia port.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no valare returned and an exception is raised for any error
found.

checkConfig
Checks the configuration of the client network object.
set range

Helps to select the activities (protocol agents) that each networkRange will run.
set rangel [$clnt network networkRangeList.getItem O0]Sclnt t n mapping

setActivityAvailableForRange Srangel "my http client" trueset isAvailable [$clnt t
n mapping isActivityAvailableForRange S$rangel "my http client"]puts "=======
Activity-IP Mapping for Http Agent ========"puts $isAvailable

OPTIONS
enable
If true, enables the use of this network range. (Default = true).

enableStats

-203 -

Chapter 4 IxLoad Tcl API Commands

This is enabled to value 1, to collect per interface statistics (- AddPerInterfaceStat arguments).
(Default = 0).

firstIp

The first IP address for the range. If ipType is set to “IPv4,” this must be an IPv4 address. If ipType is
set to "IPv6,"” this must be an IPv6 address. Only HTTP and FTP agents support IPv6 addressing. If
there is a mixture of IPv4 and IPv6 addresses, other protocols will use only the IPv4 addresses. IxLoad

supports all forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4").
(Default = 198.18.0.1).

firstMac

The first MAC address for the range. This is not used if the value of macMin the containing
ixDHCP/ixStatCatalogItem objectis set to “"MACPerPort.” (Default = 00:C6:12:00:01:00) .

gateway

The gateway associated with all IP addresses in the network range. (Default = 0.0.0.0).
ipCount
The number of unique IP addresses in the network range. (Default = 100).

ipIncrStep

Indicates the increment to be applied between generated IP addresses. The format of this option is a
dotted-quad IP address, in which only one of the octets may be nonzero. For example, 0.0.0.1,
0.0.2.0, 0.22.0.0 and 4.0.0.0 are valid values which will increment a different octet each time. Values
that use more than one octet, for example 0.0.1.1, are illegal. (Default = 0.0.0.1). Some useful
constants are:

Constant Value

$::ixNetworkRange(kIpIncrOctetFirst) 1.0.0.0
$::ixNetworkRange(kIpIncrOctetSecond) | 0.1.0.0
$::ixNetworkRange(kIpIncrOctetThird) 0.0.1.0
$::ixNetworkRange(kIpIncrOctetForth) 0.0.0.1

ipType

Type of IP address. This parameter indicates whether the address range is a range of IPv4 addresses or
a range of IPv6 addresses. Only HTTP and FTP agents supIPv6. If there is a mixture of IPv4 and IPv6
addresses, other protocols will use only IPv4 addresses. IxLoad supports all forms of IPv6 addressing

except ::dotted-quad notation (for example, “::1.2.3.4"). The choices are: “IPv4” and “IPv6."”
(Default = “IPv4”).

macIncrStep

- 204 -

Chapter 4 IxLoad Tcl API Commands

Indicates the increment to be applied between generated MAC addresses. The format of this option is a
colon separated MAC address, in which only one of the octets may be nonzero. For example,
00:00:00:00:00:01, 00:00:00:00:22:00, 00:00:00:33:00:00, 00:00:44:00:00:00,
00:AA:00:00:00:00, and C:00:00:00:00:00 are valid values that will increment a different octet each
time. Values that use more than one octet, for example 00:00:00:00:01:01, are illegal. This is not
used if the value of macMappingMode in the containing ixDHCP/ixStatCatalogItem objectis setto
“MACPerPort.” (Default = 00:00:00:00:00:01). Some useful constants are:

Constant Value

$::ixNetworkRange(kMacIncrOctetFirst) 01:00:00:00:00:00
$::ixNetworkRange(kMacIncrOctetSecond) | 00:01:00:00:00:00
$::ixNetworkRange(kMaclIncrOctetThird) 00:00:01:00:00:00
$::ixNetworkRange(kMaclncrOctetForth) 00:00:00:01:00:00
$::ixNetworkRange(kMaclIncrOctetFifth) 00:00:00:00:01:00
$::ixNetworkRange(kMacIncrOctetSixth) 00:00:00:00:00:01

mss

If mssEnable is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, IxLoad clients or servers advertise their TCP MaxiSegment Size as 1,460 bytes. (Default

= 1,460).

mssEnable

If true, the use of the mss option is enabled. (Default = false).
networkMask

The subnet mask associated with the IP range. (Default = 255.255.0.0).
rangeType

Type of IP range configured on the subnet.
Value
Ethernet (default)
DHCP
IPSec

PPPOE

- 205 -

Chapter 4 IxLoad Tcl API Commands

DHCP-PD
DHCP-PD Client
vlanEnable
If true, VLAN IDs are inserted.

vlanId

If vlanEnable is true, thisisthe vLAN ID used. (Default = None).

EXAMPLE

See example in ixDHCP.

SEE ALSO

ixStatCatalogltem

ixServerNetwork

ixServerNetwork-Defines a network for server agents.

SYNOPSIS

set serverNetwork [::IxLoad new ixServerNetwork SchassisChain options]
$serverNetwork subcommand options...

DESCRIPTION

The ixServerNetwork command is used to construct a server network, which is used as part of an
ixServerTrafficNetworkMapping object. A chassis chain object, as created in the ixChassisChain
command, must be used in the construction of this object.

A list of network ranges, as defined in the ixRepository object is associated with the server network.
Network ranges are added to the server network through the use of the networkRangeList.appendItem
command.

A list of ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associwith the network
through the emulatedRouterIpAddressPool option. These are added to the object through the use of the
emulatedRouterIpAddressPool.appendIltem command.

- 206 -

Chapter 4 IxLoad Tcl API Commands

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addithe following commands are
available. Unless otherwise described, no values are returned and an exception is raised for any error
found.

checkConfig

Checks the configuration of the server network object.

reset

Disassociates the network group from all of the Ixia ports currently in the portList option. Ownership
of the ports is cleared.

OPTIONS

chassisChain

This must be a chassis chain object, as created in the ixChassisChain command. It represents the set
of chassis used in the test and defines the chassis IDs used in the portList component. This option
should not be changed after portList is set. (Default = None) .

comment
A commentary string for the object. (Default = “V“).
emulatedRouterGateway

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
servers and the external port. This is the gateway to be used for that router. (Default = 0.0.0.0).

emulatedRouterIpAddressPool

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
servers and the external port. This option is a list of ixEmulatedRouterIpAddressRange objects that
define the routers' source addresses that will be used. One IP address is taken from the list and used
for each Ixia port. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

emulatedRouterSubnet

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the

clients and the external port. This is the network mask to be used for that router. (Default =
255.255.255.0) .

emulatedRouterGatewayIPv6

If macMappingMode is set to kMacMappingModePort and ipType in
ixEmulatedRouterIpAddressRange is set to "IPv6” for any addresses, then an IPv6 address is also
required for the emulated router inserted between the clients and the external port. IxLoad supports all

- 207 -

Chapter 4 IxLoad Tcl API Commands
forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4"). This is the IPv6-
format address of the gateway to be used for that router. (Default = “::C212:0001").

emulatedRouterSubnetIPv6

Subnet mask applied to emulatedRouterGatewayIPv6 address. (Default =
“FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::07) .

impairment

If enabled, this option helps to intentionally degrade the traffic transmitted by the network. You can
cause it to drop or duplicate packets, or delay them for certain lengths of time. Refer to ixImpairment
for a description of all the options.

ipSourcePortFrom

Defines the beginning of the range of ephemeral port humbers used to establish connections. The end
of the range is specified by ipSourcePortTo.

The first port in the range that IxLoad uses for traffic is 1 greater than the value you specify for
ipSourcePortFrom. For example, if you specify 1,024, traffic originates from port 1,025; no traffic
originates from port 1,024. The minimum value for ipSourcePortFrom is 1,024. (Default = 1,024).

ipSourcePortTo

Defines the end of the range of ephemeral port numbers used to establish connection to the server.
The beginning of the range is specified by ipSourcePortFrom. (Default = 65,535).

linkLayerOptions

The link layer options to be associated with the ports associated with this server network. Only
Ethernet options are currently supported. (Default = kLink

macMappingMode

The mapping between IP addresses and MAC addresses. One of:

Option Usage

$::ixServerNetwork (Default) One MAC address is associated with each IP
(kMacMappingModelp) address.

$::ixServerNetwork One MAC address is used for all IP addresses on the port.

(kMacMappingModePort)

name
The name associated with this object. (Default = “newNetwork”) .
networkRangelList

A list of ixRepository objects that define the networks from which addresses will be associated with
the servers. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

portList

- 208 -

Chapter 4 IxLoad Tcl API Commands

A list of ports associated with the server network. Refer to ixConfigSequenceContainer for a list of
commands that may be used to maniputhis list. Ports are added directly into this object; see the

following example:
$serverNetwork portList.appendItem \

-chassisId 1 \

-cardId 2 \
-portId 2

rangeType

Type of IP range configured on the subnet.

Value

Ethernet (default)
DHCP

IPSec

PPPoE

DHCP-PD

DHCP-PD Client

You can insert the same parameters for the ixStatCatalogItem.

SUB-OBJECTS
arpSettings

This is an object of type ixArpSettings, which specifies the mannerin which ARP is handled on this

network. (Default = <see ixArpSettings>). The options of this object should be set directly via:
$serverNetwork arpSettings.config options...

tcpParameters

This is an object of type ixTcpParameters that specifies the mannerin which TCP traffic is handled on
this network. (Default = <see ixTcpParameters>). The options of this object should be set
directly via:

$serverNetwork tcpParameters.config options...

EXAMPLE
set svr network [::IxLoad new ixServerNetwork $chassisChain]$svr network config -
name "svr network" \

-cardType $::1ixCard(kCardl000Txs4)
-ipSourcePortFrom 1024 \

-ipSourcePortTo 65536 \
$svr _network networkRangeList.appendItem \ —-name "svr range" \

- 209 -

Chapter 4 IxLoad Tcl API Commands

-enable 1\ -firstIp "198.18.200.1" \ -ipCount 1
\ -networkMask "255.255.0.0" \ -gateway "0.0.0.0" \ -
firstMac "00:C6:12:02:02:00™ \ -vlanEnable 0\ -vlanId

1\ -mssEnable 0\ -mss 100

$svr network impairment.config)\ -enable True\ -addDrop True\ -drop 5
$svr network portList.appendItem \ -chassisId 1 \ -cardId 2\
-portId 2

SEE ALSO

ixClientTrafficNetworkMapping (see ixClientTrafficNetworkMapping),

ixChassisChain (see "ixChassisChain"),

ixRepository (see "ixRepository")

ixServerTraffic

ixServerTraffic-Builds a list of server agents to handle server traffic.

SYNOPSIS

set serverTraffic [::IxLoad new ixServerTraffic options]
$serverTraffic subcommand options...

DESCRIPTION

The ixServerTraffic command is used to construct the model for server network traffic to be handled
during a test. It is used in the ixServerTrafficNetworkMapping command to co-ordinate networks
with server agents.

Its primary option is the agentList list of agents that will handle server traffic. The agents that exist for
a number of protocols are documented in the subsequent chapters.

Agents are added to the agent list using the appendItem subcommand and may be otherwise
manipulated using the commands supported by the ixConfigSequenceContainer command. All

agents are added in the same manner:
set serverTraffic [::IxLoad new ixServerTraffic \

-name “Servers”]
$serverTraffic agentList.appendItem \

-name“my protocol server” \
-protocol“<PROTOCOL>" \

-type“Server” \
<other per-protocol options>

-210 -

Chapter 4 IxLoad Tcl API Commands

The name, protocol, and type are required fields. These define a particular type of agent; the
protocol field should be drawn from the table above. In addition to the required fields, the agent
definition should include options that are specific to a particular protocol, and defined in their
respective appendix.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

checkConfig

Checks the configuration of the server traffic object.

OPTIONS
agentlList

A list of agent objects that define the agents, which will be used to handle server traffic. Refer to the
various appendixes listed above to determine the options that the agents offer. Refer to

ixConfigSequenceContainer for a list of commands that may be used to manipulate this list.
(Default = {}).

name

The name associated with this object. (Default = “newActivityModel”) .

EXAMPLE
- # Construct the Server
Traffic#----—----"-"-""""""""""""""""""“"“"“"“"—"~"—"—~(—(—— set svr traffic

[::IxLoad new ixServerTraffic \

-name "svr traffic"]

e # Create a server
agent -- no actions are involved in this agent#----------——-—---"-"-"""-"-"-""—"——-—————————
————————————————————————— $svr_traffic agentList.appendItem \ -name "my
http server" \ -protocol "HTTP"™ \ -type "Server" \ -

httpPort 80for {set idx 0} {S$idx < \

[Ssvr_traffic agentList (0).responseHeaderList.indexCount]}\
{incr idx} {

set response [$svr traffic \
agentList (0) .responseHeaderList.getItem $idx]

if {[Sresponse cget -name] == "200 OK"} { set response200o0k $response
} if {[Sresponse cget -name] == "404 PageNotFound"} { set response404
PageNotFound S$response b}
- # Clear pre-defined

-211-

Chapter 4 IxLoad Tcl API Commands

——————— $svr traffic agentList (0).webPagelist.clear $svr traffic agentlist

(0) .webPageList.appendItem \ -page "/4k.html" \ -payloadType
"range"™ \ -payloadSize "4096-4096" \ -response Sresponse2000k
S$svr_traffic agentList (0).webPageList.appendItem \ -page "/8k.html"
\ -payloadType "range"™ \ -payloadSize "8192-8192" \ -
response Sresponse404 PageNotFound

SEE ALSO

ixServerTrafficNetworkMapping

ixServerTrafficNetworkMapping

ixServerTrafficNetworkMapping-Ties a server network to traffic model.

SYNOPSIS

set serverMapping [::IxLoad new ixServerTrafficNetworkMapping options]
$serverMapping subcommand options...

DESCRIPTION

The ixServerTrafficNetworkMapping command is used to map a set of server agents that receive
traffic (in an ixServerTraffic object) to the set of networks that will carry the traffic (in an
ixStatCatalogItem object).

A number of additional options control the manner in which the server traffic applied to the networks.

The standbyTime, offlineTime, sustainTime, and totalTime options determine the timeline for server
agents.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

If true, this mapping is included in the IxLoad test. (Default = true).
iterations

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1).

matchClientTotalTime

-212 -

Chapter 4 IxLoad Tcl API Commands

If true, the servers on this mapping will stay online for the same length of time as the longest-running
client agent.

If you do not check this box and a server's duration is shorter than one of the clients connecting to it,
the server will go offline while the client is connected; if this is not what you intend to happen during
testing, the test results for that client may be misleading.

If false, IxLoad calculates agent run times independently for each server activity. (Default = true).
name

The name associated with this object. (Default = “NetworkTrafficMapping”) .

offlineTime

Amount of time agents are idle between iterations. (Default = 0).

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. If you have multiple traffic-network pairs in your test,
you can use this parameter to stagger their start times. A value of 0 causes the test to begin
immediately. The valid range is from 0 to 1,000 hours (3,600,000). (Default = 0).

sustainTime

The amount of time, in seconds, during which all users are up and performing the central test
objectives, such as establishing and closing connections (TCP), retrieving or serving pages (HTTP), or
sending or receiving files (FTP). (Default = 20).

totalTime

The total time required to run the test, including Standby, Sustain, and Offline times for all iterations.
(Default = 60).

SUB-OBJECTS

network

An object of type ixStatCatalogItem that provides the networks associated with the server agents.
(Default = {}).

traffic

An object of type ixServerTraffic that provides the model of traffic to be generated. (Default =
{1 .

EXAMPLE

- # Create the server
traffic to network mappingf#---------------- - - - - - - - - - - - -\ -~ -~ -~ -~~~ """\
————— set svr mapping [::IxLoad new ixServerTrafficNetworkMapping \ -network
$svr network \ -traffic Ssvr_traffic \ -

matchClientTotalTime 1]

-213 -

Chapter 4 IxLoad Tcl API Commands

SEE ALSO
ixTest

ixStatCatalogltem

ixServerTraffic

ixXWaitEventCommand

ixWaitEventCommand - cause a command to wait for another to execute

SYNOPSIS
$my_ixWaitEventCommand config \

-optionvalue

DESCRIPTION

ixWaitEventCommand causes one command to wait for another to finish executing for it is itself
executed. ixSendEventCommand is used to trigger the waiting command. ixSendEventCommand and
ixWaitEventCommand are added to an actionList using the appendItem command.

For example, if Command2 must be executed only after Command1 has been executed:
1. An ixWaitEventCommand is inserted preceding Command2.

2. An ixSendEventCommand is added after Command1, with the same eventID as in the
ixWaitEventCommand.

When Command1 finishes executing, the ixSendEventCommand ends the ixWaitEventCommand for
Command2, causing Command?2 to be executed.

ixSendEventCommand and ixWaitEventCommand can only be used with Subscriber activities.

OPTIONS
commandType

Command type. The only value is "WaitEventCommand".

eventID

Unique value identifying this ixWaitEventCommand. Default value = 1.

EXAMPLE
set my_ixSendEventCommand [::IxLoad new ixSendEventCommand]

$my_ixSendEventCommand config \

- 214 -

Chapter 4 IxLoad Tcl API Commands

-commandType"SendEventCommand" \

-eventldl

$Subscriber_Activity_ HTTPClientl agent.actionList.appendItem -object $my_ixSendEventCommand

$Subscriber_Activity_FTPClientl agent.actionList.clear

set my_ixWaitEventCommand [::IxLoad new ixWaitEventCommand]
$my_ixWaitEventCommand config \
-commandType"WaitEventCommand" \

-eventldl

$Subscriber_Activity_FTPClientl agent.actionList.appendItem -object $my_ixWaitEventCommand

SEE ALSO

ixSendEventCommand

-215-

This page intentionally left blank.

- 216 -

CHAPTER 5 Internal Commands

This section lists the IxLoad Tcl API's internal commands.

duplicate

duplicate—Copy elements from one object to another.

SYNOPSIS

set <target network/traffic/dut> [$<source network/traffic/dut> duplicate]
DESCRIPTION

Enables a NetTraffic to use a copy of a component used in another NetTraffic. You can duplicate
networks, traffics, and DUTs. The example shows Traffic3 using copies of the same activities (agents)
as Trafficl.

SUBCOMMANDS
None

OPTIONS

None.

EXAMPLE

set Trafficl [$Trafficl Networkl cget -traffic]
set Traffic3 [$Trafficl duplicate]

S$STrafficl Network3 config \

~traffic $Traffic3

-217 -

Chapter 5 Internal Commands

ixConfig
ixConfig—Allows options to be configured for an object.

SYNOPSIS

set anyIxLoadObject [$::IxLoad new ixLoadObject options]
$anyIxLoadObject subcommand options...

DESCRIPTION

The ixConfig object provides the means by which command options are set and read. It is never used
directly. The commands that are based on ixConfig support the subcommands described below.

SUBCOMMANDS
The following subcommands are available to handle options:
cget option

This subcommand is used to obtain the current value of any option. The option must begin with a
hyphen (-). The return value is of a type appropriate for the option.

config option value option value...

The config subcommand may be used to set the value of one or more options in a command. The
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

getOptions

This subcommand returns a Tcl list with all of the options available for a community including an initial
hyphen for each option.

OPTIONS

None.

EXAMPLE
Sobject cget -name$object config -name “media” -value “mp3”set optionList [Sobject
getOptions]

ixConfigSequenceContainer

ixConfigSequenceContainer—Handles a list of objects.

-218 -

Chapter 5 Internal Commands

SYNOPSIS
set anyIxLoadObject [$::IxLoad new ixLoadObject options]

$anyIxLoadObject option.subcommand sub-options...

DESCRIPTION
The ixConfigSequenceContainer object provides a list in which commands configures their options.
See the following example:

e SanIxLoadCommand is an instance of an ixLoadCommand.
o ixLoadCommand has an option listOfIxStuff.
o listOfIxStuff is a list, each of whose elements is of type ixStuff, with options firstlp and lastlp.

In order to create a new instance of ixLoadCommand and add an item to its 1ist, you should use the
following sequence:

set $anIxLoadCommand [$::IxLoad new ixLoadCommand]
$anIxLoadCommand 1istOfIxStuff.appendItem \
-firstIp 192.18.0.1 \

-lastIp 192.18.0.100

The first item in a sequence container has index 0. Negative indexes may be used to indicate positions
from the last item in the container. -1 corresponds to the last item in the list, -2 to the one before that,
and so forth.

SUBCOMMANDS

The following subcommands are available to handle options. Except where noted, no value is returned;
an exception is raised in the case of an error. In all cases where they are used the option must begin
with a hyphen (-). The value must be of a type appropriate for the option.

appendItem option value option value...

The appendItem subcommand may be used to add an item to a list. Any number of options in the listed
item may be set as part of the append.

configltem index option value option value...

The configItem subcommand may be used to configure a particularitem in a list. Any number of
options in the list item may be set. The index argument is used to indicate which item in the list is to
be configured.

clear

The clear subcommand may be used to delete all listed items from a list.

-219 -

Chapter 5 Internal Commands

deleteltem index

The deleteItem subcommand may be used to delete a listed item from a list. The index argument is
used to indicate which item in the list is to be configured.

find mode option value option value...

The find subcommand may be used to search a list for matching criterion. The mode argument may be
one of:

Option Usage
exact Match the value fields exactly.
regexp Use regular expressions in the matching.

uppercase | Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indicated. A list of indexes of matching items is
returned.

getItem index

The getItem subcommand may be used to retrieve an item from a list. The index argument is used to
indicate which item in the list is to be retrieved. This subcommand returns the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

insertItem index option value option value...

The insertItem subcommand may be used to insert an item in a list. Any number of options in the list
item may be set. The index argument is used to indicate the insertion point in the list.The new item
will be inserted before the index’ th itemin the list.

OPTIONS

None.

EXAMPLE

$list object.clear$list object.appendItem -name “sample”S$list object.insertItem 1 -
name “sample2”$list object.configltem -value “mp4”$list object.deleteltem -lset
found list [$list object.find regexp \

-speed “\d*[Mm]bps”]
$list object.getItem 3set numObjects [Slist object.indexCount]

- 220 -

Chapter 5 Internal Commands

ixConfigSortedNamedItemList

ixConfigSortedNamedItemList—Handles a list of objects that is in sorted order.

SYNOPSIS

set anyIxLoadObject [$::IxLoad new ixLoadObject options]
SanyIxLoadObject option.subcommand sub-options...

DESCRIPTION

ixConfigSortedNamedItemList behaves similarto ixConfigSequenceContainer, except that
getItem requires the name of an item rather than its index. The 1list (index) notation still works for
positional indexing with the deleteItem and configItem options.

insertltem and appendItem are not supported; instead an addItem method is supported which has the
same syntax as appendltem. This difference is required because an item’s position in the list is
controlled by the automatic sorting and cannot be specified by the user.

As with ixConfigSequenceContainer, the first item in an ixConfigSortedNamedhas index 0. Negative
indexes indicate positions from the last item in the list. For example, -1 corresponds to the last item in
the list, -2 to the one before that, and so forth.

SUBCOMMANDS

The following subcommands are available to handle options, which are lists. Except where noted, no
value is returned; an exception is raised in the case of an error. In all cases where they are used the
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

addItem name option value option value...

The addItem subcommand adds an item to a list. Any number of options in the list item may be set as
part of the addition. Items added with the addItem method should always include the -name option so
that the item can be referenced later. If you do not specify a name, IxLoad will assign a default name,
but you should not rely on default names because future releases of IxLoad may assign different
default names. After addItem has been executed, it returns the object that has been added so that you
can use the config subcommand to configure it.

configltem index option value option value...

The configItem subcommand configures a particularitem in a list. You can pass multiple option/value
pairs in one command, so that the command configures multiple options at the same time. The

index argument specifies the list item to be configured. To determine the index number of an item, use
the find subcommand.

clear

The clear subcommand deletes all items from a list.

-221-

Chapter 5 Internal Commands

deleteltem index

The deleteItem subcommand deletes an item from a list. The index argument specifies the list item
to be deleted. To determine the index number of an item, use the find subcommand. To delete an
item by name, use the removeItem sub-command.

find mode option value option value...

The find subcommand searches a list for item that matches its search criteria. The mode argument
may be one of:

Option Usage
exact Match the value fields exactly.
regexp Use regular expressions in the matching.

uppercase | Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indiA list of indexes of matching items is returned.

getItem name

The getItem subcommand may be used to retrieve an item from a list. The name argument is used to
indicate which item in the list is to be retrieved. This subcommand returns the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

removeltem name

The removeItem subcommand deletes an item from a list. The name argument specifies the list item to
be deleted. To delete an item by its index, use the deleteItem subcommand.

OPTIONS

None.

EXAMPLE
$list object.clear$list object.addItem -name “sample”$list object.configItem -value
“mp4”set found list [$list object.find regexp \

-speed “\d* [Mm]bps”]
$list object.getItem “sample“set numObjects [$Slist object.indexCount]$list
object.deleteltem -1

SEE ALSO

ixConfigSequenceContainer

=222 -

Chapter 5 Internal Commands

ixRepository

- 223 -

This page intentionally left blank.

- 224 -

CHAPTER 6 Network Stack API

Beginning with release 4.10, IxLoad uses an object-oriented model for its network stack. TCL scripts
created with previous releases of IxLoad will still function, but any scripts created using ScriptGen will
use the object-oriented network stack.

The following sections describe the object model.

Network Stack Overview

The IxLoad network stack is organized as follows:

Network groups contain a list of network-specific settings, the foundation protocol (L1 Ethernet),
and the list of global plugins. Network groups are sometimes referred to as Port Groups, the term
used for them in IxNetwork.

Global plugins modify settings of port groups. For example, the TCP global plugin modifies the
TCP parameters for the port group that it belongs to.

Layer plugins correspond to layers of a network communication stack. These are the protocols
that you would see if captured the traffic and looked at it in a packet analyzer -- a packet header
would be present. For example, for an Ethernet plugin, an Ethernet packet would be present. For a
PPP plugin, a PPP header would be present.

Extension plugins modify behavior of associated Layer plugins For example, the 802.1x Extension
protocol modifies the functionality of a MAC layer plugin. Impairment is another extension
protocol -- it can be applied to a single protocol to damage or drop packets, but it has no header
or other identifier that can be seen in a packet capture.

Network Stack Hierarchy

The figure below shows the network stack hierarchy in conceptual form and using examples of what
you might see if you use ScriptGen to create a Tcl script of an IxLoad test. Each element is described in

-225-

Chapter 6 Network Stack API

a subsequent section.

Test, scenario, and column

The test element resides at the top of the test. The test contains a property called scenariolList, which
holds the test scenario.

The scenario contains a property called columnList, which holds one or more columns.

Each column contains a property called scenarioElementList, which holds the list of nettraffics or DUTs
in the test.

The following example shows how to add a nettraffic to a test.

set Testl [::IxLoad new ixTest]

set scenarioElementFactory [$Testl getScenarioElementFactory]
set scenarioFactory [$Testl getScenarioFactory]

$Testl scenariolList.clear

set New_Traffic Flow [$scenarioFactory create "TrafficFlow"]
$New_Traffic_Flow columnList.clear

set Originate [::IxLoad new ixTrafficColumn]
$0riginate elementList.clear

set Trafficl Networkl [$scenarioElementFactory create $::ixScenarioElementType
(kNetTraffic)]

Network Group Overview

The network element is a member of the column's nettraffic, and defines a Network Group.
set Networkl [$Trafficl_Networkl cget -network]

$Network1 globalPlugins.clear

- 226 -

Chapter 6 Network Stack API

Network groups contain a list of network-specific settings, the foundation protocol (L1 Ethernet), and
the list of global plugins.

The foundation layer in an IxLoad stack is an L1 Ethernet plugin. Every time you create a port group,

the L1 Ethernet plugin is created automatically for you. To create it explicitly, you call getL1Plugin.
set Ethernet 1 [SNetworkl getLlPlugin]

The network group data holds data that affects a network stack protocol that runs over a specific set of
ports. Network groups are sometimes referred to as Port Groups, the term used for them in IxNetwork.

In the IxLoad GUI, the network group data is accessed by clicking the Network Group Settings tab. For
example, in the following figure, you would access the network group data for the PPPoX plugin by
clicking the Network Group Settings tab:

Metwork 1 ~
@ ¥ 2

Stack-1 Stack-2 Igp Filter-1 ”gp TCP-1 ”gp Settings-1 j

7 PPPoX-3 2} DHCP Client-1 IE’ Sl S HEF pns1 |

B macivLan-4 Hl MAC/VLAN-5 [l Ethernet-1 J

|PPPOK |Net~nrkGruupSetﬁngs|

L

Global plugins

Global plugins modify settings of port groups. For example, the TCP global plugin modifies the TCP
parameters for the port group that it belongs to. In the IxLoad GUI, the global plugins are displayed in
the scenario editor opposite the network stacks.

You script the parameters for the global plugins once per test.

I Ep Filter-1 j I =] 2 TCP-1 j I =p Settings-1]

[gp GratARP-1 “gp DNS-1 “gp Routes-1 |

I A Ethernet-1]

To add a global plugin, you add it as an element of the list of Global plugins:
set Networkl [$Trafficl Networkl cget -network]$Networkl globalPlugins.clear

set Filter 1 [::IxLoad new ixNetFilterPlugin]SNetworkl globalPlugins.appendItem -
object $Filter 1

After adding it to the list, you then configure it:
$Filter 1 config \-all false \-pppoecontrol

- 227 -

Chapter 6 Network Stack API

false \-isis false \

Stacks and Protocol Plugins

This section describes the elements of a network stack.

Stack-1 Stack-2

2% Mobile Subscri... f(.E
%% Emulated Router-3] ot IP-6 E

l. MAC/VLAN-11 H. MAC/VLAN-12

Global options

Most protocols have Global options, which define the behavior of a protocol in all the ranges. There is
only one instance of Global options for each protocol. They affect every instance of the protocol
running on every port in the test. The Global Options are stored in the session-specific data. The
session-specific data is unique to a single instance of an IxLoad test.

In the IxLoad GUI, these are configured by clicking on the Globe icon above the network stacks.

- ¥ (2

Stack-1

=} DHCP Client-2

B macvLan-23 J

You should script a protocol's global options when you add the first instance of the protocol.

The global options can be set in Tcl by creating a structure to hold the options, and then calling
getSessionSpecificData and passing the name of the protocol.

For example, to set the PPPoX global options:
set my ixNetPppoxSessionData [$Testl getSessionSpecificData "PppoxPlugin"]Smy

ixNetPppoxSessionData config \-teardownRateInitial 300 \-
acceptPartialConfig true \-maxOutstandingRequests

300 \-maxOutstandingReleases 300 \-setupRateInitial

300

- 228 -

Chapter 6 Network Stack API

Each protocol has a reserved string that is passed as an argument to getSessionSpecificData. Fora
list of strings, see Plugin name strings.

Plugin name strings

The table below lists the names of the plugins to use for the GetSessionSpecificbData and
GetNetworkSpecificbhata commands.

Protocol Plugins

802.1x

DHCP Client

DHCP Server

EAPoUDP

eGTP S1/S11 eNB/MME
eGTP S1/S11 eNB/SGW
Emulated Router

GTP

GTP-GGSN

Impair

IP

IPSec

L2EthernetPlugin (MAC/VLAN)
L2TP

Mobile Subscribers
PPPoX

Radius

Static ARP

WebAuth

Plugin Name String
Dot1xPlugin
DHCPPlugin
DHCPServerPlugin
Nacl3Plugin
EGTPPIlugin
EGTPPlugin_SGW
N/A

GTPSPlugin
GTPGPIlugin
ImpairPlugin
IpV4V6Plugin
IPSecPlugin

N/A

L2tpPlugin
MobileSubscribersPlugin
PppoxPlugin
RadiusPlugin

N/A

WebAuthPlugin

- 229 -

Chapter 6 Network Stack API

Network Group Settings

The network group settings contain the network-specific settings for a network group.

The network group settings can be set in Tcl by configuring the Port Group Specific Data, a list that
holds the network group options for a specific protocol in the network group. There is a set of options
for each protocol in the network group.

For example:

set my ixNetPppoxPortGroupData [Sclient network getNetworkSpecificData
"PppoxPlugin"]
$my ixNetPppoxPortGroupData activities.clear

$my ixNetPppoxPortGroupData associates.clear

$my ixNetPppoxPortGroupData config \

-useWaitForCompletionTimeout false \
-maxOutstandingRequests 300 \
-perSessionStatFilePrefix "MY PREFIX" \
-enablePerSessionStatGeneration false \
-waitForCompletionTimeout 120 \
-maxOutstandingReleases 300 \
-overrideGlobalRateControls false \
-role "client" \
-filterDataPlaneBeforeL?7 true \
-teardownRateInitial 300 \
-setupRateInitial 300

L2 Plugin

To build the stack, you add plugins as children of other plugins. The first plugin that you add to the
stack is an L2 plugin. There is one L2 plugin per stack.

After the L1 plugin has been created, you add the L2 plugin as its child, using the appendItem
command to add it to the childrenList property. Children lists are ranges of configuration data for
the plugin being added. Most plugins have one range, but some have two. For example, an Ethernet
range has a MAC range and VLAN range as its children.

-230 -

Chapter 6 Network Stack API

For example, to create a MAC address range, you add it to the childrenList of the Ethernet plugin.
set MAC VLAN 1 [::IxLoad new ixNetLZEthernetPlugin]$Ethernet_l

childrenList.appendItem -object SMAC VLAN 1

Adding Layer Plugins

To add additional higher-layer protocols to the stack, you them as ranges, again using appendItem:
$PPPoX 4 rangelist.clearset PPPoX R4 [::IxLoad new ixNetPppoxRange]$PPPoX 4

rangeList.appendItem -object SPPPoX R4

Extension plugins

Extension plugins modify the behavior of the protocols they are associated with. To add an extension
plugin, you add it to its associated protocol's extensionList property using the appendItem
command:

set Impair 1 [::IxLoad new ixNetImpairPlugin]$PPPoX 1 extensionList.appendItem -

object SImpair 1

Then, you configure the extension plugin's range and parameters, and then enable it:
set Impair R1 [$PPPoX Rl getExtensionRange $Impair 1]

set DefaultProfile [::IxLoad new ixNetImpairProfile]$DefaultProfile config \-
addFragment true \-sendFirstFragmentOnly

false \-fragmentSequencelength 32 \-addFragmentSequence

true \-sendFragmentsInReverseOrder true

$Impair R1 config \-enabled true \-profile
SDefaultProfile

Ethernet Plugin

SYNOPSIS

-231-

Chapter 6 Network Stack API

DESCRIPTION

First plugin for all Ethernet stacks. This element is preconfigured to be the first element of the stack in
the Network Group. You can get this item from the network by calling get NetworkPlugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.
Default value = "None"

childrenList

Name of the list of next-lower layer plugins.
Default value = "None"

extensionList

Name of the list of protocol extensions.
Default value = "None"

autoNegotiate

If true, the Ixia port auto-negotiates its speed and duplex operation with the DUT, using the values
that you select for the Speed parameter. If false, the Ixia port uses the speed that you select for the
Speed parameter.

Value | Description
copper | Use copper mode.
fiber Use fiber mode.
auto Automatically select the media type .
Default value = "True"
speed
If autoNegotiate is true, this parameter lists the speeds that the Ixia port advertises.
Value Description
k10FD 10Mbit Full Duplex

k10HD 10Mbit Half Duplex

-232-

k100FD | 100Mbit Full Duplex
k100HD | 100Mbit Half Duplex
k1000 1 Gigabit

k10000 | 10 Gigabit

Default value = "'k100FD™

advertisel@Half

If true, the Ixia port advertises 10 Mbps half duplex speed.
Default value = "True"

name="advertisel@Full"

If true, the Ixia port advertises 10 Mbps full duplex speed.
Default value = "True"

name="advertisel@OHalf"

If true, the Ixia port advertises 100 Mbps half duplex speed.

Default value = "True"

name="advertisel@@Full"

If true, the Ixia port advertises 100 Mbps full duplex speed.
Default value = "True"

name="advertisel@00Full"

If true, the Ixia port advertises 1 Gbps full duplex speed.
Default value = "True"

name="cardElm"

Default value = "None"

EXAMPLE

SEE ALSO

- 233 -

Chapter 6 Network Stack API

Chapter 6 Network Stack API

Ethernet ELM options

SYNOPSIS

DESCRIPTION

Defines the parameters for using an Encrypting Load Module (ELM) in an IxLoad test.

SUBCOMMANDS

OPTIONS

enabled

If true, an ELM port will be configured as an ELM port.

If false, an ELM port will be configured as a generic Ethernet port.

Default value = "False"

negotiateMasterSlave

If true, the master/slave relationship of all ports will be auto-negotiated.

If false, the negotiationType value determines the master/slave relationship.
Default value = "True"

negotiationType

If negotiateMasterSlave is false, this value determines the role (master or slave) of the ELM port.
Value | Description

master | Port is master.

slave Port is slave.

m an

Default value = "'master

EXAMPLE

set my ixNetEthernetELMPlugin [::IxLoad new ixNetEthernetELMPlugin]S$my

ixNetEthernetELMPlugin config \-negotiationType
"master" \-negotiateMasterSlave true

$Ethernet 1 config \-advertiselOFull true \-name

"Ethernet-1" \-autoNegotiate true \-
advertiselOOHalf true \-advertiselOHalf

-234-

Chapter 6 Network Stack API

true \-speed "k100FD" \-
advertiselOO00Full true \-advertiselOOFull
true \-cardElm sSmy

ixNetEthernetELMPlugin
$Ethernet 1 childrenList.clear
$Ethernet 1 extensionList.clear

SEE ALSO

Physical Layer Example

This section shows an example of how to create a physical layer plugin in the Tcl API.

Physical Layer Example

FREAUANFREAERUFRERERUA RN R RNFRR RO RN ERE AR
¥ Ixload ScriptGen created TCL script

$+ Metworkl serialized using version 4.10.0.7%

$# Basic.tcl made on Aug 14 2008 14:5B
FHEFHFAFHEAEA AT HERERHFHFHE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>