
IxLoad

Tcl API Programming Guide
Includes Python and PERL Support

Release 9.10-Update1

Document version: 202010081354-07:00

Notices
Copyright Notice
© Keysight Technologies 2004–2020

No part of this document may be
reproduced in any form or by any means
(including electronic storage and retrieval
or translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies, Inc.
as governed by United States and
international copyright laws.

Warranty
The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Keysight
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Keysight shall not
be liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or performance
of this document or of any information
contained herein. Should Keysight and the
user have a separate written agreement
with warranty terms covering the
material in this document that conflict
with these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses
The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

U.S. Government Rights
The Software is "commercial computer
software," as defined by Federal
Acquisition Regulation ("FAR") 2.101.
Pursuant to FAR 12.212 and 27.405-3 and
Department of Defense FAR Supplement
("DFARS") 227.7202, the U.S. government

acquires commercial computer software
under the same terms by which the
software is customarily provided to the
public. Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User License
Agreement (EULA), a copy of which can
be found at
http://www.keysight.com/find/sweula or
https://support.ixiacom.com/support-
services/warranty-license-agreements.
The license set forth in the EULA
represents the exclusive authority by
which the U.S. government may use,
modify, distribute, or disclose the
Software. The EULA and the license set
forth therein, does not require or permit,
among other things, that Keysight: (1)
Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the government
rights in excess of these rights
customarily provided to the public to use,
modify, reproduce, release, perform,
display, or disclose commercial computer
software or commercial computer
software documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except to
the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Key-sight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR
27.401 or DFAR 227.7103-5 (c), as
applicable in any technical data. 52.227-
14 (June 1987) or DFAR 252.227-7015 (b)
(2) (November 1995), as applicable in any
technical data.

– ii –

http://www.keysight.com/find/sweula
https://support.ixiacom.com/support-services/warranty-license-agreements
https://support.ixiacom.com/support-services/warranty-license-agreements

This page intentionally left blank.

– iii –

Contacting Us

Keysight headquarters
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1738
www.ixiacom.com/contact/info

Support

Global Support +1 818 595 2599 support@ixiacom.com

Regional and local support contacts:

APAC Support +91 80 4939 6410 support@ixiacom.com

Australia +61-742434942 support@ixiacom.com

EMEA Support +40 21 301 5699 support-emea@ixiacom.com

Greater China Region +400 898 0598 support-china@ixiacom.com

Hong Kong +852-30084465 support@ixiacom.com

India Office +91 80 4939 6410 support-india@ixiacom.com

Japan Head Office +81 3 5326 1980 support-japan@ixiacom.com

Korea Office +82 2 3461 0095 support-korea@ixiacom.com

Singapore Office +65-6215-7700 support@ixiacom.com

Taiwan (local toll-free number) 00801856991 support@ixiacom.com

– iv –

https://www.ixiacom.com/contact/info
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-emea@ixiacom.com?subject=Enquiry
mailto:support-china@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-india@ixiacom.com?subject=Enquiry
mailto:support-japan@ixiacom.com?subject=Enquiry
mailto:support-korea@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry

This page intentionally left blank.

– v –

C
O
N
TE
N
TS

Contacting Us iv

About this Guide 1

Conventions 1

Related Documentation 2

Chapter 5 New in this Release 3

Chapter 1 Introduction 5

Background Reading 5

Using a License Server 5

Network Setup 7

Configuring a Network Address on the IxLoad Development Station 7

Testing the Development Station’s Routing 8

Configuring a Permanent Route to Ixia Ports 9

Setting Ixia Chassis Base Addresses 10

Backward Compatibility 11

Deprecated Commands 11

Python Support 12

PERL Support 15

Chapter 2 Quick Start 19

Windows 19

Using The Sample Tcl Scripts 20

Running the sample scripts 21

Monitoring Status and Retrieving Results 21

– vi –

Unix/Linux 22

Installing IxLoad Tcl 23

Editing the setup_simple.tcl script 24

Running the sample scripts 25

Monitoring Status and Retrieving Results 25

Chapter 3 API Overview 27

Tcl API Structure 28

Mandatory Objects to Complete a Script 29

Multi Version Support 30

General API Conventions 30

Objects 30

Lists of Objects 32

Constants 35

Strings and Numbers 35

TCL API Internal Overview 35

Windows Overview 35

Unix Overview 36

Object Structure 37

Building an IxLoad Test 38

Step 1: Initial Overhead 38

Step 2: Define the TrafficFlow 41

Step 3: Define the TrafficColumn 41

Step 4: Define the NetTraffic 42

Step 5: Define ixSubscriberNetTraffic 44

Step 6: Define the NetworkGroup 44

Step 7: Define the NetworkGroup 44

Step 8: Define the NetworkRange 50

– vii –

Step 9: Define the ixTimeline 51

Step 10: Prepare to Run the Test 51

Step 11: Start the Test 63

Stopping a Test by Pressing Enter 64

Running an IxLoad Tcl Script 65

Windows 65

Unix / Linux 66

Maximum Numbers of Scripts That Can Be Run 67

Modifying Older Scripts 68

API Description 68

Network Commands 69

DUT Commands 73

Traffic Commands 74

Test Structure Commands 75

Test Operation Commands 76

Debugging 78

Sample Scripts Shipped with IxLoad 80

Example Program 84

Chapter 4 IxLoad Tcl API Commands 115

::IxLoad 115

ixChassisChain 117

IxChassisBuilder 120

ixCustomPortMap 126

Steps for Custom Traffic Mapping 127

ixPlaylists 128

ixPort 131

ixSubmap 133

– viii –

ixSubmapRange 134

ixIntRange 135

ixRepository 136

ixSendEventCommand 137

ixStatCatalogItem 139

ixStatFilter 140

ixStatSpec 142

ixTest 143

ixTestController 146

ixTestControllerMonitor 154

statCollectorUtils 155

ixScriptGen 164

ixTimeline 166

ixSubscriberNetTraffic 171

ixNetTraffic 172

activityList 177

ixTrafficFlow 178

ixTrafficColumn 179

ixNetworkGroup 180

ixDut 181

ixDutConfigVirtual 183

ixDutNetworkRange 184

ixDutProtocolPortRange 186

ixDutConfigVip 187

ixDutConfigSLB 188

ixView 188

ixClientNetwork 190

– ix –

ixClientTraffic 193

ixClientTrafficNetworkMapping 195

ixNetworkRange 203

ixServerNetwork 207

ixServerTraffic 211

ixServerTrafficNetworkMapping 213

ixWaitEventCommand 214

Chapter 5 Internal Commands 217

duplicate 217

ixConfig 218

ixConfigSequenceContainer 218

ixConfigSortedNamedItemList 221

Chapter 6 Network Stack API 225

Network Stack Overview 225

Network Stack Hierarchy 226

Test, scenario, and column 226

Network Group Overview 226

Global plugins 227

Stacks and Protocol Plugins 228

Global options 228

Network Group Settings 230

L2 Plugin 230

Ethernet Plugin 231

Physical Layer Example 234

Layer 2 Protocols (MAC / VLAN) 236

L2EthernetPlugin 236

L2 Ethernet (MAC/VLAN) Port Group Data 238

– x –

MAC Session Data 238

MAC Range 239

VLAN ID Range 241

Layer 2 Example 244

Emulated Router Plugin 248

EmulatedRouterRange 249

Emulated Router Example 252

IP Plugin 257

Port Group Data 257

IP Session Data 258

IpV4V6Plugin 259

IP Plugin Example 260

StaticARP 265

DHCP Client and Server 266

DHCP Client Plugin 267

DHCP Server Plugin 268

Authentication Extension Plugins 269

WebAuthPlugin 269

802.1x plugin 270

EAPoUDP plugin 274

Impair Plugin 277

ImpairRange 278

ImpairProfile 280

Impair Plugin Example 291

IPSec Plugin 298

IPSecRange 300

Network Config 305

– xi –

Authentication 310

IKE Phase 1 314

IKE Phase 2 318

Identification 322

IKE Control 327

Keys 331

Tunnel Setup 335

Certificates 338

EAP Common 342

EAP AKA 342

EAP SIM 344

IPSec Example 345

PPPoX Plugin 352

PppoxPortGroupData 353

PLSessionDataBase 356

PppoxRangeList 357

PppoxAcNameList 357

PppoxAcMacList 358

PppoX Plugin Example 359

L2TP Plugin 364

Network Group Settings 366

L2tpSessionData 368

Basic parameters 369

L2TP Control Plane 372

L2TP Data Plane 377

L2TP Authentication 381

LNS 384

– xii –

L2tp Plugin Example 387

GTPSPlugin 393

GTP SGSN Plugin 395

GTP GGSN Plugin 395

eGTP Plugin 395

eGTP Plugin MME eNB S1 S11 commands 395

eGTP Plugin Network Commands 396

eGTP eGTP PGW S5 S8 commands 396

eGTP eGTP SGSN RNC S4 commands 396

eGTP SGW S1 S11 commands 396

eGTP Plugin DNS commands 396

eGTP Base objects 396

DSLite Plugin 396

DSLite Range 396

Global Services Plugins 399

Filter Plugin 399

Gratuitous ARP Plugin 401

DNS Plugin 402

TCP Plugin 404

Routes Plugin 412

Dynamic Control Plane plugin 413

Mobile Subscribers Plugins 414

MobileSubscribersPlugin 414

Radius Plugin 415

Mobile Subscribers Example 417

Chapter 7 AppReplay 425

Objectives 425

– xiii –

Application Replay Peer Agent 427

Flow Definition 428

LoopBeginCommand 437

LoopEndCommand 438

Think 439

availableTosList 440

Advanced Options 442

Global Statistics 445

Chapter 8 AppMix 453

Creating an AppMix Object 454

Adding Flows to an AppMix Object 455

Setting Flow Parameters 456

Configuring Flow Commands 457

Flow Protocols 458

Setting Flow Endpoints 460

Flow Endpoints 461

Chapter 9 Bulk MGCP 463

API Overview 463

MGCP Client API 463

Objectives 464

MGCP Server API 469

MGCP Server Agent 469

Parameters 472

MGCP Client Agent 474

Parameters 475

Low Level Parameters 477

DNS Record 478

– xiv –

Endpoint Names 479

Media Settings 482

Commands 487

Custom Endpoint Names 490

MGCP Server Agent 491

Parameters 492

Low Level Parameters 494

DNS Updates 495

Endpoint Names 498

Custom Endpoint Names 501

Bulk MGCP Statistics 502

Bulk MGCP Client Statistics 503

Bulk MGCP Server Statistics 511

Chapter 10 Bulk SIP 517

Overview 517

Objectives 518

SIP Client Commands 519

SIP Client Agent 520

General Settings 521

Content of Messages 522

Rules 523

State Machine 524

Media Settings 525

Audio Clips Pool 527

Video Settings 528

Scenarios 529

SIP Server Commands 530

– xv –

SIP Server Agent 531

General Settings 532

Content of Messages 533

Rules 534

State Machine 535

Media Settings 536

Audio Clips Pool 537

Scenarios 538

SIP Client Agent 539

General Settings 543

Content of Messages 547

State Machine 550

Media Settings 552

Video Settings 559

Scenarios 560

SIP Server Agent 570

General Settings 573

Content of Messages 574

State Machine 575

Media Settings 576

Scenarios 577

Using Variables in SIP Fields 580

Bulk SIP Statistics 582

Bulk SIP Client Statistics 583

Bulk SIP Server Statistics 598

Chapter 11 CIFS 613

API Overview 613

– xvi –

Objectives 613

CIFS Client Agent 615

CIFS Client Commands 616

CIFS Basic configuration 617

CIFS Advanced configuration 620

CIFS Server Agent 624

CIFS configuration 625

User Info 627

Advanced configuration 629

Shared Pool 631

Statistics 635

CIFS Client Statistics 636

CIFS Server Statistics 645

Chapter 12 DHCP 649

Overview 649

Objectives 649

DHCP Client Agent 650

DHCP Command List 652

Advanced Options 660

Relay Agent 662

Option 664

Option Set 670

Option Set Manager 672

Option Choices 673

IP Address 675

Using Variables in DHCP Fields 676

DHCP Statistics 678

– xvii –

Effect of Options on DHCP Packet Size 690

Chapter 13 DNS 691

Overview 691

Objectives 691

DNS Client Agent 692

DNS Client Query 694

DNS Client Advanced Options 696

DNS Server Agent 698

DNS Server Zone Management 700

DNS Server Zone Configuration 702

DNS Server Advanced Options 704

DNS Server Resource Record 705

DNS Statistics 708

DNS Client Statistics 709

DNS Server Statistics 718

Chapter 14 FTP 723

Overview 723

Objectives 723

FTP Client Agent 724

FTP Client Action 725

FTP Server Agent 726

realFileList 727

FTP Client Agent 728

FTP Client Action 732

FTP Server Agent 735

FTP Statistics 738

FTP Client Statistics 739

– xviii –

FTP Server Statistics 742

Chapter 15 HTTP 745

Overview 745

Objectives 745

HTTP Client Agent 747

HTTP Client Profile 757

HTTP Client Action 759

HTTP Server Agent 763

ixCookieContent 769

ixCookieObject 771

ixResponseHeader 773

PageObject 776

CustomPayloadObject 779

Supported Ciphers 781

Using Sequence Generators in HTTP Client Commands and Server Header Name=Value
Fields 786

Using System Variables 787

Statistics 789

HTTP Server Statistics 789

HTTP Client Statistics 798

TCP Reset Statistics 822

IxLoad Statistics Interpolation 822

Chapter 16 IMAP 823

API Overview 823

Objectives 823

IMAP Client Agent 825

IMAP Commands 827

– xix –

IMAP Client Advanced Options 833

IMAP Server Agent 835

IMAP Server Advanced Options 838

IMAP Server Config 840

Mails 841

Mail Message Instance List 843

All Mail Messages 847

Using Auto-Generated Strings 848

IMAP Statistics 849

IMAP Client Statistics 850

IMAP Server Statistics 855

Chapter 17 IPTV/ Video 859

Overview 859

Video 859

IPTV 859

Objectives 860

Video Client API Structure 861

Video Client Agent 862

Commands 866

Advanced 879

Header 883

Signaling 884

Profiles 887

Channel View 889

IPTV Options 890

Stats 891

Video Server Agent 894

– xx –

Video Properties 897

Advanced Options 900

Video Config 903

IPTV / Video Statistics 904

IPTV / Video Client Statistics 905

IPTV / Video Server Statistics 944

Chapter 18 iSCSI 949

API Overview 949

iSCSI Client Agent 952

iSCSI Client Commands 953

iscsi 954

iscsiTarget 956

advOptions 958

iSCSI Server Agent 960

iscsi 961

iscsiTarget 964

advOptions 966

Chapter 19 IxIO 969

API Overview 969

IxIO Client Agent 971

client file list 972

advanced configuration 974

drive list 975

IxIO Client Commands 976

Chapter 20 LDAP 981

Overview 981

Objectives 982

– xxi –

LDAP Client Commands 982

LDAP Client Agent 985

Command List 987

Global Options 995

Control 998

Modification 999

Attribute 1001

Attribute Type and Values 1002

LDAP Statistics 1003

Chapter 21 Peer-to-Peer Application 1011

Objectives 1011

Peer-to-Peer Application Agent 1012

FlowDefinition 1013

InbuiltFlow 1014

Peer-to-peer Global Statistics 1016

Chapter 22 POP3 1023

Overview 1023

Objectives 1023

POP3 Client Agent 1024

POP3 Server Agent 1024

POP3 Client Agent 1026

Pop3Command 1029

POP3 Server Agent 1033

MailBoxItem 1035

Using Auto-Generated Strings 1036

POP3 Statistics 1037

POP3 Client Statistics 1038

– xxii –

POP3 Server Statistics 1042

Chapter 23 Published Vulnerabilities and Malware 1045

config 1046

advOptions 1048

attacksCmdList 1049

attacksCmdList nodeList 1051

AddAttacks 1055

AttackListCount 1056

CreateAttackList 1057

CreatePlaylist 1058

DatabaseVersion 1059

DeleteAttackList 1060

DeleteAttacks 1061

ExportAttacks 1062

GetCapture 1063

ImportAttacks (.zatk format) 1064

ImportUserDefinedAttacks 1065

RenameAttackList 1066

RetrieveAttacks 1067

SearchAttacks 1068

Chapter 24 QT 1071

Running a QuickTest from Tcl 1072

startQuickTest 1073

checkTestRunning 1074

stopQuickTest 1075

QuickTest Sample Script 1076

Chapter 25 Radius 1079

– xxiii –

Overview 1079

Objectives 1080

Radius Client Agent 1083

Radius Command List 1084

Global Config 1090

Specific Secrets 1092

Vendor List 1094

Attribute List 1095

AccessAttribSetList 1097

AcctngAttribSetList 1098

RADIUS Client Statistics 1099

Chapter 26 RTSP 1107

Overview 1107

Objectives 1107

RTSP Client Agent 1108

RTSP Server Agent 1109

RTSP Client Agent 1112

RtspCommand 1116

RtspHeaders 1119

RtspsetParamOptionList 1121

RtspgetParamOptionList 1123

RTSP Server Agent 1125

PresentationItem 1129

Stream 1130

Content 1132

RTSP Statistics 1133

RTSP Client Statistics 1134

– xxiv –

RTSP Server Statistics 1143

Chapter 27 SMTP 1147

Overview 1147

Objectives 1147

SMTP Client Agent 1148

SMTP Server Agent 1150

SMTP Client Agent 1151

SmtpCommand 1154

Header 1157

Attachment 1159

MailMessage 1162

SMTP Server Agent 1165

SMTP Statistics 1167

SMTP Client Statistics 1168

SMTP Server Statistics 1172

Chapter 28 SSH 1175

API Overview 1175

Objectives 1176

SSH Client Agent 1179

SSH Command List 1180

Option Set 1187

Option Set Manager 1188

Global Config 1191

SSH Client Statistics 1192

Chapter 29 Stateless Peer 1197

Stateless Peer Overview 1197

Objectives 1197

– xxv –

Stateless Peer Commands 1198

Stateless Peer Agent 1199

Stateless Peer Advanced Options 1202

Stateless Peer Protocol Flows 1203

Chapter 30 HTTP Streaming 1211

API Overview 1211

Objectives 1211

HTTP Streaming Client Agent 1212

cmdList 1213

Global options 1215

HTTP settings 1218

availableTosList 1220

Streaming Client Statistics 1222

Chapter 31 Telnet 1227

API Overview 1227

Objectives 1227

Telnet Client Agent 1228

Telnet Server Agent 1230

Telnet Client Agent 1232

Telnet Client Basic Options 1234

Telnet Client Advanced Options 1235

Telnet Client Command 1236

Telnet Server Agent 1239

Telnet Server Basic Options 1241

Telnet Server Advanced Options 1243

Telnet Statistics 1244

Telnet Client Statistics 1245

– xxvi –

Telnet Server Statistics 1251

Chapter 32 TFTP 1257

Overview 1257

Objectives 1257

TFTP Client Agent 1260

TFTP Command List 1261

TFTP Client Advanced 1265

TFTP Server Agent 1267

fileList 1269

advanced 1271

TFTP Client Statistics 1273

TFTP Server Statistics 1277

Chapter 33 Trace File Replay 1281

Overview 1281

Objectives 1281

Trace File Replay Client Commands 1281

Trace File Replay Server Commands 1283

Trace File Replay Client Agent 1286

Options 1287

Filter List 1289

Enable Filter 1291

Trace File Replay Server Agent 1292

Trace File Options 1293

Server Network List 1295

Advanced Options 1296

Statistics 1297

Trace File Replay Client Statistics 1298

– xxvii –

Trace File Replay Server Statistics 1300

Chapter 34 VDI 1303

API Overview 1303

VDI Client Agent 1304

settings 1305

VDI Client Commands 1306

Chapter 35 VoIP H.248 Peer 1307

Limitations 1307

VoIP H248 Peer API Commands 1308

VoIP H248 MGC/MGW Peer API Objects 1310

VoIP H248 TermGroup Peer API Objects 1311

VoIP H248 Peer Agent 1312

Simulated MGC 1319

Simulated MGW 1321

H248 TermGroups 1323

MGW Automatic 1325

MGC Automatic 1328

Profiles 1333

Packages 1334

Events 1336

Properties 1337

Signals 1338

Statistics 1339

H248 Settings 1340

Codec Settings 1342

Data Codecs 1343

Codecs 1345

– xxviii –

Other Settings 1351

SDP Settings 1353

RTP Settings 1355

Audio Settings 1357

Execution Settings 1361

Scenario Settings 1363

Chapter 36 VoIP H.323 Peer 1365

API Overview 1365

Limitations 1365

VoIP H323 Peer API Commands 1366

VoIP H323 Peer API Objects 1367

VoIP H323 Peer Agent 1368

Codec Settings 1379

Codecs 1380

Data Codecs 1385

Other Settings 1387

RTP Settings 1389

Audio Settings 1391

Video Settings 1395

Alternative Capability Value Set List 1400

Capability List 1401

Custom Activity Link Settings 1402

Execution Settings 1404

Simultaneous Capability 1406

H323 Settings 1407

Simultaneous Capability Value Set List 1411

Alternative Capability List 1412

– xxix –

Alternative Capability 1413

Dial Plan 1414

Terminal Capability Set 1417

Simultaneous Capability List 1418

Scenario Settings 1419

Custom Parameters 1420

Chapter 37 VoIP MGCP 1423

Limitations 1423

VoIP MGCP Peer API Commands 1424

VoIP MGCP CA/MGW Peer API Objects 1426

VoIP MGCP Endpoint Peer API Objects 1427

MGCP GW Agent 1428

MGCP Settings (GW) 1437

Automatic Settings (GW) 1439

Endpoints 1441

MGCP CA Agent 1442

MGCP Settings (CA) 1444

Automatic Settings (CA) 1446

Endpoints 1448

Gateways 1450

Scenario Settings 1451

Execution Settings 1452

Custom Activity Link Settings 1454

Simulated Endpoints 1458

Data Codecs 1460

Codecs 1462

SDP Settings 1466

– xxx –

RTP Settings 1467

Audio Settings 1469

Other Settings 1473

Chapter 38 VoIP SIP Cloud 1475

Limitations 1475

VoIP SIP Cloud API Commands 1476

API Objects 1477

VoIPSIP Cloud Agent 1478

Settings 1480

SIP Server List 1481

Chapter 39 VoIP SIP Peer 1483

Limitations 1483

VoIP SIP Peer API Commands 1484

VoIP SIP Peer API Objects 1485

VoIP SIP Peer Agent 1487

Codec Settings 1508

Data Codecs 1509

Codecs 1511

Other Settings 1517

Signaling Settings 1520

Edit Contact 1524

RTP Settings 1526

Audio Settings 1528

Video Settings 1532

T.38 Settings 1536

T.30 Settings 1540

Timer Settings 1546

– xxxi –

SRTP Settings 1548

MSRP Settings 1550

MSRP GUI Files 1553

MSRP Relays 1555

Custom Activity Link Settings 1556

Execution Settings 1559

Transfer Address 1562

Scenario Settings 1564

Dial Plan 1565

TLS Settings 1568

TLS Cyphers 1571

Custom Parameters 1572

Advanced Settings 1575

Cloud Servers 1576

Server Rules 1578

Cloud Rules 1579

RuleData 1581

Chapter 40 VoIP Skinny Peer 1585

Limitations 1585

VoIP Skinny Peer API Commands 1586

VoIP Skinny API Objects 1587

VoIP Skinny Peer Agent 1588

Scenario Settings 1603

Execution Settings 1604

Dial Plan 1606

Skinny Settings 1610

Call Managers 1612

– xxxii –

Codec Settings 1614

Data Codecs 1615

Codecs 1617

RTP Settings 1623

Audio Settings 1625

Other Settings 1629

Custom Activity Link Settings 1631

Custom Parameters 1633

Chapter 41 VoIP No Call Control Peer 1635

Limitations 1635

VoIP No Call Control Peer API Commands 1636

VoIP No Call Control Peer API Objects 1637

VoIP No Call Control Peer Agent 1638

NoCallControl VOIP Statistics 1640

Scenario Settings 1655

Execution Settings 1656

Dial Plan 1658

Codec Settings 1660

Codecs 1661

Data Codecs 1667

Audio Settings 1669

Video Settings 1673

T.30 Settings 1677

T.38 Settings 1683

RTP Settings 1687

SRTP Settings 1689

Other Settings 1691

– xxxiii –

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU
Statistics 1693

Per-Interface and TCP Statistics 1694

TCP Statistics 1695

Advanced TCP Statistics 1703

Per-Interface Statistics 1704

Run State Statistics 1705

Curve Segment Statistics 1707

Connection Latency Statistics 1708

IxServer Layer 2-3 Statistics 1710

IxServer Port CPU Statistics 1712

INDEX 1713

– xxxiv –

This page intentionally left blank.

– xxxv –

About this Guide
This section contains information that explains the typographical conventions used in this
documentation. This information will aid you in using the documentation most effectively. Also
provided is a list of related documentation that you may find useful.

Conventions
The following typographical conventions are used in this documentation:

l Italics are used to indicate the names of software fields and parameters, titles of books or
documents, and first references to words, terms, phrases, or concepts that have a special
meaning or require special identification or emphasis. For example:

l In the userid field, enter your assigned user identification number.

l Norton’s Telecom Dictionary is a helpful reference tool.

l The term tolerance level refers to the standard deviation setting.

l The variable n represents any numerical value.

l Menu names and options appear as bold blue text in online Help, and appear in small capital
letters in documents. For example:

l To save your input, choose the File>Save menu option.

l Bold black type is used to indicate the names of buttons, commands, and files that are part of
procedures, as well as to identify field and parameter options. In addition, bold text emphasizes
important information in text or in caution, warning, or danger statements. For example:

l To proceed to the next step, click OK.

l Use the copy command to duplicate the field entry.

l Save and close the books.xml file.

l Always save your test configuration.

l Courier text is used to indicate typed text input. For example:

l Access the new file name at the command line: c = newbook.gif.

l Enter the setup.ini location: setupini = Ixia\Code\New.

l PC keys are indicated in all caps, using the following conventions:

l Simultaneous keystrokes are shown by joining the key names with a plus sign (+), For example,
CTRL+Q.

– 1 –

l Sequential keystrokes are shown by joining the key names with a comma (,). For example,
SHIFT, F7.

The following table describes the note icons and messages used in this document.

Name Icon Description

Note Indicates information that emphasizes or supplements important points in the
main text.

Important Indicates information that is essential to the completion of a task.

Tip Provides supplemental suggestions for applying techniques and procedures to
accomplish a task.

Related Documentation
The following documentation may be helpful in gaining more understanding of IxLoad. The
documentation is available from the Help pull-down menu in IxLoad or from the IxLoad CD.

Ixia user documentation is also available in the Support>User Guides area of ixiacom.com
(http://www.ixiacom.com). User registration is required to view this online documentation.

Getting Started with Aptixia IxLoad
IxLoad User Guide

About this Guide

– 2 –

http://www.ixiacom.com/

CHAPTER 5 New in this Release
The following new features or major enhancements are described in this release of the IxLoad Tcl API
Programming Guide. Refer to the IxLoad Release Notes for additional information.

IxLoad 9.10-Update1 includes the following updates:

l In keeping with the IETF (Internet Engineering Task Force) proposal on Terminology, Power and
Oppressive Language, the terms master, slave, blacklist, and whitelist have been replaced with
primary, secondary, blockedlist, and allowedlist, respectively.
In instances where master, slave, blacklist, or whitelist are used to describe components of
established protocols, or where master is used in isolation with no implication of a corresponding
slave, the original terms have been retained.
APIs have been updated to use these new terms. However, previous versions of the changed APIs
will continue to function.

Chapter 5 New in this Release

– 3 –

https://tools.ietf.org/id/draft-knodel-terminology-00.html
https://tools.ietf.org/id/draft-knodel-terminology-00.html

This page intentionally left blank.

– 4 –

CHAPTER 1 Introduction
The IxLoad Tcl API is a set of Tcl commands that enable you to run IxLoad tests from Tcl scripts. The
API provides most of the same capabilities available from the GUI.

Background Reading
In order to use the Tcl API, you should also have the following other documents:

The IxLoad User Guide should be read and understood before attempting to use the API. In particular,
the following two chapters are essential:

l Introduction discusses the background to understand Internet protocol testing in general and the
manner in which Ixia approaches it specif

l Creating and Running an IxLoad Test describes how to create the test infrastructure. Care must
be taken to assign IP addresses correctly and to provide required routes.

The Creating and Running an IxLoad Test chapter uses the term Management Station to refer to the
host that runs the IxLoad GUI application. In this guide, that host is the host that runs a Tcl program
using the IxLoad Tcl API is in this same position. We shall refer to this as the Development Station in
the remainder of this manual.

The Ixia Tcl Development Guide describes the general method for developing Tcl scripts for use with
Ixia equipment. Only a few of the commands described in that guide are necessary to construct an
IxLoad Tcl API–based test, but you should review the entire guide to familiarize yourself with the
general structure and functioning of Tcl-based tests.

Using a License Server
If you are using a central license server with IxLoad, make sure to set the name of the server in
IxLoad's Settings > Preferences menu choice.

To allow use of a central license server by the TCL API, the system environment variable IXN_
LICENSE_SERVER must be set on the client PC.

– 5 –

If you are running your Tcl program on a Unix client, the IXN_LICENSE_SERVER environment variable
must be set on the Windows host running the Tcl Server, and on the Unix client through the user shell
initialization script.

To set the License Server environment variable on a Windows host:

1. Right-click on the My Computer icon on the desktop, then select Properties.

2. Click the Advanced tab.

3. Click Environment Variables.

4. In either the User variables for... or System variables lists, click New to add a new variable.

5. Name the variable IXN_LICENSE_SERVER.

6. Set the variable value to the name or IP address of the license server host.

7. Click OK to close the window.

Configuring the ixMachineOptions.ini File

The ixMachineOptions.ini file contains parameters for configuring the license server used for Tcl
scripts. In order to run IxLoad from Tcl scripts, you must configure these parameters, because there is
no way to define a license server from an IxLoad Tcl API script.

The ixMachineOptions.ini file is created the first time you start IxLoad, and is stored in the following
directory on the IxLoad client PC:

l Windows XP: C:\Documents and Settings\All Users\Application
Data\Ixia\IxLoad\<version>\

l Windows Vista and later: C:\ProgramData\Ixia\IxLoad\<version>\

License server parameters

[GlobalOptions]

license_
server_
enabled =

Specifies whether the license is stored on the test chassis or on an external
license server.

False: The license is stored on the same Ixia chassis that is being used by the Tcl
script (Default).

True: The license is stored on an external license server. Specify the license
server’s host name or IP address in the license_server parameter.

license_
server =

If the license is stored on an external license server, specify its host name or IP
address.

Chapter 1 Introduction

– 6 –

License Server Parameters

The [GlobalOptions] section of the IxAppOptions.ini file contains two parameters that define the
license server being used. In order to run IxLoad from Tcl scripts, you must configure these
parameters, because there is no way to define a license server from an IxLoad Tcl API script. The
license server parameters are:

[GlobalOptions]

license_server_
enabled =

Specifies whether the license is stored on the test chassis or on an external
license server.

False: The license is stored on the same Ixia chassis that is being used by the Tcl
script (Default).

True: The license is stored on an external license server. Specify the license
server’s host name or IP address in the license_server parameter.

license_server
=

If the license is stored on an external license server, specify its host name or IP
address.

Network Setup
You may need to configure IP addresses or routes for IxLoad Tcl API testing. Review the following
sections to see if you need to set or change any addresses:

l To change the IxLoad Tcl API development station’s IP address, see Configuring a Network
Address on the IxLoad Development Station (see "Configuring a Network Address on the IxLoad
Development Station").

l If the route to your Ixia chassis includes one or more routers, see Configuring a Permanent Route
to Ixia Ports (see "Configuring a Permanent Route to Ixia Ports").

l If you need to change the internal network used by an Ixia chassis, see Setting Ixia Chassis Base
Addresses (see "Setting Ixia Chassis Base Addresses").

Configuring a Network Address on the IxLoad Development
Station
To use the IxLoad Tcl API, you must configure your development station with an address on its local
network that is routeable to all of the Ixia chassis that you will use for testing.

To configure routing:

Chapter 1 Introduction

– 7 –

1. Click Windows’ Start button and select Settings | Network and Dial-up Connections.
Windows displays the connections currently configured on your PC.

2. Right-click Local Area Connection and select Properties.Windows displays the Local Area
Connections Properties window.

3. Click Internet Protocol (TCP/IP), then click Properties.Windows displays the LAN
connection’s TCP/IP properties.

4. Click the Use the following IP address button, then enter addresses in the following fields:

l IP address: Enter an IP address that is routeable to all the Ixia chassis that you will use for
IxLoad testing.

l Subnet mask: Enter a subnet mask appropriate to the IP address you entered.

l Default gateway: Enter the IP address of the gateway you will use to access the network that the
Ixia chassis are on.

5. If you want to use DNS, enter the DNS servers’ IP addresses in the Preferred DNS server and
Alternate DNS server fields.

6. Click OK to close the window.

Testing the Development Station’s Routing
After you have configured the development station’s IP address, you should test its routing to ensure it
can communicate with the Ixia chassis you will use with IxLoad.

To test the routing:

1. Click Windows’ Start button and select Programs > Accessories > ComPrompt.

Windows displays a Command Prompt window.

Equation 1: -1.Ping Command

Chapter 1 Introduction

– 8 –

2. Use the ping command to test that your development station can communiwith each chassis:
ping aaa.bbb.ccc.ddd

(replace aaa.bbb.ccc.ddd with the IP address of the Ixia chassis).

3. Repeat the ping command for each chassis. Each chassis should return a reply. If any do not,
check their TCP/IP configurations.

Note: You cannot ping Ixia ports (the chassis’ internal 10.0.0.0 network) until you have
started a test. Refer to Configuring a Permanent Route to Ixia Ports on page 1-6 on
how to set up routing so you can access the addresses assigned to Ixia ports.

Configuring a Permanent Route to Ixia Ports
You must configure a route from the IxLoad development station to the Ixia port management base
addresses.

To establish a permanent route on a Windows system, you can either use the IxLoad GUI or the
following procedure:

To establish a permanent route:

1. At the IxLoad development station, click Windows’ Start button and select Programs >
Accessories > Command Prompt.

Windows displays a Command Prompt window.

Equation 2: -2.Route Command

2. Use the route command to create a permanent route:
route -p ADD 10.0.0.0 mask 255.255.0.0 aaa.bbb.ccc.ddd metric 1

l If the Ixia chassis is on the same subnet as the development station, replace aaa.bbb.ccc.ddd
with the IP address of the Ixia chassis.

l Many IxLoad test environments resemble the one shown in the figure below: IxLoad Tcl API
running on a PC connected to a corporate production network, an Ixia chassis connected to a test
or QA network behind one or more routers, and a DUT network connected only to the Ixia chassis.

Chapter 1 Introduction

– 9 –

If the Ixia chassis is not on the same subnet as the development station, as shown in the figure above,
replace aaa.bbb.ccc.ddd with the address of the router that will provide a connection to the Ixia
chassis. That router, and all other intermediate routers to the chassis, should contain routes for the
10.0.0.0 (or modified) address range. These routes in the last router should refer to the Ixia chassis as
a gateway.

Note that in a network shown like the one shown in the figure, the router(s) may be configured to
disallow access from the production network, or they may route IxLoad requests intended for the Ixia
ports (by default, a 10.0.0.0 network) elsewhere (usually to the Internet) or may drop them altogether.

Ensure that no other addresses assigned in IxLoad fall into this range. This setup may be tested using
the ping command as described in Testing the Development Station’s Routing (see "Testing the
Development Station’s Routing"), but only in the final stages of running a test.

Setting Ixia Chassis Base Addresses
All ports on an Ixia chassis are initially configured so that they may be internally addressed, for IxLoad
management purposes, as:
10.0.<card>.<port>

For example, card 2 port 3 has an internal IP address of 10.0.2.3. These addresses must be routeable
from the development stations to the Ixia chassis.

The first two octets of the address (10.0) are called the base address. If you are using IxLoad on an
existing network, you may want to change the base address to conform to your existing network

Chapter 1 Introduction

– 10 –

layout. If two or more chassis are used for IxLoad GUI or IxLoad Tcl API testing, all but one of the
chassis base addresses will need to be changed.

Note that the Ixia ports on a chassis will use only a limited range of addresses on their subnet. For
example, if the base address is 10.0, and there are sixteen 8-port cards in the chassis, then the range
of addresses used will be:
10.0.1.1 - 10.0.16.8

To change the base address of a chassis, use IxExplorer:

1. Open IxExplorer.

2. Select the Chassis Chain object in the tree and right click and choose Add Chassis. Enter the
name or IP address of the chassis that will be used.

3. Right-click on the newly created chassis and select Properties.

4. Select the IxRouter tab.

5. You may change the base address in the IP Network field. Make sure to only modify the top two
octets and do not change the Mask field.

Backward Compatibility
IxLoad Tcl provides backward compatibility for:

l Scripts that configure and run tests.

l Scripts that run tests from a repository.

l Scripts that modify repositories, as long as the script was written for and tested with repositories
from the same IxLoad release as the script, or an earlier release.

For example, if you write a script for IxLoad 4.0, that script can modify any repository created in IxLoad
4.0 or earlier.

IxLoad Tcl does not provide backwards compatibility for scripts that modify repositories that were
created or saved from releases after the release that the script was written for and tested on.

For example, if you write a script for IxLoad 4.0, that script should not modify a repository created in a
release later than IxLoad 4.0.

Deprecated Commands
The following items are no longer supported:

l Agent sharing

In previous releases, the Tcl API allowed sharing of objects between NetTraffics. For example, in the
following code fragment, Traffic1 is shared between two NetTraffics:

Chapter 1 Introduction

– 11 –

$Traffic1_Network3 config \
-traffic [$Traffic1_Network1 cget -traffic]

Beginning with the 5.30 release, agents can no longer be shared. If you try to run a script that includes
agent sharing, an error will be thrown and the script will stop.

Instead of agent sharing, the Tcl API includes a new command, duplicate, that makes copies of
networks, traffics (agents) and DUTs. The following example shows duplicate being used to copy
agents from Traffic1 to Traffic3:

set Traffic1 [$Traffic1_Network1 cget -traffic]
set Traffic3 [$Traffic1 duplicate]
$Traffic1_Network3 config \
-traffic $Traffic3

duplicate is described in duplicate.

Python Support
In addition to Tcl, you can create native Python scripts that run IxLoad tests. You can either write the
Python scripts by hand, or you can use ScriptGen to create a Python script natively from an existing
test configuration. For more information on using ScriptGen, see the IxLoad User Guide.

Note: Python is not included with the IxOS or IxLoad installers. You need to install Python separately
before you can run Python scripts.

Configuring Python Support

When you install IxOS Tcl support for Linux, python wrappers are also installed. On the following path:

<IxOsTclInstallationPath>/bin

an ixpython file is installed.

You need to edit this file to specify the python properties:

1. Open the ixpython file, and edit the following lines:

PYTHON_HOME= Python install directory. Usually, this is /usr/bin.

PYTHONver= Python version.

Example: PYTHONver=2.7

PYTHONLibPath= IxLoad path, including version.

Example: PYTHONLibPath=$IXIA_HOME/lib/IxLoad6.60.0.109-EB

2. Save the file.

3. To run a python script, type:

ixpython <pythonScript>

Chapter 1 Introduction

– 12 –

Python Commands

All the commands that are available in Tcl are also available in Python. In most cases, you use the
same command, but written in Python syntax.

However, there are some Python-specific commands. These are listed in the table below.

There are two sample Python scripts installed with IxLoad that you can use as examples of how to write
an IxLoad Python script. They are installed on the following path:
<ixload_install_path>\<version>\PythonScripts\Samples

The following table describes the Python-specific IxLoad commands.

Python Command Description

Equivalents to ::IxLoad

IxLoad.connect(remoteServer) Connect to a remote Tcl Windows server when running from a
non-Windows client.

Tcl equivalent: ::IxLoad connect

Example:

IxLoad = IxLoad()
IxLoad.connect 10.200.55.39

IxLoad.new Create a new object.

Tcl equivalent: ::IxLoad new

Example:
logger = IxLoad.new("ixLogger", logtag, 1)

IxLoad.loadAppPlugin(plugin) Load a plugin.

Tcl equivalent: $ixAppPluginManager load "HTTP"

Example:
IxLoad.loadAppPlugin("HTTP")

IxLoad.delete(element) Delete an element of an IxLoad test.

Tcl equivalent: ::IxLoad delete

Example:
IxLoad.delete(chassisChain)

IxLoad.disconnect() Disconnect from the remote server.

Tcl equivalent: ::IxLoad disconnect

Example:

IxLoad = IxLoad()
IxLoad.connect 10.200.55.39
...
IxLoad.disconnect()

Chapter 1 Introduction

– 13 –

IxLoad.waitForCaptureDataReceived
()

Wait for the data capture (for Analyzer application) to finish.

Tcl equivalent: vwait ::ixCaptureMonitor

Example:
IxLoad.waitForCaptureDataReceived()

IxLoad.waitForTestFinish() Wait for the test to finish.

Tcl equivalent: vwait ::ixTestControllerMonitor

Example:
IxLoad.waitForTestFinish()

Equivalents to statCollectorUtils

StatUtils.Initialize(test_server_
handle)

Initialize the statistics collection utilities.

Tcl equivalent: ${NS}::Initialize

Example:
test_server_
handle=testController.getTestServerHandle()
StatUtils.Initialize(test_server_handle)

StatUtils.ClearStats() Clear the statistics from a previous test run.

Tcl equivalent: ${NS}::ClearStats

Example:
StatUtils.ClearStats()

StatUtils.AddStat() Add a statistic to the list of statistics to be collected.

Tcl equivalent: ${NS}::AddStat

Example:

StatUtils.AddStat(caption = "Watch_Stat_1",
statSourceType = "HTTP Client",
statName = "HTTP Bytes Sent",
aggregationType = "kSum",
filterList = {})

StatUtils.StartCollector() Start collecting statistics.

Tcl equivalent: ${NS}::StartCollector -command ::my_
stat_collector_command

Example:
StatUtils.StartCollector(my_stat_collector_python_
command)

StatUtils.StopCollector() Stop collecting statistics.

Tcl equivalent: ${NS}::StopCollector

Example:

Chapter 1 Introduction

– 14 –

StatUtils.StopCollector()

Enums

IxLoad.<element>.<enum> Change an enumerated value.

Tcl equivalent: $::<element>(enum)

Example:
svr_network.networkRangeList.appendItem(name =
"svr_range",
enable = 1,
firstIp = "198.18.200.1", \
ipIncrStep =
IxLoad.ixNetworkRange.kIpIncrOctetForth,
...)

PERL Support
In addition to Tcl, you can create native Perl scripts that run IxLoad tests. You can either write the Perl
scripts by hand, or you can use ScriptGen to create a Perl script natively from an existing test
configuration. For more information on using ScriptGen, see the IxLoad User Guide.

Perl support, including the Perl interpreter and supporting modules, are automatically installed when
you install IxLoad. IxLoad Perl modules are installed the following location: C:\Program Files
(x86)\Ixia\Perl.

Sample Scripts

Sample Perl scripts are installed in <ixload_install_path>\PerlScripts\Samples. You can review
these scripts to help you in creating your own scripts, or you can edit them to reflect your specific
configuration (chassis IP address, card IDs, port IDs, etc.) and run them.

Running Scripts

To run an IxLoad Perl script:

l If your script is on the path <ixload_install_path>\PerlScripts\Samples, you can run a
script with the command perl <script_name>.pl.

l If your script is on a different path, add the following line to the script header, so that it finds the
path the IxLoad build that it should use:

use lib '<ixload_install_path>/version/PerlScripts/lib';

For example:

use warnings;
use strict;

Chapter 1 Introduction

– 15 –

use lib '.';
...
use lib 'C:/Program Files (x86)/Ixia/IxLoad/6.70.0.56-EB/PerlScripts/lib';
use IxLoad;

Perl Commands

All the commands that are available in Tcl are also available in Perl. In most cases, you use the same
command, but written in Perl syntax.

However, there are some Perl-specific commands. These are listed in the table below.

Perl Command Description

Equivalents to ::IxLoad

IxLoad.connect(remoteServer) Connect to a remote Tcl Windows server when running from a
non-Windows client. Tcl equivalent: ::IxLoad connect

Example:

use IxLoad;
IxLoadConnect->connect('1.2.3.4');

IxLoad.new Create a new object.

Tcl equivalent: ::IxLoad new

Example:
my $logger = IxLoad->new('ixLogger', $logtag, 1);

IxLoad.loadAppPlugin(plugin) Load a plugin.

Tcl equivalent: $ixAppPluginManager load "HTTP"

Example:
IxLoad->pluginManager('load', 'HTTP');

IxLoad.delete(element) Delete an element of an IxLoad test. Tcl equivalent:
::IxLoad delete

Example:
IxLoad->delete($chassisChain);

IxLoad.disconnect() Disconnect from the remote server.

Tcl equivalent: ::IxLoad disconnect

Example:
use IxLoad;IxLoadConnect->connect
("10.200.25.39");...IxLoad->disconnect();

IxLoad.waitForCaptureDataReceived
()

Wait for the data capture (for Analyzer application) to finish.

Tcl equivalent: vwait ::ixCaptureMonitor

Chapter 1 Introduction

– 16 –

Example:
IxLoad->waitForCaptureDataReceived();

IxLoad.waitForTestFinish() Wait for the test to finish.

Tcl equivalent: vwait ::ixTestControllerMonitor

Example:
IxLoad::TestControllerWait();

Equivalents to statCollectorUtils

StatUtils.Initialize(test_server_
handle)

Initialize the statistics collection utilities.

Tcl equivalent: ${NS}::Initialize

Example:
my $test_server_handle = $testController-
>getTestServerHandle();$NS->Initialize($test_
server_handle);

StatUtils.ClearStats() Clear the statistics from a previous test run.

Tcl equivalent: ${NS}::ClearStats

Example:
$NS->ClearStats();

StatUtils.AddStat() Add a statistic to the list of statistics to be collected.

Tcl equivalent: ${NS}::AddStat

Example:
$NS->AddStat({ filterList => {}, caption
=> "Watch_Stat_1", statSourceType => "HTTP
Client", statName => "HTTP Bytes Sent",
aggregationType => "kSum"});

StatUtils.StartCollector() Start collecting statistics.

Tcl equivalent: ${NS}::StartCollector -command
::my_stat_collector_command
Example:
$NS->StartCollector({command => \&my_stat_
collector_command});

StatUtils.StopCollector() Stop collecting statistics.

Tcl equivalent: ${NS}::StopCollector

Example: $NS->StopCollector();

Enums

IxLoad.<element>.<enum> Change an enumerated value.

Tcl equivalent: $::<element>(enum)

Chapter 1 Introduction

– 17 –

Example:
$svr_network->networkRangeList->appendItem({
name => "svr_range", enable => 1, firstIp =>
"198.18.200.1", ipIncrStep =>
$IxLoad::Info::ixNetworkRange
{kIpIncrOctetForth},….});

Examples

Below are some examples of functions written in TCL and in Perl, for comparison.

Tcl Perl

Creating
an object

set chassisChain [::IxLoad new
ixChassisChain]

my $chassisChain = IxLoad->new
("ixChassisChain");

Calling a
method

$chassisChain addChassis 10.215.170.83
-- or --
$Network1 portList.appendItem \-
chassisId 1 \-cardId 2 \-portId 1

$chassisChain->addChassis
("10.215.170.83");
-- or --
$Network1->portList-
>appendItem({ chassisId => 1,
cardId => 2, portId => 1});

Setting
properties
on an
object

$Settings_1 config \-
teardownInterfaceWithUser false \-_
Stale false \-interfaceBehavior 0

$Settings_1->config({
teardownInterfaceWithUser =>
"False",
_Stale => "False",
interfaceBehavior => 0});

! 2

Chapter 1 Introduction

– 18 –

CHAPTER 2 Quick Start
This section describes how to modify a sample script to run an IxLoad Tcl API test. You can use this
section to quickly familiarize yourself with the basic steps required to run a simple IxLoad script. Once
you have modified and run a sample script, you can refer to the following sections in this guide to learn
about the IxLoad Tcl API in greater detail.

l To run a sample script from Windows, see Windows (see "Windows").

l To run a sample script from Unix/Linux, see Unix/Linux (see "Unix/Linux").

Windows
The section describes how to run a sample Tcl script included with IxLoad on Windows. To run IxLoad
Tcl scripts, you must install the IxLoad Tcl 8.4 shell, which is an option in the IxLoad Windows client
installation package.

Note: The IxOS wish console cannot be used to execute IxLoad Tcl scripts.

– 19 –

Using The Sample Tcl Scripts
The Tcl scripts require either the IxLoad Tcl 8.4 wish console or the Tcl shell to run. Choose one of the
following:

l Double-click the IxLoad Wish shell icon for the version of IxLoad that you want to run

l Execute the following in a console window: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe,
and then source IxiaWish.tcl from C:\Program Files\Ixia\IxLoad\<version>\TclScripts\bin.

The included sample Tcl scripts can be found in the following subdirectories under C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\Samples:

l Samples\Application Features contains scripts that demonstrate various IxLoad features

l Samples\Network contains scripts that create various network configurations

l Samples\Protocols contains scripts that generate different types of protocol traffic

l Samples\Stats contains scripts that demonstrate how to retrieve statistics

One script from the Samples directory, setup_simple.tcl, must be modified to work with your network
topology. See Editing the setup_simple.tcl script (see "Editing the setup_simple.tcl script").

Note: When you source the IxiaWish.tcl script, it sets the auto_path value so that when
you execute a package req IxLoad command, the Tcl shell can find the IxLoad packages.

Editing the setup_simple.tcl script

You must edit the setup_simple.Tcl script to include the correct addresses in use on your network.

l On Windows, the file is located at : ..\IxLoad\<version>\TclScripts\Samples

l On Unix/Linux, the file is located at: ../IxLoadTclApi<version>/Samples/

To edit the setup_simple.tcl script:

1. In an editor, open the setup_simple.tcl script.

2. Set the Tcl server address:
variable ::IxLoadPrivate::SimpleSettings::remoteServer n.n.n.n

Tcl server must run on a Windows host, not on the chassis. When running a script from Unix, change
this value to the IP address of the IxLoad client that the script will run on. When running a script from
Windows, this variable must still be set, but its value is not used.

3. Set chassisName to the hostname or IP address of the chassis you will use:
variable ::IxLoadPrivate::SimpleSettings::chassisName n.n.n.n

4. CARD_ID and PORT_ID are local variables used between the setup_simple.tcl script and all Ixia-
provided sample Tcl scripts. Set CARD_ID and CARD_PORT (in the serverPort and clientPort
array) to the card and port you will use:

Chapter 2 Quick Start

– 20 –

array set ::IxLoadPrivate::SimpleSettings::clientPort {
CARD_ID"4"

PORT_ID"5" }
array set ::IxLoadPrivate::SimpleSettings::serverPort {CARD_ID "3"PORT_ID
"2" }

5. Save and close the file.

Running the sample scripts
Follow the instructions below to launch the ixwish shell, and call the Tcl script. In the procedure below,
replace (replace <version> with the correct directory name).

To run a sample script:

1. Choose one:

l Double-click the IxLoad Wish shell icon for the version of IxLoad that you want to run

l Execute the following in a console window: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe,
and then source IxiaWish.tcl from C:\Program Files\Ixia\IxLoad\<version>\TclScripts\bin.

2. Change the path to the directory that contains the script that you want to run. Scripts are stored
in directories under <installDir>/IxLoad/<version>/TclScripts/Samples.

l Samples/Application Features contains scripts that demonstrate various IxLoad features

l Samples/Network contains scripts that create various network configurations

l Samples/Protocols contains scripts that generate different types of protocol traffic

l Samples/Stats contains scripts that demonstrate how to retrieve statistics

For example, to change to the Protocols directory, type:
cd Samples/Protocols

3. To start the script, use the source command to run it.

For example, to run the HTTP.tcl script, type
source HTTP.tcl

Monitoring Status and Retrieving Results
While a test is running, status messages display in the wish console window.

The results (in CSV format) are placed in the Results\<Tclscriptname> subfolder where your Tcl
script is located.

For example: C:\Program Files\Ixia\IxLoad\<version>\Results\simplehttpclientandserver

During the test run, a log file is created and stored in the current working directory.

Chapter 2 Quick Start

– 21 –

Unix/Linux
On Unix/Linux, two types of installers are availalble: .bin and PIT. The .bin installers automatically
install all the required dependent packages on the following paths:

IxLoad /opt/ixia/ixload/version/

IxOS-API /opt/ixia/ixos/version/

TCL /opt/ixia/TCL/version/

Python /opt/ixia/Python/version

Perl /opt/ixia/Perl/version

For the PIT installer, an equivalent dependencies bundle is available.

There are a number of IxLoad Tcl .bin installers available for Unix/Linux; use the version appropriate
for your distribution:

IxLoad Tcl Client Installation File Description

IxLoadTclAPI<version>linux.bin Fedora Core 14, RedHat Enterprise 5.0

IxLoadTclAPI<version>linux_x64.bin 64-bit version of supported Linux distributions

IxLoadTclAPI<version>FreeBSD.bin FreeBSD 6.3

Unix/Linux:

See the Installing IxLoad Tcl

Chapter 2 Quick Start

– 22 –

Windows PC:

Install IxLoad on the Windows PC and select the optional Tcl components during installation.

Install IxOS with the Client and Tcl Server options.

Ixia chassis:

Install the IxLoad IxOS chassis components as for normal IxLoad installation.

Installing IxLoad Tcl
This section describes how to install the Unix/Linux version of IxLoad Tcl.

Note: In addition to installing IxLoad on Unix/Linux using the Java-based installer, you can also
install it using tarballs. See Installing IxLoad Tcl with Tarballs.

Note: You must login as root when you install IxLoad Tcl. Also, ensure that you reboot the
system after installation so that the new environment variables take effect.

To install Unix/Linux IxLoad Tcl:

1. Copy the IxLoadTclAPI<version>Linux.bin file to the Linux system.

2. Change the attribute to make it executable.
Example: chmod +x IxLoadTclAPI<version>Linux.bin

3. Execute the installer file. If your Linux version supports a Graphical User Interface (GUI), use the
-gui option . Otherwise, the installer will run in console mode.
Example (console mode): ./IxLoadTclAPI<version>Linux.bin
Example (GUI mode): ./IxLoadTclAPI<version>Linux.bin -gui

4. Follow the prompts to complete the installation.
The default installation path is /opt/ixia/ixload/IxLoadVersion/.

5. Reboot the system so that the environment variables added by the installer can take effect.

Installing IxLoad Tcl with Tarballs

As an alternative to the Java-based Unix/Linux installer, Ixia also provides the IxLoad Unix/Linux Tcl
files as tarballs. The tarball installer provides a more flexible solution to installing and running IxLoad
Tcl scripts.

Note: The tarball installer requires the comm v4.x third-party library to be installed before you
install IxLoad Tcl.

Note: You must login as root when you install IxLoad Tcl. Also, ensure that you reboot the
system after installation so that the new environment variables take effect.

Chapter 2 Quick Start

– 23 –

If you intend to write Python scripts, you should:

1. Install your own Python2x version along with the tkinter library.

2. After installing Python, change the PYTHONBinPath environment variable so that it points to the
Python2x version that you installed (by default it points to ixpython).

To install Unix/Linux IxLoad Tcl Using Tarballs:

1. Unpack IxLoadTclApi_<version>.tar file.

2. Set the environment variable IXLOAD_IXLOADFULLVERSION_INSTALLDIR to the path to where the
stackManagerStaticClasses.tcl file is located.

l stackManagerStaticClasses.tcl is located in the same folder as the IxLoad.tcl file
(<INSTALL_DIRECTORY>/lib/IxLoad/).

l IXLOADFULLVERSION is the complete IxLoad version number, with the major, minor, branch,
and build numbers separated by underscores (_).

For example, a sample environment variable might be: IXLOAD_5_10_151_20_
INSTALLDIR=/home/ixload5.10.ea/lib/ixload/

You can lookup the the exact name of the environment variable by searching the IxLoad.tcl file
for the string IXLOAD_X_Y_, where X and Y are the major and minor version numbers. For
example, IXLOAD_5_10_

3. Reboot the system so that the environment variables added by the installer can take effect.

Editing the setup_simple.tcl script
You must edit the setup_simple.Tcl script to include the correct addresses in use on your network.

l On Windows, the file is located at : ..\IxLoad\<version>\TclScripts\Samples

l On Unix/Linux, the file is located at: ../opt/ixia/ixload/IxLoadVersion/Samples/

To edit the setup_simple.tcl script:

1. In an editor, open the setup_simple.tcl script.

2. Set the Tcl server address:
variable ::IxLoadPrivate::SimpleSettings::remoteServer n.n.n.n

Tcl server must run on a Windows host, not on the chassis. When running a script from Unix, change
this value to the IP address of the IxLoad client that the script will run on. When running a script from
Windows, this variable must still be set, but its value is not used.

3. Set chassisName to the hostname or IP address of the chassis you will use:
variable ::IxLoadPrivate::SimpleSettings::chassisName n.n.n.n

4. CARD_ID and PORT_ID are local variables used between the setup_simple.tcl script and all Ixia-
provided sample Tcl scripts. Set CARD_ID and CARD_PORT (in the serverPort and clientPort
array) to the card and port you will use:

array set ::IxLoadPrivate::SimpleSettings::clientPort {
CARD_ID"4"

PORT_ID"5" }
array set ::IxLoadPrivate::SimpleSettings::serverPort {CARD_ID "3"PORT_ID

Chapter 2 Quick Start

– 24 –

"2" }

5. Save and close the file.

Running the sample scripts
Once the setup_simple.tcl script is configured, use the following procedure to launch the Tcl shell
and run a sample script.

To run a sample script:

1. Change to the bin directory where IxOS Tcl is installed.

2. Copy /bin/ixwish to bin/ixTclsh.

3. Start the Tcl shell:

./bin/ixTclsh

4. Scripts are stored in directories under /etc/ixosTcl8.4/IxLoadTclAPI<version>/Samples.

l Samples/Application Features contains scripts that demonstrate various IxLoad features

l Samples/Network contains scripts that create various network configurations

l Samples/Protocols contains scripts that generate different types of protocol traffic

l Samples/Stats contains scripts that demonstrate how to retrieve statistics

Change your path to the directory that contains the script that you want to run.

For example, to change to the Protocols directory, type:
cd /etc/ixosTcl8.4/IxLoadTclAPI<version>/Samples/Protocols

5. Source the sample script that you want to run. For example, to run the HTTP.tcl script, type:
source HTTP.tcl

Monitoring Status and Retrieving Results
While a test is running, status messages display in the Linux shell.

The log files are stored on the Windows host. The log file name is determined by the set LogName
command in the script.

l If you specify no path or a partial path, the log file is stored relative to the
\remoteScriptingService directory on the IxLoad installation path.

l If you specify an absolute path, the log file is stored in that location.

The log file will be prefixed with the specified name, followed by “-x-00” where x is a session ID from 1
through 4. The sample scripts all set the log name to be the same as the script name. For example:
C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\remoteScriptingService\RESULTS\<scriptname>

Chapter 2 Quick Start

– 25 –

This page intentionally left blank.

– 26 –

CHAPTER 3 API Overview
An IxLoad test consists of one or more Client Communities sending traffic through the DUT (Device
Under Test) to Server Communities. The structure of both a client and server community is the same:
Traffic sent over a network. Traffic is generated or handled by one or more agents.

The conceptual view of an IxLoad test is shown in the figure below.

– 27 –

Tcl API Structure
The Tcl API’s main components are shown in the figure below.

The table below describes the components of the API shown in the figure.

Component Description

ixTestController testController controls the running of a test. No test can run successfully without
this object. It has no relationship with any other object.

To run the test, you pass run <test variable name> to the test controller
command.

ixTest The top level object which co-ordinates the client and server communities. It
holds separate lists of each type of communities.

ixScenario This object represents the traffic flow (as shown in the GUI).

There can be multiple traffic flows. The traffic flows are referenced through the
scenarioList sub-object of an ixTest object.

ixTrafficColumn This is a container of ixNetTraffic, ixSubscriber, and ixDut objects.

This is accessed through the columnList element of an ixScenario object.

ixNetTraffic This object joins a network configuration to a traffic configuration.

This object is accessed through an index into the columnList of an ixScenario
object.

ixNetworkGroup This object describes a network configuration that is unique within the test.

This object is accessed through the network element of an ixNetTraffic object.

ixActivity This object configures the high-level properties that are common to all agents,

Chapter 3 API Overview

– 28 –

such as the timeline, and the test objective type and value.

Activities are accessed through an index into the activityList of an ixNetTraffic
or ixSubscriber object.

ixAgent The ixAgent elements generate and handle protocol specific traffic. Some client
agents use Protocol Actions to describe their operation.

Agent configuration can be accessed through the ActivityList of the
ixNetTraffic and ixScenario objects

Network Stack
plugins

Protocol and associated extensions that provide the network that the traffic
protocols run over.

Protocol Actions Some of the Protocol Agents describe their operation in terms of specific actions.
These protocol dependent objects detail those operations.

ixChassisChain This independent object describes the list of chassis that will be used in a test.

ixDut This object holds the type and type-specific information about a DUT.

ixTimeline This object configures the time in the test when the activities in the NetTraffics
come online, and how long they stay up for. It is also used to configure the test’s
objectives.

ixSubscriber The ixSubscriberNetTraffic object is a special type of NetTraffic that
simulates the traffic patterns created by residential customers that receive voice,
video, and data service (Triple-play) over a single physical connection (usually a
cable or DSL connection).

ixImpairment The ixImpairment object impairs one or more types of traffic from a client and
server network.

activityList Generates traffic for one side of a particular protocol.

Mandatory Objects to Complete a Script
The following mandatory objects are required to complete a script:

l an ixTestController

l an ixRepository or an ixChassisChain (ixRepository includes a chassis chain)

l ixViewOptions

l ixTest

l ixTrafficFlow

Chapter 3 API Overview

– 29 –

l ixTrafficColumn

l ixNetTraffic

l ixTimeline

l activityList

Multi Version Support
You can install and use multiple versions of IxLoad on the client PC and on the chassis. Installing
multiple versions allows you to try out the new features in a new release of IxLoad without having to
overwrite your existing copy of IxLoad.

Refer to API Quick Start and Running an IxLoad Tcl Program for more information.

General API Conventions
IxLoad’s Tcl API is somewhat different from other Ixia Tcl APIs that you might have used. Rather than a
single set of global commands that are associated with an Ixia port, IxLoad uses the concept of
instances of commands—called objects. This guide uses the words command and object to refer to the
same thing.

Objects
This section describes how to work with objects in the IxLoad Tcl API.

IxLoad represents every object with a Tcl command. When you create an object, you receive a
command that must then be used with subcommands to modify the object.

Similarly, when you retrieve a property of an object that is itself an object, you can use subcommands
to manipulate that sub-object. Generally, it is better to save the sub-objects in a Tcl variable instead
of retrieving them repeatedly. This is because every time you retrieve it, you receive a different
command (though they reference the same underlying object).

Every object command should also be deleted as described in the next section.

Object Creation and Desctruction

The general paradigm for the creation of IxLoad objects is to make a ‘new’ copy of a command, saving
the result in a Tcl variable:

set my_network [::IxLoad new ixClientNetwork $chain\
-name “my_client_network4”]

Chapter 3 API Overview

– 30 –

The variable my_network is an instance of the ixClientNetwork object. Each instance occupies its
own area of memory. Multiple objects of the same type can be created and added to lists of items.

The ::IxLoad reference is to a utility routine that allows new objects of any type to be created. The
“::” means in the global context and is a safe means of referring to ixLoad from any program location.

The ixLoad command provides a convenient means of creating an object and set its options at the
same time. One need only append option names and values to the end of the command. See the
following example:

set my_network [::IxLoad new ixClientNetwork \
-name “my_client_network4”

This is the standard means by which IxLoad objects are created.

When an object is no longer needed, its command should be destroyed as shown in the following
example:
::IxLoad delete $my_network

After a command is destroyed, it can no longer be used. If it is a sub-object, then the object can be
accessed again by fetching a new command from the original object.

Subcommands

Synopsis
$anyIxLoadObject subcommand options...

Each option is a name/value pair, with the name preceded by a hyphen (-).

The return value is of a type appropriate for the option. If the option is a sub-object, the return value
will be a command representing that object. Otherwise, it will be a simple string value (though the
string may represent a built-in value, such as an INT).

Common subcommands

In addition to command/object-specific subcommands, each IxLoad command/object supports a set of
subcommands described in the following table.

Subcommand Usage

config Allow any option of the command to be set.

cget Read the value of any command option.

getOptions Get the names of all of a command’s options.

Chapter 3 API Overview

– 31 –

cget option

This subcommand is used to obtain the current value of any option. The option must begin with a
hyphen (-). The return value is of a type appropriate for the option.

config option value option value...

The config subcommand may be used to set the value of one or more options in a command. The
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

getOptions

This subcommand returns a Tcl list with all of the options available for a command/object including an
initial hyphen for each option.

EXAMPLE
$object cget -name$object config -name “media” -value “mp3”set optionList [$object
getOptions]

Subobjects

Some IxLoad objects can contain other objects, making them subobjects.

The type of the sub-object will be described under the documentation for the sub-object. For example,
the following code fetches a sub-object into a command, and then invokes a subcommand on the
resulting sub-object:
set $my_network [$my_nettraffic cget -network]$my_network config -name network1

If you only need to access a single property of a sub-object, you can avoid storing the command for the
sub-object in a separate variable by using the 'dot' (.) notation. For example, for the name option in
ixClientNetwork, you can reference the subobject’s option as follows:
$my_nettraffic network.config -name 1k_hosts

In this case, network.config causes the config subcommand of the network sub-object to be called
with the desired options.

The sub-command can be preceded by more than one sub-object, much like a directories can be
nested to create a path of sub-directories.

Lists of Objects
Synopsis

If you know the index of an item in a list, it may be directly manipulated by the common configuration
commands listed in the table under Object Creation (see "Object Creation and Desctruction"). For
example, to configure the first item in a list:

Chapter 3 API Overview

– 32 –

$my_netTraffic traffic.agentList(0).config -name httpAgent

Note that the preceding example also shows that an element of a list can be a sub-object in a path
leading to a subcommand.

Most IxLoad commands contain one or more options that are lists of other objects. For example,
networkRangeList in ixClientNetwork is a list of items of type ixNetworkRange. Such lists are
commonly built up using the appendItem subcommand. For example:

$my_network portList.appendItem \
-chassisId 1 \
-cardId 2 \
-port 3

As in the ::IxLoad new command, you can set the values of a list member’s options while creating the
item. All such lists have a number of associated sub-commands, described in the following table.

Subcommand Usage

clear Remove all elements from the list.

appendItem Add an item to the end of the list.

configItem Configure the options of one item of the list.

deleteItem Delete an item from the list.

getItem Return an instance reference to an element of a list. This can be used to directly
manipulate that list member.

insertItem Add an item into the middle of the list.

find Search for an item in a list. The indexes of all matching list members is returned.

indexCount Returns a count of the number of items in a list.

SUBCOMMANDS

The following subcommands are available to handle options. Except where noted, no value is returned;
an exception is raised in the case of an error. In all cases where they are used the option must begin
with a hyphen (-). The value must be of a type appropriate for the option.

appendItem option value option value...

The appendItem subcommand may be used to add an item to a list. Any number of options in the listed
item may be set as part of the append.

Chapter 3 API Overview

– 33 –

configItem index option value option value...

The configItem subcommand may be used to configure a particular item in a list. Any number of
options in the list item may be set. The index argument is used to indicate which item in the list is to
be configured.

clear

The clear subcommand may be used to delete all listed items from a list.

deleteItem index

The deleteItem subcommand may be used to delete a listed item from a list. The index argument is
used to indicate which item in the list is to be configured.

find mode option value option value...

The find subcommand may be used to search a list for matching criterion. The mode argument may be
one of:

Option Usage

exact Match the value fields exactly.

regexp Use regular expressions in the matching.

uppercase Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indiA list of indexes of matching items is returned.

getItem index

Unsorted lists: The getItem subcommand may be used to retrieve an item from a list. The
index argument is used to indicate which item in the list is to be retrieved. This subcommand returns
the object from the list.

Sorted lists: The getItem subcommand may be used to retrieve an item from a list. The
name argument is used to indicate which item in the list is to be retrieved. This subcommand returns
the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

insertItem index option value option value...

The insertItem subcommand may be used to insert an item in a list. Any number of options in the list
item may be set. The index argument is used to indicate the insertion point in the list.The new item
will be inserted before the index’th item in the list.

Chapter 3 API Overview

– 34 –

Constants
Predefined constants within the IxLoad Tcl API are associated with particular commands and placed in
an array corresponding to a command. For example, the ixCard object holds a definition for different
Ixia card types, one of which is kCard1000Txs4. The proper means of referencing this constant is:
$::ixCard(kCard1000Txs4)

Text strings may frequently be set using provided strings. Refer to the various reference pages to
determine availability.

Strings and Numbers
Tcl variables are considered type-less. That is, no special distinction is made between the string of
characters “1.0” and the numeric value 1.0. Within the IxLoad Tcl API, however, items that look like
numbers (for example, 111) are converted to numbers. In the specification of arguments and values to
the IxLoad Tcl APIs, it is best to enclose these items in quotes if they are not to be interpreted as
numbered values.

For example, if you want to name an IxLoad element 123, you should enclosed the name in quotes:
“123”.

TCL API Internal Overview
The following sections provide an overview of how the Tcl API functions or Windows or Unix/Linux
platforms.

Windows Overview
When running scripts on Windows:

l For IxLoad Unit Limit:

l User Interface counts as two

l Scripts count as one

l TCL Server is not required

l The :IxLoad connect/disconnect command is ignored

l Log files are stored in the same directory as the script

l Relative files depend on the Client directory path

Chapter 3 API Overview

– 35 –

Unix Overview
When running scripts on Unix:

l Unix script counts the same as a Windows script

l TCL Server is required on Client PC

l ::IxLoad connect/disconnect command is required

l Log files go to PC

l C:\Program Files\Ixia\IxLoad\Client\tclext\remoteScriptingService directory

l Or, internal debug file c:rssN.log (N is session # (0-4))

l Result files go to PC

l Path is on Windows system.

l If path is relative, then path is relative to the remoteScriptingService directory

Chapter 3 API Overview

– 36 –

Object Structure
The figure below shows the current TCL object structure.

Chapter 3 API Overview

– 37 –

Building an IxLoad Test
The following set of steps is a suggestion for the manner in which the Tcl API may be used to create a
complete test. These steps mirror our suggested use of the IxLoad GUI. This is by no means the only
manner in which a test may be developed. The code fragments used in this discussion are from a
complete example, included at the end of this chapter.

Step 1: Initial Overhead
This section performs the necessary overhead steps to get a test started. This includes:

l Add the IxWish or tclsh installer location. This script, when sourced, sets the auto_path so that
package req IxLoad loads the version from which IxiaW was sourced. The IxiaWish.tcl is
sourced from different path depending on a multiversion or non-multiversion release.

l Connect to the remote server. When running an IxLoad Tcl program on a non-Windows client it is
necessary to use a Windows machine as a remote server. This may either be the Ixia chassis or
some other Windows client. When run on a Windows machine, the localhost specification
should be used. A catch { ... } construct is used to ensure that a matching disconnect
operation is invoked at the end of the script.

Chapter 3 API Overview

– 38 –

l A package require for the statistics utilities:

l to retrieve only the application protocol statistics, use the standard IxLoad package:
package require ixload

l to retrieve additional statistics such as network stack statistics and port CPU statistics, use the
ixloadcsv package:

package require ixloadcsv

When the script runs, the ixloadcsv package will run the IxLoad GUI in a hidden mode in the
background.

l Load the protocols needed for the test. A separate call to $ixAppload should be performed for
each protocol required. See the table below for the protocols and corresponding string to be
passed.

l Creation of a chassis chain to include a list of test related chassis.

l Creation of the top level ixTest object.

Protocol String to Pass

HTTP HTTP

FTP FTP

POP3 POP3

RTSP RTSP

IMAP IMAP

LDAP ldap

MGCP MGCP

QuickHTTP QuickHTTP

QuickTCP QuickTCP

SIP SIP

Telnet Telnet

Video Video

DDOS DDoS

DHCP dhcp

RADIUS radius

Chapter 3 API Overview

– 39 –

SSH ssh

Capture Replay capturereplay

Application Test verify

Vulnerability Attacks nessus

TFTP TFTP

l Creation of a chassis chain to include a list of test related chassis.

l Creation of the top level ixTest object.
#---# Set path
to find Tcl API#--
---set MY_IXLOAD_INSTALL "C:\\Program Files\\Ixia\\IxLoad"lappend ::auto_path [file
join $MY_IXLOAD_INSTALL "client" "tclext" "teepee" "stage"]

#---# Uncomment
the following if you'll be using the Ixia Standard Tcl API#-------------------------
--#set MY_IXTCLHAL_INSTALL "C:\\Program
Files\\Ixia\\TclScripts"#lappend ::auto_path [file join $MY_IXTCLHAL_INSTALL "lib"
"ixTcl1.0"]

#--# When
running on Unix clients, it's necessary to connect to a remote# server. For Windows
clients, this is unnecessary. In the line below,# change localhost to the IP address
of your remote server#--
--------::IxLoad connect localhost

This catch is used to ensure that we disconnect from the remote# server regardless
of how we exitcatch {

#--- #
package require the stat collection utilities #----------------------------------
------------------------------------- package require statCollectorUtils
global ixAppPluginManager $ixAppPluginManager load "HTTP"

#--- #
Build Chassis Chain #--
----------- set chassisName birdie set chassisChain [::IxLoad new
ixChassisChain] $chassisChain addChassis $chassisName

#--- #
Create the test #--
------- set test [::IxLoad new ixTest \ -name "my_test" \

Chapter 3 API Overview

– 40 –

-statsRequired 0 \ -enableResetPorts 0]

Step 2: Define the TrafficFlow
In this step, we create the TrafficFlow that will list the test scenario.

This involves:

l Creation of an ixTrafficFlow instance.

l Appending the client, server and DUT object of ixTrafficColumn.

#---

Create TrafficFlow

#---

set TrafficFlow1 [::IxLoad new ixTrafficFlow]

$TrafficFlow1 config \

-name "TrafficFlow1"

#---

Append client object

#---

$TrafficFlow1 columnList.appendItem -object $Client

set Client [::IxLoad new ixTrafficColumn]

$Client config \

-name "Client"

Step 3: Define the TrafficColumn
This is a container of ixNetTraffic and ixDut objects.

This involves:

l Creation of an ixTrafficColumn instance

l Defining and configuring client, server and DUT.

#---# Create the
client instance of ixTrafficColumn#---

Chapter 3 API Overview

– 41 –

set DUT [::IxLoad new ixTrafficColumn]$DUT config \-name
"DUT"

Step 4: Define the NetTraffic
This step involves the configuration of client and server activities, configuring traffic, mapping traffic to
network.

This involves:

l Creation of an ixNetTraffic instance

l Configuring traffic

l Configuring the client or server network

l Appending activityagent

l Defining and configuring the activity. For each protocol:

l Define and append an agent to its agentList.

l Perform protocol dependent settings; for example, add actions to the agent’s operation by
creating an instance of ixHttpAction and defining the options.

l Declare a timeline for each activity.

set HTTP_client_client_network [::IxLoad new ixNetTraffic]

#---# Activity
newAgent1 of NetTraffic HTTP client@client network#---------------------------------
--------------------------------------set Activity_newAgent1 [$HTTP_client_client_
network activityList.appendItem \-protocolAndType "HTTP
Client"]

#---# Defining
Activity newAgent1#---
------$Activity_newAgent1 config \-enable 1 \-name
"newClientActivity1" \-enableConstraint false \-
userObjectiveValue 100 \-constraintValue
100 \-userObjectiveType "simulatedUsers" \-timeline
$Timeline1

#---#
Configuring Activity newAgent1#---

Chapter 3 API Overview

– 42 –

$Activity_newAgent1 agent.config \-vlanPriority 0 \-
enableHttpsProxy 0 \-enableSsl
0 \-cookieRejectProbability 0.0 \-enableUnidirectionalClose
false \-ipPreference 2 \-loopValue
true \-maxPersistentRequests 1 \-enableEsm
0 \-certificate "" \-sequentialSessionReuse
0 \-tos 0 \-maxPipeline
1 \-maxHeaderLen 1024 \-maxSessions
3 \-enableHttpProxy 0 \-enableTos
false \-enable 1 \-browserEmulation
1 \-cookieJarSize 10 \-privateKey
"" \-privateKeyPassword "" \-urlStatsCount
10 \-followHttpRedirects 0 \-tcpCloseOption
0 \-enableVlanPriority false \-esm
1460 \-httpVersion 0 \-sslVersion
3 \-name "newClientActivity1" \-
enableCookieSupport 0 \-enableLargeHeader
false \-clientCiphers "DEFAULT" \-httpProxy
":80" \-keepAlive 0 \-httpsProxy
":443"

$Activity_newAgent1 agent.actionList.clear

#---

Add actions to this client agent
#---set my_

ixHttpAction [::IxLoad new ixHttpAction]$my_ixHttpAction config \

-profile -1 \

-namevalueargs "" \

-destination "HTTP server_newServerActivity1:80" \

-abort "None" \
-command "GET" \

-arguments "" \

-pageObject "/4k.html"

$Activity_newAgent1 agent.actionList.appendItem -object $my_ixHttpAction

Chapter 3 API Overview

– 43 –

Step 5: Define ixSubscriberNetTraffic
The ixSubscriberNetTraffic is a special type of NetTraffic that simulates the traffic patterns created
by residential customers that receive voice, video, and data service (Triple-play) over a single
physical connection (usually a cable or DSL connection).

A Subscriber NetTraffic allows you to control the interactions between protocols for each user. This
produces a traffic pattern that more accurately reproduces the pattern created by actual triple-play
customers.

This involves:

l Creation of an ixSubscriber NetTraffic instance

l Configuring an ixBandwidthLimit object

l The rest is similar to ixNetTraffic described in Step 4: Define the NetTraffic (see "Step 4:
Define the NetTraffic").

Step 6: Define the NetworkGroup
This step involves the global network configuration.

This involves:

l Creation of an ixNetworkGroup client and server network instance

l Clearing the global plugins list

set Network1 [::IxLoad new ixNetworkGroup $chassisChain]

$Network1 config \

-comment "" \

-name "Network1" \

-macMappingMode 1 \

-linkLayerOptions 0

$Network1 globalPlugins.clear

Step 7: Define the NetworkGroup
This step involves the network stack configuration.

This involves:

Chapter 3 API Overview

– 44 –

l Creating the network stack, including any extension protocols, appending the network stack
plugins to the global plugin list, and then configuring them.

l Configuring the global settings (Dynamic Control plane)

set Filter [::IxLoad new ixNetFilterPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $Filter

$Filter config \

-all false \

-pppoecontrol false \

-isis false \

-name "Filter" \

-auto true \

-udp "" \

-tcp "" \

-mac "" \

-pppoenetwork false \

-ip "" \

-icmp ""

set GratARP [::IxLoad new ixNetGratArpPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $GratARP

$GratARP config \

-enabled true \

-name "GratARP"

set TCP [::IxLoad new ixNetTCPPlugin]

ixNet objects needs to be added in the list before they are configured!

Chapter 3 API Overview

– 45 –

$Network1 globalPlugins.appendItem -object $TCP

$TCP config \

-name "TCP" \

-tcp_orphan_retries 0 \

-tcp_max_tw_buckets 180000 \

-tcp_wmem_default 4096 \

-tcp_low_latency 0 \

-tcp_rmem_min 4096 \

-tcp_adv_win_scale 2 \

-tcp_wmem_min 4096 \

-tcp_port_min 1024 \

-tcp_stdurg false \

-tcp_port_max 65535 \

-tcp_fin_timeout 60 \

-tcp_no_metrics_save false \

-tcp_dsack true \

-tcp_mem_high 49152 \

-tcp_frto 0 \

-tcp_app_win 31 \

-ip_no_pmtu_disc false \

-tcp_window_scaling false \

-tcp_max_orphans 8192 \

-tcp_mem_pressure 32768 \

-tcp_syn_retries 5

set DNS [::IxLoad new ixNetDnsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $DNS

$DNS config \

-domain "" \

Chapter 3 API Overview

– 46 –

-name "DNS" \

-timeout 5

$DNS hostList.clear

$DNS searchList.clear

$DNS nameServerList.clear

set Settings [::IxLoad new ixNetIxLoadSettingsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $Settings

$Settings config \

-teardownInterfaceWithUser false \

-name "Settings" \

-interfaceBehavior 0

set Ethernet_1 [$Network1 getL1Plugin]

$Ethernet_1 config \

-advertise10Full true \

-name "Ethernet-1" \

-autoNegotiate true \

-advertise100Half true \

-advertise10Half true \

-speed "k100FD" \

-advertise1000Full true \

-advertise100Full true \

Chapter 3 API Overview

– 47 –

$Ethernet_1 childrenList.clear

set MAC_VLAN_2 [::IxLoad new ixNetL2EthernetPlugin]

ixNet objects needs to be added in the list before they are configured!

$Ethernet_1 childrenList.appendItem -object $MAC_VLAN_2

$MAC_VLAN_2 config \

-name "MAC/VLAN-2"

$MAC_VLAN_2 childrenList.clear

set IP_3 [::IxLoad new ixNetIpV4V6Plugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_2 childrenList.appendItem -object $IP_3

$IP_3 config \

-name "IP-3"

$IP_3 childrenList.clear

$IP_3 extensionList.clear

$MAC_VLAN_2 extensionList.clear

$Ethernet_1 extensionList.clear

###

Setting the ranges starting with the plugin on top of the stack

###

$IP_3 rangeList.clear

Chapter 3 API Overview

– 48 –

set IP_R3 [::IxLoad new ixNetIpV4V6Range]

ixNet objects needs to be added in the list before they are configured!

$IP_3 rangeList.appendItem -object $IP_R3

$IP_R3 config \

-count 1 \

-name "IP-R3" \

-gatewayAddress "0.0.0.0" \

-enabled true \

-autoMacGeneration true \

-mss 1460 \

-incrementBy "0.0.0.1" \

-prefix 16 \

-gatewayIncrement "0.0.0.0" \

-gatewayIncrementMode "perSubnet" \

-generateStatistics false \

-ipAddress "10.10.0.4" \

-ipType "IPv4"

set MAC_R2 [$IP_R3 getLowerRelatedRange "MacRange"]

$MAC_R2 config \

-count 1 \

-name "MAC-R2" \

-enabled true \

-mtu 1500 \

-mac "00:0A:0A:00:04:00" \

-incrementBy "00:00:00:00:00:01"

set VLAN_R1 [$IP_R3 getLowerRelatedRange "VlanIdRange"]

Chapter 3 API Overview

– 49 –

$VLAN_R1 config \

-incrementStep 1 \

-uniqueCount 4094 \

-name "VLAN-R1" \

-innerIncrement 1 \

-innerUniqueCount 4094 \

-enabled true \

-innerFirstId 1 \

-increment 1 \

-priority 1 \

-firstId 1 \

-innerIncrementStep 1 \

-idIncrMode 2 \

-innerEnable false \

-innerPriority 1

Step 8: Define the NetworkRange
This step involves the creation of IP and MAC addresses.

This involves:

l Creation of an ixNetworkRange instance

l Configuring the network range used in a network
set Network_Range_1_in_client_network__198_18_0_1_100_ [::IxLoad new
ixNetworkRange]$Network_Range_1_in_client_network__198_18_0_1_100_ config \-
rangeType "Ethernet" \-vlanPriority
0 \-vlanEnable 0 \-innerVlanPriority
0 \-innerVlanUniqueCount 4094 \-innerVlanIncrStep
1 \-networkMask "255.255.0.0" \-vlanIncrStep
1 \-gateway "0.0.0.0" \-vlanIncrementMode
"inner-first" \-gatewayIncrStep "None" \-mssEnable
0 \-mss 1460 \-enableStats
false \-firstMac "00:C6:12:00:01:00" \-ipType
1 \-type 0 \-firstIp
"198.18.0.1" \-enable 1 \-vlanId
1 \-vlanCount 1 \-ipCount
100 \-vlanUniqueCount 4094 \-macIncrStep
"00:00:00:00:01:00" \-name "Network Range 1 in

Chapter 3 API Overview

– 50 –

client network (198.18.0.1+100)" \-innerVlanCount 1 \-
ipIncrStep "0.0.0.1" \-innerVlanId
1 \-innerVlanEnable false \-rxBandwidthLimit
$my_ixBandwidthLimit \-txBandwidthLimit $my_ixBandwidthLimit1

Step 9: Define the ixTimeline
This object configures the time in the test when the activities in the NetTraffics come online, and how
long they stay up for. It is also used to configure the test’s objectives. This involves:

l Creating an instance of ixTimeline object

l Configuring the timeline and objectives

###

Timeline1 for activities HTTPClient1

###

set Timeline1 [::IxLoad new ixTimeline]

$Timeline1 config \

-rampUpValue 10 \

-rampUpType 0 \

-offlineTime 0 \

-rampDownTime 20 \

-standbyTime 0 \

-iterations 1 \

-rampUpInterval 1 \

-sustainTime 20 \

-timelineType 0 \

-name "Timeline1"

Step 10: Prepare to Run the Test
In this step, we will perform all operations necessary before starting the actual test. This involves:

l Creating an instance of the ixTestController, defining where the results should be placed.

l Initializing the statCollectorUtils, by using its Initialize command.

Chapter 3 API Overview

– 51 –

l Clear all statistics with ClearStats.

l Add statistics that we are interested in via the AddStat command.

l Define a callback command to receive statistics update. A trivial routine is included in this
example.

#---

Create a test controller bound to the previously allocated

chassis chain. This will eventually run the test

we created earlier.

#---

set testController [::IxLoad new ixTestController -outputDir 1]

$testController setResultDir "[pwd]/RESULTS/simplehttpclientandserver"

###

Create the test controller to run the test

###

set testController [::IxLoad new ixTestController -outputDir True]

$testController setResultDir "[pwd]/RESULTS/simpleHTTP_3"

set NS statCollectorUtils

set test_server_handle [$testController getTestServerHandle]

${NS}::Initialize -testServerHandle $test_server_handle

${NS}::ClearStats

$Test1 clearGridStats

set HTTP_Client_Per_URL_StatList { \

{"HTTP Client Per URL" "HTTP Aborted After Request" "kMax"} \

{"HTTP Client Per URL" "HTTP Aborted Before Request" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed" "kMax"} \

Chapter 3 API Overview

– 52 –

{"HTTP Client Per URL" "HTTP Requests Failed (400)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (401)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (403)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (407)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (408)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (4xx other)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (4xx)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (505)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (5xx other)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (5xx)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Aborted)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Bad Header)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Read)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Timeout)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Failed (Write)" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Sent" "kMax"} \

{"HTTP Client Per URL" "HTTP Requests Successful" "kMax"} \

{"HTTP Client Per URL" "HTTP Responses Received With Match" "kMax"} \

{"HTTP Client Per URL" "HTTP Responses Received Without Match" "kMax"} \

}

set HTTP_Client_StatList { \

{"HTTP Client" "Client Hello Sent" "kMax"} \

{"HTTP Client" "HTTP Aborted After Request" "kMax"} \

{"HTTP Client" "HTTP Aborted Before Request" "kMax"} \

{"HTTP Client" "HTTP Bytes" "kMax"} \

{"HTTP Client" "HTTP Bytes Received" "kMax"} \

{"HTTP Client" "HTTP Bytes Sent" "kMax"} \

{"HTTP Client" "HTTP Concurrent Connections" "kMax"} \

{"HTTP Client" "HTTP Connect Time (us)" "kAverageRate"} \

{"HTTP Client" "HTTP Connection Attempts" "kMax"} \

Chapter 3 API Overview

– 53 –

{"HTTP Client" "HTTP Connections" "kMax"} \

{"HTTP Client" "HTTP Content Bytes Received" "kMax"} \

{"HTTP Client" "HTTP Content Bytes Sent" "kMax"} \

{"HTTP Client" "HTTP Cookie headers Rejected - (Memory Overflow)" "kMax"} \

{"HTTP Client" "HTTP Cookies Received" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected - (Cookiejar Overflow)" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected - (Domain Match Failed)" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected - (Path Match Failed)" "kMax"} \

{"HTTP Client" "HTTP Cookies Rejected - (Probabilistic Reject)" "kMax"} \

{"HTTP Client" "HTTP Cookies Sent" "kMax"} \

{"HTTP Client" "HTTP Requests Failed" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (400)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (401)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (403)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (407)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (408)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (4xx other)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (4xx)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (505)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (5xx other)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (5xx)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Aborted)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Bad Header)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Read)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Timeout)" "kMax"} \

{"HTTP Client" "HTTP Requests Failed (Write)" "kMax"} \

{"HTTP Client" "HTTP Requests Sent" "kMax"} \

{"HTTP Client" "HTTP Requests Successful" "kMax"} \

{"HTTP Client" "HTTP Session Timeouts (408)" "kMax"} \

Chapter 3 API Overview

– 54 –

{"HTTP Client" "HTTP Sessions Rejected (503)" "kMax"} \

{"HTTP Client" "HTTP Simulated Users" "kSum"} \

{"HTTP Client" "HTTP Time To First Byte (us)" "kAverageRate"} \

{"HTTP Client" "HTTP Time To Last Byte (us)" "kAverageRate"} \

{"HTTP Client" "HTTP Transactions" "kMax"} \

{"HTTP Client" "HTTP Transactions Active" "kMax"} \

{"HTTP Client" "HTTP Users Active" "kMax"} \

{"HTTP Client" "SSL Alerts Received" "kMax"} \

{"HTTP Client" "SSL Alerts Received (access_denied)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (bad_certificate)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (bad_record_mac)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (certificate_expired)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (certificate_revoked)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (certificate_unknown)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (close_notify)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decode_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decompression_failure)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decrypt_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (decryption_failed)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (export_restriction)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (handshake_failure)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (illegal_parameter)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (insufficient_security)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (internal_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (no_certificate)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (no_renegotiation)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (protocol_version)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (record_overflow)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (unexpected_message)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (unknown_ca)" "kMax"} \

{"HTTP Client" "SSL Alerts Received (unsupported_certificate)" "kMax"} \

Chapter 3 API Overview

– 55 –

{"HTTP Client" "SSL Alerts Received (user_canceled)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (access_denied)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (bad_certificate)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (bad_record_mac)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (certificate_expired)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (certificate_revoked)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (certificate_unknown)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (close_notify)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (decode_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (decompression_failure)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (decrypt_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (decryption_failed)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (export_restriction)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (handshake_failure)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (illegal_parameter)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (insufficient_security)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (internal_error)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (no_certificate)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (no_renegotiation)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (protocol_version)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (record_overflow)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (unexpected_message)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (unknown_ca)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (unsupported_certificate)" "kMax"} \

{"HTTP Client" "SSL Alerts Sent (user_canceled)" "kMax"} \

{"HTTP Client" "SSL Bytes Received" "kMax"} \

{"HTTP Client" "SSL Bytes Sent" "kMax"} \

{"HTTP Client" "SSL Concurrent Sessions" "kMax"} \

{"HTTP Client" "SSL Errors Received" "kMax"} \

{"HTTP Client" "SSL Errors Received (bad certificate)" "kMax"} \

Chapter 3 API Overview

– 56 –

{"HTTP Client" "SSL Errors Received (no certificate)" "kMax"} \

{"HTTP Client" "SSL Errors Received (no cipher)" "kMax"} \

{"HTTP Client" "SSL Errors Received (undefined error)" "kMax"} \

{"HTTP Client" "SSL Errors Received (unsupported certificate)" "kMax"} \

{"HTTP Client" "SSL Errors Sent" "kMax"} \

{"HTTP Client" "SSL Errors Sent (bad certificate)" "kMax"} \

{"HTTP Client" "SSL Errors Sent (no certificate)" "kMax"} \

{"HTTP Client" "SSL Errors Sent (no cipher)" "kMax"} \

{"HTTP Client" "SSL Errors Sent (undefined error)" "kMax"} \

{"HTTP Client" "SSL Errors Sent (unsupported certificate)" "kMax"} \

{"HTTP Client" "SSL Negotiation Finished Successfuly" "kMax"} \

{"HTTP Client" "SSL Session Reuse Failed" "kMax"} \

{"HTTP Client" "SSL Session Reuse Success" "kMax"} \

{"HTTP Client" "SSL Throughput Bytes" "kMax"} \

{"HTTP Client" "Server Hello Received" "kMax"} \

{"HTTP Client" "TCP Accept Queue Entries" "kMax"} \

{"HTTP Client" "TCP Connection Requests Failed" "kMax"} \

{"HTTP Client" "TCP Connections Established" "kMax"} \

{"HTTP Client" "TCP Connections in CLOSE STATE" "kMax"} \

{"HTTP Client" "TCP Connections in CLOSE-WAIT State" "kMax"} \

{"HTTP Client" "TCP Connections in CLOSING State" "kMax"} \

{"HTTP Client" "TCP Connections in ESTABLISHED State" "kMax"} \

{"HTTP Client" "TCP Connections in FIN-WAIT-1 State" "kMax"} \

{"HTTP Client" "TCP Connections in FIN-WAIT-2 State" "kMax"} \

{"HTTP Client" "TCP Connections in LAST-ACK State" "kMax"} \

{"HTTP Client" "TCP Connections in LISTENING State" "kMax"} \

{"HTTP Client" "TCP Connections in SYN-RECEIVED State" "kMax"} \

{"HTTP Client" "TCP Connections in SYN-SENT State" "kMax"} \

{"HTTP Client" "TCP Connections in TIME-WAIT State" "kMax"} \

{"HTTP Client" "TCP FIN Received" "kMax"} \

{"HTTP Client" "TCP FIN Sent" "kMax"} \

Chapter 3 API Overview

– 57 –

{"HTTP Client" "TCP FIN-ACK Received" "kMax"} \

{"HTTP Client" "TCP FIN-ACK Sent" "kMax"} \

{"HTTP Client" "TCP Listen Queue Drops" "kMax"} \

{"HTTP Client" "TCP Resets Received" "kMax"} \

{"HTTP Client" "TCP Resets Sent" "kMax"} \

{"HTTP Client" "TCP Retries" "kMax"} \

{"HTTP Client" "TCP SYN Failed" "kMax"} \

{"HTTP Client" "TCP SYN Sent" "kMax"} \

{"HTTP Client" "TCP SYN-ACK Sent" "kMax"} \

{"HTTP Client" "TCP SYN_SYN-ACK Received" "kMax"} \

{"HTTP Client" "TCP Timeouts" "kMax"} \

}

set HTTP_Server_Per_URL_StatList { \

{"HTTP Server Per URL" "HTTP Requests Failed" "kMax"} \

{"HTTP Server Per URL" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Server Per URL" "HTTP Requests Failed (50x)" "kMax"} \

{"HTTP Server Per URL" "HTTP Requests Failed (Write Error)" "kMax"} \

{"HTTP Server Per URL" "HTTP Requests Received" "kMax"} \

{"HTTP Server Per URL" "HTTP Requests Successful" "kMax"} \

}

set HTTP_Server_StatList { \

{"HTTP Server" "Client Hello Received" "kMax"} \

{"HTTP Server" "HTTP Bytes Received" "kMax"} \

{"HTTP Server" "HTTP Bytes Sent" "kMax"} \

{"HTTP Server" "HTTP Content Bytes Received" "kMax"} \

{"HTTP Server" "HTTP Content Bytes Sent" "kMax"} \

{"HTTP Server" "HTTP Cookies Received" "kMax"} \

{"HTTP Server" "HTTP Cookies Received With Matching ServerID" "kMax"} \

{"HTTP Server" "HTTP Cookies Received With Non-matching ServerID" "kMax"} \

Chapter 3 API Overview

– 58 –

{"HTTP Server" "HTTP Cookies Sent" "kMax"} \

{"HTTP Server" "HTTP Requests Failed" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (404)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (50x)" "kMax"} \

{"HTTP Server" "HTTP Requests Failed (Write Error)" "kMax"} \

{"HTTP Server" "HTTP Requests Received" "kMax"} \

{"HTTP Server" "HTTP Requests Successful" "kMax"} \

{"HTTP Server" "HTTP Session Timeouts (408)" "kMax"} \

{"HTTP Server" "HTTP Sessions Rejected (503)" "kMax"} \

{"HTTP Server" "HTTP Transactions Active" "kMax"} \

{"HTTP Server" "SSL Alerts Received" "kMax"} \

{"HTTP Server" "SSL Alerts Received (access_denied)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (bad_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (bad_record_mac)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (certificate_expired)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (certificate_revoked)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (certificate_unknown)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (close_notify)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decode_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decompression_failure)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decrypt_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (decryption_failed)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (export_restriction)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (handshake_failure)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (illegal_parameter)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (insufficient_security)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (internal_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (no_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (no_renegotiation)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (protocol_version)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (record_overflow)" "kMax"} \

Chapter 3 API Overview

– 59 –

{"HTTP Server" "SSL Alerts Received (unexpected_message)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (unknown_ca)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (unsupported_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Received (user_canceled)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (access_denied)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (bad_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (bad_record_mac)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (certificate_expired)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (certificate_revoked)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (certificate_unknown)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (close_notify)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decode_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decompression_failure)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decrypt_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (decryption_failed)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (export_restriction)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (handshake_failure)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (illegal_parameter)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (insufficient_security)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (internal_error)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (no_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (no_renegotiation)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (protocol_version)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (record_overflow)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (unexpected_message)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (unknown_ca)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (unsupported_certificate)" "kMax"} \

{"HTTP Server" "SSL Alerts Sent (user_canceled)" "kMax"} \

{"HTTP Server" "SSL Bytes Received" "kMax"} \

{"HTTP Server" "SSL Bytes Sent" "kMax"} \

Chapter 3 API Overview

– 60 –

{"HTTP Server" "SSL Concurrent Sessions" "kMax"} \

{"HTTP Server" "SSL Errors Received" "kMax"} \

{"HTTP Server" "SSL Errors Received (bad certificate)" "kMax"} \

{"HTTP Server" "SSL Errors Received (no certificate)" "kMax"} \

{"HTTP Server" "SSL Errors Received (no cipher)" "kMax"} \

{"HTTP Server" "SSL Errors Received (undefined error)" "kMax"} \

{"HTTP Server" "SSL Errors Received (unsupported certificate)" "kMax"} \

{"HTTP Server" "SSL Errors Sent" "kMax"} \

{"HTTP Server" "SSL Errors Sent (bad certificate)" "kMax"} \

{"HTTP Server" "SSL Errors Sent (no certificate)" "kMax"} \

{"HTTP Server" "SSL Errors Sent (no cipher)" "kMax"} \

{"HTTP Server" "SSL Errors Sent (undefined error)" "kMax"} \

{"HTTP Server" "SSL Errors Sent (unsupported certificate)" "kMax"} \

{"HTTP Server" "SSL Negotiation Finished Successfuly" "kMax"} \

{"HTTP Server" "SSL Session Reuse Failed" "kMax"} \

{"HTTP Server" "SSL Session Reuse Success" "kMax"} \

{"HTTP Server" "SSL Throughput Bytes" "kMax"} \

{"HTTP Server" "Server Hello Sent" "kMax"} \

{"HTTP Server" "TCP Accept Queue Entries" "kMax"} \

{"HTTP Server" "TCP Connection Requests Failed" "kMax"} \

{"HTTP Server" "TCP Connections Established" "kMax"} \

{"HTTP Server" "TCP Connections in CLOSE STATE" "kMax"} \

{"HTTP Server" "TCP Connections in CLOSE-WAIT State" "kMax"} \

{"HTTP Server" "TCP Connections in CLOSING State" "kMax"} \

{"HTTP Server" "TCP Connections in ESTABLISHED State" "kMax"} \

{"HTTP Server" "TCP Connections in FIN-WAIT-1 State" "kMax"} \

{"HTTP Server" "TCP Connections in FIN-WAIT-2 State" "kMax"} \

{"HTTP Server" "TCP Connections in LAST-ACK State" "kMax"} \

{"HTTP Server" "TCP Connections in LISTENING State" "kMax"} \

{"HTTP Server" "TCP Connections in SYN-RECEIVED State" "kMax"} \

{"HTTP Server" "TCP Connections in SYN-SENT State" "kMax"} \

Chapter 3 API Overview

– 61 –

{"HTTP Server" "TCP Connections in TIME-WAIT State" "kMax"} \

{"HTTP Server" "TCP FIN Received" "kMax"} \

{"HTTP Server" "TCP FIN Sent" "kMax"} \

{"HTTP Server" "TCP FIN-ACK Received" "kMax"} \

{"HTTP Server" "TCP FIN-ACK Sent" "kMax"} \

{"HTTP Server" "TCP Listen Queue Drops" "kMax"} \

{"HTTP Server" "TCP Resets Received" "kMax"} \

{"HTTP Server" "TCP Resets Sent" "kMax"} \

{"HTTP Server" "TCP Retries" "kMax"} \

{"HTTP Server" "TCP SYN Failed" "kMax"} \

{"HTTP Server" "TCP SYN Sent" "kMax"} \

{"HTTP Server" "TCP SYN-ACK Sent" "kMax"} \

{"HTTP Server" "TCP SYN_SYN-ACK Received" "kMax"} \

{"HTTP Server" "TCP Timeouts" "kMax"} \

}

set statList [concat \

$HTTP_Client_Per_URL_StatList \

$HTTP_Client_StatList \

$HTTP_Server_Per_URL_StatList \

$HTTP_Server_StatList \

]

set count 1

foreach statItem $statList {

set caption [format "Watch_Stat_%s" $count]

set statSourceType [lindex $statItem 0]

set statName [lindex $statItem 1]

set aggregationType [lindex $statItem 2]

${NS}::AddStat \

Chapter 3 API Overview

– 62 –

-caption $caption \

-statSourceType $statSourceType \

-statName $statName \

-aggregationType $aggregationType \

-filterList {}

incr count

}

proc ::my_stat_collector_command {args} {

puts "====================================="

puts "INCOMING STAT RECORD >>> $args"

puts "Len = [llength $args]"

puts [lindex $args 0]

puts [lindex $args 1]

puts "====================================="

}

${NS}::StartCollector -command ::my_stat_collector_command

Step 11: Start the Test
In this step, we’ll actually start and stop the test. The steps involved are:

l Start the statistics collector using StartCollector.

l Use the ixTestController instance to run the test.

l Wait for the test complete.

l Stop the statistics collector using StopCollector.

l Disconnect from the remote server. See Initial Overhead for more details.
${NS}::StartCollector -command ::my_stat_collector_command

#---# Run the
test#---
$testController run $test

Chapter 3 API Overview

– 63 –

#---# have the
script (v)wait until the test is over#--
-------------------------vwait ::ixTestControllerMonitor;puts
$::ixTestControllerMonitor

#---# Stop the
collector (running in the tcl event loop)#--
-----------------------------${NS}::StopCollector

#---# Cleanup#--
---$testController
generateReport -detailedReport 1 -format "PDF;HTML"

$testController releaseConfigWaitFinish::IxLoad delete $chassisChain::IxLoad delete
$clnt_network::IxLoad delete $svr_network::IxLoad delete $clnt_traffic::IxLoad
delete $svr_traffic::IxLoad delete $clnt_t_n_mapping::IxLoad delete $svr_t_n_
mapping::IxLoad delete $test::IxLoad delete $testController::IxLoad delete
$logger::IxLoad delete $logEngine

#---#
Disconnect#---}]
{ puts $errorInfo}## Disconnect/Release application lock#::IxLoad disconnect

Stopping a Test by Pressing Enter
You can configure a test to stop when the ENTER key is pressed. See below is the sample code.

For an example of a complete script that stops when ENTER is pressed, see the sample script
C:\Program Files\Ixia\IxLoad\Client\TclApi\Samples\simplehttp-abortrun.tcl .

#---# configure
stdin for polling#--
-----fconfigure stdin -blocking 0 -buffering none# wait for the first sample or test
stopwhile {$::ixTestControllerMonitor == "" && [read stdin] == ""} { after 100
set wakeup 1 # the script must call vwait or update while test runs # to keep
TCL event loop going. Otherwise, no stat collector # callbacks will be made, and
ixTestControllerMonitor will # never be set. vwait wakeup}#-------------------
--# if aborted, then stop test
gracefully#---if
{$::ixTestControllerMonitor == ""} { puts "" puts "!!!Aborting test at

Chapter 3 API Overview

– 64 –

earliest opportunity!!!" puts "" # stop the run $testController stopRun
(v)wait until the test really stops # vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor}## Stop the collector#${NS}::StopCollector#---------
--# Cleanup#------------

Running an IxLoad Tcl Script
The following sections describe how to run an IxLoad Tcl script test.

Windows (see "Windows") describes how to run a script on Windows.

Unix / Linux (see "Unix / Linux") describes how to run a script on Unix/Linux.

Windows
To run an IxLoad Tcl script, you can use either of the following Tcl shells:

l Wish shell: C:\Program Files\Ixia\Tcl\<version>\bin\wish.exe

l Tcl shell: C:\Program Files\Ixia\Tcl\<version>\bin\tclsh.exe

The IxLoad TCL code resides under C:\Program Files\Ixia\IxLoad\<version>\TclScripts. The code in
the setup_ixload_paths.tcl script used in earlier releases is no longer used. Instead, the current
method used by all Ixia applications is to source TclScripts\bin\IxiaWish.tcl for the application,
and follow that with a package require command.

Note: If more than one version of IxLoad is installed, the package require command uses
the highest-numbered version. To select a different version, include the complete version
number in the command. For example:

package require ixload 4.20.0.88

Chapter 3 API Overview

– 65 –

Unix / Linux
To run an IxLoad Tcl script on Unix/Linux:

l You must use the ixwish shell or IxTclsh provided in the bin directory of the IxOS installation.

l You must install the IxOS Unix Tcl Client, and the IxLoad Unix Tcl client.

The package require command used in the sample scripts will only succeed if you have a version of
IxLoad installed on the Unix/Linux machine that matches the one you request in the package require
statement, and the environment is set up correctly

For multiversion support on Unix / Linux, the installer creates a lib/IxLoad<version> directory with a
pkgIndex.tcl for each version of IxLoad that you install. The version number is the same one reported
to TCL when the package is required. All normal package require logic applies to this.

Note: If more than one version of IxLoad is installed, the package require command uses
the highest-numbered version. To select a different version, include the complete version
number in the command. For example:

package require ixload 4.20.0.88

l You must install and run the IxLoad client on a Windows machine. When you run the TCL scripts
on the Unix/Linux host, the TCL scripts are sent to the Windows machine and executed there. The
results are also saved on the Windows host.

Chapter 3 API Overview

– 66 –

Ixia Tcl Server must be running on a Windows-based host, not the chassis.The Tcl Server machine is
specified in a call to connect in the ::IxLoad command. The ::IxLoad connect call will only
succeed if the specified client is:

l Running a compatible Tcl Server (release notes will detail the IxOS version that is compatible
with a particular IxLoad version),

l Has the identical version of IxLoad installed that was actually loaded by the package require
statement on the Unix machine (i.e. returned by the Unix package require IxLoad command).

l The ::IxLoad connect command also performs the IxOS ixConnectToTclServer, so a separate
call is not necessary to access the ixTclHal commands on the client machine.

Maximum Numbers of Scripts That Can Be Run
A maximum of four instances of IxLoad can run on a Windows client PC.

l Each copy of the IxLoad GUI counts as 2 instances.

l Each Tcl script counts as 1 instance.

If you receive the following error:
Error: exceptions.Exception: Already running maximum allowed copies of IxLoad.

the most likely cause is running more scripts than allowed (that is, from multiple shells or in the
background).

Unix Tcl scripts are executed on the Windows client PC. If a Unix script is terminated (killed), the
Windows client might take a few seconds to notice and kill the corresponding tclsh, but it still counts
as a copy of IxLoad until the tclsh is killed.

Scripts running on the Windows client do not launch their own tclsh, but still count as an instance. If a
Windows Tcl script running in wish crashes during execution, it still counts as a running copy until the
wish shell is killed.

Chapter 3 API Overview

– 67 –

Modifying Older Scripts
Multi-version support enables you to install multiple versions of IxLoad on the same client PC. Multi-
version support was added to IxLoad beginning with release 3.40. If you want to run a non-
multiversion (pre-3.40) script in a multi-version release, you must modify it.

To modify a multi-version script:

1. Open the script in an editor.

2. Remove following code from the old script:
if {$::tcl_platform(platform) == "windows"} {package require registry 1set ::_
IXLOAD_INSTALL_ROOT [registry get {HKEY_LOCAL_MACHINE\Software\Ixia
Communications\IxLoad\InstallInfo} HOMEDIR]set ::_IXLOAD_PKG_DIR [file join $::_
IXLOAD_INSTALL_ROOT Client tclext teepee stage]lappend ::auto_path $::_IXLOAD_PKG_
DIR}

3. Replace the removed code with either of the following lines (replace <version> with the IxLoad
version number):

source "C:\\Program Files\\Ixia\\IxLoad\\<version>\\TclScripts\\bin\\IxiaWish.tcl"
source "C:\\Program Files\\Ixia\\IxLoad\\<version>\\TclScripts\\bin\\IxiaWish.tcl"

4. Save and close the file.

API Description
The following sections of this chapter are an overview of the Tcl API, by topic. They are described in
the same order as the suggested steps in Building an IxLoad Test.

l Network Commands—Defines the client and server networks.

l ixNetworkGroup—Configure the global network.

l ixChassisChain—Indicates the chassis that are used in the test.
DUT Commands

l ixDut—Creates a DUT entry.
Traffic Commands

l ixNetTraffic—Configures client and server traffic.

l activityList—Generates traffic for one side of a particular protocol.

l ixTimeline—Configures the time in the test when the activities in the NetTraffics come online,
and how long they stay up for. It is also used to configure the test’s objectives.
Test Structure Commands

l ixTimeline—Configures the timeline and objectives for client and server.

l ixTest—Creates a complete test structure.

l ixView—Configures capture options in test repositories.

l ixTrafficFlow—Lists the test scenario.

l ixTrafficColumn—A container of ixNetTraffic and ixDut objects.

Chapter 3 API Overview

– 68 –

Test Operation Commands

l ixTestController—Starts and stops test.

l ixTestControllerMonitor—A global variable to watch for test completion.

l statCollectorUtils—Utilities for collecting statistics.

Reference pages for each of the IxLoad Tcl API commands are included in the following chapters:

l IxLoad Tcl API Commands. This includes a discussion of the most often used commands.

l IxLoad Tcl API Internal Commands. This includes a discussion of the behind-the-scenes
commands on which most other commands are based.

l Each of the remaining chapters describes one of the supported protocols.

The remainder of this section is an overview of these commands, including brief descriptions of
command operation, options, and subcommands.

Network Commands
The commands in this section are the high-level used to create the networks used to support client and
server traffic. There are minor differences between client and server net

The bulk of the network-related commands are described in the Network Stack API section.

ixNetworkGroup

The ixNetworkGroup command is used to construct a client or server network, which is used as part of
an ixNetTraffic object. A chassis chain object, as created in the ixChassisChain command, must
be used in the construction of this object.

A list of network ranges, as defined in the ixNetworkRange object is associated with the client
network. Network ranges are added to the client network through the use of the
networkRangeList.appendItem command.

A list of Ixia ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associated with the network
through the emulatedRouterIpAddressPool option. The pool is defined in the
ixEmulatedRouterIpAddressRange object. These are added to the object through the use of the em
command.

Refer to ixNetworkGroup for a full description of this command. The important subcommands and
options of this command are listed below.

ixClientNetwork Subcommands

Chapter 3 API Overview

– 69 –

Subcommand Usage

checkConfig Checks the configuration of this object, raising an exception in the case of an error.

reset Disassociates the network from all of the Ixia ports used in this network.

ixClientNetwork Options

Option Usage

name The name associated with this object.

networkRangeList The networks that are defined for this object—a list of ixNetworkRange objects.

portList The Ixia ports that will carry traffic for this network.

cardType The card type for all of the ports in this network. Cards of a similar type must be
used for all ports in a network. The cardType option is now used only for
error/diag messages, and is automatically selected. Please refer to cardType
for the list of card types.

macMappingMode Indicates whether one MAC address will be associated with each IP address or
with each Ixia port. The use of the latter option indicates that an emulated
router is to be used.

emulatedRouterIp
AddressPool

If the macMappingMode indicates that one MAC is used per port, then this is a
list of addresses ranges— a list of ixEmulatedRouterIpAddressRange objects.

emulatedRouter
Gateway

If the macMappingMode indicates that one MAC is used per port, then this is the
gateway for the emulated router.

dnsParameters An object of type ixDns, which defines DNS operation for this network.

arpSettings An object of type ixArpSettings, which defines ARP operation for this network.

tcpParameters An object of type ixTcpParameters, which defines TCP options for this network.

impairment An object of type ixImpairment, which Impairs one or more types of traffic from
a client and server network.

Chapter 3 API Overview

– 70 –

ixChassisChain

Before defining client and server networks, it is necessary to define a chassis chain. This command is
used to construct a chain of Ixia chassis, whose ports may be used in the ixNetworkGroup command.
Chassis are assigned chassis IDs starting at 1; these are used in the network commands to define the
chassis associated with the port.

Refer to ixChassisChain for a full description of this command. The important subcommands of this
command are listed in the table below.

Subcommand Usage

addChassis Adds a chassis, by name or address, to the chassis chain.

setLoginName
getLoginName

Sets and retrieves the user login name.

isValidChassisName Checks to see whether a chassis name/address is valid.

getChassisNames Returns the names of all of the chassis, ordered by their chassis IDs.

deleteChassisByName Deletes a chassis, by name, from the list. The IDs of other chassis remain
unaffected.

refresh
refreshChassis

Rereads chassis information from one or all chassis.

ixEmulatedRouterIpAddressRange

The ixEmulatedRouterIpAddressRange command is used to construct an list of IP addresses
assigned on a per-port basis for emulated routers, as used in the ixNetworkGroup command.

Refer to ixEmulatedRouterIpAddressRange for a full description of this command. The important
options of this command are listed below.

ixEmulatedRouterIpAddressRange Options

Option Usage

enable Enables the use of this address range.

ipType Type of address (IPv4 or IPv6).

firstIp Controls the range of IP addresses generated.

Chapter 3 API Overview

– 71 –

lastIp

networkMask The network mask for the IP addresses.

ixDns

The ixDns command is used to define DNS behavior on a network. A DNS object is set through the
dnsParameters option of the ixNetworkGroup object.

Refer to ixDns for a full description of this command. The important options of this command are listed
below:
ixDns Options

Option Usage

enable Enables the use of this DNS specification.

serverList A list of DNS servers to check at run time. This list consists of items of type
ixDnsServerItem.

suffixList A list of DNS suffixes to add to partial host names. This list consists of items of type
ixDnsSuffixList.

cacheTimeout The time-out value used for cached DNS lookups.

ixDnsServerItem

The ixDnsServerItem command is used to define a DNS server on a network. A DNS server item
object is appended to the serverList option of the ixDns object. For example,

set dns [::IxLoad new ixDns options...]
$test.dns.serverList appendItem \
-data192.168.3.1

Refer to ixDnsServerItem on page 4-36 for a full description of this command. The important options
of this command are listed below.

ixDnsServerItem Options

Option Usage

data The IP address of a DNS server.

Chapter 3 API Overview

– 72 –

ixDnsSuffixList

The ixDnsSuffixItem command is used to define a DNS suffix. A DNS suffix item object is appended
to the suffixList option of the ixDns object. For example,

set dns [::IxLoad new ixDns options...]
$test.dns.suffixList appendItem \
-data“.ixiacom.com”

Refer to ixDnsServerItem for a full description of this command. The important options of this
command are:

ixDnsSuffixItem Options

Option Usage

data A domain name suffix.

ixTcpParameters

The ixTcpParameters command is used to define TCP options on a network. A TCP parameters object
is set in the tcpParameters option of an ixNetworkGroup object.

Refer to ixTcpParameters for a full description of this command. A wide range of low level TCP options
are exposed in this command.

ixEmulatedRouterIpAddressRange

The ixEmulatedRouterIpAddressRange command is used to construct an list of IP addresses
assigned on a per-port basis for emulated routers, as used in the ixNetworkGroup command for both
client and server.

Refer to ixEmulatedRouterIpAddressRange for a full description of this command.

DUT Commands
In many cases, it is not necessary to define your DUT in an IxLoad test. Two cases are necessary,
however:

Chapter 3 API Overview

– 73 –

l If your DUT is a Server Load Balancer (SLB) and the IP address of the DUT itself is the destination
of client requests.

l If your DUT is a caching device, and direct server return is desired.

ixDut

The ixDut command is used to define a DUT used in the test. The DUTs are used to resolve symbolic
references to them in traffic destinations in the various protocol agents. It also controls several DUT
specific features.

Refer to ixDut for a full description of this command. The important options of this command are listed
below.
ixDut Options

Option Usage

name The name associated with the DUT.

type The type of the DUT—external server, SLB or firewall.

ipAddress The IP address, virtual IP address, or host name to be used to access the DUT.

serverNetwork If the DUT is an SLB, this is the network that will be balanced.

enableDirectServer
Return

If the DUT is an SLB, this option allows balanced servers to send their return
traffic directly back to the source of the request.

Traffic Commands
The commands in this section relate to the generation of traffic by clients and the handling of traffic by
servers.

ixNetTraffic

The ixNetTraffic command is used to configure client or server traffic. Two separate ixNetTraffic
objects have to be created for client and server traffic. The ixNetTraffic configuration also declares the
ixNetworkGroup object. The activityList is appended to the ixNetTraffic object.

Refer to ixNetTraffic for a full description of this command.

Chapter 3 API Overview

– 74 –

activityList

Generates traffic for one side of a particular protocol. For example, an HTTP client Activity generates
HTTP client requests, simulating a web browser. The activityList is appended to the ixNetTraffic
object.

Refer to activityList for a full description of this command.

ixTimeline

Configures the time in the test when the activities in the NetTraffics come online, and how long they
stay up for. It is also used to configure the test’s objectives. The ixTimeline object is added to the
timeline options of the activityList config.

Refer to ixTimeline for a full description of this command.

Test Structure Commands
The commands in this section coordinate networks with traffic into communities, and communities into
an entire test structure. These commands also define the operational parameters of the test.

ixTest

The ixTest command is used to construct a complete IxLoad test structure. It consist of a list of client
traffic-network and server traffic-network mappings, called communities. In addition to the two lists,
several options control global operations. An ixTest command is used in conjunction with a
ixTestController to operthe test and collect statistics.

A test is generally built via:

set test [::IxLoad new IxTest -name “my_test”]
$test clientCommunityList.appendItem -object $my_clients
$test serverCommunityList.appendItem -object $my_servers

Refer to ixTest for a full description of this command.

ixView

Configures capture options in test repositories. It is added as an object instance to the
captureViewOptions in ixTest.

Refer to ixView for a full description of this command.

Chapter 3 API Overview

– 75 –

ixTrafficFlow

Lists the test scenario. The ixTrafficFlow command is used to list the test scenarios. Traffic Flow
object is appended to the ixTest object.

Refer to ixTrafficFlow for a full description of this command.

ixTrafficColumn

This is a container of ixNetTraffic and ixDut objects.

Refer to ixTrafficColumn for a full description of this command.

Test Operation Commands
The commands in this section relate to the actual test and statistics gathering operations.

ixTestController

The ixTestController command is used to setup, start, and stop an IxLoad test. It references the
ixTest object in its run subcommand.

Refer to ixTestController for a full description of this command. The important subcommands and
options of this command are listed below:

ixTestController Subcommands

Subcommand Usage

run Run the test. The name of an ixTest object is a required argument.

setResultDir Specifies the location of where CSV files from the run are saved.

isBusy Returns true while the test is running.

getTestServerHandle Returns a value necessary for the statistics collection routines.

releaseConfigWaitFinish Releases all IxLoad configurations and waits for it to complete.

Beginning with the IxLoad 8.00 release, releaseConfigWaitFinish will
no longer be included in scripts created by ScriptGen.

Instead, the following code will be included:

$testController releaseConfig

Chapter 3 API Overview

– 76 –

vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor

This new method is asnychronous, meaning that after it is called, a script
can execute other code between the call for releaseConfig and the
vwait statement.

Existing scripts that use releaseConfigWaitFinish will continue to
function as before.

generateReport Generates report from TCL.

ixTestController Options

Options Usage

outputDir This should be set to a non-null value if you wish to save statistics in CSV files during
the run. The actual directory used is set in the setResultDir subcommand.

ixTestControllerMonitor

This is a global variable whose state may be used in a vwait to determine when a test has completed.
Refer to ixTestControllerMonitor for a full description of this command.

statCollectorUtils

The statCollectorUtils is a library containing several commands to gather statistics during a test
run. Refer to statCollectorUtils on page for a full description of this library. The important
commands of this library are:

statCollectorUtils Commands

Subcommand Usage

Initialize Initializes the statistics utility package. Requires the result of a call to
ixTest getTestServerHandle.

Chapter 3 API Overview

– 77 –

AddStat Adds a statistic to the list of desired statistics to follow.

AddL2L3Stat Adds a Layer 2 or 3 statistic to the list of desired statistics to follow.

AddNetworkStat Adds a dynamic range network statistic to the list of desired statistics to
follow.

AddPerInterfaceStat Adds a per-range network statistic to the list of desired statistics to
follow.

AddSIPPerStreamStat Adds a SIP per-stream statistic to the list of desired statistics to follow.

AddVideoPerStreamStat Adds a video per-stream statistic to the list of desired statistics to follow.

ClearStats Clears the statistics values from any previous run.

StartCollector Starts the statistics gathering process. The name of a user’s callback
command is passed in here.

StopCollector Stops the statistics gathering process.

Debugging
During the normal operation of the Tcl API, only errors and warnings are logged. To increase the level
of debugging, you should use the following code fragment:

set logtag "IxLoad-api"

set logName "simplehttpclientandserver"

set logger [$::CMD new ixLogger $logtag 1]

set logEngine [$logger getEngine]

$logEngine setLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)

$logEngine setFile $logName 2 256 1

The above fragment specifies that the log file name is prefixed with simplehttpclientandserver.
The actual log file name is generated as fol

logName-<instance number>-<log file number>.log

where ”instance number” is the number assigned to your session, with the first session being 1 up to a
maximum of 4. “log file number” is a two digit number which is usually 00. Long or complicated tests
may produce more log data than will fit in a single file, in which case a file ending with 01 will also
exist. Extremely large logs may cause the sequence to start over, overwriting the original contents of
log 00.

Chapter 3 API Overview

– 78 –

If the link is down on any of the ports in the test, the Tcl API logs the error in the log files but it does
not display an error in the wish console. Although IxLoad allows the test to enter the “Configured” state
with a link down, it will not allow the test to run.

Logging Levels

In the code snippet, the following line defines an example of the settings of the setLevels API on the
logger object.
$logEngine setLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)

The log levels are accessed using $::ixLogger(kLevelxxx). The first value is the file level and the
second value is the console level.

File Level: The file level should always be kLevelDebug. Otherwise, the log files will not contain
enough information, in the event of a problem with the script.

Console Level: The second level is typically kLevelInfo, but can be set to the other levels as desired.
Setting it to kLevelDebug is not recommended as it is likely to flood the console with internal
messages.

The following are some of the other options for the Console Level:

::ixLogger value Messages Logged

kLevelError Error messages only.

kLevelWarning Error and warning messages.

kLevelInfo Error, warning, and informational messages.

Log File Parameters

The following line defines the parameters of the log files:
$logEngine setFile $logName 2 256 1

2 is the number of log files to use before wrapping and overwriting the existing log files. The value 2
results in log files named $logName-#-00.log and $logName-#-01.log (the # is the session number
and is determined dynamically by IxLoad. This also corresponds to the /S#/ in the login name for
taking owner

256 is the size limit of each file, in KB.

1 is the truncate flag. 1 indicates to start the logging cycle over, using file -00, and deleting any
previous log files. 0 causes logging to resume from where it left off.

Chapter 3 API Overview

– 79 –

Log File Locations

For Windows scripts, the log file is stored in the current working directory of the Tcl shell. For Unix
scripts, the file is stored on the intermediate Windows client hosting your remote script, in the
directory C:\Program Files\Ixia\Ixload\Client\tclext\remoteScriptingService. To retrieve
the log file from your Unix session, use the following script at the end of the test:

set fullLogName [file join "c:/Progra~1/IxLoad/Client/tclext/remoteScriptingService"
[$logEngine getFileName]]puts [::IxLoad retrieveFile $fullLogName]

Sample Scripts Shipped with IxLoad
The table below lists the files in the C:\Program
Files\Ixia\IxLoad\<version>\TclScripts\Samples directory, which are shipped with IxLoad. The
sample files are grouped under four folders under Samples: Application Features, Network, Protocols,
and Stats.

File Description

Application Features

FTP_
MixedTrafficMaps.tcl

Example of how to set up traffic on multiple (2) ports.

FTP_
ModifyOnTheFly.tcl

Example on how to modify on the fly test objective value.

HTTP_AbortRun.tcl Example of how to stop a test before completion.

HTTP_
ActivityIpMapping.tcl

Example of how to configure IP addresses on a per-activity basis.

HTTP_Capture.tcl Example of how capture test traffic.

HTTP_
CaptureCustom.tcl

Similar to HTTP_Capture.tcl but with the default filter set to TCP.

HTTP_
CaptureManual.tcl

Example of how capture test traffic by starting within the test script itself.

HTTP_
ConfigStopRun.tcl

Example of how to stop and restart a test.

HTTP_ Example of how to set up a custom traffic pattern on a symbolic

Chapter 3 API Overview

– 80 –

CustomTrafficMap.tcl destination (IxLoad server or client).

HTTP_
RetrieveResultsAPI.tcl

Example of how to retrieve the test results.

RepNewHTTP.tcl Example of how to create a new repository and configure with a basic HTTP
protocol test.

RepRun.tcl Example of how to load a repository and start a test.

setup_ixload_paths.tcl Example of how to set up paths to IxLoad tcl code relative to install
directory.

setup_simple.tcl Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

SIP_
RenamedObjective.tcl

Example of how to rename a Test Objective for a SIP protocol test.

Network

HTTP_DHCP.tcl Example of how to configure a DHCP network range.

HTTP_
EmulatedRouter.tcl

Example of how to configure an emulated router.

HTTP_IPDHCPRelay.tcl Example of how to configure a IPDHCPRelay network range.

HTTP_IPSec.tcl Example of how to configure a IPSec network range.

HTTP_IPv6.tcl Example of how to configure a IPv6 network range.

HTTP_PPPoE.tcl Example of how to configure a PPPoE network range.

HTTP_VLAN_
Impairment.tcl

Example of how to configure impairment with VLANs.

setup_ixload_paths.tcl Example of how to set up paths to IxLoad tcl code relative to install
directory.

setup_simple.tcl Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

Protocols

Chapter 3 API Overview

– 81 –

2.1.10_src_trace_
http.cap

Capture file for use with Trace File Replay test.

ApplicationTest.pft Sample .pft file for use with Application Test protocol.

ApplicationTest.tcl Sample .tcl file for use with Application Test protocol.

DDoS.tcl Example of a basic LDAP protocol test.

DHCP.tcl Example of a basic DHCP protocol test.

DNS.tcl Example of a basic DNS protocol test.

FTP.tcl Example of a basic FTP protocol test.

FTP_POP3.tcl Example of a basic FTP-POP3 protocol test.

HTTP.tcl Example of a basic HTTP protocol test.

HTTP_SSL.tcl Example of a basic HTTP_SSL protocol test.

IMAP.tcl Example of a basic IMAP protocol test.

LDAP.tcl Example of a basic LDAP protocol test.

MGCP.tcl Example of a basic MGCP protocol test.

MGCP_Signaling.tcl Example of a basic MGCP_Signaling protocol test.

MGCP_Signaling_
RTP.tcl

Example of a basic MGCP_Signaling_RTP protocol test.

POP3.tcl Example of a basic POP3 protocol test.

QuickHTTP.tcl Example of a basic QuickHTTP protocol test.

QuickTCP.tcl Example of a basic QuickTCP protocol test.

RTSP.tcl Example of a basic RTSP protocol test.

setup_ixoad_paths.tcl Example of how to set up paths to IxLoad tcl code relative to install
directory.

setup_simple.tcl Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

SIP.tcl Example of a basic SIP protocol test.

Chapter 3 API Overview

– 82 –

sip_demo.wav Audio file for SIP testing.

SIP_DTMF.tcl Example of a SIP protocol test that uses DTMF tones.

SMTP.tcl Example of a basic SMTP protocol test.

SPTS1-no_
discontinuity

Video file for video testing.

TraceFileReplay.tcl Example of a basic Trace File Replay (capture replay) test.

Video.tcl Example of a basic Video protocol test.

Video_Configurable_
Pid.tcl

Example of configuring Package Identifiers (PIDs) for Video protocol tests.

Video_Control_TS_
Per_UDP.tcl

Example of configuring the number of transport stream (TS) packets
contained in each UDP packet for Video protocol tests.

Video_I_Join_
Latency.tcl

Example of how to measure the IGMP I Join latency in a Video protocol
test.

Video_IGMPv1.tcl Example of how to use IGMPv1 in a Video protocol test.

Video_MLDv1.tcl Example of how to configure version 1 of Multicast Listener Discovery
(MLD) in a Video protocol test.

Video_MLDv2.tcl Example of how to configure version 2 of Multicast Listener Discovery
(MLD) in a Video protocol test.

Video_Multicast_
Profiles.tcl

Example of how to configure a multicast video test that uses profiles.

Video_Poisson.tcl Example of how to configure the Poisson distribution in a Video protocol
test.

VulnerabilityAttacks.tcl Example of a basic Vulnerability (Nessus) test.

Stats

HTTP_
PerInterfaceStats.tcl

Example of how to configure per-interface statistics for a HTTP protocol
test.

HTTP_
PerUrlPerIpStats.tcl

Example of how to configure per-url and per-IP statistics for a HTTP
protocol test.

HTTP_RepRun_
Stats.tcl

Example of how to load a repository, run an HTTP test, and retrieve the
statistics.

HTTP_StateStats.tcl Example of how to retrieve the Run State and Iteration Count statistics.

Chapter 3 API Overview

– 83 –

HTTP_StatFilter.tcl Example of how to filter statistics by activity.

setup_ixload_paths.tcl Example of how to set up paths to IxLoad tcl code relative to install
directory.

setup_simple.tcl Setup script used for simple*.tcl tests.

This file is sourced by all IxLoad sample tcl test scripts, and provides a
convenient central place to change the chassis, port, and card that the
tests will run on.

SIP_PerStreamStats.tcl Example of how to configure per-stream statistics for a SIP protocol test.

Video_
PerStreamStats.tcl

Example of how to configure per-stream statistics for a Video protocol test.

Examples in the Samples/... directory should be run from that directory.

Example Program
The following is the complete example used in the Building an IxLoad Test section cof this
chapter. This example is similar to, but not identical to the C:\Program
Files\Ixia\IxLoad\Client\TclApi\Samples\
simplehttpclientandserver.tcl file. This file is self-contained and omits some advanced usage
features.

###
IxLoad ScriptGen created TCL script
Test1 serialized using version 4.10.0.79
simpleHTTP.tcl made on Aug 29 2008 15:03
###

###
Copy content of setup_ixload_paths.tcl
###

package require IxLoad

::IxLoad connect 1.2.3.4

if [catch {

set logtag "IxLoad-api"
set logName "simpleHTTP"
set logger [::IxLoad new ixLogger $logtag 1]

Chapter 3 API Overview

– 84 –

set logEngine [$logger getEngine]
$logEngine setLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)
$logEngine setFile $logName 2 256 1

global ixAppPluginManager
$ixAppPluginManager load "HTTP"

###
Build chassis chain
###
set chassisChain [::IxLoad new ixChassisChain]

set my_ixViewOptions [::IxLoad new ixViewOptions]
$my_ixViewOptions config \
-runMode 1 \
-captureRunDuration 0 \
-captureRunAfter 0 \
-collectScheme 0 \
-allocatedBufferMemoryPercentage 30

set Test1 [::IxLoad new ixTest]
$Test1 config \
-comment "" \
-csvInterval 4 \
-networkFailureThreshold 0 \
-name "Test1" \
-statsRequired 1 \
-enableResetPorts 0 \
-enableNetworkStats false \
-enableForceOwnership false \
-enableReleaseConfigAfterRun 0 \
-currentUniqueIDForAgent 2 \
-allowMultiple1GAggregatedPorts false \
-captureViewOptions $my_ixViewOptions

$Test1 scenarioList.clear

set TrafficFlow1 [::IxLoad new ixTrafficFlow]
$TrafficFlow1 config \
-name "TrafficFlow1"

$TrafficFlow1 columnList.clear

set Client [::IxLoad new ixTrafficColumn]
$Client config \
-name "Client"

$Client elementList.clear

Chapter 3 API Overview

– 85 –

set HTTP_client_client_network [::IxLoad new ixNetTraffic]

###
Activity newClientActivity1 of NetTraffic HTTP client@client network
###
set Activity_newClientActivity1 [$HTTP_client_client_network
activityList.appendItem \
-protocolAndType "HTTP Client"]

###
Timeline1 for activities newClientActivity1
###
set Timeline1 [::IxLoad new ixTimeline]
$Timeline1 config \
-rampUpValue 5 \
-rampUpType 0 \
-offlineTime 0 \
-rampDownTime 20 \
-standbyTime 0 \
-iterations 1 \
-rampUpInterval 1 \
-sustainTime 60 \
-timelineType 0 \
-name "Timeline1"

$Activity_newClientActivity1 config \
-enable 1 \
-name "newClientActivity1" \
-userIpMapping "1:1" \
-enableConstraint false \
-userObjectiveValue 100 \
-constraintValue 100 \
-userObjectiveType "simulatedUsers" \
-timeline $Timeline1

$Activity_newClientActivity1 agent.config \
-vlanPriority 0 \
-enableDecompressSupport false \
-enableHttpsProxy 0 \
-enableSsl 0 \
-enableUnidirectionalClose 0 \
-uniqueID 1 \
-ipPreference 2 \
-loopValue 1 \
-maxPersistentRequests 1 \
-enableEsm 0 \
-certificate "" \

Chapter 3 API Overview

– 86 –

-sequentialSessionReuse 0 \
-tos 0 \
-maxPipeline 1 \
-maxHeaderLen 1024 \
-maxSessions 3 \
-enableHttpProxy 0 \
-enableTos false \
-cookieRejectProbability 0.0 \
-browserEmulation 1 \
-cookieJarSize 10 \
-privateKey "" \
-commandTimeout 600 \
-enableIntegrityCheckSupport false \
-commandTimeout_ms 0 \
-privateKeyPassword "" \
-urlStatsCount 10 \
-followHttpRedirects 0 \
-tcpCloseOption 0 \
-enableVlanPriority 0 \
-esm 1460 \
-httpVersion 0 \
-sslVersion 3 \
-enableCookieSupport 0 \
-enableLargeHeader 0 \
-clientCiphers "DEFAULT" \
-httpProxy ":80" \
-keepAlive 0 \
-enableCRCCheckSupport false \
-httpsProxy ":443"

$Activity_newClientActivity1 agent.actionList.clear

set my_ixHttpAction [::IxLoad new ixHttpAction]
$my_ixHttpAction config \
-profile -1 \
-namevalueargs "" \
-destination "HTTP server_newServerActivity1:80" \
-abort "None" \
-command "GET" \
-arguments "" \
-pageObject "/4k.html"

$Activity_newClientActivity1 agent.actionList.appendItem -object $my_ixHttpAction

$Activity_newClientActivity1 agent.headerList.clear

set my_ixHttpHeaderString [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderString config \

Chapter 3 API Overview

– 87 –

-data "Accept: */*"

$Activity_newClientActivity1 agent.headerList.appendItem -object $my_
ixHttpHeaderString

set my_ixHttpHeaderString1 [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderString1 config \
-data "Accept-Language: en-us"

$Activity_newClientActivity1 agent.headerList.appendItem -object $my_
ixHttpHeaderString1

set my_ixHttpHeaderString2 [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderString2 config \
-data "Accept-Encoding: gzip, deflate"

$Activity_newClientActivity1 agent.headerList.appendItem -object $my_
ixHttpHeaderString2

set my_ixHttpHeaderString3 [::IxLoad new ixHttpHeaderString]
$my_ixHttpHeaderString3 config \
-data "User-Agent: Mozilla/4.0 (compatible;
MSIE 5.01; Windows NT 5.0)"

$Activity_newClientActivity1 agent.headerList.appendItem -object $my_
ixHttpHeaderString3

$Activity_newClientActivity1 agent.profileList.clear

###
Network client network of NetTraffic HTTP client@client network
###
set client_network [::IxLoad new ixNetworkGroup $chassisChain]
$client_network config \
-comment "" \
-name "client network" \
-macMappingMode 0 \
-linkLayerOptions 0

$client_network globalPlugins.clear

set Filter [::IxLoad new ixNetFilterPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $Filter

$Filter config \
-all false \
-pppoecontrol false \

Chapter 3 API Overview

– 88 –

-isis false \
-name "Filter" \
-auto true \
-udp "" \
-tcp "" \
-mac "" \
-pppoenetwork false \
-ip "" \
-icmp ""

set GratARP [::IxLoad new ixNetGratArpPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $GratARP

$GratARP config \
-enabled true \
-name "GratARP"

set TCP [::IxLoad new ixNetTCPPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $TCP

$TCP config \
-tcp_bic 0 \
-tcp_tw_recycle true \
-tcp_retries2 15 \
-tcp_retries1 3 \
-tcp_keepalive_time 9 \
-tcp_moderate_rcvbuf 0 \
-tcp_rfc1337 false \
-tcp_ipfrag_time 30 \
-tcp_rto_max 60000 \
-tcp_vegas_alpha 2 \
-tcp_ecn false \
-tcp_westwood 0 \
-tcp_rto_min 1000 \
-tcp_reordering 3 \
-tcp_vegas_cong_avoid 0 \
-tcp_keepalive_intvl 7200 \
-tcp_rmem_max 262144 \
-tcp_orphan_retries 0 \
-tcp_max_tw_buckets 180000 \
-tcp_wmem_default 4096 \
-tcp_low_latency 0 \
-tcp_rmem_min 4096 \
-tcp_adv_win_scale 2 \
-tcp_wmem_min 4096 \
-tcp_port_min 1024 \

Chapter 3 API Overview

– 89 –

-tcp_stdurg false \
-tcp_port_max 65535 \
-tcp_fin_timeout 60 \
-tcp_no_metrics_save false \
-tcp_dsack true \
-tcp_mem_high 49152 \
-tcp_frto 0 \
-tcp_app_win 31 \
-ip_no_pmtu_disc false \
-tcp_window_scaling false \
-tcp_max_orphans 8192 \
-tcp_mem_pressure 32768 \
-tcp_syn_retries 5 \
-name "TCP" \
-tcp_max_syn_backlog 1024 \
-tcp_mem_low 24576 \
-tcp_fack true \
-tcp_retrans_collapse true \
-tcp_rmem_default 4096 \
-tcp_keepalive_probes 75 \
-tcp_abort_on_overflow false \
-tcp_tw_reuse false \
-tcp_wmem_max 262144 \
-tcp_vegas_gamma 2 \
-tcp_synack_retries 5 \
-tcp_timestamps true \
-tcp_vegas_beta 6 \
-tcp_sack true \
-tcp_bic_fast_convergence 1 \
-tcp_bic_low_window 14

set DNS [::IxLoad new ixNetDnsPlugin]
ixNet objects needs to be added in the list before they are configured!
$client_network globalPlugins.appendItem -object $DNS

$DNS config \
-domain "" \
-name "DNS" \
-timeout 30000

$DNS hostList.clear

$DNS searchList.clear

$DNS nameServerList.clear

set Settings [::IxLoad new ixNetIxLoadSettingsPlugin]
ixNet objects needs to be added in the list before they are configured!

Chapter 3 API Overview

– 90 –

$client_network globalPlugins.appendItem -object $Settings

$Settings config \
-teardownInterfaceWithUser false \
-name "Settings" \
-interfaceBehavior 0

set Ethernet_1 [$client_network getL1Plugin]

$Ethernet_1 config \
-advertise10Full true \
-name "Ethernet-1" \
-autoNegotiate true \
-advertise100Half true \
-advertise10Half true \
-speed "k100FD" \
-advertise1000Full true \
-advertise100Full true \

$Ethernet_1 childrenList.clear

set MAC_VLAN_1 [::IxLoad new ixNetL2EthernetPlugin]
ixNet objects needs to be added in the list before they are configured!
$Ethernet_1 childrenList.appendItem -object $MAC_VLAN_1

$MAC_VLAN_1 config \
-name "MAC/VLAN-1"

$MAC_VLAN_1 childrenList.clear

set IP_1 [::IxLoad new ixNetIpV4V6Plugin]
ixNet objects needs to be added in the list before they are configured!
$MAC_VLAN_1 childrenList.appendItem -object $IP_1

$IP_1 config \
-name "IP-1"

$IP_1 childrenList.clear

$IP_1 extensionList.clear

$MAC_VLAN_1 extensionList.clear

$Ethernet_1 extensionList.clear

###
Setting the ranges starting with the plugin on top of the stack

Chapter 3 API Overview

– 91 –

###
$IP_1 rangeList.clear

set IP_R1 [::IxLoad new ixNetIpV4V6Range]
ixNet objects needs to be added in the list before they are configured!
$IP_1 rangeList.appendItem -object $IP_R1

$IP_R1 config \
-count 100 \
-name "IP-R1" \
-gatewayAddress "0.0.0.0" \
-enabled true \
-autoMacGeneration true \
-mss 1460 \
-incrementBy "0.0.0.1" \
-prefix 16 \
-gatewayIncrement "0.0.0.0" \
-gatewayIncrementMode "perSubnet" \
-generateStatistics false \
-ipAddress "198.18.0.1" \
-ipType "IPv4"

set MAC_R1 [$IP_R1 getLowerRelatedRange "MacRange"]

$MAC_R1 config \
-count 100 \
-name "MAC-R1" \
-enabled true \
-mtu 1500 \
-mac "00:C6:12:00:01:00" \
-incrementBy "00:00:00:00:00:01"

set VLAN_R1 [$IP_R1 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \
-incrementStep 100 \
-uniqueCount 4094 \
-name "VLAN-R1" \
-innerIncrement 1 \
-innerUniqueCount 4094 \
-enabled false \
-innerFirstId 1 \
-increment 1 \
-priority 0 \
-firstId 1 \
-innerIncrementStep 1 \
-idIncrMode 1 \
-innerEnable false \

Chapter 3 API Overview

– 92 –

-innerPriority 0

$HTTP_client_client_network config \
-enable 1 \
-network $client_network

$HTTP_client_client_network traffic.config \
-name "HTTP client"

$Client elementList.appendItem -object $HTTP_client_client_network

$TrafficFlow1 columnList.appendItem -object $Client

set DUT [::IxLoad new ixTrafficColumn]
$DUT config \
-name "DUT"

$DUT elementList.clear

$TrafficFlow1 columnList.appendItem -object $DUT

set Server [::IxLoad new ixTrafficColumn]
$Server config \
-name "Server"

$Server elementList.clear

set HTTP_server_server_network [::IxLoad new ixNetTraffic]

###
Activity newServerActivity1 of NetTraffic HTTP server@server network
###
set Activity_newServerActivity1 [$HTTP_server_server_network
activityList.appendItem \
-protocolAndType "HTTP Server"]

set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]

$Activity_newServerActivity1 config \
-enable 1 \
-name "newServerActivity1" \
-timeline $_Match_Longest_

$Activity_newServerActivity1 agent.config \
-vlanPriority 0 \
-maxResponseDelay 0 \
-uniqueID 2 \
-enableEsm 0 \

Chapter 3 API Overview

– 93 –

-certificate "" \
-tos 0 \
-enableMD5Checksum false \
-httpPort "80" \
-httpsPort "443" \
-esm 1460 \
-enableTos false \
-integrityCheckOption "Custom MD5" \
-privateKey "" \
-privateKeyPassword "" \
-urlStatsCount 10 \
-tcpCloseOption 0 \
-enableVlanPriority 0 \
-docrootfile "" \
-dhParams "" \
-requestTimeout 300 \
-ServerCiphers "DEFAULT" \
-acceptSslConnections 0 \
-enablePerServerPerURLstat 0 \
-enableDHsupport 0 \
-minResponseDelay 0

$Activity_newServerActivity1 agent.webPageList.clear

set 200_OK [::IxLoad new ResponseHeader]
$200_OK config \
-mimeType "text/plain" \
-expirationMode 0 \
-code "200" \
-name "200_OK" \
-lastModifiedMode 1 \
-lastModifiedIncrementEnable false \
-lastModifiedDateTimeValue "2005/02/02 21:55:04" \
-lastModifiedIncrementFor 1 \
-expirationDateTimeValue "2005/03/04 21:55:04" \
-expirationAfterRequestValue 3600 \
-expirationAfterLastModifiedValue 3600 \
-lastModifiedIncrementBy 5 \
-description "OK"

$200_OK responseList.clear

set my_PageObject [::IxLoad new PageObject]
$my_PageObject config \
-Md5Option 0 \
-payloadSize "1-1" \
-customPayloadId -1 \
-payloadType "range" \

Chapter 3 API Overview

– 94 –

-payloadFile "<specify file>" \
-page "/1b.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject

set my_PageObject1 [::IxLoad new PageObject]
$my_PageObject1 config \
-Md5Option 0 \
-payloadSize "4096-4096" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/4k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject1

set my_PageObject2 [::IxLoad new PageObject]
$my_PageObject2 config \
-Md5Option 0 \
-payloadSize "8192-8192" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/8k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject2

set my_PageObject3 [::IxLoad new PageObject]
$my_PageObject3 config \
-Md5Option 0 \
-payloadSize "16536-16536" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/16k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject3

set my_PageObject4 [::IxLoad new PageObject]
$my_PageObject4 config \
-Md5Option 0 \
-payloadSize "32768" \
-customPayloadId -1 \
-payloadType "range" \

Chapter 3 API Overview

– 95 –

-payloadFile "<specify file>" \
-page "/32k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject4

set my_PageObject5 [::IxLoad new PageObject]
$my_PageObject5 config \
-Md5Option 0 \
-payloadSize "65536" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/64k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject5

set my_PageObject6 [::IxLoad new PageObject]
$my_PageObject6 config \
-Md5Option 0 \
-payloadSize "131072" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/128k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject6

set my_PageObject7 [::IxLoad new PageObject]
$my_PageObject7 config \
-Md5Option 0 \
-payloadSize "262144" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/256k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject7

set my_PageObject8 [::IxLoad new PageObject]
$my_PageObject8 config \
-Md5Option 0 \
-payloadSize "524288" \
-customPayloadId -1 \
-payloadType "range" \

Chapter 3 API Overview

– 96 –

-payloadFile "<specify file>" \
-page "/512k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject8

set my_PageObject9 [::IxLoad new PageObject]
$my_PageObject9 config \
-Md5Option 0 \
-payloadSize "1048576" \
-customPayloadId -1 \
-payloadType "range" \
-payloadFile "<specify file>" \
-page "/1024k.html" \
-response $200_OK

$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject9

$Activity_newServerActivity1 agent.cookieList.clear

set UserCookie [::IxLoad new CookieObject]
$UserCookie config \
-mode 3 \
-type 2 \
-name "UserCookie" \
-description "Name of User"

$UserCookie cookieContentList.clear

set firstName [::IxLoad new ixCookieContent]
$firstName config \
-domain "" \
-name "firstName" \
-maxAge "" \
-value "Joe" \
-other "" \
-path ""

$UserCookie cookieContentList.appendItem -object $firstName

set lastName [::IxLoad new ixCookieContent]
$lastName config \
-domain "" \
-name "lastName" \
-maxAge "" \
-value "Smith" \
-other "" \
-path ""

Chapter 3 API Overview

– 97 –

$UserCookie cookieContentList.appendItem -object $lastName

$Activity_newServerActivity1 agent.cookieList.appendItem -object $UserCookie

set LoginCookie [::IxLoad new CookieObject]
$LoginCookie config \
-mode 2 \
-type 2 \
-name "LoginCookie" \
-description "Login name and password"

$LoginCookie cookieContentList.clear

set name [::IxLoad new ixCookieContent]
$name config \
-domain "" \
-name "name" \
-maxAge "" \
-value "joesmith" \
-other "" \
-path ""

$LoginCookie cookieContentList.appendItem -object $name

set password [::IxLoad new ixCookieContent]
$password config \
-domain "" \
-name "password" \
-maxAge "" \
-value "foobar" \
-other "" \
-path ""

$LoginCookie cookieContentList.appendItem -object $password

$Activity_newServerActivity1 agent.cookieList.appendItem -object $LoginCookie

$Activity_newServerActivity1 agent.customPayloadList.clear

set AsciiCustomPayload [::IxLoad new CustomPayloadObject]
$AsciiCustomPayload config \
-repeat false \
-name "AsciiCustomPayload" \
-asciiPayloadValue "Ixia-Ixload-Http-Server-Custom-Payload"
\
-payloadmode 0 \
-offset 1 \

Chapter 3 API Overview

– 98 –

-hexPayloadValue "" \
-payloadPosition "Start With" \
-id 0

$Activity_newServerActivity1 agent.customPayloadList.appendItem -object
$AsciiCustomPayload

set HexCustomPayload [::IxLoad new CustomPayloadObject]
$HexCustomPayload config \
-repeat 0 \
-name "HexCustomPayload" \
-asciiPayloadValue "" \
-payloadmode 1 \
-offset 1 \
-hexPayloadValue "49 78 69 61 2d 49 78 6c 6f 61 64 2d 48
74 74 70 2d 53 65 72 76 65 72 2d 43 75 73 74 6f 6d 2d 50 61 79 6c 6f 61 64" \
-payloadPosition "Start With" \
-id 1

$Activity_newServerActivity1 agent.customPayloadList.appendItem -object
$HexCustomPayload

$Activity_newServerActivity1 agent.responseHeaderList.clear

set 200_OK1 [::IxLoad new ResponseHeader]
$200_OK1 config \
-mimeType "text/plain" \
-expirationMode 0 \
-code "200" \
-name "200_OK" \
-lastModifiedMode 1 \
-lastModifiedIncrementEnable false \
-lastModifiedDateTimeValue "2005/02/02 21:55:04" \
-lastModifiedIncrementFor 1 \
-expirationDateTimeValue "2005/03/04 21:55:04" \
-expirationAfterRequestValue 3600 \
-expirationAfterLastModifiedValue 3600 \
-lastModifiedIncrementBy 5 \
-description "OK"

$200_OK1 responseList.clear

$Activity_newServerActivity1 agent.responseHeaderList.appendItem -object $200_OK1

set 404_PageNotFound [::IxLoad new ResponseHeader]
$404_PageNotFound config \
-mimeType "text/plain" \
-expirationMode 0 \

Chapter 3 API Overview

– 99 –

-code "404" \
-name "404_PageNotFound" \
-lastModifiedMode 1 \
-lastModifiedIncrementEnable false \
-lastModifiedDateTimeValue "2005/02/02 21:55:04" \
-lastModifiedIncrementFor 1 \
-expirationDateTimeValue "2005/03/04 21:55:04" \
-expirationAfterRequestValue 3600 \
-expirationAfterLastModifiedValue 3600 \
-lastModifiedIncrementBy 5 \
-description "Page not found"

$404_PageNotFound responseList.clear

$Activity_newServerActivity1 agent.responseHeaderList.appendItem -object $404_
PageNotFound

###
Network server network of NetTraffic HTTP server@server network
###
set server_network [::IxLoad new ixNetworkGroup $chassisChain]
$server_network config \
-comment "" \
-name "server network" \
-macMappingMode 0 \
-linkLayerOptions 0

$server_network globalPlugins.clear

set Filter_1 [::IxLoad new ixNetFilterPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $Filter_1

$Filter_1 config \
-all false \
-pppoecontrol false \
-isis false \
-name "Filter-1" \
-auto true \
-udp "" \
-tcp "" \
-mac "" \
-pppoenetwork false \
-ip "" \
-icmp ""

set GratARP_1 [::IxLoad new ixNetGratArpPlugin]
ixNet objects needs to be added in the list before they are configured!

Chapter 3 API Overview

– 100 –

$server_network globalPlugins.appendItem -object $GratARP_1

$GratARP_1 config \
-enabled true \
-name "GratARP-1"

set TCP_1 [::IxLoad new ixNetTCPPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $TCP_1

$TCP_1 config \
-tcp_bic 0 \
-tcp_tw_recycle true \
-tcp_retries2 15 \
-tcp_retries1 3 \
-tcp_keepalive_time 9 \
-tcp_moderate_rcvbuf 0 \
-tcp_rfc1337 false \
-tcp_ipfrag_time 30 \
-tcp_rto_max 60000 \
-tcp_vegas_alpha 2 \
-tcp_ecn false \
-tcp_westwood 0 \
-tcp_rto_min 1000 \
-tcp_reordering 3 \
-tcp_vegas_cong_avoid 0 \
-tcp_keepalive_intvl 7200 \
-tcp_rmem_max 262144 \
-tcp_orphan_retries 0 \
-tcp_max_tw_buckets 180000 \
-tcp_wmem_default 4096 \
-tcp_low_latency 0 \
-tcp_rmem_min 4096 \
-tcp_adv_win_scale 2 \
-tcp_wmem_min 4096 \
-tcp_port_min 1024 \
-tcp_stdurg false \
-tcp_port_max 65535 \
-tcp_fin_timeout 60 \
-tcp_no_metrics_save false \
-tcp_dsack true \
-tcp_mem_high 49152 \
-tcp_frto 0 \
-tcp_app_win 31 \
-ip_no_pmtu_disc false \
-tcp_window_scaling false \
-tcp_max_orphans 8192 \
-tcp_mem_pressure 32768 \

Chapter 3 API Overview

– 101 –

-tcp_syn_retries 5 \
-name "TCP-1" \
-tcp_max_syn_backlog 1024 \
-tcp_mem_low 24576 \
-tcp_fack true \
-tcp_retrans_collapse true \
-tcp_rmem_default 4096 \
-tcp_keepalive_probes 75 \
-tcp_abort_on_overflow false \
-tcp_tw_reuse false \
-tcp_wmem_max 262144 \
-tcp_vegas_gamma 2 \
-tcp_synack_retries 5 \
-tcp_timestamps true \
-tcp_vegas_beta 6 \
-tcp_sack true \
-tcp_bic_fast_convergence 1 \
-tcp_bic_low_window 14

set DNS_1 [::IxLoad new ixNetDnsPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $DNS_1

$DNS_1 config \
-domain "" \
-name "DNS-1" \
-timeout 30000

$DNS_1 hostList.clear

$DNS_1 searchList.clear

$DNS_1 nameServerList.clear

set Settings_1 [::IxLoad new ixNetIxLoadSettingsPlugin]
ixNet objects needs to be added in the list before they are configured!
$server_network globalPlugins.appendItem -object $Settings_1

$Settings_1 config \
-teardownInterfaceWithUser false \
-name "Settings-1" \
-interfaceBehavior 0

set Ethernet_2 [$server_network getL1Plugin]

$Ethernet_2 config \
-advertise10Full true \
-name "Ethernet-2" \

Chapter 3 API Overview

– 102 –

-autoNegotiate true \
-advertise100Half true \
-advertise10Half true \
-speed "k100FD" \
-advertise1000Full true \
-advertise100Full true \

$Ethernet_2 childrenList.clear

set MAC_VLAN_2 [::IxLoad new ixNetL2EthernetPlugin]
ixNet objects needs to be added in the list before they are configured!
$Ethernet_2 childrenList.appendItem -object $MAC_VLAN_2

$MAC_VLAN_2 config \
-name "MAC/VLAN-2"

$MAC_VLAN_2 childrenList.clear

set IP_2 [::IxLoad new ixNetIpV4V6Plugin]
ixNet objects needs to be added in the list before they are configured!
$MAC_VLAN_2 childrenList.appendItem -object $IP_2

$IP_2 config \
-name "IP-2"

$IP_2 childrenList.clear

$IP_2 extensionList.clear

$MAC_VLAN_2 extensionList.clear

$Ethernet_2 extensionList.clear

###
Setting the ranges starting with the plugin on top of the stack
###
$IP_2 rangeList.clear

set IP_R2 [::IxLoad new ixNetIpV4V6Range]
ixNet objects needs to be added in the list before they are configured!
$IP_2 rangeList.appendItem -object $IP_R2

$IP_R2 config \
-count 1 \
-name "IP-R2" \
-gatewayAddress "0.0.0.0" \
-enabled true \
-autoMacGeneration true \

Chapter 3 API Overview

– 103 –

-mss 1460 \
-incrementBy "0.0.0.1" \
-prefix 16 \
-gatewayIncrement "0.0.0.0" \
-gatewayIncrementMode "perSubnet" \
-generateStatistics false \
-ipAddress "198.18.1.1" \
-ipType "IPv4"

set MAC_R2 [$IP_R2 getLowerRelatedRange "MacRange"]

$MAC_R2 config \
-count 1 \
-name "MAC-R2" \
-enabled true \
-mtu 1500 \
-mac "00:C6:12:01:01:00" \
-incrementBy "00:00:00:00:00:01"

set VLAN_R2 [$IP_R2 getLowerRelatedRange "VlanIdRange"]

$VLAN_R2 config \
-incrementStep 1 \
-uniqueCount 4094 \
-name "VLAN-R1" \
-innerIncrement 1 \
-innerUniqueCount 4094 \
-enabled false \
-innerFirstId 1 \
-increment 1 \
-priority 0 \
-firstId 1 \
-innerIncrementStep 1 \
-idIncrMode 1 \
-innerEnable false \
-innerPriority 0

$HTTP_server_server_network config \
-enable 1 \
-network $server_network

$HTTP_server_server_network traffic.config \
-name "HTTP server"

$Server elementList.appendItem -object $HTTP_server_server_network

$TrafficFlow1 columnList.appendItem -object $Server

Chapter 3 API Overview

– 104 –

$TrafficFlow1 links.clear

$Test1 scenarioList.appendItem -object $TrafficFlow1

###
Destination newServerActivity1 for newClientActivity1
###
set destination [$HTTP_client_client_network getDestinationForActivity
"newClientActivity1" "HTTP server_newServerActivity1"]
$destination config \
-portMapPolicy "portMesh"

###
Session Specific Settings
###
set my_ixNetMacSessionData [$Test1 getSessionSpecificData "L2EthernetPlugin"]
$my_ixNetMacSessionData config \
-duplicateCheckingScope 2

set my_ixNetIpSessionData [$Test1 getSessionSpecificData "IpV4V6Plugin"]
$my_ixNetIpSessionData config \
-duplicateCheckingScope 2

###
Create the test controller to run the test
###
set testController [::IxLoad new ixTestController -outputDir True]

$testController setResultDir "RESULTS/simpleHTTP"
set NS statCollectorUtils

set test_server_handle [$testController getTestServerHandle]
${NS}::Initialize -testServerHandle $test_server_handle

${NS}::ClearStats
$Test1 clearGridStats

set HTTP_Client_Per_URL_StatList { \
{"HTTP Client Per URL" "HTTP Aborted After Request" "kMax"} \
{"HTTP Client Per URL" "HTTP Aborted Before Request" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (400)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (401)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (403)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (404)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (407)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (408)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (4xx other)" "kMax"} \

Chapter 3 API Overview

– 105 –

{"HTTP Client Per URL" "HTTP Requests Failed (4xx)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (505)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (5xx other)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (5xx)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Aborted)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Bad Header)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Read)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Timeout)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Failed (Write)" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Sent" "kMax"} \
{"HTTP Client Per URL" "HTTP Requests Successful" "kMax"} \
{"HTTP Client Per URL" "HTTP Responses Received With Match" "kMax"} \
{"HTTP Client Per URL" "HTTP Responses Received Without Match" "kMax"} \
}

set HTTP_Client_StatList { \
{"HTTP Client" "Client Hello Sent" "kMax"} \
{"HTTP Client" "HTTP Aborted After Request" "kMax"} \
{"HTTP Client" "HTTP Aborted Before Request" "kMax"} \
{"HTTP Client" "HTTP Bytes" "kMax"} \
{"HTTP Client" "HTTP Bytes Received" "kMax"} \
{"HTTP Client" "HTTP Bytes Sent" "kMax"} \
{"HTTP Client" "HTTP Concurrent Connections" "kMax"} \
{"HTTP Client" "HTTP Connect Time (us)" "kAverageRate"} \
{"HTTP Client" "HTTP Connection Attempts" "kMax"} \
{"HTTP Client" "HTTP Connections" "kMax"} \
{"HTTP Client" "HTTP Content Bytes Received" "kMax"} \
{"HTTP Client" "HTTP Content Bytes Sent" "kMax"} \
{"HTTP Client" "HTTP Cookie headers Rejected - (Memory Overflow)" "kMax"} \
{"HTTP Client" "HTTP Cookies Received" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected - (Cookiejar Overflow)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected - (Domain Match Failed)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected - (Path Match Failed)" "kMax"} \
{"HTTP Client" "HTTP Cookies Rejected - (Probabilistic Reject)" "kMax"} \
{"HTTP Client" "HTTP Cookies Sent" "kMax"} \
{"HTTP Client" "HTTP Requests Failed" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (400)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (401)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (403)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (404)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (407)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (408)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (4xx other)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (4xx)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (505)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (5xx other)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (5xx)" "kMax"} \

Chapter 3 API Overview

– 106 –

{"HTTP Client" "HTTP Requests Failed (Aborted)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (Bad Header)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (Read)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (Timeout)" "kMax"} \
{"HTTP Client" "HTTP Requests Failed (Write)" "kMax"} \
{"HTTP Client" "HTTP Requests Sent" "kMax"} \
{"HTTP Client" "HTTP Requests Successful" "kMax"} \
{"HTTP Client" "HTTP Session Timeouts (408)" "kMax"} \
{"HTTP Client" "HTTP Sessions Rejected (503)" "kMax"} \
{"HTTP Client" "HTTP Simulated Users" "kSum"} \
{"HTTP Client" "HTTP Time To First Byte (us)" "kAverageRate"} \
{"HTTP Client" "HTTP Time To Last Byte (us)" "kAverageRate"} \
{"HTTP Client" "HTTP Transactions" "kMax"} \
{"HTTP Client" "HTTP Transactions Active" "kMax"} \
{"HTTP Client" "HTTP Users Active" "kMax"} \
{"HTTP Client" "SSL Alerts Received" "kMax"} \
{"HTTP Client" "SSL Alerts Received (access_denied)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (bad_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (bad_record_mac)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (certificate_expired)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (certificate_revoked)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (certificate_unknown)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (close_notify)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (decode_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (decompression_failure)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (decrypt_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (decryption_failed)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (export_restriction)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (handshake_failure)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (illegal_parameter)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (insufficient_security)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (internal_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (no_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (no_renegotiation)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (protocol_version)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (record_overflow)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (unexpected_message)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (unknown_ca)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (unsupported_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Received (user_canceled)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (access_denied)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (bad_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (bad_record_mac)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (certificate_expired)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (certificate_revoked)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (certificate_unknown)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (close_notify)" "kMax"} \

Chapter 3 API Overview

– 107 –

{"HTTP Client" "SSL Alerts Sent (decode_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (decompression_failure)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (decrypt_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (decryption_failed)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (export_restriction)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (handshake_failure)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (illegal_parameter)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (insufficient_security)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (internal_error)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (no_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (no_renegotiation)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (protocol_version)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (record_overflow)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (unexpected_message)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (unknown_ca)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (unsupported_certificate)" "kMax"} \
{"HTTP Client" "SSL Alerts Sent (user_canceled)" "kMax"} \
{"HTTP Client" "SSL Bytes Received" "kMax"} \
{"HTTP Client" "SSL Bytes Sent" "kMax"} \
{"HTTP Client" "SSL Concurrent Sessions" "kMax"} \
{"HTTP Client" "SSL Errors Received" "kMax"} \
{"HTTP Client" "SSL Errors Received (bad certificate)" "kMax"} \
{"HTTP Client" "SSL Errors Received (no certificate)" "kMax"} \
{"HTTP Client" "SSL Errors Received (no cipher)" "kMax"} \
{"HTTP Client" "SSL Errors Received (undefined error)" "kMax"} \
{"HTTP Client" "SSL Errors Received (unsupported certificate)" "kMax"} \
{"HTTP Client" "SSL Errors Sent" "kMax"} \
{"HTTP Client" "SSL Errors Sent (bad certificate)" "kMax"} \
{"HTTP Client" "SSL Errors Sent (no certificate)" "kMax"} \
{"HTTP Client" "SSL Errors Sent (no cipher)" "kMax"} \
{"HTTP Client" "SSL Errors Sent (undefined error)" "kMax"} \
{"HTTP Client" "SSL Errors Sent (unsupported certificate)" "kMax"} \
{"HTTP Client" "SSL Negotiation Finished Successfuly" "kMax"} \
{"HTTP Client" "SSL Session Reuse Failed" "kMax"} \
{"HTTP Client" "SSL Session Reuse Success" "kMax"} \
{"HTTP Client" "SSL Throughput Bytes" "kMax"} \
{"HTTP Client" "Server Hello Received" "kMax"} \
{"HTTP Client" "TCP Accept Queue Entries" "kMax"} \
{"HTTP Client" "TCP Connection Requests Failed" "kMax"} \
{"HTTP Client" "TCP Connections Established" "kMax"} \
{"HTTP Client" "TCP Connections in CLOSE STATE" "kMax"} \
{"HTTP Client" "TCP Connections in CLOSE-WAIT State" "kMax"} \
{"HTTP Client" "TCP Connections in CLOSING State" "kMax"} \
{"HTTP Client" "TCP Connections in ESTABLISHED State" "kMax"} \
{"HTTP Client" "TCP Connections in FIN-WAIT-1 State" "kMax"} \
{"HTTP Client" "TCP Connections in FIN-WAIT-2 State" "kMax"} \
{"HTTP Client" "TCP Connections in LAST-ACK State" "kMax"} \
{"HTTP Client" "TCP Connections in LISTENING State" "kMax"} \

Chapter 3 API Overview

– 108 –

{"HTTP Client" "TCP Connections in SYN-RECEIVED State" "kMax"} \
{"HTTP Client" "TCP Connections in SYN-SENT State" "kMax"} \
{"HTTP Client" "TCP Connections in TIME-WAIT State" "kMax"} \
{"HTTP Client" "TCP FIN Received" "kMax"} \
{"HTTP Client" "TCP FIN Sent" "kMax"} \
{"HTTP Client" "TCP FIN-ACK Received" "kMax"} \
{"HTTP Client" "TCP FIN-ACK Sent" "kMax"} \
{"HTTP Client" "TCP Listen Queue Drops" "kMax"} \
{"HTTP Client" "TCP Resets Received" "kMax"} \
{"HTTP Client" "TCP Resets Sent" "kMax"} \
{"HTTP Client" "TCP Retries" "kMax"} \
{"HTTP Client" "TCP SYN Failed" "kMax"} \
{"HTTP Client" "TCP SYN Sent" "kMax"} \
{"HTTP Client" "TCP SYN-ACK Sent" "kMax"} \
{"HTTP Client" "TCP SYN_SYN-ACK Received" "kMax"} \
{"HTTP Client" "TCP Timeouts" "kMax"} \
}

set HTTP_Server_Per_URL_StatList { \
{"HTTP Server Per URL" "HTTP Requests Failed" "kMax"} \
{"HTTP Server Per URL" "HTTP Requests Failed (404)" "kMax"} \
{"HTTP Server Per URL" "HTTP Requests Failed (50x)" "kMax"} \
{"HTTP Server Per URL" "HTTP Requests Failed (Write Error)" "kMax"} \
{"HTTP Server Per URL" "HTTP Requests Received" "kMax"} \
{"HTTP Server Per URL" "HTTP Requests Successful" "kMax"} \
}

set HTTP_Server_StatList { \
{"HTTP Server" "Client Hello Received" "kMax"} \
{"HTTP Server" "HTTP Bytes Received" "kMax"} \
{"HTTP Server" "HTTP Bytes Sent" "kMax"} \
{"HTTP Server" "HTTP Content Bytes Received" "kMax"} \
{"HTTP Server" "HTTP Content Bytes Sent" "kMax"} \
{"HTTP Server" "HTTP Cookies Received" "kMax"} \
{"HTTP Server" "HTTP Cookies Received With Matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Received With Non-matching ServerID" "kMax"} \
{"HTTP Server" "HTTP Cookies Sent" "kMax"} \
{"HTTP Server" "HTTP Requests Failed" "kMax"} \
{"HTTP Server" "HTTP Requests Failed (404)" "kMax"} \
{"HTTP Server" "HTTP Requests Failed (50x)" "kMax"} \
{"HTTP Server" "HTTP Requests Failed (Write Error)" "kMax"} \
{"HTTP Server" "HTTP Requests Received" "kMax"} \
{"HTTP Server" "HTTP Requests Successful" "kMax"} \
{"HTTP Server" "HTTP Session Timeouts (408)" "kMax"} \
{"HTTP Server" "HTTP Sessions Rejected (503)" "kMax"} \
{"HTTP Server" "HTTP Transactions Active" "kMax"} \
{"HTTP Server" "SSL Alerts Received" "kMax"} \
{"HTTP Server" "SSL Alerts Received (access_denied)" "kMax"} \

Chapter 3 API Overview

– 109 –

{"HTTP Server" "SSL Alerts Received (bad_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (bad_record_mac)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_expired)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_revoked)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (certificate_unknown)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (close_notify)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decode_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decompression_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decrypt_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (decryption_failed)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (export_restriction)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (handshake_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (illegal_parameter)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (insufficient_security)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (internal_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (no_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (no_renegotiation)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (protocol_version)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (record_overflow)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unexpected_message)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unknown_ca)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (unsupported_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Received (user_canceled)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (access_denied)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (bad_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (bad_record_mac)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_expired)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_revoked)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (certificate_unknown)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (close_notify)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (decode_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (decompression_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (decrypt_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (decryption_failed)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (export_restriction)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (handshake_failure)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (illegal_parameter)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (insufficient_security)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (internal_error)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (no_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (no_renegotiation)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (protocol_version)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (record_overflow)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (unexpected_message)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (unknown_ca)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (unsupported_certificate)" "kMax"} \
{"HTTP Server" "SSL Alerts Sent (user_canceled)" "kMax"} \

Chapter 3 API Overview

– 110 –

{"HTTP Server" "SSL Bytes Received" "kMax"} \
{"HTTP Server" "SSL Bytes Sent" "kMax"} \
{"HTTP Server" "SSL Concurrent Sessions" "kMax"} \
{"HTTP Server" "SSL Errors Received" "kMax"} \
{"HTTP Server" "SSL Errors Received (bad certificate)" "kMax"} \
{"HTTP Server" "SSL Errors Received (no certificate)" "kMax"} \
{"HTTP Server" "SSL Errors Received (no cipher)" "kMax"} \
{"HTTP Server" "SSL Errors Received (undefined error)" "kMax"} \
{"HTTP Server" "SSL Errors Received (unsupported certificate)" "kMax"} \
{"HTTP Server" "SSL Errors Sent" "kMax"} \
{"HTTP Server" "SSL Errors Sent (bad certificate)" "kMax"} \
{"HTTP Server" "SSL Errors Sent (no certificate)" "kMax"} \
{"HTTP Server" "SSL Errors Sent (no cipher)" "kMax"} \
{"HTTP Server" "SSL Errors Sent (undefined error)" "kMax"} \
{"HTTP Server" "SSL Errors Sent (unsupported certificate)" "kMax"} \
{"HTTP Server" "SSL Negotiation Finished Successfuly" "kMax"} \
{"HTTP Server" "SSL Session Reuse Failed" "kMax"} \
{"HTTP Server" "SSL Session Reuse Success" "kMax"} \
{"HTTP Server" "SSL Throughput Bytes" "kMax"} \
{"HTTP Server" "Server Hello Sent" "kMax"} \
{"HTTP Server" "TCP Accept Queue Entries" "kMax"} \
{"HTTP Server" "TCP Connection Requests Failed" "kMax"} \
{"HTTP Server" "TCP Connections Established" "kMax"} \
{"HTTP Server" "TCP Connections in CLOSE STATE" "kMax"} \
{"HTTP Server" "TCP Connections in CLOSE-WAIT State" "kMax"} \
{"HTTP Server" "TCP Connections in CLOSING State" "kMax"} \
{"HTTP Server" "TCP Connections in ESTABLISHED State" "kMax"} \
{"HTTP Server" "TCP Connections in FIN-WAIT-1 State" "kMax"} \
{"HTTP Server" "TCP Connections in FIN-WAIT-2 State" "kMax"} \
{"HTTP Server" "TCP Connections in LAST-ACK State" "kMax"} \
{"HTTP Server" "TCP Connections in LISTENING State" "kMax"} \
{"HTTP Server" "TCP Connections in SYN-RECEIVED State" "kMax"} \
{"HTTP Server" "TCP Connections in SYN-SENT State" "kMax"} \
{"HTTP Server" "TCP Connections in TIME-WAIT State" "kMax"} \
{"HTTP Server" "TCP FIN Received" "kMax"} \
{"HTTP Server" "TCP FIN Sent" "kMax"} \
{"HTTP Server" "TCP FIN-ACK Received" "kMax"} \
{"HTTP Server" "TCP FIN-ACK Sent" "kMax"} \
{"HTTP Server" "TCP Listen Queue Drops" "kMax"} \
{"HTTP Server" "TCP Resets Received" "kMax"} \
{"HTTP Server" "TCP Resets Sent" "kMax"} \
{"HTTP Server" "TCP Retries" "kMax"} \
{"HTTP Server" "TCP SYN Failed" "kMax"} \
{"HTTP Server" "TCP SYN Sent" "kMax"} \
{"HTTP Server" "TCP SYN-ACK Sent" "kMax"} \
{"HTTP Server" "TCP SYN_SYN-ACK Received" "kMax"} \
{"HTTP Server" "TCP Timeouts" "kMax"} \
}

Chapter 3 API Overview

– 111 –

set statList [concat \
$HTTP_Client_Per_URL_StatList \
$HTTP_Client_StatList \
$HTTP_Server_Per_URL_StatList \
$HTTP_Server_StatList \
]

set count 1
foreach statItem $statList {
set caption [format "Watch_Stat_%s" $count]
set statSourceType [lindex $statItem 0]
set statName [lindex $statItem 1]
set aggregationType [lindex $statItem 2]

${NS}::AddStat \
-caption $caption \
-statSourceType $statSourceType \
-statName $statName \
-aggregationType $aggregationType \
-filterList {}

incr count
}

proc ::my_stat_collector_command {args} {
puts "====================================="
puts "INCOMING STAT RECORD >>> $args"
puts "Len = [llength $args]"
puts [lindex $args 0]
puts [lindex $args 1]
puts "====================================="
}
${NS}::StartCollector -command ::my_stat_collector_command
$testController run $Test1

vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor

${NS}::StopCollector

###
Cleanup
###
Release config is only strictly necessary if enableReleaseConfigAfterRun is 0.
$testController releaseConfigWaitFinish

::IxLoad delete $chassisChain

Chapter 3 API Overview

– 112 –

::IxLoad delete $Test1
::IxLoad delete $my_ixViewOptions
::IxLoad delete $TrafficFlow1
::IxLoad delete $Client
::IxLoad delete $HTTP_client_client_network
::IxLoad delete $Activity_newClientActivity1
::IxLoad delete $Timeline1
::IxLoad delete $my_ixHttpAction
::IxLoad delete $my_ixHttpHeaderString
::IxLoad delete $my_ixHttpHeaderString1
::IxLoad delete $my_ixHttpHeaderString2
::IxLoad delete $my_ixHttpHeaderString3
::IxLoad delete $client_network
::IxLoad delete $Filter
::IxLoad delete $GratARP
::IxLoad delete $TCP
::IxLoad delete $DNS
::IxLoad delete $Settings
::IxLoad delete $Ethernet_1
::IxLoad delete $MAC_VLAN_1
::IxLoad delete $IP_1
::IxLoad delete $IP_R1
::IxLoad delete $MAC_R1
::IxLoad delete $VLAN_R1
::IxLoad delete $DUT
::IxLoad delete $Server
::IxLoad delete $HTTP_server_server_network
::IxLoad delete $Activity_newServerActivity1
::IxLoad delete $_Match_Longest_
::IxLoad delete $my_PageObject
::IxLoad delete $200_OK
::IxLoad delete $my_PageObject1
::IxLoad delete $my_PageObject2
::IxLoad delete $my_PageObject3
::IxLoad delete $my_PageObject4
::IxLoad delete $my_PageObject5
::IxLoad delete $my_PageObject6
::IxLoad delete $my_PageObject7
::IxLoad delete $my_PageObject8
::IxLoad delete $my_PageObject9
::IxLoad delete $UserCookie
::IxLoad delete $firstName
::IxLoad delete $lastName
::IxLoad delete $LoginCookie
::IxLoad delete $name
::IxLoad delete $password
::IxLoad delete $AsciiCustomPayload
::IxLoad delete $HexCustomPayload

Chapter 3 API Overview

– 113 –

::IxLoad delete $200_OK1
::IxLoad delete $404_PageNotFound
::IxLoad delete $server_network
::IxLoad delete $Filter_1
::IxLoad delete $GratARP_1
::IxLoad delete $TCP_1
::IxLoad delete $DNS_1
::IxLoad delete $Settings_1
::IxLoad delete $Ethernet_2
::IxLoad delete $MAC_VLAN_2
::IxLoad delete $IP_2
::IxLoad delete $IP_R2
::IxLoad delete $MAC_R2
::IxLoad delete $VLAN_R2
::IxLoad delete $destination
::IxLoad delete $my_ixNetMacSessionData
::IxLoad delete $my_ixNetIpSessionData
::IxLoad delete $testController

###
Disconnect / Release application lock
###
}] {
puts $errorInfo
}

::IxLoad disconnect

Chapter 3 API Overview

– 114 –

CHAPTER 4 IxLoad Tcl API Commands
This section describes the commands used to create the test infrastructure.

::IxLoad
::IxLoad-Top level IxLoad utility.

SYNOPSIS

set object [::IxLoad new ixObject options]

DESCRIPTION

The ixLoad command is the means by which other top level objects are created. Its new subcommand
is documented in each of the created objects' commands. In addition, the connect and disconnect
commands are used to connect to a remote server when running from a non-Windows client.

Although the connect operation is not needed for Windows clients, the disconnect operation is
required. It is best to always use the following structure:

::IxLoad connect <server>
catch {
... remainder of program ...
} connectResults
::IxLoad disconnect

When operating on a Windows client, you can use localhost as a convenient placeholder for
<server> .

When using a Unix host to run IxLoad Tcl API programs, the Windows-based host referred to in the
connect subcommand must have the following software installed:

l The Tcl run-time environment from the IxOS installation.

l The IxLoad client component from the IxLoad client installation.

– 115 –

SUBCOMMANDS

::IxLoad connect server (port)

On non-Windows client, connect to a remote IxTcl server process on server. (port) is an optional
argument that forces the command to connect on a specific port number. If you do not supply a port
number, the command selects a random port above 10,000. This command has no effect on Windows
clients.

::IxLoad disconnect

Disconnect from the last remote server used in a connect subcommand. This statement must be
executed before exiting any IxLoad Tcl script.

::IxLoad leval command

Evaluates the command in the context of IxLoad. When running on a Windows system, this evaluates
locally. When run on a Unix system, it is evaluated on the target system.

::IxLoad retrieveFile path

This subcommand is intended to be used by a Unix/Linux client to retrieve files from a Windows host.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

retrieveFile returns the contents of the file as a string.

::IxLoad retrieveFileCopy sourcePath destPath

This subcommand is intended to be used by a Unix/Linux client to retrieve files from a Windows host.
retrieveFileCopy copies a file from the Windows host, and creates (or overwrites) it on the
Unix/Linux host.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

sourcePath is the file name and path on the Windows host.

destPath is the file name and path on the Unix/Linux host.

::IxLoad retrieveResults path

This subcommand is intended to be used by a Unix/Linux client to retrieve .csv files from a Windows
host. retrieveResults tracks the path of the windows files internally, fetches the files, and places
them in the unix machine; in the folder mentioned along with the retrieveResults subcommand.

The Windows host that is the target of this subcommand is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

path is the folder name and path on the Unix/Linux host.

Chapter 4 IxLoad Tcl API Commands

– 116 –

puts "*****UnixResultDir = $UnixResultDir"
#::IxLoad retrieveResults $::IxLoadPrivate::SimpleSettings::RESULTDIR
::IxLoad retrieveResults $UnixResultDir

::IxLoad sendFileCopy sourcePath destPath

This subcommand is intended to be used by a Unix/Linux client to send files to a Windows host for use
in an IxLoad test. For example, you can use this subcommand to send files such as HTTP server pages
and FTP server files.

The Windows host, which is the target of this subcommand, is the host that the Unix/Linux client
connected to in its most recent connect subcommand.

sourcePath is the file name and path on the Unix/Linux host.

destPath is the file name and path on the Windows host.

OPTIONS

None.

EXAMPLE

See above.

ixChassisChain
ixChassisChain-Builds a set of Ixia chassis.

SYNOPSIS

set chassisChain [::IxLoad new ixChassisChain]
$chassisChain subcommand options...

DESCRIPTION

The ixChassisChain command is used to construct a chain of Ixia chassis, whose ports may be used
in the ixNetworkGroup command for both client and server networks. Chassis are assigned chassis
IDs starting at 1; these are used in the network commands to define the chassis associated with the
port.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands

Chapter 4 IxLoad Tcl API Commands

– 117 –

are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

addChassis chassisName

Adds a new chassis to the chassis chain. chassisName is the IP address or host name of a chassis.
Each new chassis is assigned a c, starting at 1, which must be used to identify ports on that chassis.

changeCardsInterfaceMode

Changes the interface mode on CloudStorm, PerfectStorm and Lava/XM cards. To use this method,
pass the hostname or IP address of the chassis, the card number that you want to change the interface
mode on, and the mode. The mode can be:

CloudStorm 100G or 40G

PerfectStorm 1G, 10G, or 40G

Lava SingleMode or DualMode

XM 100G or 3x40GMode

To change multiple cards at once, separate the card numbers separated with commas.

Example: $chassisChain changeCardsInterfaceMode 10.20.83.90 1,2 40G

Call this method only after the testController object has been created, and only on ports that are not
already assigned to the test. After the card interface mode is changed, you need to add the ports to the
test. If you use this method on a port in a configured test, the test configuration will be released.

deleteChassisByName chassisName

Deletes the chassis whose name is chassisName from the chassis chain. All other chassis IDs remain
unaffected.

getChassisNames

Returns a list of all of the chassis names, ordered by their chassisIDs.

getLoginName

Returns the user's login name.

isValidChassisName chassisName

Checks to see whether chassisName is a valid IP address or host name. True is returned if the name
is valid and false otherwise.

refresh

Refreshes all of the chassis in the chassis chain-retrieving current card and port configuration.

Chapter 4 IxLoad Tcl API Commands

– 118 –

refreshChassis chassisName

Refreshes the chassis whose name is chassisName-retrieving current card and port configuration.

setLoginName name

Sets the user's login name to name. If this call is not made, then the name of the chassis is used when
port ownership is taken.

OPTIONS

None.

EXAMPLE

#set chassisChain [::IxLoad new ixChassisChain]
#$chassisChain addChassis $chassisName
Build chassis
chain###

set chassisChain [::IxLoad new ixChassisChain]
$chassisChain addChassis 10.205.29.101

set client_network [::IxLoad new ixNetworkGroup $chassisChain]
$client_network config \
-comment "" \
-name "client network" \
-emulatedRouterSubnetIPv6 "FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::0" \
-linkLayerOptions 0 \
-ipSourcePortFrom 1024 \
-emulatedRouterGatewayIPv6 "::" \
-cardType "ALM1000T8-1GB" \
-emulatedRouterGateway "0.0.0.0" \
-ipSourcePortTo 65535 \
-emulatedRouterSubnet "255.255.255.0" \
-macMappingMode 0 \
-dnsParameters $my_ixDns \
-tcpParameters $my_ixTcpParameters \
-impairment $my_ixImpairment \
-arpSettings $my_ixArpSettings

$client_network portList.appendItem \
-chassisId 1 \
-cardId 3 \
-portId 7

SEE ALSO

ixNetworkGroup (see "ixNetworkGroup")

Chapter 4 IxLoad Tcl API Commands

– 119 –

IxChassisBuilder
chassisBuilder - Configure and manage an IxVM chassis.

SYNOPSIS

set chassisBuilder [::IxLoad new ixChassisBuilder]

DESCRIPTION

chassisBuilder is a a set of APIs that enable you to configure and manage an IxVM chassis.

You can use chassisBuilder to perform most of the same tasks as the IxVM Chassis Builder application,
such as adding, changing, or removing cards or ports from a chassis, setting the license server,
enabling or disabling promiscuous mode, setting the NTP server, etc..

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

Creating a Chassis

To create a chassis, use the following API:

set chassisBuilder [::IxLoad new ixChassisBuilder]

Connecting to a Chassis

To connect to a chassis, use the following API:

$chassisBuilder connectToChassis -chassisName "chassis name"

Changing the Chassis Settings

To change the chassis settings, you first need to issue a get command.

set chassisSettings [$chassisBuilder getChassisSettings]

The chassisSettings objects has 4 parameters which can be inspected

l LicenseServer

l EnableLicenseCheck

l NtpServer

l TxDelay

To get a parameter, use the cget method. For example: [$chassisSettings cget -NtpServer]

You can change the value of a specific parameter by issuing a cset. For example: [$chassisSettings
cset -NtpServer 10.215.10.99]

Chapter 4 IxLoad Tcl API Commands

– 120 –

When you have finished changing the settings, to make them permanent, you will need to do the
following:

[$chassisBuilder setChassisSettings -chassisSettings $chassisSettings]

Adding a Card

To add a card, use the following API:

[$chasssisBuilder addCard -managementIp "127.0.0.1" -cardServerId 2 -
keepAliveTimeout 100]

Clearing Ownership

To clear ownership, use the following API:

[$chassisBuilder clearOwnership -cardId cardid]

Adding a Port

To add a port to a specific card ID, use the following API:

[$chassisBuilder addPort -cardId 2 -portId 1 -interfaceName "eth0" -promiscMode true/false -mtu 5000
-lineSpeed "1000"]

Adding and Removing Credentials

To remove credentials for a specific server, use the following API:

[$chassisBuilder removeCredentials -serverName "10.215.10.99"]

To add a specific credential set, use the following API:

[$chassisBuilder addCredentials -serverName "10.215.10.99" -enable true -user
user1 -password password1 -applianceType "Qemu"]

applianceType is the VM type, and can be one of the following:

l "N/A"

l "Qemu"

l "VMWare"

Connecting a Card

To connect a disconnected card, use the following API:

[$chassisBuilder connectCard - cardId 1]

Deleting a Card

To delete a card, use the following API:

[$chassisBuilder deleteCard -cardId 1]

Disconnecting a Card

To disconnect a card, use the following API:

Chapter 4 IxLoad Tcl API Commands

– 121 –

[$chassisBuilder disconnectCard -cardId 1]

Getting Card Info

To get the card Information by card ID, use the following API:

set card [$chassisBuilder getCardById -cardId 3]

The card object has the following properties which can only be retrieved (using cget):

l CardName

l CardServerId

l KeepAliveTimeout

l ManagementIp

l Status

Getting a List of Ports

To get a list of all ports of a specific card, the user should use the following API.

set portList [$chassisBuilder getCardPorts -cardId 1]

portList is a list of portInfo objects. Each portInfo object has the following properties, which can
only be retrieved (using cget):

l InterfaceName

l MTU

l PortName

l PortServerId

l PromiscMode

l Status

Getting the Chassis Topology

To get a list of the chassis topologies, use the following API:

set topologies [$chassisBuilder getChassisTopology]

topologies is a list of ixTopology objects. Each object has the following properties, which can only
be retrieved (using cget):

l CardServerId

l InterfaceName

l IPAddress

l KeepAliveTimeout

l LineSpeed

l MAC

l MTU

Chapter 4 IxLoad Tcl API Commands

– 122 –

l PortServerId

l PromiscMode

Getting Credentials

To get a list of discovered credentials, use the following API:

set credentials [$chassisBuilder getDiscoveredCredentials]

credentials is a list of ixServerInfo objects. Each object has the following properties, which can
only be retrieved (using cget):

l Enabled

l ErrorMessage

l HasError

l ServerName

l ServerPassword

l ServerType

l ServerUser

Getting a Card ID

To get a card ID based on a management IP, use the following API:

set cardId [$chassisBuilder getIxVMCardByIP -managementIp "10.215.10.100"]

Rebooting a Chassis

To perform a hard reboot of a chassis, use the following API:

[$chassisBuilder hardChassisReboot]

Loading Topology from a File

To load a topology from a csv file, use the following API:

[$chassisBuilder loadTopologyFromCsv -path "path to the file"]

Rebuilding the Topology

To rebuild the chassis topology, use the following API:

[$chassisBuilder rebuildChassisTopology -usePreviousSlotId true -promiscMode true
appVersion ""]

Rediscovering Applicances

To rediscover the appliances, use the following API:

[$chassisBuilder rediscoverAppliances]

Removing a Port

To remove a port by id, use the following API:

Chapter 4 IxLoad Tcl API Commands

– 123 –

[$chassisBuilder removePortById -cardId 1 -portId 2]

Updating a Card

To update a card by ID, use the following API:

[$chassisBuilder updateCard -cardServerId -managementIp="10.215.11.11" -
keepAliveTimeout true]

Updating a Port

To update a port by id, use the following API:

[$chassisBuilder updatePortById -cardId 1 -portId 1 promiscMode false mtu 1000
lineSpeed "5000"]

Getting a List of Virtual Machines

To get a list of discovered machines, use the following API:

set machines [$chassisBuilder getDiscoveredMachines]

machines is a list of ixDiscoveredMachine objects. Each object has the following properties, which
can only be retrieved (using cget):

l ApplianceName

l Interfaces, which is a list of ixDiscoveredInterface objects. Each object has the following
properties:

l InterfaceName

l State, which can have one of the following values:
n "Available"

n "Assigned"

n "Unusable"

l InterfaceNumber

l ManagementIp

l Type, which can have one of the following values:
n "N/A"

n "Qemu"

n "VMWare"

Rebooting Cards

To reboot specific cards by their ID, use the following API:

[$chassisBuilder hwRebootCardByIDs -cardIDs "a list of card ids"]

EXAMPLE
package require IxLoad

Chapter 4 IxLoad Tcl API Commands

– 124 –

::IxLoad connect 1.2.3.4
set logtag "IxLoad-api"
set logName "simplehttp"
set logger [::IxLoad new ixLogger $logtag 1]
set logEngine [$logger getEngine]
$logEngine setLevels $::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)
$logEngine setFile $logName 2 256 1

#Create a new chassis builder
set chassisBuilder [::IxLoad new ixChassisBuilder]

connect to a chassis
$chassisBuilder connectToChassis -chassisName "10.215.122.90"

#getting a chassis topology and showing properties
set topologies [$chassisBuilder getChassisTopology]
set count [$topologies indexCount]
set index 0
set topology [$topologies getItem 0]
set CardServerId [$topology cget -CardServerId]
set InterfaceName [$topology cget -InterfaceName]
set IPAddress [$topology cget -IPAddress]
set KeepAliveTimeout [$topology cget -KeepAliveTimeout]
set LineSpeed [$topology cget -LineSpeed]
set MAC [$topology cget -MAC]
set MTU [$topology cget -MTU]
set PortServerId [$topology cget -PortServerId]
set PromiscMode [$topology cget -PromiscMode]

#add a card and a port example
set cardIp "10.215.122.96"
$chassisBuilder addCard -managementIp $cardIp -keepAliveTimeout 300
set cardId [$chassisBuilder getIxVMCardByIP $cardIp]
$chassisBuilder addPort -cardId $cardId -portId 1 -interfaceName "eth1" -
promiscMode False -lineSpeed "1000"

#changing the license server on a virtual chassis
$chassisSettings cset -LicenseServer "10.215.122.90"
$chassisBuilder setChassisSettings $chassisSettings

#get cardId and connect it to the chassis
set cardId [$chassisBuilder getIxVMCardByIP $cardIp]
$chassisBuilder connectCard -cardId $cardId

#disconnecting a card
$chassisBuilder disconnectCard -cardId $cardId

Chapter 4 IxLoad Tcl API Commands

– 125 –

#getting discovered machines
puts "Getting discovered machines"
set machines [$chassisBuilder getDiscoveredMachines]
set count [$machines indexCount]
if { $count == 0} {
puts "No machines discovered ! Should do a rediscovery !"
} else {
set index 0
puts $count
puts "There are $count machines discovered"
set machineInfo [$machines getItem 0]
set ApplianceName [$machineInfo cget -ApplianceName]
set Interfaces [$machineInfo cget -Interfaces]
set ManagementIp [$machineInfo cget -ManagementIp]
set Type [$machineInfo cget -Type]
set InterfaceNumber [$machineInfo cget -InterfaceNumber]
::IxLoad disconnect

ixCustomPortMap
ixCustomPortMap-Customizes the order and frequency, by which client IPs will access server IPs.

SYNOPSIS

$destination1 config -portMapPolicy $ixPortMap(kPortMapCustom)

set customPortMap [$destination1 cget customPortMap]

$customPortMap subcommand options

DESCRIPTION

The ixCustomPortMap command is used to map a range of client and server trafIt is used to map client
IPs onto server IPs or client VLANs onto server VLANs.

A custom port map is associated with a specific symbolic destination.

To create a Custom traffic map, the client and server network ranges, rangeType parameter can be
anything, except IPSec. For DHCP and PPPoE ranges, VLAN must be enabled on both the client and
server networks to use a custom traffic map.

SUBCOMMANDS

None.

OPTIONS

submapsIPv4

This is an ixConfigSequenceContainer holding a list of Submap objects.

submapsIPv6

Chapter 4 IxLoad Tcl API Commands

– 126 –

This is an ixConfigSequenceContainer holding a list of Submap objects.

Steps for Custom Traffic Mapping
To setup a Custom Traffic Map:

1. Set up the custom Traffic Map for symbolic destination. After creating the test object and
assigning traffic-network mappings, setup the custom traffic map for the symbolic destination.

set destination1 [$clnt_t_n_mapping getDestinationForActivity my_http_client svr_
traffic_my_http_server]

2. Set up the client or server traffic-network mapping. Set the client or server traffic-network
mapping for a custom traffic. Set the port for a destination to kPortMapCustom. Now it is
possible to access the customPortMap property on the destination object.

$destination1 config -portMapPolicy $ixPortMap(kPortMapCustom)

3. Include the custom port map object. This includes the custom port map object into a local
variable for convenience of scripting.

set customMap [$destination1 cget -customPortMap]

4. Set the submaps. A submap is a portion of a customPortMap that describes a simple relationship
between a set of source addresses and a set of destination addresses. Complex relationships can
be described using multiple ixPort objects.

set submap [$customMap submapsIPv4.getItem 0]

5. Set the submap's mesh type to be IP range pairs:
$submap config -meshType $ixSubmap(kMeshTypeIpRangePairs)

IP mesh types start out with ixSubmapRange objects that correspond to network ranges in the client
and server networks for the symbolic destination. In this mode, ixSubmapRange IDs are the row
numbers of the corresponding ranges in the networks. ixSubmapRange can be split into smaller, equal
subranges using the split command. Refer to Split and Merge Submaps.

VLAN mesh types start out with ixSubmapRange objects that correspond to VLAN IDs (one
ixSubmapRange per vLAN) in the client and server networks for the symbolic destination. In this mode,
ixSubmapRange IDs are the same as the VLAN IDs they represent. Each ixSubmapRange can
potentially span portions of many network ranges, depending on how the VLANs are specified on those
ranges.

6. Specify the interconnections. You can now specify which server submap range that each client
submap range communicates with. In the following example, the numbers next to the source
range and the destination range show the mapping pattern.

wire second source range to first destination range# and vise versa$submap
sourceRanges(0).config -destinationId 3$submap sourceRanges(1).config -destinationId
1$submap sourceRanges(2).config -destinationId 1$submap sourceRanges(3).config -
enable 0

7. Split and merge submaps. For IP meshes, you can split a range in the list into subranges by
calling the split method on that range. Once split, a range can be merged by calling merge on it.
Merge doesn't need a parameter because it removes all of the child nodes originally created by
using the split.

split some ranges$submap sourceRanges(0).split 2$submap destinationRanges(0).split

Chapter 4 IxLoad Tcl API Commands

– 127 –

2

EXAMPLE
#--# Set up the custom
traffic map for the symbolic destination.# This must be done after creating the test
object and assigning# traffic-network mappings#-------------------------------------

set destination1 [$clnt_t_n_mapping getDestinationForActivity my_http_client svr_
traffic_my_http_server]$destination1 config -portMapPolicy $ixPortMap
(kPortMapCustom)

setting custom port map creates and initializes the custom port map object# get it
so we can modify it

set customMap [$destination1 cget -customPortMap]

the default has a single submap range available. Modify itset submap [$customMap
submapsIPv4.getItem 0]

set it to an IP range pair type$submap config -meshType $ixSubmap
(kMeshTypeIpRangePairs)# split some ranges#$submap sourceRanges(0).split 2#$submap
destinationRanges(0).split 2# wire second source child to first destination child#
and vise versa

$submap sourceRanges(0).config -destinationId 3$submap sourceRanges(1).config -
destinationId 1$submap sourceRanges(2).config -destinationId 1$submap sourceRanges
(3).config -enable 0

SEE ALSO

ixClientTrafficNetworkMapping

ixPlaylists
ixPlaylist - Configure a playlist.

SYNOPSIS

set Playlist1 [::IxLoad new ixPlaylist]

$Playlist1 config \

Chapter 4 IxLoad Tcl API Commands

– 128 –

DESCRIPTION

ixPlaylist configures a playlist, a list of files to played.

A playlist is added to the activity in a ixNetTraffic object using appendItem subcommand. To
configure the playlist, use the config subcommand.

Only certain protocols support playlists. Ensure that the protocol in the activity you are adding the
playlist to supports playlists.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command. In addition the following commands are available.
Unless otherwise described, no values are returned and an exception is raised for any error found.

OPTIONS

splitMethod

Determines how the playlist is distributed among the ports in the test.

Value Description

sameFileOnEachPort (Default) The entire playlist is duplicated on each port

splitFileAcrossPorts The playlist is divided equally among the ports.

splitFileAcrossPortsAsFixedSlices The playlist is divided into chunks containing the number of
entries you specify, and distributes one chunk to each port.

Specify the number of entries in the entryCountOnEachPort
parameter.

name

Name of the playlist.

Default = "Playlistn" where n is a sequential integer starting with 1.

filename

Name of the CSV file to use as the source of the playlist data.

Default = "" (None)

indexIncrementMethod

If userSequencing is set to sequential or uniqueOffset, this option determines the order that
entries are loaded from the playlist.

Value Description

Chapter 4 IxLoad Tcl API Commands

– 129 –

perIteration (Default) All commands access the same resource in the playlist.

perCommand Each command access a different resource in the playlist, in order.

poolType

Entry in the playlist each user begins executing with.

Value Description

specificPool (Default) Defines a fixed, repeatable pattern for distributing the playlist resources
among the users.

If you select this option, you must specify values for the userSequencing and
indexIncrementMethod parameters.

globalPool The playlist is accessed in order, without regard to which user accesses a particular
entry.

entryCountOnEachPort

If splitMethod is splitFileAcrossPortsAsFixedSlices, this parameter determines the number of
entries for each port.

Default = 1

userSequencing

Method used to initially distribute the resources among the users. See the description in the User
Guide for a full description of the parameters.

Value Description

sequential (Default) Users access resources based on their order in the playlist.

uniqueOffset Users access resources based on their user ID.

randomOffset Users access resources randomly.

firstRowIsColumnHeader

If true, the entries in the first row of each column are used as headings for each column. If false,
default entries are used for column headings.

Values = true (default), false

EXAMPLE

$Activity_IPTV_VideoClient1 playlists.clear

Chapter 4 IxLoad Tcl API Commands

– 130 –

set Playlist1 [::IxLoad new ixPlaylist]

$Playlist1 config \

-splitMethod "sameFileOnEachPort" \

-name "Playlist1" \

-filename "C:\\Users\\user1\\Desktop\\playlist.csv" \

-indexIncrementMethod "perIteration" \

-poolType "specificPool" \

-entryCountOnEachPort 1 \

-userSequencing "sequential" \

-firstRowIsColumnHeader true

$Activity_IPTV_VideoClient1 playlists.appendItem -object $Playlist1

[...]

$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \

-commandType "PlayMediaCommand" \

-media "\{\{playlist.Playlist1.\$Media\}\}" \

-symServerIP "\{\{playlist.Playlist1.\$Site\}\}" \

-cmdName "Play Media 1"

ixPort
ixPort - retrieves the ID of an Ixia port and controls the port capture.

SYNOPSIS

$network portList.appendItem -chassisId 1 -cardId 1 - portId 1

set port [$network portList.getItem 0]

DESCRIPTION

The ixPort command is used to define and retrieve the attributes of an Ixia port that is a member of a
portList object. For example:
puts “Added card [$clnt_network portList(0).getId]”

Chapter 4 IxLoad Tcl API Commands

– 131 –

SUB-COMMANDS

None.

OPTIONS

getId

Returns a string indicating the chassis ID, card ID, and port ID of a port, in the following format:
chassisID.cardID.portID

getOwner

Returns a string indicating the current owner of the port. Returns an empty string if there is no owner.

isLinkUp

Returns a flag indicating, whether a cable is connected to another live port.

isPortCaptureEnabled

This returns a flag indicating the capture is enabled on the port.

setPortCaptureEnable

This enables the port capture. It is also enabled during the traffic-network map

setPortCaptureFileName

This enables the port capture and saves the details in a file on the hard disk.

EXAMPLE
#--# Build Chassis Chain
and add a Chassis#--

set chassisChain [::IxLoad new ixChassisChain]$chassisChain addChassis myChassis#---
---# Build client Network#--
--

set clnt_network [::IxLoad new ixClientNetwork $chassisChain]#----------------------
--# Add a port#-------------------------------

$clnt_network portList.appendItem \-chassisId 1 \-cardId 1\-portId 1#------
--# Get the port back and
check its ID#--

puts [$clnt_network portList(0).getId]

Chapter 4 IxLoad Tcl API Commands

– 132 –

SEE ALSO

ixChassisChain

ixSubmap
SYNOPSIS

set submap [$customMap submapsIPv4.getItem 0]

$submap config -meshType $ixSubmap(kMeshTypeIpRangePairs)

DESCRIPTION

A portion of a customportmap that describes a relationship between a set of source addresses and
destination addresses. Arbitrarily complex relationships can be described using multiple ixSubmaps.

Options

name

This is the user-defined name for the submap.

destinationRanges

List of ixSubmapRange objects representing the server IPs.

sourceRanges

List of ixSubmapRange objects representing the server IPs.

ipType

IP version (IPv4 or IPv6) used on the submap (read-only).

allowsIpMesh

Returns 1 if IP meshTypes are allowed (read-only).

allowsVlanMesh

Returns 1 if the VLAN meshTypes are allowed (read-only).

meshType

This defines the relationship between the sourceRanges and destinationRanges. Can be one of:

Option Usage

Chapter 4 IxLoad Tcl API Commands

– 133 –

$::ixSubmap
(kMeshor
“ipRangeMesh”

A pattern based on IP addresses, where each enabled client range
communicates to all enabled server ranges.

$::ixSubmap
(kMeshor
“ipRangePairs”

A pattern based on IP addresses, where each enabled client range
communicates with a single server range, as specified by the client range's
destinationId option (see ixSubmapRange command).

$::ixSubmap
(kMeshTypeVlanor
“vlanRange”

A pattern based on VLAN IDs, where each enabled client range communicates
with all enabled server ranges.

$::ixSubmap
(kMeshTypeVlanor
“vlanRange”

A pattern based on VLAN IDs, where each enabled client range communicates
with all enabled server ranges.

ixSubmapRange
DESCRIPTION

A group of IPs, specified by either VLAN or IP (as determined by the ixSubmap meshType option). A
submap range is the smallest unit of client or server IPs for specifying the traffic flow between clients
and servers.

OPTION

id

This is the IxLoad-assigned ID for the submap. This is read-only.

enable

This enables or disables traffic for the submap range. In full mesh modes, enable applies to both the
client and server submap ranges. In range pair modes, enable affects the submap ranges only. All
enabled client submap ranges will talk to their specified destination submap range, whether enabled or
not.

destinationId

This is enabled for client submap ranges in a range pair meshType mode. It specifies the destination
submap range to be communicated with. It can handle a list of destination IDs

childRanges

Chapter 4 IxLoad Tcl API Commands

– 134 –

This is for IP meshTypes only. This is an ixConfigSequenceContainer with a list of ixSubmapRanges
for nodes created via the split command. This list cannot be extended manually via appendItem.

ixIntRange
DESCRIPTION

This holds the items of comma separated list of ports defined in portRanges of
ixDutProtocolPortRange. These items can either be a single integer value or a range of integers.

set my_ixIntRange [::IxLoad new ixIntRange]
$my_ixIntRange config \
-intRange "16-80"

OPTION

intRange

The value of portRanges of ixDutProtocolPortRange.

EXAMPLE
set destination [$Traffic1_Network1 getDestinationForActivity "HTTPClient1"
"DUT1:custom"]$destination config \-portMapPolicy
"customMesh"

$destination portRangeList.clear

set my_ixIntRange [::IxLoad new ixIntRange]$my_ixIntRange config \-intRange
"16"

$destination portRangeList.appendItem -object $my_ixIntRange

set my_ixIntRange1 [::IxLoad new ixIntRange]$my_ixIntRange1 config \-intRange
"18"

$destination portRangeList.appendItem -object $my_ixIntRange1

set my_ixCustomPortMap [$destination cget -customPortMap]

set Submap1 [$my_ixCustomPortMap submapsIPv6.getItem 0]$Submap1 config \-name
"Submap1" \-meshType "ipRangeMesh"

Chapter 4 IxLoad Tcl API Commands

– 135 –

ixRepository
ixRepository-Creates a repository object (RXF file).

SYNOPSIS

set ::repository [::IxLoad new ixRepository -name path]

DESCRIPTION

The repository (.RXF file) object is a set of lists that represents the tree shown in the IxLoad GUI. There
are six lists, one for each top-level node in the GUI tree: clientNetworkList, serverNetworkList, dutList,
clientTrafficList, serverTraffiand testList.

In order to create a repository, all test components (networks, traffic, activities, traffic-network
mappings, and tests) to be saved in a repository must be created in these lists.

Similarly, the contents of an existing repository can be manipulated by manipulating the objects in
these lists. The lists are of type ixConfigSortedNamedItemList.

For examples of repository usage, see the following scripts in the \Samples directory.

l reprun.tcl - Runs all tests in a repository.

l repNewHTTP.tcl - Creates a new repository.

l reprunhttpstats.tcl - Runs all tests in a repository and collects http stats.

SUBCOMMANDS

The options for this command are configured and read using the subcommands defined in the
ixConfigSortedNamedItemList command.

OPTIONS

name

Specifies the path to the file.

activeTest

The name of the active test in the repository. This test should be selected when the repository is
loaded into the IxLoad GUI.

clientNetworkList

List of the client networks in the repository. This is a list of type ixConfigSortedNamedItemList.

serverNetworkList

List of the server networks in the repository. This is a list of type ixConfigSortedNamedItemList.

dutList

List of the DUTs in the repository. This is a list of type ixConfigSortedNamedItemList.

clientTrafficList

Chapter 4 IxLoad Tcl API Commands

– 136 –

List of the client activities in the repository. This is a list of type ixConfigSortedNamedItemList.

serverTrafficList

List of the server activities in the repository. This is a list of type ixConfigSortedNamedItemList.

testList

List of the test configurations (traffic-network mappings, timelines, port selections in the repository.
This is a list of type ixConfigSortedNamedItemList.

write

Save the repository to a file. -write takes the following arguments:

-
destination

The path to the file. Can be omitted to rewrite an existing repository opened with the
-name option.

-overwrite If true, overwrites an existing file, provided it is accessible and not write-protected.
(Defaults = false).

EXAMPLE
#Create an empty repository and save itset ::newRepository [::IxLoad new
ixRepository]$::newRepository write -destination newRepository -overwrite 1

SEE ALSO

ixSendEventCommand
ixSendEventCommand - trigger a waiting command

SYNOPSIS

$my_ixSendEventCommand config \

-optionvalue

DESCRIPTION

ixSendEventCommand and ixWaitEventCommand synchronize the command lists of two or more
activities within a Subscriber NetTraffic. ixWaitEventCommand stops command list execution until an
ixSendEventCommand with a matching eventId is called. ixSendEventCommand causes all command
lists within a Subscriber NetTraffic that are currently stopped by an ixWaitEventCommand with a
matching eventId to resume execution.

ixSendEventCommand and ixWaitEventCommand are added to an actionList using the appendItem
command.

Chapter 4 IxLoad Tcl API Commands

– 137 –

For example, if Command2 must be executed only after Command1 has been executed:

1. An ixWaitEventCommand is inserted preceding Command2.

2. A ixSendEventCommand is added after Command1, with the same eventID as in the
ixWaitEventCommand.

When Command1 finishes executing, the ixSendEventCommand ends the ixWaitEventCommand for
Command2, causing Command2 to be executed.

ixSendEventCommand and ixWaitEventCommand can only be used with Subscriber activities.

OPTIONS

commandType

Command type. The only value is "SendEventCommand".

eventID

ID of the corresponding ixWaitEventCommand. Default value = 1.

EXAMPLE

set my_ixSendEventCommand [::IxLoad new ixSendEventCommand]

$my_ixSendEventCommand config \

-commandType"SendEventCommand" \

-eventId1

$Subscriber_Activity_HTTPClient1 agent.actionList.appendItem -object $my_ixSendEventCommand

.

.

.

$Subscriber_Activity_FTPClient1 agent.actionList.clear

set my_ixWaitEventCommand [::IxLoad new ixWaitEventCommand]

$my_ixWaitEventCommand config \

-commandType"WaitEventCommand" \

-eventId1

$Subscriber_Activity_FTPClient1 agent.actionList.appendItem -object $my_ixWaitEventCommand

Chapter 4 IxLoad Tcl API Commands

– 138 –

SEE ALSO

ixWaitEventCommand

ixStatCatalogItem
ixStatCatalogItem-Describes a single item in a stat catalog.

SYNOPSIS
set statCatalog [$ixTestObject getStatCatalog]puts [[lindex $statCatalog 0]
statSpecList(0).cget -name]

DESCRIPTION

The ixStatCatalogItem object is a returned element of a list from the ixTest g command. It
describes a statistics source and all of the statistics and filters available from that source.

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS

statFilterList

(Read Only). The list of all filters available from the agent. Each item of the list is of type
ixStatFilter. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list.

statSourceType

(Read Only). The agent from which statistics originate, of the form:
Protocol Client/Server

Where Protocol is one of the supported protocols-for example, HTTP or FTP, and Client/Server is
one of those two values. Some examples are:
“HTTP Client”“FTP Server”

statSpecList

(Read Only). The list of all statistics available from the agent. Each item of the list is of type
ixStatSpec. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list.

EXAMPLE
puts [[lindex $statCatalog 0] statSpecList(0).cget -name]

Chapter 4 IxLoad Tcl API Commands

– 139 –

SEE ALSO

ixTest

ixStatFilter

ixStatSpec

ixStatFilter
ixStatFilter-Describes a single statistics filter in a stat catalog.

SYNOPSIS

set statCatalog [$ixTestObject getStatCatalog]

puts [[lindex $statCatalog 0] statFilterList(0).cget -type]

DESCRIPTION

The ixStatFilter object is one element of the statFilterList option of the ixStatCatalogItem
object. It describes a single filter available for a protocol agent (statSourceType).

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS

type

(Read Only). The type of the filter available. One of:

Option Usage

$::ixStatFilter(kTypePort)
or “Port”

A filter operation may be performed across the port described in the
value field.

$::ixStatFilter(kTypeCard)
or “Card”

A filter operation may be performed across the card described in the
value field.

$::ixStatFilter
(kTypeChassis)
or “Chassis”

A filter operation may be performed across the chassis described in the
value field.

$::ixStatFilter
(kTypeActivity)

A filter operation may be performed across the activity described in the
value field.

Chapter 4 IxLoad Tcl API Commands

– 140 –

or “Activity”

$::ixStatFilter
(kTypeCommunity)
or “Traffic-
NetworkMapping”

A filter operation may be performed across the community described in
the value field.

value

(Read Only). A value corresponding to the value of the type option. One of:

Option Usage

$::ixStatFilter
(kTypePort)
or “Port”

A port specification in the form:
chassis/card/port

$::ixStatFilter
(kTypeCard)
or “Card”

A port specification in the form:
chassis/card

$::ixStatFilter
(kTypeChassis)
or “Chassis”

A port specification in the form:
chassis

$::ixStatFilter
(kTypeActivity)
or “Activity”

The name associated with an ixCustomPortMap or ixServerTraffic object
in the test.

$::ixStatFilter
(kTypeCommunity)
or “Traffic-
NetworkMapping”

The name associated with an ixClientTrafficNetworkMapping or
ixServerTrafficNetworkMapping object in the test.

EXAMPLE
puts [[lindex $statCatalog 0] statFilterList(0).cget -type]

SEE ALSO

ixTest

ixStatCatalogItem

Chapter 4 IxLoad Tcl API Commands

– 141 –

ixStatSpec
ixStatSpec-Describes a single statistic in a stat catalog.

SYNOPSIS

set statCatalog [$ixTestObject getStatCatalog]

puts [[lindex $statCatalog 0] statSpecList(0).cget -type]

DESCRIPTION

The ixStatSpec object is one element of the statSpecList option of the ixStatCatalogItem
object. It describes a single statistic available for a protocol agent (statSourceType).

SUBCOMMANDS

The options for this command are read using the standard cget and getOptions subcommands
defined in the ixConfig command.

OPTIONS

aggregationFunctionCode

(Read Only). The type of statistic which this represents. One of:

Option Usage

“Raw”

“Interpolated”

“Interpolated Rate”

“Rate”

“Smooth”

“Interval Maximum”

“Interval Minimum”

“Interval Average”

“Interval Weighted Average”

“Sum over ports"

“Maximum over ports”

Chapter 4 IxLoad Tcl API Commands

– 142 –

“Minimum over ports”

“Average over ports”

“Weighted Average over ports”

enablePortAggregation

(Read Only). If true, then it is possible to aggregate this statistic for all agents on a port.

name

(Read Only). The name of the statistic. This is the same name that is used in the name field of the
::statCollectorUtils::AddStat -statName argument.

path

(Read Only). The internal full-path name of the statistic.

EXAMPLE
puts [[lindex $statCatalog 0] statSpecList(0).cget -type]

SEE ALSO

ixTest

ixStatCatalogItem

ixTest
ixTest-Builds a complete IxLoad test.

SYNOPSIS

set Test1 [::IxLoad new ixTest]

$test subcommand options...

DESCRIPTION

The ixTest command is used to construct a complete IxLoad test structure. It consists of a list of
client traffic-network and server traffic-network mappings, called communities. In addition to the two
lists, several options control global operation. An ixTest command is used in conjunction with a
ixTestController to operate the test and collect statistics.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands

Chapter 4 IxLoad Tcl API Commands

– 143 –

are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

getStatCatalog

This subcommand returns a list of objects of type ixStatCatalogItem that define all of the statistics
available, along with all possible filters. Refer to ixConfigSequenceContainer for a list of commands
that may be used to manipulate this list.

getCommunityList

This subcommand returns all the communities in the test in no particular order. It is provided for
convenience. It is essentially equivalent to getting the clientCommand serverCommunityList and
concatenating them.

set the chassis chain on the repository
since there is no chassisChain clear,
it's easiest to start with a new one

myChassisChain = new ixChassisChain
myChassisChain.addChassis(“myChassis”)
repository.chassisChain = myChassisChain

set ports on all the networks in the tests
for test in repository.testList:
or pick a specific test

for community in test.getCommunityList():
community.network.portList.clear()

update x & y with next card and port to assign
(assuming single chassis)
community.network.portList.appendItem(chassisId = 1, \ cardId = x, portId = y)

For an example of how to load a repository, see RepRun.tcl in the Samples directory.

OPTIONS

clientCommunityList

A list of objects of type ixClientTrafficNetworkMapping that define the client agent to network
mappings used to generate client traffic. Refer to ixConfigSequenceContainer for a list of commands
that may be used to manipulate this list. (Default = {}).

comment

A comment associated with the test. (Default = ““).

csvInterval

The interval, in seconds, at which the CSV statistics files are updated. In the GUI, this parameter is on
the Test Options pane and is labeled CSV Polling Interval. This parameter does not set the
statistics callback interval, which you must define manually for each script (see statCollectorUtils
on page 4-60). (Default = 4).

Chapter 4 IxLoad Tcl API Commands

– 144 –

enableForceOwnerShip

If true, at the beginning of the test, any ports that are selected for the test but owned by another user
are rebooted and their previous ownership cleared. This parameter corresponds to the GUI option
“Forcefully Take Ownership.” (Default = false).

enableReleaseConfigAfterRun

If true, purges the test configuration from the ports after a test completes, releases ownership of them,
and the ports will no longer respond to ARPs and PINGs from the DUT. (Default = false).

enableResetPorts

If true, IxLoad reboots the ports before downloading the test configuration to them. To ensure the
integrity of your testing, it is always safest to reboot the ports before running a test. However,
rebooting the ports does increase the amount of time required to prepare the ports for a test.

If you are developing a test and making incremental changes to it and then run it to see the effect of
your changes, it may be safe to save time by not rebooting the ports before each run.

If you do not want to reboot the ports for every test, you should at least reboot the ports the first time
you load a repository; this will ensure that any software structures remaining from a previous test or
other application are properly removed. (Default = false).

name

The name associated with this object. (Default = “TestEnvelope”).

serverCommunityList

A list of objects of type ixServerTrafficNetworkMapping that define the server agent to network
mappings used to simulate network servers. Refer to ixConfigSequenceContainer for a list of
commands that may be used to manipulate this list. (Default = {}).

statsRequired

If true, statistics will be collected for the test. (Default = 1).

EXAMPLE
#--# Create the test#---
---set Test1 [::IxLoad new
ixTest]$Test1 config \-comment "" \-csvInterval
4 \-name "Test1" \-statsRequired
1 \-enableResetPorts 0 \-enableForceOwnership
false \-enableReleaseConfigAfterRun 0 \-captureViewOptions
$my_ixViewOptions

$Test1 scenarioList.clear

$Test1 scenarioList.appendItem -object $TrafficFlow1

Chapter 4 IxLoad Tcl API Commands

– 145 –

SEE ALSO

ixTestController

ixDut

ixTestController
ixTestController-Controls execution of an IxLoad test.

SYNOPSIS

set testController [::IxLoad new ixTestController options]

$testController subcommand options...

DESCRIPTION

The ixTestController command is used to control the execution of an IxLoad test. The ixTest
object is referenced in this command's run subcommand.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

OPTIONS

addReportFile

Adds a file to the IxReporter test results folder. This option corresponds to adding files to the Files tab
in IxReporter. You can add the following types of files: BMP, JPG, CSV, PNG, GIF. For example:
"c:/temp/reportFiles/http.csv" or "c:/temp/images/http.bmp". If you add a CSV file, you must add the
metadeta file in the same folder as well. You can call this API after the test is stopped. See
generateReport for more information.

Values: Full path and name of file to add. Default = "" (none).

addReportFilesFromFolder

Adds all the files in a folder to the IxReporter test results folder. This option corresponds to adding files
to the Files tab in IxReporter. You can add the following types of files: BMP, JPG, CSV, PNG, GIF. For
example: "c:/temp/reportFiles". If you add a CSV file, you must add the metadeta file in the same
folder as well. You can call this API after the test is stopped. See generateReport for more
information.

Values: Full path of the folder to add. Default = "" (none).

Chapter 4 IxLoad Tcl API Commands

– 146 –

applyConfig

Downloads the test configuration to the Ixia ports. The syntax is the same as for the run subcommand.

applyObjectiveValues

Applies the new objective values that are configured on the activity when the test is running. See the
example for canSetObjectiveValue.

autorepository

Automatically creates a repository that is used as the source of data for the “Test Configuration”
section in a generated report. The repository is created in the results ($resultDir) directory.

The autorepository and repository subcommands can both be used to create repositories that are
the source of data for the “Test Configuration” section of reports.

l autorepository creates a repository based on IxLoad's internal, ephemeral repository.

l repository creates a copy of the repository specified by $repository (created using
ixRepository).

The choice of which one to use depends on whether or not you are using an $repository object in
your test:

l If you are using $repository, use repository.

l If you are not using $repository, use autorepository.

autorepository requires the repository file name as an argument.

For example, the following generates a repository named My_Rep.rxf:
$testController run $test -autorepository "My_Rep.rxf"

canSetObjectiveValue

Checks whether the objective value can be set on the activity when the test is running. The objective
value can be changed only during the Ramp-up and Sustain phases of the test.

For a result equivalent to changing the objective values in the GUI ("modify-on-the-fly"), make sure
your script changes the objectiveValue, not the userObjectiveValue. Your script must call
canSetObjectiveValue before changing the objective value because changing the objective value is
not allowed during some run states such as ramp down.
Modify objective value on the fly every 40s (3rd one should give a warning)

set maxObjectiveValue [$Activity_newClientActivity1 getMaxObjectiveValue]puts "Max
objective value - $maxObjectiveValue"

set objectiveValue 733100for {set j 0} {$j < 3} {incr j} { sleep 40 puts
"Trying to change objective to $objectiveValue..." $Activity_newClientActivity1
config -objectiveValue $objectiveValue set canSetObjectiveValue [$Activity_
newClientActivity1 canSetObjectiveValue] if { $canSetObjectiveValue } {
$Activity_newClientActivity1 applyObjectiveValues } incr objectiveValue 100}

Chapter 4 IxLoad Tcl API Commands

– 147 –

collectDebugLogs

This command places the debug logs in the DebugInfo\Logs directory of the configured results
directory of the test configuration on the PC running the IxLoad client GUI. For example:

<ResultsDirectory>\ DebugInfo\Logs

Example:
$testController collectDebugLogs

enableAutoGenerateReport

Automatically generates a report after the test stops. You must call this API before the test is
configured. See generateReport for more information.

Values: 0 = false (default), 1 = true.

getTestServerHandle

This subcommand returns a string used for statistics collection using the
statCollectorUtils::Initialize command. IOR stands for Interoperable Object Refname given to a
network-addressable reference as defined by CORBA.

getMaxObjectiveValue

Fetches the maximum objective value that can be configured on the activity when the test is running.
This value is shown as the maximum value that can be set using the Objective slider in the IxLoad GUI.
See the example below and the example for canSetObjectiveValue.

Example:

proc ::my_stat_collector_command {args} {
set ::ixStatCollectorMonitor "statsReceived"

}
${NS}::StartCollector -command ::my_stat_collector_command -interval 4

set ::ixTestControllerMonitor ""
$testController run $Test1

wait till we get stats, indicating test is starting to run
vwait ::ixStatCollectorMonitor

set maxObjectiveValue [$Activity_newClientActivity1 getMaxObjectiveValue]
puts "Max objective value - $maxObjectiveValue"

generateReport

This command performs the report generation from TCL. The generateReport function is called after a
test is run and completed. The test run generates certain CSV files. These files are stored in the result
directory and contain the test statistics. IxReporter processes the resulted CSVs and generates the
PDF file.

Chapter 4 IxLoad Tcl API Commands

– 148 –

A new version of IxReporter, the report generation application, was introduced with IxLoad 6.0. This
new version provides new report options, but requires a slightly different workflow. The legacy (pre-
6.0) report generation options are still supported.
Legacy (pre-6.0) Report Generation

The legacy report generation options do not require the IxReporter GUI to be running in the
background, and the only package that is required is the ixload package (package require
ixload). The only legacy report generation options are:

-detailedReport
-format

To generate a legacy report, specify the .rxf file for the test, and the report options:

$testController run $test -autorepository <rxf Name>vwait
::ixTestControllerMonitor$testController releaseConfigWaitFinish$testController

generateReport -detailedReport 1 -format PDF

IxLoad 6.0 Report Generation

To use the IxLoad 6.0 report generation options, you use the same generateReport command with
options you want, plus the following additional options:

l enableAutoGenerateReport automatically generates a report after the test stops.

l addReportFile adds a files to the report.

l addReportFilesFromFolder adds all the files in a folder to the report .

As an alternative to using the report generation APIs, you can use IxReporter standalone to manipulate
test results and generate a report.

The IxLoad 6.0 report options require the ixloadcsv package to be loaded (package require
ixloadcsv).

The complete code workflow for generating reports is as follows:

1. Launch the ixWish console from the installed build menu.

2. Call "package require IxLoadCsv".

3. Call "Source xxx.tcl" where xxx.tcl is the file that contains the TCL reporter APIs for your
test.

4. Determine when you want to call the report generation APIs:

Explicitly, after the test stops: Automatically:

Call generateReport. Call enableAutoGenerateReport.

5. Call the optional report generation APIs:
addReportFile

addReportFilesFromFolder

6. Access the location where the generated report is stored to retrieve the report file.
generateReport options

Chapter 4 IxLoad Tcl API Commands

– 149 –

-detailedReport

Type of report: summary or detailed. Summary reports are named "IxLoad Summary Report", detailed
reports are named "IxLoad Detailed Report".

Values: 0 = summary (default), 1 = detailed.

-format

File format of report.

Values = "PDF" (default), "HTML", "PDF;HTML" (generates both), or HTML;PDF (generates both)

-orientation

Orientation of report.

Values: "Portrait" (default), "Landscape"

-outputFile

Path to which the test report is saved. If no path is specified, the report is saved in the default test
results folder. For Unix users, report file is saved on the machine running the Tcl scripts.

Values: Full directory path, and file name without an extension. For example: "c:/temp/httpReport"

-mailTo

Email address to which the report is automatically mailed after generation.

Value: Valid email address. For example: "tester1@company.com". The default value is empty (null
string).

-testName

Name of test in report.

Value: String. For example: "httpTest". The default value is the active test name in the rxf.

-testerName

Name of tester identified in report.

Value: String. For example: "ixia". The default is the tester name in the rxf.

-dutName

Name of the DUT in the report

Value: String. For example: "firewall". The default value is empty (null string).

-highlights

Applies highlighting-style formatting all instances of the specified string in the report.

Value: String. For example, if you specify: "Performance testing", all instances of the string
"Performance testing" are highlighted in the report. The default is the active test comments in the rxf.

-coverPageImageFile

Chapter 4 IxLoad Tcl API Commands

– 150 –

Image file to be used as the report's cover page.

Value: Full path of the image file.

-qaCsv

Reserved for internal use.

getRunResultDirFull

The getRunResultDirFull returns the directory into which the generated report has been placed.
$testController generateReport -detailedReport 1set resultDir [$testController
getRunResultDirFull]

isBusy

Following a call to the run subcommand, this subcommand returns true while the test is still running.

repository

Creates the repository that is used as the source of data for the “Test Configuration” section in a
generated report. The repository is created in the results ($resultDir) directory.

For example, the following generates a repository using the configuration specified by the ixRepository
object:
$testController run $test -repository $repository

The autorepository and repository subcommands can both be used to create repositories that are the
source of data for the “Test Configuration” section of reports. For a description of the differences
between them, see autorepository.

retrieveFileCopy

Copies files from Windows to Linux. You can use retrieveFileCopy to retrieve files from the Windows
file system.
set resultDir [$testController getRunResultDirFull]set remoteFile
“$resultDir\\IxLoad Detailed Report.pdf”::IxLoad retrieveFileCopy $remoteFile
/root/Report1.pdf

run $test

This command causes the test specified in $test, which must be an object of type ixTest, to start.
After calling the TestController run function, your script must call vwait
::ixTestControllerMonitor to ensure that the Tcl event loop is processed. Otherwise, IxLoad will
not call your statistics callback command, and you will not be able to tell when the test ends.

If you have a lot of processing to do after calling run, but before the test ends, your code may be
executing when IxLoad sets the ::ixTestController monitor variable. Example 2 (see below) shows how
to correctly handle detecting the end of test if this possibility exists.

Chapter 4 IxLoad Tcl API Commands

– 151 –

setResultDir $dir

Specifies the location of where the execution results will be kept. If this subcommand is not called, no
results will be stored. When running from a Unix client, this is a directory on the intermediate Windows
host that the client connected to using the connect subcommand of ::IxLoad. The retrieveFile or
retrieveFileCopy subcommands of ::IxLoad can be used to retrieve the files from the Windows
host.

Within the directory you specify for setResultDir, IxLoad stores the following files for the current
test:
Test_Client.csvTest_Server.csv<Protocol>_<Client|Server>.csv<Protocol>_
<Client|Server>_-_Default_CSV_Logs_<activity name>_<traffic name>@<network
name>.csvTest_Client.csvTest_Server.csv

<Protocol> is the name of the protocol (for example, HTTP). There will be a set of files for each
protocol used in the test.

<Client|Server> is the side of the connection, client or server. There will be a set of files for each
side used in the test.

<activity name> is the name of the activities (agents) appended to the agentList of the traffic.

<traffic name> is the name of the ixCustomPortMap or ixServerTraffic element created in the
test.

<network name> is the name of the ixDHCP or ixStatCatalogItem element created in the test.

startCapture

Starts packet capture. IxLoad automatically calls startCapture before the test starts running (when
the nettraffics are being configured). If your script calls startCapture explicitly, you can start (or
restart) capturing packets at any point in the test (provided you have first called stopCapture to stop
a capture that is already running).

stopCapture

Stops packet capture. IxLoad automatically calls stopCapture when the test finishes running. You can
use stopCapture to stop capture at any point during the test, such as when the test enters the
Configured state.

For example, the following script fragment captures only the packets generated during the Apply Config
process:

Start the test
$testController applyConfig $test
vwait ::ixTestControllerMonitor
puts $::ixTestControllerMonitor
$testController stopCapture
#
Wait for the rest of the capture data
#

Chapter 4 IxLoad Tcl API Commands

– 152 –

if {$::ixCaptureMonitor == ""} {
puts "Waiting for last capture data to arrive."
vwait ::ixCaptureMonitor
puts "Capture data received."
}

stopRun

Stops the test. Any protocol sessions running at the time stopRun is issued are terminated as quickly
as possible. To stop the test gracefully, use stopRunGraceful.

stopRunGraceful

Stops the test, allowing the DUT to end any remaining protocol sessions. Because stopRunGraceful
allows sessions to terminate naturally, the ramp-down phase of the test may be longer than if you use
stopRun.

OPTIONS

outputDir

If this is empty (““), then no result CSV files are saved. If this is not empty (for example, “1”), then
CSV files are saved. (Default = ““).

EXAMPLE
Example 1: First method of using vwaitset testController [::IxLoad new
ixTestController -outputDir 1]$testController setResultDir \

"[pwd]/RESULTS/simplehttpclientandserver"
Run the test$testController run $testvwait ::ixTestController

#Example 2: Second method of using vwait. This method is useful if you have
processing you wish to do while the test is running.# Code to set up and define test
and testController# ...

The following function is useful to delay while running# the Tcl event loop.proc
sleep {duration} { after $duration {set wakeUp 1} vwait wakeUp}

set ::ixTestControllerMonitor ""$testController run $test

Other activities here. While waiting you must call# either vwait or update to
ensure your statCollector command# is called.

wait, if necessary, until the test is over#while {[lsearch
$::ixTestControllerMonitor TEST_STOPPED] == -1} { sleep 1000}

puts $::ixTestControllerMonitor

Chapter 4 IxLoad Tcl API Commands

– 153 –

SEE ALSO

ixTest

ixTestControllerMonitor
ixTestControllerMonitor-Global variable to wait on for test completion.

SYNOPSIS

vwait ::ixTestControllerMonitor

DESCRIPTION

The global variable ixTestControllerMonitor is maintained by ixTestController while a test is
running. Its value may be vwait'd to determine when the test is complete.

ixTestControllerMonitor is set by IxLoad either at the end of the last ixTestController command (using
either the applyConfig or run options). ixTestControllerMonitor will only be set while inside a vwait
command or an update command.

The reason you should initialize ixTestControllerMonitor prior to issuing the test command is because it
is vwaiting on something other than ixTestConmonitor, so you need to be able to detect the end of the
test by examining the value of ::ixTestControllerMonitor. Also, because it is not set by IxLoad prior to
the end of the test (or applyConfig), it will be undefined otherwise.

Usually, you can use vwait or ixTestControllerMonitor directly, but if the script needs to do some other
processing while the test is running, the following example from the simplehttpconfigstoprun.tcl
sample script shows how this can be done.

In this example, the code waits for the first statistic to arrive, and then falls through if the test stops or
the event occurs:
set ::ixTestControllerMonitor "" # initialize to known value$testController run
$test# do the command# wait for the first sample or test stopwhile
{$::ixTestControllerMonitor == "" && $::gotOneStat == 0} {after 1000 set wakeup 1

vwait wakeup# you have to call vwait (or update)
periodically to allow IxLoad to run
}

While waiting for the test to finish, the script must call either vwait (as in the example) or update to
allow the Tcl event loop to function.

ixTestControllerMonitor returns one of the following values:
{eventType TEST_STOPPED status OK}{eventType TEST_STOPPED status ERROR description
{1}}

If an error occurs, refer to the log file to determine the cause.

Chapter 4 IxLoad Tcl API Commands

– 154 –

EXAMPLE

See the example under statCollectorUtils.

SEE ALSO

statCollectorUtils

ixTestController

statCollectorUtils
statCollectorUtils-Handles statistics gathering.

SYNOPSIS

package require statCollectorUtils

::statCollectorUtils::command args

DESCRIPTION

The statCollectorUtils is a library containing several commands to gather statistics during a test
run. The model for usage of these commands is:

l Initialize -Initializes the statistics utilities.

l ClearStats - Clears statistics from a previous run.

l AddStat - Adds a statistic to the list of statistics to be retrieved. Call this once per statistic.

l AddL2L3Stat - Adds a layer 2 or 3 statistic to the list of statistics to be retrieved. Call this once
per statistic.

l AddPerInterfaceStat - Adds a per-range statistic to the list of statistics to be retrieved. Call
this once per statistic.

l AddSIPPerStreamStat - Adds a SIP per-stream statistic to the list of statistics to be retrieved.
Call this once per statistic.

l AddVideoPerStreamStat - Adds a video per-stream statistic to the list of statistics to be
retrieved. Call this once per statistic.

l AddNetworkStat - Adds a network statistic to the list of network statistics to be retrieved. Call
this once per statistic.

l SetCsvVersion - Allows the stat names written to the CSV to be the same as would be the case if
generated by the given buildNumber or special constant.

l SetCsvThroughputUnits - Defines the units used for throughput statistics written to the CSV
files.

l StartCollector –command callbackCommand -Starts the statistics collection process and
indicates a callback command to invoke when statistics are delivered.

l Use ixTestController run to run the test.

Chapter 4 IxLoad Tcl API Commands

– 155 –

l Use vWait ::ixTestControllerMonitor to wait for the test to end. During the run, the callback
command indicated in StartCollector is called.

l StopCollector - Stops the statistics collection process.

Note: QoE Detective stats and the Network overview with their associated drill-downs are
not supported in the Tcl API.

COMMANDS

Unless otherwise described, no values are returned and an exception is raised for any error found.

AddStat arguments

Adds a statistic to the list of desired responses. The arguments to this command are -option value
pairs:

Option Usage

aggregationType Specifies how statistics for multiple ports, as indicated in the filter argument,
are combined. One of:

l “kSum”-Adds all of the statistics together.

l “kMax” -Determines the maximum value.

l “kMin”-Determines the minimum value.

l “kAverage”-Determines the average value.

l “kWeightedAverage”-This type is for use with weighted statistics. The
statistics descriptions indicate whether they are weighted or not.

l “kRate” -Determines the rate of change of the sum of all the statistics.

l “kMaxRate” -Determines the maximum rate.

l “kMinRate”-Determines the minimum rate.

l “kAverageRate”-Determines the average rate.

l “kString”-Treats as a string.

caption The caption associated with the statistic. This is not currently used by the Tcl
API, but a comment must be supplied.

enumerated If true, returns a list of stats as follows:

l HTTP Client: Returns one stat in the callback for each different URL in the
client's command list.

l HTTP Server: Returns one stat in the callback for each defined server page.

If false (default), returns a single stat for all URLs.

Chapter 4 IxLoad Tcl API Commands

– 156 –

filterList A list of filter items that specifies the origin of the statistics to be filtered. You can
format the filterList to gather statistics from one of the following components
in the test:

{Port {Chassis<chassis_id>/Card<card_id>/Port<port_id> ... } }
{Card {Chassis<chassis_id>/Card<card_id> ... } }
{Chassis {Chassis<chassis_id> ... } }
{Community {<net_traffic_name> ... } }
{Activity {<net_traffic_name> - <activity_name> ... }

For the Activity filter, the spaces on either side of the "-" are required. Also, for
net_traffic_name, use the full name of the nettraffic. For example, "client_
traffic@client_network". For activity_name, use the configured name of the
activity. For example, "HTTPClient1".

If filterList is empty, no statistics are filtered out.

statName The name of a specific statistic, as listed in the Statistics topic of the statistics
page for the protocol client or server agent. For example, the list of statistics for
HTTP Clients can be found in the Statistics topic at HTTP Client Agent.

statSourceType The agent type that generates the statistics. This is a two part name of the form:
Protocol Client|Server
Where Protocol is one of the supported protocols-for example, HTTP or FTP,
and Client/Server is one of those two values. Some examples are:
“HTTP Client”“FTP Server”

AddL2L3Stat arguments

Adds a layer 2 or 3 statistic to the list of network statistics to be retrieved.

The arguments to this command are similar to those for AddStat. The arguments to this command are
-option value pairs:

Option Usage

aggregationType See AddStat for description.

caption See AddStat for description.

filterList A list of filter items that specifies the origin of the statistics to be filtered.

Unlike the other Add<>Stat commands, AddL2L3Stat only allows filtering
statistics from ports, and requires the chassis IP address in the filter instead of
the chassis ID. The format for filtering L2/L3 statistics from a port is:
{Port {<chassis_ip>/Card<card_number>/Port<port_number> … }}
For example, to filter statistics from ports 2 and 3 on card 2 of a chassis whose IP

Chapter 4 IxLoad Tcl API Commands

– 157 –

address is 10.200.1.1:

-filterList {Port {10.200.1.1/Card2/Port2 10.200.1.1/Card2/Port3}}

statName See AddStat for description.

statSourceType The network plugin that generates the statistics.

For AddL2L3Stat, the only available statSourceType is:
"PortMonitor"

AddNetworkStat arguments

Adds a dynamic range network statistic to the list of network statistics to be retrieved.

Note: If you want to create a sample script using ScriptGen, the network statistics are not available
until the test configuration has been downloaded to the Ixia ports. You can use the Apply Config
command to download the test configuration to the ports without starting the test.

The arguments to this command are similar to those for AddStat. The arguments to this command are
-option value pairs:

Option Usage

aggregationType See AddStat for description.

caption See AddStat for description.

filterList See AddStat for description.

statName See AddStat for description.

statSourceType The network plugin that generates the statistics.

For example:
"IPSec"
The list of network plugin names is:

l WebAuth

l 802.1x

l EAPoUDP

l IPSec

l L2TP_PPP/PPP

l L2TP_PPP/PPPoE

Chapter 4 IxLoad Tcl API Commands

– 158 –

l GTP

l 3GPP

l IMPAIR

AddPerInterfaceStat arguments

This is the utility for per-range interface statistics.

To activate this statistics for the client and the server, enable IP interface (enableStats) statistics in
the client and the server network.

Option Usage

statSourceType The agent type that generates the per interface statistics. This is a two part name
of the form:
Interface Protocol - Client|Server
Where Protocol is IPV4 or IPV6 and Client|Server is one of those two values.
Some examples are:
“Interface IPv4 Client”“Interface IPv4 Server”“Interface IPv6
Client”“Interface IPv6 Server”

statList This is a list of statistical names and aggregations function pair.

An example of IPV4:
-statList {{"Packets Sent" "kSum"} {"Packets Received" "kSum"}} \

ipList This is the list of IPs specified for the client and the server for collecting the
statistics.
-ipList {"198.18.2.1" "198.18.2.2"}

For each address that you specify in ipList, IxLoad records the statistics specified in statList.

For example, if you specify an ipList and statList as follows:
-statList {{"Packets Sent" "kSum"} {"Packets Received" "kSum"}} \-ipList
{"198.18.2.1" "198.18.2.2"}

and a returned list of statistics contains the following:
{{kInt 28112} {kInt 0} {kInt 31973} {kInt 0}}

{kInt 28112} is the statistic for Packets Sent for address 198.18.2.1.

Chapter 4 IxLoad Tcl API Commands

– 159 –

{kInt 0} is the statistic for Packets Received for address 198.18.2.1.

{kInt 31973} is the statistic Packets Sent for address 198.18.2.2.

{kInt 0} is the statistic for Packets Received for address 198.18.2.2.

Because IxLoad adds the statistics in the order specified by statList for every address in ipList, you can
parse the list of statistics returned by callback (see the StartCollector command) to obtain any specific
statistic.

AddSIPPerStreamStat arguments

This is the utility for SIP per stream statistics.

Option Usage

statSourceType The agent type that generates the per stream statistics. This is a two part name of
the form:
SIP Client/Server Per Stream
Some examples are:
"SIP Client Per Stream""SIP Server Per Stream"

statList This is a list of statistic name and aggregation function pair.
statList - list of {statName, aggregationFunction} like {"Packets"
"kSum"} {"Mos_Value" "kString"}

instanceList This is the list of packets specified for the SIP port for collectthe statistics.
list of {port, sipClientAgentName, index of Caller or Called}

AddVideoPerStreamStat arguments

This is the utility for video per stream statistics.

Option Usage

statSourceType The agent type that generates the per stream statistics. This is a two part name of
the form:
Video Client/Server Per Stream
For example:
"Video Client Per Stream""Video Server Per Stream"

statList This is a list of statistic name and aggregation function pair.
list of {statName, aggregationFunction}\

instanceList This is the list of packets specified for the video port for collecting the statistics.
list of {port, videoClientAgentName, index of User, index of Entry}

Chapter 4 IxLoad Tcl API Commands

– 160 –

ClearStats

Clears all statistical data from a previous or aborted run.

Initialize -testIOR $testIOR

Initializes the statistics utility package. $testIOR is the value returned from a call to
ixTestController's getTestServerHandle subcommand. See the following example:

set tc [::IxLoad new ixTestController]
::statCollectorUtils::Initialize -testIOR [$tc getTestServerHandle]

SetCsvVersion <buildNumber>

Allows the stat names written to the CSV to be the same as would be the case if generated by the
given buildNumber or special constant. The build number must be in dotted-quad notation (a.b.c.d).
The build number is part of the installation path when IxLoad is installed, and is also available in the
release notes for that release. buildNumber must be 5.0.117.0 or greater. If set to anything less than
5.0.117.0, the value is ignored.

Special
Constant

Description

rxf Uses the build number of the version of IxLoad that most recently saved the
repository.

If the TCL API does not load a repository, then it uses the build number of the current
instance of IxLoad.

current Uses the build number of current instance of IxLoad in all cases.

set tc [::IxLoad new ixTestController]
::statCollectorUtils::SetCsvVersion 5.0.280.0

SetCsvThroughputUnits <throughputUnits>

Defines the units used for throughput statistics written to the CSV files. throughputUnits can be one
of: Bps (bytes per second, the legacy unit), Kbps, Mbps, or Gbps.

This overrides any IxAppOption.ini entry, allowing allowing your script to determine the units used for
throughput statistics written to the CSV files.

StartCollector -command tclCommand -interval value

Initiates the operation of the statistics collection process, registering the name of a user supplied
command (tclCommand), which will be called at -interval when new statistics are received.
Callback Command Invocation

The statistics callback interval (-interval) must be set manually. It is not set by the csvInterval
parameter (see ixTest). To invoke the statistics callback, define the statistics as a set of name-value
pair arguments of the form:
{timestamp 1102900690000 stats {{kInt 1659316} {kInt 58998232}}}

Chapter 4 IxLoad Tcl API Commands

– 161 –

The pairs are:

Option Usage

timestamp The number of milliseconds from the time that the test started.

stats A list of pairs, one per statistic registered with AddStat in the order registered. The
first member of each pair indicates the data type of the value, one of:

l kInt -an integer value.

l kStr -a string. For example: {this is a string}.

StopCollector

Stops the operation of the statistics collector.

OPTIONS

None.

EXAMPLE

#---# Set up
stat Collection#--
---set NS statCollectorUtilsset ::test_server_handle [$testController
getTestServerHandle]${NS}::Initialize -testServerHandle $::test_server_handle#------
---# Clear any stats
that may have been registered previously#---
----------------------------${NS}::ClearStats#--------------------------------------
---------------------------------# Define the stats we would like to collect#-------
--${NS}::AddStat \-
caption "Watch_Stat_1" \-statSourceType "HTTP Client" \-statName "HTTP Bytes Sent"
\-aggregationType kSum \-filterList {}

${NS}::AddStat \-caption "Watch_Stat_2" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Received" \-aggregationType kSum \-filterList {}

${NS}::AddStat \-caption "Watch_Stat_3" \-statSourceType "HTTP Client" \-statName
"HTTP Time To Last Byte (ms)" \-aggregationType kWeightedAverage \-filterList {}

${NS}::AddStat \-caption "Watch_Stat_4" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Sent" \-aggregationType kRate \-filterList {}

${NS}::AddStat \-caption "Watch_Stat_5" \-statSourceType "HTTP Client" \-statName
"HTTP Bytes Received" \-aggregationType kRate \-filterList {}#----------------------
---# Define the L2/L3 stats we would
like to collect#--

Chapter 4 IxLoad Tcl API Commands

– 162 –

---${NS}::AddL2L3Stat \-caption "Watch_Stat_L2L3_3" \-statSourceType "PortMonitor"
\-statName "Frames Sent" \-aggregationType kNone \-filterList {}#-------------------
--# Define the network stats we
would like to collect#--

set ::netstatList { \{"IPSec" "Interface ID" "kString"} \{"IPSec" "Status"
"kString"} \{"IPSec" "NAT-T" "kString"} \{"IPSec" "DPD" "kString"} \{"IPSec"
"Total Retries" "kSum"} \{"IPSec" "Total Latency" "kSum"} \{"IPSec"
"Encapsulation Protocols" "kString"} \{"IPSec" "Encapsulation Mode" "kString"}
\{"IPSec" "Initiator Subnet" "kString"} \{"IPSec" "Initiator IP Address"
"kString"} \{"IPSec" "Responder IP Address" "kString"} \{"IPSec" "Responder
Subnet" "kString"} \}

foreach statItem $::netstatList { set caption [format "Watch_
Stat_%s" $count]set statSourceType [lindex $statItem 0]set statName [lindex
$statItem 1]set aggregationType [lindex $statItem 2]

${NS}::AddNetworkStat \-caption $caption \-statSourceType
$statSourceType \-statName $statName \-aggregationType $aggregationType
\-filterList {}

incr count}

Start the collector (runs in the tcl event loop)#proc ::my_stat_collector_command
{args} { puts "=====================================" puts "INCOMING STAT
RECORD >>> $args" puts "Len = [llength $args]" puts [lindex $args 0] puts
[lindex $args 1] puts "====================================="}

${NS}::StartCollector -command ::my_stat_collector_command -interval 2

#--- #
Run the test #---
---- $testController run $test

#--- #
have the script (v)wait until the test is over #---------------------------------

vwait ::ixTestControllerMonitor;
puts $::ixTestControllerMonitor

#---

Chapter 4 IxLoad Tcl API Commands

– 163 –

Stop the collector (running in the tcl event loop)

#---
${NS}::StopCollector

SEE ALSO

ixTestController

ixTestControllerMonitor

ixTest

ixScriptGen
ixScriptGen-Generates a tcl script (TCL file).

SYNOPSIS
set scriptGenObj [::IxLoad new ixScriptGen]

DESCRIPTION

A scriptGen object is created and configured. scriptGen can generate a Tcl script for the following:

l Complete test

l NetTraffics

l Activities

l Networks

SUBCOMMANDS

None.

OPTIONS

fileName

Specifies the name and path of the script to be generated.

includeStats

If true, the script includes code to record the default statistics for each activity in the test. If false,
the script does not include any code to record statistics.

configSetting

This option determines whether or not the generated script includes code that sets the test control
options to their default values.

Option Usage

Chapter 4 IxLoad Tcl API Commands

– 164 –

kConfigWriteAll Generates a script that includes all the test control code, including code that sets
the configuration options to their default val

kConfigComment Generates a script that comments out test control code that sets options to their
default values.

kConfigOmit Generates a script that only includes test control code for options set to non-
default values.

EXAMPLE
Scriptgen for a complete script#--
---------“if {$::tcl_platform(platform) == "windows"} {package require registry 1set
::_IXLOAD_INSTALL_ROOT [registry get {HKEY_LOCAL_MACHINE\Software\Ixia
Communications\IxLoad\InstallInfo} HOMEDIR]set ::_IXLOAD_PKG_DIR [file join $::_
IXLOAD_INSTALL_ROOT Client tclext teepee stage]

lappend ::auto_path $::_IXLOAD_PKG_DIR}package require IxLoad::IxLoad connect
1.2.3.4if [catch {set logtag "IxLoad-api"set logName "scriptgen"set logger [::IxLoad
new ixLogger $logtag 1]set logEngine [$logger getEngine]$logEngine setLevels
$::ixLogger(kLevelDebug) $::ixLogger(kLevelInfo)$logEngine setFile $logName 2 256 1

#--# Create a test
controller bound to the previosuly allocated# chassis chain. This will eventually
run the test we created earlier.#---
-----------set testController [::IxLoad new ixTestController -outputDir
1]$testController setResultDir "[pwd]/RESULTS/reprun"## Load the repository#set
repository [::IxLoad new ixRepository -name {E:\ixweb\ixweb\3.20\automation\B2B_310_
IMAP_RTSP_TELNET_POP\Repository\IMAP_dns_all_atomic_level_cmd_ipv4.rxf}]

set testName [$repository testList(0).cget -name]set test [$repository
testList.getItem $testName]

set scriptGenObj [::IxLoad new ixScriptGen]$scriptGenObj config \

-fileName {E:\ixweb\ixweb\3.20\automation\B2B_310_IMAP_RTSP_TELNET_
POP\Repository\IMAP_dns_all_atomic_level_cmd_ipv4_new.tcl} \

-includeStatsFalse \

-configSetting$::ixScriptGen(kConfigWriteAll)
$scriptGenObj scriptGen $test}] {puts $errorInfo}::IxLoad disconnect

Chapter 4 IxLoad Tcl API Commands

– 165 –

SEE ALSO

ixNetTraffic

ixTimeline
ixTimeline-Configures the time in the test when the activities in the NetTraffics come online, and how
long they stay up for. It is also used to configure the test's objectives.

SYNOPSIS

set Activity_HTTPClient1 [$Traffic1_Network1 activityList.appendItem options...]

set Timeline [::IxLoad new ixTimeline] options...

DESCRIPTION

The ixTimeline command is used to create a test scenario. It controls the times and rates at which
Activities come online (rampUp), the length of time they stay up for (sustainTime), and the rate at
which they go offline (rampDown).

There are two types of Timelines:

Basic: A Basic timeline controls activities linearly -- the rampUp, sustain, and rampDown phases are
straight lines, and the rampUp, sustain, and rampDown occur at steady rates, either increasing
(rampUp), static (sustain) or decreasing (rampDown).

Advanced: An advanced timeline allows you to plan the traffic shape to the objectValue, such as
pulses or bursts. An Advanced timeline displays the rampUp, sustain, and rampDown phases as
segments. There are five types of segments:

Linear: a constant-slope segment that starts with the current objective value and ends at the End
Objective Value value.

Step: a classic stair step pattern that starts with the current objective value and ending after a number
of fixed deltas.

Burst: a burst segment starts with the current objective value and ends to the same objective value.
Burst segments produce a symmetrical triangular shape fluctuation.

Pulse: a pulse segment starts with the current objective value and ends to the same objective value.
Pulse segments produce a symmetrical pulse shape fluctuation, with an increase in rate,a duration of
time spent at the new peak and then drop to the starting value.

Poisson: a poisson segment introduces a logarithmic noise element into the objective value.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

Chapter 4 IxLoad Tcl API Commands

– 166 –

OPTIONS (BASIC TIMELINE)

rampUpValue

Value applied to rampUpType to either bring up users at a certain rate (Users per second or to maintain
a pool of users waiting to establish connections (MaxUsers).

rampUpType

Ramp-up type used by timeline. One of:

Value Description

-2 Mixed (may be displayed when ramp-up value is retrieved for a community of mixed
activities)

-1 N/A

0 Users per second

1 Maximum pending users

2 Smooth users

offlineTime

The amount of time agents are idle between iterations. (Default = 0). This is also applicable to
advanced timeline.

rampDownTime

Amount of time used for closing any TCP connections that are still open after all transactions are
complete. rampDownTime applies only to client activities.

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. The valid range is from 0 to 1,000 hours (3,600,000).
(Default = 0). This is also applicable to advanced timeline.

iterations

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1). This is also applicable to advanced
timeline.

rampUpInterval

This field accepts integer values. The value for this option will be considered only when rampUpType is
usersPerSecond. You can edit the value to increment or decrement the number of users to be started
at every rampUpInterval. (Default = 1).

sustainTime

Chapter 4 IxLoad Tcl API Commands

– 167 –

Amount of time when all users are up and performing the central test objectives, such as retrieving or
serving pages (HTTP), or sending or receiving files (FTP).

timelineType

Denotes the type of phase in a section of the timeline. This is also used with the advanced timeline
options.

name

Name of the Timeline.

OPTIONS (ADVANCED TIMELINE)

ixLinearTimeSegment

duration

The length of time that the segment lasts.

noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

endObjectiveScale

The value of the objective at the end the segment.

ixPoissonTimeSegment

duration

The length of time that the segment lasts

averageScale

Number used to compute the Poisson distribution for the segment

noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

ixPulsesTimeSegment

amplitudeIncrementStepScale

Additional gain in height (amplitude) from one pulse to the next.

pulseRampDownDuration

Amount of time allocated to the ramping-down of the pulse.

Chapter 4 IxLoad Tcl API Commands

– 168 –

pulseRampUpDuration

Amount of time allocated to the rising edge of the pulse.

numberOfRepetitions

Number of steps. Minimum of 1.

pulseOfflineDuration

Time between pulses.

pulseSustainDuration

Length of time that the pulse occupies at the new peak value.

noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value.

startingPulseAmplitudeScale

Height (amplitude) of the first pulse.

ixBurstsTimeSegment

noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

numberOfRepetitions

Number of steps. Minimum of 1

startingBurstHeightScale

Height (amplitude) of the first burst.

burstIncrementStepScale

Additional gain in height (amplitude) from one burst to the next.

burstDuration

Length of time that the burst occupies

burstSkew

Bias applied to the burst curve:

Symmetric: No bias (curve has identical slopes on both sides).

Left: Curve is biased to the left (left side of the curve is steeper than the right).

Chapter 4 IxLoad Tcl API Commands

– 169 –

Right: Curve is biased to the right. (right side of the curve is steeper than the right)

burstOfflineDuration

Time between bursts.

ixStepsTimeSegment

stepHeightScale

Height of the step.

noiseAmplitudeScale

Amount of Gaussian noise added during the segment.

No noise is added to the last point in the segment so that the segment can end at the specified End
Objective Value

stepSustainDuration

Length of time spent at the new peak objective value.

stepRampDuration

Length of time allocated to the rise to the new peak value.

numberOfRepetitions

Number of steps. Minimum of 1.

EXAMPLE
set Steps_Segment_0 [::IxLoad new ixStepsTimeSegment]$Steps_Segment_0 config \ -
stepHeightScale 0.1 \ -noiseAmplitudeScale
0.0 \ -stepSustainDuration 20 \ -stepRampDuration
20 \ -numberOfRepetitions 3

$my_ixAdvancedIteration appendSegment $Steps_Segment_0

set Bursts_Segment_1 [::IxLoad new ixBurstsTimeSegment]$Bursts_Segment_1 config \ -
noiseAmplitudeScale 0.0 \ -numberOfRepetitions
3 \ -startingBurstHeightScale 0.1 \ -burstIncrementStepScale
0.1 \ -burstDuration 20 \ -burstSkew
0 \ -burstOfflineDuration 20

$my_ixAdvancedIteration appendSegment $Bursts_Segment_1

set Pulses_Segment_2 [::IxLoad new ixPulsesTimeSegment]$Pulses_Segment_2 config \ -
amplitudeIncrementStepScale 0.1 \ -pulseRampDownDuration t

Chapter 4 IxLoad Tcl API Commands

– 170 –

SEE ALSO

ixNetTraffic

ixSubscriberNetTraffic
ixSubscriberNetTraffic-Special type of NetTraffic that simulates the traffic patterns created by
residential customers that receive voice, video, and data service (Triple-play) over a single physical
connection (usually a cable or DSL connection).

SYNOPSIS
set Subscriber1_Network1 [::IxLoad new ixSubscriberNetTraffic]

DESCRIPTION

Configuring an ixSubscriberNetTraffic is similar to configuring an ixNetTraffic. However, there
are some differences:

Network and Protocols: Configuring a Subscriber is similar to configuring a NetTraffic. However, only
the following protocols are supported:

DHCP FTP HTTP IMAP

IPTV/ Video LDAP MGCP POP3

RADIUS RTSP SIP SMTP

SSH TraceFileReplay Telnet DNS

objectiveType: The only objectiveType available for a Subscriber is simulatedUsers.

OPTIONS

Refer ixNetTraffic for information on the options.

EXAMPLE
set Subscriber1_Network1 [::IxLoad new ixSubscriberNetTraffic]set Subscriber_
Activity_HTTPClient1 [$Subscriber1_Network1 activityList.appendItem \-
protocolAndType "HTTP Client"]$Subscriber1_Network1 config
\-enable true \-network
$Network1$Subscriber1_Network1 traffic.config \-name
"Subscriber1"

SEE ALSO

ixNetTraffic

ixBandwidthLimit

Chapter 4 IxLoad Tcl API Commands

– 171 –

ixNetTraffic
ixNetTraffic-Define client and server traffic.

SYNOPSIS
set HTTP_client_client_network [::IxLoad new ixNetTraffic]

DESCRIPTION

The ixNetTraffic command is used to configure client or server traffic. Two separate ixNetTraffic
objects have to be created for client and server traffic. The ixNetTraffic configuration also declares the
ixNetworkGroup object. The activityList options are also configured.

You can copy objects from used NetTraffic to another. See duplicate (see "duplicate").

OPTIONS

Enabling Options

enable

This enables the client or server network.

network

This specifies the name of the client or server network object.

activityList Configuration Options

enable

If true, this mapping is included in the IxLoad test. (Default = true).

name

Name of the activityList config object. Default = "newClientActivity1".

enableConstraint

Currently, constraints can be set on activities that run rate-based objectives, like connectionRate,
transactionRate, throughput objectives. This option enables the constraint. Default = false.

constraintValue

If enableConstraint is true, this option defines the constraint value. Default =100.

timeline

Represents the name of the ixTimeline object.

userObjectiveType

userObjectiveType is the recommended way to set the objective. This is the Objective Type that is
displayed in the GUI, and should be the most meaningful. Changing the userObjectiveType will result
in an automatic change to the objectiveType.

Chapter 4 IxLoad Tcl API Commands

– 172 –

For most protocols, the userObjectiveType and the objectiveType are the same, but protocols can
define their own userObjectiveTypes when it makes sense to do so. For example, SIP defines the
channels userObjectiveType that corresponds to an underlying objectiveType of simulatedUsers.
See the individual protocols for a description of the userObjectiveTypes they accept and how they
are translated to the objectiveType.

Option Usage

userAgents The objective is to sustain some number of SIP calls simultaneously.

Specify the desired number of UserAgents in the objectiveValue option.

callsPerSecond The objective is to establish a certain number of SIP calls per second.

Specify the desired number of calls to establish per

second in the objectiveValue option.

bhca The objective is to establish a certain number of SIP calls per hour.
Specify the desired number of calls to establish per hour in the
objectiveValue option.

Busy hour call attempts (BHCA) is a standard measure of the number of
calls completed during a busy hour, the 60-minute period when the
maximum traffic load occurs within a given 24-hour period.

registrationsinitiated The objective is to establish a certain number of call registrations of SIP.

Specify the desired number of registrations in the objectiveValue option.

redirectionsinitiated The objective is to establish a certain number of call redirections of SIP.

Specify the desired number of redirections in the objectiveValue option.

transactionAttemptRate The objective is to issue some number of DNS query per second.

The number of DNS query is mentioned in the userObjectiveValue option.

queriespersecond The desired number of DNS query per second.

connectionAttemptRate The objective is achieved if IxLoad succeeds in making the specified
number of attempts to connect to the HTTP server or DUT.

Specify the desired number of attempted connections per second in the
userObjectiveValue option.

streams The objective is to monitor some number of multicast or unicast video or
audio streams. Specify the desired number of streams in the
userObjectiveValue option.

userObjectiveValue

The test objective value applied to the userObjectiveType. Default=100.

Note that some protocol-specific objectiveTypes apply scaling values to the value.

Chapter 4 IxLoad Tcl API Commands

– 173 –

l bhca is mapped to transactionRate with a scaling factor of 3600.

l callsPerSec is mapped to transactionRate with a scaling factor of 1.

l userAgents is mapped to simulatedUsers with a scaling factor of 1.

l registrationsinitiated is mapped to transactionRate with a scaling factor of 1.

l redirectionsinitiated is mapped to transactionRate with a scaling factor of 1.

objectiveValuePercent

Expresses the objective of the NetTraffic or agent as a percentage of the userObjectiveValue.
(Default="")

If you use ScriptGen to create a Tcl script, the ScriptGen allows you to script the test objective values
as absolute values or as percentages of the overall test objective.

If you choose to script the objectives as percentages, the output depends on how the activities are
grouped. If the activities are grouped by NetTraffic, the script will contain a user objective for the
NetTraffic (the community) and a percentage value for each activity:

$Traffic1_Network1 config \
-enable true \
-totalUserObjectiveValue 200 \
-userObjectiveType "simulatedUsers" \
-tcpAccelerationAllowedFlag true \
-network $Network1

$Activity_HTTPClient1 config \
-secondaryConstraintValue 100 \
-enable true \
-name "HTTPClient1" \
-userIpMapping "1:1" \
-enableConstraint false \
-objectivePercent 50.0 \
-timerGranularity 100 \
-secondaryEnableConstraint false \
-constraintValue 100 \
-secondaryConstraintType "TransactionRateConstraint" \
-constraintType "ConnectionRateConstraint" \
-destinationIpMapping "Consecutive" \
-timeline $Timeline1

If the grouping is by objective type, the script will contain a totalUserObjectiveValue that sets the
total of the objective values for all the activities, followed by a list of <objective type, objective
value> pairs and an objectivePercent option that sets the percentage value assigned to each
activity.

$Test1 totalUserObjectiveInfoList.clear
set my_ixTotalUserObjectiveInfo [::IxLoad new ixTotalUserObjectiveInfo]
$my_ixTotalUserObjectiveInfo config \

Chapter 4 IxLoad Tcl API Commands

– 174 –

-userObjectiveType "Simulated Users" \
-totalUserObjectiveValue 200

$Test1 totalUserObjectiveInfoList.appendItem -object $my_ixTotalUserObjectiveInfo

$Activity_HTTPClient1 config \
-secondaryConstraintValue 100 \
-enable true \
-name "HTTPClient1" \
-userIpMapping "1:1" \
-enableConstraint false \
-objectivePercent 50.0 \
-timerGranularity 100 \
-secondaryEnableConstraint false \
-constraintValue 100 \
-secondaryConstraintType "TransactionRateConstraint" \
-constraintType "ConnectionRateConstraint" \
-userObjectiveType "simulatedUsers" \
-destinationIpMapping "Consecutive" \
-timeline $Timeline1

totalUserObjectiveValue

Total objective value of all the activities in the NetTraffic that have the same objective type. See
objectiveValuePercent. (Default="")

Traffic Map Setup Options

portMapPolicy

This option controls the sequence in which the client ports connect to the server ports. One of:

Option Usage

$::ixPortMap
(kPortMapRoundRobin)
or “portPairs”

(Default). Client agents connect to server agents on a one-to-one
basis.

$::ixPortMap
(kPortMapFullMesh)
or “portMesh”

Agents on every client port connect to every server port.

$::ixPortMap
(kPortMapIpPair)
or “ipPair”

Each simulated user on the client side comwith only one server IP address.

This choice is only valid for SIP agents.

$::ixPortMap
(kPortMapCustom)

Each custom port map has a list of IPv4 suband IPv6 submaps. You can
create a Custom traffic map. In a Custom traffic map, you select the client

Chapter 4 IxLoad Tcl API Commands

– 175 –

or “custom” and server IP address ranges that will send traffic to each other.

To create a Custom traffic map, the subnet's rangeType parameter must be
set to IP Only (Ethernet).

For large numbers of ports, the Port Pair sequence scales performance better than the Port Mesh
sequence.

The operation of Port Pairs can be described by three scenarios:

l If the number of client ports is equal to the number of server agents, client ports will establish
connections to server ports on a one-to-one basis.

l If the number of client ports is less than the number of server ports, the client ports will establish
connections to the server ports on a one-to-one basis until all client ports are paired with server
ports. The remaining server ports will not be used.

l If the number of client ports is greater than the number of server ports, the client ports will
establish connections to the server ports on a one-to-one basis until all server ports are paired
with client ports. Then, the remaining client ports will return to the first server port and continue
pairing themselves with server ports.

The ixCustomPortMap customizes the order and frequency, by which client IPs will access server IPs.

Each custom port map has a list of IPv4 submaps and IPv6 submaps. There will be a list for the
appropriate IP type if any ranges of that type appear in the network for the symbolic destination. When
a submap list is initialized, it will have a single submap that will be a full IP mesh, if that type is
available. If only VLAN maps are allowed, then it will be a vLAN pairs map instead. If a submap is
appended to the list, by default it will be a copy of the last submap in the list, unless values are passed
in.
set destination [$HTTP_client_client_network getDestinationForActivity
"newClientActivity1" "HTTP server_newServerActivity1"]$destination config \-
portMapPolicy "portMesh"

Configuring Traffic

name

The configuration that is set in the protocolAndType option for activityList.
$HTTP_client_client_network traffic.config \-name
"HTTP client"$Client elementList.appendItem -object $HTTP_client_client_network

EXAMPLE

set HTTP_client_client_network [::IxLoad new ixNetTraffic]

$HTTP_client_client_network config \

-enable 1 \

-network $client_network

$HTTP_client_client_network traffic.config \

Chapter 4 IxLoad Tcl API Commands

– 176 –

-name "HTTP client"

$Activity_newAgent1 config \

-enable 1 \

-name "newClientActivity1" \

-enableConstraint false \

-userObjectiveValue 100 \

-constraintValue 100 \

-userObjectiveType "simulatedUsers" \

-timeline $Timeline1

$Client elementList.appendItem -object $HTTP_client_client_network

###

Destination newServerActivity1 for newClientActivity1

###

set destination [$HTTP_client_client_network getDestinationForActivity "newClientActivity1" "HTTP
server_newServerActivity1"]

$destination config \

-portMapPolicy "portMesh"

SEE ALSO

ixSubscriberNetTraffic

activityList
activityList-Generates traffic for one side of a particular protocol. For example, an HTTP client Activity
generates HTTP client requests, simulating a web browser.

SYNOPSIS
set HTTP_client_client_network [::IxLoad new ixNetTraffic]set Activity_newAgent1
[$HTTP_client_client_network activityList.appenoptions..]

DESCRIPTION

The activityList is used to generate traffic for one side of a particular protocol.

An Activity is added to the ixNetTraffic object using appendItem subcommand. Agents are added to
the activity using the agent.config subcommand.

Chapter 4 IxLoad Tcl API Commands

– 177 –

The protocolAndType is a required field. These define a particular type of agent; and the side of the
communication. The agent definition should include options which are specific to a particular protocol,
and defined in their respective appendix.

OPTIONS

protocolAndType

Protocol is the name of the protocol (for example, HTTP). Type denotes the side of the connection, that
is, client or server.

EXAMPLE
set HTTP_client_client_network [::IxLoad new ixNetTraffic]#-------------------------
-------------------------------------# Activity newAgent1 of NetTraffic HTTP
client@client network#---set
Activity_newAgent1 [$HTTP_client_client_network activityList.appendItem \-
protocolAndType "HTTP Client"]

SEE ALSO

ixNetTraffic

ixTrafficFlow
ixTrafficFlow-Lists the test scenario.

SYNOPSIS
set TrafficFlow1 [::IxLoad new ixTrafficFlow]$TrafficFlow1 config \ options...

DESCRIPTION

The ixTrafficFlow command is used to list the test scenario. Traffic Flow object is appended to the
ixTest object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

This represents the name of the trafficflow object.

EXAMPLE
set TrafficFlow1 [::IxLoad new ixTrafficFlow]$TrafficFlow1 config \

-name "TrafficFlow1"
$TrafficFlow1 columnList.clear

Chapter 4 IxLoad Tcl API Commands

– 178 –

SEE ALSO

ixTrafficColumn
ixTrafficFlow-A container of ixNetTraffic and ixDut objects.

SYNOPSIS

set TrafficFlow1 [::IxLoad new ixTrafficFlow]

$TrafficFlow1 config \ options...

DESCRIPTION

The ixTrafficColumn command is used to define and configure client, server and DUT objects. The
client, server and DUT objects are appended to the ixTrafficFlow object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

This represents the name of the trafficcolumn object.

EXAMPLE
set Client [::IxLoad new ixTrafficColumn]$Client config \

-name "Client"
$Client elementList.clear$TrafficFlow1 columnList.appendItem -object $Clientset DUT
[::IxLoad new ixTrafficColumn]$DUT config \

-name "DUT"
$DUT elementList.clear$TrafficFlow1 columnList.appendItem -object $DUTset Server
[::IxLoad new ixTrafficColumn]$Server config \-name
"Server"$Server elementList.clear$TrafficFlow1 columnList.appendItem -object $Server

SEE ALSO

ixTrafficFlow

Chapter 4 IxLoad Tcl API Commands

– 179 –

ixNetworkGroup
ixNetworkGroup-Configures the client and server network.

SYNOPSIS
set network [::IxLoad new ixNetworkGroup options]$network config \ options...

DESCRIPTION

The ixNetworkGroup object is used to configure the client and server network. The client or server
network is used by the ixNetTraffic object to map to the nettraffic.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

The main options for this command are described in ixDHCP and ixStatCatalogItem. Additional
options are listed below.

aggregation

On a card that supports aggregating ports such as the ASM1000XMV12X, this option sets the port
aggregation. If you set the aggregation mode to 1G, you must set the active port (see
activePortList).

The following values are supported for aggregation:

Value Enum Description

kNonAggregated 0 (default) Not aggregated

k1GAggregated 1 1G Aggregated

k10GAggregated 2 10G Aggregated

For example:

$Net_Traffic1 config \

-aggregation 1

For an example of how to use an aggregating load module in a script, see the example in the Tcl API \
Samples \ Network directory.

activePortList

List of active ports in a group of 1G aggregated ports. For each NetTraffic that uses 1G aggregated
ports, there must be an activePortList that defines the active port. If ports from multiple cards are
aggregated, there must be an active port for each card. Example:

$Net_Traffic1 activePortList.appendItem \

Chapter 4 IxLoad Tcl API Commands

– 180 –

-chassisId 1 \

-cardId 2 \

-portId 1

Aggregation on Novus Load Modules can be performed only at card level. In this scenario the above
rule to set aggregation as an option does not apply. In order to set aggregation on Novus Load Module
the setCardsAggregationMode API needs to be called. This is exposed on the chassisChain object
and receives as parameters the chassis IP or hostname, the ID of the card and the aggregation mode.
For Novus, this is 10G in order to set 10G aggregated and NA in order to set the board in non
aggregated mode.

An example on how to set the card in 10G Aggregated mode is:

$chassisChain setCardsAggregationMode "10.215.122.231" "2" "10G"

EXAMPLE
#--# Network client
network of NetTraffic HTTP client@client network#-----------------------------------
-------------------------set client_network [::IxLoad new ixNetworkGroup
$chassisChain]$client_network config \-comment "" \-
name "client network" \-emulatedRouterSubnetIPv6
"FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::0" \-linkLayerOptions 0 \-
ipSourcePortFrom 1024 \-emulatedRouterGatewayIPv6
"::" \-cardType "ALM1000T8-1GB" \-
emulatedRouterGateway "0.0.0.0" \-ipSourcePortTo
65535 \-emulatedRouterSubnet "255.255.255.0" \-macMappingMode
0 \-dnsParameters $my_ixDns \-tcpParameters
$my_ixTcpParameters \-impairment $my_ixImpairment \-
arpSettings $my_ixArpSettings

SEE ALSO

ixNetworkRange

ixDut
ixDut-Defines a DUT.

SYNOPSIS

set DUT1 [::IxLoad new ixDut]
$DUT1 subcommand options...

Chapter 4 IxLoad Tcl API Commands

– 181 –

DESCRIPTION

The ixDut command is used to define a DUT used in the test. The DUTs are used to resolve symbolic
references in traffic destinations in the various protocol agents. It also controls several DUT specific
features. DUTs are added to the ixTest object using appendItem. For example,
set DUT1 [::IxLoad new ixDut]$DUT1 config \

-comment "" \

-type "VirtualDut" \

-name "DUT1" \

-dutConfig $my_ixDutConfigVirtual

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

comment

A comment associated with this DUT. (Default = ““).

name

The name associated with the DUT. (Default = “DUT1”).

type

The type of DUT in use. One of:

Option Usage

ExternalServer The DUT is a protocol server.

ServerLoadBalancer The DUT is a server load balancer.(Default)

Firewall The DUT is a firewall.

VirtualDut The DUT is a virtual DUT

dutConfig

The object instance of the DUT type.

EXAMPLE
set DUT1 [::IxLoad new ixDut]$DUT1 config \-comment
"" \-type "VirtualDut" \-name
"DUT1" \-dutConfig $my_ixDutConfigVirtual$DUT
elementList.appendItem -object $DUT1$New_Traffic_Flow columnList.appendItem -object
$DUT

Chapter 4 IxLoad Tcl API Commands

– 182 –

SEE ALSO

ixTest

ixStatCatalogItem

ixDutConfigVirtual
ixDutConfigVirtual-Configures a virtual DUT.

SYNOPSIS

set my_ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]
$my_ixDutConfigVirtual subcommand options...

DESCRIPTION

The ixDutConfigVirtual command is used to:

l Define a range of IP addresses for the DUT, instead of the single address that the other DUT
Types allow.

l Specify the TCP/UDP ports that the Virtual DUT listens on, on a per-protocol basis.

Virtual DUTs are added to the ixDut object as an option. For example,
set my_ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]$my_ixDutConfigVirtual
config$my_ixDutConfigVirtual networkRangeList.clearset DUT1 [::IxLoad new
ixDut]$DUT1 config \

-comment "" \

-type "VirtualDut" \

-name "DUT1" \

-dutConfig $my_ixDutConfigVirtual

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

ixDutNetworkRange and ixDutProtocolPortRange are appended to the ixDutConfigVirtual object.

EXAMPLE
set my_ixDutConfigVirtual [::IxLoad new ixDutConfigVirtual]$my_ixDutConfigVirtual
config$my_ixDutConfigVirtual networkRangeList.clearset Network_Range_1_in_DUT1__1_1_
1_1_100_ [::IxLoad new ixDutNetworkRange]$Network_Range_1_in_DUT1__1_1_1_1_100_
config \-vlanUniqueCount 4094 \-firstIp
"1.1.1.1" \-enable true \-name

Chapter 4 IxLoad Tcl API Commands

– 183 –

"Network Range 1 in DUT1 (1.1.1.1+100)" \-vlanEnable
true \-vlanId 1 \-innerVlanEnable
false \-ipIncrStep "0.0.0.1" \-networkMask
"255.255.0.0" \-ipType 1 \-vlanIncrStep
1 \-vlanCount 1 \-ipCount
100$my_ixDutConfigVirtual networkRangeList.appendItem -object $Network_Range_1_in_
DUT1__1_1_1_1_100_$my_ixDutConfigVirtual protocolPortRangeList.clearset my_
ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]$my_
ixDutProtocolPortRange config \

-portRanges "1001,1002,1003-1006" \

-protocol "HTTP"
$my_ixDutConfigVirtual protocolPortRangeList.appendItem -object $my_
ixDutProtocolPortRangeset DUT1 [::IxLoad new ixDut]$DUT1 config \-comment
"" \-type "VirtualDut" \-name
"DUT1" \-dutConfig $my_ixDutConfigVirtual$DUT
elementList.appendItem -object $DUT1

SEE ALSO

ixDut

ixDutNetworkRange
ixDutNetworkRange-Defines the one range of IP addresses (a subnet) that the Virtual DUT will have.
Subnets defined here should match the subnets configured on the actual DUT.

SYNOPSIS
set Network_Range_1_in_DUT1__1_1_1_1_100_ [::IxLoad new ixDutNet$Network_Range_1_in_
DUT1__1_1_1_1_100_ subcommand options...

DESCRIPTION

Defines the one range of IP addresses (a subnet) that the Virtual DUT will have. Subnets defined here
should match the subnets configured on the actual DUT.

The Range of IP addresses are added to the ixRepository object. For example,
set Network_Range_1_in_DUT1__1_1_1_1_100_ [::IxLoad new ixDutNetworkRange]$Network_
Range_1_in_DUT1__1_1_1_1_100_ config

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

vlanUniqueCount

Specifies the number of VLAN IDs to create.

Chapter 4 IxLoad Tcl API Commands

– 184 –

firstIp

This is the First IP address on the subnet, and subnet mask. Enter the subnet in /<bits> format,
following the IP address.

For example, to specify an address of 198.162.0.1 with a subnet of 255.255.0.0, enter: 198.162.0.1/16
(Default = "1.1.1.1").

enable

If true this makes a subnet active. Only traffic from active subnets can be meshed meshed; inactive
subnets are not used. Default = true.

name

Specifies the name of the Network Range.

vlanEnable

Enable this if the actual DUT uses VLANs. Default = false.

vlanId

Value of first 802.1Q VLAN tag.

ipIncrStep

Amount of increase in the IP address used to create additional IP addresses on the subnet, and octet
that will be incremented. Default = "0.0.0.1".

networkMask

This specifies the subnet mask. Default = "255.255.0.0".

ipType

Specifies the type of addressing for the subnet: IPv4 or IPv6. IxLoad supports all forms of IPv6
addressing except ::dotted-quad notation (for example, “::1.2.3.4”).

You must select the same type of addressing used on the corresponding subnet on the actual DUT.
Default = 1.

vlanIncrStep

Amount of increase in the VLAN ID. IxLoad applies this value to the ID to create the complete list of
VLAN IDs that will be meshed. Default = 1.

vlanCount

Number of VLAN IDs to create. Default = 1.

ipCount

Number of IP addresses on this subnet.

EXAMPLE
set Network_Range_1_in_DUT1__1_1_1_1_100_ [::IxLoad new ixDutNetworkRange]$Network_
Range_1_in_DUT1__1_1_1_1_100_ config \-vlanUniqueCount 4094

Chapter 4 IxLoad Tcl API Commands

– 185 –

\-firstIp "1.1.1.1" \-enable
true \-name "Network Range 1 in DUT1
(1.1.1.1+100)" \-vlanEnable true \-vlanId
1 \-innerVlanEnable false \-ipIncrStep
"0.0.0.1" \-networkMask "255.255.0.0" \-ipType
1 \-vlanIncrStep 1 \-vlanCount
1 \-ipCount 100

SEE ALSO

ixDut

ixDutConfigVirtual

ixDutProtocolPortRange
ixDutProtocolPortRange-defines a protocol that the Virtual DUT listens for, and the ports that it listens
of for that protocol.

SYNOPSIS

set my_ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]
$my_ixDutProtocolPortRange subcommand options...

DESCRIPTION

Defines a protocol that the Virtual DUT listens for, and the ports that it listens of for that protocol.

The ProtocolPortRange object is appended to the ixDutConfigVirtual object. For example,
$my_ixDutConfigVirtual protocolPortRangeList.appendItem -object $my_
ixDutProtocolPortRange

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

portRanges

Specifies the port numbers that the Virtual DUT listens on for the protocols in the protocol field.

protocol

Defines a protocol to listen for. A virtual dut supports the following protocols:

FTP HTTP IMAP IPTV/Video

Chapter 4 IxLoad Tcl API Commands

– 186 –

LDAP POP3 RADIUS RTSP

SMTP SSH DNS All

EXAMPLE
set my_ixDutProtocolPortRange [::IxLoad new ixDutProtocolPortRange]$my_
ixDutProtocolPortRange config \-portRanges "" \-
protocol "All"

SEE ALSO

ixDut

ixDutConfigVirtual

ixDutConfigVip
ixDutConfigVip-DUT Configuration class for firewall and external server.

SYNOPSIS

set my_ixDutConfigVip [::IxLoad new ixDutConfigVip]
$my_ixDutConfigVip subcommand options...

DESCRIPTION

This class is associated with ixDut for DUT types - Firewall and External Server.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

ipAddress

Specifies the IP address used to access the DUT.

EXAMPLE
set my_ixDutConfigVip [::IxLoad new ixDutConfigVip]$my_ixDutConfigVip config \-
ipAddress "1.1.1.1"

SEE ALSO

ixDut

Chapter 4 IxLoad Tcl API Commands

– 187 –

ixDutConfigSLB
ixDutConfigSLB-DUT Configuration class for server load balancer.

SYNOPSIS

set my_ixDutConfigSLB [::IxLoad new ixDutConfigSLB]
$my_ixDutConfigSLB subcommand options...

DESCRIPTION

This class is associated with ixDut for DUT types - Server Load Balancer.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enableDirectServerReturn

Enables the Direct Server Run. In a topology using Direct Server Return, the responses are sent
directly from the servers to the clients; they do not go through the SLB. Default = false.

ipAddress

Specifies the IP address used to access the DUT.

SUB-OBJECTS

serverNetwork

If type is “Server Load Balancer (SLB)” and the SLB is balancing Ixia emulated servers, set this
option to the server network that is being balanced. This must be an object of type
ixStatCatalogItem. (Default = {}).

Note: Ixia Server Network is not supported in SLB options.

EXAMPLE
set my_ixDutConfigSLB [::IxLoad new ixDutConfigSLB]$my_ixDutConfigSLB config \-
enableDirectServerReturn false \-ipAddress
"198.18.0.101"

SEE ALSO

ixDut

ixView
ixViewOptions-Configures capture options.

Chapter 4 IxLoad Tcl API Commands

– 188 –

SYNOPSIS
set my_ixViewOptions [::IxLoad new ixViewOptions]$my_ixViewOptions config options...

DESCRIPTION

The ixViewOptions command configures the capture (IxAnalyzer) options. Use the ixConfig
subcommand to configure this command. It is added as an object instance to the captureViewOptions
in ixTest.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

runMode

Specifies when capture starts, and how long it continues for. Values are:

1 Automatic

2 Manual

3 Start capture after a delay of captureRunAfter time and capture for captureRunDuration.

captureRunDuration

If runMode type is 3, this parameter specifies the capture duration, in seconds.

captureRunAfter

If runMode type is 3, this parameter specifies the delay (after the test start) before capture begins.
Specify the delay in seconds.

collectScheme

Specifies whether or not packets are displayed as they are captured during a test, and whether newer
captured data overwrites older data, or not. This parameter combines the functions of two GUI
parameters, Capture View Display Mode and Buffer Full Behavior, into a single Tcl command.

Values are:

0 (default) Stream (real-time capture) + Stop Capture

1 Upload captured packet after capture stops + Stop Capture

2 Stream (real-time capture) + Overwrite oldest packets(circular buffer)

3 Upload captured packets after capture stops + Overwrite oldest packets(circular buffer)

allocatedBufferMemoryPercentage

Chapter 4 IxLoad Tcl API Commands

– 189 –

Percentage of the available memory on the Ixia port allocated for capturing packets.

The memory available for capturing packets is the total amount of memory available on the port, less
the amount required for the IxLoad test configuration. Of this remaining amount, you can reserve up to
70% for capturing packets.

EXAMPLE
set my_ixViewOptions [::IxLoad new ixViewOptions]$my_ixViewOptions config \-runMode
1 \-captureRunDuration 0 \-captureRunAfter
0 \-collectScheme 0 \-allocatedBufferMemoryPercentage
30set Test1 [::IxLoad new ixTest]$Test1 config \-comment
"" \-csvInterval 4 \-name
"Test1" \-statsRequired 1 \-enableResetPorts
0 \-enableForceOwnership false \-enableReleaseConfigAfterRun
0 \-captureViewOptions $my_ixViewOptions

SEE ALSO

ixTest

ixClientNetwork
ixClientNetwork-Defines a network for client agents.

SYNOPSIS

set clientNetwork [::IxLoad new ixClientNetwork $chassisChain options]
$clientNetwork subsubcommandcommand options...

DESCRIPTION

The ixClientNetwork command is used to construct a client network, which is used as part of an
ixClientTrafficNetworkMapping object. A chassis chain object, as created in the ixChassisChain
command, must be used in the construction of this object.

A list of network ranges, as defined in the ixRepository object is associated with the client network.
Network ranges are added to the client network through the use of the networkRangeList.appendItem
command.

A list of ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associated with the network
through the emulatedRouterIpAddressPool option. The pool is defined in the
ixEmulatedRouterIpAddressRange object. These are added to the object through the use of the
appendItem command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addithe following commands are

Chapter 4 IxLoad Tcl API Commands

– 190 –

available. Unless otherwise described, no values are returned and an exception is raised for any error
found.

checkConfig

Checks the configuration of the client network object.

reset

Disassociates the network from all of the Ixia ports currently in the portList option. Ownership of the
ports is cleared.

OPTIONS

chassisChain

This must be a chassis chain object, as created in the ixChassisChain command. It represents the set
of chassis used in the test and defines the chassis IDs used in the portList component. This option
should not be changed after portList is set. (Default = None).

comment

A commentary string for the object. (Default = ““).

emulatedRouterGateway

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This is the gateway to be used for that router. (Default = 0.0.0.0).

emulatedRouterGatewayIPv6

If macMappingMode is set to kMacMappingModePort and ipType in ixEmulat is set to “IPv6” for any
addresses, then an IPv6 address is also required for the emulated router inserted between the clients
and the external port. This is the IPv6-format address of the gateway to be used for that router. IxLoad
supports all forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4”).
(Default = “::C212:0001”).

emulatedRouterSubnetIPv6

Subnet mask applied to emulatedRouterGatewayIPv6 address. (Default =
“FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::0”)

emulatedRouterIpAddressPool

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This option is a list of ixEmulatedRouterIpAddressRange objects which
define the routers' source addresses that will be used. One IP address is taken from the list and used
for each Ixia port. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {})

emulatedRouterSubnet

Chapter 4 IxLoad Tcl API Commands

– 191 –

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This is the network mask to be used for that router. (Default =
255.255.255.0).

ipSourcePortFrom

Defines the beginning of the range of ephemeral port numbers used to establish connections to the
server. The end of the range is specified by ipSourcePortTo.

The first port in the range that IxLoad uses for traffic is 1 greater than the value you specify for
ipSourcePortFrom. For example, if you specify 1,024, traffic originates from port 1025; no traffic
originates from port 1,024. The minimum value for ipSourcePortFrom is 1024. (Default = 1,024).

ipSourcePortTo

Defines the end of the range of ephemeral port numbers used to establish connecto the server. The
beginning of the range is specified by ipSourcePortFrom. (Default = 65,535).

linkLayerOptions

The link layer options to be associated with the ports associated with this client network. Only Ethernet
options are currently supported. (Default = kLink

macMappingMode

The mapping between IP addresses and MAC addresses. One of:

Option Usage

$::ixClientNetwork
(kMacMappingModeIp)

(Default) One MAC address is associated with each IP
address.

$::ixClientNetwork
(kMacMappingModePort)

One MAC address is used for all IP addresses on the port.

name

The name associated with this object. (Default = “newNetwork”).

networkRangeList

A list of ixRepository objects that define the networks from which addresses will be associated with
the clients. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

portList

A list of ports associated with the client network. Refer to ixConfigSequenceContainer for a list of
commands that may be used to manipulate this list. Ports are added directly into this object; see the
following example:
$clientNetwork portList.appendItem \

-chassisId 1 \
-cardId 2 \
-portId 2

Chapter 4 IxLoad Tcl API Commands

– 192 –

SUB-OBJECTS

arpSettings

This is an object of type ixArpSettings, which specifies the manner in which ARP is handled on this
network. (Default = <see ixArpSettings>). The options of this object should be set directly via:
$clientNetwork arpSettings.config options...

dnsParameters

This is an object of type ixDns, which specifies the manner in which specifies the DNS operation
associated with clients on this network. (Default = <see ixDns>). The options of this object
should be set directly via:
$clientNetwork dnsParameters.config options...$clientNetwork
dnsParameters.serverList.appendItem options...

tcpParameters

This is an object of type ixTcpParameters that specifies the manner in which TCP traffic is handled on
this network. (Default = <see ixTcpParameters>). The options of this object should be set
directly via:
$clientNetwork tcpParameters.config options...

EXAMPLE
set clnt_network [::IxLoad new ixClientNetwork $chassisChain]$clnt_network config -
name "clnt_network" \

-cardType $::ixCard(kCard1000Txs4)
-ipSourcePortFrom 1024 \
-ipSourcePortTo 65536 \
$clnt_network networkRangeList.appendItem \ -name "clnt_range" \
-enable 1 \ -firstIp "198.18.2.1" \ -ipCount 100
\ -networkMask "255.255.0.0" \ -gateway "0.0.0.0" \ -
firstMac "00:C6:12:02:01:00" \ -vlanEnable 0 \ -vlanId
1 \ -mssEnable 0 \ -mss 100

$clnt_network portList.appendItem \ -chassisId 1 \ -cardId 2 \
-portId 1

SEE ALSO

ixClientTrafficNetworkMapping

ixChassisChain

ixRepository

ixClientTraffic
ixClientTraffic-Builds a list of client agents to generate client traffic.

Chapter 4 IxLoad Tcl API Commands

– 193 –

SYNOPSIS

set clientTraffic [::IxLoad new ixClientTraffic options]

$clientTraffic subcommand options...

DESCRIPTION

The ixClientTraffic command is used to construct the model for client traffic to be applied during a
test. It is used in the ixClientTrafficNetworkMapping comto co-ordinate networks with client agent
traffic. Its primary option is the agentList list of agents which will generate client traffic.

Agents are added to the agentList using the appendItem subcommand and may be otherwise
manipulated using the commands supported by the ixConfigSequenceContainer command. All
agents are added in the same manner:
set clientTraffic [::IxLoad new ixClientTraffic \

-name “Traffic”]
$clientTraffic agentList.appendItem \

-name“my_protocol_traffic” \

-protocol“<PROTOCOL>” \

-type“Client” \
<other per-protocol options>

The name, protocol, and type are required fields. These define a particular type of agent; the
protocol field should be drawn from the table above. In addition to the required fields, the agent
definition should include options which are specific to a particular protocol, and defined in their
respective appendix.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

checkConfig

Checks the configuration of the client traffic object.

OPTIONS

name

The name associated with the agentList object. (Default = “newActivityModel”).

agentList

A list of agent objects which define the agents that will be used to generate client traffic. Refer to the
various appendixes listed above to determine the options that the agents offer. Refer to

Chapter 4 IxLoad Tcl API Commands

– 194 –

ixConfigSequenceContainer for a list of commands that may be used to manipulate this list.
(Default = {}).

EXAMPLE
#--# Construct Client
Traffic#--set clnt_
traffic [::IxLoad new ixClientTraffic \

-name "client_traffic"]

#--# Create a HTTP
client agent#--$clnt_
traffic agentList.appendItem \ -name "my_http_client" \
-protocol "HTTP" \ -type "Client" \ -
maxSessions 3 \ -httpVersion $::HTTP_Client
(kHttpVersion10) \ -keepAlive 0 \ -maxPersistentRequests
3 \ -followHttpRedirects 0 \ -enableCookieSupport 0 \ -
enableHttpProxy 0 \ -enableHttpsProxy 0 \ -
browserEmulation $::HTTP_Client(kBrowserTypeIE5) \ -enableSsl
0 #--
----# Add actions to this client agent#---
-----------------foreach {pageObject destination} { "/4k.htm" "svr_traffic_
my_http_server" "/8k.htm" "svr_traffic_my_http_server"} { $clnt_traffic
agentList(0).actionList.appendItem \ -command "GET" \
-destination $destination \ -pageObject $pageObject }

SEE ALSO

ixClientTrafficNetworkMapping (see "ixClientTrafficNetworkMapping")

ixClientTrafficNetworkMapping
ixClientTrafficNetworkMapping-Ties a client network to traffic model.

SYNOPSIS

set clientMapping [::IxLoad new ixClientTrafficNetworkMapping options]
$clientMapping subcommand options...

DESCRIPTION

The ixClientTrafficNetworkMapping command is used to map a set of agents that generate client
traffic (in an ixCustomPortMap object) to the set of networks, which will carry the traffic (in an ixDHCP
object).

A number of additional options control the manner in which the client traffic is applied to the networks.

Chapter 4 IxLoad Tcl API Commands

– 195 –

The objectiveType and objectValue options allow the application of traffic to achieve a particular
objective-for example, connections per second.

The setObjectiveTypeForActivity and setObjectiveValueForActivity options allow you set objectives
and values for individual activities within a traffic-network mapping.

The rampUpType, rampUpValue, rampDownTime, standbyTime, offlineTime, sustainTime, and
totalTime options determine the timeline for application of traffic.

portMapPolicy controls the manner in which client traffic is sent to servers.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

If true, this mapping is included in the IxLoad test. (Default = true).

getUserObjectiveTypeForActivity

Objective type for user objective activity within a traffic-network mapping. You must specify the
activity name. See the following example:
set objType [$clnt_t_n_mapping getUserObjectiveTypeForActivity("my_sip_client")]

getUserObjectiveValueForActivity

Objective type for user objective value within a traffic-network mapping. You must specify the activity
name. See the following example:

set objValue [$clnt_t_n_mapping getUserObjectiveValueForActivity

iterations

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1).

name

The name associated with this object. This is read-only and cannot be set from the API. (Default =
"NetworkTrafficMapping").

objectiveType

The objective to be achieved for this traffic to network mapping. One of:

Option Usage

“N/A” (Default).

Chapter 4 IxLoad Tcl API Commands

– 196 –

$::ixObjective
(kObjectiveTypeSimulatedUsers)
or “simulatedUsers”

The objective is to simulate some number of users. If you
select this objective, remember that a 'user' does not
necessarily mean one human user. For example, a Web
browser used by one person may open several
connections to a Web site simultaneously; each
connection counts as one 'user,' because each connection
was initiated by the same source simultaneously. Specify
the desired number of users in the objectiveValue
option.

$::ixObjective
(kObjectiveTypeConcurrentConnections)
or “concurrentConnections”

The objective is to sustain some number of connections
simultaneously. Specify the desired number of
connections in the objectiveValue option.

$::ixObjective
(kObjectiveTypeConcurrentSessions)
or “concurrentSessions”

The objective is to sustain some number of sessions
simultaneously. Specify the desired number of
connections in the objectiveValue option.

$::ixObjective
(kObjectiveTypeConnectionRate)
or “connectionRate”

The objective is to create connections at a certain rate.
For example, if the traffic in this mapping is HTTP client
traffic, this objective will attempt to generate the
specified number of HTTP connections per second.
Specify the desired number of connections per second in
the objectiveValue option.

$::ixObjective
(kObjectiveTypeThroughputMBps)
or “throughputMBps”

As of IxLoad 5.00, this option has been deprecated. Use
throughputMbps instead.

$::ixObjective
(kObjectiveTypeThroughputMbps)
or “throughputMbps”

The objective is to achieve a certain level of throughput,
measured in megabits per second (Mbps). Specify the
amount of throughput in the objectiveValue option.

$::ixObjective
(kObjectiveTypeThroughputKBps)
or “throughputKBps”

As of IxLoad 5.00, this option has been deprecated. Use
throughputKbps instead.

$::ixObjective
(kObjectiveTypeThroughputKbps)
or “throughputKbps”

The objective is to achieve a certain level of throughput,
measured in kilobits per second (Kbps). Specify the
amount of throughput in the objectiveValue option.

$::ixObjective
(kObjectiveTypeThroughputGbps)
or “throughputGbps”

The objective is to achieve a certain level of throughput,
measured in gigabits per second (Kbps). Specify the
amount of throughput in the objectiveValue option.

$::ixObjective
(kObjectiveTypeTransactionRate)
or “transactionRate”

The objective is to complete transactions at a certain
rate. For example, if the traffic in this mapping is HTTP
client traffic, this objective will attempt to complete the

Chapter 4 IxLoad Tcl API Commands

– 197 –

specified number of transaction per second. The
definition of what constitutes one complete HTTP
transaction depends on whether you select HTTP 1.0 or
1.1:

HTTP 1.0: open socket - issue GET - GET response -
close socket. HTTP 1.1: Open socket (if closed) - send
request - Get response.

Specify the desired number of transactions per second in
the objectiveValue option.

objectiveValue

Value for the choice made in the objectiveType option.

objectiveConstraints

Currently, constraints can be set on activities that run rate-based objectives, like connectionRate,
transactionRate, throughput objectives.

The following API can be used to set the constraint value. The constraint needs to be enabled on the
activity.
$clnt_t_n_mapping setconstraints "my_http_client" 200 true

This sets the constraint value to 200 and true enables the constraint. If the activity is running a rate
based activity, then the number of simulated users will be limto 200.
$clnt_t_n_mapping setconstraints "my_http_client" 200 false

This sets the constraint value to 200 and false does not enable the constraint. The number of
simulated users will not be limited here.

offlineTime

The amount of time agents are idle between iterations. (Default = 0).

portMapPolicy

This option controls the sequence in which the client ports connect to the server ports. One of:

Option Usage

$::ixPortMap
(kPortMapRoundRobin)
or “portPairs”

(Default). Client agents connect to server agents on a one-to-one
basis.

$::ixPortMap
(kPortMapFullMesh)
or “portMesh”

Agents on every client port connect to every server port.

$::ixPortMap
(kPortMapIpPair)
or “ipPair”

Each simulated user on the client side communicates with only one server
IP address.

This choice is only valid for SIP agents.

Chapter 4 IxLoad Tcl API Commands

– 198 –

$::ixPortMap
(kPortMapCustom)
or “custom”

Each custom port map has a list of IPv4 suband IPv6 submaps. You can
create a Custom traffic map. In a Custom traffic map, you select the client
and server IP address ranges that will send traffic to each other.

To create a Custom traffic map, the subnet's rangeType parameter must be
set to IP Only (Ethernet).

For large numbers of ports, the Port Pair sequence scales performance better than the Port Mesh
sequence.

The operation of Port Pairs can be described by three scenarios:

l If the number of client ports is equal to the number of server agents, client ports will establish
connections to server ports on a one-to-one basis.

l If the number of client ports is less than the number of server ports, the client ports will establish
connections to the server ports on a one-to-one basis until all client ports are paired with server
ports. The remaining server ports will not be used.

l If the number of client ports is greater than the number of server ports, the client ports will
establish connections to the server ports on a one-to-one basis until all server ports are paired
with client ports. Then, the remaining client ports will return to the first server port and continue
pairing themselves with server ports.

The ixCustomPortMap customizes the order and frequency, by which client IPs will access server IPs.

Each custom port map has a list of IPv4 submaps and IPv6 submaps. There will be a list for the
appropriate IP type if any ranges of that type appear in the network for the symbolic destination. When
a submap list is initialized, it will have a single submap that will be a full IP mesh, if that type is
available. If only vLAN maps are allowed, then it will be a VLAN pairs map instead. If a submap is
appended to the list, by default it will be a copy of the last submap in the list, unless values are passed
in.

rampDownTime

The amount of time used for closing any TCP connections that are still open after all transactions are
complete. When the ramp downtime expires, IxLoad terminates any remaining users.

If IxLoad terminates any client users that are still running after the ramp down expires, statistics for
servers and clients that should match may not. This is an indication that the ramp downtime may be
too short. (Default = 20).

rampUpTime

(Read-only). The amount of time that the test will spend bringing users online and initiating their
first TCP connections. IxLoad calculates this time based on the number of users and the rampUpType
option.

rampUpType

The method used to apply the rampUpValue. One of:

Option Usage

Chapter 4 IxLoad Tcl API Commands

– 199 –

$::ixTimeline
(kRampUpType
UsersPerSecond)

(Default). IxLoad applies the rampUpValue to bring up the specified number
of users per second.

For example, if you select Users/Second and you specify 10 for the
rampUpValue, IxLoad brings up 10 new users every second until all the users
are up and running.

$::ixTimeline
(kRampUpType
MaxPendingUsers)

IxLoad applies the rampUpValue to maintain a pool of users waiting to create
connections. Regardless of how quickly the servers complete connections,
IxLoad will always be ready with one or more new clients waiting to connect. As
each user successfully creates a connection, IxLoad adds a new user to the
pending pool until all the users are up and running.

For example, if you select Max. Pending Users and you specify 10 for the
rampUpValue, IxLoad maintains 10 users waiting to establish connections until
all the users are up and running.

rampUpValue

A value dependent on the setting of rampUpType. One of:

Option Usage

$::ixTimeline(kRampUpType
UsersPerSecond)

The specified number of users per second to bring up.

$::ixTimeline(kRampUpType
MaxPendingUsers)

The size of the pool of pending users awaiting con

rampUpInterval

This field accepts integer values. The value for this option will be considered only when rampUpType is
usersPerSecond. You can edit the value to increment or decrement the number of users to be started
at every rampUpInterval. (Default = 1).
#--# Create a client and
server mapping and bind into the# network and traffic that they will be employing#--
--set clnt_t_n_mapping
[::IxLoad new ixClientTrafficNetworkMapping \ -network $clnt_
network \ -traffic $clnt_traffic \ -objectiveType
$::ixObjective(kObjectiveTypeSimulatedUsers) \ -objectiveValue 20 \ -
rampUpValue 5 \ -rampUpInterval 10 \ -sustainTime
20 \ -rampDownTime 20

In this example, 5 simulated users will be started every 10 seconds until the configured total number of
simulated users are started.

setObjectiveTypeForActivity

Objective type for a single activity within a traffic-network mapping. You must specify the activity and
the objective type. The objectives available are the same as for objectiveType. See the following
example:
setObjectiveTypeForActivity "my_http_client" \ $::ixObjective

Chapter 4 IxLoad Tcl API Commands

– 200 –

(kObjectiveTypeConnectionRate)

setObjectiveValueForActivity

Objective value for a single activity within a traffic-network mapping. You need to specify the activity
and the value. See the following example:
setObjectiveTypeForActivity setObjectiveValueForActivity \ "my_http_client" 200

setPortMapForActivity

Port mapping for a single activity within a traffic-network mapping. You need to specify the activity and
the portMapPolicy. See the following example:
setObjectiveTypeForActivitsetPortMapForActivity \ "my_http_client" $::ixPortMap
(kPortMapFullMesh)

setUserObjectiveTypeForActivity

Objective type for user objective activity within a traffic-network mapping. You need to specify the
activity name and the userObjectiveType. See the following example:
$clnt_t_n_mapping setUserObjectiveTypeForActivity("my_sip_client", "bhca")

setUserObjectiveValueForActivity

Objective type for user objective value within a traffic-network mapping. You need to specify the
activity name and the userObjectiveType. See the following example:
$clnt_t_n_mapping setUserObjectiveValueForActivity("my_sip_client", 3600)

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. If you have multiple traffic-network pairs in your test,
you can use this parameter to stagger their start times. A value of 0 causes the test to begin
immediately. The valid range is from 0 to 1,000 hours (3,600,000). (Default = 0).

sustainTime

The amount of time, in seconds, when all users are up and performing the central test objectives, such
as establishing and closing connections (TCP), retrieving or serving pages (HTTP), or sending or
receiving files (FTP). The valid range is from 0 to 1,000 hours (3,600,000). (Default = 20).

totalTime

The total time required to run the test, including Ramp Up, Ramp Down, Sustain, and Offline times for
all iterations. (Default = 60).

userObjectiveType

UserObjectivetypes are basically alternate representations of the basic objectiveType -
simulatedUsers, transactionRate, concurrentSessions, concurconnectionsPerSecond,
throughputMbps, throughputKbps. They can have a scaling factor associated with them. For
example, bhca has a scaling factor of 3,600. This means that, 3,600 busy hour call attempts (BHCA)
userObrepresents 1 transactionRate objectiveValue.

userAgents represents simulatedUsers with scaling factor of 1.

callsPerSec represents transactionRate with scaling factor of 1.

Chapter 4 IxLoad Tcl API Commands

– 201 –

Registrationsinitiated represents transactionRate with scaling factor of 1.

Redirectionsinitiated also represents transactionRate with scaling factor of 1.

set clnt_t_n_mapping [::IxLoad new ixClientTrafficNetworkMapping \

-network $clnt_network \-traffic $clnt_traffic \-
standbyTime 30 \-userObjectiveType "bhca" \-userObjectiveValue
3600 \-rampUpValue 1 \-sustainTime 40 \-rampDownTime
20

Option Usage

userAgents” The objective is to sustain some number of SIP calls simultaneously.

Specify the desired number of UserAgents in the objectiveValue option.

callsPerSecond The objective is to establish a certain number of SIP calls per second.

Specify the desired number of calls to establish per second in the
objectiveValue option.

bhca The objective is to establish a certain number of SIP calls per hour.
Specify the desired number of calls to establish per hour in the
objectiveValue option.

Busy hour call attempts (BHCA) is a standard measure of the number of
calls completed during a busy hour, the 60-minute period when the
maximum traffic load occurs within a given 24-hour period.

registrationsinitiated The objective is to establish a certain number of call registrations of SIP.

Specify the desired number of registrations in the objectiveValue option.

redirectionsinitiated The objective is to establish a certain number of call redirections of SIP.

Specify the desired number of redirections in the objectiveValue option.

transactionAttemptRate The objective is to issue some number of DNS query per second.

The number of DNS query is mentioned in the userObjectiveValue option.

connectionAttemptRate The objective is achieved if IxLoad succeeds in making the specified
number of attempts to connect to the HTTP server or DUT.

Specify the desired number of attempted connections per second in the
userObjectiveValue option.

userObjectiveValue

A value related to the choice made in the userObjectiveType option. One of:

Chapter 4 IxLoad Tcl API Commands

– 202 –

Option Usage

Calls The desired number of calls.

Callspersecond The desired number of calls to establish per second.

Bhca The desired number of calls to establish per hour.

Useragents The desired number of user agents to be simulated.

Registrationinitiated The desired number of registrations to be initiated during the test.

Redirectionsinitiated The desired number of call redirections initiated during the test.

Queriespersecond The desired number of DNS query per second.

SUB-OBJECTS

network

An object instance of type ixDHCP, which provides the networks from which the traffic will be
generated. (Default = {}).

traffic

An object of type ixCustomPortMap, which provides the model of traffic to be generated. (Default =
{}).

EXAMPLE
#--# Create the client
traffic to network mapping#---
-----set clnt_mapping [::IxLoad new ixClientTrafficNetworkMapping \ -network
$clnt_network \ -traffic $clnt_traffic \ -objectiveType
$::ixObjective(kObjectiveTypeSimulatedUsers)\ -objectiveValue 20 \ -
rampUpValue 5 \ -sustainTime 20 \ -rampDownTime
20]

SEE ALSO

ixTest

ixCustomPortMap

ixNetworkRange
ixNetworkRange-Defines a range of IP and MAC addresses.

Note: This item has been deprecated.

Chapter 4 IxLoad Tcl API Commands

– 203 –

SYNOPSIS

set networkRange [::IxLoad new ixNetworkRange options]

$networkRange subcommand options...

DESCRIPTION

The ixNetworkRange command is used to construct a network range consisting of a set of IP, MAC,
and vLAN addresses. This is used in the ixDHCP and ixStatCatalogItem commands. If the
ixDHCP/ixStatCatalogItem command speca “MACPerPort” mapping mode in its macMappingMode
option, then the gateway, firstMac, and macIncrStep options are not relevant; all network ranges
route to the emulated router and a single MAC addresses emanates from each Ixia port.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no valare returned and an exception is raised for any error
found.

checkConfig

Checks the configuration of the client network object.

set range

Helps to select the activities (protocol agents) that each networkRange will run.
set range1 [$clnt_network networkRangeList.getItem 0]$clnt_t_n_mapping
setActivityAvailableForRange $range1 "my_http_client" trueset isAvailable [$clnt_t_
n_mapping isActivityAvailableForRange $range1 "my_http_client"]puts "=======
Activity-IP Mapping for Http Agent ========"puts $isAvailable

OPTIONS

enable

If true, enables the use of this network range. (Default = true).

enableStats

This is enabled to value 1, to collect per interface statistics (- AddPerInterfaceStat arguments).
(Default = 0).

firstIp

The first IP address for the range. If ipType is set to “IPv4,” this must be an IPv4 address. If ipType is
set to “IPv6,” this must be an IPv6 address. Only HTTP and FTP agents support IPv6 addressing. If
there is a mixture of IPv4 and IPv6 addresses, other protocols will use only the IPv4 addresses. IxLoad
supports all forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4”).
(Default = 198.18.0.1).

firstMac

Chapter 4 IxLoad Tcl API Commands

– 204 –

The first MAC address for the range. This is not used if the value of macMin the containing
ixDHCP/ixStatCatalogItem object is set to “MACPerPort.” (Default = 00:C6:12:00:01:00).

gateway

The gateway associated with all IP addresses in the network range. (Default = 0.0.0.0).

ipCount

The number of unique IP addresses in the network range. (Default = 100).

ipIncrStep

Indicates the increment to be applied between generated IP addresses. The format of this option is a
dotted-quad IP address, in which only one of the octets may be nonzero. For example, 0.0.0.1,
0.0.2.0, 0.22.0.0 and 4.0.0.0 are valid values which will increment a different octet each time. Values
that use more than one octet, for example 0.0.1.1, are illegal. (Default = 0.0.0.1). Some useful
constants are:

Constant Value

$::ixNetworkRange(kIpIncrOctetFirst) 1.0.0.0

$::ixNetworkRange(kIpIncrOctetSecond) 0.1.0.0

$::ixNetworkRange(kIpIncrOctetThird) 0.0.1.0

$::ixNetworkRange(kIpIncrOctetForth) 0.0.0.1

ipType

Type of IP address. This parameter indicates whether the address range is a range of IPv4 addresses or
a range of IPv6 addresses. Only HTTP and FTP agents supIPv6. If there is a mixture of IPv4 and IPv6
addresses, other protocols will use only IPv4 addresses. IxLoad supports all forms of IPv6 addressing
except ::dotted-quad notation (for example, “::1.2.3.4”). The choices are: “IPv4” and “IPv6.”
(Default = “IPv4”).

macIncrStep

Indicates the increment to be applied between generated MAC addresses. The format of this option is a
colon separated MAC address, in which only one of the octets may be nonzero. For example,
00:00:00:00:00:01, 00:00:00:00:22:00, 00:00:00:33:00:00, 00:00:44:00:00:00,
00:AA:00:00:00:00, and C:00:00:00:00:00 are valid values that will increment a different octet each
time. Values that use more than one octet, for example 00:00:00:00:01:01, are illegal. This is not
used if the value of macMappingMode in the containing ixDHCP/ixStatCatalogItem object is set to
“MACPerPort.” (Default = 00:00:00:00:00:01). Some useful constants are:

Constant Value

Chapter 4 IxLoad Tcl API Commands

– 205 –

$::ixNetworkRange(kMacIncrOctetFirst) 01:00:00:00:00:00

$::ixNetworkRange(kMacIncrOctetSecond) 00:01:00:00:00:00

$::ixNetworkRange(kMacIncrOctetThird) 00:00:01:00:00:00

$::ixNetworkRange(kMacIncrOctetForth) 00:00:00:01:00:00

$::ixNetworkRange(kMacIncrOctetFifth) 00:00:00:00:01:00

$::ixNetworkRange(kMacIncrOctetSixth) 00:00:00:00:00:01

mss

If mssEnable is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, IxLoad clients or servers advertise their TCP MaxiSegment Size as 1,460 bytes. (Default
= 1,460).

mssEnable

If true, the use of the mss option is enabled. (Default = false).

networkMask

The subnet mask associated with the IP range. (Default = 255.255.0.0).

rangeType

Type of IP range configured on the subnet.

Value

Ethernet (default)

DHCP

IPSec

PPPoE

DHCP-PD

DHCP-PD Client

vlanEnable

If true, vLAN IDs are inserted.

vlanId

If vlanEnable is true, this is the vLAN ID used. (Default = None).

Chapter 4 IxLoad Tcl API Commands

– 206 –

EXAMPLE

See example in ixDHCP.

SEE ALSO

ixStatCatalogItem

ixServerNetwork
ixServerNetwork-Defines a network for server agents.

SYNOPSIS

set serverNetwork [::IxLoad new ixServerNetwork $chassisChain options]
$serverNetwork subcommand options...

DESCRIPTION

The ixServerNetwork command is used to construct a server network, which is used as part of an
ixServerTrafficNetworkMapping object. A chassis chain object, as created in the ixChassisChain
command, must be used in the construction of this object.

A list of network ranges, as defined in the ixRepository object is associated with the server network.
Network ranges are added to the server network through the use of the networkRangeList.appendItem
command.

A list of ports is also associated with the network through the portList option.

If an emulated router is to be used, a list of IP ranges for the router is also associwith the network
through the emulatedRouterIpAddressPool option. These are added to the object through the use of the
emulatedRouterIpAddressPool.appendItem command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addithe following commands are
available. Unless otherwise described, no values are returned and an exception is raised for any error
found.

checkConfig

Checks the configuration of the server network object.

reset

Disassociates the network group from all of the Ixia ports currently in the portList option. Ownership
of the ports is cleared.

Chapter 4 IxLoad Tcl API Commands

– 207 –

OPTIONS

chassisChain

This must be a chassis chain object, as created in the ixChassisChain command. It represents the set
of chassis used in the test and defines the chassis IDs used in the portList component. This option
should not be changed after portList is set. (Default = None).

comment

A commentary string for the object. (Default = ““).

emulatedRouterGateway

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
servers and the external port. This is the gateway to be used for that router. (Default = 0.0.0.0).

emulatedRouterIpAddressPool

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
servers and the external port. This option is a list of ixEmulatedRouterIpAddressRange objects that
define the routers' source addresses that will be used. One IP address is taken from the list and used
for each Ixia port. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

emulatedRouterSubnet

If macMappingMode is set to kMacMappingModePort, then an emulated router is inserted between the
clients and the external port. This is the network mask to be used for that router. (Default =
255.255.255.0).

emulatedRouterGatewayIPv6

If macMappingMode is set to kMacMappingModePort and ipType in
ixEmulatedRouterIpAddressRange is set to “IPv6” for any addresses, then an IPv6 address is also
required for the emulated router inserted between the clients and the external port. IxLoad supports all
forms of IPv6 addressing except ::dotted-quad notation (for example, “::1.2.3.4”). This is the IPv6-
format address of the gateway to be used for that router. (Default = “::C212:0001”).

emulatedRouterSubnetIPv6

Subnet mask applied to emulatedRouterGatewayIPv6 address. (Default =
“FFFF:FFFF:FFFF:FFFF:FFFF:FFFF::0”).

impairment

If enabled, this option helps to intentionally degrade the traffic transmitted by the network. You can
cause it to drop or duplicate packets, or delay them for certain lengths of time. Refer to ixImpairment
for a description of all the options.

ipSourcePortFrom

Defines the beginning of the range of ephemeral port numbers used to establish connections. The end
of the range is specified by ipSourcePortTo.

Chapter 4 IxLoad Tcl API Commands

– 208 –

The first port in the range that IxLoad uses for traffic is 1 greater than the value you specify for
ipSourcePortFrom. For example, if you specify 1,024, traffic originates from port 1,025; no traffic
originates from port 1,024. The minimum value for ipSourcePortFrom is 1,024. (Default = 1,024).

ipSourcePortTo

Defines the end of the range of ephemeral port numbers used to establish connection to the server.
The beginning of the range is specified by ipSourcePortFrom. (Default = 65,535).

linkLayerOptions

The link layer options to be associated with the ports associated with this server network. Only
Ethernet options are currently supported. (Default = kLink

macMappingMode

The mapping between IP addresses and MAC addresses. One of:

Option Usage

$::ixServerNetwork
(kMacMappingModeIp)

(Default) One MAC address is associated with each IP
address.

$::ixServerNetwork
(kMacMappingModePort)

One MAC address is used for all IP addresses on the port.

name

The name associated with this object. (Default = “newNetwork”).

networkRangeList

A list of ixRepository objects that define the networks from which addresses will be associated with
the servers. Refer to ixConfigSequenceContainer for a list of commands that may be used to
manipulate this list. (Default = {}).

portList

A list of ports associated with the server network. Refer to ixConfigSequenceContainer for a list of
commands that may be used to maniputhis list. Ports are added directly into this object; see the
following example:
$serverNetwork portList.appendItem \

-chassisId 1 \

-cardId 2 \
-portId 2

rangeType

Type of IP range configured on the subnet.

Value

Chapter 4 IxLoad Tcl API Commands

– 209 –

Ethernet (default)

DHCP

IPSec

PPPoE

DHCP-PD

DHCP-PD Client

You can insert the same parameters for the ixStatCatalogItem.

SUB-OBJECTS

arpSettings

This is an object of type ixArpSettings, which specifies the manner in which ARP is handled on this
network. (Default = <see ixArpSettings>). The options of this object should be set directly via:
$serverNetwork arpSettings.config options...

tcpParameters

This is an object of type ixTcpParameters that specifies the manner in which TCP traffic is handled on
this network. (Default = <see ixTcpParameters>). The options of this object should be set
directly via:
$serverNetwork tcpParameters.config options...

EXAMPLE
set svr_network [::IxLoad new ixServerNetwork $chassisChain]$svr_network config -
name "svr_network" \

-cardType $::ixCard(kCard1000Txs4)
-ipSourcePortFrom 1024 \
-ipSourcePortTo 65536 \
$svr_network networkRangeList.appendItem \ -name "svr_range" \
-enable 1 \ -firstIp "198.18.200.1" \ -ipCount 1
\ -networkMask "255.255.0.0" \ -gateway "0.0.0.0" \ -
firstMac "00:C6:12:02:02:00" \ -vlanEnable 0 \ -vlanId
1 \ -mssEnable 0 \ -mss 100

$svr_network impairment.config\ -enable True\ -addDrop True\ -drop 5

$svr_network portList.appendItem \ -chassisId 1 \ -cardId 2 \
-portId 2

SEE ALSO

ixClientTrafficNetworkMapping (see ixClientTrafficNetworkMapping),

Chapter 4 IxLoad Tcl API Commands

– 210 –

ixChassisChain (see "ixChassisChain"),

ixRepository (see "ixRepository")

ixServerTraffic
ixServerTraffic-Builds a list of server agents to handle server traffic.

SYNOPSIS

set serverTraffic [::IxLoad new ixServerTraffic options]
$serverTraffic subcommand options...

DESCRIPTION

The ixServerTraffic command is used to construct the model for server network traffic to be handled
during a test. It is used in the ixServerTrafficNetworkMapping command to co-ordinate networks
with server agents.

Its primary option is the agentList list of agents that will handle server traffic. The agents that exist for
a number of protocols are documented in the subsequent chapters.

Agents are added to the agent list using the appendItem subcommand and may be otherwise
manipulated using the commands supported by the ixConfigSequenceContainer command. All
agents are added in the same manner:
set serverTraffic [::IxLoad new ixServerTraffic \

-name “Servers”]
$serverTraffic agentList.appendItem \

-name“my_protocol_server” \

-protocol“<PROTOCOL>” \

-type“Server” \
<other per-protocol options>

The name, protocol, and type are required fields. These define a particular type of agent; the
protocol field should be drawn from the table above. In addition to the required fields, the agent
definition should include options that are specific to a particular protocol, and defined in their
respective appendix.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

Chapter 4 IxLoad Tcl API Commands

– 211 –

checkConfig

Checks the configuration of the server traffic object.

OPTIONS

agentList

A list of agent objects that define the agents, which will be used to handle server traffic. Refer to the
various appendixes listed above to determine the options that the agents offer. Refer to
ixConfigSequenceContainer for a list of commands that may be used to manipulate this list.
(Default = {}).

name

The name associated with this object. (Default = “newActivityModel”).

EXAMPLE
#---# Construct the Server
Traffic#---set svr_traffic
[::IxLoad new ixServerTraffic \

-name "svr_traffic"]
#--# Create a server

agent -- no actions are involved in this agent#-------------------------------------
-------------------------$svr_traffic agentList.appendItem \ -name "my_
http_server" \ -protocol "HTTP" \ -type "Server" \ -
httpPort 80for {set idx 0} {$idx < \

[$svr_traffic agentList(0).responseHeaderList.indexCount]}\
{incr idx} {

set response [$svr_traffic \
agentList(0).responseHeaderList.getItem $idx]

if {[$response cget -name] == "200_OK"} { set response200ok $response
} if {[$response cget -name] == "404_PageNotFound"} { set response404_
PageNotFound $response }}

#--# Clear pre-defined
web pages, add new web pages#---
-------$svr_traffic agentList(0).webPageList.clear $svr_traffic agentList
(0).webPageList.appendItem \ -page "/4k.html" \ -payloadType
"range" \ -payloadSize "4096-4096" \ -response $response200ok

$svr_traffic agentList(0).webPageList.appendItem \ -page "/8k.html"
\ -payloadType "range" \ -payloadSize "8192-8192" \ -
response $response404_PageNotFound

SEE ALSO

ixServerTrafficNetworkMapping

Chapter 4 IxLoad Tcl API Commands

– 212 –

ixServerTrafficNetworkMapping
ixServerTrafficNetworkMapping-Ties a server network to traffic model.

SYNOPSIS

set serverMapping [::IxLoad new ixServerTrafficNetworkMapping options]
$serverMapping subcommand options...

DESCRIPTION

The ixServerTrafficNetworkMapping command is used to map a set of server agents that receive
traffic (in an ixServerTraffic object) to the set of networks that will carry the traffic (in an
ixStatCatalogItem object).

A number of additional options control the manner in which the server traffic applied to the networks.

The standbyTime, offlineTime, sustainTime, and totalTime options determine the timeline for server
agents.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

If true, this mapping is included in the IxLoad test. (Default = true).

iterations

The number of times that the traffic-network pair perform their functions (establishing TCP connections,
retrieving FTP files, and so forth) in the test. (Default = 1).

matchClientTotalTime

If true, the servers on this mapping will stay online for the same length of time as the longest-running
client agent.

If you do not check this box and a server's duration is shorter than one of the clients connecting to it,
the server will go offline while the client is connected; if this is not what you intend to happen during
testing, the test results for that client may be misleading.

If false, IxLoad calculates agent run times independently for each server activity. (Default = true).

name

The name associated with this object. (Default = “NetworkTrafficMapping”).

offlineTime

Chapter 4 IxLoad Tcl API Commands

– 213 –

Amount of time agents are idle between iterations. (Default = 0).

standbyTime

The amount of time, expressed in seconds, that elapses between the time the test is started and the
time that the traffic-network pair become active. If you have multiple traffic-network pairs in your test,
you can use this parameter to stagger their start times. A value of 0 causes the test to begin
immediately. The valid range is from 0 to 1,000 hours (3,600,000). (Default = 0).

sustainTime

The amount of time, in seconds, during which all users are up and performing the central test
objectives, such as establishing and closing connections (TCP), retrieving or serving pages (HTTP), or
sending or receiving files (FTP). (Default = 20).

totalTime

The total time required to run the test, including Standby, Sustain, and Offline times for all iterations.
(Default = 60).

SUB-OBJECTS

network

An object of type ixStatCatalogItem that provides the networks associated with the server agents.
(Default = {}).

traffic

An object of type ixServerTraffic that provides the model of traffic to be generated.(Default =
{}).

EXAMPLE
#--# Create the server
traffic to network mapping#---
-----set svr_mapping [::IxLoad new ixServerTrafficNetworkMapping \ -network
$svr_network \ -traffic $svr_traffic \ -
matchClientTotalTime 1]

SEE ALSO

ixTest

ixStatCatalogItem

ixServerTraffic

ixWaitEventCommand
ixWaitEventCommand - cause a command to wait for another to execute

Chapter 4 IxLoad Tcl API Commands

– 214 –

SYNOPSIS

$my_ixWaitEventCommand config \

-optionvalue

DESCRIPTION

ixWaitEventCommand causes one command to wait for another to finish executing for it is itself
executed. ixSendEventCommand is used to trigger the waiting command. ixSendEventCommand and
ixWaitEventCommand are added to an actionList using the appendItem command.

For example, if Command2 must be executed only after Command1 has been executed:

1. An ixWaitEventCommand is inserted preceding Command2.

2. An ixSendEventCommand is added after Command1, with the same eventID as in the
ixWaitEventCommand.

When Command1 finishes executing, the ixSendEventCommand ends the ixWaitEventCommand for
Command2, causing Command2 to be executed.

ixSendEventCommand and ixWaitEventCommand can only be used with Subscriber activities.

OPTIONS

commandType

Command type. The only value is "WaitEventCommand".

eventID

Unique value identifying this ixWaitEventCommand. Default value = 1.

EXAMPLE

set my_ixSendEventCommand [::IxLoad new ixSendEventCommand]

$my_ixSendEventCommand config \

-commandType"SendEventCommand" \

-eventId1

$Subscriber_Activity_HTTPClient1 agent.actionList.appendItem -object $my_ixSendEventCommand

.

.

.

$Subscriber_Activity_FTPClient1 agent.actionList.clear

Chapter 4 IxLoad Tcl API Commands

– 215 –

set my_ixWaitEventCommand [::IxLoad new ixWaitEventCommand]

$my_ixWaitEventCommand config \

-commandType"WaitEventCommand" \

-eventId1

$Subscriber_Activity_FTPClient1 agent.actionList.appendItem -object $my_ixWaitEventCommand

SEE ALSO

ixSendEventCommand

! 5

Chapter 4 IxLoad Tcl API Commands

– 216 –

CHAPTER 5 Internal Commands
This section lists the IxLoad Tcl API's internal commands.

duplicate
duplicate—Copy elements from one object to another.

SYNOPSIS
set <target network/traffic/dut> [$<source network/traffic/dut> duplicate]

DESCRIPTION

Enables a NetTraffic to use a copy of a component used in another NetTraffic. You can duplicate
networks, traffics, and DUTs. The example shows Traffic3 using copies of the same activities (agents)
as Traffic1.

SUBCOMMANDS

None

OPTIONS

None.

EXAMPLE

set Traffic1 [$Traffic1_Network1 cget -traffic]
set Traffic3 [$Traffic1 duplicate]
$Traffic1_Network3 config \
-traffic $Traffic3

– 217 –

ixConfig
ixConfig—Allows options to be configured for an object.

SYNOPSIS

set anyIxLoadObject [$::IxLoad new ixLoadObject options]
$anyIxLoadObject subcommand options...

DESCRIPTION

The ixConfig object provides the means by which command options are set and read. It is never used
directly. The commands that are based on ixConfig support the subcommands described below.

SUBCOMMANDS

The following subcommands are available to handle options:

cget option

This subcommand is used to obtain the current value of any option. The option must begin with a
hyphen (-). The return value is of a type appropriate for the option.

config option value option value...

The config subcommand may be used to set the value of one or more options in a command. The
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

getOptions

This subcommand returns a Tcl list with all of the options available for a community including an initial
hyphen for each option.

OPTIONS

None.

EXAMPLE
$object cget -name$object config -name “media” -value “mp3”set optionList [$object
getOptions]

ixConfigSequenceContainer
ixConfigSequenceContainer—Handles a list of objects.

Chapter 5 Internal Commands

– 218 –

SYNOPSIS

set anyIxLoadObject [$::IxLoad new ixLoadObject options]

$anyIxLoadObject option.subcommand sub-options...

DESCRIPTION

The ixConfigSequenceContainer object provides a list in which commands configures their options.

See the following example:

l $anIxLoadCommand is an instance of an ixLoadCommand.

l ixLoadCommand has an option listOfIxStuff.

l listOfIxStuff is a list, each of whose elements is of type ixStuff, with options firstIp and lastIp.

In order to create a new instance of ixLoadCommand and add an item to its list, you should use the
following sequence:

set $anIxLoadCommand [$::IxLoad new ixLoadCommand]
$anIxLoadCommand listOfIxStuff.appendItem \
-firstIp 192.18.0.1 \
-lastIp 192.18.0.100

The first item in a sequence container has index 0. Negative indexes may be used to indicate positions
from the last item in the container. -1 corresponds to the last item in the list, -2 to the one before that,
and so forth.

SUBCOMMANDS

The following subcommands are available to handle options. Except where noted, no value is returned;
an exception is raised in the case of an error. In all cases where they are used the option must begin
with a hyphen (-). The value must be of a type appropriate for the option.

appendItem option value option value...

The appendItem subcommand may be used to add an item to a list. Any number of options in the listed
item may be set as part of the append.

configItem index option value option value...

The configItem subcommand may be used to configure a particular item in a list. Any number of
options in the list item may be set. The index argument is used to indicate which item in the list is to
be configured.

clear

The clear subcommand may be used to delete all listed items from a list.

Chapter 5 Internal Commands

– 219 –

deleteItem index

The deleteItem subcommand may be used to delete a listed item from a list. The index argument is
used to indicate which item in the list is to be configured.

find mode option value option value...

The find subcommand may be used to search a list for matching criterion. The mode argument may be
one of:

Option Usage

exact Match the value fields exactly.

regexp Use regular expressions in the matching.

uppercase Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indicated. A list of indexes of matching items is
returned.

getItem index

The getItem subcommand may be used to retrieve an item from a list. The index argument is used to
indicate which item in the list is to be retrieved. This subcommand returns the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

insertItem index option value option value...

The insertItem subcommand may be used to insert an item in a list. Any number of options in the list
item may be set. The index argument is used to indicate the insertion point in the list.The new item
will be inserted before the index’th item in the list.

OPTIONS

None.

EXAMPLE
$list_object.clear$list_object.appendItem -name “sample”$list_object.insertItem 1 -
name “sample2”$list_object.configItem -value “mp4”$list_object.deleteItem -1set
found_list [$list_object.find regexp \

-speed “\d*[Mm]bps”]
$list_object.getItem 3set numObjects [$list_object.indexCount]

Chapter 5 Internal Commands

– 220 –

ixConfigSortedNamedItemList
ixConfigSortedNamedItemList—Handles a list of objects that is in sorted order.

SYNOPSIS

set anyIxLoadObject [$::IxLoad new ixLoadObject options]
$anyIxLoadObject option.subcommand sub-options...

DESCRIPTION

ixConfigSortedNamedItemList behaves similar to ixConfigSequenceContainer, except that
getItem requires the name of an item rather than its index. The list(index) notation still works for
positional indexing with the deleteItem and configItem options.

insertItem and appendItem are not supported; instead an addItem method is supported which has the
same syntax as appendItem. This difference is required because an item’s position in the list is
controlled by the automatic sorting and cannot be specified by the user.

As with ixConfigSequenceContainer, the first item in an ixConfigSortedNamedhas index 0. Negative
indexes indicate positions from the last item in the list. For example, -1 corresponds to the last item in
the list, -2 to the one before that, and so forth.

SUBCOMMANDS

The following subcommands are available to handle options, which are lists. Except where noted, no
value is returned; an exception is raised in the case of an error. In all cases where they are used the
option must begin with a hyphen (-). The value must be of a type appropriate for the option.

addItem name option value option value...

The addItem subcommand adds an item to a list. Any number of options in the list item may be set as
part of the addition. Items added with the addItem method should always include the -name option so
that the item can be referenced later. If you do not specify a name, IxLoad will assign a default name,
but you should not rely on default names because future releases of IxLoad may assign different
default names. After addItem has been executed, it returns the object that has been added so that you
can use the config subcommand to configure it.

configItem index option value option value...

The configItem subcommand configures a particular item in a list. You can pass multiple option/value
pairs in one command, so that the command configures multiple options at the same time. The
index argument specifies the list item to be configured. To determine the index number of an item, use
the find subcommand.

clear

The clear subcommand deletes all items from a list.

Chapter 5 Internal Commands

– 221 –

deleteItem index

The deleteItem subcommand deletes an item from a list. The index argument specifies the list item
to be deleted. To determine the index number of an item, use the find subcommand. To delete an
item by name, use the removeItem sub-command.

find mode option value option value...

The find subcommand searches a list for item that matches its search criteria. The mode argument
may be one of:

Option Usage

exact Match the value fields exactly.

regexp Use regular expressions in the matching.

uppercase Perform a caseless match.

Any number of options may be used in the match. The find subcommand searches for all items in the
list, whose keyworded options match the values indiA list of indexes of matching items is returned.

getItem name

The getItem subcommand may be used to retrieve an item from a list. The name argument is used to
indicate which item in the list is to be retrieved. This subcommand returns the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

removeItem name

The removeItem subcommand deletes an item from a list. The name argument specifies the list item to
be deleted. To delete an item by its index, use the deleteItem subcommand.

OPTIONS

None.

EXAMPLE
$list_object.clear$list_object.addItem -name “sample”$list_object.configItem -value
“mp4”set found_list [$list_object.find regexp \

-speed “\d*[Mm]bps”]
$list_object.getItem “sample“set numObjects [$list_object.indexCount]$list_
object.deleteItem -1

SEE ALSO

ixConfigSequenceContainer

Chapter 5 Internal Commands

– 222 –

ixRepository

! 6

Chapter 5 Internal Commands

– 223 –

This page intentionally left blank.

– 224 –

CHAPTER 6 Network Stack API
Beginning with release 4.10, IxLoad uses an object-oriented model for its network stack. TCL scripts
created with previous releases of IxLoad will still function, but any scripts created using ScriptGen will
use the object-oriented network stack.

The following sections describe the object model.

Network Stack Overview
The IxLoad network stack is organized as follows:

l Network groups contain a list of network-specific settings, the foundation protocol (L1 Ethernet),
and the list of global plugins. Network groups are sometimes referred to as Port Groups, the term
used for them in IxNetwork.

l Global plugins modify settings of port groups. For example, the TCP global plugin modifies the
TCP parameters for the port group that it belongs to.

l Layer plugins correspond to layers of a network communication stack. These are the protocols
that you would see if captured the traffic and looked at it in a packet analyzer -- a packet header
would be present. For example, for an Ethernet plugin, an Ethernet packet would be present. For a
PPP plugin, a PPP header would be present.

l Extension plugins modify behavior of associated Layer plugins For example, the 802.1x Extension
protocol modifies the functionality of a MAC layer plugin. Impairment is another extension
protocol -- it can be applied to a single protocol to damage or drop packets, but it has no header
or other identifier that can be seen in a packet capture.

– 225 –

Network Stack Hierarchy
The figure below shows the network stack hierarchy in conceptual form and using examples of what
you might see if you use ScriptGen to create a Tcl script of an IxLoad test. Each element is described in
a subsequent section.

Test, scenario, and column
The test element resides at the top of the test. The test contains a property called scenarioList, which
holds the test scenario.

The scenario contains a property called columnList, which holds one or more columns.

Each column contains a property called scenarioElementList, which holds the list of nettraffics or DUTs
in the test.

The following example shows how to add a nettraffic to a test.

set Test1 [::IxLoad new ixTest]

set scenarioElementFactory [$Test1 getScenarioElementFactory]

set scenarioFactory [$Test1 getScenarioFactory]

$Test1 scenarioList.clear

set New_Traffic_Flow [$scenarioFactory create "TrafficFlow"]
$New_Traffic_Flow columnList.clear

set Originate [::IxLoad new ixTrafficColumn]
$Originate elementList.clear

set Traffic1_Network1 [$scenarioElementFactory create $::ixScenarioElementType
(kNetTraffic)]

Network Group Overview
The network element is a member of the column's nettraffic, and defines a Network Group.

Chapter 6 Network Stack API

– 226 –

set Network1 [$Traffic1_Network1 cget -network]

$Network1 globalPlugins.clear

Network groups contain a list of network-specific settings, the foundation protocol (L1 Ethernet), and
the list of global plugins.

The foundation layer in an IxLoad stack is an L1 Ethernet plugin. Every time you create a port group,
the L1 Ethernet plugin is created automatically for you. To create it explicitly, you call getL1Plugin.
set Ethernet_1 [$Network1 getL1Plugin]

The network group data holds data that affects a network stack protocol that runs over a specific set of
ports. Network groups are sometimes referred to as Port Groups, the term used for them in IxNetwork.

In the IxLoad GUI, the network group data is accessed by clicking the Network Group Settings tab. For
example, in the following figure, you would access the network group data for the PPPoX plugin by
clicking the Network Group Settings tab:

Global plugins
Global plugins modify settings of port groups. For example, the TCP global plugin modifies the TCP
parameters for the port group that it belongs to. In the IxLoad GUI, the global plugins are displayed in
the scenario editor opposite the network stacks.

You script the parameters for the global plugins once per test.

To add a global plugin, you add it as an element of the list of Global plugins:
set Network1 [$Traffic1_Network1 cget -network]$Network1 globalPlugins.clear

set Filter_1 [::IxLoad new ixNetFilterPlugin]$Network1 globalPlugins.appendItem -

Chapter 6 Network Stack API

– 227 –

object $Filter_1

After adding it to the list, you then configure it:
$Filter_1 config \-all false \-pppoecontrol

false \-isis false \

Stacks and Protocol Plugins
This section describes the elements of a network stack.

Global options
Most protocols have Global options, which define the behavior of a protocol in all the ranges. There is
only one instance of Global options for each protocol. They affect every instance of the protocol
running on every port in the test. The Global Options are stored in the session-specific data. The
session-specific data is unique to a single instance of an IxLoad test.

In the IxLoad GUI, these are configured by clicking on the Globe icon above the network stacks.

You should script a protocol's global options when you add the first instance of the protocol.

The global options can be set in Tcl by creating a structure to hold the options, and then calling
getSessionSpecificData and passing the name of the protocol.

For example, to set the PPPoX global options:
set my_ixNetPppoxSessionData [$Test1 getSessionSpecificData "PppoxPlugin"]$my_
ixNetPppoxSessionData config \-teardownRateInitial 300 \-
acceptPartialConfig true \-maxOutstandingRequests
300 \-maxOutstandingReleases 300 \-setupRateInitial

Chapter 6 Network Stack API

– 228 –

300

Each protocol has a reserved string that is passed as an argument to getSessionSpecificData. For a
list of strings, see Plugin name strings.

Plugin name strings

The table below lists the names of the plugins to use for the GetSessionSpecificData and
GetNetworkSpecificData commands.

Protocol Plugins Plugin Name String

802.1x Dot1xPlugin

DHCP Client DHCPPlugin

DHCP Server DHCPServerPlugin

EAPoUDP Nacl3Plugin

eGTP S1/S11 eNB/MME EGTPPlugin

eGTP S1/S11 eNB/SGW EGTPPlugin_SGW

Emulated Router N/A

GTP GTPSPlugin

GTP-GGSN GTPGPlugin

Impair ImpairPlugin

IP IpV4V6Plugin

IPSec IPSecPlugin

L2EthernetPlugin (MAC/VLAN) N/A

L2TP L2tpPlugin

Mobile Subscribers MobileSubscribersPlugin

PPPoX PppoxPlugin

Radius RadiusPlugin

Chapter 6 Network Stack API

– 229 –

Static ARP N/A

WebAuth WebAuthPlugin

Network Group Settings
The network group settings contain the network-specific settings for a network group.

The network group settings can be set in Tcl by configuring the Port Group Specific Data, a list that
holds the network group options for a specific protocol in the network group. There is a set of options
for each protocol in the network group.

For example:

set my_ixNetPppoxPortGroupData [$client_network getNetworkSpecificData
"PppoxPlugin"]
$my_ixNetPppoxPortGroupData activities.clear

$my_ixNetPppoxPortGroupData associates.clear

$my_ixNetPppoxPortGroupData config \
-useWaitForCompletionTimeout false \
-maxOutstandingRequests 300 \
-perSessionStatFilePrefix "MY_PREFIX" \
-enablePerSessionStatGeneration false \
-waitForCompletionTimeout 120 \
-maxOutstandingReleases 300 \
-overrideGlobalRateControls false \
-role "client" \
-filterDataPlaneBeforeL7 true \
-teardownRateInitial 300 \
-setupRateInitial 300

L2 Plugin
To build the stack, you add plugins as children of other plugins. The first plugin that you add to the
stack is an L2 plugin. There is one L2 plugin per stack.

Chapter 6 Network Stack API

– 230 –

After the L1 plugin has been created, you add the L2 plugin as its child, using the appendItem
command to add it to the childrenList property. Children lists are ranges of configuration data for
the plugin being added. Most plugins have one range, but some have two. For example, an Ethernet
range has a MAC range and VLAN range as its children.

For example, to create a MAC address range, you add it to the childrenList of the Ethernet plugin.
set MAC_VLAN_1 [::IxLoad new ixNetL2EthernetPlugin]$Ethernet_1
childrenList.appendItem -object $MAC_VLAN_1

Adding Layer Plugins

To add additional higher-layer protocols to the stack, you them as ranges, again using appendItem:
$PPPoX_4 rangeList.clearset PPPoX_R4 [::IxLoad new ixNetPppoxRange]$PPPoX_4
rangeList.appendItem -object $PPPoX_R4

Extension plugins

Extension plugins modify the behavior of the protocols they are associated with. To add an extension
plugin, you add it to its associated protocol's extensionList property using the appendItem
command:
set Impair_1 [::IxLoad new ixNetImpairPlugin]$PPPoX_1 extensionList.appendItem -
object $Impair_1

Then, you configure the extension plugin's range and parameters, and then enable it:
set Impair_R1 [$PPPoX_R1 getExtensionRange $Impair_1]

set DefaultProfile [::IxLoad new ixNetImpairProfile]$DefaultProfile config \-
addFragment true \-sendFirstFragmentOnly
false \-fragmentSequenceLength 32 \-addFragmentSequence
true \-sendFragmentsInReverseOrder true

$Impair_R1 config \-enabled true \-profile
$DefaultProfile

Ethernet Plugin

Chapter 6 Network Stack API

– 231 –

SYNOPSIS

DESCRIPTION

First plugin for all Ethernet stacks. This element is preconfigured to be the first element of the stack in
the Network Group. You can get this item from the network by calling get NetworkPlugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

autoNegotiate

If true, the Ixia port auto-negotiates its speed and duplex operation with the DUT, using the values
that you select for the Speed parameter. If false, the Ixia port uses the speed that you select for the
Speed parameter.

Value Description

copper Use copper mode.

fiber Use fiber mode.

auto Automatically select the media type .

Default value = "True"

speed

If autoNegotiate is true, this parameter lists the speeds that the Ixia port advertises.

Value Description

Chapter 6 Network Stack API

– 232 –

k10FD 10Mbit Full Duplex

k10HD 10Mbit Half Duplex

k100FD 100Mbit Full Duplex

k100HD 100Mbit Half Duplex

k1000 1 Gigabit

k10000 10 Gigabit

Default value = "'k100FD'"

advertise10Half

If true, the Ixia port advertises 10 Mbps half duplex speed.

Default value = "True"

name="advertise10Full"

If true, the Ixia port advertises 10 Mbps full duplex speed.

Default value = "True"

name="advertise100Half"

If true, the Ixia port advertises 100 Mbps half duplex speed.

Default value = "True"

name="advertise100Full"

If true, the Ixia port advertises 100 Mbps full duplex speed.

Default value = "True"

name="advertise1000Full"

If true, the Ixia port advertises 1 Gbps full duplex speed.

Default value = "True"

EXAMPLE

SEE ALSO

Chapter 6 Network Stack API

– 233 –

Physical Layer Example
This section shows an example of how to create a physical layer plugin in the Tcl API.

Physical Layer Example

Chapter 6 Network Stack API

– 234 –

Chapter 6 Network Stack API

– 235 –

Layer 2 Protocols (MAC / VLAN)
This section describes the Layer 2 protocol (MAC / VLAN) plugins.

L2EthernetPlugin

Chapter 6 Network Stack API

– 236 –

SYNOPSIS

DESCRIPTION

Plugin that describes the MAC and VLAN settings. This object appears as MAC/VLAN in the GUI.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

macRangeList

Name of the list of MAC address ranges used by this plugin. The list must be a MacRangeList object.

Default value = "None"

vlanRangeList

Name of the list of VLAN tag ranges used by this plugin. The list must be a VlanIdRangeList object.

Default value = "None"

EXAMPLE
set MAC_VLAN_3 [::IxLoad new ixNetL2EthernetPlugin]# ixNet objects needs to be added
in the list before they are configured!$Ethernet_1 childrenList.appendItem -object
$MAC_VLAN_3

$MAC_VLAN_3 config \-name "MAC/VLAN-3"

$MAC_VLAN_3 childrenList.clear

Chapter 6 Network Stack API

– 237 –

SEE ALSO

L2 Ethernet (MAC/VLAN) Port Group Data

SYNOPSIS

DESCRIPTION

Options for Layer 2 Ethernet port groups.

SUBCOMMANDS

OPTIONS

activityID

Activity ID.

Default value = "'0'"

activities

List of activities.

Default Value = "None"

EXAMPLE

SEE ALSO

MAC Session Data

SYNOPSIS

Chapter 6 Network Stack API

– 238 –

DESCRIPTION

Global MAC settings for the L2EthernetPlugin.

SUBCOMMANDS

OPTIONS

duplicateCheckingScope

Value used to scope of check to determine whether IP is unique within the session, within the port
group, or disabled.

Value Description

0 Disabled

1 PortGroup

2 Session

Default value = "None"

EXAMPLE

SEE ALSO

MAC Range

SYNOPSIS

DESCRIPTION

Range of MAC addresses. Configure the range as a list.

SUBCOMMANDS

Chapter 6 Network Stack API

– 239 –

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range is enabled.

Default value="True".

mac

The base value used when the network stack element creates MAC addresses. This address will be
associated with the first interface on the port.

This parameter is available for editing only when the AutoGenerate MAC option is disabled (in the
layer 3 stack element).

When you require a range of multiple MAC addresses, the network stack element uses this base
address plus the Increment value to create the range of addresses.

Note: If you are using VM ports, the default behavior of the test is to use the MAC address cloned from
the NIC, rather than the configured address. To override this behavior and manually configure the MAC
addresses, enable promiscuous mode in IxExplorer for each port and also enable promiscuous mode on
the VmWare ESX virtual switch.

Default value (for API)="" (none)

incrementBy

The value that is used (in conjunction with the base MAC address) to create a range of multiple MAC
addresses.

Default value="'00:00:00:00:00:01'"

mtu

Maximum Transmission Unit (MTU) is the largest packet that a given network medium can carry.

Ethernet, for example, has a standard MTU of 1500 bytes, ATM has a fixed MTU of 48 bytes, and PPP
has a negotiated MTU that is usually between 500 and 2000 bytes.

The default value is 1500, the minimum value is 500, and the maximum value is 9500.

Default value="1500".

count

Number of MAC addresses to create.

Default value="1".

vlanRange

Chapter 6 Network Stack API

– 240 –

Name of the VLAN range associated with the MAC address.

Default value="None".

EXAMPLE

set MAC_R2 [$DHCP_R1 getLowerRelatedRange "MacRange"]

$MAC_R2 config \

-count 1 \

-name "MAC-R2" \

-enabled true \

-mtu 1500 \

-mac "22:73:F7:4E:00:00" \

-incrementBy "00:00:00:00:00:01"

SEE ALSO

VLAN ID Range

SYNOPSIS

DESCRIPTION

Range of VLAN IDs.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

Chapter 6 Network Stack API

– 241 –

enabled

If True, the range base is enabled.

Default value="True".

enable

When enabled, the outer VLAN range is included in the configuration.

Default value="False"

firstId

The first VLAN ID to be used for the outer VLAN tag.

Valid VLAN IDs are in the range of 1 through 4094 (IDs 0 and 4095 are reserved).

Default value="1"

incrementStep

The value to be added to the outer VLAN ID for each new assignment. The maximum value is 4093.

Default value="1"

increment

How often a new outer VLAN ID is generated. For example, a value of 10 will cause a new VLAN ID to
be used in blocks of 10 IP addresses.

When using Inner First increment mode, this parameter determines how many inner cycles must be
completed before a new outer VLAN ID is generated. For example if Increment every… is 2, a new
outer VLAN ID is generated following two inner VLAN ID cycles.

(A cycle is complete when the Unique Count has been reached for inner VLAN IDs.)

Default value="1"

uniqueCount

The number of unique outer VLAN IDs that will be created. The default value is 4094.

Default value="4094"

priority

The 802.1Q priority for the outer VLAN. The minimum value is zero; the maximum value is 7.

Default value="1"

innerEnable

When enabled, the inner VLAN range is included in the configuration.

Inner VLAN cannot be enabled unless Outer VLAN is enabled.

Default value="False"

innerFirstId

Chapter 6 Network Stack API

– 242 –

The first VLAN ID to be used for the inner VLAN tag.

Valid VLAN IDs are in the range of 1 through 4094 (IDs 0 and 4095 are reserved).

Default value="1"

innerIncrementStep

The value to be added to this inner VLAN ID for each new assignment. The maximum value is 4093.

DefaultValue="1"

innerIncrement

How often a new inner VLAN ID is generated. For example, a value of 10 will cause a new VLAN ID to
be used in blocks of 10 IP addresses.

When using Outer First increment mode, this parameter determines how many outer cycles must be
completed before a new inner VLAN ID is generated. For example if Increment every… is 2, a new
inner VLAN ID is generated following two outer VLAN ID cycles.

(A cycle is complete when the Unique Count has been reached for outer VLAN IDs.)

Default value="1"

innerUniqueCount

The number of unique inner VLAN IDs that will be created. The default value is 4094.

Default value="4094"

innerPriority

The 802.1Q priority for this inner VLAN. The minimum value is zero; the maximum value is 7.

Default value="1"

idIncrMode

The Method used to increment VLAN IDs:

l Outer VLAN first - The outer VLAN ID is incremented first. When the Unique Count is reached the
number of times specified by the Increment every… parameter, the inner VLAN ID is
incremented.

l Inner VLAN first - The inner VLAN ID is incremented first. When the Unique Count is reached the
number of times specified by the Increment every… parameter, the outer VLAN ID is
incremented.

l Both - Both VLAN IDs are incremented at the same time.

Refer to VLAN Increment Examples for more information about VLAN increment modes.

Default value="2"

Chapter 6 Network Stack API

– 243 –

EXAMPLE

set VLAN_R1 [$DHCP_R1 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \

-incrementStep 1 \

-uniqueCount 4094 \

-name "VLAN-R1" \

-innerIncrement 1 \

-innerUniqueCount 4094 \

-enabled true \

-innerFirstId 1 \

-increment 1 \

-priority 1 \

-firstId 1 \

-innerIncrementStep 1 \

-idIncrMode 2 \

-innerEnable false \

-innerPriority 1

SEE ALSO

Layer 2 Example
This section shows an example of how to create a layer 2 plugin in the Tcl API.

Chapter 6 Network Stack API

– 244 –

Layer 2 Example

Chapter 6 Network Stack API

– 245 –

Chapter 6 Network Stack API

– 246 –

Chapter 6 Network Stack API

– 247 –

Emulated Router Plugin

SYNOPSIS

DESCRIPTION

Used over L2EthernetPlugin to define an emulated router.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

Chapter 6 Network Stack API

– 248 –

extensionList

Name of the list of protocol extensions.

Default value = "None"

EmulatedRouterRangeList

List of EmulatedRouterRange objects.

Default value="None".

EXAMPLE

SEE ALSO

EmulatedRouterRange

SYNOPSIS

DESCRIPTION

Defines a range of IP addresses that will be used by an emulated router.

You need to assign one port per address to this range.

Configure the range as a list.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

Chapter 6 Network Stack API

– 249 –

ipType

Indicates the IP version for each range:

l IPv4

l IPv6

The default value is IPv4.

Must be one of the choices in IpTypeChoices. Default value="'IPv4'".

ipAddress

The first IP address in the range. This is the base address used for enumerating all the addresses in the
range.

The default IPv4 address is 10.10.10.2, and the default IPv6 address is ::A0A:A02.

Note: IxOS reserves a range of addresses for use in the Ixia chassis VNIC network; the default
reserved range is the 10.0.0.0 /16 subnet. If you attempt to configure IP addresses from this reserved
subnet, IxLoad will reject the address assignment.

Default value="'10.10.0.1'".
prefix

The number of one bits in the subnet mask. For example, a mask of 255.255.240.0 has a prefix of 20.

The default IPv4 value is 24, and the default IPv6 value is 120.

Default value="16".

incrementBy

The value used to enumerate all the addresses in the range.

The default IPv4 value is 0.0.0.1. The default IPv6 value is ::1.

Default value="1".

gatewayAddress

The gateway address to be associated with all the addresses in the range.

If the Protocol is IPv6, the Gateway field adds a default route to this gateway for the range (unless the
gateway is 0::0, in which case the route is not added).

The default IPv4 value is 10.10.10.1. The default IPv6 value is ::A0A:A01.

Note:When you configure an Emulated Router in an IP stack, the Emulated Router provides the
gateway addresses for the IP ranges. In this case, the IP gateway parameters are not configurable.

Default value="'0.0.0.0'"

gatewayIncrement

Defines the address increment value that is used to generate each gateway address required in the .
(The gateway addresses are incremented according to the Gateway Increment Mode.)

Chapter 6 Network Stack API

– 250 –

The default IPv4 value is 0.0.0.0, and the default IPv6 value is ::0. When the default value is used, the
base gateway address will not be incremented. Rather, all gateway IPs will be the same for all
interfaces generated by the plug-in range.

Default value="'0.0.0.0'"

gatewayIncrementMode

Determines when the gateway addresses are incremented. The options are:

l Increment every subnet: A new gateway address is created for each subnet defined in the
network group. With this mode, the increment operation is triggered when a range IP increment
operation creates an IP address that is in a new subnet.

l Increment every interface: A new gateway address is created for each interface, whether or not
the next address is from the same subnet.

The default is Increment Every Subnet.

Refer to Static IP Plug-in Gateway Addresses for more information.

Must be one of the choices in GatewayIncrementModeChoices. Default value="'perSubnet'".

generateStatistics

When this parameter is enabled, IxLoad will collect interface statistics for this range.

Values=True/False. Default value="False".

mss

The Maximum Segment Size. The MSS is the largest amount of data, specified in bytes, that the IP
device can transmit as a single, unfragmented unit.

The TCP MSS equals the MTU minus the TCP header size minus the IP header size.

The MSS value can (theoretically) be as large as 65495. For traditional Ethernet, the maximum value
is 1460 (1500 minus 40). For jumbo frame support, the maximum value is 9460 (9500 minus 40).
IxLoad supports jumbo frames.

The default value is 1460.

Default value="1460".

autoMacGeneration

This parameter is used to automatically generate MAC addresses:

l If enabled, MAC addresses will be automatically generated based on the IP addresses, in which
case the associated MAC range is ignored.

If disabled, the associated MAC range is used to create the MAC addresses.

Values=True/False. Default value="True".

macRange

Name of the MAC range. Must be one of the choices in MacRange.

Chapter 6 Network Stack API

– 251 –

Default value="None".

vlanRange

Name of the VLAN range. Must be one of the choices in VlanIdRange.

Must be one of the choices in VlanIdRange. Default value="None".

EXAMPLE
set ER_R1 [::IxLoad new ixNetEmulatedRouterRange]# ixNet objects needs to be added
in the list before they are configured!$Emulated_Router_1 rangeList.appendItem -
object $ER_R1

$ER_R1 config \-count 1 \-name
"ER-R1" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.3" \-ipType "IPv4"

SEE ALSO

Emulated Router Example
This section shows an example of how to create an Emulated Router in the Tcl API.

Chapter 6 Network Stack API

– 252 –

Emulated Router Example

Chapter 6 Network Stack API

– 253 –

Chapter 6 Network Stack API

– 254 –

Chapter 6 Network Stack API

– 255 –

Chapter 6 Network Stack API

– 256 –

IP Plugin
This section describes the IP protocol plugin.

Port Group Data

Chapter 6 Network Stack API

– 257 –

SYNOPSIS

DESCRIPTION

Options for IP ranges within a specific port group.

SUBCOMMANDS

OPTIONS

activityID

Activity ID.

Default value = "'0'"

activities

List of activities.

Default Value = "None"

EXAMPLE

SEE ALSO

IP Session Data

SYNOPSIS

DESCRIPTION

Configures the IP global settings.

SUBCOMMANDS

OPTIONS

Same as SessionSpecificData plus the following:

Chapter 6 Network Stack API

– 258 –

duplicateCheckingScope

Value used to scope of check to determine whether IP is unique within the session, within the port
group, or disabled.

Value Description

0 Disabled

1 Port Group

2 Session

Default value="None"

EXAMPLE

SEE ALSO

IpV4V6Plugin

SYNOPSIS

DESCRIPTION

Layer 3 plugin that provides IPv4/IPv6 address ranges.

SUBCOMMANDS

OPTIONS

From IpStaticProvider:

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Chapter 6 Network Stack API

– 259 –

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

rangeList

Name of the IP range. This parameter is read-only. Default value="None".

EXAMPLE

set IP_2 [::IxLoad new ixNetIpV4V6Plugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_7 childrenList.appendItem -object $IP_2

$IP_2 config \

-name "IP-2"

$IP_2 childrenList.clear

$IP_2 extensionList.clear

$MAC_VLAN_7 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

IP Plugin Example
This section shows an example of how to create a IP plugin in the Tcl API.

Chapter 6 Network Stack API

– 260 –

Chapter 6 Network Stack API

– 261 –

Chapter 6 Network Stack API

– 262 –

Chapter 6 Network Stack API

– 263 –

Chapter 6 Network Stack API

– 264 –

StaticARP
This section describes the StaticARP plugin.

SYNOPSIS

set StaticArpRange_2 [$IP_R4 getExtensionRange $Static_ARP_2]

$StaticArpRange_2 config \

DESCRIPTION

Configures a StaticARP range. A StaticARP range is an extension to an IP range.

Chapter 6 Network Stack API

– 265 –

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enabled

If enabled, the Static ARP range is enabled for use in the configuration.

If disabled, the range will not be validated, nor will it be configured.

Static ARP ranges are enabled by default.

API Default = true

mac

The base value that the plug-in uses to create a range of MAC addresses for the static ARP table.

The default value is aa:bb:cc:00:00:00.

API Default = "aa:bb:cc:00:00:00"

macIncrementBy

The increment value that the plug-in uses to create a range of MAC addresses for the static ARP table.

The default value is 00:00:00:00:00:01.

API Default = "00:00:00:00:00:01"

EXAMPLE

set StaticArpRange_2 [$IP_R4 getExtensionRange $Static_ARP_2]

$StaticArpRange_2 config \

-macIncrementBy "00:00:00:00:00:01" \

-mac "aa:bb:cc:00:00:00" \

-enabled true

DHCP Client and Server
This section describes the DHCP client and server plugins.

Chapter 6 Network Stack API

– 266 –

DHCP Client Plugin

SYNOPSIS

DESCRIPTION

DHCP client.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

rangeList

List of DHCP ranges. New elements can be added to the using appendItem. The elements of the list can
be modified, but the list cannot be replaced.

Default value="None".

EXAMPLE

set DHCP_Client_1 [::IxLoad new ixNetDHCPPlugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_3 childrenList.appendItem -object $DHCP_Client_1

$DHCP_Client_1 config \

-name "DHCP Client-1"

Chapter 6 Network Stack API

– 267 –

$DHCP_Client_1 childrenList.clear

$DHCP_Client_1 extensionList.clear

$MAC_VLAN_3 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

DHCP Server Plugin

SYNOPSIS

DESCRIPTION

Configures a DHCP server.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Chapter 6 Network Stack API

– 268 –

Default value = "None"

rangeList

Name of the list of DHCP Server ranges.

Default value = "None"

EXAMPLE

set DHCP_Server_1 [::IxLoad new ixNetDHCPServerPlugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_4 childrenList.appendItem -object $DHCP_Server_1

$DHCP_Server_1 config \

-name "DHCP Server-1"

$DHCP_Server_1 childrenList.clear

$DHCP_Server_1 extensionList.clear

$MAC_VLAN_4 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

Authentication Extension Plugins
This section describes the Authentication Extension plugins.

WebAuthPlugin

Chapter 6 Network Stack API

– 269 –

SYNOPSIS

DESCRIPTION

Configures a WebAuthx plugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of this plugin.

rangeList

List of address ranges used by this plugin.

Default value = "None"

EXAMPLE

SEE ALSO

802.1x plugin

SYNOPSIS

DESCRIPTION

Creates a range of names and passwords for use in a Dot1xRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Chapter 6 Network Stack API

– 270 –

Default value = "None"

enabled

If True, the plugin is enabled.

Default value="True".

nacSequence

The NAC Sequence used by this range.

Note: If a NAC Sequence has been selected for an 802.1X range, but you do not want a NAC Sequence
associated with the range, specify None to remove the NAC Sequence from the range configuration.

Default value = "None"

fastProvisionMode

FAST provisioning mode specifies how the tunnel PAC is acquired.

Value Description

authenticated Authenticated (certificate is required).

PAC provisioning occurs inside an authenticated tunnel, using the server
certificate.

unauthenticated Unauthenticated (no certificate required).

When using unauthenticated mode, the first session will acquire a special token
named tunnelPac from the ACS server. By design, the server will send a plain EAP
Failure message at the end of the successful session. The ACS logs will indicate
for the failed session that the client was provisioned with a new tunnelPac. IxLoad
will not re-initiate a new session with the obtained tunnelPac unless the DUT re-
initiates full re-authentication or a new start test message is sent to the PCPU.

fromfile Load from File

A PAC is stored on the chassis. The share location is
C:\Program Files\ixia\nfs\rw\ports_x__y_\

In this mode, the PAC file is loaded from the file and is directly presented to
server. The client does not request a new PAC as part of its session. Phase 0
(provisioning) is skipped.

auth_save_pac Authenticated and save to file

This option is identical to the Authenticated option except that after receiving a
tunnel PAC, the client saves it on the Ixia chassis share
C:\Program Files\ixia\nfs\rw\ports_x__y_\

Note that any existing PACs will be overwritten.

unauth_save_
pac

This option is identical to the Unauthenticated option except that after receiving a
tunnel PAC, the client saves it on the Ixia chassis share

Chapter 6 Network Stack API

– 271 –

C:\Program Files\ixia\nfs\rw\ports_x__y_\

Note that any existing PACs will be overwritten.

Default value="'unauthenticated'"

fastInnerMethod

FAST inner method.

Value Description

GTC GTC

MsChapv2 MS CHAP v2

Default value = "'GTC'"

fastStatelessResume

FAST stateless resume mode.

Value Description

yes Yes: Within the secure tunnel established between the client and the server, based on the
tunnel PAC, the client also requires a UserPAC which will be provided by the server (if it is
enabled to do so). If the client is provided with the UserPAC, during the next authentication
sessions, it will have to send the userPAC to the server, within the tunnel, for the
authentication to complete.

no No: FAST stateless resume mode is not used.

Default value="'no'"

userName

The UserName used to authenticate the port.

Default value = "'username_1_1_1_file'"

userPassword

The User Password used to authenticate the port.

Default value = "'userpass_1_1_1_file'"

waitId

defaultValue="False"

protocol

The Authentication Protocol that this 802.1X range will use.

The choices are:

Chapter 6 Network Stack API

– 272 –

l TLS

l PEAPv0

l PEAPv1

l MD5

l TTLS

l FAST

When you choose FAST as the protocol, you need to also configure three more options (described
below): FAST Provisioning, FAST Inner Method, and FAST Stateless.

defaultValue="'MD5'"

hostAuthMode

Host (Machine) Authentication Method that this 802.1X range will use.

Parameter Description

None None – No machine account is used.

HOST-
ONLY

Host Only – When this mode is used, the Ixia port emulates only the host for each MAC
address (but not the user). Nonetheless, the username certificate will be requested and
transferred to the chassis.

HOST-
USER-
REAUTH

Host User-Reauth – When this mode is used, the Ixia port emulates both the host and
the user for each MAC address. This emulates a case in which a domain machine that is
started, the domain policies are applied (machine authentication), and multiple users
then successfully log in. For each host/user pair, the host is authenticated first, followed
by the user. Note that for user authentication to take place, the DUT must re-trigger
authentication.

HOST-
USER-
BOTH

Host User-Both – When this mode is used, the Ixia port emulates both the host and the
user for each MAC address. This emulates a case in which a domain machine is started,
a domain policy is deployed, a user logs in, then a reboot occurs; the reboot starts the
cycle again.

defaultValue="'None'"

hostName

The Machine Name used to authenticate the port.

defaultValue="'hostname_1_1_1_file'" />

hostPassword

The Machine Password used to authenticate the port.

defaultValue="'hostpass_1_1_1_file'" />

Chapter 6 Network Stack API

– 273 –

EXAMPLE

SEE ALSO

EAPoUDP plugin

SYNOPSIS

DESCRIPTION

Configures the EAPoUDP Range Parameters.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

nacSequence

The NAC Sequence used by this range.

Note: If a NAC Sequence has been selected for an 802.1X range, but you do not want a NAC Sequence
associated with the range, specify None to remove the NAC Sequence from the range configuration.

Default value = "None"

fastProvisionMode

FAST provisioning mode specifies how the tunnel PAC is acquired.

Value Description

Chapter 6 Network Stack API

– 274 –

authenticated Authenticated (certificate is required).

PAC provisioning occurs inside an authenticated tunnel, using the server
certificate.

unauthenticated Unauthenticated (no certificate required).

When using unauthenticated mode, the first session will acquire a special token
named tunnelPac from the ACS server. By design, the server will send a plain EAP
Failure message at the end of the successful session. The ACS logs will indicate
for the failed session that the client was provisioned with a new tunnelPac. IxLoad
will not re-initiate a new session with the obtained tunnelPac unless the DUT re-
initiates full re-authentication or a new start test message is sent to the PCPU.

fromfile Load from File

A PAC is stored on the chassis. The share location is
C:\Program Files\ixia\nfs\rw\ports_x__y_\

In this mode, the PAC file is loaded from the file and is directly presented to
server. The client does not request a new PAC as part of its session. Phase 0
(provisioning) is skipped.

auth_save_pac Authenticated and save to file

This option is identical to the Authenticated option except that after receiving a
tunnel PAC, the client saves it on the Ixia chassis share
C:\Program Files\ixia\nfs\rw\ports_x__y_\

Note that any existing PACs will be overwritten.

unauth_save_
pac

This option is identical to the Unauthenticated option except that after receiving a
tunnel PAC, the client saves it on the Ixia chassis share
C:\Program Files\ixia\nfs\rw\ports_x__y_\

Note that any existing PACs will be overwritten.

Default value="'unauthenticated'"

fastInnerMethod

FAST inner method.

Value Description

GTC GTC

MsChapv2 MS CHAP v2

Default value = "'GTC'"

fastStatelessResume

FAST stateless resume mode.

Chapter 6 Network Stack API

– 275 –

Value Description

yes Yes: Within the secure tunnel established between the client and the server, based on the
tunnel PAC, the client also requires a UserPAC which will be provided by the server (if it is
enabled to do so). If the client is provided with the UserPAC, during the next authentication
sessions, it will have to send the userPAC to the server, within the tunnel, for the
authentication to complete.

no No: FAST stateless resume mode is not used.

Default value="'no'"

userName

The UserName used to authenticate the port.

Default value = "'username_1_1_1_file'"

userPassword

The User Password used to authenticate the port.

Default value = "'userpass_1_1_1_file'"

protocol

The Authentication Protocol that this EAPoUDP range will use. The choices are:

l PEAPv1

l FAST

When you choose FAST as the protocol, you need to also configure three more options: Fast
Provisioning, Fast Inner Method, and Fast Stateless.

Default value = "'PEAPv1'"

responseType

The types of EAPoUDP messages to which the range responds.

Value Description

RespondToAll Respond To All – Respond to all EAPoUDP messages.

NoStatusQuery No Status Query – Do not respond to EAP-StatusQuery messages. The lack of a
response to these messages triggers a new full authorization exchange.

IgnoreAll Ignore All – Do not respond to any EAPoUDP messages. This simulates a non-
responsive host.

Default value = "'RespondToAll'"

Chapter 6 Network Stack API

– 276 –

expectedSystemToken

The expected system token.

Value Description

0 Healthy

10 Checkup

15 Transition

20 Quarantine

30 Infected

100 Unknown

Default value = "'0; 10; 15; 20; 30; 100'"

EXAMPLE

SEE ALSO

Impair Plugin

SYNOPSIS

DESCRIPTION

Defines an Impair plugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

Chapter 6 Network Stack API

– 277 –

rangeList

Name of the Impair range.

Default value = "None"

EXAMPLE

set Impair_1 [::IxLoad new ixNetImpairPlugin]

ixNet objects needs to be added in the list before they are configured!

$IP_5 extensionList.appendItem -object $Impair_1

$Impair_1 config \

-name "Impair-1"

$MAC_VLAN_11 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

ImpairRange

SYNOPSIS

DESCRIPTION

Defines the properties of the Impair range. Configure the ranges as a list.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

Chapter 6 Network Stack API

– 278 –

If True, the range base is enabled.

Default value="True".

targetRange

The name of the target IP range.

Default value = "None"

profile

The name of the ImpairProfile object that contains the impairment settings used by this range.

defaultValue="None"

EXAMPLE
$IP_5 rangeList.clear

set IP_R5 [::IxLoad new ixNetIpV4V6Range]# ixNet objects needs to be added in the
list before they are configured!$IP_5 rangeList.appendItem -object $IP_R5

$IP_R5 config \-count 1 \-name
"IP-R5" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.6" \-ipType "IPv4"

set Impair_R1 [$IP_R5 getExtensionRange $Impair_1]

set DefaultProfile [::IxLoad new ixNetImpairProfile]$DefaultProfile config \-
addTcpFlagsFilter false \-jitter
0 \-reorderPISkip 1 \-seed
0 \-typeOfService "any" \-dropSequenceLength
1 \-protocol "any" \-addFragment
false \-addBandwidth false \-delay
1 \-addDelay true \-impairOrder
"Delay;Drop;DropSeq;Reorder;ReorderPI;Duplicate;Fragment;FragmentSeq;Bandwidth" \-
sendFirstFragmentOnly false \-addDrop
false \-reorderLength 1 \-addDuplicate
false \-reorderPILength 1 \-sendOverlappingFragments
false \-reorderPITimeout 1000 \-addReorderPI
false \-reorder 1 \-addFragmentSequence
false \-expectTcpFlags "SYN" \-destinationIp
"any" \-fragmentSequenceSkip 1 \-addBandwidthIn
false \-selectTcpFlags "SYN;RST;ACK" \-gap
1 \-destinationPort 0 \-fragmentSequenceLength

Chapter 6 Network Stack API

– 279 –

1 \-sourcePort 0 \-bandwidthUnitsIn
"kbps" \-name "DefaultProfile" \-mtuSequence
1000 \-dropSequenceSkip 1 \-mtu
1000 \-addReorder false \-defaultp
true \-bandwidthUnits "kbps" \-reorderPIInterval
1 \-sourceIp "any" \-sendFragmentsInReverseOrder
false \-addDropSequence false

$Impair_R1 config \-enabled true \-name
"Impair-R1" \-profile $DefaultProfile

set MAC_R10 [$IP_R5 getLowerRelatedRange "MacRange"]

$MAC_R10 config \-count 1 \-name
"MAC-R10" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:06:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R5 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \-incrementStep 1 \-uniqueCount
4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \

-innerEnable false \
-innerPriority 1

SEE ALSO

ImpairProfile

SYNOPSIS

DESCRIPTION

Defines a new impairment profile. Configure the profiles as a list.

Chapter 6 Network Stack API

– 280 –

SUBCOMMANDS

OPTIONS

General parameters

name

Name of this profile.

Default value = "None"

defaultp

Set to True to make this the default profile. When True, this profile is assigned to new impair ranges.

Default value = "False"

Delay parameters

addDelay

If true, this impairment is applied to the packet stream.

Default value = "True"

delay

The Delay impairment characteristic allows you to insert latency errors into a packet stream.

Specifies the delay for each packet, in milliseconds.

Default value = "1"

jitter

Specifies the jitter value, in milliseconds.

A random value from 0 ms to the Jitter value that you specify is added to or subtracted from your
specified Delay value. Note that the Jitter value cannot be greater than delay.

Default value = "0"

Drop parameters

addDrop

The Drop impairment characteristic allows you emulate random packet loss from a packet stream.

If true, this impairment is applied to the packet stream.

Default value = "False"

Chapter 6 Network Stack API

– 281 –

Drop Sequence parameters

addDropSequence

The Drop Sequence impairment characteristic allows you emulate sequential packet loss from a packet
stream. In this case, a specified number of packets will be dropped at a specified interval.

If true, this impairment is applied to the packet stream.

Default value = "False"

dropSequenceSkip

The number of packets that will be transmitted before one or more packets are dropped.

Default value = "1"

dropSequenceLength

The number of packets that will be dropped.

The Drop Sequence setting specifies that a sequence of d packets is dropped after each transmitted
sequence of s packets.

For example, if s = 2 and d = 3, the transmitted packets are:
1, 2, 6, 7, 11, 12, 16, 17, 21, 22.

Default value = "1"

Reorder parameters

addReorder

The Reorder impairment characteristic allows you emulate packet reordering based on a time delay. In
this case, because some packets are delayed during transmission, they arrive out of order in the
packet stream. The delay pattern repeats after a specified number of packets (number of packets
skipped plus the number of packets delayed) have been sent.

If true, this impairment is applied to the packet stream.

Default value = "False"

gap

Specifies the number of packets to skip before reordering packet.

Default value = "1"

reorder

Specifies how long the packets are to be delayed (number of milliseconds).

Default value = "20"

reorderLength

Specifies the number of consecutive packets to reorder.

Chapter 6 Network Stack API

– 282 –

Default value = "1"

Reorder Sequence parameters

addReorderPI

The Reorder Sequence impairment characteristic allows you emulate delay caused by packet
reordering. In this form of impairment, packets are delayed during transmission by reordering the
packet interval.

If true, this impairment is applied to the packet stream.

Default value = "False"

reorderPISkip

The number of packets (s) to transmit prior to delaying the transmission of d packets.

Default value = "1"

reorderPILength

The number of packets (d) to take out of the stream for delayed transmission.

Default value = "1"

reorderPIInterval

The number of packets (m) to transmit before transmitting the d packets that were previously taken
out of the stream.

Default value = "1"

reorderPITimeout

The maximum time that a packet may be delayed, specified in milliseconds.

Default value = "1000"

Duplicate parameters

addDuplicate

The Duplicate impairment characteristic allows you emulate the appearance of duplicate packets in a
packet stream. In this case, a specified percentage of packets will be duplicated.

If true, this impairment is applied to the packet stream.

Default value = "False"

duplicate

The percentage of packets to be duplicated.

Fragment parameters

addFragment

Chapter 6 Network Stack API

– 283 –

The Fragment impairment characteristic allows you emulate various packet fragmentation scenarios.

If true, this impairment is applied to the packet stream.

Default value = "False"

mtu

The maximum transmission unit for packets that will be fragmented.

Default value = "1000"

sendFragmentsInReverseOrder

If true, transmit fragments in reverse order.

This setting allows testing of worst-case reassembly scenarios.

Default value = "False"

sendFirstFragmentOnly

If true, transmit only the first fragment of each datagram. All other fragments are discarded.

If you also select Reverse Fragments, only the fragment that would have been sent last is sent.

This feature allows you to test reassembly timeout mechanisms.

Default value = "False"

sendOverlappingFragments

If true, the IP stack creates and sends random, but legitimate, IP fragments whose data offset and
length are randomly selected. In this case, that the receiving end detects overlapping data in the
fragments it receives.

This setting is useful for testing reassembly mechanisms at the other end.

Default value = "False"

Fragment Sequence parameters

addFragmentSequence

The Fragment Sequence impairment characteristic allows you to emulate various packet fragmentation
scenarios. In this form of impairment, the packets selected for fragmentation are chosen based on a
defined packet sequence.

If true, this impairment is applied to the packet stream.

Default value = "False"

fragmentSequenceSkip

The number of packets (s) to skip before fragmenting packets.

Default value = "1"

fragmentSequenceLength

Chapter 6 Network Stack API

– 284 –

The number of packets (d) to select from the stream for fragmentation.

Default value = "1"

mtuSequence

The maximum transmission unit for the packets that will be fragmented.

MTU defines the packet size after fragmentation. For example, if MTU=220, the Impair plug-in breaks a
packet of 661 bytes into 4 fragments.

Default value = "1000"

sendFragmentsInReverseOrder

If true, transmit fragments in reverse order.

This setting allows testing of worst-case reassembly scenarios.

Default value = "False"

sendFirstFragmentOnly

If true, transmit only the first fragment of each datagram. All other fragments are discarded.

If you also select Reverse Fragments, only the fragment that would have been sent last is sent.

This feature allows you to test reassembly timeout mechanisms.

Default value = "False"

sendOverlappingFragments

If true, the IP stack creates and sends random, but legitimate, IP fragments whose data offset and
length are randomly selected. In this case, that the receiving end detects overlapping data in the
fragments it receives.

This setting is useful for testing reassembly mechanisms at the other end.

Default value = "False"

Outbound Rate parameters

addBandwidth

Adds an impairment characteristic to the outbound traffic that allows you to limit egress traffic speed,
and thereby simulate a lower bandwidth network.

Default value = "False"

bandwidthUnits

The bandwidth unit to use.

Value Description

Chapter 6 Network Stack API

– 285 –

kbps KByte/sec

kbit KBit/sec

mbps MByte/sec

mbit MBit/sec

Default value = "'kbps'"

Inbound Rate parameters

addBandwidthIn

Adds an impairment characteristic to the inbound traffic that allows you to limit ingress traffic speed,
and thereby simulate a lower bandwidth network.

Default value = "False"

bandwidthUnitsIn

The bandwidth unit to use.

Value Description

kbps KByte/sec

kbit KBit/sec

mbps MByte/sec

mbit MBit/sec

Default value = "'kbps'"

Packets to Impair parameters

destinationIp

A destination IP address and prefix on which to filter.

Impairment will be applied only on packets targeted to this destination.

You can specify a host address (such as 192.168.85.10/32) or a network address (such as
192.168.85.0/24).

You can also specify IPv6 addresses, both in the long form (such as
2008:0007:0031:0000:0000:0000:0000:0001/64), or in the short form (such as 2008:7:31::1/64).

The default value is any address (in which case, all packets are impaired).

Default value = "'any'"

Chapter 6 Network Stack API

– 286 –

sourceIp

A source IP address and prefix on which to filter.

Impairment will be applied only on packets received from the specified source.

You can specify a host address (such as 192.168.85.10/32) or a network address (such as
192.168.85.0/24).

You can also specify IPv6 addresses, both in the long form (such as
2008:0007:0031:0000:0000:0000:0000:0001/64), or in the short form (such as 2008:7:31::1/64).

The default value is any address (in which case, all packets are impaired).

Default value = "'any'"

sourcePort

The source port number on which to filter.

Impairment will be applied to only those packets that have this source port number.

The default value is zero (in which case, all packets are impaired).

Default value = "0"

destinationPort

The destination port number on which to filter.

Impairment will be applied to only those packets that have this destination port number.

The default value is zero (in which case, all packets are impaired).

Default value = "0"

protocol

The type of protocol to which the impairment will be applied:

l any – all protocols

l ICMP

l TCP

l UDP

l ICMPv6

The default value is any protocol (in which case, all packets are impaired).

Default value = "'any'"

typeOfService

Indicates the Type of Service to which the impairment will be applied:

l any – all TOS

l Minimum Cost (0x02)

Chapter 6 Network Stack API

– 287 –

l Maximum Reliability (0x04)

l Maximum Throughput (0x08)

l Minimum Delay (0x10)

l Class 1 (0x20)

l Class 2 (0x40)

l Class 3 (0x60)

l Class 4 (0x80)

l Express Forwarding (0xA0)

l Control (0xC0)

You can also manually enter any custom TOS value (between 0x00 – 0xFF, or between 0 – 255).

The default value is any TOS value (in which case, all packets are impaired).

Default value = "'any'"

addTcpFlagsFilter

If true, impairment will be applied to only those TCP packets having specific TCP flags set, as
specified in the Select TCP Flags and Expect TCP Flags fields.

The default setting is Unchecked. Selecting this parameter enables the Select TCP Flags and Expect
TCP Flags fields.

Default value = "False"

selectTcpFlags

A comma-separated list of TCP flags to be examined on the packet.

Value Description

SYN SYN flag

ACK ACK flag

FIN FIN flag

RST RST flag

URG URG flag

PSH PSH flag

ECE ECE flag

CWR CWR flag

ALL All flags

Chapter 6 Network Stack API

– 288 –

NONE No flags

Default value = "'SYN;RST;ACK'"

expectTcpFlags

A comma-separated list of TCP flags that must be set in the packet for that packet to be selected. See
selectTcpFlags for the list of flags

Default value = "'SYN'"

impairOrder

A comma-separated list that defines the order that the impairments will be applied in.

Value Description

Delay Delay impairment

Drop Drop impairment

DropSeq Drop Sequence impairment

Reorder Reorder impairment

ReorderPI Reorder Sequence impairment

Duplicate Duplicate impairment

Fragment Fragment impairment

FragmentSeq Fragment Sequence impairment

Bandwidth Inbound / Outbound Rate impairment

Default value =
"'Delay;Drop;DropSeq;Reorder;ReorderPI;Duplicate;Fragment;FragmentSeq;Bandwidth'"

EXAMPLE

set DefaultProfile [::IxLoad new ixNetImpairProfile]

$DefaultProfile config \

-addTcpFlagsFilter false \

-jitter 0 \

-reorderPISkip 1 \

-seed 0 \

-typeOfService "any" \

Chapter 6 Network Stack API

– 289 –

-dropSequenceLength 1 \

-protocol "any" \

-addFragment false \

-addBandwidth false \

-delay 1 \

-addDelay true \

-impairOrder
"Delay;Drop;DropSeq;Reorder;ReorderPI;Duplicate;Fragment;FragmentSeq;Bandwidth" \

-sendFirstFragmentOnly false \

-addDrop false \

-reorderLength 1 \

-addDuplicate false \

-reorderPILength 1 \

-sendOverlappingFragments false \

-reorderPITimeout 1000 \

-addReorderPI false \

-reorder 1 \

-addFragmentSequence false \

-expectTcpFlags "SYN" \

-destinationIp "any" \

-fragmentSequenceSkip 1 \

-addBandwidthIn false \

-selectTcpFlags "SYN;RST;ACK" \

-gap 1 \

-destinationPort 0 \

-fragmentSequenceLength 1 \

-sourcePort 0 \

-bandwidthUnitsIn "kbps" \

-name "DefaultProfile" \

-mtuSequence 1000 \

-dropSequenceSkip 1 \

Chapter 6 Network Stack API

– 290 –

-mtu 1000 \

-addReorder false \

-defaultp true \

-bandwidthUnits "kbps" \

-reorderPIInterval 1 \

-sourceIp "any" \

-sendFragmentsInReverseOrder false \

-addDropSequence false

SEE ALSO

Impair Plugin Example
This section shows an example of how to create an Impair plugin in the Tcl API.

Chapter 6 Network Stack API

– 291 –

Chapter 6 Network Stack API

– 292 –

Chapter 6 Network Stack API

– 293 –

Chapter 6 Network Stack API

– 294 –

Chapter 6 Network Stack API

– 295 –

Chapter 6 Network Stack API

– 296 –

Chapter 6 Network Stack API

– 297 –

IPSec Plugin

SYNOPSIS

DESCRIPTION

Configures an IPSec plugin.

SUBCOMMANDS

Chapter 6 Network Stack API

– 298 –

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

rangeList

Name of the list of ranges used by this plugin.

Default value = "None"

EXAMPLE
set IPSec_1 [::IxLoad new ixNetIPSecPlugin]# ixNet objects needs to be added in the
list before they are configured!$IP_3 childrenList.appendItem -object $IPSec_1

$IPSec_1 config \-name "IPSec-1"

$IPSec_1 childrenList.clear

$IPSec_1 extensionList.clear

$IP_3 extensionList.clear

$Emulated_Router_1 extensionList.clear

$MAC_VLAN_8 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

Chapter 6 Network Stack API

– 299 –

IPSecRange

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

Basic Parameters

ikeVersion

The keying protocol to be used for the tunnel negotiation phase:

l IKEv1: Use IKE version 1 to establish security associations between IPsec peers.

l IKEv2: Use IKE version 2 to establish security associations between IPsec peers.

l Manual: Use manual keying to configure the security policy options. In this case, you configure
the keys in the Keys grid (refer to IPsec Range Parameters - Keys). Note that manual keying is
not supported in Ixia port-to-port configurations.

The default is IKEv2.

Note: All ranges within a must be configured with the same IKE Version (IKEv1, IKEv2, or Manual).

Values= "ikev1", "ikev2", "manual", Default value = "'ikev1'"

testScenario

The type of IPsec test scenario for which you are defining this configuration:

l Site to Site: Two sites are connected through a pair of IPsec Secure Gateways. When this option
is selected, the fields pertaining to Xauth and ModeCfg are disabled.

Chapter 6 Network Stack API

– 300 –

l Remote Access: An individual client is connected to a LAN through a secure tunnel. In this
scenario, the client is operating as its own Secure Gateway. When this option is selected, the
fields pertaining to Emulated Subnet are disabled.

The default is Site to Site.

Default value = "'site2site'"

ikeMode

Specifies the IKE (Internet Key Exchange) mode of communications for phase 1. The choices are:

l Main Mode - 6 messages exchanged with identity protection.

l Aggressive Mode - 3 messages exchanged without identity protection.

The default is Main Mode.

Default value = "'main'"

hashAlgoPhase1

Specifies the hashing algorithm to use for Phase 1. The choices are:

l HMAC-MD5: Message-Digest Algorithm 5.

l HMAC-SHA1: Secure Hash Algorithm 1.

l AES-XCBC: AUTH_AES_XCBC_96 algorithm, defined in RFC3566. Supported by IKEv2 only.

The default is HMAC-MD5.

API values = "md5", "sha1", "aes-xcbc"."

Default value = "'md5'"

dhGroup

Specifies the DH Group. The public-private cryptography used to create the shared secret uses an
algorithm called Diffie-Hellman. DH Groups use different bit length selections in this calculation. The
choices are:

l DH-1

l DH-2

l DH-5

l DH-14

l DH-15

l DH-16

The default is DH-2.

Default value = "'dh2'"

dpdIdlePeriod

The default value is 1000.

Chapter 6 Network Stack API

– 301 –

encAlgoPhase1

Specifies the encryption algorithm used to protect communications during phase 1 message exchange.
The choices are:

l DES

l 3-DES

l AES-128

l AES-192

l AES-256

The default is 3-DES.

Default value = "'3des'"

ahNespMode

Specifies the AH (Authentication Header) and ESP (Encapsulating Security Payload) options. The
choices are:

l AH Only

l ESP Only

l Both AH and ESP

The default is ESP Only.

Default value = "'ESPOnly'"

encapMode

Specifies the IKE phase 2 encapsulation mode. The choices are:

l Tunnel Mode

l Transport Mode

Note that in IxLoad tests using transport mode, the data traffic terminates in the DUT: the data is not
forwarded to the protected hosts on the Ixia port.

API values = "tunnel", "transport".

Default value = "'tunnel'"

hashAlgoPhase2

Specifies the hashing algorithm to use for Phase 2. The choices are:

l HMAC-MD5

l HMAC-SHA1

The default is HMAC-MD5.

Default value = "'md5'"

encAlgoPhase2

Chapter 6 Network Stack API

– 302 –

Specifies the encryption algorithm used to protect communications during phase 1 and phase 2
message exchange. The choices are:

l Null

l DES

l 3-DES

l AES-128

l AES-192

l AES-256

The default is 3-DES.

Default value = "'3des'"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

Chapter 6 Network Stack API

– 303 –

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

Chapter 6 Network Stack API

– 304 –

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

Network Config

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

emulatedSubnetIpType

Specifies the IP version to be used for the emulated subnets in the test:

l IPv4

l IPv6

Note that the IPsec plug-in supports mixing IP types within a network stack. For example, you can
define IPv6 addresses for the IPsec layer and IPv4 addresses for the IP and Emulated Router layers.

Chapter 6 Network Stack API

– 305 –

The IP and Emulated Router layers must, however, be of the same type. For more information, refer to
Support for Mixed IP Types.

The default is IPv4.

Default value = "'IPv4'"

numEHCount

The total number of hosts to be created for each of the emulated subnets.

This parameter is configurable only for site-to-site tests. In a remote-access test, an emulated client is
operating as its own Secure Gateway; therefore, the IPsec plug-in sets the count to 1.

The default is 1, the minimum is 1 and the maximum is 65,534.

Default value = "1"

emulatedSubnet

The base address for enumerating all the emulated subnets in the range.

Default value = "'40.0.0.0'"

protectedSubnet

The base address for enumerating all the protected subnets in the range.

Default value = "'70.0.0.0'"

emulatedSubnetSuffix

Mask width for emulatedSubnet.

Default value = "24"

protectedSubnetSuffix

Mask width for protectedSubnet.

Default value = "24"

esnIncrementBy

The increment to be used for enumerating all the emulated subnets in the range.

The default IPv4 value is 0.0.1.0, and the default IPv6 value is ::100.

For each address in the IP range, a subnet will be generated by incrementing the emulated subnet field
with the increment value. For example, if you have an IP range with a count of 5, the following subnets
will be created on the port:

40.0.0.0/24

40.0.1.0/24

40.0.2.0/24

40.0.3.0/24

Chapter 6 Network Stack API

– 306 –

40.0.4.0/24

The number of hosts created on each subnet is defined in the Host Count field.

Note: The ESN Increment by value must be the same on the initiator side and the responder side. If
there is a mismatch (0.0.1.1 versus 0.0.1.0, for example), the tunnels will come up but the traffic will
fail.

Default value = "'0.0.1.0'"

psnIncrementBy

The increment to be used for enumerating all the protected subnets in the range. The generated
subnets will be used as traffic selectors.

The default IPv4 value is 0.0.1.0, and the default IPv6 value is ::100.

Note: The PSN Increment By value must be the same on the initiator side and the responder side. If
there is a mismatch (0.0.1.1 versus 0.0.1.0, for example), the tunnels will come up but the traffic will
fail.

Default value = "'0.0.1.0'"

peerPublicIPType

The IP version to be used for describing the range:

l IPv4

l IPv6

The default is IPv4.

Default value = "'IPv4'"

peerPublicIP

The host name or public IP address of the peer.

You can specify a host name only for Port-to-DUT tests and only when the Encapsulation Mode is set to
Tunnel Mode. Host names are resolved at run time.

Default value = "'1.1.1.1'"

singlePH

Select if this is a single protected subnet on the responder side. Selecting this field inhibits the
generation of PSNs.

Note that this option is valid only for Port-to-DUT tests.

Default value = "False"

modeCfg

Specifies the Mode Configuration mode. This parameter is valid only when the Test Scenario parameter
is set to Remote Access.

Chapter 6 Network Stack API

– 307 –

The choices are:

l Push: The Responder allocates an IP address for the Initiator to use as a traffic endpoint. In this
case, the Responder pushes the allocated address to the Initiator. This mode uses the CFG_SET /
CFG_ACK transaction sequence.

Note that Push cannot be configured with IKEv2.

l Pull: The Responder allocates an IP address for the Initiator to use as a traffic endpoint. In this
case, the Initiator requests (pulls) the allocated address from the Responder. This mode uses the
CFG_REQUEST / CFG_REPLY transaction sequence.

None: ModeCfg is not enabled. In this case, the traffic endpoint uses the underlying IP range address;
this is the same IP address that is used for IKE control plane negotiations.

API values = "none", "push", "pull".

Default value = "'none'"

modeCfgFirstAddress

Defines the base address to be used for the ModeCfg address pool (the IP addresses that the server
port will assign to the clients).

The three ModeCfg "Address" parameters are used only by responder ports. That is, they are used only
for a Responder Mode test or for the responder port in a port-to-port test.

modeCfgAddressIncrement

Defines the increment value for the ModeCfg address pool.

The default value is 0.0.0.1.

modeCfgAddressSuffix

Defines the IP address suffix for the ModeCfg address pool.

The default value is 24, the minimum value is 1, and the maximum value is 128.

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

Chapter 6 Network Stack API

– 308 –

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

Chapter 6 Network Stack API

– 309 –

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

Authentication

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Chapter 6 Network Stack API

– 310 –

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

Basic Parameters

username

The User Name field configures EAP in IKEv2, and Xauth in IKEv1. A username may be any unique
identifier of the user, such as a login name, an email address, or an X.500 Distinguished Name. These
usernames are sent to the DUT for authentication.

During the EAP exchange, the Responder may request the EAP identity of the Initiator; in this case, the
configured User Name is sent. If the string is empty, the Initiator ID is sent.

This is a string value, with a maximum of 1024 characters.

Note that user names must be unique. The default value is ipsec.

Default = "ipsec"

password

The Password field is used for EAP-MD5 in IKEv2 and Xauth in IKEv1. The password, if specified, is sent
to the DUT for authentication. This parameter takes a string value, with a maximum of 1024
characters.

Note that when this field is used for EAP-MD5, a null password is not permitted.

Passwords do not have to be unique; you can use the same password for all user names. The default
value is ipsec.

Default = "ipsec"

authMethod

Specifies the authentication method for IKE phase 1. The choices are:

l Pre-Shared Key: If you select this method, enter the desired value in the Pre-Shared Key
column.

l Certificates: If you select this method, use the Certificates tab in the Network Plug-in Settings
window to configure the certificate parameters. This authentication method requires the CA root
certificate, plus a client certificate for each tunnel.

l EAP: If you select this method (which is supported only with IKEv2):

1. Specify the EAP username in the User Name column.

2. Use the EAP-SIM tab or EAP-AKA tab in the Network Plug-in Settings window to configure the EAP
parameters.

Chapter 6 Network Stack API

– 311 –

3. Make sure that the CA root certificate is available: it is required for EAP authentication.

4. If the EAP Method is TLS, also ensure that you have a client certificate for each tunnel.

The default is Pre-Shared Key.

Default value = "'psk'"

psk

The Pre-Shared Key value. This is a string value, with a maximum of 4096 characters.

The default is ipsec.

Note: Make certain that the Pre-Shared Key value does not include a trailing space. IxLoad will treat
the trailing space as part of the value. Some DUTs will drop an Authentication Failed notification
payload, while others will issue a Payload_Malformed notification payload. In any case, the tunnel will
be dropped by the DUT.

Default value = "'ipsec'"

userGroups

A Boolean value that enables or disables User Groups for extended authentication.

The default setting is unchecked.

Default value = "False"

groupName

A comma-separated list of user groups configured on the DUT. To specify more than one user group,
separate the group names with commas. For example: groupA, groupB, groupC, and so on.

The default value is vpngroup.

Default value = "'vpngroup'"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

Chapter 6 Network Stack API

– 312 –

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

Chapter 6 Network Stack API

– 313 –

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

IKE Phase 1

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Chapter 6 Network Stack API

– 314 –

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

lifeTimePhase1

Specifies the Phase 1 Security Association (SA) lifetime, in seconds.

The valid range of values is 0 through 31,557,600.

Default value = "3600"

ikeMode

Specifies the IKE (Internet Key Exchange) mode of communications for phase 1. The choices are:

l Main Mode - 6 messages exchanged with identity protection.

l Aggressive Mode - 3 messages exchanged without identity protection.

The default is Main Mode.

Default value = "'main'"

hashAlgoPhase1

Specifies the hashing algorithm to use for Phase 1. The choices are:

l HMAC-MD5: Message-Digest Algorithm 5.

l HMAC-SHA1: Secure Hash Algorithm 1.

l AES-XCBC: AUTH_AES_XCBC_96 algorithm, defined in RFC3566. Supported by IKEv2 only.

The default is HMAC-MD5.

API values = "md5", "sha1", "aes-xcbc"."

Default value = "'md5'"

dhGroup

Specifies the DH Group. The public-private cryptography used to create the shared secret uses an
algorithm called Diffie-Hellman. DH Groups use different bit length selections in this calculation. The
choices are:

l DH-1

l DH-2

l DH-5

l DH-14

l DH-15

l DH-16

Chapter 6 Network Stack API

– 315 –

The default is DH-2.

Default value = "'dh2'"

encAlgoPhase1

Specifies the encryption algorithm used to protect communications during phase 1 message exchange.
The choices are:

l DES

l 3-DES

l AES-128

l AES-192

l AES-256

The default is 3-DES.

Default value = "'3des'"

prfAlgo

Specifies the algorithm used to perform Pseudo-Random Functions (key derivations). The choices are:

l HMAC-MD5: Message-Digest Algorithm 5.

l HMAC-SHA1: Secure Hash Algorithm 1.

l AES-XCBC: AUTH_AES_XCBC_96 algorithm, defined in RFC3566.

This parameter is enabled for IKEv2 only.

The default value is HMAC-MD5.

Default value = "'md5'"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

Chapter 6 Network Stack API

– 316 –

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

Chapter 6 Network Stack API

– 317 –

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

IKE Phase 2

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

Chapter 6 Network Stack API

– 318 –

If True, the range base is enabled.

Default value="True".

ipCompression

When enabled, the IPsec plug-in provides support for the IP Payload Compression Protocol (IPComp).
IPComp is negotiated during IKE phase 2 negotiations. When enabled, IxLoad compresses the IP
packets prior to encryption, using the DEFLATE compression algorithm. The resulting reduction in size
of the packets can significantly improve performance on a VPN device.

This setting is disabled by default.

API Default = "false"

enablePFS

If checked, enables PFS (perfect forward secrecy).

The default setting is unchecked.

Default value = "False"

lifeTimePhase2

Specifies the Phase 2 Security Association (SA) lifetime, in seconds.

The valid range is from 1 to 31557600.

Default value = "28800"

ahNespMode

Specifies the AH (Authentication Header) and ESP (Encapsulating Security Payload) options. The
choices are:

l AH Only

l ESP Only

l Both AH and ESP

The default is ESP Only.

Default value = "'ESPOnly'"

encapMode

Specifies the IKE phase 2 encapsulation mode. The choices are:

l Tunnel Mode

l Transport Mode

Note that in IxLoad tests using transport mode, the data traffic terminates in the DUT: the data is not
forwarded to the protected hosts on the Ixia port.

API values = "tunnel", "transport".

Default value = "'tunnel'"

Chapter 6 Network Stack API

– 319 –

hashAlgoPhase2

Specifies the hashing algorithm to use for Phase 2. The choices are:

l HMAC-MD5

l HMAC-SHA1

The default is HMAC-MD5.

Default value = "'md5'"

pfsGroup

Specifies the PFS Group. The choices are:

l DH-1

l DH-2

l DH-5

l DH-14

l DH-15

l DH-16

The default is DH-2.

Default value = "'dh2'"

encAlgoPhase2

Specifies the encryption algorithm used to protect communications during phase 1 and phase 2
message exchange. The choices are:

l Null

l DES

l 3-DES

l AES-128

l AES-192

l AES-256

The default is 3-DES.

Default value = "'3des'"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

Chapter 6 Network Stack API

– 320 –

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

Chapter 6 Network Stack API

– 321 –

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

Identification

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

Chapter 6 Network Stack API

– 322 –

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

ipsecIDTypeInitiator

Selects how IxLoad offers the local Emulated Gateway ID type for tunnel negotiations. The setting of
this parameter determines the contents of the Identification Type and Identification Data fields in the
IPSec packet sent to the DUT. (The Identification Type field describes the type of information
contained in the Identification Data field. See RFC 2407 for more information.)

The choices are:

l ID_IP_ADDR: IxLoad sets the Identification Type field to 1 and inserts the Emulated Gateway
address into the Identification Data field as a single four-octet IPv4 address.

l ID_IP_ADDR_SUBNET: IxLoad sets the Identification Type field to 4 and inserts the Emulated
Gateway address into the Identification Data field as two four-octet values: an IPv4 address and
an IPv4 network mask. (This option is not supported by IKEv2.)

l ID_FQDN: IxLoad sets the Identification Type field to 2 and inserts the Emulated Gateway
address into the Identification Data field as a fully-qualified domain name string. For example,
"foo.bar.com".

l ID_USER_FQDN: IxLoad sets the Identification Type field to 3 and inserts the Emulated Gateway
address into the Identification Data field as a fully-qualified username string. For example,
"piper@foo.bar.com".

l ID_DER_ASN1_DN: IxLoad sets the Identification Type field to 9 and inserts the Emulated
Gateway address into the Identification Data field as a binary DER encoding of an ASN.1 X.500
Certificate Distinguished Name.

l ID_KEY_ID: IxLoad sets the Identification Type field to 11 and inserts the Emulated Gateway
address into the Identification Data field as an opaque byte stream that may be used to pass
vendor-specific information necessary to identify which pre-shared key should be used to
authenticate Aggressive mode negotiations. ID_KEY_ID is recommended for Network Access
Identifiers (NAIs) that do not include the realm component (reference: draft-eronen-ipsec-ikev2-
clarifications). ID_KEY_ID is supported by IKEv2 only.

The default is ID_IP_ADDR.

API values = "ip-addr-id", ip-subnet-id", "fqdn-id", "fqdn-user","der-asn1-dn", "key-id".

Chapter 6 Network Stack API

– 323 –

Default value = "'ip-addr-id'"

fqdnSeedInitiator

If you set the Local ID Type parameter to ID_FQDN or ID_USER_FQDN, enter the user name that
IxLoad inserts into the IPsec packets to identify the emulated gateway.

This is a string value, with a maximum of 1024 characters.

For FQDN_USER, if you enter user$@foo.bar.com, IxLoad creates the user names
user1@foo.bar.com, user2@foo.bar.com, user3@foo.bar.com, and so on.

Default value = "''"

ipsecIDTypeResponder

Selects how IxLoad offers the Protected Hosts (peer) ID type for tunnel negotiations. The setting of this
parameter determines the contents of the Identification Type and Identification Data fields in the IPSec
packet sent to the DUT. (The Identification Type field describes the type of information contained in
the Identification Data field. See RFC 2407 for more information.)

The choices are:

l ID_IP_ADDR: IxLoad sets the Identification Type field to 1 and inserts the Emulated Gateway
address into the Identification Data field as a single four-octet IPv4 address.

l ID_IP_ADDR_SUBNET: IxLoad sets the Identification Type field to 4 and inserts the Emulated
Gateway address into the Identification Data field as two four-octet values: an IPv4 address and
an IPv4 network mask. (This option is not supported by IKEv2.)

l ID_FQDN: IxLoad sets the Identification Type field to 2 and inserts the Emulated Gateway
address into the Identification Data field as a a fully-qualified domain name string. For example,
"foo.bar.com".

l ID_USER_FQDN: IxLoad sets the Identification Type field to 3 and inserts the Emulated Gateway
address into the Identification Data field as a fully-qualified username string. For example,
"piper@foo.bar.com".

l ID_DER_ASN1_DN: IxLoad sets the Identification Type field to 9 and inserts the Emulated
Gateway address into the Identification Data field as a binary DER encoding of an ASN.1 X.500
Certificate Distinguished Name.

ID_KEY_ID: IxLoad sets the Identification Type field to 11 and inserts the Emulated Gateway address
into the Identification Data field as an opaque byte stream that may be used to pass vendor-specific
information necessary to identify which pre-shared key should be used to authenticate Aggressive
mode negotiations. ID_KEY_ID is recommended for Network Access Identifiers (NAIs) that do not
include the realm component (reference: draft-eronen-ipsec-ikev2-clarifications). ID_KEY_ID is
supported by IKEv2 only.

API values = "ip-addr-id", "ip-subnet-id", "fqdn-id", "fqdn-user", "der-asn1-dn", "key-id".

Default value = "ip-addr-id"

fqdnSeedResponder

Chapter 6 Network Stack API

– 324 –

If you set the Peer ID Type parameter to ID_FQDN or ID_USER_FQDN, enter the user name that IxLoad
inserts into the IPsec packets to identify the protected hosts.

This is a string value, with a maximum of 1024 characters.

For FQDN_USER, if you enter user$@foo.bar.com, IxLoad creates the user names
user1@foo.bar.com, user2@foo.bar.com, user3@foo.bar.com, and so on.

Default value = "''"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

Chapter 6 Network Stack API

– 325 –

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

Chapter 6 Network Stack API

– 326 –

SEE ALSO

IKE Control

SYNOPSIS

DESCRIPTION

Creates an IPSec address range for addition to an IPSecRangeList object.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If True, the range base is enabled.

Default value="True".

dpdTimeout

Hash key used for ESP-mode traffic originating from the Left Subnet and destined for the Right Subnet.
The forward hash key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

The default value is 10.

enableNatt

Enable this parameter when running IPsec over NAT devices. When enabled, the IPsec plug-in
implements NAT-T for all the traffic in the range.

NAT-T is configurable in IPv4 environments only. The default value is false.

API values = "md5", "sha1", "aes-xcbc"."

Default value = "'md5'"

dpdIdlePeriod

Chapter 6 Network Stack API

– 327 –

The interval for sending DPD messages, in seconds. For example, if you set this to 60, the IPsec plug-
in sends DPD HELLO messages every 60 seconds to each peer defined for the range. This value must
be smaller than the tunnel lifetimes.

The default value is 1000.

initialContact

When enabled, the IPsec plug-in will send the INITIAL_CONTACT notification payload as part of IKE SA
establishment.

This parameter is disabled by default.

(Note that the IPsec plug-in always ignores the INITIAL_CONTACT notification payload, if it is
received.)

API Default = false

enableDPD

When enabled, each IKE peer in the range uses the Dead Peer Detection (DPD) protocol to determine
proof of liveliness of the other peer. The peers send DPD HELLO messages according to the interval
that you specify (the DPD Idle Period).

When disabled, the IKE peers do not send DPD HELLO messages.

An IPsec endpoint uses DPD to confirm that its peer is still up. DPD is implemented in IKE through the
use of an asynchronous, bidirectional message exchange:

l DPD HELLO

l DPD HELLO ACK

A complete DPD exchange (transmission of DPD HELLO and receipt of the corresponding DPD HELLO
ACK) serves as proof of liveliness. If a VPN device does not receive a response to a DPD HELLO within
a specified time, it assumes that the peer is dead or unreachable, and tears down the tunnel.

Notes:

l If DPD is enabled, IxLoad always sends the DPD messages regardless of the traffic that is being
sent over the tunnel.

l The IPsec plug-in always responds to DPD messages received from the DUT whether or not DPD is
enabled.

The IPsec plug-in implementation of DPD does not use an explicit retry mechanism. For example, if
you set the idle period to 5 seconds and the timeout to 14 seconds, the plug-in will send two DPD
HELLOs (at 5 and 10 seconds) within the timeout period. If at least one of those hellos receives a DPD
HELLO ACK, the timer will be reset and the tunnel will remain up.

Default value = "false".

txPreFrag

When enabled, the IPsec plug-in will—if necessary—pre-fragment IPsec-encapsulated payloads into
multiple smaller UDP packets prior to encrypting the payload. This is a transmit-only option; it is not

Chapter 6 Network Stack API

– 328 –

negotiated, and the two ends need not agree on it. The fragment size is determined by the MTU setting
in the MAC/VLAN network stack element.

Pre-fragmentation is applicable to Tunnel Mode only. In Tunnel Mode there are two IP headers, thus
two places where IP-level fragmentation can be done. The default behaviour is to fragment at the outer
IP header (post-fragmentation). With pre-fragmentation enabled, fragmentation is performed at the
inner IP header.

When disabled, the IPsec plug-in performs post-fragmentation on the IP packets. In this case, the
packet is first encapsulated and then fragmented at the outer IP header.

To configure pre-fragmentation:

1. Set the MTU value (in the MAC/VLAN stack element) to the desired packet size.

2. Enable the Pre-fragmentation parameter.

For example, if you set the MTU value to 600, and you have a UDP payload that is 2400 bytes long, the
plug-in will fragment it into four IP datagrams prior to encrypting the payload.

API Default value = "false"

EXAMPLE

$IPsec_R3 config \

-psnIncrementBy "0.0.1.0" \

-singlePH false \

-numEHCount 1 \

-psk "ipsec" \

-enableNatt false \

-enabled true \

-peerPublicIP "1.1.1.1" \

-dpdTimeout 10 \

-ipsecIDTypeInitiator "ip-addr-id" \

-publishStats false \

-ikeMode "main" \

-encAlgoPhase2 "3des" \

-encAlgoPhase1 "3des" \

-userGroups false \

Chapter 6 Network Stack API

– 329 –

-modeCfgAddressIncrement "0.0.0.1" \

-xauth false \

-modeCfgAddressSuffix 24 \

-emulatedSubnetIpType "IPv4" \

-modeCfgFirstAddress "30.0.0.1" \

-ipsecIDTypeResponder "ip-addr-id" \

-modeCfg "none" \

-ipCompression false \

-hashAlgoPhase1 "md5" \

-protectedSubnet "70.0.0.0" \

-peerPublicIPType "IPv4" \

-groupName "vpngroup" \

-hashAlgoPhase2 "md5" \

-pfsGroup "dh2" \

-eapMethod "md5" \

-encapMode "tunnel" \

-ahNespMode "ESPOnly" \

-username "ipsec-username" \

-ikeVersion "ikev2" \

-enablePFS false \

-initialContact false \

-emulatedSubnet "40.0.0.0" \

-authMethod "eap" \

-testScenario "site2site" \

-esnIncrementBy "0.0.1.0" \

-lifeTimePhase1 3600 \

-lifeTimePhase2 28800 \

-protectedSubnetSuffix 24 \

-prfAlgo "md5" \

-password "ipsec-pass" \

-fqdnSeedInitiator "" \

Chapter 6 Network Stack API

– 330 –

-enableDPD false \

-emulatedSubnetSuffix 24 \

-enableMultipleP2perP1 false \

-dhGroup "dh2" \

-dpdIdlePeriod 1000 \

-fqdnSeedResponder "" \

-txPreFrag false \

-manualKeyingOpts $my_ixNetIPSecManualKeyingOpts

SEE ALSO

Keys

SYNOPSIS

DESCRIPTION

If manual keying is enabled, this object defines the keying options.

SUBCOMMANDS

OPTIONS

forwardEncryptKey

Encryption key used for traffic originating from the Left Subnet and destined for the Right Subnet. The
forward encryption key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

API default value="''" (null)

forwardEncryptKeyIncrement

The increment value for the Forward Encryption Key. You can enter the value as a string or as a
hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad
automatically converts it to an ASCII value.

Chapter 6 Network Stack API

– 331 –

The default value is 0x00.

API default value="'0x00'"

forwardHashKeyAH

Hash key used for AH-mode traffic originating from the Left Subnet and destined for the Right Subnet.
The forward hash key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

API default value="''" (null)

forwardHashKeyAHincrement

The increment value for the Forward Hash Key/AH, for each tunnel. You can enter the value as a string
or as a hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string,
IxLoad automatically converts it to an ASCII value.

The default value is 0x00.

API default value="'0x00'" (null)

forwardHashKeyESP

Hash key used for ESP-mode traffic originating from the Left Subnet and destined for the Right Subnet.
The forward hash key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

API default value="''" (null)

forwardHashKeyESPincrement

The increment value for the Forward Hash Key/ESP, for each tunnel. You can enter the value as a string
or as a hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string,
IxLoad automatically converts it to an ASCII value.

The default value is 0x00.

API default value="'0x00'"

forwardSPI

The Security Parameter Index for IPsec traffic originating from the Left Subnet and destined for the
Right Subnet. The SPI is a 32-bit value.

You can enter the Forward SPI using either decimal or hexadecimal notation (enter hexadecimal values
with a leading 0x). If you enter the value in decimal, IxLoad automatically converts your entry to a
hexadecimal number.

API default value="0" (null)

forwardSPIincrement

Chapter 6 Network Stack API

– 332 –

The incrementor for the Forward SPI.

You can enter the increment value in either decimal or hexadecimal notation (enter hexadecimal
values with a leading 0x). If you enter it in decimal, IxLoad automatically converts your entry to a
hexadecimal number.

API default value="0" (null)

reverseEncryptKey

Encryption key used for traffic originating from the Right Subnet and destined for the Left Subnet. The
reverse encryption key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

API default value="''" (null)

reverseEncryptKeyIncrement

Value for incrementing the Reverse Encryption Key, for each tunnel. You can enter the value as a string
or as a hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string,
IxLoad automatically converts it to an ASCII value.

The default value is 0x00.

API default value="'0x00'" (null)

reverseHashKeyAH

Hash key used for AH-mode traffic originating from the Right Subnet and destined for the Left Subnet.
The reverse hash key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

API default value="''" (null)

reverseHashKeyAHincrement

Value for incrementing the Reverse Hash Key/AH, for each tunnel. You can enter the value as a string
or as a hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string,
IxLoad automatically converts it to an ASCII value.

The default value is 0x00.

defaultValue="'0x00'" />

reverseHashKeyESP

Hash key used for ESP-mode traffic originating from the Right Subnet and destined for the Left Subnet.
The reverse hash key is a variable length value; the key length is determined by the Phase 2
encryption algorithm that you have configured. You can enter the value as a string or as a hexadecimal
number (use a leading 0x for hexadecimal). If you enter the value as a string, IxLoad automatically
converts it to an ASCII value.

Chapter 6 Network Stack API

– 333 –

API default value="''" (null)

reverseHashKeyESPincrement

Value for incrementing the Reverse Hash Key/ESP, for each tunnel. You can enter the value as a string
or as a hexadecimal number (use a leading 0x for hexadecimal). If you enter the value as a string,
IxLoad automatically converts it to an ASCII value.

The default value is 0x00.

API default value="'0x00'"

reverseSPI

The Security Parameter Index for IPsec traffic originating from the Right Subnet and destined for the
Left Subnet. The SPI is a 32-bit value.

You can enter the Reverse SPI using either decimal or hexadecimal notation (enter hexadecimal
values with a leading 0x). If you enter the value in decimal, IxLoad automatically converts your entry
to a hexadecimal number.

API default value="0"

reverseSPIincrement

The incrementor for the Reverse SPI.

You can enter the increment value in either decimal or hexadecimal notation (enter hexadecimal
values with a leading 0x). If you enter it in decimal, IxLoad automatically converts your entry to a
hexadecimal number.

API default value="0"

EXAMPLE

set my_ixNetIPSecManualKeyingOpts [::IxLoad new ixNetIPSecManualKeyingOpts]

$my_ixNetIPSecManualKeyingOpts config \

-forwardHashKeyESPincrement "0x00" \

-reverseEncryptKey "abcdefabcdefabcdefabcdef" \

-reverseSPI 0 \

-reverseHashKeyAH "" \

-reverseHashKeyESP "abcdefabcdef9876" \

-forwardEncryptKeyIncrement "0x00" \

-forwardSPI 0 \

-reverseHashKeyESPincrement "0x00" \

-forwardHashKeyAHincrement "0x00" \

Chapter 6 Network Stack API

– 334 –

-reverseSPIincrement 0 \

-forwardHashKeyESP "abcdefabcdef1223" \

-reverseEncryptKeyIncrement "0x00" \

-forwardSPIincrement 0 \

-forwardEncryptKey "abcdefabcdefabcdefabcdef" \

-forwardHashKeyAH "" \

-reverseHashKeyAHincrement "0x00"

SEE ALSO

Tunnel Setup

SYNOPSIS

DESCRIPTION

Configures the IPSec tunnel setup options. Global settings apply to all network groups and all ranges
defined for a test.

SUBCOMMANDS

OPTIONS

testType

The type of test that this IPSec encapsulation will support:

l Port to DUT

l Port to Port

If you are setting up a back-to-back test, select the Port to Port option.

Default value = "'P2D'"

tunnelSetupTimeout

Chapter 6 Network Stack API

– 335 –

The number of seconds to wait for a response from the DUT before declaring that a tunnel setup
attempt has failed.

The default is 30, the minimum is 1, the maximum is 600.

Default value = "30"

numRetries

The number of attempts that the IPSec plug-in makes to renegotiate the Phase 1 and 2 SAs. If all
attempts at renegotiation fail, the plug-in drops the tunnel.

The default is 0, the minimum is 0, the maximum is 100.

Default value = "0"

retryInterval

The number of seconds to wait before retrying the tunnel creation.

The default is 10, the minimum is 1, the maximum is 60.

Default value = "10"

retryDelay

Specifies the desired delay between subsequent attempts, specified in seconds.

The default is 10, the minimum is 1, the maximum is 60.

Default value = "10"

sendCiscoVid

If checked, IxLoad sends the Cisco-Unity Vendor ID payload type. Valid for IKEv1 only.

Default value = "False"

useMaxInitiationRate

If true, IxLoad attempts to create tunnels at its fastest possible rate.

If false, IxLoad attempts to create tunnels at the rate that you specify as the Initiation Rate
parameter.

Default value = "False"

useMaxPendingTunnels

If true, IxLoad attempts to create the largest possible pool of pending tunnels, and continues to
initiate tunnels irrespective of how many tunnels are waiting to be set up.

If false, IxLoad attempts to create a pool of pending tunnels no larger than the value that you specify
as the Maximum Number of Pending Tunnels parameter.

Default value = "False"

enableRekey

Chapter 6 Network Stack API

– 336 –

Enables or disables renegotiation of Phase 1 and Phase 2 SAs on expiry of tunnel lifetimes:

l When disabled, tunnels are torn down when their lifetimes expire.

l When enabled, the tunnels' Phase 1 and Phase 2 options are renegotiated before their lifetimes
expire, and the tunnels stay up.

The rekey parameters control the renegotiation process.

Default value = "False"

rekeyRetries

The total number of rekey retries permitted.

This defines the number of attempts that the IPSec plug-in makes to renegotiate the Phase 1 and 2
SAs. If all attempts at renegotiation fail, the IPSec plug-in drops the tunnel.

The valid range of values is from 0 through 10,000. The default value is 0.

Default value = "0"

rekeyFuzzPercentage

The maximum rekey fuzz percentage.

The fuzz percentage is used to randomize rekeying intervals. It is randomly applied to the Rekey
Margin to either shrink (for values under 100) or enlarge (for values over 100) the window of time
during which the IPSec plug-in performs rekeying for the tunnels. It prevents all the rekey attempts
from occurring at the same time and overloading the DUT.

The valid range of values is from 0 through 100. The default value is 0.

Default value = "0"

rekeyMargin

The rekey margin, in seconds.

This is the number of seconds that are subtracted from the connection expiration time, to ensure that
creation of new IPsec SAs begins before the current IPsec SAs expire.

The valid range of values is from 0 through 10,000. The default value is 0.

Default value = "0"

EXAMPLE

set my_ixNetIPSecTunnelSetup [::IxLoad new ixNetIPSecTunnelSetup]

$my_ixNetIPSecTunnelSetup config \

-retryInterval 10 \

-useMaxPendingTunnels false \

-enableRekey false \

-useMaxInitiationRate false \

Chapter 6 Network Stack API

– 337 –

-sendCiscoVid false \

-testType "P2D" \

-rekeyRetries 0 \

-tunnelSetupTimeout 30 \

-retryDelay 10 \

-rekeyMargin 10 \

-rekeyFuzzPercentage 0 \

-numRetries 0

SEE ALSO

Certificates

SYNOPSIS

DESCRIPTION

Configures the certificate parameters when the chosen authentication method is Certificates.

SUBCOMMANDS

OPTIONS

uniqueCert

If true, IxLoad uses the same certificate to negotiate every tunnel. This can significantly speed up the
negotiation process, but it does not stress the DUT’s ability to cache certificates or to negotiate tunnels
using multiple certificates, as would happen in an actual VPN.

If you select a cache as the Certificate source and the cache contains more than one certificate, IxLoad
selects the certificate file with the oldest timestamp.

Default value = "False"

certSource

If enabled, IxLoad gets the certificates from the Certificate Authority (CA). If you select this option,
IxLoad deletes any cached certificates from the chassis (from the folder specified for ‘Certificates
Folder’).

Default value = "'kNewCert'"

Chapter 6 Network Stack API

– 338 –

certSubjectAltDN

A comma-separated list of subject alternative names. The subject alternative name is an X.509 v3
extension that permits various literal values to be included in the configuration file.

defaultValue="''" (null)

caURL

Certificate Authority URL. Check this option to use a certificate authority (CA) server for
authentication. Enter the CA server’s URL in the field. IxLoad uses Simple Certificate Enrollment
Protocol (SCEP) to obtain signed certificates from the CA.

This option is not supported in a port-to-port test.

Default value = "''"

caDN

Issuing CA Distinguished Name. Name of the Certificate Authority (CA) that issued the DUT’s
certificate.

This field includes the Distinguished Name fields and values that IxLoad sends to the DUT’s CA. These
can include the following fields:

l CN: Common name

l E: Email address

l OU: Organizational unit

l O: Organization name

l L: Locality

l S: State or province

l C: 2-letter country or region name

For example,

CN=Liesl Benjamin, E=liesl@ixia.com, OU=Security, O=Ixia, L=Los Angeles S=California, C=US

Default value = "''"

certSubjectDN

Subject Distinguished Name. A name designating the owner of the certificate.

This field includes the Distinguished Name fields and values that IxLoad sends to the DUT’s CA. These
can include the same fields as described for the Issuing CA Distinguished Name parameter.

Default value = "''"

remoteIkeId

Attribute that identifies the DUT in its certificate. You can enter the following in this field:

l A fully-qualified domain name (FQDN).

Syntax: @<domain>

Chapter 6 Network Stack API

– 339 –

For example, @ixiacom.com

l An email address.

Syntax: user@domain

For example, liesl@ixiacom.com

l An IP address.

Syntax: IP=<address>

For example, IP=192.168.0.1

l A context string.

Syntax: attribute=value

For example, CN=liesl benjamin, O=ixia, C=us

This is a string value, with a maximum length of 2048 characters.

Default value = "''"

bitSize

Bit Size for the Keys. The choices are: 512, 1024, 2048.

Default value = "'k512'"

saveCert

If true, IxLoad stores certificates in the specified folder on the chassis.

The default folder is specified in cacheCertFolder.

Default value = "False"

cacheCertFolder

Folder where certificates are stored.

Default value = "'C:\Program Files\Ixia\CachedCerts'"

certParentFolder

Root path of certificate folder.

Default value = "'C:\Program Files\Ixia\CachedCerts'"

certNumber

Number of certificates cached.

If the number of tunnels exceeds the number of certificates, IxLoad reuses certificates as necessary.

Default value = "''"

earlyExpDate

Earliest expiry date and time of cached certificates.

Chapter 6 Network Stack API

– 340 –

Default value = "''"

lateExpDate

Latest expiry date and time of cached certificates.

Default value = "''"

usePerRangeCertNameExp

If enabled, IxLoad expands the $ (if present) in the Subject Distinguished Name field on a per-range
basis.

If disabled (the default), IxLoad expands the $ globally.

Default value = "False"

EXAMPLE

set my_ixNetIPSecSessionData [$Test1 getSessionSpecificData "IPSecPlugin"]

set my_ixNetIPSecCertificates [::IxLoad new ixNetIPSecCertificates]

$my_ixNetIPSecCertificates config \

-uniqueCert false \

-usePerRangeCertNameExp false \

-caURL "" \

-bitSize "k512" \

-remoteIkeId "" \

-lateExpDate "" \

-cacheCertFolder "C:\\Program Files\\Ixia\\CachedCerts" \

-saveCert false \

-certSubjectAltDN "" \

-certSubjectDN "" \

-certParentFolder "C:\\Program Files\\Ixia\\CachedCerts" \

-earlyExpDate "" \

-certSource "kNewCert" \

-caDN "" \

-certNumber ""

Chapter 6 Network Stack API

– 341 –

SEE ALSO

EAP Common

SYNOPSIS

DESCRIPTION

Configures the common portion of the EAP SIM and AKA tuple. Configure the EAP SIM and AKA tuples
as lists.

SUBCOMMANDS

OPTIONS

imsi

A string value that represents the International Mobile Subscriber Identity.

Default value="''" (null)

rand

A hexadecimal number that represents the 128-bit random challenge generated by the DUT.

Default value="''" (null)

EXAMPLE

SEE ALSO

EAP AKA

SYNOPSIS

Chapter 6 Network Stack API

– 342 –

DESCRIPTION

Configures the AKA portion of an EAP AKA tuple

SUBCOMMANDS

OPTIONS

ck

A 128-bit hexadecimal value representing the Cipher Key. The CK is used for encryption.

(On EAP-AKA full authentication, keying material (a Master Key) is generated from the Integrity
Key (IK), the Cipher Key (CK), and the peer identity.)

Default value="''" (null)

ik

A 128-bit hexadecimal value representing the Integrity Key. The IK is a session key used for integrity
checks.

(On EAP-AKA full authentication, keying material (a Master Key) is generated from the Integrity
Key (IK), the Cipher Key (CK), and the peer identity.)

Default value="''" (null)

res

A 128-bit hexadecimal value representing the authentication result that the identity module produces
and sends to the home environment, following successful verification of the AUTN. The RES, together
with the RAND, authenticates the peer to the server.

(The AUTN is the authenticator part of the authentication vector produced by the home
environment. The home environment is the home operator's authentication network
infrastructure.)

Default value="''" (null)

EXAMPLE

$my_ixNetIPSecSessionData eapAkaTuples.clear

set my_ixNetIPSecEapAkaTuple [::IxLoad new ixNetIPSecEapAkaTuple]

ixNet objects needs to be added in the list before they are configured!

$my_ixNetIPSecSessionData eapAkaTuples.appendItem -object $my_ixNetIPSecEapAkaTuple

Chapter 6 Network Stack API

– 343 –

$my_ixNetIPSecEapAkaTuple config \

-ck "0xc0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0" \

-rand "0xe0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0" \

-ik "0xb0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0" \

-imsi "" \

-res "0xd0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0"

SEE ALSO

EAP SIM

SYNOPSIS

DESCRIPTION

Configures the SIM portion of an EAP AKA tuple

SUBCOMMANDS

OPTIONS

kc

A hexadecimal number that represents the 64-bit ciphering key used as a session key for encryption of
the over-the-air channel.

The Kc key was originally intended to be used as an encryption key over the air interface, but in the
EAP-SIM protocol, it is used for deriving keying material and is not directly used. (Note that the
secrecy of Kc is critical to the security of this protocol.)

Default value = "''" (null)

sres

A hexadecimal number that represents the 32-bit signed response generated by the SIM.

Default value = "''" (null)

EXAMPLE

$my_ixNetIPSecSessionData eapSimTuples.clear

Chapter 6 Network Stack API

– 344 –

set my_ixNetIPSecEapSimTuple [::IxLoad new ixNetIPSecEapSimTuple]

ixNet objects needs to be added in the list before they are configured!

$my_ixNetIPSecSessionData eapSimTuples.appendItem -object $my_ixNetIPSecEapSimTuple

$my_ixNetIPSecEapSimTuple config \

-kc "0xa0a1a2a3a4a5a6a7" \

-rand "0x101112131415161718191a1b1c1d1e1f" \

-sres "0xd1d2d3d4" \

-imsi ""

SEE ALSO

IPSec Example
This section shows an example of how to create an IPSec plugin in the Tcl API.

Chapter 6 Network Stack API

– 345 –

Chapter 6 Network Stack API

– 346 –

Chapter 6 Network Stack API

– 347 –

Chapter 6 Network Stack API

– 348 –

Chapter 6 Network Stack API

– 349 –

Chapter 6 Network Stack API

– 350 –

Chapter 6 Network Stack API

– 351 –

PPPoX Plugin

SYNOPSIS

DESCRIPTION

Configures a PPPoX plugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Chapter 6 Network Stack API

– 352 –

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

rangeList

Name of the list of IP address ranges used by this plugin. The list must be a PppoxRangeList object.

This option is read-only.

Default value = "None"

EXAMPLE
set PPPoX_1 [::IxLoad new ixNetPppoxPlugin]# ixNet objects needs to be added in the
list before they are configured!$MAC_VLAN_10 childrenList.appendItem -object $PPPoX_
1

$PPPoX_1 config \-name "PPPoX-1"

$PPPoX_1 childrenList.clear

$PPPoX_1 extensionList.clear

$MAC_VLAN_10 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

PppoxPortGroupData

SYNOPSIS

Chapter 6 Network Stack API

– 353 –

DESCRIPTION

Configures the PPPoX network group settings.

SUBCOMMANDS

OPTIONS

activityID

Activity ID.

Default value = "'0'"

activities

List of activities.

Default Value = "None"

associates

Name of the list of associates. This list must an AssociateList object.

This option is read only.

Default value = "None"

overrideGlobalRateControls

If false, the global setup and teardown rate values will be equally divided among the ports.

If true, The setup and teardown parameters defined at the port level will override those defined at the
global level.

For example, if you have set the initial setup rate to 150 on the global level, and you have defined two
ports, these 150 session setups will be evenly distributed across the ports (75 for each). If you then
enable Override Global Rate Controls, you can modify the number of session setups for each of the
ports (such as changing the distribution from 75-75 to 120-30).

Default value = "False"

setupRateInitial

The number of PPP sessions to set up, per second. The default is 300, the minimum is 1, the maximum
is 1000.

Default value = "300"

maxOutstandingRequests

The maximum number of PPP sessions that can be outstanding at any given time. The minimum is 1,
the maximum is 1000.

Default value="300"

Chapter 6 Network Stack API

– 354 –

teardownRateInitial

The number of PPP sessions to tear down, per second. The default is 300, the minimum is 1, the
maximum is 1000.

Default value = "300"

maxOutstandingReleases

The maximum number of PPP sessions that can be released at any given time. The minimum is 1, the
maximum is 1000.

Default value = "300"

useWaitForCompletionTimeout

Enables the application to wait for a specified amount of time for the sessions to negotiate before
declaring a negotiation timeout.

Default value = "False"

waitForCompletionTimeout

If useWaitForCompletionTimeout is true, specify the number of seconds that the application will wait
for the sessions to negotiate.

The default is 120, the minimum is 1, and the maximum is 65535.

Default value = "120"

enablePerSessionStatGeneration

Enables or disables per-session statistics generation. When enabled, PPP protocol statistics are
generated during the session negotiation phase of an L2TP or PPP test and written to a CSV file. The
CSV file is generated at the end of the session negotiation phase. The concatenated results for each
port are returned as a single file.

Statistics are generated only for client ports because server ports do not establish any sessions during
the negotiation phase.

Default value = "False"

perSessionStatFilePrefix

If enablePerSessionStatGeneration is true, specify the prefix to use for the name of the per-
session PPP protocol statistics file.

The per-session PPP protocol statistics file names are of the form:

StatsFilePrefix_chassis_card_port_TimeStamp_.csv

The CSV files are saved in the folder defined by the setResultDir option of the ixTestController
command. See ixTestController (see "ixTestController").

Default value = "'MY_PREFIX'"

role

Chapter 6 Network Stack API

– 355 –

The role that the PPPoX network group plays in the test configuration. Must be one of the choices in the
RoleChoices object.

Note: A client and a server cannot both be set at the same time on the same network group.

Default value = "'client'"

filterDataPlaneBeforeL7

Default value = "False"

EXAMPLE

SEE ALSO

PLSessionDataBase

SYNOPSIS

DESCRIPTION

Configures the PPPoX and L2TP network group settings.

SUBCOMMANDS

OPTIONS

setupRateInitial

The number of PPP sessions to set up, per second. The default is 300, the minimum is 1, the maximum
is 1000.

Default value = "300"

maxOutstandingRequests

The maximum number of PPP sessions that can be outstanding at any given time. The minimum is 1,
the maximum is 1000.

Default value = "300"

teardownRateInitial

The number of PPP sessions to tear down, per second. The default is 300, the minimum is 1, the
maximum is 1000.

Chapter 6 Network Stack API

– 356 –

Default value = "300"

maxOutstandingReleases

The maximum number of PPP sessions that can be released at any given time. The minimum is 1, the
maximum is 1000.

Default value = "300"

EXAMPLE

SEE ALSO

PppoxRangeList

SYNOPSIS

DESCRIPTION

List of PPPoX ranges. This list must be a list of PppoxRange objects.

SUBCOMMANDS

OPTIONS

EXAMPLE

SEE ALSO

PppoxAcNameList

Chapter 6 Network Stack API

– 357 –

SYNOPSIS

DESCRIPTION

List of access concentrator names. This list must be a list of PppoxAcName objects.

SUBCOMMANDS

OPTIONS

EXAMPLE

SEE ALSO

PppoxAcMacList

SYNOPSIS

DESCRIPTION

List of access concentrator MAC addresses. This list must be a list of PppoxAcMac objects.

SUBCOMMANDS

OPTIONS

EXAMPLE

SEE ALSO

Chapter 6 Network Stack API

– 358 –

PppoX Plugin Example
This section shows an example of how to create a PPPoX plugin in the Tcl API.

Chapter 6 Network Stack API

– 359 –

Chapter 6 Network Stack API

– 360 –

Chapter 6 Network Stack API

– 361 –

Chapter 6 Network Stack API

– 362 –

Chapter 6 Network Stack API

– 363 –

L2TP Plugin

SYNOPSIS

DESCRIPTION

Configures an L2TP plugin.

SUBCOMMANDS

Chapter 6 Network Stack API

– 364 –

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

l2tpRanges

Name of the L2tpRangeList containing the address ranges used by this plugin.

Default value = "None"

EXAMPLE

set L2TP_1 [::IxLoad new ixNetL2tpPlugin]

ixNet objects needs to be added in the list before they are configured!

$IP_4 childrenList.appendItem -object $L2TP_1

$L2TP_1 config \

-name "L2TP-1"

$L2TP_1 childrenList.clear

$L2TP_1 extensionList.clear

$IP_4 extensionList.clear

$MAC_VLAN_9 extensionList.clear

Chapter 6 Network Stack API

– 365 –

$Ethernet_1 extensionList.clear

SEE ALSO

Network Group Settings

SYNOPSIS

DESCRIPTION

Configures the L2TP Network Group Settings Parameters.

SUBCOMMANDS

OPTIONS

activityID

Activity ID.

Default value = "'0'"

activities

List of activities.

Default Value = "None"

associates

Name of the list of Associates.

This option is read only.

Default value = "None"

overrideGlobalRateControls

If false, the global setup and teardown rate values will be equally divided among the ports.

If true, The setup and teardown parameters defined at the port level will override those defined at the
global level.

For example, if you have set the initial setup rate to 150 on the global level, and you have defined two
ports, these 150 session setups will be evenly distributed across the ports (75 for each). If you then
enable Override Global Rate Controls, you can modify the number of session setups for each of the
ports (such as changing the distribution from 75-75 to 120-30).

Chapter 6 Network Stack API

– 366 –

Default value = "False"

setupRateInitial

The number of PPP sessions to set up, per second. The default is 300, the minimum is 1, the maximum
is 1000.

Default value = "300"

maxOutstandingRequests

The maximum number of PPP sessions that can be outstanding at any given time. The minimum is 1,
the maximum is 1000.

Default value="300"

teardownRateInitial

The number of PPP sessions to tear down, per second. The default is 300, the minimum is 1, the
maximum is 1000.

Default value = "300"

maxOutstandingReleases

The maximum number of PPP sessions that can be released at any given time. The minimum is 1, the
maximum is 1000.

Default value = "300"

useWaitForCompletionTimeout

Enables the application to wait for a specified amount of time for the sessions to negotiate before
declaring a negotiation timeout.

Default value = "False"

waitForCompletionTimeout

If useWaitForCompletionTimeout is true, specify the number of seconds that the application will wait
for the sessions to negotiate.

The default is 120, the minimum is 1, and the maximum is 65535.

Default value = "120"

enablePerSessionStatGeneration

Enables or disables per-session statistics generation. When enabled, PPP protocol statistics are
generated during the session negotiation phase of an L2TP or PPP test and written to a CSV file. The
CSV file is generated at the end of the session negotiation phase. The concatenated results for each
port are returned as a single file.

Statistics are generated only for client ports because server ports do not establish any sessions during
the negotiation phase.

Default value = "False"

Chapter 6 Network Stack API

– 367 –

perSessionStatFilePrefix

If enablePerSessionStatGeneration is true, specify the prefix to use for the name of the per-
session PPP protocol statistics file.

The per-session PPP protocol statistics file names are of the form:

StatsFilePrefix_chassis_card_port_TimeStamp_.csv

The CSV files are saved in this folder:
<Install path>\data\result\[UserName]\Per Session Stats PPP_L2TP\

Default value = "'MY_PREFIX'"

role

The role that the L2TP network group plays in the test configuration:

l lac - L2TP Access Concentrator (LAC)

l lns - L2TP Network Server (LNS)

Default value = "'lac'"

EXAMPLE

SEE ALSO

L2tpSessionData

SYNOPSIS

DESCRIPTION

Global L2TP settings.

SUBCOMMANDS

OPTIONS

setupRateInitial

The number of PPP sessions to set up, per second. The default is 300, the minimum is 1, the maximum
is 1000.

Default value = "300"

Chapter 6 Network Stack API

– 368 –

maxOutstandingRequests

The maximum number of PPP sessions that can be outstanding at any given time. The minimum is 1,
the maximum is 1000.

Default value = "300"

teardownRateInitial

The number of PPP sessions to tear down, per second. The default is 300, the minimum is 1, the
maximum is 1000.

Default value = "300"

maxOutstandingReleases

The maximum number of PPP sessions that can be released at any given time. The minimum is 1, the
maximum is 1000.

Default value = "300"

EXAMPLE

SEE ALSO

Basic parameters

SYNOPSIS

DESCRIPTION

Configures the L2TP Basic parameters.

SUBCOMMANDS

OPTIONS

tunnelDestinationIp

Defines the base address to be used for the L2TP tunnel destinations.

Default value = "'10.10.10.1'"

tunnelIncrementBy

Defines the increment to be used for enumerating all the addresses in the destination range.

Chapter 6 Network Stack API

– 369 –

Default value = "'0.0.0.1'"

sessionsPerTunnel

The number of PPP sessions that each L2TP tunnel may carry.

The default is 1, the minimum is 1, and the maximum is 32000.

Default value = "1"

EXAMPLE
$L2TP_1 l2tpRanges.clear

set L2TP_R1 [::IxLoad new ixNetL2tpRange]# ixNet objects needs to be added in the
list before they are configured!$L2TP_1 l2tpRanges.appendItem -object $L2TP_R1

$L2TP_R1 config \-authTimeout 10 \-lacToLNSMapping
"gateway" \-authRetries 20 \-authType
"none" \-sessionsPerTunnel 1 \-echoReqInterval
10 \-domainList "Domain Groups" \-peerHostName
"ixia" \-useHiddenAVPs false \-incrementBy
1 \-ncpRetries 3 \-serverPrimaryDnsAddress
"10.10.10.10" \-clientDnsOptions "disableExtension" \-
enableHelloRequest false \-lcpTermTimeout
15 \-baseLnsIp "0.0.0.0" \-name
"L2TP-R1" \-lcpTermRetries 3 \-serverIIDIncr
1 \-rxConnectSpeed 268435456 \-clientBaseIID
"00:11:11:11:00:00:00:01" \-numSessions 1 \-
tunnelAuthentication "none" \-serverBaseIID
"00:11:22:11:00:00:00:01" \-ncpTimeout 10 \-
tunnelDestinationIp "10.10.10.1" \-ipv6PoolPrefixLen
48 \-l2tpAuthOptions "L2PT Authentication Options" \-
clientIIDIncr 1 \-udpDestinationPort
1701 \-lacSecret "ixia" \-ipIncrementOctet
4 \-ncpType "IPv4" \-lnsIpList
"LNS IPs" \-authOptions "Authentication Options" \-
offsetByte 0 \-enableRedial
false \-lcpRetries 3 \-maxRetransmitInterval
8 \-chapName "user" \-useSequenceNoInPayload
false \-serverSecondaryDnsAddress "11.11.11.11" \-basicOptions
"L2PT Options" \-lacHostName "ixia" \-serverNetmask
"255.255.255.0" \-bearerCapability "3" \-receiveWindowSize
10 \-serverDnsOptions "disableExtension" \-
clientPrimaryDnsAddress "8.8.8.8" \-lnsIpNumber
1 \-tunnelIncrementBy "0.0.0.1" \-chapSecret
"secret" \-enableEchoReq false \-lcpOptions
"LCP Options" \-serverNetmaskOptions "disableExtension" \-

Chapter 6 Network Stack API

– 370 –

helloRequestInterval 60 \-clientNetmask
"255.0.0.0" \-initRetransmitInterval 2 \-clientNetmaskOptions
"disableExtension" \-sessionAllocMethod "nextTunnel" \-
enableControlChecksum true \-framingCapability
"1" \-useLengthBitInPayload false \-ipv6PoolPrefix
"1:1:1::" \-enableEchoRsp true \-serverIpIncr
"0.0.0.0" \-papPassword "password" \-txConnectSpeed
268435456 \-ipv6AddrPrefixLen 64 \-redialInterval
10 \-clientBaseIp "1.1.1.1" \-domainToIpList
"Domain To LNS" \-controlMsgsRetryCounter 30 \-
clientSecondaryDnsAddress "9.9.9.9" \-enabled
true \-mtu 1492 \-serverBaseIp
"2.2.2.2" \-noCallTimeout 5 \-clientIpIncr
"0.0.0.1" \-dataPlaneOptions "Data Plane Options" \-
enableDataChecksum false \-enableProxy
true \-lcpTimeout 10 \-enableDomainGroups
false \-bearerType "2" \-offsetLength
0 \-udpSourcePort 1701 \-maxRedialAttempts
20 \-sessionStartId 1 \-papUser
"user" \-controlPlaneOptions "Control Plane Options" \-
useOffsetBitInPayload false \-tunnelStartId
1 \-useMagic true

$L2TP_R1 domainGroupList.clear

$L2TP_R1 lnsIpAddresses.clear

set IP_R4 [$L2TP_R1 getLowerRelatedRange "IpV4V6Range"]

$IP_R4 config \-count 1 \-name
"IP-R4" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.5" \-ipType "IPv4"

set MAC_R8 [$IP_R4 getLowerRelatedRange "MacRange"]

$MAC_R8 config \-count 1 \-name
"MAC-R8" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:05:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R4 getLowerRelatedRange "VlanIdRange"]

Chapter 6 Network Stack API

– 371 –

$VLAN_R1 config \-incrementStep 1 \-uniqueCount
4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \-innerEnable false \-innerPriority
1

SEE ALSO

L2TP Control Plane

SYNOPSIS

DESCRIPTION

Configures the L2TP Control Plane parameters.

SUBCOMMANDS

OPTIONS

sessionsPerTunnel

The number of PPP sessions that each L2TP tunnel may carry.

The default is 1, the minimum is 1, and the maximum is 32000.

Default value = "1"

tunnelStartId

A unique identifier for the L2TP tunnel.

The default is 1; the minimum is 1; and the maximum is 65,535.

Min=1, Max=65535, Default=1

noCallTimeout

The amount of time, in seconds to wait to receive an L2TP request for connection. If it does not receive
a call within this time, the tunnel is closed. The default is 5, the minimum is 1, and the maximum is
180.

Default value = "5"

Chapter 6 Network Stack API

– 372 –

enableHelloRequest

If checked, Hello messages are sent to confirm that a tunnel is still up.

Default value = "False"

helloRequestInterval

If Hello Requests are enabled, this value determines the amount of time that can elapse between the
time the most recent control or data message are sent, and the time a Hello message is sent. The
default is 60, the minimum is 1, and the maximum is 180.

Default value = "60"

bearerCapability

Indicates to the DUT the bearer device types from which incoming calls will be accepted. You can set
this parameter to the following values:

l Analog: advertises its bearer device type as analog only.

l Digital: advertises its bearer device type as digital only.

l Both: advertises its bearer device types as analog and digital.

The default value is Both.

Value Description

1 Digital: advertises its bearer device type as digital only.

2 Analog: advertises its bearer device type as analog only.

3 Both: advertises its bearer device types as analog and digital.

Default value = "'3'"

bearerType

Device type requested for outgoing calls. You can set this parameter to the following values:

l Analog: requests analog device capability.

l Digital: requests digital device capability.

The default value is Digital.

Value Description

1 Digital: requests digital device capability.

2 Analog: requests analog device capability.

Default value = "'2'"

controlMsgsRetryCounter

Chapter 6 Network Stack API

– 373 –

Number of times a control message for which an acknowledgment has not been received will be
retransmitted. The default is 30, the minimum is 1, and the maximum is 100.

Default value = "30"

initRetransmitInterval

Initial amount of time that can elapse before an unacknowledged control message is retransmitted.

If a control message is retransmitted and still does not receive a reply from the DUT, the control
message will be retransmitted at increasingly longer intervals until it receives a reply. The Max
Retransmit Interval parameter establishes the upper limit on retransmit interval.

The default is 2, the minimum is 1, and the maximum is 65535.

Default value = "2"

maxRetransmitInterval

Unacknowledged control messages are retransmitted.

If a control message is transmitted at the Maximum Retransmit Interval and still does not receive a
reply, the associated tunnel is torn down along with the PPP sessions within it.

The default is 8, the minimum is 1, and the maximum is 65535.

Default value = "8"

receiveWindowSize

Configures the size of the sliding window used for managing control message transmission. The values
for this parameter are expressed in units of unacknowledged control messages. For example, if you set
this parameter to 4, the DUT can send control messages until it has four messages for which it is
waiting for acknowledgments. At that point, it must wait for one or more of the messages to be
acknowledged before it can send any new control messages.

The default is 10, the minimum is 1, and the maximum is 2048.

Default value = "10"

enableRedial

If the L2TP link goes down and this parameter is enabled, the DUT will be redialed to reestablish the
link.

Default value = "False"

redialInterval

Number of seconds that can elapse between attempts to redial the DUT to re-establish a downed L2TP
link. The default is 10, the minimum is 1, and the maximum is 65535.

Default value = "10"

maxRedialAttempts

Chapter 6 Network Stack API

– 374 –

The maximum number attempts IxLoad will make to redial the DUT to re-establish a downed L2TP link.
The default is 20, the minimum is 1, and the maximum is 65535.

Default value = "20"

sessionAllocMethod

Method for allocating sessions among tunnels.

Value Description

nextTunnel Distribute sessions among tunnels

fillTunnel Fill tunnels in order

Default value = "'nextTunnel'"

framingCapability

Framing capability.

Value Description

1 Synchronous

2 Asynchronous

Default value = "'1'"

EXAMPLE
$L2TP_1 l2tpRanges.clear

set L2TP_R1 [::IxLoad new ixNetL2tpRange]# ixNet objects needs to be added in the
list before they are configured!$L2TP_1 l2tpRanges.appendItem -object $L2TP_R1

$L2TP_R1 config \-authTimeout 10 \-lacToLNSMapping
"gateway" \-authRetries 20 \-authType
"none" \-sessionsPerTunnel 1 \-echoReqInterval
10 \-domainList "Domain Groups" \-peerHostName
"ixia" \-useHiddenAVPs false \-incrementBy
1 \-ncpRetries 3 \-serverPrimaryDnsAddress
"10.10.10.10" \-clientDnsOptions "disableExtension" \-
enableHelloRequest false \-lcpTermTimeout
15 \-baseLnsIp "0.0.0.0" \-name
"L2TP-R1" \-lcpTermRetries 3 \-serverIIDIncr
1 \-rxConnectSpeed 268435456 \-clientBaseIID
"00:11:11:11:00:00:00:01" \-numSessions 1 \-
tunnelAuthentication "none" \-serverBaseIID

Chapter 6 Network Stack API

– 375 –

"00:11:22:11:00:00:00:01" \-ncpTimeout 10 \-
tunnelDestinationIp "10.10.10.1" \-ipv6PoolPrefixLen
48 \-l2tpAuthOptions "L2PT Authentication Options" \-
clientIIDIncr 1 \-udpDestinationPort
1701 \-lacSecret "ixia" \-ipIncrementOctet
4 \-ncpType "IPv4" \-lnsIpList
"LNS IPs" \-authOptions "Authentication Options" \-
offsetByte 0 \-enableRedial
false \-lcpRetries 3 \-maxRetransmitInterval
8 \-chapName "user" \-useSequenceNoInPayload
false \-serverSecondaryDnsAddress "11.11.11.11" \-basicOptions
"L2PT Options" \-lacHostName "ixia" \-serverNetmask
"255.255.255.0" \-bearerCapability "3" \-receiveWindowSize
10 \-serverDnsOptions "disableExtension" \-
clientPrimaryDnsAddress "8.8.8.8" \-lnsIpNumber
1 \-tunnelIncrementBy "0.0.0.1" \-chapSecret
"secret" \-enableEchoReq false \-lcpOptions
"LCP Options" \-serverNetmaskOptions "disableExtension" \-
helloRequestInterval 60 \-clientNetmask
"255.0.0.0" \-initRetransmitInterval 2 \-clientNetmaskOptions
"disableExtension" \-sessionAllocMethod "nextTunnel" \-
enableControlChecksum true \-framingCapability
"1" \-useLengthBitInPayload false \-ipv6PoolPrefix
"1:1:1::" \-enableEchoRsp true \-serverIpIncr
"0.0.0.0" \-papPassword "password" \-txConnectSpeed
268435456 \-ipv6AddrPrefixLen 64 \-redialInterval
10 \-clientBaseIp "1.1.1.1" \-domainToIpList
"Domain To LNS" \-controlMsgsRetryCounter 30 \-
clientSecondaryDnsAddress "9.9.9.9" \-enabled
true \-mtu 1492 \-serverBaseIp
"2.2.2.2" \-noCallTimeout 5 \-clientIpIncr
"0.0.0.1" \-dataPlaneOptions "Data Plane Options" \-
enableDataChecksum false \-enableProxy
true \-lcpTimeout 10 \-enableDomainGroups
false \-bearerType "2" \-offsetLength
0 \-udpSourcePort 1701 \-maxRedialAttempts
20 \-sessionStartId 1 \-papUser
"user" \-controlPlaneOptions "Control Plane Options" \-
useOffsetBitInPayload false \-tunnelStartId
1 \-useMagic true

$L2TP_R1 domainGroupList.clear

$L2TP_R1 lnsIpAddresses.clear

set IP_R4 [$L2TP_R1 getLowerRelatedRange "IpV4V6Range"]

Chapter 6 Network Stack API

– 376 –

$IP_R4 config \-count 1 \-name
"IP-R4" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.5" \-ipType "IPv4"

set MAC_R8 [$IP_R4 getLowerRelatedRange "MacRange"]

$MAC_R8 config \-count 1 \-name
"MAC-R8" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:05:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R4 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \-incrementStep 1 \-uniqueCount
4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \-innerEnable false \-innerPriority
1

SEE ALSO

L2TP Data Plane

SYNOPSIS

DESCRIPTION

Configures the L2TP Range Parameters.

SUBCOMMANDS

Chapter 6 Network Stack API

– 377 –

OPTIONS

enableControlChecksum

Enables the use of UDP checksums on control messages.

The L2TP RFC (RFC 2661) recommends that UDP checksums always be enabled on control packets.

Default value = "True"

enableDataChecksum

Enables the use of UDP checksums on data messages.

Default value = "False"

udpSourcePort

The UDP port used to send requests to the DUT for L2TP connections. The well-known port number for
L2TP is 1701.

Default value = "1701"

udpDestinationPort

The UDP port that the DUT uses to listen for L2TP connection requests. The well-known port number for
L2TP is 1701.

Default value = "1701"

useLengthBitInPayload

If true, sets the Length bit in data messages, adding the Length field to the header and indicating that
it is present.

Default value = "False"

useOffsetBitInPayload

If true, sets the Offset bit in data messages, adding the Offset Length field to the header and
indicating that it is present.

Default value = "False"

offsetByte

If useOffsetBitInPayload is true, the Offset Byte field specifies the byte value used to pad the
header from the end of the Offset Length field to the beginning of the payload. The default is 0, the
minimum is 0, and the maximum is 255.

Default value = "0"

offsetLength

The Offset Length field specifies the number of octets past the L2TP header at which the payload data
starts. The default is 0, the minimum is 0, and the maximum is 255.

Default value = "0"

Chapter 6 Network Stack API

– 378 –

useSequenceNoInPayload

If true, sets the Sequence bit in data messages, adding the Sequence Number fields to the header and
indicating that they are present.

Default value = "False"

EXAMPLE
$L2TP_1 l2tpRanges.clear

set L2TP_R1 [::IxLoad new ixNetL2tpRange]# ixNet objects needs to be added in the
list before they are configured!$L2TP_1 l2tpRanges.appendItem -object $L2TP_R1

$L2TP_R1 config \-authTimeout 10 \-lacToLNSMapping
"gateway" \-authRetries 20 \-authType
"none" \-sessionsPerTunnel 1 \-echoReqInterval
10 \-domainList "Domain Groups" \-peerHostName
"ixia" \-useHiddenAVPs false \-incrementBy
1 \-ncpRetries 3 \-serverPrimaryDnsAddress
"10.10.10.10" \-clientDnsOptions "disableExtension" \-
enableHelloRequest false \-lcpTermTimeout
15 \-baseLnsIp "0.0.0.0" \-name
"L2TP-R1" \-lcpTermRetries 3 \-serverIIDIncr
1 \-rxConnectSpeed 268435456 \-clientBaseIID
"00:11:11:11:00:00:00:01" \-numSessions 1 \-
tunnelAuthentication "none" \-serverBaseIID
"00:11:22:11:00:00:00:01" \-ncpTimeout 10 \-
tunnelDestinationIp "10.10.10.1" \-ipv6PoolPrefixLen
48 \-l2tpAuthOptions "L2PT Authentication Options" \-
clientIIDIncr 1 \-udpDestinationPort
1701 \-lacSecret "ixia" \-ipIncrementOctet
4 \-ncpType "IPv4" \-lnsIpList
"LNS IPs" \-authOptions "Authentication Options" \-
offsetByte 0 \-enableRedial
false \-lcpRetries 3 \-maxRetransmitInterval
8 \-chapName "user" \-useSequenceNoInPayload
false \-serverSecondaryDnsAddress "11.11.11.11" \-basicOptions
"L2PT Options" \-lacHostName "ixia" \-serverNetmask
"255.255.255.0" \-bearerCapability "3" \-receiveWindowSize
10 \-serverDnsOptions "disableExtension" \-
clientPrimaryDnsAddress "8.8.8.8" \-lnsIpNumber
1 \-tunnelIncrementBy "0.0.0.1" \-chapSecret
"secret" \-enableEchoReq false \-lcpOptions
"LCP Options" \-serverNetmaskOptions "disableExtension" \-
helloRequestInterval 60 \-clientNetmask
"255.0.0.0" \-initRetransmitInterval 2 \-clientNetmaskOptions

Chapter 6 Network Stack API

– 379 –

"disableExtension" \-sessionAllocMethod "nextTunnel" \-
enableControlChecksum true \-framingCapability
"1" \-useLengthBitInPayload false \-ipv6PoolPrefix
"1:1:1::" \-enableEchoRsp true \-serverIpIncr
"0.0.0.0" \-papPassword "password" \-txConnectSpeed
268435456 \-ipv6AddrPrefixLen 64 \-redialInterval
10 \-clientBaseIp "1.1.1.1" \-domainToIpList
"Domain To LNS" \-controlMsgsRetryCounter 30 \-
clientSecondaryDnsAddress "9.9.9.9" \-enabled
true \-mtu 1492 \-serverBaseIp
"2.2.2.2" \-noCallTimeout 5 \-clientIpIncr
"0.0.0.1" \-dataPlaneOptions "Data Plane Options" \-
enableDataChecksum false \-enableProxy
true \-lcpTimeout 10 \-enableDomainGroups
false \-bearerType "2" \-offsetLength
0 \-udpSourcePort 1701 \-maxRedialAttempts
20 \-sessionStartId 1 \-papUser
"user" \-controlPlaneOptions "Control Plane Options" \-
useOffsetBitInPayload false \-tunnelStartId
1 \-useMagic true

$L2TP_R1 domainGroupList.clear

$L2TP_R1 lnsIpAddresses.clear

set IP_R4 [$L2TP_R1 getLowerRelatedRange "IpV4V6Range"]

$IP_R4 config \-count 1 \-name
"IP-R4" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.5" \-ipType "IPv4"

set MAC_R8 [$IP_R4 getLowerRelatedRange "MacRange"]

$MAC_R8 config \-count 1 \-name
"MAC-R8" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:05:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R4 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \-incrementStep 1 \-uniqueCount

Chapter 6 Network Stack API

– 380 –

4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \-innerEnable false \-innerPriority
1

SEE ALSO

L2TP Authentication

SYNOPSIS

DESCRIPTION

Configures the L2TP Range Parameters.

SUBCOMMANDS

OPTIONS

peerHostName

On LAC ports, this is a text string identifying IxLoad to the DUT for the purposes of Hidden AVPs and
Tunnel Authentication. This text string is also used for the hostname AVP. The default value is ixia.
The text string can have a maximum of 32 characters.

On LNS ports, this is the hostname expected by the LNS in authentication.

Default value = "'ixia'"

tunnelAuthentication

Enables a LAC or LNS to authenticate the identity of a peer it is contacting or being contacted by during
control connection establishment.

If Tunnel Authentication is enabled, the hosts exchange control messages that include the host names
and a shared secret. If the expected response and response received do not match, the tunnel will not
be established.

To use Tunnel Authentication, you must also configure the lacHostName and lacSecret fields, which
define the shared secret for a host.

Value Description

Chapter 6 Network Stack API

– 381 –

none Tunnel Authentication Disabled

hostname Authenticate Hostname

Default value = "'none'"

useHiddenAVPs

If true, Attribute Value Pair hiding is enabled. This enables the use of hidden AVPs, Attribute-Value
Pairs (parameters and values) within control messages that are protected by encryption.

Hiding AVPs is done to hide sensitive control message data such as user passwords or user IDs.

To use Hidden AVPs, you must also configure the Host and Secret fields, which define the shared
secret for a host.

Default value = "False"

EXAMPLE
$L2TP_1 l2tpRanges.clear

set L2TP_R1 [::IxLoad new ixNetL2tpRange]# ixNet objects needs to be added in the
list before they are configured!$L2TP_1 l2tpRanges.appendItem -object $L2TP_R1

$L2TP_R1 config \-authTimeout 10 \-lacToLNSMapping
"gateway" \-authRetries 20 \-authType
"none" \-sessionsPerTunnel 1 \-echoReqInterval
10 \-domainList "Domain Groups" \-peerHostName
"ixia" \-useHiddenAVPs false \-incrementBy
1 \-ncpRetries 3 \-serverPrimaryDnsAddress
"10.10.10.10" \-clientDnsOptions "disableExtension" \-
enableHelloRequest false \-lcpTermTimeout
15 \-baseLnsIp "0.0.0.0" \-name
"L2TP-R1" \-lcpTermRetries 3 \-serverIIDIncr
1 \-rxConnectSpeed 268435456 \-clientBaseIID
"00:11:11:11:00:00:00:01" \-numSessions 1 \-
tunnelAuthentication "none" \-serverBaseIID
"00:11:22:11:00:00:00:01" \-ncpTimeout 10 \-
tunnelDestinationIp "10.10.10.1" \-ipv6PoolPrefixLen
48 \-l2tpAuthOptions "L2PT Authentication Options" \-
clientIIDIncr 1 \-udpDestinationPort
1701 \-lacSecret "ixia" \-ipIncrementOctet
4 \-ncpType "IPv4" \-lnsIpList
"LNS IPs" \-authOptions "Authentication Options" \-
offsetByte 0 \-enableRedial
false \-lcpRetries 3 \-maxRetransmitInterval
8 \-chapName "user" \-useSequenceNoInPayload
false \-serverSecondaryDnsAddress "11.11.11.11" \-basicOptions
"L2PT Options" \-lacHostName "ixia" \-serverNetmask

Chapter 6 Network Stack API

– 382 –

"255.255.255.0" \-bearerCapability "3" \-receiveWindowSize
10 \-serverDnsOptions "disableExtension" \-
clientPrimaryDnsAddress "8.8.8.8" \-lnsIpNumber
1 \-tunnelIncrementBy "0.0.0.1" \-chapSecret
"secret" \-enableEchoReq false \-lcpOptions
"LCP Options" \-serverNetmaskOptions "disableExtension" \-
helloRequestInterval 60 \-clientNetmask
"255.0.0.0" \-initRetransmitInterval 2 \-clientNetmaskOptions
"disableExtension" \-sessionAllocMethod "nextTunnel" \-
enableControlChecksum true \-framingCapability
"1" \-useLengthBitInPayload false \-ipv6PoolPrefix
"1:1:1::" \-enableEchoRsp true \-serverIpIncr
"0.0.0.0" \-papPassword "password" \-txConnectSpeed
268435456 \-ipv6AddrPrefixLen 64 \-redialInterval
10 \-clientBaseIp "1.1.1.1" \-domainToIpList
"Domain To LNS" \-controlMsgsRetryCounter 30 \-
clientSecondaryDnsAddress "9.9.9.9" \-enabled
true \-mtu 1492 \-serverBaseIp
"2.2.2.2" \-noCallTimeout 5 \-clientIpIncr
"0.0.0.1" \-dataPlaneOptions "Data Plane Options" \-
enableDataChecksum false \-enableProxy
true \-lcpTimeout 10 \-enableDomainGroups
false \-bearerType "2" \-offsetLength
0 \-udpSourcePort 1701 \-maxRedialAttempts
20 \-sessionStartId 1 \-papUser
"user" \-controlPlaneOptions "Control Plane Options" \-
useOffsetBitInPayload false \-tunnelStartId
1 \-useMagic true

$L2TP_R1 domainGroupList.clear

$L2TP_R1 lnsIpAddresses.clear

set IP_R4 [$L2TP_R1 getLowerRelatedRange "IpV4V6Range"]

$IP_R4 config \-count 1 \-name
"IP-R4" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.5" \-ipType "IPv4"

set MAC_R8 [$IP_R4 getLowerRelatedRange "MacRange"]

$MAC_R8 config \-count 1 \-name

Chapter 6 Network Stack API

– 383 –

"MAC-R8" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:05:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R4 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \-incrementStep 1 \-uniqueCount
4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \-innerEnable false \-innerPriority
1

SEE ALSO

LNS

SYNOPSIS

DESCRIPTION

Configures the L2TP LNS Parameters.

SUBCOMMANDS

OPTIONS

lacToLNSMapping

This parameter defines how the LAC (DUT) accesses the LNS (Ixia port).

Value Description

domain Through Domain: The LAC maps to the LNS through one of the Domain-to-LNS mappings
defined on the Domain to LNS dialog (access to this dialog is through the Domain to LNS
column).

gateway Through Gateway: The LAC maps to the LNS through the gateway specified in the IP tab.

Default value = "'gateway'"

Chapter 6 Network Stack API

– 384 –

lnsIpNumber

The number of IP addresses that will be created to simulate an LNS. The default is 1, the minimum is 1,
and the maximum is 65535.

Default value = "1"

baseLnsIp

The first IP address that will be used to simulate an LNS.

Default value = "'0.0.0.0'"

incrementBy

The amount of increase between each incremented IP address.

Default value = "1"

ipIncrementOctet

The octet in the Base LNS IP address that is incremented to create additional IP addresses. Octets are
numbered 1 to 4 from left (most-significant) to right (least-significant).

Default value = "4"

lnsIpList

Name of the list of LNS IP addresses.

Default value = "'LNS IPs'"

domainToIpList

Default value = "'Domain To LNS'"

EXAMPLE
$L2TP_1 l2tpRanges.clear

set L2TP_R1 [::IxLoad new ixNetL2tpRange]# ixNet objects needs to be added in the
list before they are configured!$L2TP_1 l2tpRanges.appendItem -object $L2TP_R1

$L2TP_R1 config \-authTimeout 10 \-lacToLNSMapping
"gateway" \-authRetries 20 \-authType
"none" \-sessionsPerTunnel 1 \-echoReqInterval
10 \-domainList "Domain Groups" \-peerHostName
"ixia" \-useHiddenAVPs false \-incrementBy
1 \-ncpRetries 3 \-serverPrimaryDnsAddress
"10.10.10.10" \-clientDnsOptions "disableExtension" \-
enableHelloRequest false \-lcpTermTimeout
15 \-baseLnsIp "0.0.0.0" \-name
"L2TP-R1" \-lcpTermRetries 3 \-serverIIDIncr
1 \-rxConnectSpeed 268435456 \-clientBaseIID
"00:11:11:11:00:00:00:01" \-numSessions 1 \-

Chapter 6 Network Stack API

– 385 –

tunnelAuthentication "none" \-serverBaseIID
"00:11:22:11:00:00:00:01" \-ncpTimeout 10 \-
tunnelDestinationIp "10.10.10.1" \-ipv6PoolPrefixLen
48 \-l2tpAuthOptions "L2PT Authentication Options" \-
clientIIDIncr 1 \-udpDestinationPort
1701 \-lacSecret "ixia" \-ipIncrementOctet
4 \-ncpType "IPv4" \-lnsIpList
"LNS IPs" \-authOptions "Authentication Options" \-
offsetByte 0 \-enableRedial
false \-lcpRetries 3 \-maxRetransmitInterval
8 \-chapName "user" \-useSequenceNoInPayload
false \-serverSecondaryDnsAddress "11.11.11.11" \-basicOptions
"L2PT Options" \-lacHostName "ixia" \-serverNetmask
"255.255.255.0" \-bearerCapability "3" \-receiveWindowSize
10 \-serverDnsOptions "disableExtension" \-
clientPrimaryDnsAddress "8.8.8.8" \-lnsIpNumber
1 \-tunnelIncrementBy "0.0.0.1" \-chapSecret
"secret" \-enableEchoReq false \-lcpOptions
"LCP Options" \-serverNetmaskOptions "disableExtension" \-
helloRequestInterval 60 \-clientNetmask
"255.0.0.0" \-initRetransmitInterval 2 \-clientNetmaskOptions
"disableExtension" \-sessionAllocMethod "nextTunnel" \-
enableControlChecksum true \-framingCapability
"1" \-useLengthBitInPayload false \-ipv6PoolPrefix
"1:1:1::" \-enableEchoRsp true \-serverIpIncr
"0.0.0.0" \-papPassword "password" \-txConnectSpeed
268435456 \-ipv6AddrPrefixLen 64 \-redialInterval
10 \-clientBaseIp "1.1.1.1" \-domainToIpList
"Domain To LNS" \-controlMsgsRetryCounter 30 \-
clientSecondaryDnsAddress "9.9.9.9" \-enabled
true \-mtu 1492 \-serverBaseIp
"2.2.2.2" \-noCallTimeout 5 \-clientIpIncr
"0.0.0.1" \-dataPlaneOptions "Data Plane Options" \-
enableDataChecksum false \-enableProxy
true \-lcpTimeout 10 \-enableDomainGroups
false \-bearerType "2" \-offsetLength
0 \-udpSourcePort 1701 \-maxRedialAttempts
20 \-sessionStartId 1 \-papUser
"user" \-controlPlaneOptions "Control Plane Options" \-
useOffsetBitInPayload false \-tunnelStartId
1 \-useMagic true

$L2TP_R1 domainGroupList.clear

$L2TP_R1 lnsIpAddresses.clear

set IP_R4 [$L2TP_R1 getLowerRelatedRange "IpV4V6Range"]

Chapter 6 Network Stack API

– 386 –

$IP_R4 config \-count 1 \-name
"IP-R4" \-gatewayAddress "0.0.0.0" \-enabled
true \-autoMacGeneration true \-mss
1460 \-incrementBy "0.0.0.1" \-prefix
16 \-gatewayIncrement "0.0.0.0" \-gatewayIncrementMode
"perSubnet" \-generateStatistics false \-ipAddress
"10.10.0.5" \-ipType "IPv4"

set MAC_R8 [$IP_R4 getLowerRelatedRange "MacRange"]

$MAC_R8 config \-count 1 \-name
"MAC-R8" \-enabled true \-mtu
1500 \-mac "00:0A:0A:00:05:00" \-incrementBy
"00:00:00:00:00:01"

set VLAN_R1 [$IP_R4 getLowerRelatedRange "VlanIdRange"]

$VLAN_R1 config \-incrementStep 1 \-uniqueCount
4094 \-name "VLAN-R1" \-innerIncrement
1 \-innerUniqueCount 4094 \-enabled
true \-innerFirstId 1 \-increment
1 \-priority 1 \-firstId
1 \-innerIncrementStep 1 \-idIncrMode
2 \-innerEnable false \-innerPriority
1

SEE ALSO

L2tp Plugin Example
This section shows an example of how to create an L2TP plugin in the Tcl API.

Chapter 6 Network Stack API

– 387 –

Chapter 6 Network Stack API

– 388 –

Chapter 6 Network Stack API

– 389 –

Chapter 6 Network Stack API

– 390 –

Chapter 6 Network Stack API

– 391 –

Chapter 6 Network Stack API

– 392 –

GTPSPlugin

Chapter 6 Network Stack API

– 393 –

SYNOPSIS

DESCRIPTION

Configures a GTP SGSN plugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

sgsnRangeList

List of emulated SGSNs. This must be a GTPSRange object.

Default value = "None"

ueRangeList

List of emulated UEs. This must be a GTPSUERange object.

Default value = "None"

ixGTPVersion

GTP version.

Default value = "'3.20.1.51'"

EXAMPLE

set GTP_1 [::IxLoad new ixNetGTPSPlugin]

ixNet objects needs to be added in the list before they are configured!

$MAC_VLAN_5 childrenList.appendItem -object $GTP_1

Chapter 6 Network Stack API

– 394 –

$GTP_1 config \

-ixGTPVersion "3.20.1.79" \

-name "GTP-1"

$GTP_1 childrenList.clear

$GTP_1 extensionList.clear

$MAC_VLAN_5 extensionList.clear

$Ethernet_1 extensionList.clear

SEE ALSO

GTP SGSN Plugin
This section describes the GTP SGSN plugin.

GTP GGSN Plugin
This section describes the GTP GGSN plugin.

eGTP Plugin
This section describes the eGTP plugin.

eGTP Plugin MME eNB S1 S11 commands
This section describes the eGTP MME eNodeB S1 S11 settings.

Chapter 6 Network Stack API

– 395 –

eGTP Plugin Network Commands
This section describes the eGTP network commands.

eGTP eGTP PGW S5 S8 commands
This section describes the eGTP PGW S5 S8 commands.

eGTP eGTP SGSN RNC S4 commands
This section describes the eGTP SGSN RNC S4 commands.

eGTP SGW S1 S11 commands
This section describes the eGTP SGW S1 S11 commands.

eGTP Plugin DNS commands
This section describes the eGTP plugin DNS settings.

eGTP Base objects
This section describes the eGTP base (common) objects.

DSLite Plugin
This section describes the DSLite plugin.

DSLite Range

SYNOPSIS

Chapter 6 Network Stack API

– 396 –

DESCRIPTION

Creates a DSLite range.

SUBCOMMANDS

OPTIONS

startAddress

The IPv4 Address for the first emulated host in this range of addresses.

The default value is 192.168.0.1.

incrementBy

The step value for incrementing the host IP addresses in the range.

The default value is 0.0.0.1.

sameHostsPerTunnel

You use this option to specify whether or not the host IPv4 addresses will be duplicated on each
emulated home gateway.
If enabled:

If this option is enabled, the same set of IPv4 addresses will be configured behind each tunnel.

For example:

l Same Hosts Per Tunnel is enabled.

l Host Start Address =192.168.0.1.

l Address Increment = 0.0.0.1.

l B4 Count = 2.

l Hosts per B4 = 2.

As a result, each B4 (home gateway) will have have the following hosts behind it: 192,168.0.1,
192.168.0.2.
If disabled:

If this option is not enabled, IxLoad will configure a set of unique IPv4 addresses across the home
gateways. In this case, the test configuration will not contain any duplicate IPv4 addresses.

For example:

l Same Hosts Per Tunnel is disabled.

l Host Start Address =192.168.0.1.

l Address Increment = 0.0.0.1.

l B4 Count = 2.

Chapter 6 Network Stack API

– 397 –

l Hosts per B4 = 2.

As a result, the first B4 will be configured with hosts 192.168.0.1 and 192.168.0.2, and the second B4
will be configured with hosts 192.168.0.3 and 192.168.0.4.

API values = true (default), false

tunnelDst

The address of the tunnel destination (the AFTR address).

Set this parameter to match the address of the interface on the DUT being used in the test.

The default value is ::c612:65.

ipType

A read-only value that shows the IP version used for the emulated hosts (behind the home gateway).

The only valid value is IPv4.

tunnelCount
A read-only value that shows the number of emulated B4 elements configured on the IP stack
element.

API Default = 1

enabled

If enabled, the DSLite address range is enabled for use in the configuration.

If disabled, the range will not be validated, nor will it be configured.

Each DSLite address range is enabled by default.

API default = true

hostCount

A read-only value that shows the total number of emulated hosts that will be carried by the tunnel
configured for this range.

The value is calculated as the number of hosts that you specify (Hosts Per B4) multiplied by
the number of B4 elements configured on the IP stack element (shown in the B4 Count parameter).

API default = 10

mss

The Maximum Segment Size. The MSS is the largest amount of data, specified in bytes, that the IP
device can transmit as a single, unfragmented unit.

The TCP MSS equals the MTU minus the TCP header size minus the IP header size.

IxLoad supports jumbo frames. Therefore the maximum value is 9460 (9500 minus 40).

The default value is 1440.

API default = 1440

Chapter 6 Network Stack API

– 398 –

tunnelDstIncrementBy

Amount to increment the AFTR address (tunnelDst parameter).

API default = "::0"

useGatewayAsTunnelDst

If enabled, the IPv6 gateway address is used as the tunnel destination (the AFTR address, configured
in the tunnelDst parameter).

API default = false

hostsPerTunnel

The number of desired emulated hosts for this range.

The default value is 10.

API default = 10

EXAMPLE

SEE ALSO

Global Services Plugins
This section describes the global plugins.

Filter Plugin

SYNOPSIS

DESCRIPTION

Configures a filter to filter traffic on an Ixia port. Filters are applied on all ports in the network group.

SUBCOMMANDS

Chapter 6 Network Stack API

– 399 –

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

auto

If true, filters will be configured automatically to allow traffic for protocols defined in the current stack.

Default value = "True"

all

If true, all traffic is allowed through; no traffic is filtered out.

Default value = "False"

isis

If true, ISIS traffic is allowed to pass through.

Default value = "False"

ip

A list of IP protocol names or numbers to enable. Numbers are expressed in decimal or 0x<hex digits>
format. Ranges may be separated by a dash (-). A blank entry signifies no IP protocol filtering.

Default value = "''" (null)

tcp

A list of TCP source or destination well-known port names or port numbers to enable. Ranges may be
separated by a dash (-). A blank entry signifies no UDP port filtering.

Default value = "''" (null)

udp

A list of UDP source or destination well-known port names or port numbers to enable. Ranges may be
separated by a dash (-). A blank entry signifies no UDP port filtering.

Default value = "''" (null)

mac

A list of MAC type names or numbers to enable. Numbers are expressed in decimal or 0x<hex digits>
format. Ranges may be separated by a dash (-). A blank entry signifies no MAC type filtering.

Default value = "''" (null)

icmp

A list of ICMP type names or numbers to enable. Numbers are expressed in decimal or 0x<hex digits>
format. Ranges may be separated by a dash (-). A blank entry signifies no ICMP type filtering.

Chapter 6 Network Stack API

– 400 –

Default value = "''" (null)

EXAMPLE
set Filter [::IxLoad new ixNetFilterPlugin]# ixNet objects needs to be added in the
list before they are configured!$Network1 globalPlugins.appendItem -object $Filter

$Filter config \-all false \-isis
false \-name "Filter" \-auto
true \-udp "" \-tcp
"" \-mac "" \-ip
"" \-icmp ""

SEE ALSO

Gratuitous ARP Plugin

SYNOPSIS

DESCRIPTION

Enables the Grat ARP plugin.

The Grat ARP global service allows you to configure a test to broadcast a gratuitous ARP request
packet to all connected interfaces before starting the test. In this way, the emulated network nodes
advertise their own addresses, ensuring that the DUT has valid ARP cache entries.

In a gratuitous ARP packet, the ARP Sender Protocol Address and ARP Target Protocol Address are both
set to the IP address of the source host, and the ARP Sender Hardware Address is set to the link-layer
address of the source host.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

enabled

If true, the Grat ARP service is enabled.

Default value = "True"

Chapter 6 Network Stack API

– 401 –

EXAMPLE

set GratARP [::IxLoad new ixNetGratArpPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $GratARP

$GratARP config \

-enabled true \

-name "GratARP"

SEE ALSO

DNS Plugin

SYNOPSIS

DESCRIPTION

Configures the DNS global servers.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

domain

The DNS domain for the host.

Default value = "''" (null)

timeout

The amount of time an entry should remain in cache memory before being flushed.

Chapter 6 Network Stack API

– 402 –

Default value = "5"

nameServerList

Name of the list of DNS servers to be used.

Default value = "None"

searchList

Name of the list of DNS servers to be searched.

Default value = "None"

hostList

Name of the list of DNS hosts to be used.

Default value = "None"

EXAMPLE

set DNS [::IxLoad new ixNetDnsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $DNS

$DNS config \

-domain "ixiacom.com" \

-name "DNS" \

-timeout 5

$DNS hostList.clear

set my_ixNetDnsHost [::IxLoad new ixNetDnsHost]

ixNet objects needs to be added in the list before they are configured!

$DNS hostList.appendItem -object $my_ixNetDnsHost

$my_ixNetDnsHost config \

-alias2 "localhost-alias2" \

-hostName "localhost" \

-alias1 "localhost-alias1" \

Chapter 6 Network Stack API

– 403 –

-hostIP "127.0.0.1"

$DNS searchList.clear

set my_ixNetDnsSearch [::IxLoad new ixNetDnsSearch]

ixNet objects needs to be added in the list before they are configured!

$DNS searchList.appendItem -object $my_ixNetDnsSearch

$my_ixNetDnsSearch config \

-search ".com"

$DNS nameServerList.clear

set my_ixNetDnsNameServer [::IxLoad new ixNetDnsNameServer]

ixNet objects needs to be added in the list before they are configured!

$DNS nameServerList.appendItem -object $my_ixNetDnsNameServer

$my_ixNetDnsNameServer config \

-nameServer "127.0.0.1"

SEE ALSO

TCP Plugin

SYNOPSIS

DESCRIPTION

Configures the global settings for a TCP plugin.

Chapter 6 Network Stack API

– 404 –

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

tcp_abort_on_overflow

Reserved.

Default value = "False"

tcp_adv_win_scale

Reserved.

Default value = "2"

adjust_tcp_buffers

If set to true, for certain test configurations, the values configured for the TCP read and write buffer
sizes are ignored and values selected by IxLoad are used instead. If set to false, buffer size
adjustment is disabled and the configured values for the TCP read and write buffer sizes are used.

Default value = "true"

tcp_app_win

Reserved.

Default value = "31"

tcp_bic

Reserved.

Default value = "0"

tcp_bic_fast_convergence

Reserved.

Default value = "1"

tcp_bic_low_window

Default value = "14"

tcp_dsack

Reserved.

Chapter 6 Network Stack API

– 405 –

Default value = "True"

tcp_ecn

If true, Explicit Congestion Notification is enabled.

Default value = "False"

tcp_fack

Reserved.

Default value = "True"

tcp_fin_timeout

FIN Timeout. The number of seconds the client or server waits to receive a final FIN before closing a
socket. A FIN Timeout is usually used to prevent denial-of-service attacks.

Default value = "60"

tcp_frto

Fragment Reassembly Timer. ReThe number of seconds the TCP should keep IP fragments before
discarding them.

Default value = "0"

tcp_keepalive_intvl

The number of seconds between repeated keep-alive probes.

Default value = "75"

tcp_keepalive_probes

Number of keep-alive probes sent out before determining that a link is down.

Default value = "9"

tcp_keepalive_time

If a link has no activity on it for the time specified, keep-alive probes are sent to determine if the link
is still up. The Keep-alive Time value is expressed in seconds.

Default value = "7200"

tcp_low_latency

Reserved.

Default value = "0"

tcp_max_orphans

Reserved.

Default value = "8192"

tcp_max_syn_backlog

Chapter 6 Network Stack API

– 406 –

Reserved.

Default value = "1024"

tcp_max_tw_buckets

Reserved.

Default value = "180000"

tcp_mem_low

Reserved.

Default value = "24576"

tcp_mem_pressure

Reserved.

Default value = "32768"

tcp_mem_high

Reserved.

Default value = "49152"

tcp_moderate_rcvbuf

Reserved.

Default value = "0"

tcp_no_metrics_save

Reserved.

Default value = "False"

tcp_orphan_retries

Reserved.

Default value = "0"

tcp_reordering

Reserved.

Default value = "3"

tcp_retrans_collapse

Default value = "True"

tcp_retries1

Chapter 6 Network Stack API

– 407 –

Retransmit Retries 1. The number of times TCP will attempt to retransmit a segment on an established
connection. If the number of retransmit attempts exceeds this value, TCP requests that the network
layer update the route. The default is the RFC 1122 specified minimum of 3 retransmissions.

Default value = "3"

tcp_retries2

Retransmit Retries 2. If the number of retransmissions of the same segment reaches this threshold,
TCP closes the connection. The default value is 15, which corresponds to a duration of approximately
between 13 to 30 minutes, depending on the retransmission timeout.

Default value = "15"

tcp_rfc1337

Reserved.

Default value = "False"

tcp_rmem_min

Reserved.

Default value = "4096"

tcp_rmem_default

Reserved.

Default value = "262144"

tcp_rmem_max

Reserved.

Default value = "262144"

tcp_sack

If true, RFC 2018 TCP Selective Acknowledgements are enabled.

Default value = "True"

tcp_stdurg

Reserved.

Default value = "False"

tcp_synack_retries

Number of times an un-acknowledged SYN-ACK for a passive TCP connection will be re-transmitted.

Default value = "5"

tcp_syn_retries

Number of times an un-acknowledged SYN for an active TCP connection will be re-transmitted.

Chapter 6 Network Stack API

– 408 –

Default value = "5"

tcp_timestamps

If true, the client or server inserts a timestamp into each packet.

Note: Enabling the TCP Timestamp option adds 12 bytes to the TCP header. This has the effect of
reducing the effective MSS configured.

Default value = "True"

tcp_tw_recycle

If true, fast recycling of TIME-WAIT sockets is enabled. Enabling this option is not recommended when
working with NAT (Network Address Translation).

Default value = "False"

tcp_tw_reuse

If true, allows the reuse of TIME-WAIT sockets for new connections.Enable this option only if you are
certain that it is safe from a protocol viewpoint.

Default value = "False"

tcp_vegas_alpha

Reserved.

Default value = "2"

tcp_vegas_beta

Reserved.

Default value = "6"

tcp_vegas_cong_avoid

Reserved.

Default value = "0"

tcp_vegas_gamma

Reserved.

Default value = "2"

tcp_westwood

Reserved.

Default value = "0"

tcp_window_scaling

If true, RFC 1323 TCP window scaling is enabled. The TCP Window Scaling feature allows the use of a
large window (greater than 64K) on a TCP connection, if the other end supports it.

Chapter 6 Network Stack API

– 409 –

Default value = "True"

ip_no_pmtu_disc

Reserved.

Default value = "False"

tcp_wmem_min

Reserved.

Default value = "4096"

tcp_wmem_default

Reserved.

Default value = "262144"

tcp_wmem_max

Reserved.

Default value = "262144"

tcp_ipfrag_time

Fragment Reassembly Timer. The number of seconds the TCP should keep IP fragments before
discarding them.

Default value = "30"

tcp_port_min

Minimum TCP source port value. The source port specifies which ports to use for client connections.
The Min value specifies the lower bound (the lowest permissible port number).

Default value = "1024"

tcp_port_max

Maximum TCP source port value. The Maximum source port value specifies the upper bound (the
highest permissible port number).

Default value = "65535"

tcp_rto_min

Minimum Retransmission Timeout value.

Default value = "200"

tcp_rto_max

Maximum Retransmission Timeout value.

Default value = "120000"

llm_hdr_gap

Chapter 6 Network Stack API

– 410 –

The number of bytes separating packets in a stream.

The default value is 8, the minimum is 8, and the maximum is 8191.

tcp_reordering

The number of duplicate ACKs that are required to indicate that a packet was lost.

Changing this value is not recommended.

The default is 3, the minimum is 0, and the maximum is 255.

tcp_max_tw_buckets

The maximum number of sockets that can be in the TIME_WAIT state in the system.

The purpose of this limit is to prevent simple DoS attacks. If this number is exceeded, the socket is
closed and a warning is displayed.

The default is180,000 and the minimum is 0.

tcp_tw_rfc1323_strict

Enables RFC 1323 strict behavior. Specifically, if a packet has TSOPT set, but does not have the ACK
bit set, the TSecr field in the TSOPT will be zero in that packet.

API Values = true, false (default)

udp_port_randomization

Enables UDP port randomization.

If this option is set, each new sockets will be bound to a random port.

API Values = true, false (default)

EXAMPLE
set TCP [::IxLoad new ixNetTCPPlugin]# ixNet objects needs to be added in the list
before they are configured!$Network1 globalPlugins.appendItem -object $TCP

$TCP config \-tcp_bic 0 \-tcp_tw_recycle
true \-tcp_retries2 5 \-tcp_retries1
3 \-tcp_keepalive_time 75 \-tcp_moderate_rcvbuf
0 \-tcp_rfc1337 false \-tcp_ipfrag_time
30 \-tcp_rto_max 60000 \-tcp_vegas_alpha
2 \-tcp_ecn false \-tcp_westwood
0 \-tcp_rto_min 1000 \-tcp_reordering
3 \-tcp_vegas_cong_avoid 0 \-tcp_keepalive_intvl
7200 \-tcp_rmem_max 262144 \-tcp_orphan_retries
0 \-tcp_max_tw_buckets 180000 \-tcp_wmem_default
4096 \-tcp_low_latency 0 \-tcp_rmem_min
4096 \-tcp_adv_win_scale 2 \-tcp_wmem_min
4096 \-tcp_port_min 1024 \-tcp_stdurg
false \-tcp_port_max 65535 \-tcp_fin_timeout

Chapter 6 Network Stack API

– 411 –

60 \-tcp_no_metrics_save false \-tcp_dsack
true \-tcp_mem_high 49152 \-tcp_frto
0 \-tcp_app_win 31 \-ip_no_pmtu_disc
false \-tcp_window_scaling false \-tcp_max_orphans
8192 \-tcp_mem_pressure 32768 \-tcp_syn_retries
5 \-name "TCP" \-tcp_max_syn_backlog
1024 \-tcp_mem_low 24576 \-tcp_fack
true \-tcp_retrans_collapse true \-tcp_rmem_default
4096 \-tcp_keepalive_probes 9 \-tcp_abort_on_overflow
false \-tcp_tw_reuse false \-tcp_wmem_max
262144 \-tcp_vegas_gamma 2 \-tcp_synack_retries
5 \-tcp_timestamps true \-tcp_vegas_beta
6 \-tcp_sack true \-tcp_bic_fast_convergence
1 \-tcp_bic_low_window 14

SEE ALSO

Routes Plugin

SYNOPSIS

DESCRIPTION

Configures Routes global service, which allows the network group to be associated with a set of IP
routes.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

routes

List of routes. This list must be a RouteList object.

Default value = "None"

Chapter 6 Network Stack API

– 412 –

EXAMPLE

set Routes_1 [::IxLoad new ixNetRoutesPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $Routes_1

$Routes_1 config \

-name "Routes-1"

$Routes_1 routes.clear

SEE ALSO

Dynamic Control Plane plugin

SYNOPSIS

DESCRIPTION

Configures the IxLoad Dynamic Control Plane settings.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

teardownInterfaceWithUser

If true, the interfaces will come up with the users and will go down when users go down.

This option is enabled only if the interfaceBehavior is true.

Default value = "False"

interfaceBehavior

Chapter 6 Network Stack API

– 413 –

If true, enables dynamic control plane. The interfaces are created on demand but are not destroyed
until the test ends.

Default value = "0"

EXAMPLE

set Settings [::IxLoad new ixNetIxLoadSettingsPlugin]

ixNet objects needs to be added in the list before they are configured!

$Network1 globalPlugins.appendItem -object $Settings

$Settings config \

-teardownInterfaceWithUser true \

-name "Settings" \

-interfaceBehavior 1

SEE ALSO

Mobile Subscribers Plugins
This section describes the Mobile Subscriber plugin.

MobileSubscribersPlugin

SYNOPSIS

DESCRIPTION

Creates a network stack element representing 3G mobile subscribers.

SUBCOMMANDS

OPTIONS

name

Chapter 6 Network Stack API

– 414 –

Name of the instance of the plugin.

Default value = "None"

childrenList

Name of the list of next-lower layer plugins.

Default value = "None"

extensionList

Name of the list of protocol extensions.

Default value = "None"

rangeList

List of MobileSubscriber ranges. New elements can be added to the using appendItem. The elements of
the list can be modified, but the list cannot be replaced.

Default value="None".

EXAMPLE

set Mobile_Subscribers_1 [::IxLoad new ixNetMobileSubscribersPlugin]

ixNet objects needs to be added in the list before they are configured!

$Emulated_Router_1 childrenList.appendItem -object $Mobile_Subscribers_1

$Mobile_Subscribers_1 childrenList.clear

$Mobile_Subscribers_1 extensionList.clear

SEE ALSO

Radius Plugin

SYNOPSIS

Chapter 6 Network Stack API

– 415 –

DESCRIPTION

Defines a Radius plugin. A Radius plugin is an extension to a Mobile Subscribers plugin.

SUBCOMMANDS

OPTIONS

name

Name of the instance of the plugin.

Default value = "None"

rangeList

List or Radius ranges.

Default value = "None"

EXAMPLE

set RADIUS_1 [::IxLoad new ixNetRadiusPlugin]

ixNet objects needs to be added in the list before they are configured!

$Mobile_Subscribers_1 extensionList.appendItem -object $RADIUS_1

$Emulated_Router_1 extensionList.clear

$MAC_VLAN_2 extensionList.clear

$Ethernet_1 extensionList.clear

$MAC_VLAN_11 extensionList.clear

$Ethernet_1 extensionList.clear

###

Setting the ranges starting with the plugin on top of the stack

###

$Mobile_Subscribers_1 rangeList.clear

Chapter 6 Network Stack API

– 416 –

SEE ALSO

Mobile Subscribers Example
This section shows an example of how to create a Mobile Subscribers plugin in the Tcl API.

Chapter 6 Network Stack API

– 417 –

Chapter 6 Network Stack API

– 418 –

Chapter 6 Network Stack API

– 419 –

Chapter 6 Network Stack API

– 420 –

Chapter 6 Network Stack API

– 421 –

Chapter 6 Network Stack API

– 422 –

Chapter 6 Network Stack API

– 423 –

Chapter 6 Network Stack API

– 424 –

CHAPTER 7 AppReplay
The IxLoad Application Replay API consists of the Application Replay Peer Agent and its commands.

Objectives
The objectives (userObjective) you can set for Application Replay are listed below. Test objectives are
set in the ixTimeline object.

l simulatedUsers

l peerCount (displays as Initiator Peer Count in the GUI)

l connectionRate

l concurrentConnections

l throughputMbps

– 425 –

l throughputKbps

l throughputGbps

l transactionRate

Chapter 7 AppReplay

– 426 –

Application Replay Peer Agent
Application Replay Peer Agent - create an Application Replay agent

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set AppReplayPeer1 [$Traffic1_Network1 activityList.appendItem options...]
$AppReplayPeer1 agent.config

DESCRIPTION

An ApplicationReplay peer agent is added to the activityList object. The activityList object is added to
the ixNetTraffic object using the appendItem subcomfrom the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

concurrentObjectiveBehaviour

An optional parameter that is used to achieve the concurrent connections number to the configured
value.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity
AppReplayPeer1 of NetTraffic
Traffic1@Network1###set Activity_
AppReplayPeer1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"AppReplay Peer"]$Activity_AppReplayPeer1 agent.config \-
concurrentObjectiveBehaviour 1 \-enable
true \-name "AppReplayPeer1"

SEE ALSO

ixNetTraffic

Chapter 7 AppReplay

– 427 –

Flow Definition
FlowDefinition—Defines a remote peer activity and port.

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_AppReplayPeer1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "AppReplay Peer"]
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the list of protocol flows using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

None.

EXAMPLE
Activity_AppReplayPeer1 agent.pm.protocolFlows.clear$Activity_AppReplayPeer1
agent.pm.protocolFlows.appendItem \

-id "CustomFlowTCP" \

-captureFile "C:/Captures/http1user.cap" \

-sessionSelectionLogic 0 \

-remotePeer "Traffic1_AppReplayPeer1" \

-responderPort80

-filt_InitiatorIP"198.18.0.1" \

-filt_ResponderPort"80" \

-filt_InitiatorPort "6140" \

-filt_ResponderIP"198.18.0.101" \

-overrideResponderPort false \

SEE ALSO

CustomFlowTCP

Chapter 7 AppReplay

– 428 –

CustomFlowETH

Custom FlowETH — Replays an Ethernet flow.

SYNOPSIS

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

commandType

Type of AppReplay command.

Default = "CustomFlowEthernet"

cmdName

Name of the command.

Default = "CustomFlow - ETH <number>"

captureFile

Capture file, in cap or pcap format, that the TCP session is replayed from.

Default = "" (null)

interPacketTimeMultiplyingFactor

Amount of multiplication applied to inter-packet time interval in order to increase or decrease the
replay speed

Min = 0.0, Max = 1000, Default = "1.0"

maintainInterPacketTime

If true, AppReplay attempts to maintain the same timing between consecutive packets in the replayed
traffic as in the original flow. If false, AppReplay does not attempt to reproduce the timing between
packets in the flow.

Default=false.

Chapter 7 AppReplay

– 429 –

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-commandType "CustomFlowEthernet" \

-interPacketTimeMultiplyingFactor 1.0 \

-maintainInterPacketTime false \

-cmdName "Custom Flow - ETH 5" \

-captureFile ""

SEE ALSO

FlowDefinition

Chapter 7 AppReplay

– 430 –

CustomFlowTCP

Custom FlowTCP —Specifies a custom TCP session, defined by a capture file, that is replayed between
the initiator and the responder host.

SYNOPSIS
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

captureFile

Capture file, in pcap format, that the TCP session is replayed from.

sessionSelectionLogic

The session logic determining the point in the capture file where replay of the TCP session starts from.

Value Description

0 Follow First SYN. Replay starts from the first SYN packet found in the capture file.

The initiator and responder addresses and port numbers are taken from the source IP,
destination IP, source port, and destination port (respectively) in the first TCP SYN packet.

1 User-defined Filter. Replay starts from the first SYN packet found in the capture file that
matches the filter criteria. To configure the filter, the initiator and responder addresses and
port numbers have to be defined.

filt_InitiatorIP

The initiator IP in case a user-defined filter has been chosen.

filt_ResponderIP

The responder IP in case a user-defined filter has been chosen.

filt_InitiatorPort

The initiator port in case a user-defined filter has been chosen.

filt_ResponderPort

The responder port in case a user-defined filter has been chosen.

Chapter 7 AppReplay

– 431 –

overrideResponderPort

If true, enables you to override the responder port number defined in the FlowDefinition object. If
false, the responder port is set according to the filter configuration.

max_persistent_requests

Configures the number of flow replays that can occur over a single TCP connection.

Value Description

0 Maximum Possible. All iterations take place over the same connection, for as long as the
connection remains up.

1 Up to. You specify the number of iterations that can occur over a single connection in the
persistent_requests_count parameter.

persistent_requests_count

If max_persistent_requests = 1, this is the number of requests that can occur over a single
connection. Min="0", max="2147483647", default="1". Zero value signifies maximum possible.

EXAMPLE
Activity_AppReplayPeer1 agent.pm.protocolFlows.clear

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-id "CustomFlowTCP" \

-captureFile "C:/Captures/http1user.cap" \

-sessionSelectionLogic 0 \

-remotePeer "Traffic1_AppReplayPeer1" \

-responderPort80

-filt_InitiatorIP"198.18.0.1" \

-filt_ResponderPort"80" \

-filt_InitiatorPort "6140" \

-filt_ResponderIP"198.18.0.101" \

-overrideResponderPort false

SEE ALSO

FlowDefinition

Chapter 7 AppReplay

– 432 –

CustomFlowIP

Custom FlowIP — Specifies a custom IP session, defined by a capture file, that is replayed between the
initiator and the responder host.

SYNOPSIS
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

commandType

Name of the command. Default = "CustomFlowIP"

flow_name

Name of the flow. Default = "" (null)

cycleThroughInitiatorPortUDP

If true and this Custom Flow-IP command is run more than once during a test, different UDP port
numbers are used each time the command runs. Specify the UDP port range in udpPortRange. Default
= "false"

cycleThroughInitiatorPortTCP

If true and this Custom Flow-IP command is run more than once during a test, different TCP port
numbers are used each time the command runs. Specify the TCP port range in tcpPortRange. Default
= "false"

captureFile

Capture file, in pcap format, that the TCP session is replayed from. Default = "" (null)

destination

Destination of the traffic from the initiator:

l If the destination is a DUT, this is the IP address of the DUT.

l If the destination is another AppReplay peer, this is the name of the AppReplay activity.

Default = "None"

packetSelectionLogic

Chapter 7 AppReplay

– 433 –

The packet selection logic determining the point in the capture file where replay of the TCP session
starts from.

Value Description

0
(Default)

Follow first IP Packet. Replay starts from the first IP packet found in the capture file.

1 User-defined Filter. Replay starts from the first IP packet found in the capture file that
matches the filter criteria. To configure the filter, define the initiator and responder IP
addresses and port numbers (filt_InitiatorIP, filt_ResponderIP, filt_
InitiatorPort, and filt_ResponderPort) .

filt_InitiatorIP

If sessionSelectionLogic=1, this parameter defines the initiator IP of the packet to begin playback
from. Default=""(null).

filt_ResponderIP

If sessionSelectionLogic=1, this parameter defines the responder IP of the packet to begin
playback from. Default=""(null).

filt_InitiatorPort

If sessionSelectionLogic=1, this parameter defines the initiator port of the packet to begin
playback from. Specify "\[ANY\]" for any port. Default=""(null).

filt_ResponderPort

If sessionSelectionLogic=1, this parameter defines the responder port of the packet to begin
playback from. Specify "\[ANY\]" for any port. Default=""(null).

maintainInterPacketTime

If true, AppReplay attempts to maintain the same timing between consecutive packets in the replayed
traffic as in the original flow. If false, AppReplay does not attempt to reproduce the timing between
packets in the flow. Default=false.

interPacketTimeMultiplyingFactor

Amount of multiplication applied to inter-packet time interval in order to increase or decrease the
replay speed

Min = 0.0, Max = 1000, Default = "1.0"

overrideResponderPortTCP

If true, you can override the responder port number defined in the FlowDefinition object. If false,
the responder port is set according to the filter configuration. Default=false.

responderPortTCP

TCP port number that responding peer listens on. Default=10000.

Chapter 7 AppReplay

– 434 –

By default, this parameter is read-only. If overrideResponderPortTCP is true, you can change the
port number. If you change the port number, the responding peer automatically updates itself with the
new port number.

overrideResponderPortUDP

If true, you can override the responder port number defined in the FlowDefinition object. If false,
the responder port is set according to the filter configuration. Default=false.

preserveIPHeader

If true, the IP header is preserved.

Default = false

responderPortUDP

UDP port number that responding peer listens on. Default=10000

By default, this parameter is read-only. If overrideResponderPortUDP is true, you can change the
port number. If you change the port number, the responding peer automatically updates itself with the
new port number.

tcpPortRange

Range of TCP port numbers used for traffic from this peer. Default="" (null)

udpPortRange

Range of UDP port numbers used for traffic from this peer. Default="" (null)

useIPAdressFromCaptureFile

If true, the replayed traffic uses the same IP addresses as the original flow in the capture file.
Default=false

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.protocolFlows.clear

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-id "CustomFlowIP" \

-cycleThroughInitiatorPortUDP false \

-flow_name "CustomFlow3" \

-filt_InitiatorIP "" \

-udpPortRange "" \

-packetSelectionLogic 0 \

-cycleThroughInitiatorPortTCP false \

Chapter 7 AppReplay

– 435 –

-destination "None" \

-overrideResponderPortTCP false \

-tcpPortRange "" \

-maintainInterPacketTime false \

-overrideResponderPortUDP false \

-responderPortUDP 10000 \

-responderPortTCP 10000 \

-filt_ResponderPort "" \

-captureFile "" \

-filt_ResponderIP "" \

-useIPAddressFromCaptureFile false \

-filt_InitiatorPort ""

SEE ALSO

FlowDefinition

Chapter 7 AppReplay

– 436 –

LoopBeginCommand
LoopBeginCommand — Specifies the beginning of a command loop.

SYNOPSIS
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

id

Name of the command. Default = "LoopBeginCommand"

LoopCount

Number of times the loop is executed. Default = 5. Min=0, Max = 2147483647.

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-id "LoopBeginCommand" \

-LoopCount 5

SEE ALSO

Chapter 7 AppReplay

– 437 –

LoopEndCommand
LoopEndCommand — Specifies the end of a command loop.

SYNOPSIS
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

id

Name of the command. Default = "LoopEndCommand"

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-id "LoopEndCommand"

SEE ALSO

Chapter 7 AppReplay

– 438 –

Think
THINK — Pauses execution of a command loop.

SYNOPSIS
$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

id

Name of the command. Default = "THINK".

minimumInterval

Minimum length of time to pause, in ms. Default = 1000. Min = 1, Max = 2147483647.

maximumInterval

Maximum length of time to pause, in ms. Default = 1000. Min = 1, Max = 2147483647.

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.protocolFlows.appendItem \

-id "LoopEndCommand"

SEE ALSO

Chapter 7 AppReplay

– 439 –

availableTosList
availableTosList — Create a list of available TOS choices.

SYNOPSIS

$Activity_<activity name> agent.pm.availableTosList.appendItem

DESCRIPTION

An option is added to the availableTosList using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

id

Name of the list. Default = "AvailableTypeOfService".

tos_value

TOS value to be added to the list. Default = "Best Effort 0x0".

If you want to specify the standard choices that are in the GUI, you can use a string representation.
The choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

EXAMPLE

$Activity_AppReplayPeer1 agent.pm.availableTosList.clear

Chapter 7 AppReplay

– 440 –

$Activity_AppReplayPeer1 agent.pm.availableTosList.appendItem \

-id "AvailableTypeOfService" \

-tos_value "Class 1 (0x20)"

SEE ALSO

Chapter 7 AppReplay

– 441 –

Advanced Options
AdvancedOptions—Defines the App Replay client's global options.

SYNOPSIS

$Activity_AppReplayPeer1 agent.pm.advOptions.config \

-max_concurrent_flows1 \
-payloadVerification0 \
-typeOfService"Best Effort (0x0)" \
-enableTOSfalse

DESCRIPTION

Defines the App Replay client's global options.

SUBCOMMANDS

None

OPTIONS

enableTOS

Enables the setting of the TOS (Type of Service) bits in the IP header of the packets.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

enableOOSforUDP

Enables out-of-sequence packet handling for UDP packets.

Value Description

0 (default) Disabled.

1 Enabled.

max_concurrent_flows

Maximum number of flows that each simulated user can send at one time. Default = 1.

payloadVerification

Packet payload is being verified based on the following two options:

Chapter 7 AppReplay

– 442 –

l Verify Content (0): The content of the payload is verified byte-by-byte against the expected
payload. This verification option is set by default.

l Verify Length (1): The length of the payload is verified against the expected value. Choosing
this option yields better throughput performance.

retransmissionDelayIPReplay

Length of time that can elapse before a packet is retransmitted.

Default = 10

sessionTimeOut

Time, in seconds, to wait for a response from the responder peer.

Default = 600

enableAdvanceStats

If true, advanced statistics are collected.

Default = false

typeOfService

Type of Service (TOS) bits in the replayed packets. See availableTosList for the list of choices.

Default = "Best Effort (0x0)"

retransmissionCountIPReplay

Maximum number of times a packet can be retransmitted.

Default = 1

enableRetransmissionIPReplay

Enables retransmission of packets.

Default = false

useIPAddressFromCaptureFile

Determines the source of the IP addresses used by the peer during the test.

l If true the peer uses the IP addresses from the capture file.

l If false, the peer uses the IP addresses from the network that it runs over.

Default = false

instrumentationModeUDP

Default = 0

EXAMPLE
$Activity_AppReplayPeer1 agent.pm.advOptions.config \-max_concurrent_flows
1 \-enableTOS false \-payloadVerification

Chapter 7 AppReplay

– 443 –

1 \-enableOOSforUDP false \-enableAdvanceStats
false \-typeOfService "Best Effort (0x0)" \-
SeqNumInPayload 01

SEE ALSO

Chapter 7 AppReplay

– 444 –

Global Statistics
The following table describes the global statistics for the Application Replay peer. AppReplay statistics
are available on both a global basis and per-flow.

Note: The segment latency statistics are only displayed if you enable Advanced Statistics on
the Advanced Options tab.

Statistic Description

Test Objective Statistics

AppReplay
Application Initiator
Peer Count

Number of Application Replay initiator peers created.

AppReplay
Application
Responder Peer
Count

Number of Application Replay responder peers created.

AppReplay
Connection Rate

Rate (in connections per second) at which Application Replay peers
connected to each other.

AppReplay
Concurrent
Connections

Number of concurrent connections established between peers.

AppReplay
Transaction Rate

Rate (in transactions per second) at which Application Replay peers
completed transactions.

For Application Replay peers, one transaction consists of a Layer-7 protocol's
request packet, and the responses to that packet.

AppReplay Initiator
Total Bytes Sent/sec

Rate at which the initiators sent data.

AppReplay
Application Initiator
Total Bytes
Received/sec

Rate at which the initiators received data.

AppReplay Initiator
Total Throughput

Combined rate at which the initiators sent and received data.

Chapter 7 AppReplay

– 445 –

AppReplay
Responder Total
Bytes Sent/sec

Rate at which the responders sent data.

AppReplay
Responder Total
Bytes Received/sec

Rate at which the responders received data.

AppReplay
Responder Total
Throughput

Combined rate at which the responders sent and received data.

Total Connection Statistics

AppReplay
Connection
Requests Sent

Number of connection requests sent by the initiators to the responders.

AppReplay
Connection
Requests Successful

Number of connection attempts that succeeded.

AppReplay
Connection
Requests Failed

Number of connection attempts that failed.

AppReplay
Connection
Requests Received

Number of connection requests received by the responders.

AppReplay
Connections
Accepted

Number of connections accepted by the responders.

This statistic measures the number of successful connections from the point
of view of the responder.

AppReplay
Connections Failed

Number of connections that were established but then closed because they
would have exceeded the maximum number of connections that the
responder could support.

The maximum number of connections that the responder can accept is
calculated based on the test configuration and depends on the resources
available on the load module, such as memory.

AppReplay Active
Connections

Number of connections currently active.

Total Transaction Statistics

AppReplay Total
Transactions
Initiated

Total number of TCP or UDP transactions initiated.

Chapter 7 AppReplay

– 446 –

AppReplay Total
Transactions
Successful

Total number of TCP or UDP transactions that succeeded.

Total Flow Replay Statistics

AppReplay Total
Flow Replays
Initiated

Total number of TCP, IP, or UDP flow replays initiated.

A TCP flow consists of a SYN, SYN+ACK, FIN, and FIN+ACK packets, all for
the same session.

To be considered valid, a flow must begin with a SYN packet, and end with
packets from both the initiator and the responder with the FIN flag set, or a
RESET.

AppReplay Total
Active Flow Replays

Total number of flows being replayed.

AppReplay Total
Flow Replays
Succeeded

Total number of flows replayed successfully.

AppReplay Total
Flow Replays Failed

Total number of flow replays that failed for any reason.

AppReplay Total
Flow Replays Failed
Error

Total number of flow replays that failed due to a network error.

AppReplay Total
Flow Replays Failed
Timeout

Total number of flow replays that failed due to a timeout.

AppReplay Total
Flow Replays Failed
Mismatch

Total number of flow replays that failed because the replayed session did not
match the session in the pcap file.

AppReplay Total
Flow Replays
Aborted

Total number of flow replays aborted for any reason.

Aborted flows are flows in which the session is terminated abnormally. Flows
can be aborted if a Reset is received from the far end, or the test is focefully
stopped while sessions are in progress, or for other reasons.

Initiator Total Bytes Statistics

AppReplay Initiator
Total Bytes Sent

Total number of bytes sent by the initiators.

Chapter 7 AppReplay

– 447 –

AppReplay Initiator
Total Bytes
Received

Total number of bytes received by the initiators.

AppReplay Initiator
Total Bytes Sent and
Received

Combined total of bytes sent and received by the initiators.

Responder Total Bytes Statistics

AppReplay
Responder Total
Bytes Sent

Total number of bytes sent by the responders.

AppReplay
Responder Total
Bytes Received

Rate at which the responders received data.

AppReplay
Responder Total
Bytes Sent and
Received

Combined total number of bytes sent and received by the responders.

Control Tx/Rx Statistics

AppReplay Segment
Transmission
Initiated

Number of segments for which transmission has begun.

Segments are counted based on how they are formed in the capture file.

For example, if one segment in the capture file becomes split between two
segments while being replayed, it is still counted as only one segment when
it is received.

Conversely, if two segments in the capture file are packed into a single
segment during replay, they are counted as two segments.

AppReplay Segment
Transmission
Succeeded

Number of segments successfully transmitted (Initiator side).

AppReplay Segment
Transmission Failed

Total number of segments that failed transmission (Initiator side).

AppReplay Segment
Transmission Failed
(Error)

Number of segments that failed transmission due to a network error (Initiator
side).

AppReplay Segment
Transmission Failed
(Timeout)

Number of segments that failed transmission due to a timeout (Initiator
side).

Chapter 7 AppReplay

– 448 –

AppReplay Segment
Reception Initiated

Number of segments that the responders are receiving.

AppReplay Segment
Reception
Succeeded

Number of segments successfully received (Responder side).

AppReplay Segment
Reception Failed

Total number of segments that were not received (Responder side).

AppReplay Segment
Reception Failed
(Error)

Number of segments that were not received due to a network error
(Responder side).

AppReplay Segment
Reception Failed
(Timeout)

Number of segments that were not received due to a timeout (Responder
side).

AppReplay Segment
Reception Failed
(Mismatch)

Number of segments received that did not match the segments in the pcap
file (Responder side).

AppReplay UDP Lost
Packets

Number of UDP packets that were transmitted but not received.

AppReplay UDP Out
Of Sequence
Packets

Number of UDP packets received out of sequence.

This statistic only displays if Enable Out of Sequence Packet Handling for
UDP is enabled on the Advanced Options tab.

AppReplay IP Packet
Retransmission
Count

Number of retransmitted IP packets.

If a packet is retransmitted more than once, this statistic is incremented each
time the packet is retransmitted.

This statistic is incremented only if Enable Retransmission for Custom Flow IP
is enabled on the Application Replay Advanced tab.

AppReplay Out Of
Sequence IP Packet
Count

Number of IP packets received out of sequence.

This statistic is incremented only if Enable Retransmission for Custom Flow IP
is enabled on the Application Replay Advanced tab.

Packet Latency Statistics

Inter Segment First
Response Latency
(for Initiated Flows)

The average delay between the time the initiator recieves the first segment
from the responder, after the initiator has sent a segment to the responder.

In the diagram below, this statistic calculates latency by measuring time at

Chapter 7 AppReplay

– 449 –

the following points:

A2 - A1

A4 - A3

A7 - A6

This statistic displays a value only if the initiator has sent a segment prior to
receiving a segment.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Inter Segment Last
Response Latency
(for Responded
Flows)

The average delay between the time the responder recieves the first segment
from the initiator, after the responder has sent a segment to the initiator.

In the diagram below, this statistic calculates latency by measuring time at
the following points:

B3 - B2

B5 - B4

B8 - B7

This statistic displays a value only if the responder has sent a segment prior
to receiving a segment.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Inter Segment Last
Response Latency
(for Initiated Flows)

The average delay between the time the initiator receives the final segment
from the responder, after the initiator has sent a segment to the responder.

The received segment is considered the final segment if the flow ends after
this segment, or if the initiator sends a segment after this segment.

In the diagram below, this statistic calculates latency by measuring time at
the following points:

A3 - A1

A5 - A3

A8 - A6

This statistic displays a value only if the initiator has sent a segment prior to
receiving the final segment.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Inter Segment Last
Response Latency
(for Responded
Flows)

The average delay between the final segment received by the responder from
the initiator after the responder sent a segment to the initiator.

The received segment is considered the final segment if the flow ends after
this, or if the initiator sends a segment after this.

In the diagram below, this statistic calculates latency by measuring time at

Chapter 7 AppReplay

– 450 –

the following points:

B3 - B2

B6 - B4

B8 - B7

This statistic displays a value only if the responder has sent a segment prior
to receiving the final segment.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Session Life Time
(for Initiated Flows)

The average duration between the time the initiator sends or receives the
first segment and sends or receives the final segment over a TCP session.

In the diagram below, this statistic calculates latency by measuring time at
the following points:

A8 - A1

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Session Life Time
(for Responded
Flows)

The average duration between the time the responder sends or receives the
first segment and sends or receives the final segment over a TCP session.

In the diagram below, this statistic calculates latency by measuring time at
the following points:

B8 - B1

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

The following diagram shows an example of segment exchanges in an AppReplay session and identifies
the points at which the Latency statistics are measured. The diagram assumes peer A is running as an
Initiator only and peer B is a Responder only.

Chapter 7 AppReplay

– 451 –

! 9

Chapter 7 AppReplay

– 452 –

CHAPTER 8 AppMix
This section describes the AppMix Tcl API.

Note: You must use the IxLoadCSV package with AppMix scripts.

– 453 –

Creating an AppMix Object
ixTraffixMix

SYNOPSIS

set TrafficMix [::IxLoad new ixTrafficMix]

$New_Scenario trafficMixList.appendItem -object $TrafficMix

DESCRIPTION

New instances of TrafficMix objects are created in TCL using the ixTrafficMix constructor. After being
configured, the TrafficMix objects are added to scenario.trafficMixList

TrafficMix objects expose to TCL certain fields: the list of flows, a list of endpoints, and the name.

The name is set using the config method.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE

set TrafficMix [::IxLoad new ixTrafficMix]

$New_Scenario trafficMixList.appendItem -object $TrafficMix

SEE ALSO

Chapter 8 AppMix

– 454 –

Adding Flows to an AppMix Object

SYNOPSIS

set flow [$flowFactory create "<flow name>"]
$TrafficMix flowList.appendItem -object $flow

DESCRIPTION

Flows are created in TCL using the flowFactory field of the traffic mix object. The flow factory instance is
set when creating the mix, and can be retrieved in TCL using the getFlowFactory method.

Creating a new flow is done using the create method of the flowFactory object. This method receives a
protocol ID as a parameter, and is exposed to the TCL script.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE
$TrafficMix flowList.clearset flowFactory [$TrafficMix getFlowFactory]set flow
[$flowFactory create "HTTP"]$TrafficMix flowList.appendItem -object $flow

SEE ALSO

Chapter 8 AppMix

– 455 –

Setting Flow Parameters

SYNOPSIS
set flowEndpoint_client [$flow getClientFlowEndpoint]

DESCRIPTION

When created, a flow automatically creates instances for its endpoints. To access endpoints from the
TCL in order to assign them to traffic mix endpoints, there are two methods: getClientFlowEndpoint and
getServerFlowEndpoint.

getClientFlowEndpoint method takes no argument, and returns the Originator flow endpoint. The
getServerFlowEndpoint method receives as an argument the index of the required server endpoint in
the flow endpoint list.

SUBCOMMANDS

None.

OPTIONS

STATISTICS

EXAMPLE
set flowEndpoint_client [$flow getClientFlowEndpoint] set flowEndpoint_server [$flow
getServerFlowEndpoint 0]

SEE ALSO

Chapter 8 AppMix

– 456 –

Configuring Flow Commands

SYNOPSIS
set <method name> [$flow commandList.appendItem -commandType "<command>" –protocol
"<flow name>"]

DESCRIPTION

A flow contains a list of commands. These are commands from all protocols inside a flow’s list. In the
TCL script, the command list is cleared, and you can edit the number of executed commands, and can
add one or more of the available commands. Adding a command is done with the appendItem method
of the command list. The appendItem method is called with one or two arguments:

l The ‘command type’ argument specifies what command should be added (the command name).
This argument is mandatory in creating a command

l The ‘protocol’ argument is optional, and specifies for what protocol in the protocol list the
command should be created. If the argument is not given, all the protocols will be parsed until
finding a protocol that contains a command with the given name.

A command may contain a list of parameters, that are configured the same as the flow parameters.

SUBCOMMANDS

None.

OPTIONS

STATISTICS

EXAMPLE
set HTTP_Get [$flow commandList.appendItem -commandType "Get"]set HTTP_Get [$flow
commandList.appendItem -commandType "Get" –protocol "HTTP"]

SEE ALSO

Chapter 8 AppMix

– 457 –

Flow Protocols

SYNOPSIS
set <method name> [$flow getProtocol "<protocol>"]

DESCRIPTION

Protocols can be retrieved from the protocol list using the getProtocol method. This method receives as
an argument the protocol’s ID.
set HTTP1_protocol [$flow getProtocol "HTTP"]

The protocol exposes to the TCL script a list of connections, and a list of parameters. The parameters
are configured identically as the flow parameters. The protocol also contains a list of endpoints, but
this are created when parsing the protocol XML, and assigned automatically to the flow endpoints. You
cannot configure the protocol endpoints in TCL.

You cannot specify a new connection. These are automatically created. In order to retrieve a
connection in TCL, call the getConnection method with the connection display name as an argument:
set HTTP2_connection [$HTTP1_protocol getConnection "HTTP"]

The connection contains a list of connection parameters which are configured in the same way as flow
parameters.

The flow also exposes to TCL a transaction list, and the percentage and flow name:
$flow transactionList.clear$flow config \-percentage
1.0 \-name "HTTP"

SUBCOMMANDS

None.

OPTIONS

STATISTICS

EXAMPLE

$flow transactionList.clear$flow config \-percentage
1.0 \-name "HTTP"

Chapter 8 AppMix

– 458 –

SEE ALSO

Chapter 8 AppMix

– 459 –

Setting Flow Endpoints

SYNOPSIS
set <parameter> [$flow cget -<parameter>]

DESCRIPTION

The flow parameters are created automatically when creating the flow. Parameters are retrieved from
the parent list using the cget method that receives as an argument the parameter ID. After getting the
parameter, you can define its source, value and encodings fields.

Besides the flows, all protocol, command and connection instances contain parameters. All these
parameters are configured in the same way.

SUBCOMMANDS

None.

OPTIONS

STATISTICS

EXAMPLE

set ipMeshing [$flow cget -ipMeshing]

$ipMeshing config \

-source "Choices" \

-value "1:1" \
-encodings "Chunk"

SEE ALSO

Chapter 8 AppMix

– 460 –

Flow Endpoints

SYNOPSIS
set my_ixTrafficMixEndpoint [::IxLoad new ixTrafficMixEndpoint]

DESCRIPTION

New Traffic Mix endpoints can be added using the class constructor. The fields that are available for
modifications in TCL are the flow endpoint list, the aliasName, and the netTraffic. The flow endpoint list
can be assigned one or more flow endpoints (that are retrieved using the getClientFlowEndpoint and
getServerFlowEndpoint methods).

SUBCOMMANDS

None.

OPTIONS

STATISTICS

EXAMPLE
set my_ixTrafficMixEndpoint [::IxLoad new ixTrafficMixEndpoint]$my_
ixTrafficMixEndpoint flowEndpointList.clear$my_ixTrafficMixEndpoint
flowEndpointList.appendItem -object $flowEndpoint_client$my_ixTrafficMixEndpoint
config \-aliasName "" \-netTraffic
$Traffic1_Network1 $TrafficMix mixEndpointList.appendItem -object $my_
ixTrafficMixEndpoint

SEE ALSO

! 10

Chapter 8 AppMix

– 461 –

This page intentionally left blank.

– 462 –

CHAPTER 9 Bulk MGCP
This section describes the MGCP Tcl API objects.

API Overview
The IxLoad MGCP API consists of MGCP client and server agents, with separate APIs for configuring
each major aspect of the agents’ functionality.

MGCP Client API
The IxLoad MGCP Client API commands are organized as shown in the figure below.

– 463 –

Objectives
The objectives (userObjective) you can set for MGCP are listed below. Test objectives are set in the
ixTimeline object.

l simulatedUsers

l calls (displays as “Endpoints” in the GUI

l transactionRate

l bhca

l callsPerSec (displays as “Calls Initiated Per Second” in the GUI

MGCP Client Agent

The MGCP Client Agent creates an IxLoad agent that simulates an MGCP gateway. Refer to MGCP
Client Agent on page 23-12 for a full description of this command. The most significant options of
this command are listed below.

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Parameters

Sets an MGCP client’s basic parameters. Refer to Parameters on page 23-21 for a full description of
this command. The most significant options of this command are listed below.

Option Description

GatewaySourcePort Source port for MGCP commands.

CallAgent_port Call agent that controls this Gateway.

enableTosMGCP Enable TOS for MGCP traffic.

type_of_service_
for_mgcp

IP Precedence / TOS (Type of Service) bit setting and Assured Forwarding
classes for MGCP.

enableTosRTP Enables the setting of the TOS (Type of Service) bits in the header of the RTP

Chapter 9 Bulk MGCP

– 464 –

data packets.

type_of_service_
for_rtp

IP Precedence / TOS (Type of Service) bit setting and Assured Forwarding
classes for RTP data packets.

Low-Level Parameters

Sets an MGCP client’s low-level parameters. Refer to Low Level Parameters on page 23-23 for a full
description of this command. The most significant options of this command are listed below.

Option Description

CommandTimeout Command timeout.

LocalMediaProperties String containing the encoding of endpoint media parameters.

AcknowledgeResponses Specifies if the sent command will include K parameter with the ID of last
received response.

DNS Record

Adds a DNS record to the list to be sent to a DNS server. Refer to DNS Record on page 23-24 for a full
description of this command. The most significant options of this command are listed below.

Option Description

dns_record_time_
to_live

Used for DNS update query to specify time of validity of the updated DNS
record.

dns_ip_port Hostname:port number or IP address:port number of DNS server to which DNS
records will be sent.

Endpoint Names

Adds a DNS record to the list to be sent to a DNS server. Refer to Endpoint Names on page 23-25 for a
full description of this command. The most signifioptions of this command are listed below.

Option Description

Chapter 9 Bulk MGCP

– 465 –

GatewayName Gateway IP address:port or domain name:port.

NumberOfEndpoints Number of endpoints hosted by the gateway.

UseCustomNames Specifies whether to use custom names or not.

EndpointNamePrefix Prefix applied to endpoint name.

EndpointNameSuffix Suffix applied to endpoint name.

EndpointNameStartAt Initial value of variable portion of endpoint name.

EndpointNameExpan Width of variable used to create endpoint names that are unique within a
gateway.

EndpointNameStep Amount of increase in the variable (the Endpoint Name Expand On
parameter) used to create unique base endpoint names.

EndpointPhonePrefix String containing digits to be used at beginning of phone num

EndpointPhoneSuffix String containing digits to be used at the end of the phone number.

EndpointPhoneStartAt Initial value of variable portion of phone number.

EndpointPhoneStep Amount of increase in variable to create additional phone numbers.

NumGateways Number of gateways.

GatewayNamePrefix String prefixed to gateway name.

GatewayNameSuffix String suffixed to gateway name.

GatewayNameStartAt Initial value of variable portion of gateway name.

GatewayNameExpan Width of variable used to create unique gateway names.

GatewayNameStep Amount of increase in variable used for gateway name.

Media Settings

Selects and configure the streaming audio files for the multimedia session that the client will play over
RTP. Refer to Media Settings on page 23-27 for a full description of this command. The most
significant options of this command are:

Option Description

Chapter 9 Bulk MGCP

– 466 –

szCodecName Codec to be used to encode waveform audio files listed in the Audio Clips
Pool.

szCodecDetails Displays the properties of the codec such as the number of bytes per frame of
compressed audio, and the rate at which packets are sent over the
connection.

szCodecDescr Codec description.

bModifyPowerLevel If true, IxLoad modifies the volume of the compressed audio.

szPowerLevel If bModifyPowerLevel is true, this parameter specifies the amount of gain
(volume) added to compressed audio.

bUseJitter Enables or disables use of the jitter buffer.

bJitMs Defines the method used to set the jitter buffer size.

nJitterBuffer Jitter Buffer size, in packets.

nJitterMs Jitter Buffer size, in milliseconds.

bUseCompensation Enables or disables use of the compensation jitter buffer.

bCompMs Defines the method used to set the compensation jitter buffer size.

nCompJitterBuffer Compensation jitter buffer maximum size, in packets.

nCompJitterMs Compensation jitter buffer maximum size, in milliseconds.

nCompMaxDropped Maximum dropped consecutive packets.

bUseMOS Enables or disables use of MOS.

bMosOnMax Defines whether MOS is calculated for a subset of streams or for all streams.

nMosMaxStreams Maximum number of concurrent streams used in MOS calcu

nMosInterval Frequency at which IxLoad samples the RTP streams to genthe MOS scores.

nDtmfDuration Length of time allowed to play the DTMF sequence.

nDtmfInterdigits Duration (in milliseconds) of the DTMF interdigit signal.

bLimitDtmf Enable or disable limitation on the number of DTMF streams to be processed.

nDtmfStreams Number of streams to which path confirmation will be applied.

nPcInterval If Synthetic path confirmation is selected, this is the interval at which IxLoad
add the synthetic RTP packets to the stream.

Chapter 9 Bulk MGCP

– 467 –

nSessionType Type of voice session.

szDtmfSeq DTMF sequence used for path confirmation.

szPeerCodecName Name of codec used by peer.

szPeerCodecDetails Details of codec used by peer.

szPeerDtmfSeq DTMF sequence used by peer.

nPeerDtmfDuration DTMF duration used by peer.

nPeerDtmfInterdigits Inter-digits interval used by peer.

audioClipsTable This list contains the waveform audio files that the MGCP cliwill play.

Commands

Creates the list of MGCP commands that the client will send. Refer to Commands on page 23-31 for a full
description of this command. The most significant options of this command are listed below.

Option Description

id MGCP command to be executed.

Audio Clips Pool

Defines an audio file to be included in the list that the MGCP client will play. Refer to Audio Clips
Pool on page 23-33 for a full description of this command. The most significant options of this
command are listed below.

Option Description

szWaveName Waveform audio (.wav) file.

szDataFormat Encoding format of waveform audio file.

nSampleRate Number of samples taken per second from the recording source.

nResolution Number of bits per sample.

nChannels Number of audio channels.

Chapter 9 Bulk MGCP

– 468 –

nDuration Playing time of audio file.

nSize Size of audio file, in bytes.

szRawWaveName Name and path of wave file to be added to the list.

Custom Endpoint Names

Retrieves the list of custom endpoint names generated by Endpoint Names. Refer to Custom
Endpoint Names on page 23-34 for a full description of this command. The most significant options of
this command are:

Option Description

endpoint_names List of custom endpoint names to be used.

MGCP Server API
The figure below shows the MGCP Server API structure.

MGCP Server Agent
The MGCP Server Agent command simulates an MGCP Call Agent. Refer to MGCP Server Agent on
page 23-35 for a full description of this command. The most significant options of this command are
listed below.

Chapter 9 Bulk MGCP

– 469 –

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Low-Level Parameters

Sets the MGCP Server Agent’s low-level commands. Refer to Low Level Parameters on page 23-43
for a full description of this command. The most sigoptions of this command are listed below.

Option Description

CommandTimeout If no response to a command is received within this number of seconds, a
error is declared.

AcknowledgeResponses Specifies if the sent command will include the K parameter with the ID of
last received response.

DNS Updates

Configures the list of DNS records that will be sent to a DNS server. Refer to DNS Updates on page 23-
44 for a full description of this command. The most significant options of this command are listed
below.

Option Description

dns_record_time_to_
live

Used for DNS update query to specify time of validity of the updated DNS
record.

dns_source_ip IP address indicated as the source of the DNS records.

Chapter 9 Bulk MGCP

– 470 –

DNS Record

Configures a DNS record that will be added to the list to be sent to a DNS server. Refer to DNS Record
on page 23-45 for a full description of this command. The most significant options of this command are:

Option Description

dns_record_name Name to be added to DNS database.

dns_record_address IP address to be added to DNS database.

Endpoint Names

Configures the names used for MGCP endpoints. Refer to Endpoint Names on page 23-46 for a full
description of this command. The most significant options of this command are listed below.

Option Description

NumberOfEndpoints Number of endpoints hosted by the gateway.

UseCustomNames Specifies whether to use custom names or not.

EndpointNamePrefix Prefix applied to endpoint name.

EndpointNameSuffix Suffix applied to endpoint name.

EndpointNameStartAt Initial value of variable portion of endpoint name.

EndpointNameExpandOn Width of variable used to create endpoint names that are unique within a
gateway.

EndpointNameStep Amount of increase in the variable (the Endpoint Name Expand On
parameter) used to create unique base endpoint names.

EndpointPhonePrefix String containing digits to be used at beginning of phone num

EndpointPhoneSuffix String containing digits to be used at the end of the phone number.

EndpointPhoneStartAt Initial value of variable portion of phone number.

EndpointPhoneStep Amount of increase in variable to create additional phone numbers.

NumGateways Number of gateways.

GatewayNamePrefix String prefixed to gateway name.

GatewayNameSuffix String suffixed to gateway name.

Chapter 9 Bulk MGCP

– 471 –

GatewayNameStartAt Initial value of variable portion of gateway name.

GatewayNameExpandOn Width of variable used to create unique gateway names.

GatewayNameStep Amount of increase in variable used for gateway name.

Custom Endpoint Names

Retrieves the list of custom endpoint names generated by Endpoint Names. Refer to Custom
Endpoint Names on page 23-48 for a full description of this command. The most significant options of
this command are listed below.

Option Description

endpoint_names List of custom endpoint names to be used.

Parameters
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.parameters.config

DESCRIPTION

An MGCP server’s basic parameters are set by modifying the options of the pm.parameters option of
the MGCP Server Agent object using appendItem. Note the use of the ‘pm.’ component in the name.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

call_agent_name

Call agent FQDN name that controls this gateway. (Default = "prica.ixi”).

Chapter 9 Bulk MGCP

– 472 –

listen_port_start

Initial port that the agent listens on for new MGCP connections. Minimum = "1" maximum = “65,535.”
(Default = "2,727").

listen_port_stop

Number of ports that the agent listens on for new MGCP connections. Minimum = “1.” (Default =
"1”).

listen_port_step

Increment value applied initially to listen_port_start and to each subsequent value to create the
list of listening ports. Minimum = “1.” (Default = "1”).

enableTosMGCP

Enable TOS for MGCP traffic.

Value Description

0 (default) TOS bits disabled.

1 TOS bits enabled.

type_of_service_for_mgcp

If enableTosMGCP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the
standard choices that are in the GUI, you can use a string representation. To specify any of the other
255 TOS values, specify the decimal value. The default choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

Chapter 9 Bulk MGCP

– 473 –

MGCP Client Agent
MGCP Client Agent - configure an MGCP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.config

DESCRIPTION

An MGCP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity MGCPClient1
of NetTraffic Traffic1@Network1###set
Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MGCP Client"]$Activity_MGCPClient1 agent.config \-enable
true \-name "MGCPClient1"

SEE ALSO

ixNetTraffic

Chapter 9 Bulk MGCP

– 474 –

Parameters
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.parameters.config

DESCRIPTION

An MGCP client’s basic parameters are set by modifying the options of the pm.parameters option of
the MGCP Client Agent object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

GatewaySourcePort

Source port for MGCP commands. This may be changed by Call Agent by using NotifiedEntity
parameter. Minimum = “1,” maximum = “65535.” (Default = “2,427”).

CallAgent_port

Call agent that controls this Gateway. Example: \"192.168.8.9:2427\" or prica.ixialab.com. (Default
= "None”). The following suboptions exist for this option:

Value Description

enableDns Enable (1) or disable (0) DNS for symbolic destinations (IxLoad agents) for this call
agent. Default = 0.

Protocol id ID of the call agent protocol issuing the DNS request. Default = ”mgcp.”

enableTosMGCP

Enable TOS for MGCP traffic.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

type_of_service_for_mgcp

Chapter 9 Bulk MGCP

– 475 –

If enableTosMGCP is true, then this option specifies the IP Precedence / TOS (Type of Service) bit
setting and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify
the standard choices that are in the GUI, you can use a string representation. To specify any of the
other 255 TOS values, specify the decimal value. The default choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

enableTosRTP

Enables the setting of the TOS (Type of Service) bits in the header of the RTP data packets.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

type_of_service_for_rtp

If enableTosRTP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes for RTP data packets. See type_of_service_for_mgcp for the list of
choices (Default = "Best Effort (0x0)").

EXAMPLE
$Activity_MGCPClient1 agent.pm.parameters.config \-type_of_service_for_mgcp
"Best Effort (0x0)" \-CallAgent_port "Traffic2_
MGCPServer1:2727" \-type_of_service_for_rtp "Best Effort (0x0)" \-
enableTosRTP true \-CallAgent
"" \-GatewaySourcePort 2427 \-enableTosMGCP
true \-implicitLoopCheck true

SEE ALSO

ixNetTraffic

Chapter 9 Bulk MGCP

– 476 –

Low Level Parameters
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.ll_parameters.config

DESCRIPTION

An MGCP client’s low-level parameters are set by modifying the options of the pm.ll_parameters
option of the MGCP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

CommandTimeout

If no response to a command is received within this number of seconds, a error is declared. Minimum =
“1,” Maximum = “120.” (Default = "30").

LocalMediaProperties

String containing the encoding of endpoint media parameters. Default = "v:on, e:off,”
maxLength = “2,048.”

AcknowledgeResponses

Specifies if the sent command will include the K parameter with the ID of last received response.
(Default = “0”).

EXAMPLE
$Activity_MGCPClient1 agent.pm.ll_parameters.config \-LocalMediaProperties
"v:on, e:off" \-CommandTimeout 30 \-AcknowledgeResponses
true \-RingCount 2

SEE ALSO

MGCP Client Agent

Chapter 9 Bulk MGCP

– 477 –

DNS Record
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.dns_update_parameters.config

DESCRIPTION

The DNS Update Parameters command is used to add DNS records to the list of records that will be
sent to the DNS server to update it with changes to the gateway name.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

dns_record_time_to_live

Used for DNS update query to specify time of validity of the updated DNS record. Default =
“43,200.”

dns_ip_port

Hostname:port number or IP address:port number of DNS server to which DNS records will be sent.
Default = “192.168.1.1:53.”

EXAMPLE
$Activity_MGCPClient1 agent.pm.dns_update_parameters.config \-dns_record_name
"" \-dns_record_address "" \-dns_record_time_to_live
43200 \-dns_source_ip "" \-enable_dns_updates
false \-dns_ip_port "192.168.1.1:53"

Chapter 9 Bulk MGCP

– 478 –

Endpoint Names
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.endpoint_parameters.config

DESCRIPTION

Configures the names used for MGCP endpoints. An MGCP client’s endpoint update parameters are set
by modifying the options of the pm.endpoint_parameters option of the MGCP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

GatewayName

Gateway IP address:port or domain name:port. (Default = "ixloadmgw.ixia-lab.com”).

NumberOfEndpoints

Number of endpoints hosted by the gateway. Minimum = “1,” maximum = “15,000.” (Default =
"2”).

UseCustomNames

Specifies whether to use custom names or not. (Default = "0").

EndpointNamePrefix

Prefix applied to endpoint name. (Default = "aaln/”).

EndpointNameSuffix

Suffix applied to endpoint name. (Default={}).

EndpointNameStartAt

Initial value of variable portion of endpoint name. Minimum = “0,” maximum = “4,294,967,295.”
(Default = "0").

EndpointNameExpandOn

Width of variable used to create endpoint names that are unique within a gate way. Minimum = “1,”
maximum = “5.” (Default = "1").

EndpointNameStep

Amount of increase in the variable (the Endpoint Name Expand On parameter) used to create unique
base endpoint names. Minimum = “1,”maximum = “3,000.” (Default = "1").

EndpointPhonePrefix

Chapter 9 Bulk MGCP

– 479 –

String containing digits to be used at beginning of phone number. (Default = {}).

EndpointPhoneSuffix

String containing digits to be used at the end of the phone number. (Default = {}).

EndpointPhoneStartAt

Initial value of variable portion of phone number. Minimum = "0" Maximum = "4,294,967,295.”
(Default = "1,000").

EndpointPhoneStep

Amount of increase in variable to create additional phone numbers. Minimum = “1,” maximum =
“3,000.” (Default = "1").

NumGateways

Number of gateways. Minimum = “1,” maximum = “3,000.” (Default = "2").

GatewayNamePrefix

String prefixed to gateway name. (Default = “ix”).

GatewayNameSuffix

String suffixed to gateway name. (Default = ".ixia-lab.com").

GatewayNameStartAt

Initial value of variable portion of gateway name. Minimum = “0,” maximum = "4,294,967,295.”
(Default = "3,000").

GatewayNameExpandOn

Width of variable used to create unique gateway names. Minimum = “1,” maxi= “5.” (Default =
"1").

GatewayNameStep

Amount of increase in variable used for gateway name. Minimum = “1,” maxi= “3,000.” (Default =
"1").

EXAMPLE

$Activity_MGCPClient1 agent.pm.endpoint_parameters.config \-GatewayName
"ixloadmgw.ixia-lab.com" \-NumGateways 2 \-
EndpointPhonePrefix "" \-EndpointNameSuffix
"" \-EndpointPhoneStartAt 1000 \-EndpointNameExpandOn
1 \-GatewayNamePrefix "ix" \-NumberOfEndpoints
2 \-GatewayNameStep 1 \-EndpointNameStartAt
0 \-EndpointNameStep 1 \-EndpointPhoneStep
1 \-GatewayNameStartAt 3000 \-UseCustomNames
false \-EndpointPhoneSuffix "" \-EndpointNamePrefix
"aaln/" \-GatewayNameSuffix ".ixia-lab.com" \-

Chapter 9 Bulk MGCP

– 480 –

GatewayNameExpandOn 1

SEE ALSO

MGCP Client Agent

Chapter 9 Bulk MGCP

– 481 –

Media Settings
Media Settings—Selects and configures the streaming audio files for the multisession that the client
will play over RTP.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.mediaSettings.config

DESCRIPTION

An MGCP client’s media settings are set by modifying the options of the pm.mediaSettings option of
the MGCP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

szCodecName

Codec to be used to encode waveform audio files listed in the Audio Clips Pool. The choices are:

Value Description

“G711ALaw” (default) G.711 A-law

“G711ULaw” G.711 mu-law

“G729A” G.729A

“G729B” G.729B

“G726” G.726

“G723_1” G.723.1

szCodecDetails

Displays the properties of the codec such as the number of bytes per frame of compressed audio, and
the rate at which packets are sent over the connection. (Default = {}).

szCodecDescr

Codec description. (Default = {}).

bModifyPowerLevel

Chapter 9 Bulk MGCP

– 482 –

If true, IxLoad modifies the volume of the compressed audio. (Default = "0").

szPowerLevel

If bModifyPowerLevel is true, this parameter specifies the amount of gain (volume added to
compressed audio. The choices are:

Value Description

"PL0" (default) 0 dB

"PL_10" -10 dB

"PL_20" -20 dB

"PL_30" -30 dB

bUseJitter

Enables or disables use of the jitter buffer. (Default = "0").

bJitMs

Defines the method used to set the jitter buffer size.

Value Description

0 (Default). Jitter buffer size is set by nJitterBuffer.

1 Jitter buffer size is set by nJitterMs.

nJitterBuffer

Jitter Buffer size, in packets. Minimum = “1,” maximum = “300.” (Default = “1”).

nJitterMs

Jitter Buffer size, in milliseconds. Minimum = “1,” maximum = “3,000.” (Default = "20").

bUseCompensation

Enables or disables use of the compensation jitter buffer. (Default = "0”).

bCompMs

Defines the method used to set the compensation jitter buffer size.

Value Description

Chapter 9 Bulk MGCP

– 483 –

0 (Default). Compensation jitter buffer size is set by nCompJitterBuffer.

1 Compensation jitter buffer size is set by nCompJitterMs.

nCompJitterBuffer

Compensation jitter buffer maximum size, in packets. Minimum = “0,” maxi= “300.” (Default =
"50”).

nCompJitterMs

Compensation jitter buffer maximum size, in milliseconds. Minimum = “0,” maximum = “3,000.”
(Default = "1,000").

nCompMaxDropped

Maximum dropped consecutive packets. Minimum = “1,” maximum = “100.” (Default = "7").

bUseMOS

Enables or disables use of MOS. (Default = "0").

bMosOnMax

Defines whether MOS is calculated for a subset of streams or for all streams.

Value Description

0 (Default). MOS calculation is applied to all streams.

1 MOS calculation is applied to the number of streams specified by nMosMax.

nMosMaxStreams

Maximum number of concurrent streams used in MOS calculation. Minimum = “1.” (Default = "1").

nMosInterval

Frequency at which IxLoad samples the RTP streams to generate the MOS scores. Minimum = “2,”
maximum = “30.” (Default = "3").

nDtmfDuration

Length of time allowed to play the DTMF sequence. Minimum = "60,” maxi= "999.” (Default =
"100").

nDtmfInterdigits

Duration (in milliseconds) of the DTMF interdigit signal. Minimum = “30,” maximum = "9999.”
(Default = "40").

bLimitDtmf

Enable or disable limitation on the number of DTMF streams to be processed. (Default = "1").

Chapter 9 Bulk MGCP

– 484 –

Value Description

0 DTMF applied to all streams.

1 (Default) DTMF limited to number of streams specified by nDtmfStreams.

 nDtmfStreams

Number of streams to which path confirmation will be applied. Minimum = "1" maximum = "900."
(Default ="10").

nPcInterval

If Synthetic path confirmation is selected, this is the interval at which IxLoad add the synthetic RTP
packets to the stream. Minimum = “1.” (Default = "500").

nSessionType

Type of voice session. The choices are:

Value Description

“0“

(default) Plays audio file specified by szAudioFIle.

“1“ Perform DTMF path confirmation.

“2“ Perform synthetic DTMF path confirmation.

szDtmfSeq

DTMF sequence used for path confirmation. (Default = "12,345”).

szPeerCodecName

Name of codec used by peer. (Default = {}).

szPeerCodecDetails

Details of codec used by peer. (Default = {}).

szPeerDtmfSeq

DTMF sequence used by peer. (Default = {}).

nPeerDtmfDuration

DTMF duration used by peer. (Default = "0").

nPeerDtmfInterdigits

Inter-digits interval used by peer. (Default = "0").

Chapter 9 Bulk MGCP

– 485 –

audioClipsTable

This is a list of type Audio Clips Pool. This list contains the waveform audio files that the MGCP
client will play. (Default = {}).

EXAMPLE
$Activity_MGCPClient1 agent.pm.mediaSettings.config \-nPcInterval
500 \-nJitterBuffer 1 \-nDtmfInterdigits
40 \-nCompMaxDropped 7 \-nPeerDtmfDuration
0 \-nJitterMs 20 \-nAudioPoolTime
1181544691 \-nDtmfDuration 100 \-szPeerCodecName
"" \-groupBox_MOS1 false \-szPeerCodecDetails
"" \-bMosOnMax 0 \-groupBox_JB1
false \-nMosInterval 3 \-nCompJitterBuffer
50 \-bUseJitter false \-szCodecName
"G711ALaw" \-szPeerDtmfSeq "" \-bLimitDtmf
true \-bUseMOS false \-bJitMs
0 \-szCodecDescr "ITU-T G.711 is a standard to represent
8 bit compressed pulse code modulation (PCM) samples for signals of voice
frequencies, sampled at the rate of 8000 samples/second. G.711 encoder will create a
64 Kbps bitstream. A-Law G.711 PCM encoder converts 13 bit linear PCM samples into 8
bit compressed PCM (logarithmic form) samples, and the decoder does the conversion
vice versa." \-bCompMs 0 \-nDtmfStreams
10 \-szPowerLevel "PL_20" \-szDtmfSeq
"12345" \-nCompJitterMs 1000 \-nPeerDtmfInterdigits
0 \-nMosMaxStreams 1 \-szCodecDetails
"BF160PT20" \-nSessionType 0 \-bModifyPowerLevel
false \-bUseCompensation false

SEE ALSO

MGCP Client Agent

Chapter 9 Bulk MGCP

– 486 –

Commands
Commands—Creates the list of MGCP commands that the client will send.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.scenarios.appendItem

DESCRIPTION

A command is added to the Scenarios object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

MGCP command to be executed. One of the following:

Command Description

OriginateCall Sets up a multimedia session with the specified destination.

THINK Pause during command list processing. You should include a {Think} command
whenever necessary to allow the destination to process the preceding commands.
You can configure a pause of fixed length or of random length.

EndCall Terminates the MGCP session.

ReceiveCall Accepts a call from another endpoint.

VOICESESSION Plays one of the waveform audio files listed in the Audio Clips Pool on the Media
Settings tab. The MGCP client sends the file to the destination configured for the
previous Originate Call command in the command list.

Arguments for id = OrginateCall

Destination

Destination of the call, which is usually another endpoint. If the destination is an IxLoad MGCP server
agent, specify the name of the agent. (Default = "99,312,345").

Chapter 9 Bulk MGCP

– 487 –

Arguments for id = THINK

MinDuration

Minimum length of the pause, in milliseconds. To configure a fixed-length pause, enter the same value
in this field and MaxDuration. (Default = "1”).

MaxDuration

Maximum length of the pause, in milliseconds. To configure a fixed-length pause, enter the same value
in this field and MinDuration. (Default = "1”).

Arguments for id = ReceiveCall

RSpeakSequenceFile

File containing media description. (Default = "mgcp_speak_config").

Arguments for id = VOICESESSION

szAudioFile

Waveform audio file that will be played during the session. This must be an szWaveName object
contained within the Audio Clips Pool object. (Default = "<None>”).

nPlayMode

If true, the audio file plays for a fixed number of times. If false, the audio file plays continuously.
(Default = “0”).

nRepeatCount

If nPlayMode is true, this parameter sets the number of times that the audio file will play. (Default =
"1").

nPlayTime

Length of time to play the audio file. Specify the units of time in the nTimeUnit.

nTimeUnit

Units of time used to set the audio file play time (nPlayTime). The choices are:

Value Description

“0“

(default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

Chapter 9 Bulk MGCP

– 488 –

nTotalTime

(Read-only). Total length of time that the audio file will be played.

nSessionType

Type of voice session. The choices are:

Value Description

“0“

(default) Plays audio file specified by szAudioFIle.

“1“ Perform DTMF path confirmation.

“2“ Perform synthetic DTMF path confirmation.

nWavDuration

(Read-only). Length of selected audio (.wav) file.

szDtmfSeq

For a path confirmation Voice Session, (nSessionType = 1 or 2), this is the DTMF sequence.
(Default = "12345").

EXAMPLE
$Activity_MGCPClient1 agent.pm.scenarios.appendItem \-id
"OriginateCall" \-Destination "99312345"$Activity_
MGCPClient1 agent.pm.scenarios.appendItem \-id
"ReceiveCall" \-RSpeakSequenceFile "mgcp_speak_
config"$Activity_MGCPClient1 agent.pm.scenarios.appendItem \-id
"EndCall" \-Dummy 1

SEE ALSO

MGCP Client Agent

Chapter 9 Bulk MGCP

– 489 –

Custom Endpoint Names
SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_MGCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_MGCPClient1 agent.pm.customNamesList.endpoint_names.config

DESCRIPTION

Retrieves the list of custom endpoint names generated by Endpoint Names.

SUBCOMMANDS

None.

SUB-OBJECTS

endpoint_names

List of custom endpoint names to be used. This is a list of Custom Name objects, which have the
following format:

Value Description

endpoint_name Endpoint name. Default={}.

destination_number Phone number of endpoint. Default={}.

EXAMPLE
$Activity_MGCPClient1 agent.pm.custom\

endpoint_names

SEE ALSO

Endpoint Names

Chapter 9 Bulk MGCP

– 490 –

MGCP Server Agent
MGCP Server Agent - create an MGCP server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.config

DESCRIPTION

An MGCP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity MGCPServer1
of NetTraffic Traffic2@Network2###set
Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"MGCP Server"]$Activity_MGCPServer1 agent.config \-enable
true \-name "MGCPServer1"

SEE ALSO

ixNetTraffic

Chapter 9 Bulk MGCP

– 491 –

Parameters
SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.pm.parameters.config

DESCRIPTION

An MGCP server’s basic parameters are set by modifying the options of the pm.parameters option of
the MGCP Server Agent object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

call_agent_name

Call agent FQDN name that controls this gateway. (Default = "prica.ixi

listen_port_start

Initial port that the agent listens on for new MGCP connections. Minimum = "1" maximum = “65,535.”
(Default = "2,727").

listen_port_step

Increment value applied initially to listen_port_start and to each subsequent value to create the
list of listening ports. Minimum = “1.” (Default = "1").

enableTosMGCP

Enable TOS for MGCP traffic.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

type_of_service_for_mgcp

If enableTosMGCP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the
standard choices that are in the GUI, you can use a string representation. To specify any of the other
255 TOS values, specify the decimal value. The default choices are:

Chapter 9 Bulk MGCP

– 492 –

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

EXAMPLE
$Activity_MGCPServer1 agent.pm.parameters.config \-listen_port_stop
1 \-type_of_service_for_mgcp "Best Effort (0x0)" \-listen_port_start
2727 \-call_agent_name "prica.ixia-lab.com" \-enableTosMGCP
true \-listen_port_step 1

SEE ALSO

MGCP Server Agent

Chapter 9 Bulk MGCP

– 493 –

Low Level Parameters
SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.pm.ll_parameters.config

DESCRIPTION

An MGCP server’s low-level parameters are set by modifying the options of the pm.ll_parameters
option of the MGCP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

CommandTimeout

If no response to a command is received within this number of seconds, a error is declared. Minimum =
“1,” maximum = “120.” (Default = "30").

AcknowledgeResponses

Specifies if the sent command will include the K parameter with the ID of last received response.
(Default = "0”).

EXAMPLE
$Activity_MGCPServer1 agent.pm.ll_parameters.config \-CommandTimeout
30 \-AcknowledgeResponses true

SEE ALSO

MGCP Server Agent

Chapter 9 Bulk MGCP

– 494 –

DNS Updates
SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.pm.dns_update_parameters.config

DESCRIPTION

An MGCP server’s DNS update parameters are set by modifying the options of the pm.dns_update_
parameters option of the MGCP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

enable_dns_updates

Updates a DNS server with updates to the gateway names. The DNS server must be configured to
accept Update Queries from the IxLoad IP address. The first IP in range will be used to source the DNS
Query packets. (Default = "0").

dns_records

List of DNS records to be sent to the DNS servers. This is a list of DNS Record objects.

dns_record_name

Name to be added to DNS database. (Default = {}).

dns_record_address

IP address to be added to DNS database. (Default = {}).

dns_record_time_to_live

Used for DNS update query to specify time of validity of the updated DNS record. (Default =
"43,200”).

dns_source_ip

IP address indicated as the source of the DNS records. (Default = {}).

dns_ip_port

Hostname:port number or IP address:port number of DNS server to which DNS records will be sent.
(Default = "192.168.1.1:53").

EXAMPLE
$Activity_MGCPServer1 agent.pm.dns_update_parameters.config \-dns_record_name
"" \-dns_record_address "" \-dns_record_time_to_live
43200 \-dns_source_ip "" \-enable_dns_updates

Chapter 9 Bulk MGCP

– 495 –

false \-dns_ip_port "192.168.1.1:53"

SEE ALSO

MGCP Server Agent

DNS Record

Chapter 9 Bulk MGCP

– 496 –

DNS Record

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.pm.dnsrecord.config

DESCRIPTION

The DnsRecord command is used to add DNS records to the list of records that will be sent to the DNS
server to update it with changes to the gateway name.

The complete list of records is contained in the dns_records option of the DNS Updates object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

dns_record_name

Name to be added to DNS database. (Default = {}).

dns_record_address

IP address to be added to DNS database. (Default = {}).

EXAMPLE

$Activity_MGCPServer1 agent.pm.dns_update_parameters.config \-dns_record_name
"" \-dns_record_address "" \-dns_record_time_to_live
43200 \-dns_source_ip "" \-enable_dns_updates
false \-dns_ip_port "192.168.1.1:53"

SEE ALSO

DNS Updates

Chapter 9 Bulk MGCP

– 497 –

Endpoint Names
SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_MGCPServer1 agent.pm.endpoint_parameters.config

DESCRIPTION

Configures the names used for MGCP endpoints. An MGCP client’s endpoint parameters are set by
modifying the options of the pm.endpoint_parameters option of the MGCP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

NumberOfEndpoints

Number of endpoints hosted by the gateway. Minimum = “1,” maximum = “15,000.” (Default =
"2").

UseCustomNames

Specifies whether to use custom names or not. (Default = "0”).

EndpointNamePrefix

Prefix applied to endpoint name. (Default = "aaln/").

EndpointNameSuffix

Suffix applied to endpoint name. (Default = {}).

EndpointNameStartAt

Initial value of variable portion of endpoint name. Minimum = “0,” maximum = “4,294,967,295.”
(Default = "0").

EndpointNameExpand
On

Width of variable used to create endpoint names that are unique within a gate way. Minimum = “1,”
maximum = “5.” (Default = "1").

EndpointNameStep

Amount of increase in the variable (the Endpoint Name Expand On parameter) used to create unique
base endpoint names. Minimum = “1,” maximum = “3,000.” (Default = “1”).

EndpointPhonePrefix

String containing digits to be used at beginning of phone number. (Default = {}).

Chapter 9 Bulk MGCP

– 498 –

EndpointPhoneSuffix

String containing digits to be used at the end of the phone number. (Default = {}).

EndpointPhoneStartAt

Initial value of variable portion of phone number. Minimum = "0," maximum = "4,294,967,295.”
(Default = "1,000”).

EndpointPhoneStep

Amount of increase in variable to create additional phone numbers. Minimum = “1,” maximum =
“3000.” (Default = "1").

NumGateways

Number of gateways. Minimum = “1,” maximum = "3,000.” (Default = "2").

GatewayNamePrefix

String prefixed to gateway name. (Default = "ix").

GatewayNameSuffix

String suffixed to gateway name. (Default = ".ixia-lab.com").

GatewayNameStartAt

Initial value of variable portion of gateway name. Minimum = "0", maximum = “4,294,967,295.”
(Default = "3,000").

GatewayNameExpand
On

Width of variable used to create unique gateway names. Minimum = “1,” maxi= “5,” (Default =
"1").

GatewayNameStep

Amount of increase in variable used for gateway name. Minimum = “1,” maxi= “3,000.” (Default =
"1").

EXAMPLE

$Activity_MGCPServer1 agent.pm.endpoint_parameters.config \-NumGateways
4 \-EndpointPhonePrefix "" \-EndpointNameSuffix
"" \-EndpointPhoneStartAt 1000 \-EndpointNameExpandOn
1 \-GatewayNamePrefix "ix" \-NumberOfEndpoints
2 \-GatewayNameStep 1 \-EndpointNameStartAt
0 \-EndpointNameStep 1 \-EndpointPhoneStep
1 \-GatewayNameStartAt 3000 \-UseCustomNames
false \-EndpointPhoneSuffix "" \-EndpointNamePrefix
"aaln/" \-GatewayNameSuffix ".ixia-lab.com" \-
GatewayNameExpandOn 1

Chapter 9 Bulk MGCP

– 499 –

SEE ALSO

MGCP Server Agent

Chapter 9 Bulk MGCP

– 500 –

Custom Endpoint Names
SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_MGCPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$set Activity_MGCPServer1 agentList(0).pm.customNamesList \
endpoint_names

DESCRIPTION

Retrieves the list of custom endpoint names generated by Endpoint Names.

SUBCOMMANDS

None.

OPTIONS

endpoint_names

List of custom endpoint names to be used. This is a list of Custom Name objects, which have the
following format:

Value Description

endpoint_name Endpoint name. Default={}.

destination_number Phone number of endpoint. Default={}.

EXAMPLE
$set Activity_MGCPServer1 agentList(0).pm.customNamesList\

endpoint_names

SEE ALSO

Endpoint Names

Chapter 9 Bulk MGCP

– 501 –

Bulk MGCP Statistics
For Bulk MGCP statistics, see the following:

Bulk MGCP Client Statistics

Bulk MGCP Server Statistics

Chapter 9 Bulk MGCP

– 502 –

Bulk MGCP Client Statistics
The following table describes the Bulk MGCP Client statistics.

Statistic Description

Objectives Statistics

MGCP Simulated Users Number of MGCP users simulated during the test.

MGCP connections initiated Number of MGCP connections initiated during the
test.

MGCP connections completed Number of MGCP connections successfully
completed during the test.

MGCP connections active Number of MGCP connections active.

MGCP connections failed busy Number of MGCP connections that failed because
they received a Busy tone.

MGCP connections failed reorder Number of initiated MGCP connections that failed
because they received a Reorder tone.

Total Message Statistics

Total MGCP Messages Sent Total number of MGCP messages sent by the client.

Total MGCP Messages Received Total number of MGCP messages received by the
client.

Total MGCP Messages Malformed Total number of malformed MGCP messages
received by the client.

NTFY messages

NTFY sent Number of NTFY (Notify) messages sent by the
client.

NTFY recv Number of NTFY (Notify) messages received by the
client.

NTFY success Number of NTFY (Notify) messages sent by the
client that succeeded.

NTFY failed Number of NTFY (Notify) messages sent by the
client that failed.

NTFY dial sent Number of NTFY (Notify) dialing messages sent by
the client.

Chapter 9 Bulk MGCP

– 503 –

NTFY dial recv Number of NTFY (Notify) dialing messages received
by the client.

NTFY dial success Number of NTFY (Notify) dialing messages sent by
the client that succeeded.

NTFY dial failed Number of NTFY (Notify) dialing messages sent by
the client that failed.

CRCX messages

CRCX sent Number of CRCX (Create Connection) messages sent
by the client.

CRCX recv Number of CRCX (Create Connection) messages
received by the client.

CRCX success Number of CRCX (Create Connection) messages sent
by the client that succeeded.

CRCX failed Number of CRCX (Create Connection) messages sent
by the client that failed.

MDCX messages

MDCX sent Number of MDCX (Modify Connection) messages
sent by the client.

MDCX recv Number of MDCX (Modify Connection) messages
received by the client.

MDCX success Number of MDCX (Modify Connection) messages
sent by the client that succeeded.

MDCX failed Number of MDCX (Modify Connection) messages
sent by the client that failed.

DLCX messages

DLCX sent Number of DLCX (Delete Connection) messages sent
by the client.

DLCX recv Number of DLCX (Delete Connection) messages
received by the client.

DLCX success Number of DLCX (Delete Connection) messages sent
by the client that succeeded.

DLCX failed Number of DLCX (Delete Connection) messages sent
by the client that failed.

Chapter 9 Bulk MGCP

– 504 –

RQNT messages

RQNT sent Number of RQNT (Notification Request) messages
sent by the client.

RQNT recv Number of RQNT (Notification Request) messages
received by the client.

RQNT success Number of RQNT (Notification Request) messages
sent by the client that succeeded.

RQNT failed Number of RQNT (Notification Request) messages
sent by the client that failed.

AUEP messages

AUEP sent Number of AUEP (Audit Endpoint) messages sent by
the client.

AUEP recv Number of AUEP (Audit Endpoint) messages
received by the client.

AUEP success Number of AUEP (Audit Endpoint) messages sent by
the client that succeeded.

AUEP failed Number of AUEP (Audit Endpoint) messages sent by
the client that failed.

AUCX messages

AUCX sent Number of AUCX (Audit Connection) messages sent
by the client.

AUCX recv Number of AUCX (Audit Connection) messages
received by the client.

AUCX success Number of AUCX (Audit Connection) messages sent
by the client that succeeded.

AUCX failed Number of AUCX (Audit Connection) messages sent
by the client that failed.

EPCF messages

EPCF sent Number of EPCF (Endpoint Configuration) messages
sent by the client.

EPCF recv Number of EPCF (Endpoint Configuration) messages
received by the client.

Chapter 9 Bulk MGCP

– 505 –

EPCF success Number of EPCF (Endpoint Configuration) messages
sent by the client that succeeded.

EPCF failed Number of EPCF (Endpoint Configuration) messages
sent by the client that failed.

RSIP messages

RSIP sent Number of RSIP (Restart in Progress) messages sent
by the client.

RSIP recv Number of RSIP (Restart in Progress) messages
received by the client.

RSIP success Number of RSIP (Restart in Progress) messages sent
by the client that succeeded.

RSIP failed Number of RSIP (Restart in Progress) messages sent
by the client that failed.

1XX Responses

Responses_1XX sent Number of 100-series responses sent by the client.
100-series responses indicate provisional
responses.

Responses_1XX recv Number of 100-series responses received by the
client.

2XX Responses

Responses_2XX sent Number of 200-series responses sent by the client.
200-series responses indicate successful
completion.

Responses_2XX recv Number of 200-series responses received by the
client.

XX Responses

Responses_3XX sent Number of 300-series responses sent by the client.

Responses_3XX recv Number of 300-series responses received by the
client.

4XX Responses

Responses_4XX sent Number of 400-series responses sent by the client.
400-series responses indicate a transient error.

Chapter 9 Bulk MGCP

– 506 –

Responses_4XX recv Number of 400-series responses received by the
client.

5XX Responses

Responses_5XX sent Number of 500-series responses sent by the client.
500-series responses indicate a permanent error.

Responses_5XX recv Number of 500-series responses received by the
client.

RTP: Global Stream Transmit Statistics

RTP Bytes Sent Total number of bytes sent, including header and
payload.

RTP Packets Sent Total number of packets sent.

RTP Tx Jitter (ns) Average amount of transmit jitter, in nanoseconds.

RTP Tx Packets Dropped Number of packets transmitted by the client that
were dropped.

RTP: Global Stream Statistics

RTP Dropped Packets Number of RTP packets dropped.

RTP Bytes Received Number of RTP bytes received.

RTP Packets Received Number of RTP packets received.

RTP Payload Bytes Received Number bytes received in RTP payloads.

RTP Bad Packets Received Number of defective RTP packets received.

RTP Lost Packets Number of packets lost.

RTP Misordered Packets Received Number of packets received out of order.

RTP Duplicate Packets Received Number of duplicate packets received.

RTP Jitter Min Smallest amount of jitter detected.

RTP Jitter Max Largest amount of jitter detected.

RTP Packets With Jitter Up To 1ms Packets received with jitter of up to 1ms.

RTP Packets With Jitter Up To 3ms Packets received with jitter of 1-3ms.

RTP Packets With Jitter Up To 5ms Packets received with jitter of 3-5ms.

Chapter 9 Bulk MGCP

– 507 –

RTP Packets With Jitter Up To 10ms Packets received with jitter of 5-10ms.

RTP Packets With Jitter Up To 20ms Packets received with jitter of 10-20ms

RTP Packets With Jitter Up To 40ms Packets received with jitter of 20-40ms

RTP Packets With Jitter More Than 40ms Packets received with jitter of more than 40ms.

RTP DTMFs Detected Total number of path confirmation DTMF tone
sequences sent.

RTP Good DTMF Sequences Detected Total number of correct path confirmation DTMF tone
sequences received.

RTP Bad DTMF Sequences Detected Total number of incorrect path confirmation DTMF
tone sequences received.

RTP Packets Dropped By Jitter Buffer Number of packet dropped from the jitter buffer
because they arrived later than expected.

Note: In the CSV files, global MOS scores are represented as whole numbers (for example, “345“);
in StatViewer (they are represented as floating-point numbers (for example, “3.45”).

RTP MOS Average Instant Average MOS score at the time of the sampling
interval.

RTP MOS Worst Instant Lowest MOS score at the time of the sampling
interval.

RTP MOS Best Instant Highest MOS score at the time of the sampling
interval.

RTP MOS Worst Lowest MOS score recorded during the test.

RTP MOS Best Highest MOS score recorded during the test.

RTP MOS Average Per Call Average MOS score per call.

RTP MOS Worst Per Call Lowest MOS score per call.

RTP MOS Best Per Call Highest MOS score per call.

RTP Calls With Continuous Path Confirmation Number of calls on which path confirmation
continued througout the call.

RTP Calls With Interrupted Path Confirmation Number of calls on which path confirmation was
interrupted during the call.

RTP Calls Without Path Confirmation Number of calls on which there was no path
confirmation.

Chapter 9 Bulk MGCP

– 508 –

Transport Statistics

MGCP Bytes Transmitted Number of MGCP bytes transmitted.

MGCP Bytes Received Number of MGCP bytes received.

MGCP Signaling UDP Packets Transmitted Number of UDP packets containing MGCP signaling
bytes transmitted.

MGCP Signaling UDP Packets Received Number of UDP packets containing MGCP signaling
bytes received.

Per-Stream Statistics

RTP Path Confirmation Status Status of path confirmation on the stream.

Note for Tcl API users: For this statistic, use the
Aggregation Type kString.

RTP MOS Average MOS score recorded on the stream.

RTP Worst MOS Lowest MOS score recorded on the stream.

RTP Best MOS Highest MOS score recorded on the stream.

RTP Bytes Number of bytes transmitted on the stream.

RTP Packets Number of packets transmitted on the stream.

RTP Bad Packets Number of bad packets transmitted on the stream.

RTP Lost Packets Number of packets lost on the stream.

RTP Missorder Packets Number of packets received out of order on the
stream.

RTP Duplicate Packets Number of duplicate packets received on the
stream.

RTP Packets With Jitter Up To 1ms Number of packets received on the stream with jitter
up to 1 millisecond.

RTP Packets With Jitter Up To 3ms Number of packets received on the stream with jitter
up to 3 milliseconds.

RTP Packets With Jitter Up To 5ms Number of packets received on the stream with jitter
up to 5 milliseconds.

RTP Packets With Jitter Up To 10ms Number of packets received on the stream with jitter
up to 10 milliseconds.

Chapter 9 Bulk MGCP

– 509 –

RTP Packets With Jitter Up To 20ms Number of packets received on the stream with jitter
up to 20 milliseconds.

RTP Packets With Jitter Up To 40ms Number of packets received on the stream with jitter
up to 40 milliseconds.

RTP Packets With Jitter More Than 40ms Number of packets received on the stream with jitter
over 40 milliseconds.

RTP Average Jitter (ns) Average jitter, in nanoseconds.

RTP Min Jitter (ns) Lowest jitter recorded, in nanoseconds.

RTP Max Jitter (ns) Largest jitter recorded, in nanoseconds.

RTP DTMFs Detected Total number of path confirmation DTMF tone
sequences sent.

RTP Good DTMF Sequences Detected Total number of correct path confirmation DTMF tone
sequences received.

RTP Bad DTMF Sequences Detected Total number of incorrect path confirmation DTMF
tone sequences received.

RTP Packets Dropped By Jitter Buffer Total number of packets dropped from the jitter
buffer because they were received late.

Chapter 9 Bulk MGCP

– 510 –

Bulk MGCP Server Statistics
The following table describes the Bulk MGCP Server statistics.

Statistic Description

Total MGCP Commands
Received

Total number of MGCP commands received by the server

Total MGCP Responses
Received

Total number of MGCP responses received by the server.

Total MGCP Commands
Sent

Total number of MGCP commands sent by the server.

Total MGCP Responses Sent Total number of MGCP responses sent by the server.

Total MGCP Received
Malformed Messages

Total number of malformed MGCP messages received by the server.

NTFY messages

NTFY sent Number of NTFY (Notify) messages sent by the server.

NTFY recv Number of NTFY (Notify) messages received by the server.

NTFY success Number of NTFY (Notify) messages sent by the server that succeeded.

NTFY failed Number of NTFY (Notify) messages sent by the server that failed.

NTFY dial sent Number of NTFY (Notify) dialing messages sent by the server.

NTFY dial recv Number of NTFY (Notify) dialing messages received by the server.

NTFY dial success Number of NTFY (Notify) dialing messages sent by the server that
succeeded.

NTFY dial failed Number of NTFY (Notify) dialing messages sent by the server that
failed.

CRCX messages

CRCX sent Number of CRCX (Create Connection) messages sent by the server.

CRCX recv Number of CRCX (Create Connection) messages received by the
server.

CRCX success Number of CRCX (Create Connection) messages sent by the server
that succeeded.

Chapter 9 Bulk MGCP

– 511 –

CRCX failed Number of CRCX (Create Connection) messages sent by the server
that failed.

MDCX messages

MDCX sent Number of MDCX (Modify Connection) messages sent by the server.

MDCX recv Number of MDCX (Modify Connection) messages received by the
server.

MDCX success Number of MDCX (Modify Connection) messages sent by the server
that succeeded.

MDCX failed Number of MDCX (Modify Connection) messages sent by the server
that failed.

DLCX messages

DLCX sent Number of DLCX (Delete Connection) messages sent by the server.

DLCX recv Number of DLCX (Delete Connection) messages received by the
server.

DLCX success Number of DLCX (Delete Connection) messages sent by the server
that succeeded.

DLCX failed Number of DLCX (Delete Connection) messages sent by the server
that failed.

RQNT messages

RQNT sent Number of RQNT (Notification Request) messages sent by the server.

RQNT recv Number of RQNT (Notification Request) messages received by the
server.

RQNT success Number of RQNT (Notification Request) messages sent by the server
that succeeded.

RQNT failed Number of RQNT (Notification Request) messages sent by the server
that failed.

AUEP messages

AUEP sent Number of AUEP (Audit Endpoint) messages sent by the server.

AUEP recv Number of AUEP (Audit Endpoint) messages received by the server.

AUEP success Number of AUEP (Audit Endpoint) messages sent by the server that
succeeded.

Chapter 9 Bulk MGCP

– 512 –

AUEP failed Number of AUEP (Audit Endpoint) messages sent by the server that
failed.

AUCX messages

AUCX sent Number of AUCX (Audit Connection) messages sent by the server.

AUCX recv Number of AUCX (Audit Connection) messages received by the server.

AUCX success Number of AUCX (Audit Connection) messages sent by the server that
succeeded.

AUCX failed Number of AUCX (Audit Connection) messages sent by the server that
failed.

EPCF messages

EPCF sent Number of EPCF (Endpoint Configuration) messages sent by the
server.

EPCF recv Number of EPCF (Endpoint Configuration) messages received by the
server.

EPCF success Number of EPCF (Endpoint Configuration) messages sent by the server
that succeeded.

EPCF failed Number of EPCF (Endpoint Configuration) messages sent by the server
that failed.

RSIP messages

RSIP sent Number of RSIP (Restart in Progress) messages sent by the server.

RSIP recv Number of RSIP (Restart in Progress) messages received by the
server.

RSIP success Number of RSIP (Restart in Progress) messages sent by the server
that succeeded.

RSIP failed Number of RSIP (Restart in Progress) messages sent by the server
that failed.

1XX Responses

Responses_1XX sent Number of 100-series responses sent by the server. 100-series
responses indicate provisional responses.

Responses_1XX recv Number of 100-series responses received by the server.

Chapter 9 Bulk MGCP

– 513 –

2XX Responses

Responses_2XX sent Number of 200-series responses sent by the server. 200-series
responses indicate successful completion.

Responses_2XX recv Number of 200-series responses received by the server.

3XX Responses

Responses_3XX sent Number of 300-series responses sent by the server.

Responses_3XX recv Number of 300-series responses received by the server.

4XX Responses

Responses_4XX sent Number of 400-series responses sent by the server. 400-series
responses indicate a transient error.

Responses_4XX recv Number of 400-series responses received by the server.

5XX Responses

Responses_5XX sent Number of 500-series responses sent by the server. 500-series
responses indicate a permanent error.

Responses_5XX recv Number of 500-series responses received by the server.

Transport Statistics

MGCP Signaling Bytes
Transmitted

Number of MGCP signaling bytes transmitted.

MGCP Signaling Bytes
Received

Number of MGCP signaling bytes received.

MGCP Signaling UDP
Packets Transmitted

Number of UDP packets containing MGCP signaling bytes transmitted.

MGCP Signaling UDP
Packets Received

Number of UDP packets containing MGCP signaling bytes received.

Objectives Statistics

MGCP Simulated Users Number of MGCP users simulated during the test.

MGCP connections initiated Number of MGCP connections initiated during the test.

MGCP connections
completed

Number of MGCP connections successfully completed during the test.

MGCP connections active Number of MGCP connections active.

Chapter 9 Bulk MGCP

– 514 –

MGCP connections failed
busy

Number of MGCP connections that failed because they received a
Busy tone.

MGCP connections failed
reorder

Number of initiated MGCP connections that failed because they
received a Reorder tone.

Chapter 9 Bulk MGCP

– 515 –

This page intentionally left blank.

– 516 –

CHAPTER 10 Bulk SIP
This section describes the SIP Tcl API objects.

Overview
The IxLoad SIP API consists of a client agent, a server agent, and their com

– 517 –

Objectives
The objectives (userObjective) you can set for SIP are listed below. Test objecare set in the ixTimeline
object.

l simulatedUsers

l useragents

l transactionRate

l bhca

l callsPerSec (displays as “Calls Initiated Per Second” in the GUI)

l registrationsinitiated (displays as “Registrations Initiated Per Second” in the GUI)

l redirectionsinitiated (displays as “Redirections Initiated Per Second” in the GUI)

Chapter 10 Bulk SIP

– 518 –

SIP Client Commands
This section describes the SIP client Tcl API objects.

Chapter 10 Bulk SIP

– 519 –

SIP Client Agent
The SIP Client Agent command defines a simulated user using SIP to establish and terminate sessions
SIP. Refer to SIP Client Agent for a full description of this command. The most significant options of
this command are listed below.

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Chapter 10 Bulk SIP

– 520 –

General Settings
The SIP Client Agent General Settings command sets the SIP client agent’s genconfiguration options.
Refer to General Settings for a full description of this command. The most significant options of this
command are listed below.

Option Description

szAuthUsername User name to be registered with registrar.

szAuthPassword Password to be registered with registrar.

szAuthDomain Domain to be registered with registrar.

szTransport Type of transport to be used.

nUdpPort Port number to be used for sending and receiving SIP mesover UDP.

nTcpPort Port number to be used for sending and receiving SIP mesover TCP.

nUdpMaxSize Maximum size, in Kb, of a SIP message that will be sent.

szRegistrar Host name or IP address and port number of registrar.

bRegBefore If true, before starting the Originate Call/EnCall --> Receive call process, the
IxLoad SIP client registers with the proxy server.

enableTosSIP Enables the setting of the TOS (Type of Service) bits in the header of the SIP
packets.

enableTosRtp Enables the setting of the TOS (Type of Service) bits in the header of the RTP
data packets.

type_of_
service_for_sip

IP Precedence / TOS (Type of Service) bit setting and Assured Forwarding classes
for the SIP packets.

type_of_
service_for_rtp

IP Precedence / TOS (Type of Service) bit setting and Assured Forwarding classes
for RTP data packets.

Chapter 10 Bulk SIP

– 521 –

Content of Messages
The SIP Client Agent Content of Messages command specifies the content of the SIP messages sent by
the client. Refer to Content of Messages for a full descripof this command. The most significant
options of this command are listed below.

Option Description

bRoute If true, IxLoad inserts a Route header field into the SIP mes

szRoute If bRoute is true, this parameter specifies the Route header field used to force
the request to follow a fixed route through a listed set of proxies.

bCompact If true, IxLoad uses the compact forms of the SIP header field notations.

bFolding If true, the VIA field spans two lines. Some SIP devices many not be able to
handle this.

bScattered If true, IxLoad moves the header fields around in the mesin order to make it
more difficult for the DUT to decode the message.

bAdvisable If true, the SIP request includes the header fields that are defined as
‘mandatory’ by the SIP RFC (RFC 3261), plus those that are recommended as
‘advisable.’

bOptional If true, the SIP request includes the header fields that are defined as
‘mandatory’ by the SIP RFC (RFC 3261), plus those that are listed as ‘optional.’

bBestPerformance If true, IxLoad inserts the headers into the message so that the message can
be processed as quickly as possible by the receiving system.

szREQUESTURI User or service to which the SIP request is being addressed.

szFROM Initiator of the SIP request.

szTO Logical recipient of the request.

szCONTACT Contact header field.

rulesTable Rules defining how this message will be handled.

Chapter 10 Bulk SIP

– 522 –

Rules
The SIP Client Agent Rules command defines a rule for handling a SIP message. Refer to Rules for a full
description of this command. The most significant options of this command are listed below.

Option Description

szMessage Type of message the rule will apply to.

szAction Action that rule performs.

szValue Numerical value for the szAction.

Chapter 10 Bulk SIP

– 523 –

State Machine
The SIP Client Agent State Machine command configures the SIP client agent’s internal timers and
other parameters of its state machine. Refer to State Machine for a full description of this command.
The most significant options of this comare listed below.

Option Description

nTimersT1 Estimate of the round-trip time (RTT).

nTimersT2 Maximum retransmit interval, in milliseconds (ms), for non-INVITE requests and
INVITE responses.

nTimersT4 Maximum length of time, in milliseconds (ms), that a message will remain in the
network.

nTimersTC Proxy INVITE transaction timeout.

nTimersTD Wait time for response retransmits.

bUseTimer If true, IxLoad enforces a timeout limit on transactions.

nTimeout Transaction timeout interval.

bRecv5xx If true and IxLoad receives a 5xx series response to a transaction, IxLoad marks
it as a failed transaction, and increments the transfailure statistics.

nReRegDuration In the event that IxLoad fails to register with a registrar, this field defines the
amount of time allowed to re-registration.

bNextOnFail If true and IxLoad encounters a transaction failure, it continues processing SIP
requests.

Chapter 10 Bulk SIP

– 524 –

Media Settings
The SIP Client Agent Media Settings command selects and configures the streaming audio files for the
multimedia session that the client will play over RTP. Refer to Media Settings for a full description of
this command. The most significant options of this command are listed below.

Option Description

szCodecName Codec to be used to encode waveform audio files listed in the Audio Clips
Pool.

szCodecDetails Displays the properties of the codec such as the number of bytes per frame of
compressed audio, and the rate at which packets are sent over the
connection.

szCodecDescr Codec description.

bModifyPowerLevel If true, IxLoad modifies the volume of the compressed audio.

szPowerLevel If bModifyPowerLevel is true, this parameter specifies the amount of gain
(volume) added to compressed audio.

bUseJitter Enables or disables use of the jitter buffer.

bJitMs Defines the method used to set the jitter buffer size.

nJitterBuffer Jitter Buffer size, in packets.

nJitterMs Jitter Buffer size, in milliseconds.

bUseCompensation Enables or disables use of the compensation jitter buffer.

bCompMs Defines the method used to set the compensation jitter buffer size.

nCompJitterBuffer Compensation jitter buffer maximum size, in packets.

nCompJitterMs Compensation jitter buffer maximum size, in milliseconds.

nCompMaxDropped Maximum dropped consecutive packets.

bUseMOS Enables or disables use of MOS.

bMosOnMax Defines whether MOS is calculated for a subset of streams or for all streams.

nMosMaxStreams Maximum number of concurrent streams used in MOS calcu

nMosInterval Frequency at which IxLoad samples the RTP streams to genthe MOS scores.

nDtmfDuration Length of time allowed to play the DTMF sequence.

Chapter 10 Bulk SIP

– 525 –

nDtmfInterdigits Duration (in milliseconds) of the DTMF interdigit signal.

bLimitDtmf Enable or disable limitation on the number of DTMF streams to be processed.

nDtmfStreams Number of streams to which path confirmation will be applied.

nPcInterval If Synthetic path confirmation is selected, this is the interval at which IxLoad
add the synthetic RTP packets to the stream.

nSessionType Type of voice session.

szDtmfSeq DTMF sequence used for path confirmation.

szPeerCodecName Name of codec used by peer.

szPeerCodecDetails Details of codec used by peer.

szPeerDtmfSeq DTMF sequence used by peer.

nPeerDtmfDuration DTMF duration used by peer.

nPeerDtmfInterdigits Inter-digits interval used by peer.

audioClipsTable This list contains the waveform audio files that the SIP client will play.

Chapter 10 Bulk SIP

– 526 –

Audio Clips Pool
The SIP Client Agent Audio Clips Pool defines an audio file to be included in the list that the SIP client
will play. Refer to Audio Clips Pool for a full description of this command. The most significant
options of this command are listed below.

Option Description

szWaveName Waveform audio (.wav) file.

szDataFormat Encoding format of waveform audio file.

nSampleRate Number of samples taken per second from the recording source.

nResolution Number of bits per sample.

nChannels Number of audio channels.

nDuration Playing time of audio file.

nSize Size of audio file, in bytes.

szRawWaveName Name and path of wave file to be added to the list.

Chapter 10 Bulk SIP

– 527 –

Video Settings
The Video Settings tab defines the controls that you can use to define the paramof the synthetic video
the SIP server generates for a MEDIASESSION sceRefer to Video Settings for a full description of this
command. The most significant options of this command are listed below.

Option Description

videoBitrate Bit rate of generated (synthetic) video data.

videoBitrateLimit The videoBitrate limit in Kbps.

Chapter 10 Bulk SIP

– 528 –

Scenarios
The SIP Client Agent Scenarios is the list of SIP commands that the client will send to a SIP server.
Refer to Scenarios for a full description of this command. The most significant options of this
command are listed below.

Option Description

id SIP command to be executed.

Chapter 10 Bulk SIP

– 529 –

SIP Server Commands
The structure of the SIP server API is shown below.

Chapter 10 Bulk SIP

– 530 –

SIP Server Agent
The SIP Server Agent command defines a simulated user using SIP to establish and terminate sessions
SIP. Refer to SIP Server Agent for a full description of this command. The most significant options of
this command are listed below.

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Chapter 10 Bulk SIP

– 531 –

General Settings
The SIP Server Agent General Settings command sets the SIP server agent’s genconfiguration options.
The options for this command are similar to those for the SIP client agent.

Chapter 10 Bulk SIP

– 532 –

Content of Messages
The SIP Server Agent Content of Messages command specifies the content of the SIP messages sent by
the server. The options for this command are similar to those for the SIP client agent.

Chapter 10 Bulk SIP

– 533 –

Rules
The SIP Server Agent Rules command defines a rule for handling a SIP message. The options for this
command are similar to those for the SIP client agent.

Chapter 10 Bulk SIP

– 534 –

State Machine
The SIP Server Agent State Machine command configures the SIP server agent’s internal timers and
other parameters of its state machine. The options for this command are similar to those for the SIP
client agent.

Chapter 10 Bulk SIP

– 535 –

Media Settings
The SIP Server Agent Media Settings command selects and configures the streaming audio files for the
multimedia session that the server will play over RTP. The options for this command are similar to
those for the SIP client agent.

Chapter 10 Bulk SIP

– 536 –

Audio Clips Pool
The SIP Server Agent Audio Clips Pool defines an audio file to be included in the list that the SIP server
will play. The options for this command are similar to those for the SIP client agent.

Chapter 10 Bulk SIP

– 537 –

Scenarios
The SIP Server Agent Scenarios is the list of SIP commands that the server will send to a SIP client.
The options for this command are similar to those for the SIP client agent.

Chapter 10 Bulk SIP

– 538 –

SIP Client Agent
SIP Client Agent - create a SIP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.config

DESCRIPTION

An SIP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity SIPClient1
of NetTraffic Traffic1@Network1###set
Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"SIP Client"]## Timeline1 for
activities SIPClient1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_SIPClient1 config
\-enable true \-name
"SIPClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType

Chapter 10 Bulk SIP

– 539 –

"useragents" \-timeline $Timeline1$Activity_
SIPClient1 agent.config \-enable true \-name
"SIPClient1"$Activity_SIPClient1 agent.pm.generalSettings.config \-dhcpServerPort
5060 \-ipv6Form 0 \-bRemoveCredent
false \-bRegBefore false \-type_of_service_for_rtp
"Best Effort (0x0)" \-_gbDhcpServerPort false \-nUdpMaxSize
1024 \-nUdpPort 5060 \-szAuthDomain
"domain\[0000-\]" \-vlan_priority_sip 0 \-useDhcp
false \-enableTosSIP false \-implicitLoopCheck
true \-ipPreference 0 \-_gbIpPreference
false \-nPrefQop 0 \-szRegistrar
"127.0.0.1:5060" \-enableVlanPriority_for_sip false \-nTcpPort
5060 \-szTransport "UDP" \-szAuthPassword
"password\[0000-\]" \-type_of_service_for_sip "Best Effort (0x0)" \-
szAuthUsername "user\[0000-\]" \-enableTosRTP
false \-compressZeros false$Activity_SIPClient1
agent.pm.mediaSettings.config \-nPcInterval 500 \-
nJitterBuffer 1 \-nDtmfInterdigits
40 \-nCompMaxDropped 7 \-nPeerDtmfDuration
0 \-nJitterMs 20 \-bSilenceMode
1 \-nAudioPoolTime 1178615586 \-szBitRate
"64 kbps" \-nDtmfDuration 100 \-szPeerCodecName
"" \-szSilenceFile "" \-bytesPerFrameBuffer
"" \-groupBox_MOS1 false \-szPeerCodecDetails
"" \-bMosOnMax 0 \-groupBox_JB1
false \-nMosInterval 3 \-nCompJitterBuffer
50 \-bUseJitter false \-szCodecName
"G711ALaw" \-szPeerDtmfSeq "" \-bLimitDtmf
true \-bUseMOS false \-bJitMs
0 \-szCodecDescr "ITU-T G.711 is a standard to represent
8 bit compressed pulse code modulation (PCM) samples for signals of voice
frequencies, sampled at the rate of 8000 samples/second. G.711 encoder will create a
64 Kbps bitstream. A-Law G.711 PCM encoder converts 13 bit linear PCM samples into 8
bit compressed PCM (logarithmic form) samples, and the decoder does the conversion
vice versa." \-bCompMs 0 \-nDtmfStreams
10 \-packetTimeBuffer "" \-szPowerLevel
"PL_20" \-szDtmfSeq "12345" \-nCompJitterMs
1000 \-nPeerDtmfInterdigits 0 \-bRtpStartCollector
false \-nMosMaxStreams 1 \-szCodecDetails
"BF160PT20" \-nSessionType 0 \-bUseSilence
false \-bModifyPowerLevel false \-bUseCompensation
false$Activity_SIPClient1 agent.pm.contentOfMessages.config \-bFolding
false \-bBestPerformance 1 \-szRoute
"Route: <sip:p1.example.com;lr>,<sip:p2.domain.com;lr>" \-bOptional
false \-szCONTACT "<sip:id\[00000-\]@IP>" \-bAdvisable
false \-bCompact false \-bRoute
false \-szFROM "<sip:id\[00000-\]@IP>" \-szTO
"<sip:id\[50000-\]@IP>" \-szREQUESTURI "sip:id\[50000-

Chapter 10 Bulk SIP

– 540 –

\]@IP" \-bScattered false$Activity_SIPClient1
agent.pm.contentOfMessages.rulesTable.clear$Activity_SIPClient1
agent.pm.stateMachine.config \-bNextOnFail true \-
nTimersT4 5000 \-nReRegDuration
0 \-nTimersT1 500 \-nTimersT2
4000 \-bUseTimer false \-nTimeout
30000 \-nTimersTD 32000 \-nTimersTC
180000 \-bRecv5xx false$Activity_SIPClient1
agent.pm.videoSettings.config \-videoBitrate 128.0 \-
videoBitrateLimit 0$Activity_SIPClient1
agent.pm.scenarios.clear$Activity_SIPClient1 agent.pm.scenarios.appendItem \-id
"ORIGINATECALL" \-symDestination "Traffic2_SIPServer1:5060"
\-bNextCommandIsDetect false \-isLastCmd
false \-useDhcpForOriginate false \-hasVideo
false \-_gbDhcpServerPortForOriginate false \-dhcpServerPortForOriginate
5060$Activity_SIPClient1 agent.pm.scenarios.appendItem \-id
"ENDCALL" \-isLastCmd false \-szDummy03
""$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.clear$Activity_SIPClient1
agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Best Effort
(0x0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 1
(0x20)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 2
(0x40)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 3
(0x60)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 4
(0x80)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Express Forwarding
(0xA0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Control
(0xC0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Best Effort
(0x0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.clear$Activity_SIPClient1
agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Best Effort
(0x0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 1
(0x20)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 2
(0x40)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 3
(0x60)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 4
(0x80)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Express Forwarding
(0xA0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id

Chapter 10 Bulk SIP

– 541 –

"TypeOfServiceForSIP" \-tos_val_for_sip "Control
(0xC0)"$Activity_SIPClient1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Best Effort (0x0)"

SEE ALSO

ixNetTraffic

Chapter 10 Bulk SIP

– 542 –

General Settings
General Settings—Sets the SIP client agent’s general configuration options.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.generalSettings.config

DESCRIPTION

A SIP client’s advanced configuration options are set by modifying the options of the
pm.generalSettings option of the SIP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

ipv6Form

Specifies 0 (ipv4) or 1 (ipv6) to determine the types of networks (in the ixNetTraffic) that the SIP
client and server use.

All the fields that support IPv4 addresses also support IPv6 addresses. There are two methods for
entering IPv6 addresses in SIP fields: in square brackets ([]) or in vertical bar (pipe) symbols (|).

For the following options, enclose the address in square brackets ([]). For example
[::C212:1003]:5060

l szRegistrar;

l ORIGINATECALL command

l REGISTRATION command

l REDIRECTION command

For information on these options, see Scenarios.

In the Content of Messages object, the following four options accept IPV6 addresses. Enclose the
address for these options in vertical bar (pipe) symbols (|). (square brackets are used to enclose
sequence generators). The options are:

szREQUESTURI

szFROM

szTO

szCONTACT

szAuthUsername

Chapter 10 Bulk SIP

– 543 –

User name to be registered with registrar. You can include variables in this field to automatically
generate large numbers of unique user names. See Using Variables in SIP Fields on page 20-
80. Maximum length = 128 characters. (Default = "user[0000-]").

szAuthPassword

Password to be registered with registrar. You can include variables in this field to automatically
generate large numbers of unique passwords. See Using Variables in SIP Fields on page 20-80.
Maximum length = 128 characters.
(Default = "password[0000-]").

szAuthDomain

Domain to be registered with registrar. You can include variables in this field to automatically generate
large numbers of unique domains. See Using Variables in SIP Fields on page 20-80. Maximum
length = 128 characters. (Default = "domain[0000-]”).

szTransport

Type of transport to be used. The choices are:

Value Description

TCP IxLoad initially uses TCP as the transport. If the remote party answers using UDP, IxLoad
accepts the response and switches to UDP as the trans

UDP IxLoad initially uses UDP as the transport. If the remote party answers using TCP, IxLoad
accepts the response and switches to TCP as the trans

Only
TCP

IxLoad uses only TCP as the transport. If the remote party answers using UDP, IxLoad
discards the response and continues using TCP.

Only
UDP

IxLoad uses only UDP as the transport. If the remote party answers using TCP, IxLoad
discards the response and continues using UDP.

 nUdpPort

Port number to be used for sending and receiving SIP messages over UDP. Mini= “1,” maximum =
“65,535.” (Default = "5,060").

nTcpPort

Port number to be used for sending and receiving SIP messages over TCP. Mini= “1,” maximum =
"65,535.” (Default = "5,060").

nUdpMaxSize

Maximum size, in Kb, of a SIP message that will be sent. If a message exceeds this size, IxLoad
ignores it.

szRegistrar

Host name or IP address and port number of registrar. This option also accepts IPV6 addresses that are
enclosed in square brackets. (Default = "127.0.0.1:5060).

Chapter 10 Bulk SIP

– 544 –

bRegBefore

If true, before starting the Originate Call/EnCall --> Receive call process, the IxLoad SIP client
registers with the proxy server. Registration occurs only once at the beginning of the test. (Default =
"0").

enableTosSIP

Enables the setting of the TOS (Type of Service) bits in the header of the SIP packets.

Value Description

0 (default) TOS bits disabled.

1 TOS bits enabled.

enableTosRtp

Enables the setting of the TOS (Type of Service) bits in the header of the RTP data packets.

Value Description

0 (default) TOS bits disabled.

1 TOS bits enabled.

type_of_service_for_sip

If enableTosSIP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the
standard choices that are in the GUI, you can use a string representation. To specify any of the other
255 TOS values, specify the decimal value. The default choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

type_of_service_for_rtp

Chapter 10 Bulk SIP

– 545 –

If enableTosRtp is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes for RTP data packets. See type_of_service_for_sip for the list of
choices. (Default = "Best Effort (0x0)").

enableVlanPriority_for_sip

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option sets the vlan priority value.

EXAMPLE
$Activity_SIPClient1 agent.pm.generalSettings.config \-dhcpServerPort
5060 \-ipv6Form 0 \-bRemoveCredent
false \-bRegBefore false \-type_of_service_for_rtp
"Best Effort (0x0)" \-_gbDhcpServerPort false \-nUdpMaxSize
1024 \-nUdpPort 5060 \-szAuthDomain
"domain\[0000-\]" \-vlan_priority_sip 0 \-useDhcp
false \-enableTosSIP false \-implicitLoopCheck
true \-ipPreference 0 \-_gbIpPreference
false \-nPrefQop 0 \-szRegistrar
"127.0.0.1:5060" \-enableVlanPriority_for_sip false \-nTcpPort
5060 \-szTransport "UDP" \-szAuthPassword
"password\[0000-\]" \-type_of_service_for_sip "Best Effort (0x0)" \-
szAuthUsername "user\[0000-\]" \-enableTosRTP
false \-compressZeros false

SEE ALSO

SIP Client Agent

Chapter 10 Bulk SIP

– 546 –

Content of Messages
Content of Messages—Specifies the content of the SIP messages sent by the cli

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.contentOfMessages.config

DESCRIPTION

A SIP client’s advanced configuration options are set by modifying the options of the
pm.contentOfMessages option of the SIP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

bRoute

If true, IxLoad inserts a Route header field into the SIP message. The route should contain a list of
specified proxies. Use the szRoute parameter to specify the route. (Default = "0").

szRoute

If bRoute is true, this parameter specifies the Route header field used to force the request to follow a
fixed route through a listed set of proxies. (Default = "Route:
<sip:p1.example.com;lr>,<sip:p2.domain.com;lr>).

bCompact

If true, IxLoad uses the compact forms of the SIP header field notations.The compact form is intended
for instances in which messages would otherwise become too large to be carried on the transport
available to it (exceeding the maximum transmission unit [MTU] when using UDP, for example).
(Default = "0").

bFolding

If true, the VIA field spans two lines. Some SIP devices many not be able to handle this. (Default =
"0").

bScattered

If true, IxLoad moves the header fields around in the message in order to make it more difficult for the
DUT to decode the message. (Default = "0").

bAdvisable

If true, the SIP request includes the header fields that are defined as ‘mandatory’ by the SIP RFC (RFC
3261), plus those that are recommended as ‘advisable.’ (Default = "0").

Chapter 10 Bulk SIP

– 547 –

bOptional

If true, the SIP request includes the header fields that are defined as ‘mandatory’ by the SIP RFC (RFC
3261), plus those that are listed as ‘optional.’ (Default = "0").

bBestPerformance

If true, IxLoad inserts the headers into the message so that the message can be processed as quickly
as possible by the receiving system. If false, IxLoad inserts the headers into the message so that it
requires maximum processing by the receiving system. (Default = "1").

szREQUESTURI

User or service to which the SIP request is being addressed. You can include variables iin this field to
automatically generate large numbers of unique domains. Maximum length = 128 characters. This
option also accepts IPV6 addresses that are enclosed in square brackets(Default = “sip:id
[50000-]@IP”).

szFROM

Initiator of the SIP request. You can include variables in this field to autogenerate large numbers of
unique domains. This option also accepts IPV6 addresses that are enclosed in square brackets.
(Default = “sip:id[50000-]@IP”).

szTO

Logical recipient of the request. You can include variables in this field to autogenerate large numbers
of unique domains. Maximum length = 128 characters. This option also accepts IPV6 addresses that
are enclosed in square brackets. (Default = “sip:id[50000-]@IP”).

szCONTACT

The Contact header field value provides a URI whose meaning depends on the type of request or
response it is in.The Contact header field has a role similar to the Location header field in HTTP. You
can include variables in this field to autogenerate large numbers of unique domains. See Using
Variables in SIP Fields on page 20-80. Maximum length = 128 characters. This option also
accepts IPV6 addresses that are enclosed in square brackets. (Default = “sip:id[50000-]@IP”).

rulesTable

This is a list of type Rules. The rules in this list define how this message will be handled. (Default =
{}).

EXAMPLE
$Activity_SIPClient1 agent.pm.contentOfMessages.config \-bFolding
false \-bBestPerformance 1 \-szRoute
"Route: <sip:p1.example.com;lr>,<sip:p2.domain.com;lr>" \-bOptional
false \-szCONTACT "<sip:id\[00000-\]@IP>" \-bAdvisable
false \-bCompact false \-bRoute
false \-szFROM "<sip:id\[00000-\]@IP>" \-szTO
"<sip:id\[50000-\]@IP>" \-szREQUESTURI "sip:id\[50000-
\]@IP" \-bScattered false

Chapter 10 Bulk SIP

– 548 –

SEE ALSO

SIP Client Agent

Chapter 10 Bulk SIP

– 549 –

State Machine
State Machine—Configures the SIP client agent’s internal timers and other parameters of its state
machine.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.stateMachine.config

DESCRIPTION

A SIP client’s state machine parameters are set by modifying the options of the pm.StateMachine
option of the SIP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

nTimersT1

Estimate of the round-trip time (RTT), in milliseconds (ms). (Default = "500").

nTimersT2

Maximum retransmit interval, in milliseconds (ms), for non-INVITE requests and INVITE responses.
(Default = "4,000").

nTimersT4

Maximum length of time, in milliseconds (ms), that a message will remain in the network.
(Default="5,000").

nTimersTC

Proxy INVITE transaction timeout. Minimum = 180,000. (Default = "180,000").

nTimersTD

Wait time for response retransmits. For UDP, this must be greater than 32 sec(Default = "32,000").

bUseTimer

If true, IxLoad enforces a timeout limit on transactions. If a transaction exceeds the timeout value,
IxLoad marks it as a failed transaction, and increments the transaction failure statistics. (Default =
"0").

nTimeout

If bUseTimer is true, this parameter specifies the transaction timeout interval, in in milliseconds (ms).
(Default = "30,000").

Chapter 10 Bulk SIP

– 550 –

bRecv5xx

If true and IxLoad receives a 5xx series response to a transaction, IxLoad marks it as a failed
transaction, and increments the transaction failure statistics. (Default = "0").

nReRegDuration

In the event that IxLoad fails to register with a registrar, this field defines the amount of time allowed
to re-registration. Minimum = “0,” maximum = "60,000." (Default = "0").

bNextOnFail

If true and IxLoad encounters a transaction failure, it continues processing SIP requests. If false and
IxLoad encounters a transaction failure, it stops processing SIP requests. (Default = "1").

EXAMPLE
$Activity_SIPClient1 agent.pm.stateMachine.config \-bNextOnFail
true \-nTimersT4 5000 \-nReRegDuration
0 \-nTimersT1 500 \-nTimersT2
4000 \-bUseTimer false \-nTimeout
30000 \-nTimersTD 32000 \-nTimersTC
180000 \-bRecv5xx false

SEE ALSO

SIP Client Agent

Chapter 10 Bulk SIP

– 551 –

Media Settings
Media Settings—Selects and configures the streaming audio files for the multimedia session that the
client will play over RTP.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.mediaSettings.config

DESCRIPTION

A SIP client’s advanced configuration options are set by modifying the options of the
pm.mediaSettings option of the SIP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

szCodecName

Codec to be used to encode waveform audio files listed in the Audio Clips Pool. The choices are:

Value Description

“G711ALaw” (default) G.711 A-law

“G711ULaw” G.711 mu-law

“G729A” G.729A

“G729B” G.729B

“G726” G.726

“G723_1” G.723.1

szCodecDetails

Displays the properties of the codec such as the number of bytes per frame of compressed audio, and
the rate at which packets are sent over the connection. (Default = {}).

szCodecDetails from Media Settings has a special format: BFval1PTval2, where:

Value Description

“val1” Number of codec bytes per frame (only the rtp payload; do not add the 12 bytes for the rtp
header)

Chapter 10 Bulk SIP

– 552 –

“val2” The packet time

These two options specify information about the packetization.

szCodecDescr

Codec description. (Default = {}).

szBitRate

This specifies the bit rate of the codec being used. Possible values are:

Codec Bit Rate

G711Alaw 64 kbps

G711Ulaw 64 kbps

G723.1 5.3 kbps

6.3 kbps

G726 40 kbps

G729A 8 kbps

G729B 8 kbps

AMR 4.75 kbps

5.15 kbps

5.9 kbps

6.7 kbps

7.4 kbps

7.95 kbps

10.2 kbps

12.2 kbps

iLBC 13.33 kbps

15.2 kbps

bModifyPowerLevel

If true, IxLoad modifies the volume of the compressed audio. (Default = "0").

szPowerLevel

If bModifyPowerLevel is true, this parameter specifies the amount of gain (volume added to
compressed audio. The choices are:

Chapter 10 Bulk SIP

– 553 –

Value Description

"PL0" (default) 0 dB

"PL_10" -10 dB

"PL_20" -20 dB

"PL_30" -30 dB

bUseJitter

Enables or disables use of the jitter buffer. (Default = "0").

bJitMs

Defines the method used to set the jitter buffer size.

Value Description

0

(Default). Jitter buffer size is set by nJitterBuffer.

1 Jitter buffer size is set by nJitterMs.

nJitterBuffer

Number of packets to buffer in order to reduce jitter. Minimum = “0,” maximum = “3.” (Default = 0).

nJitterMs

Jitter Buffer size, in milliseconds. Minimum = “1,” maximum = “3,000.” (Default = “20”).

bUseCompensation

Enables or disables use of the compensation jitter buffer. (Default = "0").

bCompMs

Defines the method used to set the compensation jitter buffer size.

Value Description

0 (Default). Compensation jitter buffer size is set by nCompJitterBuffer.

1 Compensation jitter buffer size is set by nCompJitterMs.

nCompJitterBuffer

Chapter 10 Bulk SIP

– 554 –

Compensation jitter buffer maximum size, in packets. Minimum = “0,” maxi= “300.” (Default =
"50").

nCompJitterMs

Compensation jitter buffer maximum size, in milliseconds. Minimum = “0,” maximum = “3,000.”
(Default = "1,000").

nCompMaxDropped

Maximum dropped consecutive packets. Minimum = “1,” maximum = “100,” (Default = “7”).

bUseMOS

Enables or disables use of MOS. (Default = "0").

bMosOnMax

Defines whether MOS is calculated for a subset of streams or for all streams.

Value Description

0 (Default). MOS calculation is applied to all streams.

1 MOS calculation is applied to the number of streams specified by nMosMax.

 nMosMaxStreams

Maximum number of concurrent streams used in MOS calculation. Minimum = “1.” (Default = "1").

nMosInterval

Frequency at which IxLoad samples the RTP streams to generate the MOS scores. Minimum = “2,”
maximum = “30.” (Default = "3").

nDtmfDuration

Length of time allowed to play the DTMF sequence. Minimum = “60,” maxi= “999.” (Default =
"100").

nDtmfInterdigits

Duration (in milliseconds) of the DTMF interdigit signal. Minimum = "30,” max= "9999.” (Default =
"40").

bLimitDtmf

Enable or disable limitation on the number of DTMF streams to be processed. (Default = “1”).

Value Description

Chapter 10 Bulk SIP

– 555 –

0 DTMF applied to all streams.

1 (Default) DTMF limited to number of streams specified by nDtmfStreams.

 nDtmfStreams

Number of streams to which path confirmation will be applied. Minimum = "1," maximum = “900.”
(Default = "10").

nPcInterval

If Synthetic path confirmation is selected, this is the interval at which IxLoad add the synthetic RTP
packets to the stream. Minimum = "1,” (Default = "500").

nSessionType

Type of voice session. The choices are:

Value Description

“0“

(default) Plays audio file specified by szAudioFile.

“1“ Perform DTMF path confirmation.

“2“ Perform synthetic DTMF path confirmation.

szDtmfSeq

DTMF sequence used for path confirmation. (Default = "12,345").

szPeerCodecName

Name of codec used by peer. (Default = {}).

szPeerCodecDetails

Details of codec used by peer. (Default = {}).

szPeerDtmfSeq

DTMF sequence used by peer. (Default = {}).

nPeerDtmfDuration

DTMF duration used by peer. (Default = "0").

nPeerDtmfInterdigits

Inter-digits interval used by peer. (Default = "0").

audioClipsTable

Chapter 10 Bulk SIP

– 556 –

This is a list of type Audio Clips Pool. This list contains the waveform audio files that the SIP
message will send. (Default = {}).

bUseSilence

If enabled, IxLoad generates and sends artificial background noise during times of silence during a
call.

bSilenceMode

Indicates the method used to generate the background noise. Possible Values are:

Value Description

“0“ Comfort Noise silence type.

“1“ Null Data encoded silence type.

bRtpStartCollector

Specifies, whether the statistics for rtp should be collected or not. Possible values are:

Value Description

0 Do not start

1 Start

EXAMPLE
$Activity_SIPClient1 agent.pm.mediaSettings.config \-nPcInterval
500 \-nJitterBuffer 1 \-nDtmfInterdigits
40 \-nCompMaxDropped 7 \-nPeerDtmfDuration
0 \-nJitterMs 20 \-bSilenceMode
1 \-nAudioPoolTime 1178615586 \-szBitRate
"64 kbps" \-nDtmfDuration 100 \-szPeerCodecName
"" \-szSilenceFile "" \-bytesPerFrameBuffer
"" \-groupBox_MOS1 false \-szPeerCodecDetails
"" \-bMosOnMax 0 \-groupBox_JB1
false \-nMosInterval 3 \-nCompJitterBuffer
50 \-bUseJitter false \-szCodecName
"G711ALaw" \-szPeerDtmfSeq "" \-bLimitDtmf
true \-bUseMOS false \-bJitMs
0 \-szCodecDescr "ITU-T G.711 is a standard to represent
8 bit compressed pulse code modulation (PCM) samples for signals of voice

Chapter 10 Bulk SIP

– 557 –

frequencies, sampled at the rate of 8000 samples/second. G.711 encoder will create a
64 Kbps bitstream. A-Law G.711 PCM encoder converts 13 bit linear PCM samples into 8
bit compressed PCM (logarithmic form) samples, and the decoder does the conversion
vice versa." \-bCompMs 0 \-nDtmfStreams
10 \-packetTimeBuffer "" \-szPowerLevel
"PL_20" \-szDtmfSeq "12345" \-nCompJitterMs
1000 \-nPeerDtmfInterdigits 0 \-bRtpStartCollector
false \-nMosMaxStreams 1 \-szCodecDetails
"BF160PT20" \-nSessionType 0 \-bUseSilence
false \-bModifyPowerLevel false \-bUseCompensation
false

SEE ALSO

SIP Client Agent

Chapter 10 Bulk SIP

– 558 –

Video Settings
Video Settings—Contains the controls that you can use to define the parameters of the synthetic video
the SIP server generates for a MEDIASESSION scenario.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.videoSettings.config \

DESCRIPTION

Video Settings is configured and added to an SIP activity.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

videoBitrate

Bit rate of generated (synthetic) video data.

videoBitrateLimit

The videoBitrate limit in Kbps.

EXAMPLE
$Activity_SIPClient1 agent.pm.videoSettings.config \-videoBitrate
128.0 \-videoBitrateLimit 0$Activity_SIPClient1
agent.pm.scenarios.clear

SEE ALSO

Media Settings

Chapter 10 Bulk SIP

– 559 –

Scenarios
Scenarios—Creates the list of SIP commands that the client will send to a SIP server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SIPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_SIPClient1 agent.pm.scenarios.appendItem

DESCRIPTION

A command is added to the Scenarios object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

SIP command to be executed. One of the following:

Command Description

REGISTRATION Registers the SIP client with a registrar. This option also accepts IPV6 addresses
that are enclosed in square brackets.

ORIGINATECALL Sets up a multimedia session with the specified destination. This option also
accepts IPV6 addresses that are enclosed in square brackets.

THINK Pause during command list processing. You should include a {Think} command
whenever necessary to allow the destination to process the preceding commands.
You can configure a pause of fixed length or of random length.

ENDCALL Terminates the SIP session.

REDIRECTION Redirects the request for a SIP session from one proxy to another. This option
also accepts IPV6 addresses that are enclosed in square brackets.

VOICESESSION Plays one of the waveform audio files listed in the Audio Clips Pool on the Media
Settings tab. The SIP client sends the file to the desticonfigured for the previous
Originate Call command in the command list.

GENERATEMF Generates multi-frequency tone sequences. The sequences are encoded using a
G.711 voice codec and sent in-band over RTP.

Chapter 10 Bulk SIP

– 560 –

GENERATEDTMF Generates dual-tone multi-frequency sequences. The sequences are encoded
using a G.711 voice codec and sent in-band over RTP.

GENERATETONE Generates tone sequences. The sequences are encoded using a G.711 voice
codec and sent in-band over RTP.

DETECTDTMF Detects the tones generated by the DETECTDTMF, DETECTMF, or DETECTTONE
commands.

MEDIASESSION Simulates a call made using a video phone. MEDIASESSION transaudio similar to
the VOICESESSION command and, optionally, generates simulated video data.
MEDIASESSION must be preceded by ORIGINATECALL and succeeded by
ENDCALL.

Arguments for id = REGISTRATION

bUseDest

If true, the registration is sent to the address specified by szDestination. If false, the registration is
sent to the Registrar configured by the General Settings com(Default = "1").

szDestination

Registrar that the registration will be sent to. This option also accepts IPV6 addresses that are
enclosed in square brackets. (Default = "127.0.0.1:5060").

Arguments for id = ORIGINATECALL

symDestination

Destination of the call. If the destination is an external host, specify its address or host name and port
number. If the destination is an IxLoad SIP server agent, specify the name of the agent. This option
also accepts IPV6 addresses that are enclosed in square brackets. (Default = "None").

Arguments for id = THINK

nThinkMin

Minimum length of the pause, in milliseconds. To configure a fixed-length pause, enter the same value
in this field and nThinkMax. (Default = "1,000”).

nThinkMax

Maximum length of the pause, in milliseconds. To configure a fixed-length pause, enter the same value
in this field and nThinkMin. (Default = "1,000”).

Arguments for id = ENDCALL

None.

Chapter 10 Bulk SIP

– 561 –

Arguments for id = REDIRECTION

szDestination

Address of the proxy to which the request is to be redirected to. This option also accepts IPV6
addresses that are enclosed in square brackets. (Default = "127.0.0.1:5060").

Arguments for id = VOICESESSION

szAudioFile

Waveform audio file that will be played during the session. This must be an szWaveName object
contained within the Audio Clips Pool object. (Default = "<None>”).

nPlayMode

If true, the audio file plays for a fixed number of times. If false, the audio file plays continuously.
(Default = “0“).

nRepeatCount

If nPlayMode is true, this parameter sets the number of times that the audio file will play. (Default =
"1").

nPlayTime

Length of time to play the audio file. Specify the units of time in the nTimeUnit.

nTimeUnit

Units of time used to set the audio file play time (nPlayTime). The choices are:

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

Arguments for id = GENERATEMF

szMfSeq

The sequence of MF digits to be generated.

nMfDuration

Length of time allowed to play the MF sequence. Minimum = “10”, Maximum = “990”.

nInterMfInterval

Chapter 10 Bulk SIP

– 562 –

Duration (in milliseconds) of the MF interdigit signal. Minimum = “10”, Maxi = “9990”.

nMfAmplitude

The amplitude of the signal generated by the sending sequence. Minimum = “-30”, Maximum = “-10”.

nPlayMode

The play mode to play the MF tones. Possible values are:

Value Description

0 Generate for a specified period of time

1 Repeat for a specified number of times

nRepeatCount

Number of times to repeat the generation of the sequence.

nPlayTime

The time units to play the specified sequence.

nTimeUnit

Signifies the time unit type. Possible values are:

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

Arguments for id = GENERATEDTMF

szDtmfSeq

The dtmf sequence to be generated.

nDtmfDuration

Length of time allowed to play the DTMF sequence. Minimum = “10”, Maximum = “990”.

nDtmfInterdigits

Duration (in milliseconds) of the DTMF interdigit signal. Minimum = “10”, Max = “9990”.

nDtmfAmplitude

Chapter 10 Bulk SIP

– 563 –

The signal amplitude generated for the stream containing the digits.

nPlayMode

The play mode to play the DTMF tones. Possible values are:

Value Description

0 Generate the specified sequence for a specified number of times

1 Generate the specified sequence for a specified time

nRepeatCount

Number of time to repeat the generation of the specified sequence.

Arguments for id = GENERATETONE

nToneName

This is the id for the tone. Possible values are:

Value Description

0 "600-10"

1 "1400-10"

2 "2500-10"

3 "550-20"

4 "1350-20"

5 "2450-20"

6 "650-30"

7 "2550-30"

8 "1450-30"

9 "3400-10"

10 "3400-30"

11 "2100-10"

12 "2150-30"

Chapter 10 Bulk SIP

– 564 –

13 "400-10"

14 "450-30"

15 "Confirmation Tone"

16 "Call Waiting Tone"

17 "TN_1"

-1 "Custom Tone"

nPlayMode

The play mode to play the MF tones. Possible values are:

Value Description

0 Generate for a specified period of time

1 Repeat for a specified number of times

nRepeatCount

Number of times to repeat the generation of the sequence.

nPlayTime

The time units to play the specified sequence.

nTimeUnit

Signifies the time unit type. Possible values are:

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

nToneDuration

The duration of a tone with only one frequency.

nFrequency1

Chapter 10 Bulk SIP

– 565 –

For a single tone, this is the frequency of the signal used to generate the tone. For a dual tone, this is
the frequency of the signal used to generate the lower band of the tone.

nFrequency2

For a dual tone, this is the frequency of the signal used to generate the upper band of the tone.

nAmplitude1

Amplitude of the nFrequency1 signal.

nAmplitude2

Amplitude of the nFrequency2 signal.

nOnTime

For a cadenced tone, this is the amount of time the tone signal or signals are played.

nOffTime

For a cadenced tone, this is the amount of time the tone signal or signals are muted.

nRepetitionCount

For a cadenced tone, this specifies the number of times that the On Time / Off Time cycle is repeated.

nToneType

The format of the tone. Possible values:

Value Description

0 “Single Tone”

1 “Dual Tone”

2 “Single Tone Cadence”

3 “Dual Tone Cadence”

Arguments for id = DETECTDTMF

nDTMFDetectionMode

Method used to detect tones. Possible values are:

Value Description

0 detect continuously for a specified time

Chapter 10 Bulk SIP

– 566 –

1 detect exactly a specified number of digits

2 detect a specified sequence

szDtmfSeq

Sequence of digits to detect.

nDetectTime

The number of time units to sustain the detect operation.

nDetectTimeUnit

Signifies the time unit type. Possible values are:

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

nDtmfCount

The exact number of digits to detect.

nFirstDTMFTimeout

The maximum time for the first digit to arrive and to be decoded.

nInterDTMFInterval

The maximum time between the arrival of digits.

Arguments for id = MEDIASESSION

nRepeatCount

Number of times to repeat the generation of the sequence.

nWavDuration

The time duration of a wave.

nTimeUnit

Signifies the time unit type. Possible values are:

Chapter 10 Bulk SIP

– 567 –

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

nPlayMode

The play mode to play the MF tones. Possible values are:

Value Description

0 Generate for a specified period of time

1 Repeat for a specified number of times

synthVideo

If enabled, the SIP client generates video data and transmits it to the server along with the audio to
simulate a video phone call. To configure the video parameters refer Video Settings.

szAudioFile

The name of the audio file that will be played.

szTotalTime

The total time for which an audio file will be played.

nTotalTime

The total time for which a .wav file will be played.

nPlayTime

The time units to play the specified sequence.

EXAMPLE
$Activity_SIPClient1 agent.pm.scenarios.appendItem \-id
"ORIGINATECALL" \-symDestination "Traffic2_SIPServer1:5060"
\-bNextCommandIsDetect false \-isLastCmd
false \-useDhcpForOriginate false \-hasVideo
false \-_gbDhcpServerPortForOriginate false \-dhcpServerPortForOriginate
5060$Activity_SIPClient1 agent.pm.scenarios.appendItem \-id
"ENDCALL" \-isLastCmd true \-szDummy03
""

SEE ALSO

Video Settings

Chapter 10 Bulk SIP

– 568 –

Chapter 10 Bulk SIP

– 569 –

SIP Server Agent
SIP Server Agent - create a SIP server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.config

DESCRIPTION

An SIP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity SIPServer1
of NetTraffic Traffic2@Network2###set
Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"SIP Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
SIPServer1 config \-enable true \-name
"SIPServer1" \-timeline $_Match_Longest_$Activity_
SIPServer1 agent.config \-enable true \-name
"SIPServer1"$Activity_SIPServer1 agent.pm.generalSettings.config \-dhcpServerPort
5060 \-ipv6Form 0 \-bRemoveCredent
false \-bRegBefore false \-type_of_service_for_rtp
"Best Effort (0x0)" \-_gbDhcpServerPort false \-nUdpMaxSize
1024 \-regInterval 0 \-szAuthDomain
"domain\[0000-\]" \-vlan_priority_sip 0 \-useDhcp
false \-enableTosSIP false \-nUdpPort

Chapter 10 Bulk SIP

– 570 –

5060 \-ipPreference 0 \-_gbIpPreference
false \-nPrefQop 0 \-szRegistrar
"127.0.0.1:5060" \-enableVlanPriority_for_sip false \-nTcpPort
5060 \-szTransport "UDP" \-szAuthPassword
"password\[0000-\]" \-type_of_service_for_sip "Best Effort (0x0)" \-
szAuthUsername "user\[0000-\]" \-enableTosRTP
false \-compressZeros false$Activity_SIPServer1
agent.pm.mediaSettings.config \-nPcInterval 500 \-
nJitterBuffer 1 \-nDtmfInterdigits
40 \-nCompMaxDropped 7 \-nPeerDtmfDuration
0 \-nJitterMs 20 \-bSilenceMode
1 \-nAudioPoolTime 1178615588 \-szBitRate
"64 kbps" \-nDtmfDuration 100 \-szPeerCodecName
"" \-szSilenceFile "" \-bytesPerFrameBuffer
"" \-groupBox_MOS1 false \-szPeerCodecDetails
"" \-bMosOnMax 0 \-groupBox_JB1
false \-nMosInterval 3 \-nCompJitterBuffer
50 \-bUseJitter false \-szCodecName
"G711ALaw" \-szPeerDtmfSeq "" \-bLimitDtmf
true \-bUseMOS false \-bJitMs
0 \-szCodecDescr "ITU-T G.711 is a standard to represent
8 bit compressed pulse code modulation (PCM) samples for signals of voice
frequencies, sampled at the rate of 8000 samples/second. G.711 encoder will create a
64 Kbps bitstream. A-Law G.711 PCM encoder converts 13 bit linear PCM samples into 8
bit compressed PCM (logarithmic form) samples, and the decoder does the conversion
vice versa." \-bCompMs 0 \-nDtmfStreams
10 \-packetTimeBuffer "" \-szPowerLevel
"PL_20" \-szDtmfSeq "12345" \-nCompJitterMs
1000 \-nPeerDtmfInterdigits 0 \-bRtpStartCollector
false \-nMosMaxStreams 1 \-szCodecDetails
"BF160PT20" \-nSessionType 0 \-bUseSilence
false \-bModifyPowerLevel false \-bUseCompensation
false$Activity_SIPServer1 agent.pm.contentOfMessages.config \-bFolding
false \-bBestPerformance 1 \-szTO
"<sip:id\[50000-\]@IP>" \-bOptional false \-szCONTACT
"<sip:id\[50000-\]@IP>" \-bAdvisable false \-bCompact
false \-szFROM "<sip:id\[50000-\]@IP>" \-
szREQUESTURI "sip:IP" \-bScattered
false$Activity_SIPServer1 agent.pm.contentOfMessages.rulesTable.clear$Activity_
SIPServer1 agent.pm.stateMachine.config \-nActiveTimeout 0
\-bUasStateless false \-nActiveTimeoutValue
0 \-nTimersT4 5000 \-nTimersT1
500 \-nTimersT2 4000 \-nTimersTD
32000 \-nActiveTimeoutTU 0 \-nTimersTC
180000$Activity_SIPServer1 agent.pm.videoSettings.config \-videoBitrate
128.0 \-videoBitrateLimit 0$Activity_SIPServer1
agent.pm.scenarios.clear$Activity_SIPServer1 agent.pm.scenarios.appendItem \-id
"RECEIVEUSING180" \-bNextCommandIsDetect false \-szDummy10

Chapter 10 Bulk SIP

– 571 –

"" \-isLastCmd false$Activity_SIPServer1
agent.pm.predefined_tos_for_rtp.clear$Activity_SIPServer1 agent.pm.predefined_tos_
for_rtp.appendItem \-id "TypeOfServiceForRTP"
\-tos_val_for_rtp "Best Effort (0x0)"$Activity_SIPServer1
agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 1
(0x20)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 2
(0x40)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 3
(0x60)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Class 4
(0x80)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Express Forwarding
(0xA0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Control
(0xC0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_rtp.appendItem \-id
"TypeOfServiceForRTP" \-tos_val_for_rtp "Best Effort
(0x0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.clear$Activity_SIPServer1
agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Best Effort
(0x0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 1
(0x20)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 2
(0x40)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 3
(0x60)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Class 4
(0x80)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Express Forwarding
(0xA0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Control
(0xC0)"$Activity_SIPServer1 agent.pm.predefined_tos_for_sip.appendItem \-id
"TypeOfServiceForSIP" \-tos_val_for_sip "Best Effort (0x0)"

SEE ALSO

ixNetTraffic

Chapter 10 Bulk SIP

– 572 –

General Settings
General Settings—Sets the SIP server agent’s general configuration options.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.pm.generalSettings.config

DESCRIPTION

A SIP server’s advanced configuration options are set by modifying the options of the
pm.generalSettings option of the SIP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

The SIP server agent’s General Settings options are the same as for the SIP client agent. See the SIP
Client.

EXAMPLE
$Activity_SIPServer1 agent.pm.generalSettings.config \-dhcpServerPort
5060 \-ipv6Form 0 \-bRemoveCredent
false \-bRegBefore false \-type_of_service_for_rtp
"Best Effort (0x0)" \-_gbDhcpServerPort false \-nUdpMaxSize
1024 \-regInterval 0 \-szAuthDomain
"domain\[0000-\]" \-vlan_priority_sip 0 \-useDhcp
false \-enableTosSIP false \-nUdpPort
5060 \-ipPreference 0 \-_gbIpPreference
false \-nPrefQop 0 \-szRegistrar
"127.0.0.1:5060" \-enableVlanPriority_for_sip false \-nTcpPort
5060 \-szTransport "UDP" \-szAuthPassword
"password\[0000-\]" \-type_of_service_for_sip "Best Effort (0x0)" \-
szAuthUsername "user\[0000-\]" \-enableTosRTP
false \-compressZeros false

SEE ALSO

SIP Server Agent

Chapter 10 Bulk SIP

– 573 –

Content of Messages
Content of Messages—Specifies the content of the SIP messages sent by the server.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.pm.contentOfMessages.config

DESCRIPTION

A SIP server’s advanced configuration options are set by modifying the options of the
pm.contentOfMessages option of the SIP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

The SIP server agent’s Content of Messages options are the same as for the SIP client agent. See
Content of Messages.

SEE ALSO

SIP Server Agent

Chapter 10 Bulk SIP

– 574 –

State Machine
State Machine—Configures the SIP server agent’s internal timers and other parameters of its state
machine.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.pm.stateMachine.config

DESCRIPTION

A SIP server’s state machine parameters are set by modifying the options of the pm.StateMachine
option of the SIP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

The SIP server agent’s Sate Machine options are the same as for the SIP client agent with one addition
(below). See Content of Messages.

bUasStateless

If true, the SIP server behaves as a stateless User Agent Server (UAS).

A stateless UAS does not maintain transaction states. It replies to requests normally but discards any
state that would ordinarily be retained by a UAS after a response has been sent.

If a stateless UAS receives a retransmission of a request, it regenerates the response and resends it,
just as if it were replying to the first instance of the request. (Default = "0").

EXAMPLE
$Activity_SIPServer1 agent.pm.stateMachine.config \-nActiveTimeout
0 \-bUasStateless false \-nActiveTimeoutValue
0 \-nTimersT4 5000 \-nTimersT1
500 \-nTimersT2 4000 \-nTimersTD
32000 \-nActiveTimeoutTU 0 \-nTimersTC
180000

SEE ALSO

SIP Server Agent

Chapter 10 Bulk SIP

– 575 –

Media Settings
Media Settings—Selects and configures the streaming audio files for the multimedia session that the
server will play over RTP.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.pm.mediaSettings.config

DESCRIPTION

A SIP server’s advanced configuration options are set by modifying the options of the
pm.mediaSettings option of the SIP Server Agent object.

SUBCOMMANDS

None.

OPTIONS

The SIP server agent’s Media Settings options are the same as for the SIP client agent. See Media
Settings.

SEE ALSO

SIP Server Agent

Chapter 10 Bulk SIP

– 576 –

Scenarios
Scenarios—Creates the list of SIP commands that the server will send to a SIP server.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SIPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_SIPServer1 agent.pm.scenarios.appendItem

DESCRIPTION

A command is added to the Scenarios object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

SIP command to be executed. One of the following:

Command Description

RECEIVEUSING180 Causes the SIP server to respond to an INVITE by returning a 180
(Ringing) response, which indicates that it is trying to alert the user.
The 180 response is routed back through the proxies in the reverse
direction.

RECEIVEUSING100AND180 Causes the SIP server to respond to an INVITE by first returning a 100
response, which indicates that the request has been received by the
next-hop server and that some unspecified action is being taken on
behalf of this call (for example, a database is being consulted).

The server then responses with a 180 (Ringing) response, which
indicates that it is trying to alert the user. The 180 response is routed
back through the proxies in the reverse direction.

SEND6XX Causes the SIP server to respond to an INVITE by first returning a 604
(Does not Exist Anywhere) response. 6xx-series responses are failure
responses that indicate that the server has definitive information about
a particular user, not just the particular instance indicated in the
Request-URI.

VOICESESSION Plays one of the waveform audio files listed in the Audio Clips Pool on

Chapter 10 Bulk SIP

– 577 –

the Media Settings tab. The SIP server sends the file to the origin of
the SIP call.

Audio Pool File: Select one of the waveform audio files listed in the
Audio Pool File on the Media Settings tab.

Play: Select this option if you want the SIP server to play the clip a
fixed number of times. Configure the number of times in the field.

Repeat Continuous for: Select this option if you want the SIP server
to play the clip continuously for some number of seconds, minutes,
hours, or days. Select the units of time from the drop-down list, then
configure the number of seconds, minutes, hours, or days that the clip
will play in the field.

Arguments for id = RECEIVEUSING180

None.

Arguments for id = RECEIVEUSING100AND180

None.

Arguments for id = SEND6XX

None.

Arguments for id = VOICESESSION

szAudioFile

Waveform audio file that will be played during the session. This must be an szWaveName object
contained within the Audio Clips Pool object. (Default = "<None>”).

nPlayMode

If true, the audio file plays for a fixed number of times. If false, the audio file plays continuously.
(Default = “0“).

nRepeatCount

If nPlayMode is true, this parameter sets the number of times that the audio file will play. (Default
="1").

nPlayTime

Length of time to play the audio file. Specify the units of time in the nTimeUnit.

nTimeUnit

Units of time used to set the audio file play time (nPlayTime). The choices are:

Chapter 10 Bulk SIP

– 578 –

Value Description

“0“ (default) Seconds

“1“ Minutes

“2“ Hours

“3“ Days

EXAMPLE
$Activity_SIPServer1 agent.pm.scenarios.appendItem \-id
"RECEIVEUSING180" \-bNextCommandIsDetect false \-szDummy10
"" \-isLastCmd false

SEE ALSO
SIP Client Agent

Chapter 10 Bulk SIP

– 579 –

Using Variables in SIP Fields
You can insert variables into various fields on the SIP client tabs, such as the Username, Password,
and Domain fields on the SIP client General Settings tab and the Userinfo (header) fields on the
Content of Messages. You can use the variables to generate large numbers of unique user names,
passwords, and domain names or header fields.

You can use the following variables:

l Numbers 0-9

l Letters A-Z and a-z

The letter variables are case-sensitive; IxLoad considers the variable strings “AA” and “aa” to be
different.

You can combine the variables with fixed text to create the user names, passwords, and domain
names. For example, you can enter user[00-] to create a range of unique user names that begin with
the characters “user” (user00, user01, and so on).

To insert the variables into a field, enclose them in square brackets ([]). To specify a range,
separate the minimum and maximum values with a hyphen (-). For example, [00-10] specifies a range
of 00 through 10.

The number of variables you insert determines the width of the generated strings. For example, the
variable “00” can generate the strings 00 - 99. The variable string “000” can generate the strings 000 -
999.

Similarly, “AA” can generate strings that consist of all the two-letter combinations from AA to ZZ.
“AAA” can generate strings that consist of all the three letter combinations from AAA to ZZZ.

You can use a single variable string and allow IxLoad to generate strings up the maximum value of the
string, or you can use two variable strings together to restrict the generated strings to a certain range.

See the following example:

[0-] will generate all the values 0 - 9 (0, 1, 2, 3 . . . 9).
[0-5] will generate all the values 0 - 5.

[00-] will generate all the values 00 - 99 (00, 01, 02, 03. . .97, 98, 99).
[00-50] will generate all the values 0 - 50.

[A-] will generate all the values A - Z (A, B, C . . . Z).
[A-K] will generate all the values A - K.

[AA-] will generate all the values AA - ZZ (AA, AB, AC. . ZX, ZY, ZZ).
[AA-KK] will generate all the values AA - KK.

When IxLoad has generated the final string, if the test configuration requires additional strings, IxLoad
returns to the starting value of the variable and continues to generate strings until no more are
required. In this case, the generated strings will not be unique.

For example, if a SIP test requires 256 user names and the Username field is configured as:

User[00-]

Chapter 10 Bulk SIP

– 580 –

IxLoad generates the strings User00 - User99, then repeats and again generates strings User00 -
User99, then generates the final group of strings User00 - User56.

IxLoad generates the SIP Username, Password, and Domain fields simultaneously and associates one
value from each to form each user name–password– domain combination used in the test.

For example, the first generated user name will be associated with the first generated password and
the first generated domain. The second generated user name will be associated with the second
generated password and the second generated domain, and so on until all the necessary strings have
been generated.

If a SIP Username, Password, and Domain fields contain variables while the remaining fields contain a
fixed value (no variable), IxLoad associates the identical value from the fixed field to all the generated
values.

See the following example:

Field Values Associated Strings

Username = User[00-]

Password = Pass[AZ-]

Domain = Domain[az-]

User00 + PassAA + Domainaa

User01 + PassAB + Domainab

User02 + PassAC + Domainac

. . .

Username = User[00-]

Password = Pass[AZ-]

Domain = MyDomain

User00 + PassAA + MyDomain

User01 + PassAB + MyDomain

User02 + PassAC + MyDomain

. . .

Username = User[00-]

Password = Pass

Domain = MyDomain

User00 + Pass + MyDomain

User01 + Pass + MyDomain

User02 + Pass + MyDomain

. . .

Chapter 10 Bulk SIP

– 581 –

Bulk SIP Statistics
For the Bulk SIP statistics, see the following:

Bulk SIP Client Statistics

Bulk SIP Server Statistics

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

The test results are available from the location defined on the User Directories window. See User
Directories.

Chapter 10 Bulk SIP

– 582 –

Bulk SIP Client Statistics
The table below lists the Bulk SIP Client Statistics.

Statistic Description

Call-related Statistics

SIP calls initiated Number of SIP calls initiated.

SIP calls completed Number of SIP calls established.

SIP calls active Number of SIP calls active.

Transaction-related Statistics

SIP INVITE client
transactions initiated

Number of SIP INVITE transactions initiated by the client.

SIP INVITE client
transactions succeded

Number of INVITE transactions initiated by the client that succeeded.

SIP INVITE client
transactions failed

Number of INVITE transactions initiated by the client that failed for all
reasons.

SIP INVITE client
transactions failed
(TIMER B)

Number of INVITE transactions initiated by the client that failed because
Timer B (transaction timeouts timer) expired.

SIP INVITE client
transactions failed
(TRANSPORT ERROR)

Number of INVITE transactions initiated by the client that failed due to
TCP or UDP errors.

SIP INVITE client
transactions failed
(TRANSACTION
TIMEOUT TIMER)

Number of INVITE transactions initiated by the client that failed because
the transaction timeout timer expired.

SIP INVITE client
transactions failed (5xx)

Number of INVITE transactions initiated by the client that failed due to
5xx-series (server error) errors.

SIP NON-INVITE client
transactions initiated

Number of SIP NON-INVITE transactions initiated by the client.

SIP NON-INVITE client
transactions succeded

Number of SIP NON-INVITE transactions initiated by the client that
succeeded.

SIP NON-INVITE client
transactions failed

Number of SIP NON-INVITE transactions initiated by the client that failed.

Chapter 10 Bulk SIP

– 583 –

SIP NON-INVITE client
transactions failed
(TIMER F)

Number of NON-INVITE transactions initiated by the client that failed
because Timer F (non-INVITE transaction timeout timer) expired.

SIP NON-INVITE client
transactions failed
(TRANSPORT ERROR)

Number of NON-INVITE transactions initiated by the client that failed due
to TCP or UDP errors.

Message-related Statistics

SIP INVITE requests
sent

Number of SIP INVITE messages sent by the client.

SIP ACK requests sent Number of SIP ACK messages sent by the client.

SIP BYE requests sent Number of SIP BYE messages sent by the client.

SIP REGISTER requests
sent

Number of SIP REGISTER messages sent by the client.

SIP INVITE messages
retransmitted

Number of INVITE messages initiated by the client that had to be re-
transmitted.

SIP NON-INVITE
requests retransmitted

Number of NON-INVITE transactions initiated by the client that had to be
re-transmitted.

SIP INVITE requests
unexpected

Number of SIP INVITE requests that the client did not expect to receive.

SIP ACK requests
unexpected

Number of SIP ACK requests that the client did not expect to receive.

SIP BYE requests
unexpected

Number of SIP BYE requests that the client did not expect to receive.

SIP CANCEL requests
unexpected

Number of SIP CANCEL requests that the client did not expect to receive.

SIP UNKNOWN
messages unexpected

Number of SIP UNKNOWN messages that the client did not expect to
receive.

SIP UNKNOWN requests
unexpected

Number of SIP UNKNOWN requests that the client did not expect to
receive.

SIP 1xx responses
expected

Number of SIP 1xx-series responses the client received that it expected.

SIP 1xx responses
unexpected

Number of SIP 1xx-series responses the client received that it did not
expect.

Chapter 10 Bulk SIP

– 584 –

SIP 2xx responses
expected

Number of SIP 2xx-series responses the client received that it expected.

SIP 2xx responses
unexpected

Number of SIP 2xx-series responses the client received that it did not
expect.

SIP 3xx responses
expected

Number of SIP 3xx-series responses the client received that it expected.

SIP 3xx responses
unexpected

Number of SIP 3xx-series responses the client received that it did not
expect.

SIP 4xx responses
expected

Number of SIP 4xx-series responses the client received that it expected.

SIP 4xx responses
unexpected

Number of SIP 4xx-series responses the client received that it did not
expect.

SIP 5xx responses
expected

Number of SIP 5xx-series responses the client received that it expected.

SIP 5xx responses
unexpected

Number of SIP 5xx-series responses the client received that it did not
expect.

SIP 6xx responses
expected

Number of SIP 6xx-series responses the client received that it expected.

SIP 6xx responses
unexpected

Number of SIP 6xx-series responses the client received that it did not
expect.

RTP: Global Stream Transmit Statistics

RTP Bytes Sent Total number of bytes sent, including header and payload.

RTP Packets Sent Total number of packets sent.

RTP Tx Jitter (ns) Average amount of transmit jitter, in nanoseconds.

RTP Tx Packets Dropped Number of packets transmitted by the client that were dropped.

RTP: Global Stream Statistics

RTP Dropped Packets Number of RTP packets dropped.

RTP Bytes Received Number of RTP bytes received.

RTP Packets Received Number of RTP packets received.

RTP Payload Bytes
Received

Number bytes received in RTP payloads.

Chapter 10 Bulk SIP

– 585 –

RTP Bad Packets
Received

Number of defective RTP packets received.

RTP Lost Packets Number of packets lost.

RTP Misordered Packets
Received

Number of packets received out of order.

RTP Duplicate Packets
Received

Number of duplicate packets received.

RTP Jitter Min Smallest amount of jitter detected.

RTP Jitter Max Largest amount of jitter detected.

RTP Packets With Jitter
Up To 1ms

Packets received with jitter of up to 1ms.

RTP Packets With Jitter
Up To 3ms

Packets received with jitter of 1-3ms.

RTP Packets With Jitter
Up To 5ms

Packets received with jitter of 3-5ms.

RTP Packets With Jitter
Up To 10ms

Packets received with jitter of 5-10ms.

RTP Packets With Jitter
Up To 20ms

Packets received with jitter of 10-20ms

RTP Packets With Jitter
Up To 40ms

Packets received with jitter of 20-40ms

RTP Packets With Jitter
More Than 40ms

Packets received with jitter of more than 40ms.

RTP DTMF Digits
Detected

Total number of path confirmation DTMF tone sequences received.

RTP DTMF Digits
Matched

Number of DTMF sequences received that matched the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMF Digits Not
Matched

Number of DTMF sequences received that did not match the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

Chapter 10 Bulk SIP

– 586 –

RTP Good DTMF
Sequences Detected

Total number of correct path confirmation DTMF tone sequences received.

RTP Bad DTMF
Sequences Detected

Total number of incorrect path confirmation DTMF tone sequences
received.

RTP DTMF Detection
Timeout

Number of DTMF detection attempts (by the Detect DTMF command) that
ended because one of the timeout timers expired.

RTP DTMF Digits Sent Number of DTMF digits sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMF Sequences
Sent

Number of DTMF sequences sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP MF Digits Sent Number of MF digits sent by Generate MF commands.

RTP MF Sequences Sent Number of MF sequences sent by Generate MF commands.

RTP Custom Tones Sent Number of custom tones sent by Generate Tone commands.

RTP Packets Dropped By
Jitter Buffer

Number of packet dropped from the jitter buffer because they arrived later
than expected.

Note: In the CSV files, global MOS scores are represented as whole numbers (for example, “345“);
in StatViewer (they are represented as floating-point numbers (for example, “3.45”).

RTP MOS Average
Instant

Average MOS score at the time of the sampling interval.

RTP MOS Worst Instant Lowest MOS score at the time of the sampling interval.

RTP MOS Best Instant Highest MOS score at the time of the sampling interval.

RTP MOS Worst Lowest MOS score recorded during the test.

RTP MOS Best Highest MOS score recorded during the test.

RTP MOS Average Per
Call

Average MOS score per call.

RTP MOS Worst Per Call Lowest MOS score per call.

RTP MOS Best Per Call Highest MOS score per call.

RTP Calls With
Continuous Path

Number of calls on which path confirmation continued throughout the call.

Chapter 10 Bulk SIP

– 587 –

Confirmation

RTP Calls With
Interrupted Path
Confirmation

Number of calls on which path confirmation was interrupted during the
call.

RTP Calls Without Path
Confirmation

Number of calls on which there was no path confirmation.

Transport Statistics

SIP Bytes Transmitted Total number of SIP bytes transmitted.

SIP Bytes Received Total number of SIP bytes received.

SIP Signaling UDP
Packets Transmitted

Number UDP packets transmitted for SIP signaling purposes.

SIP Signaling UDP
Packets Received

Number UDP packets received for SIP signaling purposes.

Per-Stream Statistics

RTP Path Confirmation
Status

Status of path confirmation on the stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

RTP MOS Average MOS score recorded on the stream.

RTP Worst MOS Lowest MOS score recorded on the stream.

RTP Best MOS Highest MOS score recorded on the stream.

RTP Bytes Number of bytes transmitted on the stream.

RTP Packets Number of packets transmitted on the stream.

RTP Bad Packets Number of bad packets transmitted on the stream.

RTP Lost Packets Number of packets lost on the stream.

RTP Missorder Packets Number of packets received out of order on the stream.

RTP Duplicate Packets Number of duplicate packets received on the stream.

RTP Packets With Jitter
Up To 1ms

Number of packets received on the stream with jitter up to 1 millisecond.

RTP Packets With Jitter
Up To 3ms

Number of packets received on the stream with jitter up to 3 milliseconds.

Chapter 10 Bulk SIP

– 588 –

RTP Packets With Jitter
Up To 5ms

Number of packets received on the stream with jitter up to 5 milliseconds.

RTP Packets With Jitter
Up To 10ms

Number of packets received on the stream with jitter up to 10
milliseconds.

RTP Packets With Jitter
Up To 20ms

Number of packets received on the stream with jitter up to 20
milliseconds.

RTP Packets With Jitter
Up To 40ms

Number of packets received on the stream with jitter up to 40
milliseconds.

RTP Packets With Jitter
More Than 40ms

Number of packets received on the stream with jitter over 40
milliseconds.

RTP Average Jitter (ns) Average jitter, in nanoseconds.

RTP Min Jitter (ns) Lowest jitter recorded, in nanoseconds.

RTP Max Jitter (ns) Largest jitter recorded, in nanoseconds.

RTP DTMFs Detected Total number of path confirmation DTMF tone sequences sent.

RTP DTMFs Matched Number of DTMF sequences received that matched the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMFs Not Matched Number of DTMF sequences received that did not match the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP Good DTMF
Sequences Detected

Total number of correct path confirmation DTMF tone sequences received.

RTP Bad DTMF
Sequences Detected

Total number of incorrect path confirmation DTMF tone sequences
received.

RTP DTMF Detection
Timeout

Number of DTMF detection attempts (by the Detect DTMF command) that
ended because one of the timeout timers expired.

RTP DTMF Digits Sent Number of DTMF digits sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMF Sequences
Sent

Number of DTMF sequences sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation

Chapter 10 Bulk SIP

– 589 –

using DTMF digits.

RTP MF Digits Sent Number of MF digits sent by Generate MF commands.

RTP MF Sequences Sent Number of MF sequences sent by Generate MF commands.

RTP Custom Tones Sent Number of custom tones sent by Generate Tone commands.

RTP Packets Dropped By
Jitter Buffer

Total number of packets dropped from the jitter buffer because they were
received late.

Video Statistics

Video Total Bytes Sent Total video bytes sent by the server.

Video Total Packets
Sent

Total video packets sent by the server.

Video Tx Jitter (ns) Variation in video packet transmission times, in nanoseconds.

Video Tx Packets
Dropped

Number of video packets dropped before transmission.

Video Global Stream Statistics

Video Frame Stats
Disabled

Initially, this statistic displays no value.

If the received data rate exceeds the cut-off threshold, IxLoad stops
computing the I-, P-, and B-frame statistics and this statistic will display
“YES”.

The value will remain YES until the end of the iteration. Once frame
statistics computation is disabled during a run, it remains disabled
throughout the remainder of the run.

Prior to starting the next run (or the next iteration of the same test), this
statistic will be cleared and IxLoad will again begin computing the frame
statistics. It will continue to compute the frame statistics as long as the
bit rate remains below the cut-off threshold.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Quality Metrics
Disabled

Initially, this statistic displays no value.

If the received data rate exceeds the cut-off threshold, IxLoad stops
computing the Quality Metrics, and this statistic will display “YES”.

The value will remain YES until the end of the iteration. Once the Quality
Metrics computation is disabled during a run, it remains disabled
throughout the remainder of the run.

Prior to starting the next run (or the next iteration of the same test), this
statistic will be cleared and IxLoad will again begin computing the Quality

Chapter 10 Bulk SIP

– 590 –

Metrics. It will continue to compute the metrics as long as the bit rate
remains below the cut-off threshold.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Total Bytes Rcvd Total number of video bytes received by the client.

Video Total packets
Rcvd

Total number of video packets received by the client.

Video Total Loss Total number video packets lost.

Video Unexpected UDP
Packets Received

Number of UDP video packets received packets during a time when no
channels are active.

Video Overload Packets
Dropped

Number of RTP video packets dropped because a port did not have
enough computing power to process them.

Video Total RTP Packets
Lost

Total number of RTP video packets lost while using RTP over UDP
transport.

Video Total Out Of Order
RTP Packets

Total number of RTP video packets received in the wrong order while
using RTP over UDP transport.

Video Total Duplicate
RTP Packets

Total number of duplicate video RTP packets received.

Video Global Jitter Average variation in arrival times of video packets on all streams.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Video Jitter less than 50
us

Number of video packets received with 0 to 50 microseconds of jitter.

Video Jitter between 50
- 100 us

Number of video packets received with 50 to 100 microseconds of jitter.

Video Jitter between
100 - 500 us

Number of video packets received with 100 -500 microseconds of jitter.

Video Jitter between
500 us - 2 ms

Number of video packets received with 500 microseconds to 2
milliseconds of jitter.

Video Jitter between 2 -
5 ms

Number of video packets received with 2 to 5 milliseconds of jitter.

Video Jitter between 5 -
10 ms

Number of video packets received with 5 to 10 milliseconds of jitter.

Chapter 10 Bulk SIP

– 591 –

Video Jitter greater than
10 ms

Number of video packets received with more than 10 milliseconds of
jitter.

Video Inter Packet
Arrival Time between 0 -
2 ms

Number of video packets that arrived less than 2 milliseconds after the
preceding packet was received.

Video Inter Packet
Arrival Time between 2 -
5 ms

Number of video packets that arrived between 2 and 5 milliseconds after
the preceding packet was received.

Video Inter Packet
Arrival Time between 5 -
10 ms

Number of video packets that arrived between 5 and 10 milliseconds after
the preceding packet was received.

Video Inter Packet
Arrival Time between 10
- 25 ms

Number of video packets that arrived between 10 and 25 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between 25
- 50 ms

Number of video packets that arrived between 25 and 50 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between 50
- 100 ms

Number of video packets that arrived between 50 and 100 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between
100 - 200 ms

Number of video packets that arrived between 100 and 200 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between
200 - 500 ms

Number of video packets that arrived between 200 and 500 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time greater
than 500 ms

Number of video packets that arrived more than 500 milliseconds after
the preceding packet was received.

Video Per-Stream Statistics

Video Active Indicates whether the video stream is active or not:

0 = inactive

1 = active

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Stream Name Name of video stream.

Chapter 10 Bulk SIP

– 592 –

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Flow ID Number identifying the flow used by the video stream.

A flow consists of the packets flowing between a source IP:port and a
destination IP:port.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Transport Type of transport used on the video stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Codec Video codec used on the video stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Stream Bit Rate Bit rate used on video stream.

Video MDI-DF Media Delay Index Delay Factor (MDI-DF) experienced on video stream.

Video MIN MDI-DF Smallest MDI Delay Factor experienced on video stream.

Video MAX MDI-DF Largest MDI Delay Factor experienced on video stream.

Video AVG-MDI-DF Average MDI Delay Factor experienced on video stream.

Video MDI-MLR Media Delay Index Media Loss Rate experienced on video stream.

Video Bytes Number of bytes received on the video stream.

Video I Frames Rcvd Number of I-frames received on the video stream.

An I-frame is encoded with no reference to any previous or subsequent
frames.

Video P Frames Rcvd Number of P-frames received on the video stream.

A P-frame is encoded relative to the previous reference frame.

Video B Frames Rcvd Number of B-frames received on the video stream.

A B-frame is encoded relative to the previous reference frame, the
subsequent reference frame, or both

Video Packets Number of packets received on the video stream.

Video Loss Number of packets lost on the video stream.

Chapter 10 Bulk SIP

– 593 –

Video Jitter Number of packets with jitter received on the video stream.

Video Inter Pkt Arrival
Time

Amount of time between received video packets, in milliseconds.

Video Min Inter Pkt
Arrival Time

Smallest amount of time between received video packets, in
milliseconds.

Video Max Inter Pkt
Arrival Time

Largest amount of time between received video packets, in milliseconds.

Video Packet Latency
(ns)

Average packet latency on the video stream.

Video Min Packet
Latency (ns)

Smallest packet latency on the video stream.

Video Max Packet
Latency (ns)

Longest packet latency on the video stream.

Video Join Latency (ms) Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the
time it received the first byte of video data.

Video I Join Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the
time it received the first I frame.

This statistic is computed for MPEG2 transport streams carrying MPEG2
video data.

Video Leave Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) and
the time it received the last byte of video data.

Leave latency has a maximum timeout of 10 seconds; if the client
continues to receive data 10 seconds after it has sent the Leave
command, the latency is measured as 10 seconds.

Video Channel Switch
Latency

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) to
stop receiving one video stream and the time it received the first byte of
data of a new video stream.

Video Channel Gap
Duration

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) and received the last byte of the old
video stream and the time it received the first byte of data of a new video
stream.

Video Channel Overlap
Duration

Amount of time, in milliseconds, elapsed after sending an IGMP LEAVE
(broadcast channel) that the client was simultaneously receiving both the

Chapter 10 Bulk SIP

– 594 –

old and new video streams.

Video Control Sent Indicates the type of video control command that has most recently been
sent:

0 = LEAVE or PAUSE/TEARDOWN sent

1 = JOIN or PLAY sent

Video Data Rcvd Indicates whether or not video data is being received:

0 = no data received

1 = data received

Video RTP Packets Lost Number of RTP video packets lost.

Video RTP Packets Out
of Order

Number of RTP video packets received out of order.

Video RTP Packets
Duplicated

Number of duplicate RTP video packets received.

Video Quality Statistics

Video JB Packets
Accepted

Number of video packets accepted into the jitter buffer.

Video JB Packets Early Number of video packets that arrived earlier than expected in the jitter
buffer.

Video JB Packets
Discarded

Total number of video packets that were discarded. This statistic is the
total of:

JB Packets Discarded (Underrun)

and

JB Packets Discarded (Overrun).

Video JB Packets
Discarded (Underrun)

Number of video packets discarded because they arrived after their
expected time slot.

Video JB Packets
Discarded (Overrun)

Number of video packets discarded because the jitter buffer was full.

Video MOS_V Mean Opinion Score for Video. This score is computed from the Video
Service Quality statistic to create a zero-to-five (0-5) assessment of the
quality of the video stream.

Video Service Quality A factor in the range from 0 to 120, which provides an assessment of the
capability of the RTP channel to support video transmission.

Video Gap Video Video Service Quality during the Gap state.

Chapter 10 Bulk SIP

– 595 –

Service Quality This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Burst Video
Service Quality

Video Service Quality during the Burst state.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Burst Count Number of times the stream entered the Burst state.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Avg Gap Len
(Pkts)

The average gap length, in packets.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Avg Burst Len
(Pkts)

The average burst length, in packets.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Loss)

The amount of the overall video quality degradation that can be
attributed to packet loss.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Discard)

The amount of the overall video quality degradation that can be
attributed to packets being discarded from the jitter buffer.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Video Codec)

The amount of the overall quality degradation that can be attributed to
video codec selection.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Current JB
Packets Accepted

Number of video packets accepted into the jitter butter during the current
statistics Update Interval.

Video Current JB Number of video packets discarded from the jitter butter during the

Chapter 10 Bulk SIP

– 596 –

Packets Discarded current statistics Update Interval.

Video Current JB
Packets Lost

Number of video packets lost during the current statistics Update
Interval.

Video Current Video
Service Quality

Video Service Quality during the current statistics update interval.

Chapter 10 Bulk SIP

– 597 –

Bulk SIP Server Statistics
The table below lists the Bulk SIP Server Statistics.

Statistic Description

Call-related Statistics

SIP calls received Number of SIP calls received.

SIP calls completed Number of SIP calls completed.

SIP calls active Number of SIP calls active.

Transaction-related Statistics

SIP INVITE server
transactions received

Number of INVITE transactions received by the server.

SIP INVITE server
transactions succeded

Number of INVITE transactions received by the server that succeeded.

SIP INVITE server
transactions failed

Number of INVITE transactions received by the server that failed for all
reasons.

SIP INVITE server
transactions failed
(TIMER H)

Number of INVITE transactions initiated by the server that failed because
Timer H (wait time for ACK receipt) expired.

SIP INVITE server
transactions failed
(TRANSPORT ERROR)

Number of INVITE transactions initiated by the server that failed due to
TCP or UDP errors.

SIP NON-INVITE server
transactions received

Number of NON-INVITE transactions received by the server.

SIP NON-INVITE server
transactions succeded

Number of SIP NON-INVITE transactions initiated by the server that
succeeded.

SIP NON-INVITE server
transactions failed

Number of SIP NON-INVITE transactions initiated by the server that
failed.

Message-related Statistics

SIP NON-INVITE
requests retransmitted

Number of NON-INVITE requests that were re-transmitted.

SIP REGISTER Requests
sent

Number of REGISTER requests sent.

Chapter 10 Bulk SIP

– 598 –

SIP 1xx responses
expected

Number of 100-series responses that the server expected to receive.

SIP 2xx responses
expected

Number of 200-series responses that the server expected to receive.

SIP 3xx responses
expected

Number of 300-series responses that the server expected to receive.

SIP 4xx responses
expected

Number of 400-series responses that the server expected to receive.

SIP 5xx responses
expected

Number of 500-series responses that the server expected to receive.

SIP 6xx responses
expected

Number of 600-series responses that the server expected to receive.

SIP 300-699 responses
retransmitted

Number of 3xx- to 6xx-series responses that had to be retransmitted by
the server.

SIP INVITE requests
expected

Number of INVITE requests that the server expected to receive.

SIP ACK requests
expected

Number of ACK requests that the server expected to receive.

SIP BYE requests
expected

Number of BYE requests that the server expected to receive.

SIP 1xx responses sent Number of 1xx-series responses sent by the server.

SIP 1xx responses
unexpected

Number of 1xx-series responses sent by the server that it did not expect
to send.

SIP 2xx responses sent Number of 2xx-series responses sent by the server.

SIP 2xx responses
unexpected

Number of 2xx-series responses sent by the server that it did not expect
to send.

SIP 3xx responses sent Number of 3xx-series responses sent by the server.

SIP 3xx responses
unexpected

Number of 3xx-series responses sent by the server that it did not expect
to send.

SIP 4xx responses sent Number of 4xx-series responses sent by the server.

SIP 4xx responses
unexpected

Number of 4xx-series responses sent by the server that it did not expect
to send.

Chapter 10 Bulk SIP

– 599 –

SIP 5xx responses sent Number of 5xx-series responses sent by the server.

SIP 5xx responses
unexpected

Number of 5xx-series responses sent by the server that it did not expect
to send.

SIP 6xx responses sent Number of 6xx-series responses sent by the server.

SIP 6xx responses
unexpected

Number of 6xx-series responses sent by the server that it did not expect
to send.

SIP INVITE requests
unexpected

Number of SIP INVITE requests that the server did not expect to receive.

SIP ACK requests
unexpected

Number of SIP ACK requests that the server did not expect to receive.

SIP BYE requests
unexpected

Number of SIP BYE requests that the server did not expect to receive.

SIP CANCEL requests
unexpected

Number of SIP CANCEL requests that the server did not expect to receive.

SIP UNKNOWN requests
unexpected

Number of SIP requests that the server did not expect to receive.

SIP UNKNOWN
messages unexpected

Number of SIP messages that the server sent that it did not expect to
send.

RTP: Global Stream Transmit Statistics

RTP Bytes Sent Total number of bytes sent, including header and payload.

RTP Packets Sent Total number of packets sent.

RTP Tx Jitter (ns) Average amount of transmit jitter, in nanoseconds.

RTP Tx Packets Dropped Number of packets transmitted by the client that were dropped.

RTP: Global Stream Statistics

RTP Dropped Packets Number of RTP packets dropped.

RTP Bytes Received Number of RTP bytes received.

RTP Packets Received Number of RTP packets received.

RTP Payload Bytes
Received

Number bytes received in RTP payloads.

RTP Bad Packets
Received

Number of defective RTP packets received.

Chapter 10 Bulk SIP

– 600 –

RTP Lost Packets Number of packets lost.

RTP Misordered Packets
Received

Number of packets received out of order.

RTP Duplicate Packets
Received

Number of duplicate packets received.

RTP Jitter Min Smallest amount of jitter detected.

RTP Jitter Max Largest amount of jitter detected.

RTP Packets With Jitter
Up To 1ms

Packets received with jitter of up to 1ms.

RTP Packets With Jitter
Up To 3ms

Packets received with jitter of 1-3ms.

RTP Packets With Jitter
Up To 5ms

Packets received with jitter of 3-5ms.

RTP Packets With Jitter
Up To 10ms

Packets received with jitter of 5-10ms.

RTP Packets With Jitter
Up To 20ms

Packets received with jitter of 10-20ms

RTP Packets With Jitter
Up To 40ms

Packets received with jitter of 20-40ms

RTP Packets With Jitter
More Than 40ms

Packets received with jitter of more than 40ms.

RTP DTMFs Detected Total number of path confirmation DTMF tone sequences sent.

RTP DTMFs Matched Number of DTMF sequences received that matched the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMFs Not Matched Number of DTMF sequences received that did not match the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP Good DTMF
Sequences Detected

Total number of correct path confirmation DTMF tone sequences received.

RTP Bad DTMF Total number of incorrect path confirmation DTMF tone sequences

Chapter 10 Bulk SIP

– 601 –

Sequences Detected received.

RTP DTMF Detection
Timeout

Number of DTMF detection attempts (by the Detect DTMF command) that
ended because one of the timeout timers expired.

RTP DTMF Digits Sent Number of DTMF digits sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMF Sequences
Sent

Number of DTMF sequences sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP MF Digits Sent Number of MF digits sent by Generate MF commands.

RTP MF Sequences Sent Number of MF sequences sent by Generate MF commands.

RTP Custom Tones Sent Number of custom tones sent by Generate Tone commands.

RTP Packets Dropped By
Jitter Buffer

Number of packet dropped from the jitter buffer because they arrived later
than expected.

Note: In the CSV files, global MOS scores are represented as whole numbers (for example, “345“);
in StatViewer (they are represented as floating-point numbers (for example, “3.45”).

RTP MOS Average
Instant

Average MOS score at the time of the sampling interval.

RTP MOS Worst Instant Lowest MOS score at the time of the sampling interval.

RTP MOS Best Instant Highest MOS score at the time of the sampling interval.

RTP MOS Worst Lowest MOS score recorded during the test.

RTP MOS Best Highest MOS score recorded during the test.

RTP MOS Average Per
Call

Average MOS score per call.

RTP MOS Worst Per Call Lowest MOS score per call.

RTP MOS Best Per Call Highest MOS score per call.

RTP Calls With
Continuous Path
Confirmation

Number of calls on which path confirmation continued throughout the call.

RTP Calls With
Interrupted Path
Confirmation

Number of calls on which path confirmation was interrupted during the
call.

Chapter 10 Bulk SIP

– 602 –

RTP Calls Without Path
Confirmation

Number of calls on which there was no path confirmation.

Transport Statistics

SIP Bytes Transmitted Total number of SIP bytes transmitted.

SIP Bytes Received Total number of SIP bytes received.

SIP Signaling UDP
Packets Transmitted

Number UDP packets transmitted for SIP signaling purposes.

SIP Signaling UDP
Packets Received

Number UDP packets received for SIP signaling purposes.

Per-Stream Statistics

RTP Path Confirmation
Status

Status of path confirmation on the stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

RTP MOS Average MOS score recorded on the stream.

RTP Worst MOS Lowest MOS score recorded on the stream.

RTP Best MOS Highest MOS score recorded on the stream.

RTP Bytes Number of bytes transmitted on the stream.

RTP Packets Number of packets transmitted on the stream.

RTP Bad Packets Number of bad packets transmitted on the stream.

RTP Lost Packets Number of packets lost on the stream.

RTP Missorder Packets Number of packets received out of order on the stream.

RTP Duplicate Packets Number of duplicate packets received on the stream.

RTP Packets With Jitter
Up To 1ms

Number of packets received on the stream with jitter up to 1 millisecond.

RTP Packets With Jitter
Up To 3ms

Number of packets received on the stream with jitter up to 3 milliseconds.

RTP Packets With Jitter
Up To 5ms

Number of packets received on the stream with jitter up to 5 milliseconds

RTP Packets With Jitter
Up To 10ms

Number of packets received on the stream with jitter up to 10
milliseconds.

Chapter 10 Bulk SIP

– 603 –

RTP Packets With Jitter
Up To 20ms

Number of packets received on the stream with jitter up to 20
milliseconds.

RTP Packets With Jitter
Up To 40ms

Number of packets received on the stream with jitter up to 40
milliseconds.

RTP Packets With Jitter
More Than 40ms

Number of packets received on the stream with jitter over 40
milliseconds.

RTP Average Jitter (ns) Average jitter, in nanoseconds.

RTP Min Jitter (ns) Lowest jitter recorded, in nanoseconds

RTP Max Jitter (ns) Largest jitter recorded, in nanoseconds.

RTP DTMFs Detected Total number of path confirmation DTMF tone sequences sent.

RTP Good DTMF
Sequences Detected

Total number of correct path confirmation DTMF tone sequences received.

RTP DTMFs Matched Number of DTMF sequences received that matched the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMFs Not Matched Number of DTMF sequences received that did not match the sequence
specified on the Detect DTMF command.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP Good DTMF
Sequences Detected

Total number of correct path confirmation DTMF tone sequences received.

RTP Bad DTMF
Sequences Detected

Total number of incorrect path confirmation DTMF tone sequences
received.

RTP DTMF Detection
Timeout

Number of DTMF detection attempts (by the Detect DTMF command) that
ended because one of the timeout timers expired.

RTP DTMF Digits Sent Number of DTMF digits sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP DTMF Sequences
Sent

Number of DTMF sequences sent by Generate DTMF commands.

This statistic is not related to the option to perform path confirmation
using DTMF digits.

RTP MF Digits Sent Number of MF digits sent by Generate MF commands.

Chapter 10 Bulk SIP

– 604 –

RTP MF Sequences Sent Number of MF sequences sent by Generate MF commands.

RTP Custom Tones Sent Number of custom tones sent by Generate Tone commands.

RTP Packets Dropped By
Jitter Buffer

Total number of packets dropped from the jitter buffer because they were
received late.

Video Statistics

Video Total Bytes Sent Total video bytes sent by the server.

Video Total Packets
Sent

Total video packets sent by the server.

Video Tx Jitter (ns) Variation in video packet transmission times, in nanoseconds.

Video Tx Packets
Dropped

Number of video packets dropped before transmission.

Video Global Stream Statistics

Video Frame Stats
Disabled

Initially, this statistic displays no value.

If the received data rate exceeds the cut-off threshold, IxLoad stops
computing the I-, P-, and B-frame statistics and this statistic will display
“YES”.

The value will remain YES until the end of the iteration. Once frame
statistics computation is disabled during a run, it remains disabled
throughout the remainder of the run.

Prior to starting the next run (or the next iteration of the same test), this
statistic will be cleared and IxLoad will again begin computing the frame
statistics. It will continue to compute the frame statistics as long as the
bit rate remains below the cut-off threshold.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Quality Metrics
Disabled

Initially, this statistic displays no value.

If the received data rate exceeds the cut-off threshold, IxLoad stops
computing the Quality Metrics, and this statistic will display “YES”.

The value will remain YES until the end of the iteration. Once the Quality
Metrics computation is disabled during a run, it remains disabled
throughout the remainder of the run.

Prior to starting the next run (or the next iteration of the same test), this
statistic will be cleared and IxLoad will again begin computing the Quality
Metrics. It will continue to compute the metrics as long as the bit rate
remains below the cut-off threshold.

Note for Tcl API users: For this statistic, use the Aggregation Type

Chapter 10 Bulk SIP

– 605 –

kString.

Video Total Bytes Rcvd Total number of video bytes received by the client.

Video Total packets
Rcvd

Total number of video packets received by the client.

Video Total Loss Total number video packets lost.

Video Unexpected UDP
Packets Received

Number of UDP video packets received packets during a time when no
channels are active.

Video Overload Packets
Dropped

Number of RTP video packets dropped because a port did not have
enough computing power to process them.

Video Total RTP Packets
Lost

Total number of RTP video packets lost while using RTP over UDP
transport.

Video Total Out Of Order
RTP Packets

Total number of RTP video packets received in the wrong order while
using RTP over UDP transport.

Video Total Duplicate
RTP Packets

Total number of duplicate video RTP packets received.

Video Global Jitter Average variation in arrival times of video packets on all streams.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Video Jitter less than 50
us

Number of video packets received with 0 to 50 microseconds of jitter.

Video Jitter between 50
- 100 us

Number of video packets received with 50 to 100 microseconds of jitter.

Video Jitter between
100 - 500 us

Number of video packets received with 100 -500 microseconds of jitter.

Video Jitter between
500 us - 2 ms

Number of video packets received with 500 microseconds to 2
milliseconds of jitter.

Video Jitter between 2 -
5 ms

Number of video packets received with 2 to 5 milliseconds of jitter.

Video Jitter between 5 -
10 ms

Number of video packets received with 5 to 10 milliseconds of jitter.

Video Jitter greater than
10 ms

Number of video packets received with more than 10 milliseconds of
jitter.

Video Inter Packet Number of video packets that arrived less than 2 milliseconds after the

Chapter 10 Bulk SIP

– 606 –

Arrival Time between 0 -
2 ms

preceding packet was received.

Video Inter Packet
Arrival Time between 2 -
5 ms

Number of video packets that arrived between 2 and 5 milliseconds after
the preceding packet was received.

Video Inter Packet
Arrival Time between 5 -
10 ms

Number of video packets that arrived between 5 and 10 milliseconds after
the preceding packet was received.

Video Inter Packet
Arrival Time between 10
- 25 ms

Number of video packets that arrived between 10 and 25 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between 25
- 50 ms

Number of video packets that arrived between 25 and 50 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between 50
- 100 ms

Number of video packets that arrived between 50 and 100 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between
100 - 200 ms

Number of video packets that arrived between 100 and 200 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time between
200 - 500 ms

Number of video packets that arrived between 200 and 500 milliseconds
after the preceding packet was received.

Video Inter Packet
Arrival Time greater
than 500 ms

Number of video packets that arrived more than 500 milliseconds after
the preceding packet was received.

Video Per-Stream Statistics

Video Active Indicates whether the video stream is active or not:

0 = inactive

1 = active

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Stream Name Name of video stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Flow ID Number identifying the flow used by the video stream.

Chapter 10 Bulk SIP

– 607 –

A flow consists of the packets flowing between a source IP:port and a
destination IP:port.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Transport Type of transport used on the video stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Codec Video codec used on the video stream.

Note for Tcl API users: For this statistic, use the Aggregation Type
kString.

Video Stream Bit Rate Bit rate used on video stream.

Video MDI-DF Media Delay Index Delay Factor (MDI-DF) experienced on video stream.

Video MIN MDI-DF Smallest MDI Delay Factor experienced on video stream.

Video MAX MDI-DF Largest MDI Delay Factor experienced on video stream.

Video AVG-MDI-DF Average MDI Delay Factor experienced on video stream.

Video MDI-MLR Media Delay Index Media Loss Rate experienced on video stream.

Video Bytes Number of bytes received on the video stream.

Video I Frames Rcvd Number of I-frames received on the video stream.

An I-frame is encoded with no reference to any previous or subsequent
frames.

Video P Frames Rcvd Number of P-frames received on the video stream.

A P-frame is encoded relative to the previous reference frame.

Video B Frames Rcvd Number of B-frames received on the video stream.

A B-frame is encoded relative to the previous reference frame, the
subsequent reference frame, or both.

Video Packets Number of packets received on the video stream.

Video Loss Number of packets lost on the video stream.

Video Jitter Number of packets with jitter received on the video stream.

Video Inter Pkt Arrival
Time

Amount of time between received video packets, in milliseconds.

Video Min Inter Pkt Smallest amount of time between received video packets, in

Chapter 10 Bulk SIP

– 608 –

Arrival Time milliseconds.

Video Max Inter Pkt
Arrival Time

Largest amount of time between received video packets, in milliseconds.

Video Packet Latency
(ns)

Average packet latency on the video stream.

Video Min Packet
Latency (ns)

Smallest packet latency on the video stream.

Video Max Packet
Latency (ns)

Longest packet latency on the video stream.

Video Join Latency (ms) Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the
time it received the first byte of video data.

Video I Join Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the
time it received the first I frame.

This statistic is computed for MPEG2 transport streams carrying MPEG2
video data.

Video Leave Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) and
the time it received the last byte of video data.

Leave latency has a maximum timeout of 10 seconds; if the client
continues to receive data 10 seconds after it has sent the Leave
command, the latency is measured as 10 seconds.

Video Channel Switch
Latency

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) to
stop receiving one video stream and the time it received the first byte of
data of a new video stream.

Video Channel Gap
Duration

Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) and received the last byte of the old
video stream and the time it received the first byte of data of a new video
stream.

Video Channel Overlap
Duration

Amount of time, in milliseconds, elapsed after sending an IGMP LEAVE
(broadcast channel) that the client was simultaneously receiving both the
old and new video streams.

Video Control Sent Indicates the type of video control command that has most recently been
sent:

0 = LEAVE or PAUSE/TEARDOWN sent

Chapter 10 Bulk SIP

– 609 –

1 = JOIN or PLAY sent

Video Data Rcvd Indicates whether or not video data is being received:

0 = no data received

1 = data received

Video RTP Packets Lost Number of RTP video packets lost.

Video RTP Packets Out
of Order

Number of RTP video packets received out of order.

Video RTP Packets
Duplicated

Number of duplicate RTP video packets received.

Video Quality Statistics

Video JB Packets
Accepted

Number of video packets accepted into the jitter buffer.

Video JB Packets Early Number of video packets that arrived earlier than expected in the jitter
buffer.

Video JB Packets
Discarded

Total number of video packets that were discarded. This statistic is the
total of:

JB Packets Discarded (Underrun)

and

JB Packets Discarded (Overrun).

Video JB Packets
Discarded (Underrun)

Number of video packets discarded because they arrived after their
expected time slot.

Video JB Packets
Discarded (Overrun)

Number of video packets discarded because the jitter buffer was full.

Video MOS_V Mean Opinion Score for Video. This score is computed from the Video
Service Quality statistic to create a zero-to-five (0-5) assessment of the
quality of the video stream.

Video Service Quality A factor in the range from 0 to 120, which provides an assessment of the
capability of the RTP channel to support video transmission.

Video Gap Video
Service Quality

Video Service Quality during the Gap state.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Burst Video Video Service Quality during the Burst state.

Chapter 10 Bulk SIP

– 610 –

Service Quality This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Burst Count Number of times the stream entered the Burst state.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Avg Gap Len
(Pkts)

The average gap length, in packets.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Avg Burst Len
(Pkts)

The average burst length, in packets.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Loss)

The amount of the overall video quality degradation that can be
attributed to packet loss.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Discard)

The amount of the overall video quality degradation that can be
attributed to packets being discarded from the jitter buffer.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Degradation
(Video Codec)

The amount of the overall quality degradation that can be attributed to
video codec selection.

This statistic is cumulative, and is reset to zero (0) whenever you join or
pause the channel/stream (Multicast/VOD mode) or change to the
channel/stream (Broadcast mode).

Video Current JB
Packets Accepted

Number of video packets accepted into the jitter butter during the current
statistics Update Interval.

Video Current JB
Packets Discarded

Number of video packets discarded from the jitter butter during the
current statistics Update Interval.

Video Current JB
Packets Lost

Number of video packets lost during the current statistics Update
Interval.

Video Current Video Video Service Quality during the current statistics update interval.

Chapter 10 Bulk SIP

– 611 –

Service Quality

! 12

Chapter 10 Bulk SIP

– 612 –

CHAPTER 11 CIFS
This section describes the CIFS Tcl API objects.

API Overview
The IxLoad CIFS API consists of the CIFS Client Agent, its commands, and a CIFS Server Agent.

Objectives
The objectives (userObjective) you can set for CIFS are listed below. Test objectives are set in the
ixTimeline object.

l simulatedUsers

l connectionRate

l concurrentConnections

l throughputMbps

– 613 –

l throughputKbps

l throughputGbps

l transactionRate

Chapter 11 CIFS

– 614 –

CIFS Client Agent
CIFS client agent - create a CIFS client agent

SYNOPSIS

set Activity_CIFSClient1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "cifs Client"]

DESCRIPTION

A CIFS client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE
set Activity_CIFSClient1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "cifs Client"]

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 615 –

CIFS Client Commands
This section lists the CIFS client agent's commands.

Chapter 11 CIFS

– 616 –

CIFS Basic configuration
CIFS Basic config - configure the basic properties of a CIFS client agent

SYNOPSIS

$Activity_CIFSClient1 agent.pm.basic.config

DESCRIPTION

This object configures the basic properties of a CIFS client agent.

SUBCOMMANDS

None.

OPTIONS

enableUnicode

Enables Unicode support.

Default = 0

enableLock

Lock type.

Values Description

0 (Default) None

2 Exclusive

4 Batch

6 Both Batch and Exclusive

protocolVersion

CIFS protocol version. The only choice is NT LM 0.12.

Default = 1 (NT LM 0.12)

authentication

Authentication mechanism used.

Values Description

1 (Default) NTLM

2 NTLMv2

Chapter 11 CIFS

– 617 –

3 Plaintext

primaryDomain

Client's primary domain. Minimum length = 1, maximum length = 256.

Default = IXIACOM

nativeOs

String identifying the operating system. Minimum length = 1, maximum length = 255.

Default = "Windows 2002 Service Pack 2 2600"

nativeLanMan

String identifying the native LAN manager. Minimum length = 1, maximum length = 255

Default = "Windows 2002 5.1"

commandTimeout

Number of seconds to wait for a response to a command.

Min = 1, Max = 65535, Default = 10

chunk_size

The length of Data Chunk to write in each WriteAndX.

Min = 1, max = 15728640, Default = 65535

chunk_size_unit

Number of Data Chunks to write in each WriteAndX.

Min = 0, Max = 2, Default= 2

enablerandomdummy

If true, dummy data is randomized.

Default = 0

block_size

Block size of random data.

Default = 4096

syntheticPatternGenOption

If true, the synthetic pattern generator is used to generate data.

Default = 0

EXAMPLE

$Activity_CIFSClient1 agent.pm.basic.config \

Chapter 11 CIFS

– 618 –

-nativeLanMan "Windows 2002 5.1" \

-commandTimeout 10 \

-enableUnicode false \

-syntheticPatternGenOption 0 \

-protocolVersion 1 \

-authentication 2 \

-chunk_size_unit 2 \

-enableLock 0 \

-enablerandomdummy false \

-chunk_size 65535 \

-nativeOs "Windows 2002 Service Pack 2 2600" \

-block_size 4096 \

-primaryDomain "IXIACOM"

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 619 –

CIFS Advanced configuration
CIFS Advanced config - configure the advanced properties of a CIFS client agent

SYNOPSIS

$Activity_CIFSClient1 agent.pm.advanced.config

DESCRIPTION

This object configures the advanced properties of a CIFS client agent.

SUBCOMMANDS

None.

OPTIONS

enableEsm

Enables sending of MSS size.

Default = 0

esm

MSS size.

Min = 64, max = 1460, default = 1460

enableTOS

Enables setting of TOS bits.

Min = 64, max = 1460, default = 1460

typeOfService

TOS bit setting. Must be one of the choices configured in availableTosList.

Default = Best Effort (0x0)

EXAMPLE

$Activity_CIFSClient1 agent.pm.advanced.config \

-enableTOS false \

-esm 1460 \

-enableEsm false \

-typeOfService "Best Effort (0x0)"

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 620 –

Chapter 11 CIFS

– 621 –

availableTosList

availableTosList - configure the list of ToS levels for a CIFS client.

SYNOPSIS

$Activity_CIFSClient1 agent.pm.availableTosList.appendItem \

-id "AvailableTypeOfService" \

-tos_value "Best Effort (0x0)"

DESCRIPTION

The availableTosList object configures the list of available ToS levels.

To add a ToS level to the list, you use the appendItem subcommand from the
ixConfigSequenceContainer command. Other ixConfigSequenceContainer subcommands may be
used to modify the availableTosList. It is customary to set all the options of the availableTosList
during the appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

Before you add items to the availableTosList, you should initialize the list by using the clear
subcommand of the ixConfigSequenceContainer command.

SUBCOMMANDS

OPTIONS

id

ToS list name. (Default = "AvailableTypeOfService").

tos_value

ToS level to be added to the list. Default = "" (null).

Choices:

"Best Effort (0x0)"

"Class 1 (0x20)"

"Class 2 (0x40)"

"Class 3 (0x60)"

"Class 4 (0x80)"

"Express Forwarding (0xA0)"

"Control (0xC0)"

Chapter 11 CIFS

– 622 –

STATISTICS

EXAMPLE

$Activity_CIFSClient1 agent.pm.availableTosList.appendItem \

-id "AvailableTypeOfService" \

-tos_value "Best Effort (0x0)"

SEE ALSO

Chapter 11 CIFS

– 623 –

CIFS Server Agent
CIFS server agent - create a CIFS server agent

SYNOPSIS

set Activity_CIFSServer1 [$Traffic2_Network2 activityList.appendItem \

-protocolAndType "cifs Server"]

DESCRIPTION

A CIFS server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE

set Activity_CIFSServer1 [$Traffic2_Network2 activityList.appendItem \

-protocolAndType "cifs Server"]

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 624 –

CIFS configuration
CIFS config - configure the basic properties of a CIFS server agent

SYNOPSIS

$Activity_CIFSClient1 agent.pm.basic.config

DESCRIPTION

This object configures the basic properties of a CIFS client agent.

SUBCOMMANDS

None.

OPTIONS

authenticationLevel

Enable / disable authentication.

Value Description

0 (default) No authentication

1 User-level authentication

authenticationMechanism

Mode used for user-level authentication.

Value Description

0 NTLM

1 (default) NTLM v2

2 Both NTLM and NTLM v2

3 PlainText

enableGuestLogin

Enables guest access to server.

Default = 0

enableByteByteDataCheck

Enables byte-for-byte data integrity check.

Default = 0

Chapter 11 CIFS

– 625 –

enableRandomDummy

Enables support for random dummy data.

Default = 0

block_size

The size of the random block.

Default = 4096

EXAMPLE

$Activity_CIFSServer1 agent.pm.cifs.config \

-enablePlaintext false \

-enableGuestLogin false \

-enableByteByteDataCheck false \

-enableChallengeResponse true \

-enableRandomDummy false \

-block_size 4096 \

-authenticationMechanism 1 \

-authenticationLevel 0

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 626 –

User Info
CIFS user info - object list for storing users, with their password and domain

SYNOPSIS

$Activity_CIFSClient1 agent.pm.basic.config

DESCRIPTION

This object creates a list of users together with their passwords and domains.

Items are added to the list using the appendItem subcommand from the ixConfigSequenceContainer
command.The options are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

SUBCOMMANDS

None.

OPTIONS

id

Name of the user info list.

Default = AccountInfo

username

User name. Maximum length = 255.

Default = "User <number>"

password

Password for user name. Maximum length = 255.

Default = "password"

domain

User domain. Maximum length = 255.

Default = "IXIACOM"

EXAMPLE

$Activity_CIFSServer1 agent.pm.cifs.UserInfo.clear

$Activity_CIFSServer1 agent.pm.cifs.UserInfo.appendItem \

-id "AccountInfo" \

Chapter 11 CIFS

– 627 –

-username "User0" \

-domain "IXIACOM" \

-password "password"

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 628 –

Advanced configuration
CIFS server advanced configuration - configure the advanced properties of a CIFS server

SYNOPSIS

$Activity_CIFSServer1 agent.pm.advanced.config \

DESCRIPTION

This object configures the advanced properties of a CIFS server.

SUBCOMMANDS

None.

OPTIONS

enableEsm

Enables sending of MSS size.

Default = 0

esm

MSS size.

Min = 64, max = 1460, default = 1460

enableTOS

Enable setting of TOS bits.

Default = 0

typeOfService

TOS bit setting. Must be one of the settings configured in the availableTosList. See availableTosList
(see "availableTosList") for a description of creating an availableTosList.

Default = "Best Effort (0x0)"

listening_port

Comma separated list of listening ports. (for example 143, 243, 343, 443)

Default = 445

EXAMPLE

$Activity_CIFSServer1 agent.pm.advanced.config \

-enableTOS false \

-esm 1460 \

Chapter 11 CIFS

– 629 –

-enableEsm false \

-typeOfService "Best Effort (0x0)" \

-listening_port "445"

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 630 –

Shared Pool
CIFS server shared pool - configure the shared folders on the server

SYNOPSIS

$Activity_CIFSServer1 agent.pm.advanced.config \

DESCRIPTION

This object configures the shared files and folder structure on the CIFS server.

To add a file or folder to the list, you use the appendItem subcommand from the
ixConfigSequenceContainer command. Other ixConfigSequenceContainer subcommands may be
used to modify the list. It is customary to set all the options of the list during the appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

Before you add items to the list, you should initialize the list by using the clear subcommand of the
ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

selfId

ID for this item.

Default = 1

parentId

ID of the parent folder of this item.

Default = 1

dateCreated

Date the file or folder was created. The value for this option is a double data type, where the decimal
part stores the number of days passed since 1st Jan, 1970 to now, and the fractional part specifies the
number of milliseconds passed since last midnight.

Default = ""(none)

dateAccessed

Date the file or folder was last accessed. The value for this option is a double data type, where the
decimal part stores the number of days passed since 1st Jan, 1970 to now, and the fractional part
specifies the number of milliseconds passed since last midnight.

Default = ""(none)

Chapter 11 CIFS

– 631 –

dateModified

Date the file or folder was last modified. The value for this option is a double data type, where the
decimal part stores the number of days passed since 1st Jan, 1970 to now, and the fractional part
specifies the number of milliseconds passed since last midnight.

Default = ""(none)

payloadType

Payload type.

Values Description

0 Dummy

1 Real

2 Synthetic Pattern Generator

realFilePath

Path for real file if the payload is a real file.

Default = "" (none)

dataLength

The length of data to write.

Min = 0, max = 2147483647, default = 0

nodeType

Type of object added to the shared pool.

Values Description

0 (default) File

1 Folder

2 Root

EXAMPLE

$Activity_CIFSServer1 agent.pm.sharedPool.appendItem \

-id "Node" \

-name "root1" \

-enableRandomDataLength false \

Chapter 11 CIFS

– 632 –

-selfId 1 \

-dateCreated 14768.40324 \

-payloadType 0 \

-maxDataLength 0 \

-dataLength 0 \

-parentId -1 \

-dateAccessed 14768.40324 \

-dateModified 14768.40324 \

-realFilePath ""

$Activity_CIFSServer1 agent.pm.sharedPool.appendItem \

-id "Node" \

-name "folder2" \

-enableRandomDataLength false \

-selfId 2 \

-dateCreated 14768.40324 \

-payloadType 0 \

-maxDataLength 0 \

-dataLength 0 \

-parentId 1 \

-dateAccessed 14768.40324 \

-dateModified 14768.40324 \

-realFilePath ""

$Activity_CIFSServer1 agent.pm.sharedPool.appendItem \

-id "Node" \

-name "file3" \

-enableRandomDataLength false \

-selfId 3 \

-dateCreated 14768.40324 \

-payloadType 0 \

Chapter 11 CIFS

– 633 –

-maxDataLength 0 \

-dataLength 0 \

-parentId 1 \

-dateAccessed 14768.40324 \

-dateModified 14768.40324 \

-realFilePath ""

SEE ALSO

ixNetTraffic

Chapter 11 CIFS

– 634 –

Statistics
This section describes the CIFS statistics.

Chapter 11 CIFS

– 635 –

CIFS Client Statistics
The following table describes the CIFS client statistics.

Statistic Description

CIFS Active
Connections

Number of CIFS sessions currently active.

CIFS Total
Connections
Requested

Number of sessions that the CIFS client attempted to establish.

CIFS Total
Connections
Succeeded

Number of sessions successfully established.

CIFS Total
Connections Failed

Number of sessions that could not be established.

CIFS Integrity
Check Succeeded

Number of integrity checks in which the data was verified to be free of errors.

CIFS Integrity
Check Failed

Number of integrity checks in which the data failed verification.

CIFS Average
Session Duration

Average duration of a CIFS session. This statistic computes the length of a
CIFS session beginning when the TCP connection is established and ending
when the TCP session is closed.

CIFS Data Integrity Statistics

CIFS Client Total
Data Integrity
Check Failed

Total number of data integrity (DI) comparisons in which the data the client
received was different from what it expected.

CIFS Client Total
Data Integrity
Check Succeeded

Total number of data integrity (DI) comparisons in which the data the client
received matched the data that it expected.

Note: Zero-byte reads do not contain any data for comparison, so they are
always considered successful. Therefore, every time the client performs a read
of zero bytes, this statistic is incremented.

CIFS Negotiation Statistics

CIFS Protocol
Negotiation
Average Latency

Average time elapsed between the time the client sent an SMB_COM_
NEGOTIATE request containing the list of dialects it supports and the time it
received the server's response.

Chapter 11 CIFS

– 636 –

CIFS Total Protocol
Negotiation
Attempted

Number of attempts the client made to negotiate an SMB protocol with the
server.

CIFS Total Protocol
Negotiation
Succeeded

Number of protocol negotiations that succeeded.

CIFS Total Protocol
Negotiation Failed
(Error)

Number of protocol negotiations that failed due to an error.

CIFS Total Protocol
Negotiation Failed
(Timed Out)

Number of protocol negotiations that failed because the client did not receive a
response from the server within the timeout period.

CIFS Sessions Statistics

CIFS
SessionSetupAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_
SESSION_SETUP_ANDX request and the time it received the server's
response.

CIFS Total
SessionSetupAndX
Sent

Number of SMB_COM_SESSION_SETUP_ANDX requests sent by the client.

CIFS Total
SessionSetupAndX
Succeeded

Number of SMB_COM_SESSION_SETUP_ANDX requests that succeeded.

CIFS Total
SessionSetupAndX
failed (Error)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed due to an
error.

CIFS Total
SessionSetupAndX
failed (Timed Out)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed because the
client did not receive a response within the timeout period.

CIFS Total
SessionSetupAndX
failed (badpw)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed because the
password was incorrect.

CIFS Total
SessionSetupAndX
failed
(toomanyuids)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed because the
maximum number of users per session was exceeded.

CIFS Total
SessionSetupAndX

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed because the
function is not supported.

Chapter 11 CIFS

– 637 –

failed (nosupport)

CIFS Total
Sessions close
successfully

Total number of CIFS sessions that were closed normally.

CIFS Command Statistics

TREE_CONNECT_AndX Statistics

CIFS
TreeConnectAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_TREE_
CONNECT_ANDX request and the time it received the server's response.

CIFS Total
TreeConnectAndX
Sent

Number of SMB_COM_TREE_CONNECT_ANDX requests sent by the client.

CIFS Total
TreeConnectAndX
Succeeded

Number of SMB_COM_TREE_CONNECT_ANDX requests that succeeded.

CIFS Total
TreeConnectAndX
Failed (Error)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed due to an
error.

CIFS Total
TreeConnectAndX
Failed (Timed Out)

Number of SMB_COM_SESSION_SETUP_ANDX requests that failed because the
client did not receive a response within the timeout period.

NT_CREATE_AndX Statistics

CIFS NT_
CreateAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_NT_
CREATE_ANDX request and the time it received the server's response.

CIFS Total NT_
CreateAndX Sent

Number of SMB_COM_NT_CREATE_ANDX requests sent by the client.

CIFS Total NT_
CreateAndX
Succeeded

Number of SMB_COM_NT_CREATE_ANDX requests that succeeded.

CIFS Total NT_
CreateAndX Failed
(Error)

Number of SMB_COM_NT_CREATE_ANDX requests that failed due to an error.

CIFS Total NT_
CreateAndX Failed

Number of SMB_COM_NT_CREATE_ANDX requests that failed because the
client did not receive a response within the timeout period.

Chapter 11 CIFS

– 638 –

(Timed Out)

Trans Statistics

CIFS Trans
Average Latency

Average time elapsed between the time the client sent an SMB_COM_
TRANSACTION request and the time it received the server's response.

CIFS Total Trans
Sent

Number of SMB_COM_TRANSACTION requests sent by the client.

CIFS Total Trans
Succeeded

Number of SMB_COM_TRANSACTION requests that succeeded.

CIFS Total Trans
Failed (Error)

Number of SMB_COM_TRANSACTION requests that failed due to an error.

CIFS Total Trans
Failed (Timed Out)

Number of SMB_COM_TRANSACTION requests that failed because the client
did not receive a response within the timeout period.

READ_ANDX Statistics

CIFS ReadAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_READ_
ANDX request and the time it received the server's response.

CIFS Total
ReadAndX Sent

Number of SMB_COM_READ_ANDX requests sent by the client.

CIFS Total
ReadAndX
Succeeded

Number of SMB_COM_READ_ANDX requests that succeeded.

CIFS Total
ReadAndX Failed
(Error)

Number of SMB_COM_READ_ANDX requests that failed due to an error.

CIFS Total
ReadAndX Failed
(Timed Out)

Number of SMB_COM_READ_ANDX requests that failed because the client did
not receive a response within the timeout period.

WRITE_ANDX Statistics

CIFS WriteAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_WRITE_
ANDX request and the time it received the server's response.

CIFS Total
WriteAndX Sent

Number of SMB_COM_WRITE_ANDX requests sent by the client.

CIFS Total
WriteAndX
Succeeded

Number of SMB_COM_WRITE_ANDX requests that succeeded.

Chapter 11 CIFS

– 639 –

CIFS Total
WriteAndX Failed
(Error)

Number of SMB_COM_WRITE_ANDX requests that failed due to an error.

CIFS Total
WriteAndX Failed
(Timed Out)

Number of SMB_COM_WRITE_ANDX requests that failed because the client did
not receive a response within the timeout period.

COPY Statistics

CIFS COPY
Average Latency

Average time elapsed between the time the client sent an SMB_COM_COPY
request and the time it received the server's response.

CIFS Total COPY
Sent

Number of SMB_COM_COPY requests sent by the client.

CIFS Total COPY
Succeeded

Number of SMB_COM_COPY requests that succeeded.

CIFS Total COPY
Failed (Error)

Number of SMB_COM_COPY requests that failed due to an error.

CIFS Total COPY
Failed (Timed Out)

Number of SMB_COM_COPY requests that failed because the client did not
receive a response within the timeout period.

MOVE Statistics

CIFS MOVE
Average Latency

Average time elapsed between the time the client sent an SMB_COM_MOVE
request and the time it received the server's response.

CIFS Total MOVE
Sent

Number of SMB_COM_MOVE requests sent by the client.

CIFS Total MOVE
Succeeded

Number of SMB_COM_MOVE requests that succeeded.

CIFS Total MOVE
Failed (Error)

Number of SMB_COM_MOVE requests that failed due to an error.

CIFS Total MOVE
Failed (Timed Out)

Number of SMB_COM_MOVE requests that failed because the client did not
receive a response within the timeout period.

DELETE Statistics

CIFS DELETE
Average Latency

Average time elapsed between the time the client sent an SMB_COM_DELETE
request and the time it received the server's response.

CIFS Total DELETE
Sent

Number of SMB_COM_DELETE requests sent by the client.

Chapter 11 CIFS

– 640 –

CIFS Total DELETE
Succeeded

Number of SMB_COM_DELETE requests that succeeded.

CIFS Total DELETE
Failed (Error)

Number of SMB_COM_DELETE requests that failed due to an error.

CIFS Total DELETE
Failed (Timed Out)

Number of SMB_COM_DELETE requests that failed because the client did not
receive a response within the timeout period.

RENAME Statistics

CIFS RENAME
Average Latency

Average time elapsed between the time the client sent an SMB_COM_RENAME
request and the time it received the server's response.

CIFS Total RENAME
Sent

Number of SMB_COM_RENAME requests sent by the client.

CIFS Total RENAME
Succeeded

Number of SMB_COM_RENAME requests that succeeded.

CIFS Total RENAME
Failed (Error)

Number of SMB_COM_RENAME requests that failed due to an error.

CIFS Total RENAME
Failed (Timed Out)

Number of SMB_COM_RENAME requests that failed because the client did not
receive a response within the timeout period.

CLOSE Statistics

CIFS CLOSE
Average Latency

Average time elapsed between the time the client sent an SMB_COM_CLOSE
request and the time it received the server's response.

CIFS Total CLOSE
Sent

Number of SMB_COM_CLOSE requests sent by the client.

CIFS Total CLOSE
Succeeded

Number of SMB_COM_CLOSE requests that succeeded.

CIFS Total CLOSE
Failed (Error)

Number of SMB_COM_CLOSE requests that failed due to an error.

CIFS Total CLOSE
Failed (Timed Out)

Number of SMB_COM_CLOSE requests that failed because the client did not
receive a response within the timeout period.

LOGOFF_ANDX Statistics

CIFS LogoffAndX
Average Latency

Average time elapsed between the time the client sent an SMB_COM_LOGOFF_
ANDX request and the time it received the server's response.

CIFS Total
LogoffAndX Sent

Number of SMB_COM_LOGOFF_ANDX requests sent by the client.

Chapter 11 CIFS

– 641 –

CIFS Total
LogoffAndX
Succeeded

Number of SMB_COM_LOGOFF_ANDX requests that succeeded.

CIFS Total
LogoffAndX Failed
(Error)

Number of SMB_COM_LOGOFF_ANDX requests that failed due to an error.

CIFS Total
LogoffAndX Failed
(Timed Out)

Number of SMB_COM_LOGOFF_ANDX requests that failed because the client
did not receive a response within the timeout period.

TRANS2_FIND_FIRST2 Statistics

CIFS
Trans2FindFirst2
Average Latency

Average time elapsed between the time the client sent an SMB_COM_
TRANSACTION2 request with an TRANS2_FIND_FIRST2 subcommand and the
time it received the server's response.

CIFS Total
Trans2FindFirst2
Sent

Number of TRANS2_FIND_FIRST2 subcommands sent by the client.

CIFS Total
Trans2FindFirst2
Succeeded

Number of TRANS2_FIND_FIRST2 subcommands that succeeded.

CIFS Total
Trans2FindFirst2
Failed (Error)

Number of TRANS2_FIND_FIRST2 subcommands that failed due to an error.

CIFS Total
Trans2FindFirst2
Failed (Timed Out)

Number of TRANS2_FIND_FIRST2 subcommands that failed because the client
did not receive a response within the timeout period.

TRANS2_SET_FILE_INFORMATION Statistics

CIFS
Trans2SetFileInfo
Average Latency

Average time elapsed between the time the client sent an SMB_COM_
TRANSACTION2 request with an TRANS2_SET_FILE_INFORMATION
subcommand and the time it received the server's response.

CIFS Total
Trans2SetFileInfo
Sent

Number of TRANS2_SET_FILE_INFORMATION subcommands sent by the client.

CIFS Total
Trans2SetFileInfo
Succeeded

Number of TRANS2_SET_FILE_INFORMATION subcommands that succeeded.

CIFS Total Number of TRANS2_SET_FILE_INFORMATION subcommands that failed due to

Chapter 11 CIFS

– 642 –

Trans2SetFileInfo
Failed (Error)

an error.

CIFS Total
Trans2SetFileInfo
Failed (Timed Out)

Number of TRANS2_SET_FILE_INFORMATION subcommands that failed
because the client did not receive a response within the timeout period.

TREE_DISCONNECT Statistics

CIFS
TreeDisconnect
Average Latency

Average time elapsed between the time the client sent an SMB_COM_TREE_
DISCONNECT request and the time it received the server's response.

CIFS Total
TreeDisconnect
Sent

Number of SMB_COM_TREE_DISCONNECT requests sent by the client.

CIFS Total
TreeDisconnect
Succeeded

Number of SMB_COM_TREE_DISCONNECT requests that succeeded.

CIFS Total
TreeDisconnect
Failed (Error)

Number of SMB_COM_TREE_DISCONNECT requests that failed due to an error.

CIFS Total
TreeDisconnect
Failed (Timed Out)

Number of SMB_COM_TREE_DISCONNECT requests that failed because the
client did not receive a response within the timeout period.

CIFS Dfs Path Not
Covered Received

Number or error messages received from the server indicating that the
requested file is stored on a different system (STATUS_DFS_PATH_NOT_
COVERED messages).

Requests Sent and Responses Received Statistics

CIFS Total
Requests Sent

Total number of SMB requests sent by the client.

CIFS Total
Responses
Received

Total number of SMB responses received from the server.

Bytes Statistics

CIFS Total Bytes
Transmitted

Total number of bytes transmitted in CIFS packets.

CIFS Total Bytes
Received

Total number of bytes received in CIFS packets.

Chapter 11 CIFS

– 643 –

CIFS Total Bytes
Sent And Received

Combined total of bytes sent and received in CIFS packets.

CIFS Total
Throughput

Rate at which the client sent and received CIFS packets.

Transaction Statistics

CIFS Total
Transactions

Total number of SMB transactions completed.

For CIFS, a transaction consists of an SMB request and the server's response to
it.

CIFS Total
Commands Sent

Total number of SMB commands sent by the client.

CIFS Total
Commands
Succeeded

Total number of SMB commands that succeeded.

CIFS Total
Commands Failed

Total number of SMB commands that failed for any reason.

CIFS Total
Commands Failed
(Timed Out)

Number of SMB commands that failed because the client did not receive a
response from the server within the timeout period.

CIFS Total
Commands Failed
(Other)

Number of SMB commands that failed for reasons other than a timeout.

Test Objective Statistics

CIFS Simulated
Users

Number of CIFS clients simulated during the test.

Chapter 11 CIFS

– 644 –

CIFS Server Statistics
The following table describes the CIFS server statistics.

Statistic Description

Session Statistics

CIFS Session Setup
Succeeded

Number of CIFS sessions successfully setup.

CIFS Session Setup Failed Number of CIFS sessions that could not be setup.

CIFS Session Close
Succeeded

Number of CIFS sessions that ended normally.

Bytes Statistics

CIFS Server Total Bytes
Sent

Total number of bytes sent in CIFS packets by the server, including
header and payload bytes.

CIFS Server Total Bytes
Received

Total number of bytes received in CIFS packets by the server,
including header and payload bytes.

CIFS Server Total Bytes
Sent And Received

Combined total of bytes sent and received by the server in CIFS
packets.

CIFS Active Connections Number of CIFS connections established and in progress.

Command Related Statistics

Negotiate Protocol Request
Received

Number of NEGOTIATE messages received by the server.

Trans2 Set File Info
Request Received

Number of SMB_COM_TRANSACTION2 requests received with the
TRANS2_SET_FILE_INFORMATION subcommand code set.

Trans2 Find First2 Request
Received

Number of SMB_COM_TRANSACTION2 requests received with the
TRANS2_FIND_FIRST2 subcommand code set.

Trans2 Find Next2 Request
Received

Number of SMB_COM_TRANSACTION2 requests received with the
TRANS2_FIND_NEXT2 subcommand code set.

CIFS SessionSetupAndx
Request Received

Number of SMB_COM_SESSION_SETUP_ANDX messages received by
the server.

CIFS TreeConnectAndx
Request Received

Number of SMB_COM_TREE_CONNECT_ANDX messages received by
the server.

CIFS TreeDisconnect Number of SMB_COM_TREE_DISCONNECT messages received by the

Chapter 11 CIFS

– 645 –

Request Received server.

CIFS NT_CreateAndx
Request Received

Number of SMB_COM_NT_CREATE_ANDX messages received by the
server.

CIFS NetshareEnumall
Request Received

Number of SMB_COM_NETSHARE_ENUM_ALL messages received by
the server.

CIFS ReadAndx Request
Received

Number of SMB_COM_READ_ANDX messages received by the server.

CIFS Rename Request
Received

Number of SMB_COM_RENAME messages received by the server.

CIFS Delete Request
Received

Number of SMB_COM_DELETE messages received by the server.

CIFS WriteAndx Request
Received

Number of SMB_COM_WRITE_ANDX messages received by the server.

CIFS Close Request
Received

Number of SMB_COM_CLOSE messages received by the server.

CIFS Logoff Request
Received

Number of SMB_COM_LOGOFF_ANDX messages received by the
server.

Command Response Statistics

Negotiate Protocol
Response Sent

Number of responses sent for SMB_COM_NEGOTIATE commands.

Trans2 Set File Info
Response Sent

Number of responses sent for SMB_COM_TRANSACTION2 requests
received with the TRANS2_SET_FILE_INFORMATION subcommand
code set.

Trans2 Find First2
Response Sent

Number of responses sent for SMB_COM_TRANSACTION2 requests
received with the TRANS2_FIND_FIRST2 subcommand code set.

Trans2 Find Next2
Response Sent

Number of responses sent for SMB_COM_TRANSACTION2 requests
received with the TRANS2_FIND_NEXT2 subcommand code set.

CIFS SessionSetupAndx
Response Sent

Number of reponses sent for SMB_COM_SESSION_SETUP_ANDX
commands.

CIFS TreeConnectAndx
Response Sent

Number of responses sent for SMB_COM_TREE_CONNECT_ANDX
commands.

CIFS TreeDisconnect
Response Sent

Number of responses sent for SMB_COM_TREE_DISCONNECT
commands.

Chapter 11 CIFS

– 646 –

CIFS NT_CreateAndx
Response Sent

Number of responses sent for SMB_COM_NT_CREATE_ANDX
commands.

CIFS Netsharenumall
Response Sent

Number of responses sent for SMB_COM_NETSHARE_ENUM_ALL
commands.

CIFS ReadAndx Response
Sent

Number of responses sent for SMB_COM_READ_ANDX commands.

CIFS Rename Succeeded Number of responses sent for SMB_COM_RENAME commands.

CIFS Delete Succeeded Number of responses sent for SMB_COM_DELETE commands.

CIFS WriteAndx Response
Sent

Number of responses sent for SMB_COM_WRITE_ANDX commands.

CIFS Close Response Sent Number of responses sent for SMB_COM_CLOSE commands.

CIFS Logoff Response Sent Number of responses sent for SMB_COM_LOGOFF_ANDX commands.

Command Failed Statistics
The following statistics are updated when an error occurs or when an error response is generated for
a invalid request.

Negotiate Protocol Sent
Failed

Number of SMB_COM_NEGOTIATE responses sent that did not result in
a CIFS session being established.

Trans2 Set File Info Sent
Failed

Number of responses sent for TRANS2_SET_FILE_INFORMATION
commands that failed.

Trans2 Find First2 Sent
Failed

Number of responses sent for TRANS2_FIND_FIRST2 commands that
failed.

Trans2 Find Next2 Sent
Failed

Number of responses sent for TRANS2_FIND_NEXT2 commands that
failed.

CIFS SessionSetupAndx
Sent Failed

Number of responses sent for SMB_COM_SESSION_SETUP_ANDX
commands that failed.

CIFS TreeConnectAndx
Sent Failed

Number of responses sent for SMB_COM_TREE_CONNECT_ANDX
commands that failed.

CIFS TreeDisconnect Sent
Failed

Number of responses sent for SMB_COM_TREE_DISCONNECT
commands that failed.

CIFS NT_CreateAndx Sent
Failed

Number of responses sent for SMB_COM_NT_CREATE_ANDX
commands that failed.

CIFS Netsharenumall Sent
Failed

Number of responses sent for SMB_COM_NETSHARE_ENUM_ALL
commands that failed.

Chapter 11 CIFS

– 647 –

CIFS ReadAndx Sent Failed Number of responses sent for SMB_COM_READ_ANDX commands that
failed.

CIFS Rename Failed Number of responses sent for SMB_COM_RENAME commands that
failed.

CIFS Delete Failed Number of responses sent for SMB_COM_DELETE commands that
failed.

CIFS WriteAndx Sent Failed Number of responses sent for SMB_COM_WRITE_ANDX commands
that failed.

CIFS Close Sent Failed Number of responses sent for SMB_COM_CLOSE commands that
failed.

CIFS Logoff Sent Failed Number of responses sent for SMB_COM_LOGOFF_ANDX commands
that failed.

SMB Error Statistics

CIFS Server Logon Failure Number of failed attempts by clients to log on to the server.

CIFS Server Bad Password Number of incorrect passwords provided by clients attempting to log
on.

CIFS Server Bad User ID Number of incorrect user names provided by clients attempting to log
on.

CIFS Server Bad Filename Number of attempts by clients to access files that do not exist on the
server.

CIFS Server Bad Path Number of attempts by clients to access paths that do not exist on the
server.

CIFS Server Bad Access Number of instances in which the client did not have the access rights
to perform a function.

CIFS Server Bad Command Number of SMB commands that the server did not recognize.

CIFS Server Invalid
Parameter

Number of invalid parameters received in SMB commands.

! 13

Chapter 11 CIFS

– 648 –

CHAPTER 12 DHCP
This section describes the DHCP Tcl API objects.

Overview
The IxLoad DHCP API consists of a client agent and its commands.

Objectives
The objectives (userObjective) you can set for DHCP are listed below. Test objectives are set in the
ixTimeline object.

l transactionRate

l simulatedUsers

– 649 –

DHCP Client Agent
DHCP Client Agent

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.config

DESCRIPTION

A DHCP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity DHCPClient1
of NetTraffic Traffic1@Network1###set
Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"dhcp Client"]$Activity_DHCPClient1 agent.config \-enable
true \-name "DHCPClient1"

SEE ALSO

ixNetTraffic

Chapter 12 DHCP

– 650 –

Chapter 12 DHCP

– 651 –

DHCP Command List
DHCP Command List—Creates the list of DHCP commands that the client will send to a DHCP server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.DHCPCommandList.appendItem

DESCRIPTION

A command is added to the DHCP Command List object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

DHCP command to be executed. One of the following:

Command Description

DHCPDiscover Broadcasts a DHCPDISCOVER message—a broadcast to locate available
servers. The client will then wait to receive one or more DHCPOFFER
messages and select one of these offers.

DHCPRequest l Sends a DHCPREQUEST message. The DHCPREQUEST message can be
used to perform several tasks:

l It can request the offered parameters from one server and implicitly
decline offers from all others.

l It can confirm the correctness of a previously allocated address (for
example, after a reboot).

l It can extend the lease on a particular network address.

DHCPDecline Sends a DHCPDECLINE message. A DHCP client sends a DHCPDECLINE when
it knows that an offered IP address is already in use.

DHCPRelease Sends a DHCPRELEASE message. If a client no longer requires use of its
assigned network address (for example, because it is shutting down), it sends
a DHCPRELEASE mesto the server.

Chapter 12 DHCP

– 652 –

DHCPInform Sends a DHCPINFORM message. After sending the comthe client waits for a
DHCPACK message from the server. The DHCPINFORM message allows hosts
that are not using DHCP to acquire IP addresses to still utilize its other
configuration capabilities to request that a server send it parameters for how
the network is to be used.

Bind An IxLoad command that is a composite of several DHCP commands that
simulates a binding.

The {Bind} command functions as follows:

1. Send a DHCPDISCOVER message.

2. Wait to receive one or more DHCPOFFER messages from the servers.

3. Send a DHCPREQUEST message to one of the servers.

4. Wait to receive a DHCPACK message.

5. Validate the IP address received. If it is invalid, then send a DHCPDECLINE
message to the server.

Using the {Bind} command is equivalent to issuing a DHCPcommand followed
by a DHCPREQUEST (SELECTING) command and an optional DHCPDECLINE
command.

BindRelease An IxLoad command that is a composite of several DHCP commands that
simulates a client binding, pausing execution, and then releasing its IP
address. It is included to help speed your testing.

Using the {BindRelease} command is equivalent to using {Bind}, {Think},
and DHCPRELEASE.

BindRenew An IxLoad command that is a composite of several DHCP commands that
simulates a client binding, pausing execution, and then renewing its IP
address. It is included to help speed your testing.

Using the {BindRenew} command is equivalent to using {Bind}, {Think}, and
DHCPREQUEST (RENEWING).

BOOTRequest A BOOTP (Bootstrap Protocol) command that sends a BOOTREQUEST
message and waits to receive a BOOTREmessage from a server.

Think Causes the client to become idle. {Think} is an internal IxLoad command
intended to assist your testing; it is not a command defined in the DHCP
protocol.

If you specify identical values for the minimum and maximum times, the
client will be idle for a fixed length of time. If you specify different values for
the minimum and maximum times, IxLoad will select a value within the range
and cause the client to be idle for that length of time.

LoopBeginCommand An IxLoad command that you can add to the Command List to cause the
commands between it and the {LoopEndCommand} to be executed a
specified number of times.

Chapter 12 DHCP

– 653 –

LoopEndCommand Ends the list of commands that will be executed by the preceding Loop Begin}
command.

Arguments for id = DHCPDiscover

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for DHCPDISCOVER").

serverAlgo

Determines how the client selects the DHCP server from among those offered. Minimum = 1, maximum
= 3. The choices are:

Value Description

1 (default) The client selects the server that replies first.

2 The client selects the server whose IP address is specified for the
serverIPAddr argument.

3 The client selects a server at random from a pool of those that reply. Specify the number of
servers in the upperLimit field.

serverIPAddr

If serverAlgo is set to 2, this is the IP address of the DHCP server. Minimum length = 7, maximum
length = 19. (Default = "10.0.1.1").

upperLimit

If serverAlgo is set to 3, this is the number of servers in the pool. Minimum = 1, maximum length =
2147483647. (Default = "5").

Arguments for id = DHCPRequest

sendState

State in which the client is to send the DHCPREQUEST message. See the state transition diagram in
RFC 2131. Minimum = “1,” maximum = “4.” The choices are:

Value Description

"1" (default) Selecting

Chapter 12 DHCP

– 654 –

"2" InitReboot

"3" Renewing

"4" Rebinding

Arguments for id = DHCPDecline

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for DHCPDECLINE").

Arguments for id = DHCPRelease

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for DHCPRELEASE").

Arguments for id = DHCPInform

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for DHCPINFORM").

clientIPAddr

IP address and subnet of client. The client will insert this address and subnet into the CIAddr field of
the DHCPINFORM message. If the IP address has already been assigned, then this address will be
ignored. Minimum length = “7,” maxilength = "24." (Default = "10.0.0.1/8").

Arguments for id = Bind

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set for {Bind}").

serverAlgo

Determines how the client selects the DHCP server from among those offered. Minimum = 1, maximum
= 3. The choices are:

Value Description

1 (default) The client selects the server that replies first.

Chapter 12 DHCP

– 655 –

2 The client selects the server whose IP address is specified for the
serverIPAddr argument.

3 The client selects a server at random from a pool of those that reply. Specify the number of
servers in the upperLimit field.

serverIPAddr

If serverAlgo is set to 2, this is the IP address of the DHCP server. Minimum length = 7, maximum
length = 19. (Default = "10.0.1.1/8").

upperLimit

If serverAlgo is set to 3, this is the number of servers in the pool. Minimum = 1, maximum length =
2,147,483,647. (Default = "5").

Arguments for id = BindRelease

timeToThinkMin

Minimum length of time before the client releases the IP address. Minimum = “1,” maximum =
"2,147,483,647.” (Default = "1").

timeToThinkMax

Maximum length of time before the client releases the IP address. Minimum = “1,” maximum =
"2,147,483,647.” (Default = "1").

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for {BindRelease}").

serverAlgo

Determines how the client selects the DHCP server from among those offered. Minimum = 1, maximum
= 3. The choices are:

Value Description

1 (default) The client selects the server that replies first.

2 The client selects the server whose IP address is specified for the
serverIPAddr argument.

3 The client selects a server at random from a pool of those that reply. Specify the number of
servers in the upperLimit field.

serverIPAddr

Chapter 12 DHCP

– 656 –

If serverAlgo is set to 2, this is the IP address of the DHCP server. Minimum length = 7, maximum
length = 19. (Default = "10.0.1.1/8").

upperLimit

If serverAlgo is set to 3, this is the number of servers in the pool. Minimum = 1, maximum length =
2,147,483,647. (Default = "5").

Arguments for id = BindRenew

timeToThinkMin

Minimum length of time before the client releases the IP address. If you set a value for
timeToThinkMin, you must also set timeToThinkMax to the same value. Minimum = “1,” maximum =
“2,147,483,647.” (Default = "1").

timeToThinkMax

Maximum length of time before the client releases the IP address. If you set a value for
timeToThinkMax, you must also set timeToThinkMin to the same value. Minimum = “1,” maximum
= “2,147,483,647.” (Default = "1").

optionSet

Name of option set. A value for this argument must one of the name objects from the optionSet object.
Minimum length = 1. (Default = "Default Option Set for {BindRenew}").

serverAlgo

Determines how the client selects the DHCP server from among those offered. Minimum = 1, maximum
= 3. The choices are:

Value Description

1 (default) The client selects the server that replies first.

2 The client selects the server whose IP address is specified for the
serverIPAddr argument.

3 The client selects a server at random from a pool of those that reply. Specify the number of
servers in the upperLimit field.

serverIPAddr

If serverAlgo is set to 2, this is the IP address of the DHCP server. Minimum length = 7, maximum
length = 19. (Default = "10.0.1.1/8").

upperLimit

If serverAlgo is set to 3, this is the number of servers in the pool. Minimum = 1, maximum length =
2,147,483,647. (Default = "5").

Chapter 12 DHCP

– 657 –

Arguments for id = BOOTRequest

clientIPAddr

IP address and subnet of client. Minimum length = “7,” maximum length = "24." (Default =
"10.0.0.1/8").

serverName

Host name or IP address of the BOOTP server. In actual BOOTP implementations, this field (SName) is
normally used by a client to specify a particular server that it wants to receive a a reply from.

If you enter a host name or IP address in this field, the client sends the BOOTREQUEST as a unicast
message to the BOOTP server.

If you leave this field blank, the client sends the BOOTREQUEST as a broadcast message to the port
number used by BOOTP to the broadcast address of the local network. Minimum length = “7,”
maximum length = “24.” (Default = "10.0.0.1/8").

bootFileType

Indication to the BOOTP server as to the boot file that the client wants to receive. When the server
receives the BOOTREQUEST, it determines which file contains the requested image, and uses Boot File
Name field to send the name of the file to the client. Maximum length = 127. (Default="{}").

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set for {BOOTRequest}").

Arguments for id = Think

timeToThinkMin

Minimum length of time that the client is idle. Minimum = “1,” maximum = “2,147,483,647.” (Default
= "1").

timeToThinkMax

Maximum length of time that the client is idle. Minimum = “1,” maximum = “2,147,483,647.” (Default
= "1").

Arguments for id = LoopBeginCommand

loopCount

Number of times to repeat the enclosed commands. '0' treated as infinity. Mini= “0,” maximum =
“2,147,483,647.” (Default = "5").

Arguments for id = LoopEndCommand

None.

EXAMPLE
$Activity_DHCPClient1 agent.pm.DHCPCommandList.appendItem \-id

Chapter 12 DHCP

– 658 –

"DHCPDiscover" \-upperLimit 5 \-optionSet
"Default Option Set for DHCPDISCOVER" \-serverAlgo 1 \-
serverIPAddr "10.0.1.1"

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 659 –

Advanced Options
Advanced Options—Sets the DHCP client agent’s global configuration options.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.advancedOptions.config

DESCRIPTION

A DHCP client’s advanced configuration options are set by modifying the options of the
pm.advancedOptions option of the DHCP Client Agent.

SUBCOMMANDS

None.

OPTIONS

clientPort

UDP port that the client listens on for DHCP and BOOTP responses. Minimum = 1, maximum = 65,535.
(Default = 68).

serverPort

UDP port that the client addresses server requests to. Minimum = 1, maximum = 65535. (Default =
67).

numRetransmit

Number of times that the client will retransmit a request for which it has not received a response.
Minimum = 0, maximum = 2,147,483. (Default = 3).

initialTimeout

Length of time that the client waits for a response to a request. If the Initial Timeout period expires,
the client retransmits the request (unless numRetransmit is 0). Minimum = 1, maximum = 2,147,483.
(Default = 4).

timeoutIncrFactor

If the client has retransmitted a timed-out request, this parameter increments the Initial Timeout
value. Minimum = 1, maximum = 2,147,483. (Default = 2).

maximumDHCPMsgSize

Maximum size of a DHCP packet that the client will accept, including IP and UDP headers. According to
RFC 2131, the minimum message size that a client should accept is 576 octets. Minimum = 576,
maximum = 65,536. (Default = 576).

vendorClass

Chapter 12 DHCP

– 660 –

Text string identifying the vendor type and configuration of the DHCP client. Minimum length = 0,
maximum length = 255. (Default = "IXIA IxLoad DHCP Client")

optionsOverload

If true, indicates to the server that the client will allow option overloading. (Default = 0).

broadcastBit

If true, sets the client’s Broadcast bit to 1 in the ‘flags’ field in any DHCPDISCOVER or DHCPREQUEST
messages that client sends. (Default = 0).

EXAMPLE
$Activity_DHCPClient1 agent.pm.advancedOptions.config \-clientPort
68 \-firstLoad false \-maxDHCPMsgSize
576 \-broadcastBit false \-timeoutIncrFactor
2 \-numRetransmit 3 \-needValidation
false \-writeLeasesToFile false \-serverPort
67 \-optionsOverload false \-memRequiredForOptions
52 \-vendorClass "IXIA IxLoad DHCP Client" \-
initialTimeout 4 \-implicitLoopCheck
true

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 661 –

Relay Agent
Relay Agent—Enables the DHCP client agent to function as a DHCP relay agent and configuration the
relay agent options.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.relayAgent.config

DESCRIPTION

A DHCP client’s relay agent is configured by modifying the options of the pm.relayAgent option of the
DHCP Client Agent object.

SUBCOMMANDS

None.

OPTIONS

enableRelay

If true, the DHCP client will emulate DHCP relay agents. (Default = 0).

enableCircuitId

If true, the DHCP agent includes the Circuit ID sub-option in DHCP messages. Use the circuitId
option to configure the ID value. (Default = 0).

circuitId

If circuitId is true, this option sets the circuit ID. You can include variables to cause the client to
generate large numbers of unique values. Maximum length = 243. (Default = "123[000-999]").

circuitIdGroupSize

Number of DHCP clients sharing the same Circuit ID.

enableRemoteId

If true, the DHCP agent includes the Remote ID suboption in DHCP messages. Use the remoteId
option to configure the ID value. (Default = 0).

remoteId

If remoteId is true, this option sets the remote ID. You can include variables to cause the client to
generate large numbers of unique values. Maximum length = 243. (Default = "Ixia-host-
[0000-]").

remoteIdGroupSize

Number of DHCP clients sharing the same Remote ID.

Chapter 12 DHCP

– 662 –

relayAgentIPAddr

IP address of the first emulated DHCP Relay Agent. If you specify more than Relay Agent (the
numRelayAgent option), IxLoad increments this address to create additional addresses for the agents.
Minimum length = 7, maximum length = 24, (Default = "11.0.0.1/8").

numRelayAgent

Number of DHCP Relay Agents to emulate. Minimum = 1, maximum = 1,000,000. (Default = 1).

EXAMPLE
$Activity_DHCPClient1 agent.pm.relayAgent.config \-remoteId
"Ixia-host-\[0000-\]" \-memRequired 0 \-circuitId
"123\[000-999\]" \-relayAgentIPAddr "11.0.0.1/8" \-numVlans
1 \-enableRemoteId false \-remoteIdGroupSize
1 \-enableCircuitId false \-circuitIdGroupSize
1 \-enableRIdByteStream false \-vlanId
1 \-enableVlan false \-incrVlanId
1 \-enableCIdByteStream false \-numRelayAgent
1 \-enableRelay 0

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 663 –

Option
Option—Configures a DHCP option.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList.appendItem
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList(0).option

DESCRIPTION

An Option object is an item in an OptionsList. An Option is added to an Options List using
appendItem.

SUBCOMMANDS

None.

OPTIONS

id

DHCP option. One of the following:

Value Description

RequestedIPAddress This option is used in a client request (DHCPDISCOVER) to allow the
client to request that a particular IP address be assigned.

IPAddressLeaseTime This option is used in a client request (DHCPDISCOVER or
DHCPREQUEST) to allow the client to request a lease time for the IP
address. In a server reply (DHCPOFFER), a DHCP server uses this option
to specify the lease time it is willing to offer.

ParameterRequestList This option is used by a DHCP client to request values for specified
configuration parameters.

DHCPErrorMessage This option is used by a DHCP server to provide an error message to a
DHCP client in a DHCPNAK message, in the event of a failure. A client
may use this option in a DHCPDErrorMessage to indicate why the client
declined the offered parameters.

DHCPRenewalTime This option specifies the time interval from address assignment until the
client transitions to the RENEWING state.

DHCPRebindingTime This option specifies the time interval from address assignment until the

Chapter 12 DHCP

– 664 –

client transitions to the REBINDING state.

VendorClassIdentifier This option is used by DHCP clients to optionally identify the vendor type
and configuration of a DHCP client.

ClientIdentifier This option is used by DHCP clients to specify their unique identifier.
DHCP servers use this value to index their database of address bindings.
This value is expected to be unique for all clients in an administrative
domain.

SubnetMaskValue The subnet mask option specifies the client's subnet mask as per RFC
950.

TimeOffsetUTC The time offset field specifies the offset of the client's subnet in seconds
from Coordinated Universal Time (UTC). A positive offset indicates a
location east of the zero meridian and a negative offset indicates a
location west of the zero meridian.

RouterAddresses The router option specifies a list of IP addresses for routers on the client's
subnet. Enter the router addresses in order of preference.

DNSServerAddresses The domain name server option specifies a list of Domain Name System
name servers available to the client. List the servers in order of
preference.

HostnameString This option specifies the name of the client. The name may or may not be
qualified with the local domain name.

DNSDomainNameClient This option specifies the domain name that client should use when
resolving hostnames via the Domain Name System.

InterfaceMTUSize This option specifies the MTU to use on this interface. The MTU is
specified as a 16-bit unsigned integer. The minimum value for MTU is 68.

SubnetsLocal This option specifies whether or not the client may assume that all
subnets of the IP network to which the client is connected use the same
MTU as the subnet of that network to which the client is directly
connected.

If this option is enabled, that indicates that all subnets share the same
MTU.

If this option is disabled, that indicates that the client should assume that
some subnets of the directly connected network may have smaller MTUs.

BroadcastAddress This option specifies the broadcast address in use on the client's subnet.

PerformMaskDiscovery This option specifies whether or not the client should perform subnet
mask discovery using ICMP.

If this option is disabled, then it indicates that the client should not

Chapter 12 DHCP

– 665 –

perform mask discovery.

If this option is enabled, then it indicates that the client should perform
mask discovery.

PerformRouterDiscovery This option specifies whether or not the client should solicit routers using
the Router Discovery mechanism defined in RFC 1256.

If this option is disabled, then it indicates that the client should not
perform router discovery.

If this option is enabled, then it indicates that the client should perform
router discovery.

ARPCacheTimeOut This option specifies the timeout in seconds for ARP cache entries.

VendorSpecificInfo This option is used by clients and servers to exchange vendor
information. The vendor is indicated in the vendor class identifier option.

UserClassInfo This option is used by a DHCP client to optionally identify the type or
category of user or applications it represents.

Arguments for option = RequestedIPAddress

clientIPAddr

IP address requested by the client. Minimum length = 7, maximum length = 24. (Default =
"10.0.0.1/8").

Arguments for option = IPAddressLeaseTime

interval

Duration of lease, in seconds. Minimum = 0, maximum = 4,294,967,295. (Default = 3,600).

Arguments for option = ParameterRequestList

options

List of options for requested parameters. This argument is a list of Option Choices objects. See Option
Choices on page 19-35.

Arguments for option = DHCPErrorMessage

message

Text of error message. Minimum length = 1, maximum length = 255. (Default = "IP Address
Rejected by IxLoad").

Chapter 12 DHCP

– 666 –

Arguments for option = DHCPRenewalTime

interval

Time, in seconds, from address assignment to transition to the RENEWING state. Minimum = 0,
maximum = 4,294,967,295. (Default = 0).

Arguments for option = DHCPRebindingTime

interval

Time, in seconds, from address assignment to transition to the REBINDING state. Minimum = 0,
maximum = 4,294,967,295. (Default = 0).

Arguments for option = VendorClassIdentifier

data

Text identifying vendor class. Minimum length = 1, maximum length = 255. (Default = "IXIA
IxLoad DHCP Client").

Arguments for option = ClientIdentifier

identifier

Value for client identifier. Minimum = 1, maximum = 2,147,467,647. (Default = 1).

Arguments for option = SubnetMaskValue

mask

Subnet mask. Minimum length = 7, maximum length = 19. (Default = "255.0.0.0").

Arguments for option = TimeOffsetUTC

offset

Offset value. Minimum = -2,147,483,648, maximum = 2,147,483,647. (Default = 0).

Arguments for option = RouterAddresses

address

List of router IP addresses. This is a list of type IPAddress. IP Address on page 19-37. (Default=
{}).

Arguments for option = DNSServerAddresses

address

List of router IP addresses. This is a list of type IPAddress. IP Address on page 19-37. (Default =
{}).

Chapter 12 DHCP

– 667 –

Arguments for option = HostnameString

hostName

Name of the client. You can use the following characters a-z, A-Z, 0-9, dash (-). Minimum length = 1,
maximum length = 53. (Default = "IxLoad-DHCP-Cli.

Arguments for option = DNSDomainNameClient

domainName

Domain name. Minimum length = 1, maximum length = 255. (Default = “ixia”).

Arguments for option = InterfaceMTUSize

size

MTU value. Minimum = 68, maximum = 65,535. (Default = 68).

Arguments for option = SubnetsLocal

val

Boolean value. 0 = false, 1 = true. (Default = 0).

Arguments for option = BroadcastAddress

address

Broadcast IP address. Minimum length = 7, maximum length = 19. (Default = "10.255.255.255").

Arguments for option = PerformMaskDiscovery

val

Boolean value. 0 = false, 1 = true. (Default = 0).

Arguments for option = PerformRouterDiscovery

val

Boolean value. 0 = false, 1 = true. (Default = 0).

Arguments for option = ARPCacheTimeOut

timeout

Timeout value. Minimum = 0, maximum = 4,294,967,295. (Default = 0).

Arguments for option = VendorSpecificInfo

info

Text string describing vendor information. Minimum length = 1. (Default = "None").

Chapter 12 DHCP

– 668 –

Arguments for option = UserClassInfo

info

Text string describing user class information. Minimum length = “1,” maximum length = “254.”
(Default = "IXIA IxLoad DHCP Client").

EXAMPLE
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList.appendItem \-id
"OptionSet" \-predefined true \-decline
0 \-name "Default Option Set for DHCPDISCOVER" \-
inUse 1 \-bootRequest
0 \-bind 0 \-discover
true \-bindRelease 0 \-inform
0 \-bindRenew 0 \-release
0$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList
(0).optionsList.clear$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList
(0).optionsList.appendItem \-id
"RequestedIPAddress" \-clientIPAddr
"10.0.0.1/8"$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList
(0).optionsList.appendItem \-id
"IPAddressLeaseTime" \-interval 3600

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 669 –

Option Set
Options Set—Configures the list of commands that an option list applies to.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.optionSet.config

DESCRIPTION

An Options Set is a list of Options, their arguments, and the commands for which those options are
used. Configure the list using the same subcommands as for ixConfig.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

Name of option set list. Minimum length = 1. (Default = "No Name")

optionsList

List of options and their arguments. See Option on page 19-27. (Default = "{}).

predefined

If true, then the options in this option set are predefined for the DHCP server to expose as available
options. (Default = "0").

inUse

Minimum = 0, maximum = 1. (Default = 0).

discover

If true, then this option set can be used for the DHCPDISCOVER command. (Default = 0).

inform

If true, then this option set can be used for the DHCPINFORM command. (Default = 0).

decline

If true, then this option set can be used for the DHCPDECLINE command. (Default = 0).

release

If true, then this option set can be used for the DHCPRELEASE command. (Default = 0).

bind

Chapter 12 DHCP

– 670 –

If true, then this option set can be used for the (Bind} command. (Default = 0).

bindRelease

If true, then this option set can be used for the BindRelease command. (Default = 0).

bindRenew

If true, then this option set can be used for the BindRenew command. (Default = 0).

bootRequest

If true, then this option set can be used for the BOOTREQUEST command. (Default = 0).

EXAMPLE
$Activity_DHCPClient1 agent.pm.optionSet.config \-predefined
false \-decline false \-name
"No Name" \-inUse 0 \-bootRequest
false \-bind false \-discover
false \-bindRelease false \-inform
false \-bindRenew false \-release
false

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 671 –

Option Set Manager
Options Set Manager—Configures the list of Option Sets.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList.appendItem
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList(0).option

DESCRIPTION

To configure an Option Set Manager, use the appendItem command on the pm.optionSetManager
component of the DHCP Client Agent.

SUBCOMMANDS

None.

OPTIONS

optionSetList

List of Option Sets. See Option Set.

EXAMPLE

See the example for Option.

SEE ALSO

DHCP Client Agent

Chapter 12 DHCP

– 672 –

Option Choices
Option Choices—Configures a list of DHCP options that the client agent requests values for.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList.appendItem
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList(0).option

DESCRIPTION

The Option command includes a Parameter Request List option. Parameter Request List allows
the client to send a list of DHCP options to the server and request the server to return the values that it
supports for each option.

To specify the list of DHCP options that the client sends, use the optionCode parameter of the Options
Choices command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

optionCode

DHCP option that the client requests values for. Minimum = 1, maximum = 59. The choices are:

Value Description

51 (default) IP Address Lease Time

58 DHCP Renewal (T1) Time

59 DHCP Rebinding (T2) Time

1 Subnet Mask Value

2 Time Offset in Seconds from UTC

3 Router Addresses

6 DNS Server Addresses

12 Hostname String

Chapter 12 DHCP

– 673 –

15 DNS Domain Name of the Client

26 Interface MTU Size

27 All Subnets are Local

28 Broadcast Address

29 Perform Mask Discovery

31 Perform Router Discovery

35 ARP Cache Timeout

43 Vendor Specific Information

SEE ALSO

Option

Chapter 12 DHCP

– 674 –

IP Address
IP Address—Configures a list of IP addresses.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DHCPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_DHCPClient1 agent.pm.optionSetMgr.optionSetList(0).option

DESCRIPTION

Several DHCP Option commands includes options (RouterAddresses, DNSServ) that specify lists of
IP addresses for various functions. To create those lists, you use IP Address, which is a list of type
ixConfigSequenceContainer. Each element in the list is an IP address.

SUBCOMMANDS

None.

OPTIONS

address

IP address. Minimum length = 7, maximum length = 19. (Default = "0.0.0.0").

EXAMPLE
Create a list of IP addresssset ipAddrList [list \ "198.18.0.1" \
"10.205.17.71" \ "10.205.17.176" \ "198.18.0.101" \
]# Go through the following loop adding the addresses one by one.foreach {option id}
[list RouterAddresses addresses DNSServerAddresses addresses] {

$clnt_traffic agentList(0).pm.optionSetMgr.optionSetList(0) \
.optionsList.appendItem \
-id $option

set index [$clnt_traffic agentList(0).pm.optionSetMgr.optionSetList(0) \
.optionsList.indexCount]
incr index -1foreach ip $ipAddrList {

$clnt_traffic agentList(0).pm.optionSetMgr.optionSetList(0) \
.optionsList($index).${id}.appendItem \
-address $ip } }

SEE ALSO

ixConfigSequenceContainer

Chapter 12 DHCP

– 675 –

Using Variables in DHCP Fields
You can insert variables into the Circuit ID and Remote ID fields on the DHCP client Relay Agent tab.
You can use the variables to generate large numbers of unique circuit IDs and remote IDs.

You can use the following variables:

l Numbers 0-9

l Letters A-Z and a-z

The letter variables are case-sensitive; IxLoad considers the variable strings “AA“ and “aa” to be
different.

You can combine the variables with fixed text to create the circuit IDs and remote IDs. For example,
you can enter circuitID_[00-] to create a range of unique IDs that begin with the characters “circuitID_”
(circuitID_00, circuitID_01, and so on).

To insert the variables into a field, enclose them in square brackets ([]). To specify a range,
separate the minimum and maximum values with a hyphen (-). For example, [00-10] specifies a range
of 00 through 10.

The number of variables you insert determines the width of the generated strings. For example, the
variable “00” can generate the strings 00 - 99. The variable string “000“ can generate the strings 000 -
999.

Similarly, “AA” can generate strings that consist of all the two-letter combinations from AA to ZZ.
“AAA” can generate strings that consist of all the three-letter combinations from AAA to ZZZ.

You can use a single variable string and allow IxLoad to generate strings up the maximum value of the
string or, you can use two variable strings together to restrict the generated strings to a certain range.

See the following example:

[0-] will generate all the values 0 - 9 (0, 1, 2, 3 . . . 9).
[0-5] will generate all the values 0 - 5.

[00-] will generate all the values 00 - 99 (00, 01, 02, 03. . .97, 98, 99).
[00-50] will generate all the values 0 - 50.

[A-] will generate all the values A - Z (A, B, C . . . Z).
[A-K] will generate all the values A - K.

[AA-] will generate all the values AA - ZZ (AA, AB, AC. . ZX, ZY, ZZ).
[AA-KK] will generate all the values AA - KK.

When IxLoad has generated the final string, if the test configuration requires additional strings, IxLoad
returns to the starting value of the variable and continues to generate strings until no more are
required. In this case, the generated strings will not be unique.

For example, if a DHCP test requires 256 circuit IDs and the Circuit ID field is configured as:

circuitID_[00-]

Chapter 12 DHCP

– 676 –

IxLoad will generate the strings circuitID_00 - circuitID_99, then repeat and again generate strings
circuitID_00 - circuitID_99, then generate the final group of strings circuitID_00 - circuitID_56.

Chapter 12 DHCP

– 677 –

DHCP Statistics
The table below describes the DHCP client statistics.

For information on how the various DHCP options affect the size of a DHCP packet generated by
IxLoad, see Effect of Options on DHCP Packet Size (see Effect of Options on DHCP Packet Size).

Statistic Description

DHCP
DHCPDISCOVER
Response Time

Amount of time elapsed between the time the client sent a DHCPDISCOVER
request and the time it received an acceptable response to it. This statistic is
updated when the client selects a DHCPOFFER, which can be affected by the
server selection algorithm.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPREQUEST
Response Time

Amount of time elapsed between the time the client sent a DHCPREQUEST
request and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPREQUEST
(SELECTING)
Response Time

Amount of time elapsed between the time the client sent a DHCPREQUEST
request in the Selecting state and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Response Time

Amount of time elapsed between the time the client sent a DHCPREQUEST
request in the Init-Reboot state and the time it received the first response to
it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPREQUEST
(RENEWING)
Response Time

Amount of time elapsed between the time the client sent a DHCPREQUEST
request in the Renewing state and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPREQUEST
(REBINDING)
Response Time

Amount of time elapsed between the time the client sent a DHCPREQUEST
request in the Rebinding state and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP
DHCPINFORM
Response Time

Amount of time elapsed between the time the client sent a DHCPINFORM
request and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Chapter 12 DHCP

– 678 –

DHCP
BOOTREQUEST
Response Time

Amount of time elapsed between the time the client sent a BOOTREQUEST
request and the time it received the first response to it.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

DHCP Total
Commands Sent

Total number of commands sent by the client.

Composite commands such as {Bind} are counted according to the number of
actual DHCP commands they generate. For example, {Bind} normally
generates two commands (DHCPDISCOVER and DHCPREQUEST) but it may
generate three if it also sends a DHCPDECLINE.

DHCP Total
Commands
Succeeded

Total number of commands sent by the client that succeeded.

DHCP Total
Commands Failed

Total number of commands sent by the client that failed for all reasons.

DHCP Total
Commands Failed
(NAK Received)

Total number of commands sent by the client that failed because it received a
NAK response.

DHCP Total
Commands Failed
(Timeout)

Total number of commands sent by the client that failed because it did not
receive a response within the timeout period.

DHCP Total
Commands Failed
(Error)

Total number of commands sent by the client that failed because an error
other than a timeout or NAK occurred.

DHCP Total
Commands
Retransmitted

Total number of commands that the client retransmitted.

DHCP Total
Responses
Matched

Total number of responses received by the client in which the options in the
response matched those it expected to receive.

The expected options are provided on the Expected Options tab. If you provide
a set of expected values or the server sends a set of values, a match between
any of the expected values and received values is treated as success.

DHCP Total
Responses
Mismatched

Total number of responses received by the client in which the options in the
response did not match those it expected to receive.

DHCP
DHCPDISCOVER
Commands Sent

Total number of DHCPDISCOVER commands sent by the client.

Chapter 12 DHCP

– 679 –

DHCP
DHCPDISCOVER
Commands
Succeeded

Total number of DHCPDISCOVER commands that succeeded.

DHCP
DHCPDISCOVER
Commands Failed

Total number of DHCPDISCOVER commands that failed for all reasons.

DHCP
DHCPDISCOVER
Commands Failed
(Timeout)

Total number of DHCPDISCOVER commands that failed because the client did
not receive a response within the timeout period.

DHCP
DHCPDISCOVER
Commands Failed
(Error)

Total number of DHCPDISCOVER commands that failed because an error other
than a NAK or timeout occurred.

DHCP
DHCPDISCOVER
Commands
Retransmitted

Total number of DHCPDISCOVER commands that the client retransmitted.

DHCP
DHCPDISCOVER
Responses
Matched

Total number of DHCPDISCOVER responses received by the client in which the
options matched those that it expected to receive.

DHCP
DHCPDISCOVER
Responses
Mismatched

Total number of DHCPDISCOVER responses received by the client in which the
options did not match those that it expected to receive.

DHCP
DHCPREQUEST
Commands Sent

Total number of DHCPREQUEST commands sent by the client.

DHCP
DHCPREQUEST
Commands
Succeeded

Total number of DHCPREQUEST commands that succeeded.

DHCP
DHCPREQUEST
Commands Failed

Total number of DHCPREQUEST commands that failed for all reasons.

DHCP
DHCPREQUEST

Total number of commands sent by the client that failed because it received a
NAK response.

Chapter 12 DHCP

– 680 –

Commands Failed
(NAK Received)

DHCP
DHCPREQUEST
Commands Failed
(Timeout)

Total number of DHCPREQUEST commands that failed because the client did
not receive a response within the timeout period.

DHCP
DHCPREQUEST
Commands Failed
(Error)

Total number of DHCPREQUEST commands that failed because an error other
than a NAK or timeout occurred.

DHCP
DHCPREQUEST
Commands
Retransmitted

Total number of DHCPREQUEST commands that the client retransmitted.

DHCP
DHCPREQUEST
Responses
Matched

Total number of DHCPREQUEST responses received by the client in which the
options matched those that it expected to receive.

DHCP
DHCPREQUEST
Responses
Mismatched

Total number of DHCPREQUEST responses received by the client in which the
options did not match those that it expected to receive.

DHCP
DHCPREQUEST
(SELECTING)
Commands Sent

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state.

DHCP
DHCPREQUEST
(SELECTING)
Commands
Succeeded

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that succeeded.

DHCP
DHCPREQUEST
(SELECTING)
Commands Failed

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that failed for all reasons.

DHCP
DHCPREQUEST
(SELECTING)
Commands Failed
(NAK Received)

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that failed because the client received a NAK response.

Chapter 12 DHCP

– 681 –

DHCP
DHCPREQUEST
(SELECTING)
Commands Failed
(Timeout)

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that failed because the client did not receive a response
within the timeout period.

DHCP
DHCPREQUEST
(SELECTING)
Commands Failed
(Error)

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that failed because an error other than a NAK or timeout
occurred.

DHCP
DHCPREQUEST
(SELECTING)
Commands
Retransmitted

Total number of DHCPREQUEST commands sent by the client while it was in
the Selecting state that the client retransmitted.

DHCP
DHCPREQUEST
(SELECTING)
Responses
Matched

Total number of DHCPREQUEST responses received by the client while it was
in the Selecting state in which the options matched those that it expected to
receive.

DHCP
DHCPREQUEST
(SELECTING
Responses
Mismatached

Total number of DHCPREQUEST responses received by the client while it was
in the Selecting state in which the options did not match those that it expected
to receive.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands Sent

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands
Succeeded

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that succeeded.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands Failed

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that failed for all reasons.

DHCP
DHCPREQUEST

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that failed because the client received a NAK response.

Chapter 12 DHCP

– 682 –

(INIT-REBOOT)
Commands Failed
(NAK Received)

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands Failed
(Timeout)

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that failed because the client did not receive a response
within the timeout period.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands Failed
(Error)

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that failed because an error other than a NAK or timeout
occurred.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Commands
Retransmitted

Total number of DHCPREQUEST commands sent by the client while it was in
the Init-Reboot state that the client retransmitted.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Responses
Matched

Total number of DHCPREQUEST responses received by the client while it was
in the Init-Reboot state in which the options matched those that it expected to
receive.

DHCP
DHCPREQUEST
(INIT-REBOOT)
Responses
Mismatched

Total number of DHCPREQUEST responses received by the client while it was
in the Init-Reboot state in which the options did not match those that it
expected to receive.

DHCP
DHCPREQUEST
(RENEWING)
Commands Sent

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state.

DHCP
DHCPREQUEST
(RENEWING)
Commands
Succeeded

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that succeeded.

DHCP
DHCPREQUEST
(RENEWING)

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that failed for all reasons.

Chapter 12 DHCP

– 683 –

Commands Failed

DHCP
DHCPREQUEST
(RENEWING)
Commands Failed
(NAK Received)

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that failed because the client received a NAK response.

DHCP
DHCPREQUEST
(RENEWING)
Commands Failed
(Timeout)

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that failed because the client did not receive a response
within the timeout period.

DHCP
DHCPREQUEST
(RENEWING)
Commands Failed
(Error)

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that failed because an error other than a NAK or timeout
occurred.

DHCP
DHCPREQUEST
(RENEWING)
Commands
Retransmitted

Total number of DHCPREQUEST commands sent by the client while it was in
the Renewing state that the client retransmitted.

DHCP
DHCPREQUEST
(RENEWING)
Responses
Matched

Total number of DHCPREQUEST responses received by the client while it was
in the Renewing state in which the options matched those that it expected to
receive.

DHCP
DHCPREQUEST
(RENEWING)
Responses
Mismatched

Total number of DHCPREQUEST responses received by the client while it was
in the Renewing state in which the options did not match those that it
expected to receive.

DHCP
DHCPREQUEST
(REBINDING)
Commands Sent

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state.

DHCP
DHCPREQUEST
(REBINDING)
Commands
Succeeded

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that succeeded.

Chapter 12 DHCP

– 684 –

DHCP
DHCPREQUEST
(REBINDING)
Commands Failed

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that failed for all reasons.

DHCP
DHCPREQUEST
(REBINDING)
Commands Failed
(NAK Received)

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that failed and for which the client received a NAK
response.

DHCP
DHCPREQUEST
(REBINDING)
Commands Failed
(Timeout)

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that failed because the client did not receive a response
within the timeout period.

DHCP
DHCPREQUEST
(REBINDING)
Commands Failed
(Error)

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that failed because an error other than a NAK or timeout
occurred.

DHCP
DHCPREQUEST
(REBINDING)
Commands
Retransmitted

Total number of DHCPREQUEST commands sent by the client while it was in
the Rebinding state that the client retransmitted.

DHCP
DHCPREQUEST
(REBINDING)
Responses
Matched

Total number of DHCPREQUEST responses received by the client while it was
in the Rebinding state in which the options matched those that it expected to
receive.

DHCP
DHCPREQUEST
(REBINDING)
Responses
Mismatched

Total number of DHCPREQUEST responses received by the client while it was
in the Rebinding state in which the options did not match those that it
expected to receive.

DHCP
DHCPDECLINE
Commands Sent

Total number of DHCPDECLINE commands sent by the client.

DHCP
DHCPDECLINE
Commands Send

Total number of DHCPDECLINE commands that failed for all reasons.

Chapter 12 DHCP

– 685 –

Failed

DHCP
DHCPRELEASE
Commands Sent

Total number of DHCPRELEASE commands sent by the client.

DHCP
DHCPRELEASE
Commands Send
Failed

Total number of DHCPRELEASE commands that failed for all reasons.

DHCP
DHCPINFORM
Commands Sent

Total number of DHCPINFORM commands sent by the client.

DHCP
DHCPINFORM
Commands
Succeeded

Total number of DHCPINFORM commands that succeeded.

DHCP
DHCPINFORM
Commands Failed

Total number of DHCPINFORM commands that failed for all reasons.

DHCP
DHCPINFORM
Commands Failed
(Timeout)

Total number of DHCPINFORM commands that failed because the client did not
receive a response within the timeout period.

DHCP
DHCPINFORM
Commands Failed
(Error)

Total number of DHCPINFORM commands that failed because an error other
than a NAK or timeout occurred.

DHCP
DHCPINFORM
Commands
Retransmitted

Total number of DHCPINFORM commands that the client retransmitted.

DHCP
DHCPINFORM
Responses
Matched

Total number of DHCPINFORM responses received by the client in which the
options matched those that it expected to receive.

DHCP
DHCPINFORM
Responses
Mismatched

Total number of DHCPINFORM responses received by the client in which the
options did not match those that it expected to receive.

Chapter 12 DHCP

– 686 –

DHCP
BOOTREQUEST
Commands Sent

Total number of BOOTREQUEST commands sent by the client.

DHCP
BOOTREQUEST
Commands
Succeeded

Total number of BOOTREQUEST commands that succeeded.

DHCP
BOOTREQUEST
Commands Failed

Total number of BOOTREQUEST commands that failed for all reasons.

DHCP
BOOTREQUEST
Commands Failed
(Timeout)

Total number of BOOTREQUEST commands that failed because the client did
not receive a response within the timeout period.

DHCP
BOOTREQUEST
Commands Failed
(Error)

Total number of BOOTREQUEST commands that failed because an error other
than a NAK or timeout occurred.

DHCP
BOOTREQUEST
Commands
Retransmitted

Total number of BOOTREQUEST commands that the client retransmitted.

DHCP
BOOTREQUEST
Responses
Matched

Total number of BOOTREQUEST responses received by the client in which the
options matched those that it expected to receive.

DHCP
BOOTREQUEST
Responses
Mismatched

Total number of BOOTREQUEST responses received by the client in which the
options did not match those that it expected to receive.

DHCP Total
Number of
DHCPOFFER
Messages

Total number of DHCPOFFER commands received by the client.

DHCP Number of
DHCPOFFER
Messages Ignored

Total number of DHCPOFFER messages that the client ignored.

DHCP Total
Number of

Total number of DHCPACK commands received by the client.

Chapter 12 DHCP

– 687 –

DHCPACK
Messages

DHCP Number of
DHCPACK
Messages Ignored

Total number of DHCPACK messages that the client ignored.

DHCP Total
Number of
DHCPNAK
Messages

Total number of DHCPNAK messages received by the client.

DHCP Number of
DHCPNAK
Messages Ignored

Total number of DHCPNAK messages that the client ignored.

DHCP ICMP Echo
Messages Received

Total number of ICMP Echo (ping) messages received by the client.

DHCP ICMP Echo
Reply Messages
Sent

Total number of ICMP Echo (ping) reply messages sent by the client.

DHCP ARP Request
Messages Received

Total number of ARP requests received by the client.

DHCP ARP Reply
Messages Sent

Total number of ARP replies sent by the client.

DHCP Valid IP
Addresses
Received

Total number of valid IP addresses received by the client.

DHCP Duplicate IP
Addresses
Received

Total number of duplicate IP addresses received by the client.

DHCP User Count Number of DHCP users simulated by the client.

DHCP Total
Transaction

Total number of DHCP transactions completed by the client.

Note: DHCPRELEASE and DHCPDECLINE do not contribute to this statistic.

DHCP Number of
Active Leases

Total number of IP address leases received that have not expired, been
released (by sending DHCPRELEASE), or been declined (by sending
DHCPDECLINE).

DHCP Number of
Leases Expired

Total number of IP address leases that have expired.

Chapter 12 DHCP

– 688 –

DHCP Number of
Clients Awaiting IP
Address from
Server

Total number of DHCP clients waiting to receive IP addresses from a server.

DHCP Total Bytes
Transmitted

Total number bytes transmitted by the client.

Note: All of the “Total Bytes” statistics count all the bytes in the packet,
including the UDP and IP headers.

DHCP Total Bytes
Received

Total number of bytes received by the client.

DHCP Total Bytes
Transmitted and
Received

Combined total of bytes transmitted and received by the client.

Chapter 12 DHCP

– 689 –

Effect of Options on DHCP Packet Size
The table below describes how the various DHCP options affect the size of a DHCP packet generated by
IxLoad.

Description Bytes

Size of headers and other fixed fields: 278

If “Allow Options Overload” is enabled, number
of bytes added regardless of whether IxLoad
actually overloads the options or not:

3

If the Maximum DHCP Message Size option is
enabled, number of bytes added to a DHCP (not
BOOTP) packet:

4

Number of bytes added for each option in the
Option set used by a particular command:

Size of the option, including code, len, and data
fields.

If the Host Name option is enabled, number of
bytes added to the size of the (user-specified)
data:

10

Note: If all options cannot fit into the packet and “Allow Options Overload” is enabled, IxLoad first
tries to fit the extra options into “file” field of the DHCP packet header, and then into the “sname”
field. Options that are placed in the “file” or the “sname” fields do not contribute to the packet size
calculation.

Chapter 12 DHCP

– 690 –

CHAPTER 13 DNS
This section describes the DNS Tcl API objects.

Overview
DNS protocol commands are organized as a simple structure.

DNS Client Agent

DNS Client Query

DNS Client Advanced Options

- DNS Server Agent

- DNS Server Zone Management

- DNS Server Zone Configuration

- DNS Server Advanced Options

- DNS Server Resource Records

Objectives
The objectives (userObjective) you can set for DNS are listed below. Test objecare set in the
ixTimeline object.

l simulatedUsers

l transactionRate

l throughputKBps

l transactionAttemptRate (displays as “Queries/Second” in the GUI)

– 691 –

DNS Client Agent
DNS Client Agent - configure a DNS client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DNSClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_DNSClient1 agent.config

DESCRIPTION

A DNS client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity DNSClient1
of NetTraffic Traffic1@Network1###set
Activity_DNSClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"DNS Client"]## Timeline1 for
activities DNSClient1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_DNSClient1 config
\-enable true \-name
"DNSClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_

Chapter 13 DNS

– 692 –

DNSClient1 agent.config \-enable true \-name
"DNSClient1"$Activity_DNSClient1 agent.pm.advancedOptions.config \-
lowerLayerTransport 1 \-noWaitForResp
false \-version 0 \-responseTimeout
20 \-implicitLoopCheck true \-numberOfRetries
3$Activity_DNSClient1 agent.pm.seqGenExample.config \-dummy
""$Activity_DNSClient1 agent.pm.dnsConfig.dnsQueries.clear$Activity_DNSClient1
agent.pm.dnsConfig.dnsQueries.appendItem \-id
"DnsQuery" \-expect "" \-hostName
"localhost" \-queryType "A" \-recursionDesired
0 \-dnsServer "Traffic2_DNSServer1:53"

SEE ALSO

DNS Client Query

DNS Client Advanced Options

ixNetTraffic

Chapter 13 DNS

– 693 –

DNS Client Query
DNS Client Query - configure a DNS query that the client will send

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DNSClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_DNSClient1 agent.pm.dnsConfig.dnsQueries.appendItem

DESCRIPTION

A DNS client query is added to the pm.dnsConfig.dnsQueries option of the DNS Client Agent
object using its appendItem.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

None.

OPTIONS

dnsServer

The name of the DNS server to be queried. (Default = ‘None’).

expect

The expected answer for the query; optional. (Default = ““).
enableDNSSEC

Enable DNSSEC. Default = 0 (false).

hostName

The host name to be queries for. (Default = ‘localhost’). If the queryType option is ENUM then
the hostName option accepts only integers. You can use both independent and interdependent
sequence generators if the queryType option is ENUM. See the Automatic Sequence Generators
appendix for more information.

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

publicKeyPath

Path to DNSSEC public encryption key file. (Default = “publickeys“).

queryType

The type of query to be performed. One of:

Chapter 13 DNS

– 694 –

option Usage

“A” (default) An Address query.

“AAAA” An IPV6 address retrieval query

“NS” A Name Server query.

“CNAME” A CName query.

“SOA” A Start Of Authority query.

“PTR” A Pointer query.

“MX” A Mail eXchanger query.

“ENUM” A query that resolves fully qualified telephone numbers to fully qualified domain name
addresses.

recursionDesired

Indicates whether DNS referrals are to be followed or not. (Default = false).

EXAMPLE
$Activity_DNSClient1 agent.pm.dnsConfig.dnsQueries.appendItem \-id
"DnsQuery" \-expect "" \-hostName
"localhost" \-queryType "A" \-recursionDesired
0 \-dnsServer "Traffic2_DNSServer1:53"

SEE ALSO

DNS Client Agent

Chapter 13 DNS

– 695 –

DNS Client Advanced Options
DNS Client Advanced Options - configure the DNS client's advanced options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_DNSClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_DNSClient1 agent.pm.advancedOptions.config

DESCRIPTION

DNS advanced options are set through the pm.advancedOptions option of the DNS Client Agent
object.

SUBCOMMANDS

None.

OPTIONS

lowerLayerTransport

The type of IP transport to be used for the queries in this client. One of:

option Usage

“TCP” TCP.

“UDP” (default) UDP. The number of retries is only configurable for this option.

numberOfRetries

If lowerLayerTransport is true, this is the number of retries for the query. (Default = 3).

responseTimeout

The time, expressed in seconds, to wait for a DNS server response. (Default = 20).

noWaitForResp

This option accepts boolean value, true or false. This parameter is only effective when you set the
client’s userObjectiveType to queriesPerSecond. If true, the client does not wait for a response
before sending the next query. Besides, fewer simulated users are created, and a higher
objectiveValue (more queriesPerSecond) are likely to be achieved.

If false, the client waits for a response before sending the next query. More simulated users are
created, and a lower objectiveValue (fewer queriesPerSecond) are likely to be achieved.

EXAMPLE
$Activity_DNSClient1 agent.pm.advancedOptions.config \-lowerLayerTransport
1 \-noWaitForResp false \-version
0 \-responseTimeout 20 \-implicitLoopCheck

Chapter 13 DNS

– 696 –

true \-numberOfRetries 3

SEE ALSO

DNS Client Agent

Chapter 13 DNS

– 697 –

DNS Server Agent
DNS Server Agent - configure a DNS server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_DNSServer1 agent.config

DESCRIPTION

A DNS server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this action. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity DNSServer1
of NetTraffic Traffic2@Network2###set
Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"DNS Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
DNSServer1 config \-enable true \-name
"DNSServer1" \-timeline $_Match_Longest_$Activity_
DNSServer1 agent.config \-enable true \-name
"DNSServer1"$Activity_DNSServer1 agent.pm.zoneConfig.zoneList.clear$Activity_
DNSServer1 agent.pm.zoneConfig.zoneList.appendItem \-id
"ZoneList" \-name "ixiacom.com"$Activity_
DNSServer1 agent.pm.advancedOptions.config \-listeningPort
53$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.clear$Activity_DNSServer1
agent.pm.zoneMgr.zoneChoices.appendItem \-id
"Zone" \-predefine true \-serial

Chapter 13 DNS

– 698 –

1234 \-expire 8888 \-name
"localhost" \-masterServer "ixia-dns-tester"$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(0).resourceRecordList.clear$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(0).resourceRecordList.appendItem \-id
"A" \-hostName "localhost" \-address
"127.0.0.1"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(0).resourceRecordList.appendItem \-id "A" \-
hostName "host1" \-address
"198.18.0.1"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(0).resourceRecordList.appendItem \-id "NS" \-
nameServer "198.18.0.2" \-zoneName
"localhost"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.appendItem \-id
"Zone" \-predefine true \-serial
1234 \-expire 8888 \-name
"ixiacom.com" \-masterServer "ixia-dns-tester"$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(1).resourceRecordList.clear$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(1).resourceRecordList.appendItem \-id
"A" \-hostName "puppy1" \-address
"198.18.1.100"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "A" \-
hostName "drowzee" \-address
"198.18.1.200"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "CNAME"
\-name "testName" \-realName
"realName"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "NS" \-
nameServer "198.18.0.2" \-zoneName
"ixiacom.com"

SEE ALSO

DNS Server Zone Management

DNS Server Zone Configuration

DNS Server Advanced Options

Chapter 13 DNS

– 699 –

DNS Server Zone Management
DNS Server Zone Management - manage the DNS zones that the server is authoritative for

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.appendItem

DESCRIPTION

Each DNS server zone management list item represents a DNS domain that may be enabled by
inclusion in the zoneConfig list of the - DNS Server Agent command (see the example below).

SUBCOMMANDS

None.

OPTIONS

expire

The expiration of the Start of Authority (SOA). (Default = 8,888).

masterServer

The master server IP address. (Default = “ixia-dns-tester”).

name

The name of the domain, for example, “ixiacom.com.” (Default = “Zone0”).

resourceRecordList

This is a list of type ixConfigSequenceContainer used to hold DNS Server Resource Record
objects. The elements in this list describe a DNS resource record. (Default = {}).

serial

The serial number for the SOA. (Default = “1234”).

EXAMPLES
$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.appendItem \-id
"Zone" \-predefine true \-serial
1234 \-expire 8888 \-name
"ixiacom.com" \-masterServer "ixia-dns-tester"$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(1).resourceRecordList.clear$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(1).resourceRecordList.appendItem \-id
"A" \-hostName "puppy1" \-address
"198.18.1.100"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "A" \-
hostName "drowzee" \-address

Chapter 13 DNS

– 700 –

"198.18.1.200"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "CNAME"
\-name "testName" \-realName
"realName"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(1).resourceRecordList.appendItem \-id "NS" \-
nameServer "198.18.0.2" \-zoneName
"ixiacom.com"

SEE ALSO

DNS Server Agent

DNS Server Resource Record

Chapter 13 DNS

– 701 –

DNS Server Zone Configuration
DNS Server Zone Configuration - setup the zones that the DNS server is authoritative for

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_DNSServer1 agent.pm.zoneConfig.zoneList.appendItem

DESCRIPTION

Each DNS server zone configuration list item represents a DNS domain that the server will respond to.

SUBCOMMANDS

None.

OPTIONS

name

The name of the domain, for example, “ixiacom.com.”(Default = “Zone0”).
id

ID of the list of zones. (Default = "ZoneList")

signedzone

Enables DNSSEC signing (encryption) for the zone. (Default = false)

keylength

Length of the key used to sign the zone. (Min="512" max="4096" default="512")

algorithm

Encryption algorithm used to sign the zone. One of the following:
"RSASHA1" (Default)"RSASHA256""RSASHA512""RSAMD5""DSA"

EXAMPLES

$Activity_DNSServer1 agent.pm.zoneConfig.zoneList.clear

$Activity_DNSServer1 agent.pm.zoneConfig.zoneList.appendItem \
-id "ZoneList" \

-signedzone true \

-keylength 512 \

-name "ixiacom.com" \

-algorithm "RSASHA1"

Chapter 13 DNS

– 702 –

SEE ALSO

DNS Server Agent

DNS Server Resource Record

Chapter 13 DNS

– 703 –

DNS Server Advanced Options
DNS Server Advanced Options

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_DNSServer1 agent.pm.advancedOptions.config

DESCRIPTION

DNS server advanced options are set through the pm.advancedOptions option of the DNS Server
Agent object.

SUBCOMMANDS

None.

OPTIONS

enableDNSSEC

Enable DNSSEC. (Default = 0 (false))

listenPort

The port number that the server listens on for TCP and UDP requests. (Default = 53)

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity DNSServer1
of NetTraffic Traffic2@Network2###set
Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"DNS Server"]$Activity_DNSServer1 agent.config \-enable
true \-name "DNSServer1"$Activity_DNSServer1
agent.pm.advancedOptions.config \-listeningPort 53

SEE ALSO

DNS Server Agent

Chapter 13 DNS

– 704 –

DNS Server Resource Record
DNS Server Resource Record - add a resource record to the DNS server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_DNSServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices(0).resourceRecord

DESCRIPTION

Each DNS server resource record list item represents a DNS domain that the server is authoritative
over.

SUBCOMMANDS

None.

OPTIONS

id

Specifies the type of resource record defined. The remaining options in this command are dependent
on this setting. One of:

option Usage

A Address record.

AAAA IPV6 Address record

MX Mail eXchanger record.

CNAME Canonical Name record.

PTR Pointer, or reverse DNS record.

NS Name Server record.

Options for id = A

address

The IP address of a host. (Default = “”).

hostName

The name of the host. (Default = “”).

Chapter 13 DNS

– 705 –

Options for id = AAAA

address

The IPV6 address of a host. (Default = “”).

hostName

The name of the host. (Default = “”).

Options for id = MX

mailServer

The name of the mail server. (Default = “”).

name

The mail domain name. (Default = “”).

priority

The priority associated with the mail server. (Default = ““).

Options for id = CNAME

name

An alias of a host. (Default = “”).

realName

The real name of the host, as it appears in an A record. (Default = “”).

Options for id = PTR

hostName

The host name for the ipAddress. (Default = “”).

ipAddress

The IP address for the reverse lookup. (Default = “”).

Options for id = NS

nameServer

The IP address for the name server. (Default = “”).

zoneName

The zone name being served. (Default = “”).

EXAMPLES
$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.appendItem \-id
"Zone" \-predefine true \-serial

Chapter 13 DNS

– 706 –

1234 \-expire 8888 \-name
"localhost" \-masterServer "ixia-dns-tester"$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(0).resourceRecordList.clear$Activity_
DNSServer1 agent.pm.zoneMgr.zoneChoices(0).resourceRecordList.appendItem \-id
"A" \-hostName "localhost" \-address
"127.0.0.1"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(0).resourceRecordList.appendItem \-id "A" \-
hostName "host1" \-address
"198.18.0.1"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices
(0).resourceRecordList.appendItem \-id "NS" \-
nameServer "198.18.0.2" \-zoneName
"localhost"$Activity_DNSServer1 agent.pm.zoneMgr.zoneChoices.appendItem \-id
"Zone" \-predefine true \-serial
1234 \-expire 8888 \-name
"ixiacom.com" \-masterServer "ixia-dns-tester"

SEE ALSO

DNS Server Agent

DNS Server Zone Management

Chapter 13 DNS

– 707 –

DNS Statistics
For DNS client statistics, see DNS Client Statistics

For DNS server statistics, see DNS Server Statistics

Chapter 13 DNS

– 708 –

DNS Client Statistics
The table below describes the DNS client statistics.

Statistic Description

General Statistics

DNS Total Queries
Attempted

Total number of DNS queries attempted.

This statistic is only incremented if the DNS test objective is Query Attempts
/ Second.

DNS Total Queries
Attempted/s

Rate, per second, at which the client attempted DNS queries.

This statistic is only incremented if the DNS test objective is Query Attempts
/ Second.

DNS Total Queries
Sent

Total number of DNS queries sent by the client.

DNS Total Queries
Sent/s

Rate, per second, at which the client sent DNS queries.

DNS Total Queries
Successful

Total number of DNS queries for which a valid response was received.

DNS Total Queries
Successful/s

Rate, per second, at which DNS queries succeeded.

DNS Total Queries
Retried

Total number of DNS queries that had to be re-sent at least once.

DNS Total Queries
Retried/s

Rate, per second, at which DNS queries were retried.

DNS Total Queries
Failed

Total number of DNS queries that failed for all reasons.

DNS Total Queries
Failed/s

Rate, per second, at which DNS queries failed.

DNS Total Queries
Failed (Format Error)

Number of DNS queries that failed because the DNS server could not
interpret the format of the query.

Note: According to RFC 1034, the maximum host name length is 63 bytes.
IxLoad does not enforce this limit, and allows you to create queries for host
names larger than 63 bytes.

If you configure the DNS client to send a query to a host name that is larger
than 63 bytes, the DNS server responds with a Format Error.

Chapter 13 DNS

– 709 –

DNS Total Queries
Failed (Format
Error)/s

Rate, per second, at which DNS queries failed due to format errors.

DNS Total Queries
Failed (Server
Failure)

Number of DNS queries that failed due to an error on the DNS server.

Note: According to RFC 1034, the maximum host name length is 63 bytes.
IxLoad does not enforce this limit, and allows you to create Resource Records
that include host names larger than 63 bytes.

If you configure the DNS client to send a query to server zone for a Resource
Record that contains a host name that is larger than 63 bytes, the DNS
server responds with a Server Failure.

DNS Total Queries
Failed (Server
Failure)/s

Rate, per second, at which DNS queries failed due to server failures.

DNS Total Queries
Failed (Name Error)

Number of DNS queries that failed because the DNS name does not exist.

DNS Total Queries
Failed (Name
Error)/s

Rate, per second, at which DNS queries failed due to name errors.

DNS Total Queries
Failed (Not
Implemented)

Number of DNS queries that failed because the name server does not support
the DNS request.

DNS Total Queries
Failed (Not
Implemented)/s

Rate, per second, at which DNS queries failed because the server does not
support the request

DNS Total Queries
Failed (Refused)

Number of DNS queries that failed because the DNS server refused the
request.

DNS Total Queries
Failed (Refused)/s

Rate, per second, at which DNS queries failed because the server refused the
request.

DNS Total Queries
Failed (Other)

Number of DNS queries that failed for unknown reasons.

DNS Total Queries
Failed (Other)/s

Rate, per second, at which DNS queries failed due to unknown reasons.

DNS Total Queries
Failed (Timeout)

Number of DNS queries that failed because no response was received within
the timeout period.

DNS Total Queries
Failed (Timeout)/s

Rate, per second, at which DNS queries failed due to timeouts.

Chapter 13 DNS

– 710 –

DNS Total Queries
Failed (Aborted)

Number of aborted DNS queries.

DNS Total Queries
Failed (Aborted)/s

Rate, per second, at which DNS queries were aborted.

DNS Average
Response Latency

Average time elapsed between the time the client sent a DNS query and the
time it received a response.

DNS Minimum
Response Latency

Shortest time elapsed between the time the client sent a DNS query and the
time it received a response.

DNS Maximum
Response Latency

Longest time elapsed between the time the client sent a DNS query and the
time it received a response.

DNS Response
Latency in 0 to 1 ms

Number of responses received within 0 to 1 milliseconds after the query was
sent, including those at 1 millisecond.

DNS Response
Latency in 1 to 50
ms

Number of DNS query responses received within 1 to 50 milliseconds after
the query was sent, including those at 50 milliseconds.

DNS Response
Latency in 50 to 100
ms

Number of DNS query responses received within 50 to 100 milliseconds after
the query was sent, including those at 100 milliseconds.

DNS Response
Latency in 100 to
500 ms

Number of DNS query responses received within 100 to 500 milliseconds
after the query was sent, including those at 500 milliseconds.

DNS Response
Latency in 500 ms to
1 second

Number of DNS query responses received within 500 milliseconds to 1
second after the query was sent, including those at 1 second.

DNS Response
Latency in 1 second
to 3 seconds

Number of DNS query responses received within 1 to 3 seconds after the
query was sent, including those at 3 seconds.

DNS Response
Latency more than 3
seconds

Number of DNS query responses received more than 3 seconds after the
query was sent.

A Record Statistics

DNS (Type A)
Queries Sent

Number of A record queries sent.

DNS (Type A)
Queries Sent/s

Rate, per second, at which Type A queries were sent.

Chapter 13 DNS

– 711 –

DNS (Type A)
Queries Successful
With Match

Number of A record queries for which the DNS client received the expected IP
address.

DNS (Type A)
Queries Successful
With Match/s

Rate, per second, at which Type A queries matched successfully.

DNS (Type A)
Queries Successful
Without Match

Number of A record queries which were processed without error but whose
responses did not contain the expected IP address.

DNS (Type AAAA)
Queries Successful
Without Match/s

Rate, per second, at which Type A queries succeeded but did not contain the
expected IP address.

DNS (Type A)
Queries Failed

Number of A record queries for which an invalid response was received, or no
response was received.

DNS (Type A)
Queries Failed/s

Rate, per second, at which Type A queries failed.

AAAA Record Statistics

DNS (Type AAAA)
Queries Sent

Number of AAAA record queries sent.

DNS (Type AAAA)
Queries Sent/s

Rate, per second, at which AAAA record queries were sent.

DNS (Type AAAA)
Queries Successful
With Match

Number of AAAA record queries for which the DNS client received the
expected IP address.

DNS (Type AAAA)
Queries Successful
With Match/s

Rate, per second, at which AAAA record queries matched.

DNS (Type AAAA)
Queries Successful
Without Match

Number of AAAA record queries which were processed without error but
whose responses did not contain the expected IP address.

DNS (Type AAAA)
Queries Successful
Without Match/s

Rate, per second, at which AAAA record queries succeeded but did not
contain the expected IP address.

DNS (Type AAAA)
Queries Failed

Number of AAAA record queries for which an invalid response was received,
or no response was received.

DNS (Type AAAA) Rate, per second, at which AAAA record queries failed.

Chapter 13 DNS

– 712 –

Queries Failed/s

CNAME Record Statistics

DNS (Type CNAME)
Queries Sent

Number of canonical name record queries sent.

DNS (Type CNAME)
Queries Sent/s

Rate, per second, at which CNAME record queries were sent.

DNS (Type CNAME)
Queries Successful
With Match

Number of canonical name record queries for which the DNS server returned
the expected host name.

DNS (Type CNAME)
Queries Successful
With Match/s

Rate, per second, at which the CNAME record responses contained the
expected IP address.

DNS (Type CNAME)
Queries Successful
Without Match

Number of canonical name record queries which were processed without error
but whose responses did not contain the expected host name.

DNS (Type CNAME)
Queries Successful
Without Match/s

Rate, per second, at which the CNAME record responses succeeded but did
not contain the expected IP address.

DNS (Type CNAME)
Queries Failed

Number of canonical name record queries for which an invalid response was
received, or no response was received.

DNS (Type CNAME)
Queries Failed/s

Rate, per second, at which CNAME record queries failed.

MX Record Statistics

DNS (Type MX)
Queries Sent

Number of mail exchange record queries sent.

DNS (Type MX)
Queries Sent/s

Rate, per second, at which MX record queries were sent.

DNS (Type MX)
Queries Successful
With Match

Number of mail exchange record queries for which the response contained
the expected mail server host name.

DNS (Type MX)
Queries Successful
With Match/s

Rate, per second, at which the MX record responses contained the expected
IP address.

DNS (Type MX)
Queries Successful

Number of mail exchange record queries that were processed without error
but for which the response did not contain the expected mail server host

Chapter 13 DNS

– 713 –

Without Match name.

DNS (Type MX)
Queries Successful
Without Match/s

Rate, per second, at which the MX record responses succeeded but did not
contain the expected IP address.

DNS (Type MX)
Queries Failed

Number of mail exchange record queries for which an invalid response was
received, or no response was received.

DNS (Type MX)
Queries Failed/s

Rate, per second, at which MX record queries failed.

PTR Record Statistics

DNS (Type PTR)
Queries Sent

Number of pointer record queries sent.

DNS (Type PTR)
Queries Sent/s

Rate, per second, at which PTR record queries were sent.

DNS (Type PTR)
Queries Successful
With Match

Number of pointer record queries for which the DNS client received the
expected canonical host name for the supplied IP address.

DNS (Type PTR)
Queries Successful
With Match/s

Rate, per second, at which the PTR record responses contained the expected
IP address.

DNS (Type PTR)
Queries Successful
Without Match

Number of pointer record queries that were processed correctly but whose
responses did not contain the expected canonical host name.

DNS (Type PTR)
Queries Successful
Without Match/s

Rate, per second, at which the PTR record responses succeeded but did not
contain the expected IP address.

DNS (Type PTR)
Queries Failed

Number of pointer record queries for which an invalid response was received,
or no response was received.

DNS (Type PTR)
Queries Failed/s

Rate, per second, at which PTR record queries failed.

NS Record Statistics

DNS (Type NS)
Queries Sent

Number of name server record queries sent.

DNS (Type NS)
Queries Sent/s

Rate, per second, at which NS record queries were sent.

Chapter 13 DNS

– 714 –

DNS (Type NS)
Queries Successful
With Match

Number of name server record queries for which the DNS server returned the
name server expected for the supplied domain.

DNS (Type NS)
Queries Successful
With Match/s

Rate, per second, at which the NS record responses contained the expected
IP address.

DNS (Type NS)
Queries Successful
Without Match

Number of name server record queries which the DNS server processed
without error but whose responses did not contain the expected name server.

DNS (Type NS)
Queries Successful
Without Match/s

Rate, per second, at which the NS record responses succeeded but did not
contain the expected IP address.

DNS (Type NS)
Queries Failed

Number of name server record queries for which an invalid response was
received, or no response was received.

DNS (Type NS)
Queries Failed/s

Rate, per second, at which NS record queries failed.

SOA Record Statistics

DNS (Type SOA)
Queries Sent

Number of Start of Authority record queries sent.

DNS (Type SOA)
Queries Sent/s

Rate, per second, at which SOA record queries were sent.

DNS (Type SOA)
Queries Successful
With Match

Number of Start of Authority record queries for which the DNS client received
the expected DNS server for the supplied domain.

DNS (Type SOA)
Queries Successful
With Match/s

Rate, per second, at which the SOA record responses contained the expected
IP address.

DNS (Type SOA)
Queries Successful
Without Match

Number of Start of Authority record queries which were processed without
error but whose responses did not contain the name of the expected DNS
server.

DNS (Type SOA)
Queries Successful
Without Match/s

Rate, per second, at which the SOA record responses succeeded but did not
contain the expected IP address.

DNS (Type SOA)
Queries Failed

Number of Start of Authority record queries for which an invalid response was
received, or no response was received.

Chapter 13 DNS

– 715 –

DNS (Type SOA)
Queries Failed/s

Rate, per second, at which SOA record queries failed.

NAPTR (ENUM) Query Statistics

DNS (Type NAPTR)
Queries Sent

Number of Naming Authority Pointer (ENUM) record queries sent.

DNS (Type NAPTR)
Queries Sent/s

Rate, per second, at which NAPTR record queries were sent.

DNS (Type NAPTR)
Queries Successful
With Match

Number of Naming Authority Pointer (ENUM) queries for which the response
contained a string that matched the Expect field.

DNS (Type NAPTR)
Queries Successful
With Match/s

Rate, per second, at which the NAPTR record responses contained the
expected IP address

DNS (Type NAPTR)
Queries Successful
Without Match

Number of Naming Authority Pointer (ENUM) queries which were processed
without error but for which the response did not contain a string that matched
the Expect field.

DNS (Type NAPTR)
Queries Successful
Without Match/s

Rate, per second, at which the NAPTR record responses succeeded but did
not contain the expected IP address.

DNS (Type NAPTR)
Queries Failed

Number of Naming Authority Pointer (ENUM) queries for which an invalid
response was received, or no response was received.

DNS (Type NAPTR)
Queries Failed/s

Rate, per second, at which NAPTR record queries failed.

Bytes Transmitted and Received Statistics

DNS Total Bytes
Transmitted

Total bytes transmitted for all DNS queries, including re-tried queries.

DNS Total Bytes
Received

Total bytes received for all DNS responses.

Test Objective Statistics

DNS Bytes Combined total number of DNS bytes transmitted and received.

DNS Throughput Combined rate that the client received and transmitted DNS bytes.

DNS Transactions Total number of DNS transactions completed.

A DNS transaction consists of one query and one response to it.

Chapter 13 DNS

– 716 –

DNS Transaction
Rate

Rate at which the client completed DNS transactions completed.

DNS Simulated
Users

Number of simulated users generating DNS queries.

DNS Queries
Attempt/Second

Rate at which the client attempted DNS queries.

Chapter 13 DNS

– 717 –

DNS Server Statistics
The table below describes the DNS server statistics.

Statistic Description

General Statistics

DNS Total Queries
Received

Total number of DNS queries received by the server.

DNS Total Queries
Responded
Successfully

Total number of DNS queries for which the server returned a valid response.

DNS Total Queries
Failed

Total number of DNS queries which the server could not process for any
reason.

DNS Total Queries
Failed (Format Error)

Number of DNS queries which the server could not process because it could
not parse the query format.

Note: According to RFC 1034, the maximum label length is 63 bytes. IxLoad
does not enforce this limit, and allows you to create queries for labels larger
than 63 bytes.

If you configure the DNS client to send a query to a label that is larger than
63 bytes, the DNS server responds with a Format Error.

DNS Total Queries
Failed (Server
Failure)

Number of DNS queries that failed due to an error on the server.

Note: According to RFC 1034, the maximum label length is 63 bytes. IxLoad
does not enforce this limit, and allows you to create Resource Records that
include labels larger than 63 bytes.

If you configure the DNS client to send a query to server zone for a Resource
Record that contains a label that is larger than 63 bytes, the DNS server
responds with a Server Failure.

DNS Total Queries
Failed (Name Error)

Number of DNS queries that failed because the DNS name does not exist.

DNS Total Queries
Failed (Not
Implemented)

Number of DNS queries that failed because the name server does not support
the DNS request.

DNS Total Queries
Failed (Refused)

Number of DNS queries that failed because the server refused to serve the
query.

DNS Total Queries
Failed (Other)

Number of DNS queries that failed for unknown reasons.

Chapter 13 DNS

– 718 –

A Record Statistics

DNS (Type A)
Queries Received

Number of A record queries received.

DNS (Type A)
Queries Responded
Successfully

Number of A record queries for which the DNS server returned a valid
response.

DNS (Type A)
Queries Failed

Number of A record queries that failed for any reason.

AAAA Record Statistics

DNS (Type AAAA)
Queries Received

Number of AAAA record queries received.

DNS (Type AAAA)
Queries Responded
Successfully

Number of AAAA record queries for which the DNS server returned a valid
response.

DNS (Type AAAA)
Queries Failed

Number of AAAA record queries that failed for any reason.

CNAME Record Statistics

DNS (Type CNAME)
Queries Received

Number of canonical name record queries received.

DNS (Type CNAME)
Queries Responded
Successfully

Number of canonical name record queries for which the DNS server returned a
valid response.

DNS (Type CNAME)
Queries Failed

Number of canonical name record queries that failed for any reason.

MX Record Statistics

DNS (Type MX)
Queries Received

Number of mail exchange record queries received.

DNS (Type MX)
Queries Responded
Successfully

Number of mail exchange record queries for which the DNS server returned a
valid response.

DNS (Type MX)
Queries Failed

Number of mail exchange record queries that failed for any reason.

PTR Record Statistics

Chapter 13 DNS

– 719 –

DNS (Type PTR)
Queries Received

Number of pointer record queries received.

DNS (Type PTR)
Queries Responded
Successfully

Number of pointer record queries for which the DNS server returned a valid
response.

DNS (Type PTR)
Queries Failed

Number of pointer record queries that failed for any reason.

NS Record Statistics

DNS (Type NS)
Queries Received

Number of name server record queries received.

DNS (Type NS)
Queries Responded
Successfully

Number of name server record queries for which the DNS server returned a
valid response.

DNS (Type NS)
Queries Failed

Number of name server record queries that failed for any reason.

SOA Record Statistics

DNS (Type SOA)
Queries Received

Number of Start of Authority record queries received.

DNS (Type SOA)
Queries Responded
Successfully

Number of Start of Authority record queries for which the DNS server returned
a valid response.

DNS (Type SOA)
Queries Failed

Number of Start of Authority record queries that failed for any reason.

Bytes Transmitted and Received Statistics

DNS Total Bytes
Transmitted

Total bytes transmitted for all DNS queries, including re-tried queries.

DNS Total Bytes
Received

Total bytes received for all DNS responses.

DNS Total Bytes
Transmitted and
Received

Combined total of bytes received in DNS queries and transmitted in DNS
responses.

Chapter 13 DNS

– 720 –

! 15

Chapter 13 DNS

– 721 –

This page intentionally left blank.

– 722 –

CHAPTER 14 FTP
This section describes the FTP Tcl API objects.

Overview
FTP protocol commands are organized as follows.

FTP Client Agent

FTP Client Action

FTP Server Agent

Objectives
The objectives (userObjective) you can set for FTP are listed below. Test objecare set in the ixTimeline
object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

– 723 –

FTP Client Agent
The FTP Client Agent defines a simulated user performing FTP requests against one or more FTP
servers. Refer to FTP Client Agent for a full description of this command. The important options of this
command are listed in the table below:

Option Usage

enable Enables the use of the FTP client agent.

name The name associated with the client agent.

actionList The list of actions associated with the agent.

realFileList Add real files in client and server plugins.

mode The active/passive mode of the FTP interaction.

userName The default user name for actions.

password The default password for actions.

Chapter 14 FTP

– 724 –

FTP Client Action
Each client action is a single step in the interaction. Refer to FTP Client Action for a full description
of this command. The important subcommands and options of this command are listed below.

Subcommand Usage

checkConfig Checks the configuration of the action.

Option Usage

command
arguments

The FTP command, with optional arguments, to be executed.

destination The name/address of the FTP server.

userName The user name to use for login commands.

password The password to use for login commands.

Chapter 14 FTP

– 725 –

FTP Server Agent
The FTP Server Agent defines the operation of the FTP server. Refer to FTP Server Agent for a full
description of this command. The important options of this command are listed in the table below:

Option Usage

enable Enables the use of the FTP server agent.

name The name associated with the server agent.

ftpPort The port number that the server will respond on.

realFileList Add real files in client and server plugins.

Chapter 14 FTP

– 726 –

realFileList
To add real files, use the realFileList is exposed in both client and server plugins. It is a sequence
container of RealFileObjects. RealFileObjects have two configurables exposed, page and payload.

Option Usage

page Any linux file name (client_file1)

payload The actual path of the file.("C:\\Program
Files\\Ixia\\IxLoad\\buildversion.ini")

For a sample script refer to the example section of FTP Client Agent .

Chapter 14 FTP

– 727 –

FTP Client Agent
FTP Client Agent - create an FTP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_FTPClient1 [$Traffic1_Network1 activityList.appendItem options...]
Activity_FTPClient1 agent.config options...

DESCRIPTION

An FTP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

None.

OPTIONS

actionList

A list of actions that the agent should perform, of type FTP Client Action.

enable

Enables the use of this agent. (Default = true).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the FTP packets. Use the tos
option to specify the TOS bit setting.

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size as 1,460 bytes. (Default = 1,460).

enableVlanPriority

Chapter 14 FTP

– 728 –

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

fileList

Represents a list of filenames which is of the form #<a number>. These can be referred in the
arguments option in any of the ixFtpAction Objects.

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

ipPreference

If a mixture of IPv4 and IPv6 addresses are available on the client network, this parameter configures
which address types the agent uses.

0 IPv4

1 IPv6

2 (default) Both, IPv4 first

3 Both, IPv6 first

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

mode

The mode that the client will use to access the server: To establish an FTP connection, the client
connects from a random unprivileged port (port n, where n is greater than 1,024) to the FTP server's
command port, normally port 21. What happens next depends on whether the client is in active or
passive mode. The choices are listed below:

Option Usage

“ACTIVE” (Default). The client sends the PORT command and waits for an OK response from the
server.

“PASSIVE” In Passive mode, the client initiates both connections to the server.

name

The name associated with this object, which must be set at object creation.

password

Chapter 14 FTP

– 729 –

Enter the password for the default user name in userName. When you use a LOGIN action in the action
list, this password will be used by default. (Default = “noreply@ixiacom.com”).

You can insert sequence generators into this field to create unique entries automatically. For
information on how to use sequence generators, see <X-ref>“Using Automatic Sequence Generators”
on page -1.

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Service bit setting and
Assured Forwarding classes. (Default="Best Effort 0x0"). If you want to specify the standard
choices that are in the GUI, you can use a string representation. To specify any of the other 255 TOS
values, specify the decimal value. The choices are:

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

userName

Enter the default user name that the client will use to login to the FTP server. When you use a LOGIN
action in the action list, this user name will be used by default. Ixia servers currently only accept a
user name of ‘root.’ (Default = “root”).

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new ixNetTraffic]

#--# Activity FTPClient1
of NetTraffic Traffic1@Network1#--
--------set Activity_FTPClient1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "FTP Client"]

#-- # Timeline1 for
activities FTPClient1#--
set Timeline1 [::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime

Chapter 14 FTP

– 730 –

0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"

$Activity_FTPClient1 config \-enable true \-name
"FTPClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1

$Activity_FTPClient1 agent.config \-userName "root"
\-enableTos false \-loopValue
true \-enable true \-ipPreference
2 \-name "FTPClient1" \-vlanPriority
0 \-tos 0 \-fileList
"'/#1', '/#4', '/#16', '/#64', '/#256', '/#1024', '/#4096', '/#16384', '/#65536',
'/#262144', '/#1048576'" \-enableEsm false \-mode
"ACTIVE" \-esm 1460 \-password
"noreply@ixiacom.com" \-enableVlanPriority false$Activity_
FTPClient1 agent.actionList.clearset my_ixFtpAction [::IxLoad new ixFtpAction]$my_
ixFtpAction config \-userName "root" \-destination
"Traffic2_FTPServer1:21" \-sessionId "1" \-command
"{Get}" \-arguments "/#4096" \-password
"noreply@ixiacom.com"$Activity_FTPClient1 agent.actionList.appendItem -object $my_
ixFtpAction

SEE ALSO

FTP Client Action

ixNetTraffic

Chapter 14 FTP

– 731 –

FTP Client Action
FTP Client Action - define the commands that the FTP client will execute

SYNOPSIS

set clientTraffic [::IxLoad new ixClientTraffic options]
$clientTraffic agentList.appendItem options...
$clientTraffic agentList(0).actionList.appendItem options...

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_FTPClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_FTPClient1 agent.actionList.appendItem -object $my_ixFtpAction

DESCRIPTION

An FTP client action is added to the actionList option of the FTP Client Agent activityList
object using its appendItem. See the following example:

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition the following commands are
available. Unless otherwise described, no values are returned and an exception is raised for any error
found.

checkConfig

This subcommand checks the configuration of an individual action.

OPTIONS

arguments

This option contains an argument that is used by the various commands defined in the command
option. The type of the value depends on the command:

Command
option

Usage

“CD” The path to switch to.

“{Get}” The path to where the file is stored.

“LOGIN” N/A.

“{Put}” The path/size of the file to be sent to the server.

Chapter 14 FTP

– 732 –

“QUIT” N/A.

“RETRIEVE” The path to where the file is stored.

“STORE” The path/size of the file to be sent to the server.

“{Think}” The number of milliseconds to pause before executing the next command in the
action list.

command

Selects the FTP command to be used. One of:

Option Usage

“CD” Changes the current working directory to the value in the arguments option.

“{Get}” (Default). Retrieves the file specified in the argument option. {Get} is not a
standard FTP command; it allows you to retrieve a file from an Ixia server without
having to log in.

“LOGIN” Logs in to the FTP server using the name and password in the us and password
options.

“{Put}” Copies the file specified in the arguments option from the client to the server.
{Put} is not a standard FTP command; it allows you to store a file on an Ixia server
without having to log in.

“QUIT” Logs out of the FTP server.

“RETRIEVE” Retrieves the file specified in the arguments option.

“STORE” Copies the file specified in the arguments option from the client to the server.

“{Think}” Adds a pause (think time) before the next command is executed. Specify the
duration of the pause in the arguments option.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be executed a specified number of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

destination

Either the IP address of a real FTP server or the value of the -name option of an FTP Server Agent. If the
FTP server listens on a port other than the standard (21), enter a colon after the IP address and then
enter the port number. When using an FTP Server Agent, the port number must agree with that defined
by the Server Agent. See the following example:
192.168.0.1:21

Chapter 14 FTP

– 733 –

The destination option also accepts IPv6 addresses. IxLoad supports all forms of IPv6 addressing
except ::dotted-quad notation (for example, “::1.2.3.4”).

password

The password for the user name. Ixia servers accept any password.

userName

The user name that the client will use to log in to the FTP server. Ixia servers only accept a user name
of root.

EXAMPLE
set my_ixFtpAction [::IxLoad new ixFtpAction]$my_ixFtpAction config \-userName
"root" \-destination "Traffic2_FTPServer1:21" \-
sessionId "1" \-command
"{Get}" \-arguments "/#4096" \-password
"noreply@ixiacom.com"$Activity_FTPClient1 agent.actionList.appendItem -object $my_
ixFtpAction

SEE ALSO

FTP Client Agent

Chapter 14 FTP

– 734 –

FTP Server Agent
FTP Server Agent - configure an FTP server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_FTPServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_FTPServer1 agent.config options...

DESCRIPTION

An FTP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this server agent. (Default = true).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the FTP packets. Use the tos
option to specify the TOS bit setting.

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size is 1,460 bytes. (Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a

Chapter 14 FTP

– 735 –

network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

ftpPort

The port number that the FTP server listens on. To specify multiple listening ports, enter the port
numbers, separated by commas (,). You can specify up to 50 listening ports. (Default = 21).

name

The name associated with this object, which must be set at object creation.

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Service bit setting and
Assured Forwarding classes. (Default="Best Effort 0x0"). If you want to specify the standard
choices that are in the GUI, you can use a string representation. To specify any of the other 255 TOS
values, specify the decimal value. The default choices are:

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new ixNetTraffic]

#--# Activity FTPServer1
of NetTraffic Traffic2@Network2#--
--------set Activity_FTPServer1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "FTP Server"]set _Match_Longest_ [::IxLoad
new ixMatchLongestTimeline]$Activity_FTPServer1 config \-enable

Chapter 14 FTP

– 736 –

1 \-name "FTPServer1" \-timeline
$_Match_Longest_$Activity_FTPServer1 agent.config \-enableTos
0 \-enable 1 \-name
"FTPServer1" \-vlanPriority 0 \-tos
0 \-ftpPort 21 \-enableEsm
0 \-esm 1460 \-enableVlanPriority
0$Activity_FTPServer1 agent.realFileList.clearset my_RealFileObject11 [::IxLoad new
RealFileObject]$my_RealFileObject11 config \-payloadFile
"<Dummy File>" \-page "/#1"$Activity_FTPServer1
agent.realFileList.appendItem -object $my_RealFileObject11

SEE ALSO
ixServerTraffic

Chapter 14 FTP

– 737 –

FTP Statistics
For the FTP statistics, see the following:

FTP Client Statistics

FTP Server Statistics

Chapter 14 FTP

– 738 –

FTP Client Statistics
The table below lists the statistics that IxLoad reports for FTP clients. Statistics in the results files and
reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it from
the statistic immediately prior to it and the statistic after it.

The test results are available from the location defined on the User Directories window. See User
Directories.

The QoE Detective column indicates the QoE Detective views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic QoE
Detective

Description

FTP Bytes - - Total number of FTP bytes sent.

FTP Control Bytes
Received

All Number of bytes received on the control connections by the
FTP client.

FTP Control Bytes Sent All Number of bytes transmitted on the control connections by the
FTP client.

FTP Control Conn
Requested

All Number of requests to establish control connections sent by
the clients.

FTP Control Conn
Established

All Number of control connections established by the clients.

FTP Control Conn
Failed

All Number of control connections that could not be established.

FTP Control Conn
Failed (Rejected)

All Number of control connections that could not be established
because the server rejected the connection request.

FTP Control Conn
Failed (Other)

All Number of control connections that could not be established for
reasons other than rejection by the server.

FTP Control Conn
Active

All Number of control connections actively transferring FTP
commands.

FTP Data Conn
Established

All Number of data connections established.

FTP Data Conn All Number of data connections established in Active mode.

Chapter 14 FTP

– 739 –

Established (Active
Mode)

FTP Data Conn
Requested (Passive
Mode)

All Number of data connections requested in Passive mode.

FTP Data Conn
Established (Passive
Mode)

All Number of data connections established in passive mode.

FTP Data Conn Failed
(Passive Mode)

All Number of data connections that failed.

FTP Data Conn Active All Number of data connections active.

FTP File Uploads
Requested

All Number of requests to upload files sent by the clients.

FTP File Uploads
Successful

All Number of uploads that completed successfully.

FTP File Uploads Failed All Number of upload attempts that failed.

FTP File Downloads
Requested

All Number of requests to download files sent by the clients.

FTP File Downloads
Successful

All Number of downloads that completed successfully.

FTP File Downloads
Failed

All Number of download attempts that failed.

FTP Data Bytes Sent All Number of bytes transmitted on the data connections by the
FTP client

FTP Data Bytes
Received

All Number of bytes received on the data connections by the FTP
client.

FTP Control Bytes Sent All Number of bytes received on the control connections by the
FTP client.

FTP Control Bytes
Received

All Number of bytes received on the control connections by the
FTP client.

FTP Simulated Users - - Number of users to be simulated during the test.

FTP Connections - - Number of FTP connections between clients and servers,
including both control and data connections.

Chapter 14 FTP

– 740 –

FTP Transactions - - Number of transactions completed by the clients.

FTP Bytes All Total number of FTP bytes sent.

FTP Throughput - - Rate, in bytes per second, at which the client sent and
received FTP data.

FTP Throughput (Kbps) All Rate, in kilobits per second, at which the client sent and
received FTP data.

This statistic is only available in Conditional View.

FTP Connection Rate All Rate at which the client established FTP connections.

FTP Transaction Rate All Average rate at which the clients completed FTP transactions.

FTP Concurrent
Sessions

All Number of simultaneous FTP sessions active.

FTP Control
Connection Latency
(ms)

All Average amount of latency on control connections, in
milliseconds.

Note for Tcl API users: This is a weighted statistic. If you are
using this statistic in a Tcl script, use the kWeightedAverage
aggregation type.

FTP Data Connection
Latency (Passive
Mode) (ms)

All Average amount of latency (in milliseconds) on data
connections that were established in Passive mode.

Note for Tcl API users: This is a weighted statistic. If you are
using this statistic in a Tcl script, use the kWeightedAverage
aggregation type.

Chapter 14 FTP

– 741 –

FTP Server Statistics
The table below lists the statistics that IxLoad reports for FTP servers. Statistics in the results files and
reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it from
the statistic immediately prior to it and the statistic after it.

The QoE Detective column indicates which views a statistic is available in:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

The test results are available from the location defined on the User Directories window. See User
Directories.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Conditional
Views

Description

FTP Control Conn
Received

IP, VLAN Number of requests to establish control connections received
by the servers.

FTP Control Conn
Established

IP, VLAN Number of control connections established by the servers.

FTP Control Conn
Rejected

IP, VLAN Number of requests to establish control connections rejected
by the servers.

FTP Control Conn
Active

IP, VLAN Number of control connections actively transferring FTP
commands.

FTP Data Conn
Established

IP, VLAN Number of data connections established by the server (active
and passive mode).

FTP Data Conn
Requested (Active
Mode)

IP, VLAN Number of requests to establish data connections in active
mode received by the servers.

FTP Data Conn
Established (Active
Mode)

IP, VLAN Number of data connections established in active mode.

FTP Data Conn Failed
(Active Mode)

IP, VLAN Number of data connections opened in active mode that
failed.

FTP Data Conn
Established (Passive
Mode)

IP, VLAN Number of data connections established in passive mode.

Chapter 14 FTP

– 742 –

FTP Data Conn Active IP, VLAN Number of data connections actively uploading or
downloading data.

FTP File Uploads
Requested

IP, VLAN Number of requests to upload data received by the servers.

FTP File Uploads
Successful

IP, VLAN Number of uploads that completed successfully.

FTP File Uploads
Failed

IP, VLAN Number of uploads that failed.

FTP File Downloads
Requested

IP, VLAN Number of requests to download files received by the servers.

FTP File Downloads
Successful

IP, VLAN Number of downloads that completed successfully.

FTP File Downloads
Failed

IP, VLAN Number of downloads that failed.

FTP Data Bytes Sent - - Number of bytes sent by the servers on data connections.

FTP Data Bytes
Received

- - Number of bytes received by the servers on data connections.

FTP Control Bytes
Sent

- - Number of bytes sent by the servers on control connections.

FTP Control Bytes
Received

- - Number of bytes received by the servers on control
connections.

FTP Data Connection
Latency (Active
Mode) (ms)

IP, VLAN Average amount of latency (in milliseconds) on data
connections opened in active mode.

Note for Tcl API users: This is a weighted statistic. If you are
using this statistic in a Tcl script, use the kWeightedAverage
aggregation type.

! 16

Chapter 14 FTP

– 743 –

This page intentionally left blank.

– 744 –

CHAPTER 15 HTTP
This section describes the HTTP Tcl API objects.

Overview
HTTP protocol commands are organized as:

l HTTP Client Agent

l HTTP Client Action

l HTTP Server Agent

l ixCookieContents

l ixResponseHeader

l ixWebPageObject

l CustomPayloadObject

Additional topics included are:

l Supported Ciphers— describes the set of supported encryption ciphers.

l Using Your Own Web Pages In IxLoad describes how to use your own Web pages in the server’s
emulation.

l Using Sequence Generators in HTTP Client Commands and Server Header Name=Value Fields—
describes how to use variables to generate large numbers of difobjects.

Objectives
The objectives (userObjective) you can set for HTTP are listed below. Test objectives are set in the
ixTimeline object.

l connectionRate

l connectionAttemptRate

– 745 –

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

Chapter 15 HTTP

– 746 –

HTTP Client Agent
HTTP Client Agent

SYNOPSIS

set HTTP_client_client_network [::IxLoad new ixNetTraffic]
set Activity_newAgent1 [$HTTP_client_client_network activityList.appendItem
option...]
$Activity_newAgent1 agent.config \

DESCRIPTION

An HTTP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Two subcommands are available to load certificates and private keys: importCertificate and
importPrivateKey.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

importCertificate file

Imports a certificate from a disk file, setting the certificate option with the result. True is returned
if the import succeeded and false otherwise. IxLoad can import ASCII PEM (Privacy Enhanced Mail)
or binary (PKCS#12) certificates and keys; it converts binary certificates and keys into ASCII PEM
format.

l PEM uses Base64 encoding, and is optimized for sending binary data in 7-bit transport
environments like the Internet.

l PKCS #12 (Public Key Cryptography Standard #12) is an industry standard format used to
transfer certificates and their corresponding private keys from one computer to another, or from a
computer to removable media. If this format is imported, the privateKeyPassword must be set.

Note: Even though the certificate and key are stored in the same file, you must import each
one separately.

Example$Activity_newClientActivity1 agent.importCertificate
"C:/ProgramFiles/Ixia/IxLoad/3.40.49.32-EB/Client/Plugins/agent/HTTP_Common/SSL_
Certificates/Unsecured_RSA_cert_512.pem"

importPrivateKey file

Chapter 15 HTTP

– 747 –

This subcommand performs the same function, but for the private key. The decoded and decrypted
values are set into the password option and true or false are returned to indicate success and
failure, respectively.
$Activity_newClientActivity1 agent.importPrivateKey
"C:/ProgramFiles/Ixia/IxLoad/3.40.49.32-EB/Client/Plugins/agent/HTTP_Common/SSL_
Certificates/Unsecured_RSA_key_512.pem"

OPTIONS

actionList

A list of actions that the agent should perform, of type HTTP Client Action. Actions are normally
added using the appendItem subcommand.

browserEmulation

The type of browser that the client will emulate.One of:

Option Usage

::HTTP_Client
(kBrowserTypeNone)
or “<Custom>”

No browser is emulated by the client. The headers may be entered in
the headerList option.

::HTTP_Client
(kBrowserTypeIE5)
“Microsoft IE 5.x”

Microsoft Internet Explorer 5.x browser is emulated by the client.

::HTTP_Client
(kBrowserTypeMozilla)
“Mozilla”

Netscape, Mozilla, and Firefox browsers are emulated by the client.

::HTTP_Client
(kBrowserTypeIE6)
“Microsoft IE 6.x”

(Default) Microsoft Internet Explorer 6.x browser is emulated by the
client.

::HTTP_Client
(kBrowserTypeFirefox)
“Firefox”

The Firefox browser is emulated by the client.

::HTTP_Client
(kBrowserTypeSafari)
“Safari”

The Safari browser is emulated by the client.

certificate

If enableSsl is true, this is a certificate to be used by the client if requested by the server. The
certificate must be an X.509 certificate in binary format, fully decoded. The importCertificate
subcommand can read and decode a certificate held in a disk file. (Default = ““).

clientCiphers

Chapter 15 HTTP

– 748 –

If enableSsl is true, this is a ‘:’ separated list of encryption ciphers that will be supported by the
client. See Supported Ciphers for a list of supported ciphers. (Default = “DEFAULT”).

cookieJarSize

If enableCookieSupport is true, this option indicates the number of cookies that will be saved for
each client. The maximum value of this is 300. (Default = 10).

cookieRejectProbability

If enableCookieSupport is true, then this option indicates the probability, from 0 to 1, that a client
will reject a request for a cookie’s contents from the server. (Default = 0.0).

enable

Enables the use of this action. (Default = true).

enableCookieSupport

If true, then the client will support cookie retention, as indicated in the cookieJarSize and
cookieRejectProbability. (Default = false).

piggybackAck

If true, the client includes the ACK for the previous packet in the same packet as the next packet..
(Default = true).

enableDecompressSupport

If true, the client decodes pages that have been encoded using a supported encoding method such as
gzip or deflate. (Default = false).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableHttpProxy

If true, the client will retrieve pages from an HTTP proxy device defined in httpProxy instead of the
target specified in the URL. (Default = false).

enableHttpsProxy

If true, the client will retrieve secure (SSL) pages from an HTTPS proxy device defined in httpsProxy
instead of the target specified in the URL. (Default = false).

enableHttpsTunnel

If true, the client will retrieve secure (SSL) pages from over an HTTPS tunnel defined in
httpsTunnelIp instead of the target specified in the URL. (Default = false).

enableIntegrityCheckSupport

If true, the client calculates a checksum for a received page and compares it with the checksum
received from the server. (Default = false).

enableLargeHeader

Chapter 15 HTTP

– 749 –

If enabled, this specifies whether IxLoad will support large headers. It accepts boolean value of True or
False. (Default = false).
enablePerConnCookieSupport

If enabled, cookies are maintained on a per-connection basis instead of on a per-user basis. (Default
= false).

enableSsl

If true, then the client will support SSL interactions. The operation of SSL mode is controlled by the
certificate, clientCiphers, privateKey, privateKeyPassword, sequentialSessionReuse
(sic), and sslVersion options. (Default = 0).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the HTTP packets. Use the tos
option to specify the TOS bit setting.

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size is 1,460 bytes. (Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

followHttpRedirects

If true, the client follows HTTP Redirect commands from the server. An HTTP Redirect is a response
status code from the server in the range 300-399 that defines the reason for redirection (for example,
“301 Moved Permanently”) and supplies an alternative location (specified in the Location HTTP
header) from which the client can retrieve the page. (Default = false).

headerList

If browserEmulation is set to “None,” then this list of headers will be transmitted as part of a client
request. This list is of type ixResponseHeader; items are added to the list via the appendItem
subcommand. Each element of the list must be of the form “key: value” without any spaces in the
key. (Default = None).

httpProxy

Chapter 15 HTTP

– 750 –

If enableHttpProxy is true, this option is the name of a HTTP proxy device (typically, a caching
device) that will be used instead of the target specified in the URL. It should be of the form: <IP
address>:<port>; for example, 192.168.3.1:8080. (Default = ““).

httpsProxy

If enableHttpsProxy is true, this option is the name of a HTTPS proxy device (typically, a caching
device) that will be used instead of the target specified in the URL for secure (SSL) pages. It should be
of the form: <IP address>:<port>; for example, 192.168.3.1:8080. (Default = ““).

httpsTunnelIp

If enableHttpsTunnel is true, this is the IP address of the HTTPS tunnel that will be used instead of
the target specified in the URL for secure (SSL) pages. It should be of the form: <IP address>:<port>;
for example, 192.168.3.1:8080. (Default = ““).

httpVersion

Select the version of the HTTP protocol that you want to use in the test. One of:

Option Usage

“1.0” (Default) Under HTTP 1.0 without Keep-Alive, when a user clicks on a link for a Web
page, a TCP connection request is sent by the client to the server. When the server accepts
the connection, the client sends an HTTP GET request to download the Web page from the
server. The client acknowledges receipt of the page by sending an ACK to the server. After
making a single HTTP request, the client closes the TCP connection. After the server has
sent the entire page, it will also close the connection from its side.

See the description of keepAlive for a description of its effect on HTTP 1.0

“1.1” Most browsers use HTTP 1.1. If a client and server use HTTP 1.1, multiple HTTP requests
can be sent by the client on a single TCP connection. This saves processing power, since
fewer TCP connections need to be established. HTTP 1.1 also allows for persistent
connections, enabling connections to stay up for (relatively) long periods of time. In HTTP
1.1, the server initiates the closing of the TCP connection by sending a FIN message.

ipPreference

If a mixture of IPv4 and IPv6 addresses are available on the client network, this parameter configures
which address types the agent uses.

0 IPv4

1 IPv6

2 (default) Both, IPv4 first

3 Both, IPv6 first

keepAlive

This option is only applicable if httpVersion is set to “1.0.”

Chapter 15 HTTP

– 751 –

If this option is set to true, the client adds the Connection: Keep-Alive header to its request. Each
request from a client creates a new socket connection to the server. The client reads from that socket
connection to get the response. If keepAlive is not set, the server closes the connection. If the client
needs to make a new request, it will establish a new connection.

If the client sends the Keep-Alive header, the server keeps the connection open. When the client
sends another request, it uses the same connection. This will continue until either the client or the
server decides that the session is over, and one of them closes the connection. (Default = false).

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0) then the client will progress through the command list
only once, and then go idle. (Default = 0).

maxHeaderLen

Specifies the length of header data. It accepts integer values. Minimum = 1,024, maximum =1,0240.
(Default = 1,024).

maxPersistentRequests

This option is only applicable if httpVersion is set to “1.1” or httpVersion is set to “1.0” with
keepAlive set to true. This option enables you to control the number of transactions that can occur
during a single connection.

A value of 0 indicates the maximum possible, in which case IxLoad will create as many transactions as
possible for each connection.

If you enter a value to limit the number of transactions, IxLoad limits the number of transactions that
can occur during a single TCP connection. If a user reaches the maximum number of transactions and
needs to continue communicating with the server, it will close the connection and open a new one.
(Default = 1).

maxPipeline

This option enables you to control the maximum number of requests that the client will send before
waiting for a response. Minimum = 1, maximum = 1,000. (Default = 1).

HTTP pipelining allows a client to send multiple HTTP requests before it has received a response to the
first request. A client that does not use HTTP pipelining waits for a response to a request before it
sends the next request.

This option is only applicable if httpVersion is set to “1.1” or httpVersion is set to “1.0” with
keepAlive set to true.

Setting maxPipeline to 1 (the default) effectively disables pipelining; the client will send only one
request before stopping to wait for a response.

Setting maxPipeline to a value greater than 1 reduces the maximum number of concurrent connections
that a test can attain.

If pipelining is enabled, IxLoad pipelines all requests: GET, PUT, POST, HEAD, and DELETE.

Chapter 15 HTTP

– 752 –

Note: If you enable pipelining, you should also consider the value you will enter in the
maxPersistentRequests field, because it may override the value for maxPipeline. For example, if you
set the value of maxPersistentRequests to ‘5’ instead of “Maximum possible” and set the maxPipeline
value to 100, pipelining will effectively be nullified because the client will allow only 5 requests to be
sent by over an HTTP connection.

maxSessions

This value determines the maximum number of connections that a single user can have open at any
given time. For example, clients may open multiple connections when their command list contains
URLs for multiple servers.

The value for this parameter has an effect on the total number of users that can be configured;
increasing the number of concurrent connections decreases the number of users that can be
configured. Setting this parameter to 1 allows the maximum numbers of users to be created.

IxLoad enforces these limits for clients. For servers, the limits are the same but not enforced. (Default
= 3).

name

The name associated with this object, which must be set at object creation.

privateKey

If enableSsl is true, this is a user’s private key. The password must be in binary format, fully
decoded. The importPrivateKey subcommand can read and decode a certificate held in a disk file.
(Default = ““).

privateKeyPassword

The password used to decode a certificate and private key, when using the importCertificate or
importPrivateKey subcommands. (Default = 0).

sequentialSession
Reuse

If enableSsl is true, this option indicates the number of times that a set of keys will be reused after
its initial usage. For example, if this value is set to 3, then the keys will be used for four total sessions.
(Default = 0).

sslVersion

If enableSsl is true, this is the SSL version be supported by the client. One of

Option Usage

$::HTTP_Client(kSslVersion2) SSL version 2.0.

$::HTTP_Client(kSslVersion3) SSL version 3.0.

$::HTTP_Client(kTlsVersion1) (Default) TLS version 1.0.

tcpCloseOption

Chapter 15 HTTP

– 753 –

This option selects the mehod used to close connections.

0 (Default) Connections are closed using three way handshake.

1 Connections are closed by sending Reset (RST) segments instead of Finish (FIN) segments

2 Connections are closed using a four-way handshake

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting and
Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the standard
choices that are in the GUI, you can use a string representation. To specify any of the other 255 TOS
values, specify the decimal value. The default choices are:

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

urlStatsCount

Number of URL statistics to display in Statistics (StatViewer) window. During a test, IxLoad displays
statistics for one or more URLs in the Statistics window at the bottom of the main IxLoad window. You
can use this field to restrict the number of per-URL statistics that are displayed, so that the window
displays statistics only for the URLs that are most important to you. If you select a large number of
URLs, the Statistics window can become difficult to read. Maximum = 1,000, (default=10).

Value Extraction Settings

varExtract_enable

If enabled, IxLoad searches for a match for the string configured in the fields and, if found, applies the
value to the variable. It accepts true or false value.

varExtract_varName

This represents the name of the variable.

varExtract_prefix

This indicates the characters preceding the value string in the response.

Chapter 15 HTTP

– 754 –

You can specify up to 512 characters, which can be any valid printable ASCII characters.

varExtract_suffix

This indicates the characters following the value string in the response.

You can specify up to 512 characters, which can be any valid printable ASCII characters.

varExtract_location

This indicates where to search for the value string. It can take three different values: Header, Body, or
Both.

STATISTICS

EXAMPLE

$Activity_HTTPClient1 agent.config \

-vlanPriority 0 \

-enableDecompressSupport 0 \

-enableHttpsProxy 0 \

-enableSsl 0 \

-enableUnidirectionalClose 0 \

-ipPreference 2 \

-loopValue 1 \

-enableLargeHeader 0 \

-maxPersistentRequests 1 \

-enableEsm 0 \

-certificate "" \

-sequentialSessionReuse 0 \

-tos 0 \

-maxPipeline 1 \

-maxHeaderLen 1024 \

-maxSessions 3 \

-enableHttpProxy 0 \

-enableTos 0 \

-cookieRejectProbability 0.0 \

-browserEmulation 3 \

Chapter 15 HTTP

– 755 –

-cookieJarSize 10 \

-privateKey "" \

-commandTimeout 600 \

-enableIntegrityCheckSupport 0 \

-commandTimeout_ms 0 \

-privateKeyPassword "" \

-urlStatsCount 10 \

-followHttpRedirects 0 \

-tcpCloseOption 0 \

-enableVlanPriority 0 \

-esm 1460 \

-httpVersion 0 \

-sslVersion 3 \

-enableCookieSupport 0 \

-piggybackAck true \

-clientCiphers "DEFAULT" \

-httpProxy "0.0.0.0" \

-keepAlive 0 \

-enableCRCCheckSupport 0 \

-httpsProxy "0.0.0.0"

SEE ALSO

HTTP Client Action

ixNetTraffic

Chapter 15 HTTP

– 756 –

HTTP Client Profile
HTTP Client Profile - configure the an HTTP client's functionality.

SYNOPSIS

set HTTP_client_client_network [::IxLoad new ixNetTraffic]
set Activity_newAgent1 [$HTTP_client_client_network activityList.appen
set CustomCommandProfile1 [::IxLoad new ixHttpCommandProfile]
$Activity_newAgent1 agent.profileList.appendItem -object $CustomCommandProfile1

DESCRIPTION

An HTTP client profile is added to the profileList option of the HTTP Client Agent object using the
appendItem subcommand from the HTTP Client Agent.
Request Headers

The request header is a list of type ixConfigSequenceContainer used to hold objects of type
ixResponseHeader. The elements in this list describe the responses of the Web server to HTTP
requests as per the profile specified in the client. You can map multiple header responses to one
common profile ID.
Request Headersset my_ixHttpHeaderString [::IxLoad new ixHttpHeaderString]$my_
ixHttpHeaderString config \-data "Accept:
/"$Activity_newAgent1 agent.headerList.appendItem -object $my_

ixHttpHeaderStringSubstring Matching

The HTTP client filter strings received in responses from the server.
Substring Matchset CustomCommandProfile1 [::IxLoad new
ixHttpCommandProfile]$CustomCommandProfile1 config \-name
"CustomCommandProfile1" \-substringMatchEnabled true \-userID
"test" \-id 0 \-substring
"a" \-basicAuthenticationEnabled true \-password
"test" \-caseInsensitiveMatch true$CustomCommandProfile1
requestHeaders.clear

SUBCOMMANDS

None.

OPTIONS

Substring options

name

This is the name of the profile that needs to be matched.

caseInsensitivematch

Chapter 15 HTTP

– 757 –

If this is enabled, then IxLoad ignores the case of the characters in a substring match. The value is 0
for enabled and 1 if disabled. (Default = 0).

substring

This is the server response text string to be matched, when enabled. Minimum = 0, maximum =1,024.
(Default=0).

substringMatchEnabled

If enabled, the response to any command that uses this profile is searched for the text string in the
substring field. The value is true if enabled and false if disabled. (Default = false).

basicAuthentication

If this is enabled the client sends an autorization header to the server requesting for a page. The
userID and password is sent to the server against Authorization header like userID: password
after base64 encoding. (Default = 0).

userID

Identification of the client sending the basicAuthentication request. (Default = userid).

password

Password of the client sending the basicAuthentication request. (Default = pass.

randomPageGenEnabled

If enabled, the GET requests that contain sequence generators in the pageObject field send requests
for pages in a random order.

If disabled, GET requests that use sequence generators generate requests in alphabetic or numerical
order.The value is true if enabled and false if disabled. (Default = false).

Request Header options

data

This contains the name and the value of the header. The request header maps to the profile list
through the profile ID declared in the client action. The request header is specified for GET, HEAD,
PUT, POST, DELETE and their SSL counter

Chapter 15 HTTP

– 758 –

HTTP Client Action
HTTP Client Action - configure the actions that an HTTP client will perform.

SYNOPSIS

set HTTP_client_client_network [::IxLoad new ixNetTraffic]
set Activity_newAgent1 [$HTTP_client_client_network activityList.appendItem
set my_ixHttpAction [::IxLoad new ixHttpAction]
$Activity_newAgent1 agent.actionList.appendItem -object $my_ixHttpAction

DESCRIPTION

An HTTP client action is added to the actionList option of the HTTP Client Agent object using the
appendItem subcommand from the HTTP Client Agent. See the following example:
set Traffic1_Network1 [::IxLoad new ixNetTraffic]set Activity_HTTPClient1
[$Traffic1_Network1 activityList.appendItem \set my_ixHttpAction [::IxLoad new
ixHttpAction]$my_ixHttpAction config \-profile 0 \-
namevalueargs "" \-destination
"Traffic2_HTTPServer1:80" \-abort "None" \-command
"GET" \-arguments "" \-pageObject
"/1b.html"$Activity_HTTPClient1 agent.actionList.appendItem -object $my_ixHttpAction

Each member of the list may be separately addressed and modified using the ixConfig subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. In addition, the following commands
are available. Unless otherwise described, no values are returned and an exception is raised for any
error found.

checkConfig

This subcommand checks the configuration of an individual action.

OPTIONS

abort

This option allows you to abort an operation at one of two places during the interThe following
commands support the abort option: GET, PUT, POST, HEAD, DELETE, GET(SSL), PUT(SSL),
POST(SSL), HEAD(SSL), and DELETE(SSL).

The types of aborts available are:

Option Usage

::HttpAction
(kAbortNone)
or “None”

Do not abort transaction. (Default)

Chapter 15 HTTP

– 759 –

::HttpAction
(kAbortBefore
or
“AbortBeforeRequest”

Abort the operation immediately after the TCP connection.

::HttpAction
(kAbortAfter
or
“AbortAfterRequest”

Abort the operation after the operation has been sent to the HTTP server.
This option is not valid for SSL connections.

arguments

This option contains an argument that is used by the various commands defined in command. The type
of the value depends on the command:

Option Usage

“GET”, “GET(SSL)” N/A.

“DELETE” N/A.

“HEAD”, “HEAD
(SSL)”

N/A.

“PUT”, “PUT(SSL)” The name and path of the file to be posted on the server.

“POST”,”POST
(SSL)”

The name and path of the file to be posted on the server.

“{Think}” The number of milliseconds to pause before executing the next command in
the action list.

command

Selects the HTTP command to be used. One of:

Option Usage

“GET” (Default) Retrieves the page specified in the pageObject option.

“GET(SSL)” Retrieves the page specified in the pageObject option, using SSL. This command
must be used if enableSsl is set in the HTTP Client Action.

“DELETE” Requests that the server delete the page specified in the pageObject option.

“HEAD” Retrieves only the HTTP headers for the page specified in pageObject option.

“HEAD(SSL)” Retrieves only the HTTP headers for the page specified in pageObject option. This

Chapter 15 HTTP

– 760 –

command must be used if enableSsl is set in the HTTP Client Action.

“PUT” Stores the page specified in the pageObject option on the server at the path
specified in the arguments option.

“PUT(SSL)” Stores the page specified in the pageObject option on the server at the path
specified in the arguments option. This command must be used if enableSsl is set
in the HTTP Client Action.

“POST” Creates a new object linked to the item specified in the pageObject option. The
arguments option can be used to set the object’s message-ID field.

“POST(SSL)” Creates a new object linked to the item specified in the pageObject option. The
arguments option can be used to set the object’s message-ID field. This command
must be used if enableSsl is set in the HTTP Client Action.

“{Think}” Adds a pause (think time) before the next command is executed. Specify the
duration of the pause in the arguments option.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be executed a specified number of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

destination

Either the IP address of a real HTTP server or the value of the -name option of an HTTP Server Agent. If
the HTTP server listens on a port other than the standard (80), enter a colon after the IP address and
then enter the port number. If an HTTP Server Agent is used, the port number should agree with the
port number associated with the Server Agent. If you are testing an SLB with a virtual IP address (VIP),
enter its address here. See the following example:
192.168.0.1:80

The destination option also accepts IPv6 addresses. IxLoad supports all forms of IPv6 addressing
except ::dotted-quad notation (for example, “::1.2.3.4”).

namevalueargs

Name=value arguments for GET, HEAD, POST and PUT commands. Name=value arguments are
optional and specify parameter names and values; they can occur in any order. To enter multiple
name=value arguments, separate the arguments with ampersands (&). For example:

name1=value1&name2=value2&. . .

You can include sequence generators and system variables in the name=value arguments. (Default=
““)

pageObject

Chapter 15 HTTP

– 761 –

This option contains a page stored on the HTTP server specified in the Destination field. Three formats
are available:

l /#n identifies a target that contains n bytes of HTTP data. For example, /#1 is 1 byte of HTTP
data. In addition to the default sizes listed, you can cause the HTTP Server agent to generate a
custom-size target by specifying the size using the same convention used for the default sizes.
For example, to specify a target of 16 bytes, use /#16.

l /nk.htm identifies a target that is an HTML page that is n kilobytes in size. For example, /4k.htm
is an 4096-byte HTML page.

l If you have added customized pages, type its path and name into the Page/Object field. See
Using Your Own Web Pages In IxLoad for a description of how to use your own custom pages.

You can also include variables in this parameter.

sendingChunkSize

Chunk size (PUT and POST commands). Enables chunked-transfer encoding if set to a numeric value.
Default = "None".

sendMD5ChkSumHeader

If true, an MD5 check sum header is included with the requests sent to the server. Default = 0.

profile

When a HTTP Client Profile is created there is an associated ID, created for each profile. This is
incremented by one for each profile. This profile ID maps the Substring match and Request Header
together. (Default= -1).
exactTransactions

If enabled, the transaction count is maintained throughout the test. Default = 0.

EXAMPLE
#--# Add actions to this
client agent#--set my_
ixHttpAction [::IxLoad new ixHttpAction]$my_ixHttpAction config \-profile
0 \-namevalueargs "" \-destination
"Traffic2_HTTPServer1:80" \-abort "None" \-command
"GET" \-arguments "" \-pageObject
"/1b.html"

$Activity_HTTPClient1 agent.actionList.appendItem -object $my_ixHttpAction

SEE ALSO

HTTP Client Agent

Chapter 15 HTTP

– 762 –

HTTP Server Agent
HTTP Server Agent - configure an HTTP server.

SYNOPSIS

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$HTTP_server_server_network activityList.
appendItem
$Activity_newServerActivity1 agent.config

DESCRIPTION

An HTTP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

The set of Web pages available through the server is described in the webPageList option, which
references response headers held in the responseHeaderList option and cookies held in the cookieList.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

In addition, two subcommands are available to load certificates and private keys: importCertificate
and importPrivateKey.

importCertificate file

Imports a certificate from a disk file, setting the certificate option with the result. For more information,
see the description under HTTP Client Agent.

importPrivateKey file

This subcommand performs the same function, but for the private key. For more information, see the
description under HTTP Client Agent.

OPTIONS

acceptSslConnections

If true, the server will accept incoming SSL connections. (Default = false).

piggybackAck

If true, the server includes the ACK for the previous packet in the same packet as the next packet..
(Default = true).
minResponseDelay

Minimum length of time, in milliseconds, that the HTTP server delays sending a response.
maxResponseDelay

Chapter 15 HTTP

– 763 –

Maximum length of time, in milliseconds, that the HTTP server delays sending a response.
privateKey

If the acceptSslConnections parameter is true, this parameter specifies a private key in ASCII PEM
(Privacy Enhanced Mail) or binary (PKCS#12) format that is used to create a server private key.
privateKeyPassword

If the privateKey is password-protected (PKCS#12 format), this parameter defines a password for
retrieving the key.
certificate

If the acceptSslConnections parameter is true, this parameter specifies a certifiin ASCII PEM (Privacy
Enhanced Mail) format that is used to create a server certificate.

enableDHsupport

Enables Diffie-Hellman support for DH keys and ADH or EDH ciphers. (Default = false).
dhParams

If the EnableDH support option is selected, this parameter specifies the file that contains a DSA key
and certificate. The DSA key is converted to a DH key that can be used in a DH key exchange with an
SSL client when the selected cipher is ADH or EDH.
ServerCiphers

Defines the server cipher which is one of these listed under Supported Ciphers.

cookieList

This is a list of type ixConfigSequenceContainer used to hold objects of type ixCookieObject.
The elements in this list describe the cookies that the server sends to clients. (Default = {}).

docrootfile

Selects the file (zip or tar) that defines default directory path for actual files stored on the HTTP server.
HTTP clients can retrieve these files. To retrieve the files specify in the pageObject option in the
client’s command list.

docrootChunkSize

If enableChunkEncoding is true, this option defines the chunk size used for pages in the Docroot file.
Specify this value as a min-max range. (Default = 521-1024)

enable

Enables the use of this server agent. (Default = true).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the HTTP packets. Use the tos
option to specify the TOS bit setting.

Chapter 15 HTTP

– 764 –

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size is 1,460 bytes. (Default = 1,460).

enableMD5Checksum

If true, the server calculates checksums for the pages it sends to the client. See
integrityCheckOption in HTTP Server Agent and MD5option in ixWebPageOb(Default =
false).

enablePerServerPerURLstat

If true, the statistics from a returned page, records the server IP address from where the page is sent.
(Default = false).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

httpPort

The port number to which the HTTP server will respond to non-SSL requests. To specify multiple
listening ports, enter the port numbers, separated by commas (,). You can specify up to 50 listening
ports. (Default = 80).

httpsPort

The port number to which the HTTP server will respond to SSL requests. To specify multiple listening
ports, enter the port numbers, separated by commas (,). You can specify up to 50 listening ports.
(Default = 443).

integrityCheckOption

Type of checksum calculated for pages requested from the docroot file. In order to send checksums,
enableMD5Checksum must be true. Valid values for this option are the following strings:

Option Usage

Custom MD5 (Default) MD5 checksum in IxLoad-specific header.

Standard MD5 MD5 checksum in RFC 2616-compliant header.

Chapter 15 HTTP

– 765 –

Standard & Custom MD5 MD5 checksum in both IxLoad-specific and RFC-compliant headers

Disable MD5 No checksum is sent.

enableChunkEncoding

If true, Chunk Transfer-Encoding is enabled. (Default = false).

name

The name associated with this object, which must be set at object creation.

requestTimeout

The amount of time that the server will wait for input on an open connection before closing the session
with a ‘408’ error. The legal values are from 1 to 64,000 seconds. (Default = 300).

responseHeaderList

This is a list of type ixConfigSequenceContainer used to hold objects of type ixResponseHeader.
The elements in this list describe the responses of the Web server to requests—both returned page
contents and other messages. (Default = {}).

tcpCloseOption

This option helps the server to close connections. It accepts integer value. (Default = 0).

0 (Default) Connections are closed using three way handshake

1 Connections are closed by sending Reset (RST) segments instead of Finish (FIN) segments

2 Connections are closed using a four-way handshake

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Serbit setting and Assured
Forwarding classes. (Default = "0"). The choices are:

0 (Default) (0x000) routine

32 (0x0020) priority service, Assured Forwarding class 1

64 (0x0040) immediate service, Assured Forwarding class 2

96 (0x0060) flash, Assured Forwarding class 3

128 (0x0080) flash-override, Assured Forwarding class 4

160 (0x00A0) critical-ecp

192 (0x00C0) internet-control

urlStatsCount

Chapter 15 HTTP

– 766 –

Number of URL statistics to display in Statistics (StatViewer) window. During a test, IxLoad displays
statistics for one or more URLs in the Statistics window at the bottom of the main IxLoad window. You
can use this field to restrict the number of per-URL statistics that are displayed, so that the window
displays statistics only for the URLs that are most important to you. If you select a large number of
URLs, the Statistics window can become difficult to read. Maximum = 1,000, (Default = 10).

webPageList

This is a list of type ixConfigSequenceContainer used to hold objects of type ixWebPageObject.
The elements in this list describe the headers of the Web pages returned by the server. (Default =
{}).
customPayloadList

This is a list of type ixConfigSequenceContainer used to hold objects of type
CustomPayloadObject. The elements in this list describe the payload of the Web pages returned by
the server. (Default = {}). Two predefined CustomPayloadObjects exist, AsciiCustomPayload
and HexCustomPayload.

STATISTICS

EXAMPLE

$Activity_HTTPServer1 agent.config \

-vlanPriority 0 \

-maxResponseDelay 0 \

-docrootChunkSize "512-1024" \

-enablePerServerPerURLstat 0 \

-enableEsm 0 \

-certificate "" \

-tos 0 \

-enableMD5Checksum false \

-httpPort "80" \

-httpsPort "443" \

-esm 1460 \

-enableTos 0 \

-integrityCheckOption "Custom MD5" \

-enableChunkEncoding false \

-privateKey "" \

-privateKeyPassword "" \

Chapter 15 HTTP

– 767 –

-urlStatsCount 10 \

-tcpCloseOption 0 \

-enableVlanPriority 0 \

-docrootfile "" \

-dhParams "" \

-requestTimeout 300 \

-ServerCiphers "DEFAULT" \

-acceptSslConnections 0 \

-piggybackAck true \

-enableDHsupport 0 \

-minResponseDelay 0

SEE ALSO

ixCookieContent

ixResponseHeader

PageObject

Chapter 15 HTTP

– 768 –

ixCookieContent
ixCookieContent—Defines a cookie response for a Web page.

SYNOPSIS

$UserCookie cookieContentList.appendItem -object $lastName
$Activity_newServerActivity1 agent.cookieList.appendItem -object $User

DESCRIPTION

The ixCookieContent command is used to construct a cookie response associated with a cookie,
described in a ixCookieObject. The list of cookie contents are normally added to a ixCookieObject
at the time of its creation.
set firstName [::IxLoad new ixCookieContent]$firstName config \-domain
"" \-name "firstName" \-maxAge
"" \-value "Joe" \-other
"" \-path ""$UserCookie
cookieContentList.appendItem -object $firstName

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

domain

The domain for which the cookie is valid. If omitted, it applies to the entire domain for the HTTP server.
(Default = ““).

maxAge

The lifetime of the cookie, in seconds. After the time elapses, the client should discard the cookie. A
value of zero means the cookie should be discarded immediately. If blank, the cookie is discarded at
the end of the browser session. (Default = ““).

name

The name part of the name = value pair being defined. (Default = “name”).

other

A comment associated with the cookie. (Default = ““).

path

The subset of URLs to which this cookie applies. If omitted, it applies to all URLs for the server.
(Default = ““)

value

The value part of the name = value pair being defined. (Default = “value”).

Chapter 15 HTTP

– 769 –

EXAMPLE
set firstName [::IxLoad new ixCookieContent]$firstName config \-domain
"" \-name "firstName" \-maxAge
"" \-value "Joe" \-other
"" \-path ""$UserCookie
cookieContentList.appendItem -object $firstNameset lastName [::IxLoad new
ixCookieContent]$lastName config \-domain "" \-name
"lastName" \-maxAge "" \-value
"Smith" \-other "" \-path
""$UserCookie cookieContentList.appendItem -object $lastName$Activity_
newServerActivity1 agent.cookieList.appendItem -object $UserCookie

SEE ALSO

HTTP Server Agent

Chapter 15 HTTP

– 770 –

ixCookieObject
ixCookieObject—Defines a cookie.

SYNOPSIS

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$HTTP_server_server_network activityList.appendItem
$Activity_newServerActivity1 agent.cookieList.appendItem -object $UserCookie

DESCRIPTION

The ixCookieObject command is used to construct a cookie for the server. The list of cookie contents
are normally added to a HTTP Server Agent at the time of its creation.
set UserCookie [::IxLoad new CookieObject]$UserCookie config \-mode
3 \-type 2 \-name
"UserCookie" \-description "Name of User"

The cookies are referenced by the actual Web page in an ixWebPageObject included in the
webPageList option of the HTTP Server Agent.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

cookieContentList

This is a list of type ixConfigSequenceContainer used to hold objects of type ixCookieContent.
The elements in this list describe the cookie contents associated with this cookie. (Default = {}).

description

A description for the cookie. (Default = ““).

mode

Determines how the cookies in the cookie group should be handled by the HTTP server that receives
them. One of:

Option Usage

$::CookieObject
(kModeIgnore)

Causes the server to discard these cookies when it receives them from
the client. The IxLoad HTTP server does not add cookies received with
this mode to its statistics. Therefore, the statistics for the number of
cookies sent by the client will be greater than the number of cookies
received by the IxLoad HTTP server.

$::CookieObject
(kModeReflectSetCookie1)

Causes the server to return the cookies to the client in a Set-Cookie
format header.

Chapter 15 HTTP

– 771 –

$::CookieObject
(kModeReflectSetCookie2)

Causes the server to return the received cookie data to the client in a
Set-Cookie2 format header.

$::CookieObject
(kModeNormal)

(default) Causes the server to perform the functions described by
the cookies.

name

The name part of the cookie object being defined. (Default = “name”).

readOnly

Indicates that the cookie may not be deleted without resetting this flag. (Default = false)

type

The type of the cookie. One of:

Option Usage

$::CookieObject(kTypeSetCookie1)

“1”

Use the original cookie specification, as per RFC 2109.

$::CookieObject(kTypeSetCookie2)

“2”

(default) Use the cookie 2 specification, as per RFC 2965.

EXAMPLE
set UserCookie [::IxLoad new CookieObject]$UserCookie config \-mode
3 \-type 2 \-name
"UserCookie" \-description "Name of User"$UserCookie
cookieContentList.clear

SEE ALSO

HTTP Server Agent

Chapter 15 HTTP

– 772 –

ixResponseHeader
ixResponseHeader—Defines a response for a Web page.

SYNOPSIS

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$HTTP_server_server_network activityL options...
$Activity_newServerActivity1 agent.responseHeaderList.appendItem options...

DESCRIPTION

The ixResponseHeader command is used to describe the responses of the Web server to request both
returned page contents and other messages. See the following example:
set 200_OK [::IxLoad new ResponseHeader]$200_OK config \-mimeType
"text/plain" \-expirationMode 0 \-code
"200" \-name "200_OK" \-lastModifiedMode
1 \-lastModifiedIncrementEnable false \-lastModifiedDateTimeValue
"2005/02/02 21:55:04" \-lastModifiedIncrementFor 1 \-
expirationDateTimeValue "2005/03/04 21:55:04" \-
expirationAfterRequestValue 3600 \-expirationAfterLastModifiedValue
3600 \-lastModifiedIncrementBy 5 \-description
"OK"$200_OK responseList.clear

The response header referenced by the actual Web page in an ixWebPageObject included in the
responseHeaderList option of the HTTP Server Agent.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

code

The number returned by response. HTTP response codes are defined in Section 10 of RFC 2616.
(Default = “200”).

description

A commentary description for the response. (Default = “OK”).

expirationAfterLastModifiedValue

If expirationMode is set to “AfterLastModified,” this is the number of seconds after the page’s last
modified value, at which time the page will expire. The last modified value is set in
lastModifiedDateTimeValue, lastModifiedIncrementEnable, lastModifiedIncrementBy, and
lastModifiedIncrementFor options. . (Default = 3,600).

expirationAfterRequestValue

Chapter 15 HTTP

– 773 –

If expirationMode is set to “AfterRequest,” this is the number of seconds after which the page will
expire. (Default = 3,600).

expirationDateTimeValue

If expirationMode is set to “DateTime,” this is the date and time at which the page will expire. The
format of this field is “YYYY/MM/DD HH:MM:SS.” For example, “2004/12/31 23:59:59.” (Default =
“2004/12/31 23:59:59”).

expirationMode

The means by which the page’s expiration is published. One of:

Option Usage

$::ResponseHeader
(kExpirationModeNever)

(Default) The page never expires.

$::ResponseHeader
(kExpirationModeDateTime)

The page expires after a certain date and time, specified in e.

$::ResponseHeader
(kExpirationModeAfterRequest)

The page expires after a certain amount of time, specified in
e.

$::ResponseHeader
(kExpirationModeAfterLastModified)

The page expires after a certain amount of time following the
last modified date and time, specified in e.

lastModifiedDateTimeValue

If lastModifiedMode is set to “DateTime,” then this is the value to be returned for the last modified
date/time. This value may be incremented for subsequent responses through use of the
lastModifiedIncrementEnable, lastModifi and lastModifiedIncrementFor options. (Default
= “2004/12/31 23:59:59”).

lastModifiedIncrementBy

If lastModifiedMode is set to “DateTime” and lastModifiedIncrementEnable is set to true, then
this is the number of seconds to increment the lastModifiedDateTimeValue(Default = 5).

lastModifiedIncrementEnable

If lastModifiedMode is set to “DateTime,” this option enables the incrementing of
lastModifiedDateTimeValue by lastModifiedIncrementBy as modified by l. (Default = false).

lastModifiedIncrementFor

If lastModifiedMode is set to “DateTime” and lastModifiedIncrementEnable is set to true, then
this is the number of times that the page is referenced before the last modified date/time is
incremented as specified in lastModifiedIncrementBy. (Default = 1).

lastModifiedMode

This option determines if and how the last modified field will be published for the page. One of:

Chapter 15 HTTP

– 774 –

Option Usage

$::ResponseHeader
(kLastModifiedModeNever)

(Default) No last modification time is pub

$::ResponseHeader
(kLastModifiedModeDateTime)

A last modification date/time is published as specified in
lastModifiedDateTimeValue, lastModifiedIncrementEnable,
lastModifiedIncrementBy, and lastModifiedIncrementFor.

mimeType

The MIME type for the page. The types: “text/plain,” “text/html,” and “text/xml” are predefined, but
any legal type may be set. (Default = “text/plain”).

name

The name of the response. (Default = “200_OK”).

responseList

A list of additional headers, to be sent with the response. This list is of type
ixConfigSequenceContainer; items are added to the list via the appendItem sub-command. Each
element of the list must be of the form “key: value” where key is a value HTTP header key.
(Default = {}).

Items are added to this list using the -data option. See the following example:
$responseHeader responseList.appendItem -data “key1:value1”

You can also include variables in this parameter. See Using Sequence Generators in HTTP Client
Commands and Server Header Name=Value Fields on page 6-57.

EXAMPLE
set 200_OK [::IxLoad new ResponseHeader]$200_OK config \-mimeType
"text/plain" \-expirationMode 0 \-code
"200" \-name "200_OK" \-lastModifiedMode
1 \-lastModifiedIncrementEnable false \-lastModifiedDateTimeValue
"2005/02/02 21:55:04" \-lastModifiedIncrementFor 1 \-
expirationDateTimeValue "2005/03/04 21:55:04" \-
expirationAfterRequestValue 3600 \-expirationAfterLastModifiedValue
3600 \-lastModifiedIncrementBy 5 \-description
"OK"$200_OK responseList.clear

SEE ALSO

HTTP Server Agent

PageObject

Chapter 15 HTTP

– 775 –

PageObject
ixWebPageObject —Defines a Web page supported by an HTTP Server Agent.

SYNOPSIS

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$HTTP_server_server_network activityLoptions...
$Activity_newServerActivity1 agent.webPageList.appendItem options...

DESCRIPTION

The PageObject command is used to describe the Web pages that are available from the Web server,
along with the response header described in ixResponseHeader and cookie described in
ixCookieContent. See the following example:
set my_PageObject [::IxLoad new PageObject]$my_PageObject config \

-Md5Option "0" \
-payloadType"range" \

-payloadFile"<specify file>" \

-page"/1b.html" \

-payloadSize "1-1" \

-customPayloadId -1 \

-response$200_OK
$Activity_newServerActivity1 agent.webPageList.appendItem -object $my_PageObject

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

cookie

This option links to an element in the cookieList of the enclosing HTTP Server Agent. It should
match the contents of the name field of one of the ixCookieContent members of that list. (Default =
““).

response

This option links to an element in the responseHeaderList of the enclosing HTTP Server Agent. It
should match an ixResponseHeader object. (Default = ““).

chunkSize

If enableChunkEncoding is true (in HTTP Server Agent), this option defines the chunk size used for
the page, in bytes. (Default = “1“).

Md5Option

Chapter 15 HTTP

– 776 –

Type of checksum generated for page object and sent along with page data to the client. In order to
send checksums, enableMD5Checksum in the HTTP Server Agent must be true. The valid values for
this option are:

Option Usage

0 (Default) Custom MD5. MD5 checksum in IxLoad-specific header.

1 Standard MD5. MD5 checksum in RFC 2616-compliant header.

2 Standard & Custom MD5. MD5 checksum in both IxLoad-specific and RFC-compliant
headers

3 Disable MD5. No checksum is sent.

page

The URL of the HTML page that clients can retrieve from the HTTP Server Agent. The path is relative to
the root directory of the Ixia server port. You can enter an asterisk (*) at any point on the path, and
the server will treat it as a match for any number of directories.

For example, if you configure the page’s URL as /home/liesl/*/pup.html, a server would serve the page
if it received any of the following GET requests:

/home/liesl/pics/pup.html
/home/liesl/0/temp/pup.html
/home/liesl/pup.html
(Default = “/newPage.html”).

payloadFile

If payloadType is set to “file,” this field specifies the file that will be returned. Make sure to specify
the entire path to the file in this specification. Also note that the directory separator ‘\’ must be
represented as ‘\\’ within the string. (Default = “<specify file>”).

If payloadType is set to “customPayload”, this field specifies an existing custom payload type or a
new one.

payloadSize

If payloadType is set to “range,” this field specifies the amount of data returned. Specify the size of
the data as a minimum size and a maximum size. For example, to specify a minimum size of 1,024
bytes and a maximum of 2,048, specify 1,024-2,048. To specify a single fixed amount of data, specify
the a single value. (Default = 4,096).

payloadType

Indicates the type of payload that will be returned for this page reference. One of:

Option Usage

$::PageObject (Default) Causes the Server Agent to generate data automatically. The

Chapter 15 HTTP

– 777 –

(kPayloadTypeRange)
or “range”

value in payloadSize indicates the amount of data to return.

$::PageObject
(kPayloadTypeFile)
or “file”

Causes the Server Agent to return the actual file indicated in the
payloadFile option. See Using Your Own Web Pages In IxLoad for
instructions on making your own pages available on the Server Agent.

“customPayload” Causes the server to return a response that contains syn(generated) data
that includes a payload that you create. Specify the payload in the
payloadFile option.

EXAMPLE
set my_PageObject [::IxLoad new PageObject]$my_PageObject config \-payloadType
"range" \-payloadFile "<specify file>" \-page
"/1b.html" \-payloadSize "1-1" \-response
200_OKActivity_newServerActivity1 agent.webPageList.appendItem -object $my_
PageObject

SEE ALSO

HTTP Server Agent

ixResponseHeader

ixCookieContent

Chapter 15 HTTP

– 778 –

CustomPayloadObject
CustomPayloadObject —Defines a custom payload object. A custom payload can contain up to 4096
bytes of ASCII or hexadecimal data.

SYNOPSIS

set HTTP_server_server_network [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$HTTP_server_server_network activityList.appendItem
options...
$Activity_HTTPServer1 agent.customPayloadList.appendItem -object
$AsciiCustomPayload...

DESCRIPTION

The CustomPayloadObject is used to configure a custom payload object. This object is declared in the
payloadFile option of ixWebPageObject.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

repeat

This field determines how often the custom payload appears in the payload space.

If set to true, IxLoad divides the total payload space into 4096-byte blocks, and inserts the custom
payload into the first block and into all subsequent 4096-byte blocks. If the custom payload is shorter
than 4096 bytes, IxLoad pads the remaining space with zeroes (0).

If set to false, IxLoad inserts the custom payload once, either at the beginning of the payload space or
at offset value. If the custom payload is shorter than the total payload space, IxLoad pads the
remaining space with generated data (the same type of data that would be generated if you set
payloadType to Range).

name

This indicates the name of the customPayloadObject.

asciiPayloadValue

According to the option specified in payloadMode, this option accepts the custom payload value in
ASCII.

payloadMode

Specifies 0 (ASCII) or 1 (hexadecimal) value.

offset

Defines the number of bytes from the beginning of the payload field where the payload is inserted.

Chapter 15 HTTP

– 779 –

hexPayloadValue

According to the option specified in payloadMode, this option accepts the custom payload value in
hexadecimal.

payloadPosition

This can be one of:

startWith: inserts a payload at the beginning of the payload field of the response.

endWith: inserts a payload at the end of the payload field.

insertAtMiddle: inserts a payload at a location within the payload field.

EXAMPLE
set my_PageObject1 [::IxLoad new PageObject]$my_PageObject1 config \-payloadType
"customPayload" \-payloadFile "AsciiCustomPayload" \-
page "/4k.html" \-payloadSize
"4096-4096" \-customPayloadId 0 \-response
200_OK1Activity_HTTPServer1 agent.webPageList.appendItem -object $my_
PageObject1set AsciiCustomPayload [::IxLoad new
CustomPayloadObject]$AsciiCustomPayload config \-repeat
false \-name "AsciiCustomPayload" \-
asciiPayloadValue "Ixia-Ixload-Http-Server-Custom-Payload" \-
payloadmode 0 \-offset
1 \-hexPayloadValue "" \-payloadPosition
"Start With" \-id 0$Activity_HTTPServer1
agent.customPayloadList.appendItem -object $AsciiCustomPayload

SEE ALSO

HTTP Server Agent

PageObject

Chapter 15 HTTP

– 780 –

Supported Ciphers
The following ciphers are supported by IxLoad HTTPS clients and servers.
SSL 2.0 Cipher Suites

Cipher Suite Description

RC4-MD5 RC4 data encryption using 128-bit keys and MD5 message digest.

EXP-RC4-
MD5

Export version of RC4-MD4 using 40-bit keys.

IDEA-CBC-
MD5

IDEA data encryption using 128-bit keys with Cipher Block Chaining and MD5
message digest.

DES-CBC-
MD5

DES data encryption using 64-bit keys with Cipher Block Chaining and MD5 message
digest.

DES-CBC3-
MD5

Triple-DES data encryption using 192-bit keys with Cipher Block Chaining and MD5
message digest.

SSL 3.0 Cipher Suites

Cipher Suite Description

NULL-MD5 No data encryption, MD5 message digest.

NULL-SHA No data encryption, SHA-1 message digest.

EXP-RC4-MD5 Export version of RC4-MD5 using 40-bit keys.

RC4-MD5 RC4 data encryption using 128-bit keys and MD5 message digest.

RC4-SHA RC4 data encryption using 128-bit keys and SHA-1 message digest.

EXP-RC2-CBC-
MD5

Exportable cipher using RC2 data encryption with 40-bit keys, Cipher Block
Chaining, and MD5 message digest.

IDEA-CBC-SHA IDEA encryption with Cipher Block Chaining, RSA authentication, and SHA-1
message digest.

EXP-DES-CBC-
SHA

Export version of DES-CBC-SHA using 40-bit keys.

DES-CBC-SHA DES encryption using 168-bit keys, Cipher Block Chaining, RSA authentication,
and SHA-1 message digest.

DES-CBC3-SHA Triple-DES encryption using 168-bit keys, Cipher Block Chaining, and SHA-1
message digest.

Chapter 15 HTTP

– 781 –

EXP-EDH-DSS-
DES-CBC-SHA

Export version of EDH-DSS-DES-CBC-SHA using 40-bit keys.

EDH-DSS-DES-
CBC3-SHA

Ephemeral Diffie-Hellman key exchange with DSS authentication, Triple-DES
encryption with Cipher Block Chaining, and SHA-1 message digest.

EXP-EDH-RSA-
DES-CBC-SHA

Export version of EDH-RSA-DES-CBC-SHA using 40-bit keys.

EDH-RSA-DES-
CBC-SHA

DES encryption with Cipher Block Chaining, RSA authentication, Ephemeral
Diffie-Hellman key exchange, and SHA-1 message digest.

EDH-RSA-DES-
CBC3-SHA

Triple-DES encryption with Cipher Block Chaining, RSA authentication,
Ephemeral Diffie-Hellman key exchange, and SHA-1 message digest.

EXP-ADH-RC4-
MD5

Exportable cipher using RC4 encryption with 40-bit keys, Anonymous Diffie-
Hellman key exchange, and MD5 message digest.

EXP-ADH-DES-
CBC-SHA

Export version of ADH-DES-CBC-SHA using 40-bit keys.

ADH-DES-CBC-
SHA

DES encryption with Cipher Block Chaining, Anonymous Diffie-Hellman key
exchange, and SHA-1 message digest.

ADH-DES-CBC3-
SHA

Triple-DES encryption with Cipher Block Chaining, Anonymous Diffie-Hellman
key exchange, and SHA-1 message digest.

EXP1024-DES-
CBC-SHA

Exportable cipher with DES encryption and Cipher Block Chaining, RSA
authentication, and SHA-1 message digest.

EXP1024-RC4-
SHA

Exportable cipher with RC4 encryption, RSA authentication, and SHA-1 message
digest.

EXP1024-DHE-
DSS-DES-CBC-
SHA

Exportable cipher with DES encryption and Cipher Block Chaining, Ephemeral
Diffie-Hellman key exchange, DSS authentication, and SHA-1 message digest.

EXP1024-DHE-
DSS-RC4-SHA

Exportable cipher with RC4 encryption, DSS authentication, Ephemeral Diffie-
Hellman key exchange, and SHA-1 message digest.

DHE-DSS-RC4-
SHA

RC4 encryption using 128-bit keys, DSS authentication, Diffie-Hellman key
exchange, and SHA-1 message digest.

TLS 1.0 Cipher Suites

Cipher Suite Description

NULL-MD5 No encryption, RSA authentication and MD5 message digest.

Chapter 15 HTTP

– 782 –

NULL-SHA No encryption, RSA authentication and SHA-1 message digest.

EXP-RC4-MD5 Export version of RC4-MD5.

RC4-MD5 RC4 encryption using 128-bit keys, RSA authentication, and MD5 message
digest.

RC4-SHA RC4 encryption using 128-bit keys, RSA authentication, and SHA-1 message
digest.

EXP-RC2-CBC-
MD5

Exportable cipher with RC2 encryption using 40-bit keys and Cipher Block
Chaining, RSA authentication, and MD5 message digest.

IDEA-CBC-SHA IDEA encryption with Cipher Block Chaining, RSA authentication, and MD5
message digest.

EXP-DES-CBC-
SHA

Export version of DES-CBC-SHA using 40-bit keys.

DES-CBC-SHA DES encryption with Cipher Block Chaining, RSA authentication, and SHA-1
message digest.

DES-CBC3-SHA Triple-DES encryption with Cipher Block Chaining, RSA authentication, and
SHA-1 message digest.

EXP-EDH-DSS-
DES-CBC-SHA

Exportable cipher with DES encryption using 40-bit keys and Cipher Block
Chaining, DSS authentication, and SHA-1 message digest.

EDH-DSS-DES-
CBC3-SHA

Triple-DES encryption with Cipher Block Chaining, DSS authentication,
Ephemeral Diffie-Hellman key exchange, and SHA-1 message digest.

EXP-EDH-RSA-
DES-CBC-SHA

Exportable cipher with DES encryption using 40-bit keys and Cipher Block
Chaining, RSA authentication, and SHA-1 message digest.

EDH-RSA-DES-
CBC-SHA

DES encryption with Cipher Block Chaining, RSA authentication, Ephemeral
Diffie-Hellman key exchange, and SHA-1 message digest.

EDH-RSA-DES-
CBC3-SHA

Triple-DES encryption with Cipher Block Chaining, RSA authentication,
Ephemeral Diffie-Hellman key exchange, and SHA-1 message digest.

EXP-ADH-RC4-
MD5

Export version of ADH-RC4-MD5.

ADH-RC4-MD5 RC4 encryption with 128-bit keys, Anonymous Diffie-Hellman key exchange,
and MD5 message digest.

EXP-ADH-DES-
CBC-SHA

Export version of ADH-DES-CBC-SHA using 40-bit keys.

Chapter 15 HTTP

– 783 –

ADH-DES-CBC-
SHA

DES encryption with Cipher Block Chaining, Anonymous Diffie-Hellman key
exchange, and SHA-1 message digest.

ADH-DES-CBC3-
SHA

Triple-DES encryption with Cipher Block Chaining, Anonymous Diffie-Hellman
key exchange, and SHA-1 message digest.

EXP1024-DES-
CBC-SHA

Exportable cipher with DES encryption and Cipher Block Chaining, RSA
authentication, and SHA-1 message digest.

EXP1024-RC4-
SHA

Exportable cipher using RC4 encryption with 56-bit keys, RSA authentication,
and SHA-1 message digest.

EXP1024-DHE-
DSS-DES-CBC-
SHA

Exportable cipher using DES encryption and Cipher Block Chaining, Diffie-
Hellman key exchange, and SHA-1 message digest.

EXP1024-DHE-
DSS-RC4-SHA

Export version of DHE-DSS-RC4-SHA using 56-bit keys.

DHE-DSS-RC4-
SHA

RC4 encryption with 128-bit keys, DSS authentication, Diffie-Hellman key
exchange, and SHA-1 message digest.

Ciphers Selected from the Generic Ciphers List

Cipher
Attribute

Selected Cipher Suite

DEFAULT Default list of cipher suites. Includes all cipher suites with the following attributes,
listed in order of decreasing preference:

1. ALL cipher suites (see below).

2. Cipher suites without ADH key exchange (you cannot add ADH ciphers to the
list separately).

3. Cipher suites with RC4 encryption and RSA authentication.

SSL v2 cipher suites.

ALL Includes all cipher suites except those in the eNULL suite.

HIGH Cipher suites with keys larger than 128 bits.

MEDIUM Cipher suites with 128-bit keys.

LOW Cipher suites with 40- or 56-bit keys, but not including exportable cipher suites.

EXP,EXPORT Exportable cipher suites.

EXPORT40 Exportable cipher suites with 40-bit keys.

Chapter 15 HTTP

– 784 –

EXPORT56 Exportable cipher suites with 56-bit keys.

eNULL,NULL Cipher suites with no encryption.

aNULL Cipher suites with anonymous key exchange (Anonymous Diffie-Hellman).

kRSA,RSA Cipher suites with RSA key exchange.

kEDH Cipher suites with Ephemeral Diffie-Hellman key exchange.

aRSA Cipher suites with RSA authentication.

aDSS,DSS Cipher suites with DSS authentication.

TLSv1 TLS v.1 cipher suites.

SSLv3 SSL v.3 cipher suites.

SSLv2 SSL v.2 cipher suites.

DH Cipher suites with Diffie-Hellman key exchange (including Anonymous Diffie-
Hellman).

ADH Cipher suites with Anonymous Diffie-Hellman key exchange.

3DES Cipher suites with Triple-DES encryption.

DES Cipher suites with DES encryption (not including those with Triple-DES).

RC4 Cipher suites with RC4 encryption.

RC2 Cipher suites with RC2 encryption.

IDEA Cipher suites with IDEA encryption.

MD5 Cipher suites with MD5 message digest.

SHA1,SHA Cipher suites with SHA-1 message digest.

Chapter 15 HTTP

– 785 –

Using Sequence Generators in HTTP Client Commands
and Server Header Name=Value Fields
Several HTTP fields allow you to include variables in order to generate large numbers of different
objects such as page names or HTTP header values.

If the destination of an HTTP client command is an IxLoad HTTP server, you can insert variables into
the Page/Object fields to cause the HTTP server to return dynamically-generated pages with unique
names.

l You can use the following variables:

l Numbers 0-9

l Letters A-Z and a-z

The letter variables are case-sensitive; IxLoad considers the variable strings “AA” and “aa” to be
different.

You can combine the variables with fixed text to create the page names. For example, you can enter
page[00-] to create a range of unique user names that begin with the characters “page” (page00,
page01, and so on).

To insert the variables into a field, enclose them in square brackets ([]). To specify a range,
separate the minimum and maximum values with a hyphen (-). For example, [00-10] specifies a range
of 00 through 10.

The number of variables you insert determines the width of the generated strings. For example, the
variable “00” can generate the strings 00 - 99. The variable string “000” can generate the strings 000 -
999.

Similarly, “AA” can generate strings that consist of all the two-letter combinafrom AA to zz. “AAA” can
generate strings that consist of all the three-letcombinations from AAA to zzz.

You can use a single variable string and allow IxLoad to generate strings up the maximum value of the
string or, you can use two variable strings together to restrict the generated strings to a certain range.

See the following example:

[0-] will generate all the values 0 - 9 (0, 1, 2, 3 . . . 9).
[0-5] will generate all the values 0 - 5.

[00-] will generate all the values 00 - 99 (00, 01, 02, 03. . .97, 98, 99).
[00-50] will generate all the values 0 - 50.

[A-] will generate all the values A - z (A, B, C . . . z).
[A-K] will generate all the values A - K.

[AA-] will generate all the values AA - zz (AA, AB, AC. . zx, zy, zz).
[AA-KK] will generate all the values AA - KK.

When IxLoad has generated the final string, if the test configuration requires additional strings, IxLoad
returns to the starting value of the variable and continto generate strings until no more are required. In
this case, the generated strings will not be unique.

Chapter 15 HTTP

– 786 –

If you include more than one variable, the number of unique pages IxLoad generis equivalent to the
multiple of the maximum values of all the variables. For example, if you specify the page name as:

Page[01-10]_of_[01-99].

the IxLoad server can potentially generate 990 (10*99) unique pages with names “Page01_of_01”
through “Page10_of_99.” The server will only generate all the pages if it receives requests for all of
them from clients.

Note: If you include multiple variables, the start and end fields must be the same width.

You can also configure the HTTP server to include wildcards in page names. For example, you can
configure the server for a Web page named "Page*_of_*" where '*' is considered to be the wildcard. A
client that used the variables in the previous example would receive all the pages requested.

Using System Variables
In addition to the letter and number variables, there are several system variables you can use. If you
include the system variables in a page name, IxLoad replaces the system variable with the appropriate
value from the current test configuraYou can use the letter, number, and system variables with HTTP
name = value arguments.

You specify the system variables by enclosing them in parentheses (). Like the letter number
variables, you must use the system variables in the page name in the URL, not in the path. Table 6-
15 describes the system variables.
System Variables for Use in Page Names

System
Variable

Description

($port-id) ID of the Ixia port that the client is running on.

When the IxLoad HTTP server returns the page, it expands ($port-id) into <Chassis-
Card-Port>.

($user-id) Integer value representing the user that the client is simulating.

($sourceip-
int)

Integer representation of the source IP address of the simulated user. For 128-bit
IPv6 addresses, this is in the format of four integers of the form int-int-int-int.

($sourceip) Source IP address, in dotted-decimal format, of the simulated user.

($sourceport) TCP session Source port.

Note: You must use ($sourceport) only in the page name portion of the URL, not in
the path. See the following example:

Chapter 15 HTTP

– 787 –

Correct: /dir/filename($sourceport).html

Incorrect: /dir($sourceport)/filename.html

Example 1
http://ixiacom.com/page($sourceip)-($sourceport).html

If this page was retrieved by client 1 from source IP 192.168.1.1 and source port 3589, the page that
would be returned would be:
http://ixiacom.com/page192.168.1.1-3589.html

If the same command was used by a different client from source IP 192.168.2.10 and source port
46990, the page that would be returned would be:
http://ixiacom.com/page192.168.2.10-46990.html

Example 2

Suppose that a command uses the POST/GET method with a name=value argument of:
?user=customer($user-id)&password=pwd&clientport=($sourceport)

Then the command list:
POST/GET, servername, myfile.html, argument

could expand to:
POST/GET, servername, myfile.html, ?user=customer1&pass

for the first simulated user, and to:
POST/GET, servername, myfile.html, ?user=customer99&pass

for the 99th simulated user.

Example 3

Suppose that you needed to use a GET command to generate unique user names and passwords for a
use on a login page. You could create a page URL of:
http://server/login.html?user=user($port-id)_($user-id)&password=pwd

IxLoad expands ($port-id) to chassis-card-port and ($user-id) to the ID of the simulated user on the
port. The pages retrieved might be:
http://server/login.html?user=user0-1-1_
11&password=pwdhttp://server/login.html?user=user0-1-2_47&password=pwd

Chapter 15 HTTP

– 788 –

A command that uses ($port-id) and ($user-id) in this way ensures that the user names generated
are unique throughout all the ports used in the test.

Statistics
The HTTP statistics are listed in this section.

HTTP Server Statistics
The table below describes the statistics that IxLoad records for the HTTP servers. Statistics in the
results files and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad
interpolates it from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

The test results are available from the location defined on the User Directories window. See User
Directories.

Statistic Description

HTTP
Requests
Received

Number of HTTP requests received by the servers. The statistics show the number of
requests for each URL (page).

HTTP
Requests
Successful

Number of complete and positive HTTP responses (2xx- and 3xx-range responses)
sent to the clients. The statistics show the number of requests for each URL (page).

HTTP
Requests
Failed

Number of HTTP requests from the clients that failed for any reason. The statistics
show the number of requests for each URL (page).

HTTP
Requests
Failed (404)

Number of HTTP requests that failed due to missing files (error 404). The statistics
show the number of requests for each URL (page)

HTTP
Requests
Failed (50x)

Number of HTTP requests that failed due to lack of resources (500-series errors).
The statistics show the number of requests for each URL (page).

HTTP
Requests
Failed (Write
Error)

Number of HTTP requests that failed due to a socket write error. The statistics show
the number of requests for each URL (page).

Chapter 15 HTTP

– 789 –

HTTP
Requests
Failed
(Aborted)

Number of HTTP requests that failed because the HTTP transaction was aborted. The
statistics show the number of requests for each URL (page).

HTTP
Sessions
Rejected
(503)

Service Unavailable. Number of HTTP sessions that could not be established due to
lack of resources on the server.

HTTP
Sessions
Timeouts
(408)

Number of HTTP 408 responses sent. This statistic includes all 408 responses sent
regardless of whether they were received for a pending HTTP request or not.

IxLoad counts 408 responses differently depending on whether or not a client has a
pending HTTP request:

If a client has an HTTP request pendand it receives a 408 response, IxLoad
increments the HTTP Received 408, HTTP Requests Failed (4xx), and HTTP Requests
Failed statistics.

If a client does not have an HTTP request pending and it receives a 408 response,
IxLoad only increthe HTTP Received 408 statistic.

HTTP
Transactions
Active

Number of HTTP transactions transferring HTTP commands or data.

HTTP
Responses
Sent (1xx)

Number of 100-series responses sent.

100-series responses indicate a provisional response, consisting only of the Status-
Line and optional headers, and is terminated by an empty line.

Refer to RFC 2616, Section 10, for a full description.

HTTP
Responses
Sent (2xx)

Number of 200-series responses sent.

200-series responses indicate that the client's request was successfully received,
understood, and accepted.

Refer to RFC 2616, Section 10, for a full description.

HTTP
Responses
Sent (3xx)

Number of 300-series (Redirection) responses sent.

300-series responses indicate that further action needs to be taken by the user
agent in order to fulfill the request.

Refer to RFC 2616, Section 10, for a full description.

HTTP
Responses
Sent (4xx)

Number of 400-series (Bad Request) responses received.

400-series responses indicate that the request could not be understood by the
server due to malformed syntax.

Refer to RFC 2616, Section 10, for a full description.

HTTP Number of 500-series (Server Error) responses sent.

Chapter 15 HTTP

– 790 –

Responses
Sent (5xx)

500-series responses indicate that the server is aware that it has erred or is
incapable of performing the request.

Refer to RFC 2616, Section 10, for a full description.

HTTP
Responses
Sent (Other)

Number of responses sent that were not 100-, 200-, 300-, 400-, or 500-series
responses.

Throughput Statistics

HTTP Bytes
Received

Number of HTTP bytes received by the servers.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload
can be greater than this statistic due to increases caused by retransmits.

SSL-encrypted payload data is included in this statistic but SSL handshake
overhead is not.

HTTP Bytes
Sent

Number of HTTP bytes sent by the servers.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload
can be greater than this statistic (increased by retransmits) or less than this statistic
(decreased by broken or reset connections).

SSL-encrypted payload data is included in this statistic but SSL handshake
overhead is not.

HTTP Content
Bytes
Received

Number of bytes received that were HTTP content.

HTTP Content
Bytes Sent

Number of bytes sent that were HTTP content.

Cookie Statistics

HTTP
Cookies
Received

Number of cookies received by the server.

HTTP
Cookies Sent

Number of cookies sent by the server.

HTTP
Cookies
Received
With
Matching
ServerID

Number of cookies received in which the server ID matched the server name.

Server IDs are unique per Ixia port, and can be sent in a cookie as a VALUE for a
server NAME in a NAME=VALUE pair. The servers track these IDs, and when a server
NAME received from a client matches one tracked by the server, the server tries to
match the server ID that was sent as the VALUE.

Chapter 15 HTTP

– 791 –

HTTP
Cookies
Received
With Non-
matching
ServerID

Number of cookies received in which the server ID did not match the server name.

Transfer Encoding Statistics

HTTP
Chunked
Encoded
Responses
Sent

Number of HTTP responses sent that used chunked-transfer encoding.

HTTP Total
Chunks Sent

Total number of chunked-transfer chunks sent.

Content-MD5 Statistics

HTTP
Content-MD5
Requests
Received

Number of requests received that included Content-MD5 headers.

HTTP
Content-MD5
Check
Successful

Number of requests for which the MD5 checksum calculated by the server matched
the checksum in the requests' Content-MD5 header.

HTTP
Content-MD5
Check Failed

Number of requests for which the MD5 checksum calculated by the server did not
match the checksum in the requests' Content-MD5 header.

HTTP Server Conditional View Statistics

The table below describes the conditional view statistics that IxLoad records for the HTTP servers.
Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

The test results are available from the location defined on the User Directories window. See User
Directories.

Chapter 15 HTTP

– 792 –

The QoE Detective column in the table indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

HTTP TCP
Connections
Accepted

IP, VLAN Number of requests to establish TCP connections accepted by the
server.

This statistic is only available in QoE Detective view.

HTTP TCP
Connections
Closed

IP, VLAN Number of TCP connections that ended normally.

This statistic is only available in QoE Detective view.

HTTP TCP
Connections
Failed

IP, VLAN Number of TCP connections that did ended abnormally, for any reason.

This statistic is only available in QoE Detective view.

HTTP TCP
Connections
Failed Due to
Socket Error

IP, VLAN Number of TCP connections that did ended abnormally due to a socket
error.

This statistic is only available in QoE Detective view.

HTTP Server
Sessions
Timeouts
(408)

IP, VLAN Number of HTTP 408 responses sent. This statistic includes all 408
responses sent regardless of whether they were received for a pending
HTTP request or not.

IxLoad counts 408 responses differently depending on whether or not a
client has a pending HTTP request:

If a client has an HTTP request pendand it receives a 408 response,
IxLoad increments the HTTP Received 408, HTTP Requests Failed
(4xx), and HTTP Requests Failed statistics.

If a client does not have an HTTP request pending and it receives a 408
response, IxLoad only increthe HTTP Received 408 statistic.

HTTP Server
Sessions
Rejected
(503)

IP, VLAN Service Unavailable. Number of HTTP sessions that could not be
established due to lack of resources on the server.

HTTP Server
Requests
Received

IP, VLAN Number of HTTP requests received by the servers. The statistics show
the number of requests for each URL (page).

HTTP Server IP, VLAN Number of complete and positive HTTP responses (2xx- and 3xx-range

Chapter 15 HTTP

– 793 –

Requests
Successful

responses) sent to the clients. The statistics show the number of
requests for each URL (page).

HTTP Server
Responses
Sent (1xx)

IP, VLAN Number of 100-series responses sent.

100-series responses indicate a provisional response, consisting only
of the Status-Line and optional headers, and is terminated by an empty
line.

Refer to RFC 2616, Section 10, for a full description.

HTTP Server
Responses
Sent (2xx)

IP, VLAN Number of 200-series responses sent.

200-series responses indicate that the client's request was successfully
received, understood, and accepted.

Refer to RFC 2616, Section 10, for a full description.

HTTP Server
Responses
Sent (3xx)

IP, VLAN Number of 300-series (Redirection) responses sent.

300-series responses indicate that further action needs to be taken by
the user agent in order to fulfill the request.

Refer to RFC 2616, Section 10, for a full description.

HTTP Server
Responses
Sent (4xx)

IP, VLAN Number of 400-series (Bad Request) responses received.

400-series responses indicate that the request could not be understood
by the server due to malformed syntax.

Refer to RFC 2616, Section 10, for a full description.

HTTP Server
Responses
Sent (5xx)

IP, VLAN Number of 500-series (Server Error) responses sent.

500-series responses indicate that the server is aware that it has erred
or is incapable of performing the request.

Refer to RFC 2616, Section 10, for a full description.

HTTP Server
Responses
Sent (Other)

IP, VLAN Number of responses sent that were not 100-, 200-, 300-, 400-, or 500-
series responses.

HTTP Server
Requests
Failed

IP, VLAN Number of HTTP requests from the clients that failed for any reason.
The statistics show the number of requests for each URL (page).

HTTP Server
Requests
Failed (404)

IP, VLAN Number of HTTP requests that failed due to missing files (error 404).
The statistics show the number of requests for each URL (page)

HTTP Server
Requests
Failed (50x)

IP, VLAN Number of HTTP requests that failed due to lack of resources (500-
series errors). The statistics show the number of requests for each URL
(page).

Chapter 15 HTTP

– 794 –

HTTP Server
Requests
Failed (Write
Error)

IP, VLAN Number of HTTP requests that failed due to a socket write error. The
statistics show the number of requests for each URL (page).

HTTP Server
Bytes
Received

IP, VLAN Number of HTTP bytes received by the servers.

If you probe the network link with a sniffer, this statistic is not the same
as the total amount of TCP payload that appears on the link. The total
amount of TCP payload can be greater than this statistic due to
increases caused by retransmits.

SSL-encrypted payload data is included in this statistic but SSL
handshake overhead is not.

HTTP Server
Bytes Sent

IP, VLAN Number of HTTP bytes sent by the servers.

If you probe the network link with a sniffer, this statistic is not the same
as the total amount of TCP payload that appears on the link. The total
amount of TCP payload can be greater than this statistic (increased by
retransmits) or less than this statistic (decreased by broken or reset
connections).

SSL-encrypted payload data is included in this statistic but SSL
handshake overhead is not.

HTTP Server
Transactions
Active

IP, VLAN Number of HTTP transactions transferring HTTP commands or data.

HTTP Server
Cookies Sent

IP, VLAN Number of cookies sent by the server.

HTTP Server
Cookies
Received

IP, VLAN Number of cookies received by the server.

HTTP Server
Cookies
Received With
Matching
ServerID

IP, VLAN Number of cookies received in which the server ID matched the server
name.

Server IDs are unique per Ixia port, and can be sent in a cookie as a
VALUE for a server NAME in a NAME=VALUE pair. The servers track
these IDs, and when a server NAME received from a client matches one
tracked by the server, the server tries to match the server ID that was
sent as the VALUE.

HTTP Server
Cookies
Received With
Non-matching
ServerID

IP, VLAN Number of cookies received in which the server ID did not match the
server name.

Chapter 15 HTTP

– 795 –

HTTP Server
Content Bytes
Received

IP, VLAN Number of bytes received that were HTTP content.

HTTP Server
Content Bytes
Sent

IP, VLAN Number of bytes sent that were HTTP content.

HTTP Server per-URL Statistics

The table below describes the statistics that IxLoad records for the HTTP servers. Statistics in the
results files and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad
interpolates it from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

The test results are available from the location defined on the User Directories window. See User
Directories.

Statistic Description

The following statistics are available only for the first ‘N’ distinct URLs configured in the list of HTTP
Server Web Pages, where ‘N’ is the value for ‘Max Number of URLs’ in the ‘Per URL Stat Settings’
on the HTTP Server’s Advanced Options tab.

HTTP Requests Received Number of HTTP requests received by the servers. The
statistics show the number of requests for each URL
(page).

HTTP Requests Successful Number of complete and positive HTTP responses (2xx-
and 3xx-range responses) sent to the clients. The
statistics show the number of requests for each URL
(page).

HTTP Requests Failed Number of HTTP requests from the clients that failed for
any reason. The statistics show the number of requests
for each URL (page).

HTTP Requests Failed (404) Number of HTTP requests that failed due to missing files
(error 404). The statistics show the number of requests
for each URL (page)

HTTP Requests Failed (50x) Number of HTTP requests that failed due to lack of
resources (500-series errors). The statistics show the
number of requests for each URL (page).

Chapter 15 HTTP

– 796 –

HTTP Requests Failed (Write Error) Number of HTTP requests that failed due to a socket
write error. The statistics show the number of requests
for each URL (page).

HTTP Responses Sent Total number of HTTP responses of all types sent.

HTTP Responses Sent (1xx) Number of 100-series responses sent.

100-series responses indicate a provisional response,
consisting only of the Status-Line and optional headers,
and is terminated by an empty line.

Refer to RFC 2616, Section 10, for a full description.

HTTP Responses Sent (2xx) Number of 200-series responses sent.

200-series responses indicate that the client's request
was successfully received, understood, and accepted.

Refer to RFC 2616, Section 10, for a full description.

HTTP Responses Sent (3xx) Number of 300-series (Redirection) responses sent.

300-series responses indicate that further action needs
to be taken by the user agent in order to fulfill the
request.

Refer to RFC 2616, Section 10, for a full description.

HTTP Responses Sent (4xx) Number of 400-series (Bad Request) responses received.

400-series responses indicate that the request could not
be understood by the server due to malformed syntax.

Refer to RFC 2616, Section 10, for a full description.

HTTP Responses Sent (5xx) Number of 500-series (Server Error) responses sent.

500-series responses indicate that the server is aware
that it has erred or is incapable of performing the
request.

Refer to RFC 2616, Section 10, for a full description.

HTTP Responses Sent (Other) Number of responses sent that were not 100-, 200-,
300-, 400-, or 500-series responses.

HTTP Chunked Encoded Responses Sent Number of HTTP responses sent that used chunked-
transfer encoding.

HTTP Total Chunks Sent Total number of chunked-transfer chunks sent.

HTTP Average Chunk Size Average size of the chunks sent.

HTTP Average Chunks per Response Average number of chunks sent for each HTTP response.

Chapter 15 HTTP

– 797 –

Content-MD5 Statistics

HTTP Content-MD5 Requests Received Number of requests received that included Content-MD5
headers.

HTTP Content-MD5 Check Successful Number of requests for which the MD5 checksum
calculated by the server matched the checksum in the
requests' Content-MD5 header.

HTTP Content-MD5 Check Failed Number of requests for which the MD5 checksum
calculated by the server did not match the checksum in
the requests' Content-MD5 header.

HTTP Client Statistics
The table below lists the statistics IxLoad reports for HTTP clients. Statistics in the results files and
reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it from
the statistic immediately prior to it and the statistic after it.

Note: The HTTP client statistics do not include the bytes transmitted and received for the
SSL handshake.

The test results are available from the location defined on the User Directories window. See User
Directories.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Description

Transaction Statistics

HTTP
Requests Sent

Number of HTTP requests sent by the clients. The statistics show the number of
requests for each URL.

HTTP
Requests
Successful

Number of positive HTTP responses (2xx- and 3xx-range responses) received by
the clients. The statistics show the number of requests for each URL.

HTTP
Intermediate
Responses
Received
(1xx)

Number of 100-series (Informational) responses received.

100-series responses indicate a provisional response, consisting only of the
Status-Line and optional headers, and terminated by an empty line.

Refer to RFC 2616, Section 10, for a full description.

HTTP Number of 200-series (Successful) responses received.

Chapter 15 HTTP

– 798 –

Requests
Successful
(2xx)

200-series responses indicate that the client's request was successfully received,
understood, and accepted.

HTTP
Requests
Successful
(3xx)

Number of 300-series (Redirection) responses received.

300-series responses indicate that further action needs to be taken by the user
agent in order to fulfill the request.

HTTP
Requests
Successful
(301)

Number of 301 (Moved Permanently) responses received.

301 responses indicate that the requested resource has been assigned a new
permanent URI and any future references to this resource should use one of the
returned URIs.

HTTP
Requests
Successful
(302)

Number of 302 (Found) responses received.

302 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP
Requests
Successful
(303)

Number of 303 (See Other) responses received.

303 responses indicate that the response to the request can be found under a
different URI and should be retrieved using a GET method on that resource.

HTTP
Requests
Successful
(307)

Number of 307 (Temporary Redirect) responses received.

307 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP
Requests
Failed

Number of HTTP requests that failed for any reason. The statistics show the number
of requests for each URL (page).

HTTP
Requests
Failed (Write)

Number of HTTP requests that failed due to a socket write error. The statistics show
the number of requests for each URL (page).

HTTP
Requests
Failed (Read)

Number of HTTP requests that failed due to a socket read error.The statistics show
the number of requests for each URL (page).

HTTP
Requests
Failed (Bad
Header)

Number of HTTP requests that failed due to a defective HTTP header. The statistics
show the number of requests for each URL (page).

HTTP
Requests

Number of 4xx-range responses received by the clients in response to an HTTP
request. The statistics show the number of requests for each URL (page).

Chapter 15 HTTP

– 799 –

Failed (4xx) 408 responses are counted separately by the HTTP Session Timeout (408) statistic
and may or may not also be included in the HTTP Requests Failed (4xx) count. See
the description of HTTP Session Timeout (408) for more information.

HTTP
Requests
Failed (400)

Bad Request. Number of requests that failed due to a syntax error in the URL. The
statistics show the number of requests for each URL (page).

HTTP
Requests
Failed (401)

Unauthorized. Number of requests that failed due to because the server did not
receive the correct user name or password from the browser. The statistics show
the number of requests for each URL (page).

HTTP
Requests
Failed (403)

Forbidden. Number of requests that failed due to because the name or password
supplied by the browser are incorrect. The statistics show the number of requests
for each URL (page).

HTTP
Requests
Failed (404)

Not Found. Number of requests that failed because requested object is not stored
on the server on the path supplied. The statistics show the number of requests for
each URL (page).

HTTP
Requests
Failed (407)

Proxy Authentication Required. Number of requests that failed because access to
the URL requires authentication with a proxy server.

HTTP
Requests
Failed (408)

Timeout. Number of requests that failed due to communications between the client
and server taking too long. The statistics show the number of requests for each URL
(page).

HTTP
Requests
Failed (4xx
other)

Number of HTTP requests that failed for reasons other than a Bad Request (400),
Unauthorized (401), Forbidden (403), Not Found (404), Proxy Authentication
Required (407), or Timeout (408) error. The statistics show the number of requests
for each URL (page).

HTTP
Requests
Failed (5xx)

Number of HTTP requests that failed due to lack of resources on the server (HTTP
500-series errors). This statistic is only incremented if the client had issued a
request to the server before receiving the 5xx response. The statistics show the
number of requests for each URL (page).

HTTP
Requests
Failed (505)

HTTP Version not Supported. Number of requests that failed because the server
does not support the HTTP version used by the client. The statistics show the
number of requests for each URL (page).

HTTP
Requests
Failed (5xx
other)

Number of requests that failed for reasons other than an HTTP version mis-match
(505). The statistics show the number of requests for each URL (page).

HTTP
Requests

Number of requests that failed that could not be classified.

Chapter 15 HTTP

– 800 –

Failed (other)

HTTP
Requests
Failed
(Timeout)

Number of HTTP requests that failed because the clients did not receive a response
within 600 seconds. The statistics show the number of requests for each URL
(page).

HTTP
Requests
Failed
(Aborted)

Number of HTTP requests that ended prematurely due to events outside HTTP or
TCP. For example, if any HTTP requests are pending when the Ramp-Down period
ends, those requests are aborted by IxLoad. The statistics show the number of
requests for each URL (page).

HTTP Session
Timeouts
(408)

Number of HTTP 408 responses received. This statistic includes all 408 responses
received regardless of whether they were received for a pending HTTP request or
not.

IxLoad counts 408 responses differently depending on whether or not a client has a
pending HTTP request:

l If a client has an HTTP request pending and it receives a 408 response,
IxLoad increments the HTTP Received 408, HTTP Requests Failed (4xx), and
HTTP Requests Failed statistics.

If a client does not have an HTTP request pending and it receives a 408 response,
IxLoad only increments the HTTP Received 408 statistic.

HTTP Sessions
Rejected
(503)

Service Unavailable. Number of HTTP sessions that could not be established due to
lack of resources on the server.

HTTP Aborted
Before
Request

Number of HTTP requests aborted just before sending the request on an open TCP
connection.

HTTP Aborted
After Request

Number of HTTP requests aborted just after sending the request on an open TCP
connection.

HTTP Users
Active

Number of HTTP users simulated.

Throughput Statistics

HTTP Bytes
Sent

Number of HTTP bytes transmitted by the clients.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload
can be greater than this statistic (increased by retransmits) or less than this
statistic (decreased by broken or reset connections).

SSL-encrypted payload data is included in this statistic but SSL handshake
overhead is not (HTTP only).

Chapter 15 HTTP

– 801 –

HTTP Bytes
Received

Number of HTTP bytes received by the clients.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload
can be greater than this statistic due to increases caused by retransmits.

SSL-encrypted payload data is included in this statistic but SSL handshake
overhead is not (HTTP only).

HTTP Content
Bytes Sent

Number of bytes of HTTP data sent.

HTTP Content
Bytes
Received

Number of bytes of HTTP data received.

HTTP
Decompressed
Content Bytes
Received

Number of bytes of HTTP data decompressed.

Latency Statistics

HTTP Connect
Time (us)

Average time elapsed between the time the client sends a SYN packet and the time
it receives the SYN/ACK.

The units for this statistic are microseconds.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic in a
Tcl script, use the kWeightedAverage aggregation type.

HTTP Time To
First Byte (us)

Average time elapsed before clients received the first byte of an HTTP response.

The units for this statistic are microseconds.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic in a
Tcl script, use the kWeightedAverage aggregation type.

HTTP Time To
Last Byte (us)

Average time elapsed before clients received the last byte of an HTTP response.

The units for this statistic are microseconds.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic in a
Tcl script, use the kWeightedAverage aggregation type.

Cookie Statistics

HTTP Cookies
Received

Number of cookies received by the clients.

HTTP Cookies
Sent

Number of cookies sent by the clients.

HTTP Cookies Number of cookies rejected by the clients. Clients may reject cookies for the

Chapter 15 HTTP

– 802 –

Rejected following reasons:

l Cookie jar is full

l Path specified in the cookie is not a subset of the URI requested

l Domain of the requesting host does not match the cookie domain

Cookie Reject Probability was greater than 0 and cookie was randomly selected for
rejection

HTTP Cookies
Rejected -
(Path Match
Failed)

Number of cookies rejected by the clients because the path specified in the cookie
was not available on the server.

HTTP Cookies
Rejected -
(Domain
Match Failed)

Number of cookies rejected by the clients because the cookie was sent by a server
outside the domain specified in the cookie.

HTTP Cookies
Rejected -
(Cookiejar
Overflow)

Number of cookies rejected by the clients because their cookie jars were full.

HTTP Cookies
Rejected -
(Probabalistic
Reject)

Number of cookies rejected because the clients were configured to reject a
percentage of all cookies at random.

HTTP Cookie
headers
Rejected -
(Memory
Overflow)

Number of “Set-Cookie” or “Set-Cookie2” headers which were not processed fully
due to insufficient memory.

If Large Header Support is enabled, IxLoad monitors the available memory while it
processes a “Set-Cookie” or ”Set-Cookie2” header.

If the amount of free memory declines to the point that IxLoad cannot continue
processing the header, IxLoad drops the remainder of the header. If this occurs,
IxLoad cannot determine the number of cookies that were in the un-processed
portion of the header, so the Cookies Rejected total may be inaccurate; the
Memory Overflow statistic is an indication of this.

Test Objective Statistics

HTTP
Simulated
Users

Number of users to be simulated during the test.

HTTP
Concurrent
Connections

Number of concurrent connections maintained during the test.

Chapter 15 HTTP

– 803 –

HTTP
Connections

Total number of connections established by the clients.

HTTP
Connection
Attempts

Total number of connections attempted.

HTTP
Transactions

Total number of transactions completed by the clients.

HTTP Bytes Amount of HTTP data sent and received by the clients, in bytes.

Test Objective Rate Statistics

HTTP
Connection
Rate

Rate at which the client established HTTP connections.

HTTP
Connection
Attempt Rate

Rate at which the client attempted to establish HTTP connections.

HTTP
Transaction
Rate

Rate at which the client completed HTTP transactions.

HTTP
Throughput

Rate at which the client sent and received HTTP traffic.

Content Encoding Statistics
Note: HTTP 1.0 does not support compression (content encoding). If you run a test using HTTP 1.0,
the content encoding statistics are zero.

Content-
Encoded
Responses
Received

Total number of encoded (compressed) pages received.

Gzip Content-
Encoding
Received

Number of gzip-encoded pages received.

Deflate
Content-
Encoding
Received

Number of deflate-encoded pages received.

Unrecognized
Content-

Number of pages received encoded with an unknown encoding method.

Chapter 15 HTTP

– 804 –

Encoding
Received

Content-
Encoded
Responses
Decode
Successful

Total number of pages successfully decoded.

Gzip Content-
Encoding
Decode
Successful

Number of gzip-encoded pages successfully decoded.

Deflate
Content-
Encoding
Decode
Successful

Number of deflate-encoded pages successfully decoded.

Content-
Encoded
Responses
Decode Failed

Total number of pages that could not be decoded.

Gzip Content-
Encoding
Decode Failed

Number of gzip-encoded pages that could not be decoded for all reasons.

Deflate
Content-
Encoding
Decode Failed

Number of deflate-encoded pages that could not be decoded for all reasons.

Gzip Content-
Encoding
Decode Failed
- Data Error

Number of gzip-encoded pages that could not be decoded because the files were
corrupted.

Gzip Content-
Encoding
Decode Failed
- Decoding
Error

Number of gzip-encoded pages that could not be decoded due to an internal error in
IxLoad.

Deflate
Content-
Encoding
Decode Failed

Number of deflate-encoded pages that could not be decoded because the files were
corrupted.

Chapter 15 HTTP

– 805 –

- Data Error

Deflate
Content-
Encoding
Decode Failed
- Decoding
Error

Number of deflate-encoded pages that could not be decoded due to an internal
error in IxLoad.

Transfer Encoding Statistics

Chunked
Transfer-
Encoded
Responses
Received

Number of pages received with chunked transfer encoding.

Chunked
Transfer-
Encoding
Decode
Successful

Number of chunked transfer-encoded pages successfully decoded.

Chunked
Transfer-
Encoding
Decode Failed

Number of chunked transfer-encoded pages that could not be decoded.

Integrity Check Statistics

Content-MD5
Responses
Received

Number of page checksums received in Content-MD5 headers.

Content-MD5
Check
Successful

Number of checksums calculated by the client that matched the Content-MD5
checksums in the response headers.

Note: Zero-byte reads do not contain any data for comparison, so they are always
considered successful. Therefore, every time the client performs a read of zero
bytes, this statistic is incremented.

Content-MD5
Check Failed

Number of checksums calculated by the client that did not match the Content-MD5
checksums in the response headers.

Custom-MD5
Responses
Received

Number of page checksums received in Custom-MD5 (IxLoad-specific) headers.

Custom-MD5
Check

Number of checksums calculated by the client that matched the Custom-MD5
checksums in the response headers.

Chapter 15 HTTP

– 806 –

Successful Note: Zero-byte reads do not contain any data for comparison, so they are always
considered successful. Therefore, every time the client performs a read of zero
bytes, this statistic is incremented.

Custom-MD5
Check Failed

Number of checksums calculated by the client that did not match the Content-MD5
checksums in the response headers.

HTTP Client QoE Detective Statistics

The table below lists the QoE Detective statistics IxLoad reports for HTTP clients. Statistics in the
results files and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad
interpolates it from the statistic immediately prior to it and the statistic after it.

Note: The HTTP client statistics do not include the bytes transmitted and received for the
SSL handshake.

The test results are available from the location defined on the User Directories window. See User
Directories.

The QoE Detective column in the table indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic QoE
Detective

Description

Test Objective Statistics

HTTP Client
Concurrent
Connections

All Number of concurrent connections maintained during the test.

HTTP Client
Connections

All Total number of connections established by the clients.

HTTP Client
Connection

All Total number of connections attempted.

Chapter 15 HTTP

– 807 –

Attempts

HTTP Client
Transactions

All Total number of transactions completed by the clients.

HTTP Client
Bytes
Received and
Transmitted

All Amount of HTTP data sent and received by the clients, in bytes.

Transaction Statistics

HTTP Client
Requests Sent

All Number of HTTP requests sent by the clients. The statistics show the
number of requests for each URL.

HTTP Client
Requests
Successful

All Number of positive HTTP responses (2xx- and 3xx-range responses)
received by the clients. The statistics show the number of requests for
each URL.

HTTP Client
Intermediate
Responses
Received
(1xx)

All Number of 100-series (Informational) responses received.

100-series responses indicate a provisional response, consisting only
of the Status-Line and optional headers, and terminated by an empty
line.

Refer to RFC 2616, Section 10, for a full description.

HTTP Client
Requests
Successful
(2xx)

All Number of 200-series (Successful) responses received.

200-series responses indicate that the client's request was successfully
received, understood, and accepted.

HTTP Client
Requests
Successful
(3xx)

All Number of 300-series (Redirection) responses received.

300-series responses indicate that further action needs to be taken by
the user agent in order to fulfill the request.

HTTP Client
Requests
Successful
(301)

All Number of 301 (Moved Permanently) responses received.

301 responses indicate that the requested resource has been assigned
a new permanent URI and any future references to this resource should
use one of the returned URIs.

HTTP Client
Requests
Successful
(302)

All Number of 302 (Found) responses received.

302 responses indicate that the requested resource resides temporarily
under a different URI.

HTTP Client
Requests
Successful

All Number of 303 (See Other) responses received.

303 responses indicate that the response to the request can be found
under a different URI and should be retrieved using a GET method on

Chapter 15 HTTP

– 808 –

(303) that resource.

HTTP Client
Requests
Successful
(307)

All Number of 307 (Temporary Redirect) responses received.

307 responses indicate that the requested resource resides temporarily
under a different URI.

HTTP Client
Requests
Failed

All Number of HTTP requests that failed for any reason. The statistics show
the number of requests for each URL (page).

HTTP Client
Requests
Failed (Write)

All Number of HTTP requests that failed due to a socket write error. The
statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (Read)

All Number of HTTP requests that failed due to a socket read error.The
statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (Bad
Header)

All Number of HTTP requests that failed due to a defective HTTP header.
The statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (4xx)

All Number of 4xx-range responses received by the clients in response to
an HTTP request. The statistics show the number of requests for each
URL (page).

408 responses are counted separately by the HTTP Session Timeout
(408) statistic and may or may not also be included in the HTTP
Requests Failed (4xx) count. See the description of HTTP Session
Timeout (408) for more information.

HTTP Client
Requests
Failed (400)

All Bad Request. Number of requests that failed due to a syntax error in
the URL. The statistics show the number of requests for each URL
(page).

HTTP Client
Requests
Failed (401)

All Unauthorized. Number of requests that failed due to because the server
did not receive the correct user name or password from the browser.
The statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (403)

All Forbidden. Number of requests that failed due to because the name or
password supplied by the browser are incorrect. The statistics show the
number of requests for each URL (page).

HTTP Client
Requests
Failed (404)

All Not Found. Number of requests that failed because requested object is
not stored on the server on the path supplied. The statistics show the
number of requests for each URL (page).

Chapter 15 HTTP

– 809 –

HTTP Client
Requests
Failed (407)

All Proxy Authentication Required. Number of requests that failed because
access to the URL requires authentication with a proxy server.

HTTP Client
Requests
Failed (408)

All Timeout. Number of requests that failed due to communications
between the client and server taking too long. The statistics show the
number of requests for each URL (page).

HTTP Client
Requests
Failed (4xx
other)

All Number of HTTP requests that failed for reasons other than a Bad
Request (400), Unauthorized (401), Forbidden (403), Not Found (404),
Proxy Authentication Required (407), or Timeout (408) error. The
statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (5xx)

All Number of HTTP requests that failed due to lack of resources on the
server (HTTP 500-series errors). This statistic is only incremented if
the client had issued a request to the server before receiving the 5xx
response. The statistics show the number of requests for each URL
(page).

HTTP Client
Requests
Failed (505)

All HTTP Version not Supported. Number of requests that failed because
the server does not support the HTTP version used by the client. The
statistics show the number of requests for each URL (page).

HTTP Client
Requests
Failed (5xx
other)

All Number of requests that failed for reasons other than an HTTP version
mis-match (505). The statistics show the number of requests for each
URL (page).

HTTP
Requests
Failed (other)

All Number of requests that failed that could not be classified.

HTTP Client
Requests
Failed
(Timeout)

All Number of HTTP requests that failed because the clients did not
receive a response within 600 seconds. The statistics show the number
of requests for each URL (page).

HTTP Client
Requests
Failed
(Aborted)

All Number of HTTP requests that ended prematurely due to events
outside HTTP or TCP. For example, if any HTTP requests are pending
when the Ramp-Down period ends, those requests are aborted by
IxLoad. The statistics show the number of requests for each URL
(page).

HTTP Client
Session
Timeouts
(408)

All Timeout. Number of requests that failed due to communications
between the client and server taking too long. The statistics show the
number of requests for each URL (page).

HTTP Client All Service Unavailable. Number of HTTP sessions that could not be

Chapter 15 HTTP

– 810 –

Sessions
Rejected (503)

established due to lack of resources on the server.

HTTP Client
Aborted Before
Request

All Number of HTTP requests aborted just before sending the request on an
open TCP connection.

HTTP Client
Aborted After
Request

All Number of HTTP requests aborted just after sending the request on an
open TCP connection.

Throughput Statistics

HTTP Client
Bytes Sent

All Number of HTTP bytes transmitted by the clients.

If you probe the network link with a sniffer, this statistic is not the
same as the total amount of TCP payload that appears on the link. The
total amount of TCP payload can be greater than this statistic
(increased by retransmits) or less than this statistic (decreased by
broken or reset connections).

SSL-encrypted payload data is included in this statistic but SSL
handshake overhead is not (HTTP only).

HTTP Client
Bytes
Received

All Number of HTTP bytes received by the clients.

If you probe the network link with a sniffer, this statistic is not the
same as the total amount of TCP payload that appears on the link. The
total amount of TCP payload can be greater than this statistic due to
increases caused by retransmits.

SSL-encrypted payload data is included in this statistic but SSL
handshake overhead is not (HTTP only).

HTTP Client
Content Bytes
Sent

All Number of bytes of HTTP data sent.

HTTP Client
Content Bytes
Received

All Number of bytes of HTTP data received.

Cookie Statistics

HTTP Client
Cookies
Received

All Number of cookies received by the clients.

HTTP Client
Cookies Sent

All Number of cookies sent by the clients.

Chapter 15 HTTP

– 811 –

HTTP Client
Cookies
Rejected

All Number of cookies rejected by the clients. Clients may reject cookies
for the following reasons:

l Cookie jar is full

l Path specified in the cookie is not a subset of the URI requested

l Domain of the requesting host does not match the cookie domain

Cookie Reject Probability was greater than 0 and cookie was randomly
selected for rejection

HTTP Client
Cookies
Rejected -
(Path Match
Failed)

All Number of cookies rejected by the clients because the path specified in
the cookie was not available on the server.

HTTP Client
Cookies
Rejected -
(Domain
Match Failed)

All Number of cookies rejected by the clients because the cookie was sent
by a server outside the domain specified in the cookie.

HTTP Client
Cookies
Rejected -
(Cookiejar
Overflow)

All Number of cookies rejected by the clients because their cookie jars
were full.

HTTP Client
Cookies
Rejected -
(Probabalistic
Reject)

All Number of cookies rejected because the clients were configured to
reject a percentage of all cookies at random.

Content Encoding Statistics

HTTP Client
Transfer-
Encoding
Received

All Number of pages received with chunked transfer encoding.

HTTP Client
Transfer-
Encoding
Decode
Successful

All Number of chunked transfer-encoded pages successfully decoded.

HTTP Client
Transfer-

All Number of chunked transfer-encoded pages that could not be decoded.

Chapter 15 HTTP

– 812 –

Encoding
Decode Failed

Latency Statistics

HTTP Client
Connect Time
(us)

All Average time elapsed between the time the client sends a SYN packet
and the time it receives the SYN/ACK.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

HTTP Client
Time To First
Byte (us)

All Average time elapsed before clients received the first byte of an HTTP
response.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

HTTP Client
Time To Last
Byte (us)

All Average time elapsed before clients received the last byte of an HTTP
response.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Test Objective Statistics

HTTP Client
Connection
Rate

All Rate at which the client established HTTP connections.

HTTP Client
Connection
Attempt Rate

All Rate at which the client attempted to establish HTTP connections.

HTTP Client
Transaction
Rate

All Rate at which the client completed HTTP transactions.

HTTP Client
Throughput
(Kbps)

All Rate at which the client sent and received HTTP traffic.

Chunk-Transfer Encoding Statistics
Note: HTTP 1.0 does not support chunked-transfer encoding. If you run a test using HTTP 1.0, the
chunked-transfer encoding statistics are zero.

HTTP Client
Chunk
Transfer-
Encoding
Headers
Received

All Number of pages received with chunked transfer encoding.

Chapter 15 HTTP

– 813 –

HTTP Client
Chunk
Transfer-
Encoding
Decode
Successful

All Number of chunked transfer-encoded pages successfully decoded.

HTTP Client
Chunk
Transfer-
Encoding
Decode Failed

All Total number of pages that could not be decoded.

HTTP Client
Total Chunks

Received

All Total number of chunks recieved by the client.

HTTP Client
Average
Chunk Size

All Average size of the chunks received.

HTTP Client
Average
Chunks per
Response

All Average number of chunks received for each HTTP response.

Content Encoding Statistics
Note: HTTP 1.0 does not support compression (content encoding). If you run a test using HTTP 1.0,
the content encoding statistics are zero.

HTTP Client
Decoded
Content bytes

All Number of bytes decoded.

HTTP Client
Compression
Ratio

All Average ratio of uncompressed content bytes to compressed content
bytes (uncomp/comp) in compressed pages.

HTTP Client
Content-
Encoded
Responses
Received

All Total number of encoded (compressed) pages received.

HTTP Client
Gzip Content-
Encoding
Received

All Number of gzip-encoded pages received.

Chapter 15 HTTP

– 814 –

HTTP Client
Deflate
Content-
Encoding
Received

All Number of deflate-encoded pages received.

HTTP Client
Unrecognized
Content-
Encoding
Received

All Number of pages received encoded with an unknown encoding method.

Content-
Encoded
Responses
Decode
Successful

All Total number of pages successfully decoded.

HTTP Client
Gzip Content-
Encoding
Decode
Successful

All Number of gzip-encoded pages successfully decoded.

HTTP Client
Deflate
Content-
Encoding
Decode
Successful

All Number of deflate-encoded pages successfully decoded.

Content-
Encoded
Responses
Decode Failed

All Number of deflate-encoded pages that could not be decoded for all
reasons.

HTTP Client
Gzip Content-
Encoding
Decode Failed

All Number of gzip-encoded pages that could not be decoded for all
reasons.

HTTP Client
Deflate
Content-
Encoding
Decode Failed

All Number of deflate-encoded pages that could not be decoded for all
reasons.

HTTP Client All Number of gzip-encoded pages that could not be decoded because the

Chapter 15 HTTP

– 815 –

Gzip Content-
Encoding
Decode Failed
Data Error

files were corrupted.

HTTP Client
Gzip Content-
Encoding
Decode Failed
Decoding Error

All Number of gzip-encoded pages that could not be decoded due to an
internal error in IxLoad.

HTTP Client
Deflate
Content-
Encoding
Decode Failed
Data Error

All Number of deflate-encoded pages that could not be decoded because
the files were corrupted.

HTTP Client
Deflate
Content-
Encoding
Decode Failed
Decoding Error

All Number of deflate-encoded pages that could not be decoded due to an
internal error in IxLoad.

Integrity Check Statistics

HTTP Client
Content-MD5
Responses
Received

All Number of page checksums received in Content-MD5 headers.

HTTP Client
Content-MD5
Check
Successful

All Number of checksums calculated by the client that matched the
Content-MD5 checksums in the response headers.

Note: Zero-byte reads do not contain any data for comparison, so they
are always considered successful. Therefore, every time the client
performs a read of zero bytes, this statistic is incremented.

HTTP Client
Content-MD5
Check Failed

All Number of checksums calculated by the client that did not match the
Content-MD5 checksums in the response headers.

HTTP Client
Custom-MD5
Responses
Received

All Number of page checksums received in Custom-MD5 (IxLoad-specific)
headers.

HTTP Client All Number of checksums calculated by the client that matched the

Chapter 15 HTTP

– 816 –

Custom-MD5
Check
Successful

Custom-MD5 checksums in the response headers.

Note: Zero-byte reads do not contain any data for comparison, so they
are always considered successful. Therefore, every time the client
performs a read of zero bytes, this statistic is incremented.

HTTP Client
Custom-MD5
Check Failed

All Number of checksums calculated by the client that did not match the
Content-MD5 checksums in the response headers.

HTTP Client per-URL Statistics

The table below lists the per-URL statistics IxLoad reports for HTTP clients. Statistics in the results files
and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it
from the statistic immediately prior to it and the statistic after it.

Note: The HTTP client statistics do not include the bytes transmitted and received for the
SSL handshake.

The test results are available from the location defined on the User Directories window. See User
Directories.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Description

Transaction Statistics

HTTP Requests
Sent

Number of HTTP requests sent by the clients. The statistics show the number of
requests for each URL.

HTTP Requests
Successful

Number of positive HTTP responses (2xx- and 3xx-range responses) received
by the clients. The statistics show the number of requests for each URL.

HTTP Requests
Failed

Number of HTTP requests that failed for any reason. The statistics show the
number of requests for each URL (page).

HTTP Requests
Failed (Write)

Number of HTTP requests that failed due to a socket write error. The statistics
show the number of requests for each URL (page).

HTTP Requests
Failed (Read)

Number of HTTP requests that failed due to a socket read error.The statistics
show the number of requests for each URL (page).

Chapter 15 HTTP

– 817 –

HTTP Requests
Failed (Bad
Header)

Number of HTTP requests that failed due to a defective HTTP header. The
statistics show the number of requests for each URL (page).

HTTP Requests
Failed (4xx)

Number of 4xx-range responses received by the clients in response to an HTTP
request. The statistics show the number of requests for each URL (page).

408 responses are counted separately by the HTTP Session Timeout (408)
statistic and may or may not also be included in the HTTP Requests Failed
(4xx) count. See the description of HTTP Session Timeout (408) for more
information.

HTTP Requests
Failed (400)

Bad Request. Number of requests that failed due to a syntax error in the URL.
The statistics show the number of requests for each URL (page).

HTTP Requests
Failed (401)

Unauthorized. Number of requests that failed due to because the server did not
receive the correct user name or password from the browser. The statistics
show the number of requests for each URL (page).

HTTP Requests
Failed (403)

Forbidden. Number of requests that failed due to because the name or password
supplied by the browser are incorrect. The statistics show the number of
requests for each URL (page).

HTTP Requests
Failed (404)

Not Found. Number of requests that failed because requested object is not
stored on the server on the path supplied. The statistics show the number of
requests for each URL (page).

HTTP Requests
Failed (407)

Proxy Authentication Required. Number of requests that failed because access
to the URL requires authentication with a proxy server.

HTTP Requests
Failed (408)

Timeout. Number of requests that failed due to communications between the
client and server taking too long. The statistics show the number of requests for
each URL (page).

HTTP Requests
Failed (4xx other)

Number of HTTP requests that failed for reasons other than a Bad Request
(400), Unauthorized (401), Forbidden (403), Not Found (404), Proxy
Authentication Required (407), or Timeout (408) error. The statistics show the
number of requests for each URL (page).

HTTP Requests
Failed (5xx)

Number of HTTP requests that failed due to lack of resources on the server
(HTTP 500-series errors). This statistic is only incremented if the client had
issued a request to the server before receiving the 5xx response. The statistics
show the number of requests for each URL (page).

HTTP Requests
Failed (505)

HTTP Version not Supported. Number of requests that failed because the server
does not support the HTTP version used by the client. The statistics show the
number of requests for each URL (page).

HTTP Requests
Failed (5xx other)

Number of requests that failed for reasons other than an HTTP version mis-
match (505). The statistics show the number of requests for each URL (page).

Chapter 15 HTTP

– 818 –

HTTP Requests
Failed (Timeout)

Number of HTTP requests that failed because the clients did not receive a
response within 600 seconds. The statistics show the number of requests for
each URL (page).

HTTP Requests
Failed (Aborted)

Number of HTTP requests that ended prematurely due to events outside HTTP
or TCP. For example, if any HTTP requests are pending when the Ramp-Down
period ends, those requests are aborted by IxLoad. The statistics show the
number of requests for each URL (page).

HTTP Aborted
Before Request

Number of HTTP requests aborted just before sending the request on an open
TCP connection.

HTTP Aborted
After Request

Number of HTTP requests aborted just after sending the request on an open TCP
connection.

HTTP Responses
Received With
Match

Number of responses received that matched the Profile search string.

HTTP Responses
Received Without
Match

Number of responses received that did not match the Profile search string.

HTTP
Intermediate
Responses
Received (1xx)

Number of 100-series (Informational) responses received.

100-series responses indicate a provisional response, consisting only of the
Status-Line and optional headers, and terminated by an empty line.

Refer to RFC 2616, Section 10, for a full description.

HTTP Requests
Successful (2xx)

Number of 200-series (Successful) responses received.

200-series responses indicate that the client's request was successfully
received, understood, and accepted.

HTTP Requests
Successful (3xx)

Number of 300-series (Redirection) responses received.

300-series responses indicate that further action needs to be taken by the user
agent in order to fulfill the request.

HTTP Requests
Successful (301)

Number of 301 (Moved Permanently) responses received.

301 responses indicate that the requested resource has been assigned a new
permanent URI and any future references to this resource should use one of the
returned URIs.

HTTP Requests
Successful (302)

Number of 302 (Found) responses received.

302 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP Requests
Successful (303)

Number of 303 (See Other) responses received.

Chapter 15 HTTP

– 819 –

303 responses indicate that the response to the request can be found under a
different URI and should be retrieved using a GET method on that resource.

HTTP Requests
Successful (307)

Number of 307 (Temporary Redirect) responses received.

307 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP Content-
MD5 Requests
Sent

Number of requests that included Content-MD5 headers.

HTTP Requests
Failed (other)

Number of requests that failed that could not be classified.

Chunked-Transfer Encoding Statistics

HTTP Chunk
Encoded
Responses
Received

Number of pages received with chunked transfer encoding.

HTTP Chunk
Encoded
Responses
Successful

Number of chunked transfer-encoded pages successfully decoded.

HTTP Chunk
Encoded
Responses Failed

Number of chunked transfer-encoded pages that could not be decoded.

HTTP Total
Chunks Received

Total number of chunks recieved by the client.

HTTP Average
Chunk Size

Average size of the chunks received.

HTTP Average
Chunks per
Response

Average number of chunks received for each HTTP response.

Decompression and Integrity Statistics
Note: HTTP 1.0 does not support compression (content encoding). If you run a test using HTTP 1.0,
the content encoding statistics are zero.

HTTP Gzip-
Encoded
Responses
Received

Number of gzip-encoded pages received.

Chapter 15 HTTP

– 820 –

HTTP Gzip-
Encoded
Responses
Successful

Number of gzip-encoded pages successfully decoded.

HTTP Gzip-
Encoded
Responses Failed

Number of gzip-encoded pages that could not be decoded for all reasons.

HTTP Deflate-
Encoded
Responses
Received

Number of deflate-encoded pages received.

HTTP Deflate-
Encoded
Responses
Successful

Number of deflate-encoded pages successfully decoded.

HTTP Deflate-
Encoded
Responses Failed

Number of deflate-encoded pages that could not be decoded for all reasons.

HTTP Content-
MD5 Responses
Received

Number of page checksums received in Content-MD5 headers.

HTTP Content-
MD5 Responses
Successful

Number of checksums calculated by the client that matched the Content-MD5
checksums in the response headers.

Note: Zero-byte reads do not contain any data for comparison, so they are
always considered successful. Therefore, every time the client performs a read
of zero bytes, this statistic is incremented.

HTTP Content-
MD5 Responses
Failed

Number of checksums calculated by the client that did not match the Content-
MD5 checksums in the response headers.

HTTP Custom MD5
Responses
Received

Number of page checksums received in Custom-MD5 (IxLoad-specific)
headers.

HTTP Custom MD5
Responses
Successful

Number of checksums calculated by the client that matched the Custom-MD5
checksums in the response headers.

Note: Zero-byte reads do not contain any data for comparison, so they are
always considered successful. Therefore, every time the client performs a read
of zero bytes, this statistic is incremented.

Chapter 15 HTTP

– 821 –

HTTP Custom MD5
Responses Failed

Number of checksums calculated by the client that did not match the Content-
MD5 checksums in the response headers.

Average
Compression
Ratio

Average ratio of uncompressed content bytes to compressed content bytes
(uncomp/comp) in compressed pages.

TCP Reset Statistics
Under some scenarios, the number of RSTs may not match between the client and server.

For example, an Abort following a request generates two RSTs. On the client side, when the first RST is
sent, the socket context is destroyed and hence only one RST is included in the client’s TCP stats.
However, on the server, receiving the first RST doesn't destroy the socket context immediately and so
the second RST received is the one that is updated.

IxLoad Statistics Interpolation
IxLoad statistics are interpolated. Because statistics collection points may not fall on run state-change
boundaries, when the last statistics collected from the previous state and the first statistics collected
from the current state are interpolated, they may not show the true condition of the current state (RU =
Ramp Up, SU = Sustain, RD = Ramp Down).

For example, when the statistics from the last connection point in the SU state and the first collection
point in the RD state are interpolated, they may show transactions continuing to increase, when in fact
they have stopped.

The interpolated statistics for the first and second collection points within a state will show the true
condition of that state. For example, when the first and second sets of statistics collected from the RD
state were interpolated, they would show that transactions had stopped. See the figure below.

Figure 1: Statistics Collection and Interpolation in IxLoad

! 17

Chapter 15 HTTP

– 822 –

CHAPTER 16 IMAP
This section describes the IMAP Tcl API objects.

API Overview
IMAP protocol commands are organized as shown in the figure below

An additional section, Using Auto-Generated Strings, pertains to several commands.

Objectives
The objectives (userObjective) you can set for IMAP are listed below. Test objectives are set in the
ixTimeline object.

l connectionRate

– 823 –

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

Chapter 16 IMAP

– 824 –

IMAP Client Agent
IMAP Client Agent - create an IMAP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IMAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_IMAPClient1 agent.config

DESCRIPTION

An HTTP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).
name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity IMAPClient1
of NetTraffic Traffic1@Network1###set
Activity_IMAPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"IMAP Client"]## Timeline1 for
activities IMAPClient1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_IMAPClient1 config
\-enable true \-name

Chapter 16 IMAP

– 825 –

"IMAPClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_
IMAPClient1 agent.config \-enable true \-name
"IMAPClient1"$Activity_IMAPClient1 agent.pm.advOptions.config \-commandTimeout
120 \-vlan_priority 0 \-ipPreference
2 \-implicitLoopCheck true \-enableEsm
false \-esm 1460 \-enableVlanPriority
false$Activity_IMAPClient1 agent.pm.ipHistory.clear$Activity_IMAPClient1
agent.pm.imapCommands.clear$Activity_IMAPClient1 agent.pm.imapCommands.appendItem \-
id "GETMAILS" \-Username
"user\[00-\]" \-Message_data_items "(BODY.PEEK\[\])" \-Password
"password\[00-\]" \-Mailbox_name "INBOX" \-imapServerIp
"Traffic2_IMAPServer1:143"

SEE ALSO

ixNetTraffic

Chapter 16 IMAP

– 826 –

IMAP Commands
IMAP Commands—Adds an IMAP client command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IMAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_IMAPClient1 agent.pm.imapCommands.appendItem

DESCRIPTION

An imapCommands object is added to the commandList option of the IMAP Client Agent object using
the appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

IMAP command to be executed. One of the following:

Command Description

CAPABILITY Requests a list of capabilities that the IMAP server supports. This command is
sent to the server that the client has logged in to using a preceding OPEN
command.

NOOP Does not perform any function other than to contact the server. NOOP can be
used as a periodic poll for new messages or message status updates during a
period of inactivity or to reset an inactivity timer on the server.

LOGOUT Informs the server that the client is finished using the connection. The server
will send a BYE untagged response before the (tagged) OK response, and
then close the network connection.

CLOSE Permanently removes all messages that have the Deleted flag set from the
currently selected mailbox, and returns to the authenticated state from the
selected state. No untagged EXPUNGE responses are sent.

EXPUNGE Permanently removes all messages that have the Deleted flag set from the
currently selected mailbox. The server for each message that it removes, the

Chapter 16 IMAP

– 827 –

server sends an untagged EXPUNGE response to the client. After it has
removed all the Deleted-flagged messages, it returns an OK response.

GETMAILS Retrieves mail messages from a server. {GetMails} is an IxLoad command
the combines the functionality of multiple IMAP combined into a single
command. {GetMails} performs the following IMAP commands:

LOGIN

SELECT

UID FETCH

LOGOUT

DELMAILS Deletes all mail messages from a selected mailbox. {Delete} is an IxLoad
command that combines the functionality of multiple IMAP commands into a
single command. {DeleteMails} performs the following IMAP commands:

UID STORE

EXPUNGE

OPEN Establishes a TCP connection to an IMAP server. OPEN is not an IMAP
command.

LOGIN Identifies the client to the server and carries the plaintext password
authenticating the user.

SELECT Selects a mailbox so that messages in it can be accessed. The IxLoad IMAP
server returns a simple OK response if the mailbox name is valid.

FETCH Retrieves data associated with a message in the mailbox. The data items to
be fetched can be either a single atom or a parenthesized list.

LIST Returns a subset of names from the complete set of all names available to the
client.

STORE Alters data associated with a message in the mailbox.

CREATE Creates a mailbox with the given name.

THINK The {Think} command causes the client to become inactive. {Think} is an
internal IxLoad command intended to assist your testing; it is not a command
defined in the IMAP protocol.

If you specify identical values for the minimum and maximum times, the
client will be inactive for a fixed length of time. If you specify different values
for the minimum and maximum times, IxLoad will select a value within the
range and cause the client to be inactive for that length of time.

DELETE Permanently removes a mailbox with the given name. The server returns a

Chapter 16 IMAP

– 828 –

simple OK response mail box name is RFC-compliant and the command
syntax is correct. Attempting to delete the INBOX or a mailbox name that
does not exist is an error.

LoopBeginCommand An IxLoad command that you can add to the Command List to cause the
commands between it and the {Loop End} to be executed a specified number
of times.

LoopEndCommand Ends the list of commands that will be executed by the preceding {Loop
Begin} command.

Arguments for id = CAPABILITY

None.

Arguments for id = NOOP

None.

Arguments for id = LOGOUT

None.

Arguments for id = CLOSE

None.

Arguments for id = EXPUNGE

None.

Arguments for id = GETMAILS

imapServerIp

The IP address of the IMAP server, or the name of the Ixia IMAP server activity. (Default = “None”).

Username

User name used to log in to the IMAP server. You can include variables (as the default value does) to
generate multiple unique usernames. See Using Auto-Generated Strings on page 16-39. (Default
= “user[00-]”).

Password

Password used to log in to the IMAP server. You can include variables (as the default value does) to
generate multiple unique passwords. See Using Auto-Generated Strings on page 16-39. (Default
= “password[00-]”).

Mailbox_name

Chapter 16 IMAP

– 829 –

Mailbox to retrieve mail from. (Default = “INBOX”).

Message_data_items

Message data item names to be retrieved such as ["FLAGS,”"ENVELOPE"]. (Default = "BODY.PEEK
[]”).

Arguments for id = DELMAILS

Mailbox_name

Mailbox to delete mail from. (Default = “INBOX”).

Arguments for id = OPEN

IMAP_Server_IP

The IP address of the IMAP server, or the name of the Ixia IMAP server activity. (Default =
“0.0.0.0”).

Arguments for id = LOGIN

Username

User name used to log in to the IMAP server. You can include variables (as the default value does) to
generate multiple unique user names. See Using Auto-Generated Strings on page 16-39.
(Default = “user[00-]”).

Password

Password used to log in to the IMAP server. You can include variables (as the default value does) to
generate multiple unique passwords. See Using Auto-Generated Strings on page 16-39. (Default
= “password[00-]”).

Arguments for id = SELECT

Mailbox_name

Mailbox selected by command. (Default = “INBOX”).

Arguments for id = FETCH

Message_sequence_set

Sequence number set specifying the messages to be retrieved. (Default = “1-1”).

Message_data_items

Message data item names to be retrieved. (Default = “FULL”).

Arguments for id = LIST

Reference_name

Name of a mailbox or a level of mailbox hierarchy. (Default = “~”).

Chapter 16 IMAP

– 830 –

Mail_box_name_with_wildcards

Name of the mailbox to be accessed, and wildcard characters.

The wildcard character "*" matches zero or more characters at this position.

The wildcard character "%" is similar to "*", but it does not match a hierarchy delimiter. If the "%"
wildcard is the last character of a mailbox name argument, matching levels of hierarchy are also
returned. (Default = “*”).

Arguments for id = STORE

Message_sequence_set

Sequence number set specifying the messages to be retrieved. (Default = “1-1”).

Data_items

Action to be performed on message flags for the affected messages. (Default = “+FLAGS”).

l FLAGS: Replace the flags for the message (other than \Recent) with the flag selected in the Flags
parameter. The new value of the flags is returned as if a FETCH of those flags was done.

l FLAGS.SILENT: Equivalent to FLAGS, but without returning a new value.

l +FLAGS: Adds the flag selected in the Flags parameter to the message. The new value of the
flags is returned as if a FETCH of those flags was done.

l +FLAGS.SILENT: Equivalent to +FLAGS, but without returning a new value.

l -FLAGS: Removes the flag selected in the Flags parameter from the message. The new value of
the flags is returned as if a FETCH of those flags was done.

l -FLAGS.SILENT: Equivalent to -FLAGS, but without returning a new value.

Flags

Flag to be added or removed (action depends on setting of Data Items parameter) on the messages
specified by Message Sequence Set parameter. (Default = “Answered”).

l Answered: Message has been answered.

l Flagged: Message is marked for urgent or special attention.

l Deleted: Message is marked for deletion, to be removed by an EXPUNGE command at a later
time.

l Draft: Message has not been completely composed (marked as a draft).

l Seen: Message has been read.

Arguments for id = CREATE

Mailbox_name

Creates a mailbox with the given name. Name of the mailbox to be created. You can include the
server’s file system hierarchy separator in the name to cause the server to create the mailbox on a

Chapter 16 IMAP

– 831 –

directory path other than the current level. For example, if the server’s hierarchy separator character is
"/" and you specify "foo/bar/zap", the server should create “foo/” and “foo/bar/” if they do not already
exist. (Default = “custom”).

Arguments for id = THINK

minimumInterval

Minimum length of time to sleep. Minimum = “1,000,” Maximum = “2,147,483,647,” (Default =
"1,000").

maximumInterval

Maximum length of time to sleep. Minimum = "1,000,” Maximum = “2,147,483,647,” (Default =
"1,000").

Arguments for id = DELETE

Mailbox_name

Deletes the mailbox with the given name. (Default = “custom”).

Arguments for id = LoopBeginCommand

LoopCount

Number of times to iterate. Value 0 = infinity. Minimum = “0,” Maximum = “2147483647,” (Default =
"5").

Arguments for id = LoopEndCommand

None.

EXAMPLE
$Activity_IMAPClient1 agent.pm.imapCommands.appendItem \-id
"GETMAILS" \-Username "user\[00-\]" \-Message_data_
items "(BODY.PEEK\[\])" \-Password
"password\[00-\]" \-Mailbox_name "INBOX" \-imapServerIp
"Traffic2_IMAPServer1:143"

SEE ALSO

IMAP Client Agent

Using Auto-Generated Strings

Chapter 16 IMAP

– 832 –

IMAP Client Advanced Options
IMAP Client Advanced Options - configure an IMAP client's advanced options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IMAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_IMAPClient1 agent.pm.advOptions.config

DESCRIPTION

IMAP client advanced options are set through the pm.advOptions option of the IMAP Client Agent
object (see the fexample below).

SUBCOMMANDS

None.

OPTIONS

commandTimeout

Time, in seconds, to wait for a response to an IMAP command. Minimum = 1, Maximum = 2,147,483.
(Default = 12).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size as 1,460 bytes. (Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

ipPreference

This option indicates the order by which the IMAP client will use the subnets, if there is a mixture of
IPv4 and IPv6 subnets in the network. The values are: IpPreferenceV4, IpPreferenceV6,
IpPreferenceV4Any, IpPreferenceV6Any.

loopValue

Chapter 16 IMAP

– 833 –

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity IMAPClient1
of NetTraffic Traffic1@Network1###set
Activity_IMAPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"IMAP Client"]$Activity_IMAPClient1 agent.pm.advOptions.config \-commandTimeout
120 \-vlan_priority 0 \-ipPreference
2 \-implicitLoopCheck true \-enableEsm
false \-esm 1460 \-enableVlanPriority
false

SEE ALSO

IMAP Client Agent

Chapter 16 IMAP

– 834 –

IMAP Server Agent
IMAP Server Agent - configure an IMAP server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.config

DESCRIPTION

An IMAP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this action. (Default = true).

mailConfig

This is a list of type IMAP Server Config. The elements in this list are the messages that a IMAP
user will receive when he queries the mailbox. (Default = {}).

name

The name of this server agent, which must be set at agent creation time.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity IMAPServer1
of NetTraffic Traffic2@Network2###set
Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"IMAP Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
IMAPServer1 config \-enable true \-name
"IMAPServer1" \-timeline $_Match_Longest_$Activity_
IMAPServer1 agent.config \-enable true \-name

Chapter 16 IMAP

– 835 –

"IMAPServer1"$Activity_IMAPServer1 agent.pm.advOptions.config \-vlan_priority
0 \-esm 1460 \-enableEsm
true \-enableVlanPriority true \-listening_port
"143"$Activity_IMAPServer1 agent.pm.imapServerConfig.mails.clear$Activity_
IMAPServer1 agent.pm.imapServerConfig.mails.appendItem \-id
"mailMessageList" \-mail_name "Simple" \-mail_mesg_
count 10$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList.clear$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList.appendItem \-id
"mailMessage" \-mail_message_name "Simple" \-mail_format
1 \-description "100 bytes plain text body" \-custom_
mail_body_use_real_file 0 \-Answered 1 \-
Deleted 1 \-custom_mail_body_filename
"" \-mail_size 1 \-custom_mail_body_content
"" \-Flagged 1 \-cpyfrom
"Simple" \-custom_mail_body_encode 0 \-mail_size_fixed_len
100 \-Draft 1 \-Seen
1 \-mail_size_random_min_len 1 \-mail_size_random_max_len
4096 \-mail_body_type 0 \-Recent
1$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList
(0).headerList.clear$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(0).headerList.appendItem \-id
"mailHeader" \-field_body "fromName@company.com" \-
field_name "From"$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(0).headerList.appendItem \-id
"mailHeader" \-field_body "fromName@company.com" \-
field_name "To"$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(0).attachmentList.clear$Activity_
IMAPServer1 agent.pm.allMailMessages.mailMessageInstList.appendItem \-id
"mailMessage" \-mail_message_name "SimpleLarge" \-mail_format
1 \-description "4k bytes plain text body" \-custom_
mail_body_use_real_file 0 \-Answered 1 \-
Deleted 1 \-custom_mail_body_filename
"" \-mail_size 1 \-custom_mail_body_content
"" \-Flagged 1 \-copyfrom
"Simple" \-custom_mail_body_encode 0 \-mail_size_fixed_len
4096 \-Draft 1 \-Seen
1 \-mail_size_random_min_len 1 \-mail_size_random_max_len
4096 \-mail_body_type 0 \-Recent
1$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList
(1).headerList.clear$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(1).headerList.appendItem \-id
"mailHeader" \-field_body "fromName@company.com" \-
field_name "From"$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(1).headerList.appendItem \-id
"mailHeader" \-field_body "fromName@company.com" \-
field_name "To"$Activity_IMAPServer1
agent.pm.allMailMessages.mailMessageInstList(1).attachmentList.clear$Activity_

Chapter 16 IMAP

– 836 –

IMAPServer1 agent.pm.allMailMessages.mailMessageInstList
(4).attachmentList.appendItem \-id
"mailAttachment" \-attachment_data_type 1 \-number_of_attachment
"1-1" \-attach_filename "" \-attachStr
"" \-attachment_size_range "100-100" \-attachment_type
"Generated data"

SEE ALSO

ixNetTraffic

IMAP Server Config

Chapter 16 IMAP

– 837 –

IMAP Server Advanced Options
IMAP Server Advanced Options - configure an IMAP server's advanced options

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.pm.advOptions.config

DESCRIPTION

IMAP client advanced options are set through the pm.advOptions option of the IMAP Client Agent
object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enableEsm

If set to 1 (true), the use of the esm option is enabled. (Default = 0).

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size as 1,460 bytes. Minimum = 64, Maximum = 1,460.
(Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

listening_port

Port that the IMAP server listens on. To specify multiple ports, separate the port numbers with commas
(,). You can specify up to 50 listening ports. (Default = 143).

EXAMPLE
$Activity_IMAPServer1 agent.pm.advOptions.config \-vlan_priority
0 \-esm 1460 \-enableEsm
true \-enableVlanPriority true \-listening_port
"143"

Chapter 16 IMAP

– 838 –

SEE ALSO

IMAP Server Agent

Chapter 16 IMAP

– 839 –

IMAP Server Config
IMAP Server Config—Specifies the list of mail messages available on an IMAP server.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.pm.imapServerConfig.mails.appendItem

DESCRIPTION

IMAP Server Config defines the list of mail messages available on an IMAP server.

SUBCOMMANDS

None.

OPTIONS

mails

List of mail messages available on the server. This is a list of objects of type Mails. (Default = “”).

EXAMPLE
$Activity_IMAPServer1 agent.pm.imapServerConfig.mails.appendItem \-id
"mailMessageList" \-mail_name "Simple" \-mail_mesg_
count 10

SEE ALSO

IMAP Server Agent

Mails

Chapter 16 IMAP

– 840 –

Mails
Mails—Number and type of mail messages available on an IMAP server.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.pm.imapServerConfig.mails.appendItem

DESCRIPTION

Mail Message List defines a list of mail messages.

SUBCOMMANDS

None.

OPTIONS

mail_name

Name of mail message type in list. See the table below for a list of the preconfigured mail messages
supplied with IxLoad. (Default = “”).

Message Name Description

Simple Plain text message, 100 bytes in size.

SimpleLarge Plain text message, 4,096 bytes in size.

HTMLSmall HTML-format message, 1,024 bytes in size.

HTMLRandom HTML-format message, size varies randomly between 1,024 and 32,768 bytes.

AttachmentSmall Plain text message 100 bytes in size, with one plain text attachof 1,024 bytes.

AttachmentLarge HTML-format message 1,024 bytes in size, with one HTML-format attachment of
65,536 bytes.

RandomSmall Message body that varies randomly between plain text and HTML format, varying
in size between 100 and 1,024 bytes, and with from one to four plain text or
HTML-format attachments. The plain text attachments range from 100 to 1,024
bytes in size, and the HTML attachments range from 512 to 4,096 bytes in size.

RandomLarge Message body that varies randomly between plain text and HTML format, varying
in size between 1,024 and 16,384 bytes, and with from one to eight plain texts or
HTML-format attachments. The plain text attachments range from 1,024 to
16,384 bytes in size, and the HTML attachments range from 4,096 to 262,144
bytes in size.

Chapter 16 IMAP

– 841 –

mail_mesg_count

Number of mail messages of the type specified by the mail_name option. (Default = “10”).

EXAMPLE
$Activity_IMAPServer1 agent.pm.imapServerConfig.mails.appendItem \-id
"mailMessageList" \-mail_name "Simple" \-mail_mesg_
count 10

SEE ALSO

IMAP Server Agent

AllMailMessages

Chapter 16 IMAP

– 842 –

Mail Message Instance List
Mail Message Instance List—Configures one or more mail messages.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList
(0).headerList.appendItem

DESCRIPTION

Mail Message Instance List defines a list of Mail Message Instance Lists.

SUBCOMMANDS

None.

OPTIONS

mail_message_name

Name of mail message. (Default = “Simple”).

description

Description of mail message. (Default = “100 byte plain text body”).

cpyfrom

Existing message to be copied to create the new message. (Default = “Simple”).

mail_format

Format of the mail message. (Default = “1”).

The formats available are:

Format Description

1 Plain: The message body contains only ASCII characters and no formatting or
disinformation. RFC 2822 describes this format.

2 HTML: The message body contains HTML tags for formatting and display. An HTML
message is identified by the MIME type text/html.

3 Random: Message bodies are a random mixture of plain and HTML formats.

mail_size

Size of the mail message in bytes. (Default = “1”).

Chapter 16 IMAP

– 843 –

Specify the size as follows:

Size Description

1 Fixed: The size of the message body is fixed at a single size. Use the mail_size_fixed_len
option to specify the size.

2 Random: The size of the message body varies randomly between a minimum and a maximum
size. Use the mail_size_random_min_len and mail_size_random_max_len.

mail_size_fixed_len

If the mail_size option is set to Fixed (1), this option specifies the length of the mail message, in
bytes. Minimum = "1" Maximum = "2,147,483" (Default = "100").

mail_size_random_min_len

If the mail_size option is set to Random (2), this option specifies the lower bound of the range of the
mail message length, in bytes. Minimum = "1" Maximum = "2,147,483" (Default = "1").

mail_size_random_
max_len

If the mail_size option is set to Random (2), this option specifies the upper bound of the range of the
mail message length, in bytes. Minimum = "1" Maximum = "2,147,483" (Default = "4,096").

mail_body_type

The mail body type can be default, imported data, or custom. You cannot import files through Tcl so
you can work only with default or custom data. The value for default is 1 and custom is 2. Custom data
are composed of data that you provide. If 2 is specified, then you need to specify the applicable
custom mail body options. (Default = 1).

Recent

Flag indicating that message is new. The choices for setting this flag are:

Flag Description

1 Always Set: Flag is always set.

2 Not Set: Flag is never set.

3 Random: Flag is randomly set.

4 Toggle: Reverses flag setting; if flag is not set, sets it; if flag is set, un-sets it.

Seen

Flag indicating that message has been read. See the description of the Recent flag for a description of
the choices for setting this flag.

Answered

Chapter 16 IMAP

– 844 –

Flag indicating that message has been answered. See the description of the Recent flag for a
description of the choices for setting this flag.

Deleted

Flag indicating that message has been deleted. See the description of the Recent flag for a description
of the choices for setting this flag.

Draft

Flag indicating that message has not been completed. See the description of the Recent flag for a
description of the choices for setting this flag.

custom_mail_body_use_real_file

This option accepts boolean value of 0 or 1. If zero is given, there is no need to specify a file name.
You have to enter the mail message text in custom_mail_body_content. If 1 is given, a file name is
specified in the custom_mail_body_filename.

custom_mail_body_encode

This option specifies the encoding option for the real file. For boolean value 0, IxLoad encodes the file
using the default encoding. For already encoded files, you choose boolean value 1.

custom_mail_body_filename

This option specifies the absolute path for the real file. See the following exam"c:\temp.txt" \

custom_mail_body_content

This option accepts the mail message text. Example: "abcd123."

headerList

List of Header List objects included with message.

attachmentList

List of Attachment List objects included with message.

EXAMPLE
$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList.appendItem \-id
"mailMessage" \-mail_message_name "Simple" \-mail_format
1 \-description "100 bytes plain text body" \-custom_
mail_body_use_real_file 0 \-Answered 1 \-
Deleted 1 \-custom_mail_body_filename
"" \-mail_size 1 \-custom_mail_body_content
"" \-Flagged 1 \-cpyfrom
"Simple" \-custom_mail_body_encode 0 \-mail_size_fixed_len
100 \-Draft 1 \-Seen
1 \-mail_size_random_min_len 1 \-mail_size_random_max_len
4096 \-mail_body_type 0 \-Recent
1

Chapter 16 IMAP

– 845 –

SEE ALSO

IMAP Server Agent

Chapter 16 IMAP

– 846 –

All Mail Messages
All Mail Messages—A list of Mail Message Instance Lists.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IMAPServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList
(0).headerList.appendItem

DESCRIPTION

All Mail Messages defines a list of Mail Message Instance Lists.

SUBCOMMANDS

None.

OPTIONS

mailMessageInstList

Mail Message Instance List. (Default = “”).

EXAMPLE
$Activity_IMAPServer1 agent.pm.allMailMessages.mailMessageInstList.appendItem \-id
"mailMessage" \-mail_message_name "Simple" \-mail_format
1 \-description "100 bytes plain text body" \-custom_
mail_body_use_real_file 0 \-Answered 1 \-
Deleted 1 \-custom_mail_body_filename
"" \-mail_size 1 \-custom_mail_body_content
"" \-Flagged 1 \-cpyfrom
"Simple" \-custom_mail_body_encode 0 \-mail_size_fixed_len
100 \-Draft 1 \-Seen
1 \-mail_size_random_min_len 1 \-mail_size_random_max_len
4096 \-mail_body_type 0 \-Recent
1

SEE ALSO

IMAP Server Agent

Mail Message Instance List

Chapter 16 IMAP

– 847 –

Using Auto-Generated Strings
In some of the fields in the IMAP client and server Activities, you can include variables that will cause
IxLoad to automatically generate multiple values for the field. For example, the IMAP Username and
Password fields both support the inclusion of variables.

See Using Automatic Sequence Generators.

Chapter 16 IMAP

– 848 –

IMAP Statistics
The test results are available from the location defined on the User Directories window. See User
Directories.

For IMAP client statistics, see IMAP Client statistics .

For IMAP server statistics, see IMAP Server Statistics.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Chapter 16 IMAP

– 849 –

IMAP Client Statistics
The table below lists the statistics that IxLoad reports for IMAP clients.

Statistic Description

IMAP Sessions
Requested

Number IMAP sessions requested by the client.

This statistic is the total of: IMAP Sessions Established + IMAP Sessions Failed.

An IxLoad IMAP “session” is the sequence of client/server interactions that take
place from the time that a TCP connection is established until it is terminated.

IMAP Sessions
Established

Number of IMAP sessions successfully established by the client (the client
received an ‘OK’ response from the server).

IMAP Sessions
Failed

Number of IMAP sessions that the client was unable to establish (the client did not
receive an ‘OK’ response from the server).

IMAP Total
Bytes Sent

Total number of bytes sent by the client in IMAP commands, responses, and
messages. This statistic counts all the bytes in the IMAP packet including the
terminating CRLF.

IMAP Total
Bytes Received

Total number of bytes received by the client in IMAP commands, responses, and
messages. This statistic counts all the bytes in the IMAP packet including the
terminating CRLF.

IMAP Mail
Bytes Received

Total number of bytes contained in the mail messages retrieved by the client.

IMAP Total
Mails Received

Total number of mail messages retrieved by the client.

IMAP
Commands
Timeout

Total number of IMAP commands for which the client did not receive a response
within the timeout period.

IMAP capability
Command Sent

Total number of CAPABILITY commands sent by the client.

IMAP noop
Command Sent

Total number of NOOP commands sent by the client.

IMAP login
Command Sent

Total number of LOGIN commands sent by the client.

IMAP logout
Command Sent

Total number of LOGOUT commands sent by the client.

IMAP list
Command Sent

Total number of LIST commands sent by the client.

Chapter 16 IMAP

– 850 –

IMAP select
Command Sent

Total number of SELECT commands sent by the client.

IMAP fetch
Command Sent

Total number of FETCH commands sent by the client.

IMAP store
Command Sent

Total number of STORE commands sent by the client.

MAP create
Command Sent

Total number of CREATE commands sent by the client.

IMAP delete
Command Sent

Total number of DELETE commands sent by the client.

IMAP close
Command Sent

Total number of CLOSE commands sent by the client.

IMAP expunge
Command Sent

Total number of EXPUNGE commands sent by the client.

MAP uid fetch
Command Sent

Total number of UID FETCH commands sent by the client.

IMAP uid store
Command Sent

Total number of UID STORE commands sent by the client.

IMAP capability
Command
Failed

Total number of CAPABILITY commands sent by the client that failed for any
reason.

IMAP noop
Command
Failed

Total number of NOOP commands sent by the client that failed for any reason.

IMAP login
Command
Failed

Total number of LOGIN commands sent by the client that failed for any reason.

IMAP logout
Command
Failed

Total number of LOGOUT commands sent by the client that failed for any reason.

IMAP list
Command
Failed

Total number of LIST commands sent by the client that failed for any reason.

IMAP select
Command

Total number of SELECT commands sent by the client that failed for any reason.

Chapter 16 IMAP

– 851 –

Failed

IMAP fetch
Command
Failed

Total number of FETCH commands sent by the client that failed for any reason.

IMAP store
Command
Failed

Total number of STORE commands sent by the client that failed for any reason.

IMAP create
Command
Failed

Total number of CREATE commands sent by the client that failed for any reason.

IMAP delete
Command
Failed

Total number of DELETE commands sent by the client that failed for any reason.

IMAP close
Command
Failed

Total number of CLOSE commands sent by the client that failed for any reason.

IMAP expunge
Command
Failed

Total number of EXPUNGE commands sent by the client that failed for any reason.

IMAP uid fetch
Command
Failed

Total number of UID FETCH commands sent by the client that failed for any
reason.

IMAP uid store
Command
Failed

Total number of UID STORE commands sent by the client that failed for any
reason.

IMAP capability
Command OK

Total number of CAPABILITY commands for which the client received an OK
response.

IMAP noop
Command OK

Total number of NOOP commands for which the client received an OK response.

IMAP login
Command OK

Total number of LOGIN commands for which the client received an OK response.

IMAP logout
Command OK

Total number of LOGOUT commands for which the client received an OK response.

IMAP list
Command OK

Total number of LIST commands for which the client received an OK response.

IMAP select Total number of SELECT commands for which the client received an OK response.

Chapter 16 IMAP

– 852 –

Command OK

IMAP fetch
Command OK

Total number of FETCH commands for which the client received an OK response.

IMAP store
Command OK

Total number of STORE commands for which the client received an OK response.

IMAP create
Command OK

Total number of CREATE commands for which the client received an OK response.

IMAP delete
Command OK

Total number of DELETE commands for which the client received an OK response.

IMAP close
Command OK

Total number of CLOSE commands for which the client received an OK response.

IMAP expunge
Command OK

Total number of EXPUNGE commands for which the client received an OK
response.

IMAP uid fetch
Command OK

Total number of UID FETCH commands for which the client received an OK
response.

IMAP uid store
Command OK

Total number of UID STORE commands for which the client received an OK
response.

IMAP Total
Bytes Sent and
Received

Combined total of all bytes transmitted and received by the client in IMAP
commands, responses, mail messages, and attachments

IMAP
Transaction
Rate

Rate at which the client completed IMAP transactions.

IMAP
Transactions

Total number of IMAP transactions of all types.

IMAP
Connection
Rate

Rate at which the client established IMAP connections.

IMAP
Connections

Total number of IMAP connections established.

IMAP Total
Connections

Total number of IMAP connections of established.

“Connection" refers to the entire sequence of client/server interactions from the
initial establishment of the connection to the server until its termination.

IMAP Number of concurrent IMAP connections active.

Chapter 16 IMAP

– 853 –

Concurrent
Connection

IMAP Simulated
Users

Number of IMAP users simulated by the client.

Chapter 16 IMAP

– 854 –

IMAP Server Statistics
The table below lists the statistics that IxLoad reports for IMAP servers.

Statistic Description

IMAP Session
Requests
Received

Number of requests to establish IMAP sessions received by the server.

"Session" refers to the sequence of client/server interactions from the time that
a TCP connection is established until the time that TCP connection terminates.

IMAP Session
Requests
Completed

Number of requested IMAP sessions successfully established by the server.

IMAP Session
Requests Failed

Number of requested IMAP sessions that the server failed to establish.

IMAP Total Mail
Bytes Sent

Total number of bytes sent by the server in IMAP responses and messages.
This statistic counts all the bytes in the IMAP packet including the terminating
CRLF.

IMAP Total Mails
Sent

Total number of mail messages sent over IMAP connections.

IMAP Total
Attachments Sent

Total number of attachments sent over IMAP connections.

IMAP Total Mails
with Attachments
Sent

Total number of mail messages sent that included one or more attachments.

IMAP Total Bytes
Sent

Total number of bytes sent by the server in IMAP commands, responses, and
messages.

IMAP Total Bytes
Received

Total number of bytes received by the server in IMAP commands, responses,
and messages.

IMAP Total Bytes
Sent and Received

Combined total of all bytes transmitted and received by the server in IMAP
commands, responses, and mail messages.

IMAP capability
Command
Received

Total number of CAPABILITY commands received by the server.

IMAP noop
Command
Received

Total number of NOOP commands received by the server.

IMAP login Total number of LOGIN commands received by the server.

Chapter 16 IMAP

– 855 –

Command
Received

IMAP logout
Command
Received

Total number of LOGOUT commands received by the server.

IMAP list
Command
Received

Total number of LIST commands received by the server.

IMAP select
Command
Received

Total number of SELECT commands received by the server.

IMAP fetch
Command
Received

Total number of FETCH commands received by the server.

IMAP store
Command
Received

Total number of STORE commands received by the server.

IMAP create
Command
Received

Total number of CREATE commands received by the server.

IMAP delete
Command
Received

Total number of DELETE commands received by the server.

IMAP close
Command
Received

Total number of CLOSE commands received by the server.

IMAP expunge
Command
Received

Total number of EXPUNGE commands received by the server.

IMAP uid_fetch
Command
Received

Total number of UID FETCH commands received by the server.

IMAP uid_store
Command
Received

Total number of UID STORE commands received by the server.

IMAP capability
Response Sent

Total number of CAPABILITY responses sent by the server.

Chapter 16 IMAP

– 856 –

IMAP noop
Response Sent

Total number of NOOP responses sent by the server.

IMAP login
Response Sent

Total number of LOGIN responses sent by the server.

IMAP logout
Response Sent

Total number of LOGOUT responses sent by the server.

IMAP list
Response Sent

Total number of LIST responses sent by the server.

IMAP select
Response Sent

Total number of SELECT responses sent by the server.

IMAP fetch
Response Sent

Total number of FETCH responses sent by the server.

IMAP store
Response Sent

Total number of STORE responses sent by the server.

IMAP create
Response Sent

Total number of CREATE responses sent by the server.

IMAP delete
Response Sent

Total number of DELETE responses sent by the server.

IMAP close
Response Sent

Total number of CLOSE responses sent by the server.

IMAP expunge
Response Sent

Total number of EXPUNGE responses sent by the server.

IMAP uid_fetch
Response Sent

Total number of UID FETCH responses sent by the server.

IMAP uid_store
Response Sent

Total number of UID STORE responses sent by the server.

IMAP capability
Sent Failed

Total number of CAPABILITY responses that the server failed to send.

IMAP noop Sent
Failed

Total number of NOOP responses that the server failed to send.

IMAP login Sent
Failed

Total number of LOGIN responses that the server failed to send.

IMAP logout Sent
Failed

Total number of LOGOUT responses that the server failed to send.

Chapter 16 IMAP

– 857 –

IMAP list Sent
Failed

Total number of LIST responses that the server failed to send.

IMAP select Sent
Failed

Total number of SELECT responses that the server failed to send.

IMAP fetch Sent
Failed

Total number of FETCH responses that the server failed to send.

IMAP store Sent
Failed

Total number of STORE responses that the server failed to send.

IMAP create Sent
Failed

Total number of CREATE responses that the server failed to send.

IMAP delete Sent
Failed

Total number of DELETE responses that the server failed to send.

IMAP close Sent
Failed

Total number of CLOSE responses that the server failed to send.

IMAP expunge
Sent Failed

Total number of EXPUNGE responses that the server failed to send.

IMAP uid_fetch
Sent Failed

Total number of UID FETCH responses that the server failed to send.

IMAP uid_store
Sent Failed

Total number of UID STORE responses that the server failed to send.

! 18

Chapter 16 IMAP

– 858 –

CHAPTER 17 IPTV/ Video
This section describes the IPTV/Video Tcl API objects.

Overview
This section describes the IPTV / Video commands.

Video
The IxLoad video API consists of a client agent, a server agent, and their com

Note: Do not run video tests from the ../3rdParty/Tcl8.4.7/bin directory. During
Download-on-Demand (DOD), a .tgz file is created which uses a python tarfile which in turn
uses zlib.dll. The ../3rdParty/Tcl8.4.7/bin directory contains a local zlib.dll inside which
confuses the DOD process.

IPTV
The IPTV client and server API structure is similar to the video API structure with some additions.

IPTV Mode Server and Client

The IxLoad Video client and server can operate in either of two modes:

Video to emulate a standard multicast/unicast video client and server. The option for Video is 0.

IPTV to emulate an IPTV client and server. The option for IPTV is 1. For exam
$Activity_IPTV_VideoServer1 agent.pm.videoConfig.config \-serverMode

– 859 –

1

Video Server

In the IPTV mode, the IxLoad video server can be configured to emulate two types of IPTV servers: a
combination A/D Server or a V server.

l In an actual IPTV implementation an A (Acquisition) server packages RTP streams into multicast
UDP packets and streams them onto the distribution network.

l A D (Distribution) server caches a certain amount of the multicast video data being streamed over
the network. When a user changes a channel, the D server sends a short unicast burst of the new
channel’s video traffic for the user to view while the system switches the user from the previous
channel’s multicast group to the new channel’s group.

l A V server provides Video-on-Demand service to an IPTV client.

This is explained in the type option in Video Properties and Stream.

Video Client

In IPTV mode, the IxLoad video client emulates an IPTV client. In IPTV mode, all the same commands
are available as in Video mode, except that the Join command is replaced with the ICCCommand for
testing multicast performance. This is explained in the Commands section.

IPTV Options

The IPTV Options configure the options specific to the video client in IPTV mode. Refer IPTV Options
for detailed information.

Objectives
The objectives (userObjective) you can set for Video are listed below. Test objectives are set in the
ixTimeline object.

l simulatedUsers

l streams

l connectionRate

l transactionRate

Chapter 17 IPTV/ Video

– 860 –

Video Client API Structure
The figure below shows the structure of the video client API.

Chapter 17 IPTV/ Video

– 861 –

Video Client Agent
Video Client Agent - configure an IPTV or video client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.config

DESCRIPTION

The Video Client Agent command defines a simulated user viewing video clips from a video-on-demand
(VOD) server or real-time streaming video from a broadcast-type video source. A video client agent is
added to the activityList object. The activityList object is added to the ixNetTraffic object
using the appen subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

Note: For some of the per-stream and Video Quality monitoring statistics disin the GUI,
various scaling factors are applied to make the values easier to read. When you retrieve
these statistics from the Tcl API, the values returned may be different from those shown in
the GUI. The following statistics are affected:

l MDI-DF, MDI-DF-AVG, MDI-DF-MIN, and MDI-DF-MAX are in nanosec(ns) when
retrieved from the Tcl API. In the GUI, they are displayed in milliseconds (ms).

l Stream Bit Rate is returned in bits per second (bps) when retrieved from the Tcl API. In

Chapter 17 IPTV/ Video

– 862 –

the GUI, it is displayed in kilobits per second (kbps).

l When retrieved from the Tcl API, MOS_V, Degradation (Loss), Degradation (Discard),
and Degradation (Video Codec) are scaled up by 256 compared to GUI. For example,
the MOS score is displayed on a 0 - 5 scale in the GUI but is returned as a value in the
range 0 - 1280 when retrieved from the Tcl API. The Degradation statistics are displayed
in the GUI as a percentage. When retrieving them from the Tcl API, divide the returned
value by 256 to get the percentage.

l When retrieved from the Tcl API, VSTQ is scaled by 2 compared to the value in the GUI.
Divide the returned value by 2 to get the actual value.

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity IPTV_
VideoClient1 of NetTraffic
Traffic1@Network1###set Activity_IPTV_
VideoClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"Video Client"]## Timeline1 for
activities IPTV_VideoClient1###set
Timeline1 [::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_IPTV_VideoClient1
config \-enable true \-name
"IPTV_VideoClient1" \-enableConstraint false \-
userObjectiveValue 100 \-constraintValue
100 \-userObjectiveType "simulatedUsers" \-timeline
$Timeline1$Activity_IPTV_VideoClient1 agent.config \-enable
true \-name "IPTV_VideoClient1"$Activity_IPTV_
VideoClient1 agent.pm.signalling.config \-general_query_response_mode
true \-unsolicited_response_mode false \-report_frequency
60 \-igmp_version "IGMP v3" \-mld_version
"MLD v2" \-router_alert true \-group_specific_query_
response_mode true \-enable_custom false \-suppress_
reports true \-ip_version "IPv4"
\-immediate_response false \-client_mode
0$Activity_IPTV_VideoClient1 agent.pm.signalling.profile_table.clear$Activity_IPTV_
VideoClient1 agent.pm.signalling.profile_table.appendItem \-id
"ProfileTable" \-name "Fast Switching" \-num_
profiles 1 \-channel_switch_delay_max 0 \-
duration_max 30 \-duration_min
10 \-percentage 50.0 \-channel_switch_delay_min
0$Activity_IPTV_VideoClient1 agent.pm.signalling.profile_table.appendItem \-id
"ProfileTable" \-name "Slow Switching" \-num_

Chapter 17 IPTV/ Video

– 863 –

profiles 1 \-channel_switch_delay_max 0 \-
duration_max 300 \-duration_min
100 \-percentage 50.0 \-channel_switch_delay_min
0$Activity_IPTV_VideoClient1 agent.pm.stats.config \-MinDelay
20 \-MaxDelay 80 \-enableFrameStats
false \-qualityLimit 0 \-IgnoreLoss
false \-frameLimit 0 \-JBEMode
0 \-enableVQmonStats false \-totalLimit
0 \-updateInterval 2000 \-NomDelay
20 \-bitrateLimit 0$Activity_IPTV_VideoClient1
agent.pm.iptv_options.config \-iptv_switch_delay 1 \-iptv_
switch_mode 0$Activity_IPTV_VideoClient1
agent.pm.advanced.config \-vlan_priority 0 \-type_of_
service_for_rtsp "Best Effort (0x0)" \-rtsp_header
"Real Player" \-enableTosRTSP false \-implicitLoopCheck
true \-enableEsm false \-users_allowed
1 \-esm 1460 \-enableVlanPriority
false \-transport 1$Activity_IPTV_VideoClient1
agent.pm.advanced.header_values.clear$Activity_IPTV_VideoClient1
agent.pm.advanced.header_values.appendItem \-id
"Header" \-name "User-Agent" \-value
"RealMedia Player (HelixDNAClient)"$Activity_IPTV_VideoClient1
agent.pm.ipHistory.clear$Activity_IPTV_VideoClient1
agent.pm.channelSrcHistory.clear$Activity_IPTV_VideoClient1
agent.pm.channelSrcHistory.appendItem \-id
"channelSrc" \-name "ANY"$Activity_IPTV_
VideoClient1 agent.pm.UrlHistory.clear$Activity_IPTV_VideoClient1
agent.pm.predefined_tos.clear$Activity_IPTV_VideoClient1 agent.pm.predefined_
tos.appendItem \-id "TypeOfService" \-tos_val
"Best Effort (0x0)"$Activity_IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-
id "TypeOfService" \-tos_val
"Class 1 (0x20)"$Activity_IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-id
"TypeOfService" \-tos_val "Class 2 (0x40)"$Activity_
IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-id
"TypeOfService" \-tos_val "Class 3 (0x60)"$Activity_
IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-id
"TypeOfService" \-tos_val "Class 4 (0x80)"$Activity_
IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-id
"TypeOfService" \-tos_val "Express Forwarding
(0xA0)"$Activity_IPTV_VideoClient1 agent.pm.predefined_tos.appendItem \-id
"TypeOfService" \-tos_val "Control (0xC0)"$Activity_
IPTV_VideoClient1 agent.pm.commands.clear$Activity_IPTV_VideoClient1
agent.pm.commands.appendItem \-id "JoinCommand"
\-destination_server_activity "Traffic2_IPTV_VideoServer1:0" \-group_
address_step "0.0.0.1" \-channel_switch_mode
"Concurrent" \-start_group_address_sym "" \-sigma
1 \-start_group_address "" \-channel_switch_delay_max
0 \-mu 1 \-varLambda

Chapter 17 IPTV/ Video

– 864 –

1 \-duration_max 10 \-duration_min
10 \-watch_count 1 \-group_address_count
1 \-source_address "ANY" \-concurrent_channels
1 \-channel_switch_delay_min 0

SEE ALSO

ixNetTraffic

Chapter 17 IPTV/ Video

– 865 –

Commands
Commands—Creates the list of Video commands that the client will send to a Video server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem

DESCRIPTION

A command is added to the Commands object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

Video command to be executed. One of the following:

Command Description

ICCCommand The Instant Channel Change (ICCCommand) plays IPTV streams for a
fixed duration and then switches to new streams.

JoinCommand The JOIN command sends an IGMP JOIN message to one or more IGMP
servers in order to play their broadcast channels. The client can join
multiple multicast groups in sequence or at random intervals.

After joining a multicast group, the client plays each channel for a
specific duration. After the duration has expired, the client sends the
IGMP LEAVE command for that channel. The client plays all the channels
specified in the JOIN command, then it moves on to the next command in
the command list. Once the test enters the rampdown phase, the client
does not join any new channels.

PlayCommand The PLAY command plays the VoD video stream from a video server. The
PLAY command performs the following RTSP commands in order:

DESCRIBE

SETUP

PLAY

Chapter 17 IPTV/ Video

– 866 –

PlayMediaCommand The PLAYMEDIA command supports symbolic destination for Video Server
in Video Client. The Media / URL in PLAY command and start_group_
address for JOIN command are resources that get populated when the
server activity is selected.

The server activity can be None, when IxLoad video client is run against
an external video server. The PLAYMEDIA command performs the
following RTSP commands, in order:

DESCRIBE

SETUP

PLAY

PlayStaticCommand PlayStatic command plays a video stream whose description is sourced
from the PlayStatic command itself. PlayStatic is intended for use with
RTSP servers that do not implement the RTSP Describe command, which
is normally the source of a video stream’s description.

KeepAliveCommand KeepAliveCommand periodically sends an empty RTSP GET_PARAMETER
command to the server so that the server does not assume that the client
is inactive and then tears down the connection.

Although you can add a KeepAliveCommand to any position in a
command list, IxLoad will only send a KeepAliveCommand if a stream
has been setup and is active. Typically, KeepAliveCommnds should only
be added after PLAY, PAUSE and similar commands. KeepAliveCommand
can only be used for VoD (unicast) streams.

PauseCommand The PAUSE command sends an RTSP PAUSE command to pause playback
of the current VoD video stream. To resume playback, use the RESUME
command.

SeekCommand The SEEK command jumps to a location in the media stream and plays
from that location. The SEEK command must be preceded by a PAUSE
command.

The IxLoad video server only supports the SEEK command for transport
streams (MPEG-2 TS files). It does not support the SEEK command for
MPEG-4, H.264, or VC1 streams.

ResumeCommand The RESUME command sends an RTSP PLAY command to resume
playback of a paused VoD video stream.

StopCommand The STOP command sends an RTSP STOP command to stop playback of
the current VoD video stream.

ThinkCommand The {THINK} command causes the client to become inactive.

PassiveCommand The PassiveCommand passively monitors unicast or multicast audio and
video streams and records statistics for them.

Chapter 17 IPTV/ Video

– 867 –

When used in conjunction with an AFM module, this command enables
you to use the AFM module as a tap, and gather statistics such as MDI or
video quality metrics at various points within a network. Statistics are
recorded both globally and on a per-stream basis. Quality metrics are
recorded for both video and audio streams.

LoopBeginCommand The {Loop Begin} command is an IxLoad command that you can add to
the Command List to cause the commands between it and the {Loop
End} to be executed a specified number of times.

LoopEndCommand {Loop End} ends the list of commands that will be executed by the
preceding {Loop Begin} command.

RTSP Commands In addition to the high-level commands that simplify testing video, the
IxLoad IPTV/Video client also allows you to configure and send individual
RTSP commands. This enables you to test video using low-level RTSP
commands, and take advantage of the quality metrics other statistics
that are available in the IxLoad IPTV/Video client.

DescribeCommand Retrieves the description of a presentation or media object identified by
the URL in the media option. The server responds with a description of
the requested resource.

RTSPSetupCommand Specifies the transport mechanism to be used for the streamed media. A
client can issue a SETUP request for a stream that is already playing to
change transport parameters, if the server allows it. Specify the transport
mechanism in the arguments option.

RTSPPlayCommand Tells the server to start playback using the mechanism specified by a
previous SETUP command. Specify the stream in the media option, and
the playback duration in the arguments option.

RTSPPauseCommand Causes the stream playback to be temporarily halted. If you specify a
stream in the media option, only playback of that stream is halted. If you
do not specify a stream, all streams are paused.

RTSPSetParamCommand This method requests to set the value of a parameter for a stream
specified by the URL. Specify the name of this parameter in the arg
option. IxLoad Video Server does not support RTSP SET_PARAMETER
command.

RTSPGetParamCommand Retrieves the current value of a parameter from the server. If you issue
the GET_PARAMETER with no arguments, it functions as a keep-alive to
prevent the server from closing the connection when long presentations
are playing. IxLoad Video Server does not support RTSP GET_
PARAMETER command.

RTSPTeardownCommand Stops the stream delivery for the URL listed in the media option, freeing

Chapter 17 IPTV/ Video

– 868 –

the resources associated with it. After issuing the TEARDOWN command,
the RTSP session identifier associated with the session is no longer valid.

Arguments for id = ICCCommand (IPTV mode only)

The Instant Channel Change (ICC) command plays IPTV streams for a fixed duration and then switches
to new streams. You can only use the ICC command in Activities running over IPv4 networks.

destination_server_activity

Video server hosting the media that the client will play.

l IxLoad server: If you are using an IxLoad video server, specify the server address.

l External server: If you are using an external video server, specify None.

Default = None.

group_address_step

Specifies the amount of increase in the channel number (A server address). See the description of the
group_address_count for more information.

channel_switch_mode

Specifies the order in which the client joins the multicast groups in the Channel List to view the
channels.

sequential: The client plays the channels in the Channel List one after the other, in order based on
their address, starting with the start_group_address. After the Channel Watch Duration expires, the
client sends an IGMP LEAVE for the channel being viewed. The client waits for the duration specified by
Channel Switch Delay duration before joining the next group to view the next channel.

poisson: The client plays the channel in an order that follows a Poisson distribution. Configure the
watch_count, then set the varLambda value for the Poisson distribution.

normal: The client plays the channel in an order that follows a Normal distribution. Configure the
watch_count, then set the mu and sigma values for the Normal distribution.

unique: Each user starts from a different channel, and plays each channel in numerical order. There
are no configuration options for a Unique sequence. The number of channels played is automatically
set to the same value as the Count parameter.

custom: The client plays the channels following an existing profile, but in a sequence that you specify.

Default = "sequential".

start_group_address_sym

The address of the video server hosting the media that the client will play.

sigma

Chapter 17 IPTV/ Video

– 869 –

In a Normal distribution, m (mu) is the location parameter and s (sigma) is the scale parameter. In
IxLoad, mu is the mean average channel number that the distribution will be clustered around. As
channel numbers increase or decrease away from the mu value, they are less likely to be watched.
Sigma determines the width of the distribution, the number of channels that may be watched.

start_group_address

Specifies the first group address.

channel_switch_delay_max

If you want the client to pause before switching to the next channel, specify the maximum length of the
delay here.

da_switchover_delay

If you want the client to pause before switching to the next channel, specify the length of the delay
here. You can specify a fixed-length delay (same delay before playing every channel) or a random-
length delay (different delay before playing every channel).

serverIP

IP address of the D server.

mu

In a Normal distribution, m (mu) is the location parameter and s (sigma) is the scale parameter. In
IxLoad, mu is the mean average channel number that the distribution will be clustered around. As
channel numbers increase or decrease away from the mu value, they are less likely to be watched.
Sigma determines the width of the distribution, the number of channels that may be watched.

varLambda

A Poisson distribution models the number of events that occur within a given time interval. In a
Poisson distribution, l (lambda) is the shape parameter, which indicates the average number of events
in the given time interval. When used for IxLoad, the lambda value is the mean average channel
number that the distribution will be clustered around. The bell-curved shape of the distribution ensures
that the most-watched channels will be those closest to the mean (the lambda), with channels less
likely to be watched as channel numbers move away from the lambda value.

urls

IPTV (multicast) streams to play from the D server.

You can enter sequence generators in this field to generate URLs for more than one stream.

The number of D server URLs must match the A server Channel Count.

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

duration_min

Chapter 17 IPTV/ Video

– 870 –

Minimum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

watch_count

Number of channels that will be viewed as a part of this Join command.

If you set the channel_switch_mode to Normal or Poisson, you can configure the value here. For the
other distribution options, this option is read-only and automatically set to the same value as the
Channel Count parameter.

group_address_count

Specifies the number of additional channels, if you want the client to play more than one channel
(stream).

source_address

Configures the source address (the IP address of the A server), if the client uses IGMP v3 and you want
to send a source-specific JOIN to a multicast group.

If you specify ANY, the client does not specify a particular source address.

Default = "ANY".

concurrent_channels

Specifies the number of channels that each client plays at one time. You can specify up to four
channels to play at one time.

Default = 1.

channel_switch_delay_min

If you want the client to pause before switching to the next channel, specify the minimum length of the
delay here.

Arguments for id = JoinCommand

start_group_address

IP address of the first multicast group that the client will join.

group_address_count

Number of multicast groups that the client will join. Minimum = “1,” Maximum = “1,000.” (Default =
"1").

group_address_step

If the client will join more than one multicast group, enter the amount of increase in the multicast
group address. Minimum = "1." (Default = "1").

source_address

Chapter 17 IPTV/ Video

– 871 –

If the client uses IGMP v3 and you want the JOIN request to specify a source for the video stream,
configure the source address in this field. If you specify ANY, the client does not specify a particular
source address. (Default = “ANY”)

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

duration_min

Minimum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

concurrent_channels

If channel_switch_mode is set to Concurrent, this parameter specifies the number of channels that the
client plays at one time. Minimum = “1,” Maximum = "5." (Default = "1").

channel_switch_mode

Order in which the client joins the multicast groups in the Channel List to play the channels. The
choices are:

Mode Description

sequential The client plays the channels in the Channel List one after the other, in order based on
their address, starting with the Starting Group Address. After the Channel Watch
Duration expires, the client sends an IGMP LEAVE for the channel being watched. The
client waits for the duration specified by Channel Switch Delay duration before joining
the next group to play the next channel.

random The client plays the channels in the Channel List randomly.

concurrent (default) The client plays the channels in the Channel List in order, based on their
address. Specify the number of channels that it can play at any one time in the
Concurrent Channels field.

poisson The client plays the channel in an order that follows a Poisson distribution.

For Poisson distribution, the channel_switch_mode is set to “Poisson”. New attributes
used are: watch_count and varLambda.

normal The client plays the channel in an order that follows a Normal distribution.

For Normal distribution, the channel_switch_mode is set to “Normal” New attributes
used are: mu, sigma and watch_count.

unique Each user starts from a different channel, and plays each channel in numerical order.
There are no configuration options for a Unique sequence. The number of channels
played is automatically set to the same value as the Count parameter.

custom The client plays the channels following an existing profile, but in a sequence that you

Chapter 17 IPTV/ Video

– 872 –

specify.

channel_switch_delay_min

Minimum length of the time, in milliseconds, that the client will pause before playing the next channel
on the server. Minimum = “0,” Maximum = "2,147,483,647.” (Default = "0").

channel_switch_delay_max

Maximum length of the time, in milliseconds, that the client will pause before playing the next channel
on the server. Minimum = "0,” Maximum = "2,147,483,647.” (Default = "0").

Arguments for id = PlayCommand

serverIP

Video server that hosts the video stream to be played.

media

Video stream to be played. You can include sequence generators in this field to automatically generate
unique requests from simulated users. For information on how to use sequence generators, see the
section on Using Automatic Sequence Generators. For example:
-media "Stream\[1-\]"

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

duration_min

Minimum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

Arguments for id = PlayMediaCommand

symServerIP

Video server that hosts the video stream to be played.

media

Video stream to be played. You can include sequence generators in this field to automatically generate
unique requests from simulated users. For information on how to use sequence generators, see the
section on Using Automatic Sequence Generators. For example:
-media "Stream\[1-\]"

duration

Length of time (in seconds) to play the video stream. Minimum = “1,” Maximum = “2,147,483.”
(Default = "1").

Chapter 17 IPTV/ Video

– 873 –

Arguments for id = PlayStaticCommand

symServerIP

Video server that hosts the video stream to be played.

media

Video stream to be played. You can include sequence generators in this field to automatically generate
unique requests from simulated users. For information on how to use sequence generators, see the
section on Using Automatic Sequence Generators.

duration

Length of time (in seconds) to play the video stream. Minimum = “1,” Maximum = “2,147,483.”
(Default = "1").

destination_server_activity

Represents the symbolic destination of the server.

serverIP

Video server that hosts the video stream to be played.

Arguments for id = PlayMediaStaticCommand

cmdName

Name of the command added to the command list. Default = "PlayMediaStaticCommand n" where n is
the command's position in the command list.

commandType

Command type. Default = "PlayMediaStaticCommand"

symServerIP

Video server that hosts the video stream to be played. Default = "None".

media

Video stream to be played. You can include sequence generators in this field to automatically generate
unique requests from simulated users. For information on how to use sequence generators, see the
section on Using Automatic Sequence Generators.

duration_max

Maximum length of time (in seconds) to play the video stream. Minimum = “1,” Maximum =
“2,147,483.” (Default = "1").

duration_min

Minimum length of time (in seconds) to play the video stream. Minimum = “1,” Maximum = “2,147,483.”
(Default = "1").

seekTo

Chapter 17 IPTV/ Video

– 874 –

Reserved. Default = -1

serverIP

Video server that hosts the video stream to be played. This can be an IP address or a symbolic
destination (IxLoad server). Default = ""(none)

Arguments for id = KeepAliveCommand

count

Number of {KeepAlive} messages to be sent.

min_freq

The minimum time, in milliseconds, that can elapse before the client sends the next {KeepAlive}
message.

max_freq

The maximum time, in milliseconds, that can elapse before the client sends the next {KeepAlive}
message.

Arguments for id = PauseCommand

None.

Arguments for id = SeekCommand

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

duration_min

Minimum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

Arguments for id = ResumeCommand

seekTo

Number of seconds, measured from the start of the stream, to jump to and start playing from. Minimum
= “1,” Maximum = "2,147,483.” (Default = "1").

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

duration_min

Chapter 17 IPTV/ Video

– 875 –

Minimum length of time, in seconds, that users of this profile will view a channel. Minimum = “1,”
Maximum = "2,147,483.” (Default = "10").

Arguments for id = StopCommand

None.

Arguments for id = ThinkCommand

minimumInterval

Minimum length of the time, in milliseconds, that the client will pause before playing the next channel
on the server. Minimum = “1,000,” Maximum = "2,147,483,647.” (Default = "1,000").

maximumInterval

Maximum length of the time, in milliseconds, that the client will pause before playing the next channel
on the server. Minimum = “1000,” Maximum = “2,147,483,647.” (Default = "1,000").

Arguments for id = PassiveCommand

enableUnicast

Enables an Unicast or Multicast stream that can be monitored. (Default = "0"). If you enter 1 that
is Unicast, then a new rule needs to be configured. The rule is explained below.

Configuring Rule for Stream

$Activity_IPTV_VideoClient1 agent.pm.commands(0).rule.appendItem\
-id "Rule" \
-clock_rate 90000 \
-codec "H264" \
-value "10000-65535" \
-rtp_pt 96

id

The name of the rule.

clock_rate

Specifies the stream’s bit rate. (Default = "90000").

codec

Indicates the codec used on the stream. (Default = "H264").

value

Indicates the port range used by the stream. (Default = "10000-65535").

rtp_pt

Sets the RTP Payload type to a default value based on the codec value. The values are:

Chapter 17 IPTV/ Video

– 876 –

Codec Default RTP Payload Type value

MPEG-TS 33

H264 96 (Default)

MPEG4 Part 2 97

VC1 98

Arguments for id = LoopBeginCommand

LoopCount

Number of times to iterate. Value '0' treated as infinity. Minimum = “0,” Maxi= “2,147,483,647.”
(Default = "5").

Arguments for id = LoopEndCommand

None.

Arguments for id = DescribeCommand

destination_server_activity

The Video server that the client will send the media URL described in media. The media URL identifies
the set of stream to be controlled. Specify the destination as follows:

l If the destination is a real RTSP server, enter the server’s host name or IP address. By default,
the request will be sent to port 554. If the server is listening on a different port, specify the port
number after the host name or IP address as follows: server:port.

l If the destination is an IxLoad RTSP server Activity, select the Activity.
(Default = “None”).

serverIP

The IP address of the server.

media

The presentation URL sent to the server. The presentation URL identifies the stream to be controlled.
Media names may only contain letters, numbers, and the special symbols ‘.’, ‘,’, ‘_’, ‘/’ and ‘-’.
(Default = “None”).

Arguments for id = RTSPPlayCommand

duration_max

Maximum length of time, in seconds, that users of this profile will view a channel.

duration_min

Minimum length of time, in seconds, that users of this profile will view a channel.

Chapter 17 IPTV/ Video

– 877 –

Arguments for id = RTSPSetParamCommand

content

Specifies the value of the content.

contentType

Specifies the parameter of the content.

Arguments for id = RTSPGetParamCommand

content

Specifies the value of the content.

contentType

Specifies the parameter of the content.

EXAMPLE
$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \-id
"JoinCommand" \-destination_server_activity "Traffic2_IPTV_
VideoServer1:0" \-group_address_step "0.0.0.1" \-channel_
switch_mode "Concurrent" \-start_group_address_sym
"" \-sigma 1 \-start_group_address
"" \-channel_switch_delay_max 0 \-mu
1 \-varLambda 1 \-duration_max
10 \-duration_min 10 \-watch_count
1 \-group_address_count 1 \-source_address
"ANY" \-concurrent_channels 1 \-channel_switch_delay_min
0$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \-id
"PassiveCommand" \-enableUnicast 0$Activity_IPTV_
VideoClient1 agent.pm.commands.appendItem \-id
"DescribeCommand" \-destination_server_activity "Traffic2_IPTV_
VideoServer1:554" \-serverIP "198.18.0.101" \-media
"Stream0"$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \-id
"RTSPSetupCommand"$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \-id
"RTSPPlayCommand" \-duration 20 \-seekTo
-1$Activity_IPTV_VideoClient1 agent.pm.commands.appendItem \-id
"RTSPTeardownCommand"

SEE ALSO

Video Client Agent

Chapter 17 IPTV/ Video

– 878 –

Advanced
Advanced—Sets the Video client agent’s global configuration options for unicast traffic.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.pm.advanced.config

DESCRIPTION

A Video client’s advanced configuration options are set by modifying the options of the pm.advanced
option of the Video Client Agent object using its appendItem.

SUBCOMMANDS

None.

OPTIONS

enableEsm

If true, the use of the esm option is enabled. (Default = false).

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (TX) field.
Otherwise, the TCP Maximum Segment Size is 1,460 bytes. (Default = 1,460).

transport

Transport protocol used to send the video stream. It applies only to VoD.

Value Description

0 RTP over UDP

1 (default) UDP

enableTosRTSP

Enables the setting of the TOS (Type of Service) bits in the IP header of the RTSP packets.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

type_of_service_for_rtsp

Chapter 17 IPTV/ Video

– 879 –

If enableTosRTSP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the
standard choices that are in the GUI, you can use a string representation. To specify any of the other
255 TOS values, specify the decimal value. The default choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

rtsp_header

Type of header used to identify the video player simulated by the Video client agent. The choices are:

Value Description

Windows Media
Player

Windows Media Player 9.0

Real Player (default) Real Networks RealPlayer

Quick Time Apple Quick Time 6.5

Custom Custom player. Use the options to configure the headers that will identify this
client.

header_values

List of headers included with RTSP requests that the client sends to the server. sent to the If rtsp_
header is set to Custom, use this option to define the capabilities of the custom video client. This list
is of type Header; items are added to the list via the appendItem subcommand. Each element of the
list must be of the form “name: value” without any spaces in the key. (Default = None).

disableStreamStats

Disables collection of stream-related statistics to reduce memory usage. Values = 1 (True), 0 =
False (Default).
max_tracks_per_stream

Maximum number of tracks (RTP streams) that the client should expect in each RTSP stream. Values =
Min="1", Max="500", Default="2".

Chapter 17 IPTV/ Video

– 880 –

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

enableCustomSetup

This enables or disables the entry of parameters specified in the Transport: line of the RTSP SETUP
message. You can use these parameters to set or enable additional RTSP transport options on the
server. Default = false.

customSetup

If enableCustomSETUPtransportParam is false, then the Transport: line contains the following
data, which is mandatory for RTSP:

Transport protocol, connection type (unicast or multicast), and client IP port range used for the
transport protocol. For example:
RTP/AVP;unicast;client_port=35246-35247

If enableCustomSETUPtransportParam is true, then IxLoad appends a semi-colon (;) to the
mandatory data on Transport: line, and then appends the custom data in the field.

For example, if you specify the string mode=PLAY, the Transport: line will contain the following string:
RTP/AVP;unicast;client_port=35246-35247;mode=PLAYenable_custom_protocol

If true, a user-defined name is used to identify a protocol instead of the default. Specify the name
using the custom_protocol_name option. Default = false.

custom_protocol_name

If enable_custom_protocol is true, this option is the name used to identify a protocol instead of the
standard name. Default = "MP2T".

enable_custom_profile

If true, a user-defined name is used to identify a profile instead of the default. Specify the name using
the custom_profile_name option. Default = false .

custom_profile_name

If enable_custom_profile is true, this option is the name used to identify an A/V sync profile
instead of the standard name. Default = "H2221".

rtspProxyEnable

Enables use of an RTSP proxy.

rtspProxyIp

If enableRtspProxy is true, specify the RTSP proxy IP address.

Chapter 17 IPTV/ Video

– 881 –

rtspProxyPort

If enableRtspProxy is true, specify the RTSP proxy port number.

followRtspRedirects

If enabled, the client follows RTSP redirect responses from the server. Default = false.

rtcp_enable

If True, the RTCP port number is included in the SDP description. Values = 1 (True), 0 (False
(default)).

enable_async_teardown

If True, playback is stopped when the client receives a request header that contains a specific text
sub-string. Values = 1 (True), 0 (False (default)).

async_teardown_hdr_val

If enable_async_teardown is True, this option specifies the header sub-string that will stop playback.
Default = "".

enable_graceful_rampdown

If True, the test is stopped by moving to the Ramp-down phase and sessions are torn down gracefully.
If False, traffic is stopped as soon as possible, which may leave sessions up on the DUT. Default =
"false".

enable_hwacc

If True, hardware acceleration is used. Default = "false".

EXAMPLE
$Activity_IPTV_VideoClient1 agent.pm.advanced.config \-followRtspRedirect
true \-vlan_priority 0 \-type_of_service_for_rtsp
"Best Effort (0x0)" \-rtsp_header "Real Player" \-
enableTosRTSP false \-implicitLoopCheck
true \-rtspProxyEnable true \-CustomSetup
"mode=PLAY" \-enableCustomSetup true \-enableEsm
false \-users_allowed 1 \-rtspProxyIp
"0.0.0.0" \-rtspProxyPort "554" \-esm
1460 \-enableVlanPriority false \-transport
1

SEE ALSO

Video Client Agent

Header

Chapter 17 IPTV/ Video

– 882 –

Header
Header—Creates a list of RTSP headers to define a Video client as a custom video player.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.pm.advanced.header_values.appendItem

DESCRIPTION

If the Advanced option rtsp_header is set to Custom, use Header to create the name = value pairs
that will form the header that the Video client agent sends to the server.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

Name of the header. RFC 2326 defines the RTSP headers. (Default = “”).

value

Value for header. (Default = “”).

EXAMPLE

$Activity_IPTV_VideoClient1 agent.pm.advanced.header_values.appendItem
-name “Cache-Control” \
-value “no-cache”

SEE ALSO

Advanced

Chapter 17 IPTV/ Video

– 883 –

Signaling
Signaling—Configures the multicast signaling options.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.pm.signalling.config

DESCRIPTION

A Video client’s Signaling options are set by modifying the options of the pm.Signalling.config
option of the Video Client Agent object.

SUBCOMMANDS

None.

OPTIONS

enable_custom

If enabled, the custom client profiles that have been configured will be used in a test. The duration and
channel_switch_mode configured for individual JOIN commands (Arguments for id = JoinCommand
on page 18-35) will not apply. (Default = "0").

igmp_version

Sets the version of IGMP used by the client. The choices are:

Value Description

"IGMPv1” IGMP version 1.

Note: IGMP v1 requires IPv4 (see the ip_version option)

"IGMPv2” IGMP version 2.

"IGMPv3" (default) IGMP version 3.

ip_version

Sets the IP version used for multicast addresses. If multicast addresses are in IPv4 format, and you
can select the igmp_version. If multicast addresses are in IPv6 format, and you can select the mld_
version.

general_query_response_mode

If true, the video client responds to General Query messages.

Chapter 17 IPTV/ Video

– 884 –

Value Description

0 Client does not respond to General Query messages.

1 (default) Client responds to General Query messages.

unsolicited_response_mode

If true, the video client automatically sends full IGMP membership messages at regular intervals
without waiting for a query message. In the Report Interval Field, specify the frequency, in seconds, at
which unsolicited messages are generated.

Value Description

0 (default) Client does not send unsolicited IGMP membership messages.

1 Client sends unsolicited IGMP membership messages.

immediate_response

If true, the video client will ignore the value specified in the Maximum Response Delay in the
Membership Query message, assume that the Delay is always zero (0) seconds, and immediately
respond to the Query by sending a Report.

Value Description

0

(default) Client does not immediately respond to a query with a report.

1 Client immediately responds to a query with a report.

group_specific_query_
response_mode

If enabled, the client responds to group-specific Query messages. A group-speQuery message is sent
by a multicast router so it can learn about the multireception state of one multicast address, for each of
the neighboring interfaces, for example, when a member leaves a group.

Value Description

0 (default) Client does not respond to group-specific queries.

1 Client responds to group-specific queries.

mld_version

Version of the Multicast Listener Discovery (MLD) protocol used to listen for IPv6 multicast addresses.
You can select MLDv1 or MLDv2.

The ip_version has to be “IPv6” for MLD.

Chapter 17 IPTV/ Video

– 885 –

suppress_reports

(IGMPv3 only) If true, the client allows its IGMPv3 Membership Record to be “suppressed” by a
membership report for version 2. The suppression will only be for group reports received from another
port.

Value Description

0 Client does not allow its membership record to be suppressed.

1 (default) Client allows its membership record to be suppressed.

report_frequency

If unsolicited_response_mode is true, this option specifies the frequency (in seconds) at which
unsolicited messages are generated. (Default = "30").

parallel_multicast_vod

If true, simulated users can watch a VoD stream and one or more multicast streams simultaneously.
Values = 1 (True), 0 (False, default)

client_mode

Specifies whether the client is a video client (0) or IPTV client (1). Default = 0.

EXAMPLE
$Activity_IPTV_VideoClient1 agent.pm.signalling.config \-general_query_response_mode
true \-unsolicited_response_mode false \-report_frequency
60 \-igmp_version "IGMP v3" \-mld_version
"MLD v2" \-router_alert true \-group_specific_query_
response_mode true \-enable_custom false \-suppress_
reports true \-ip_version "IPv4"
\-immediate_response false \-client_mode
0

SEE ALSO

Video Client Agent

Chapter 17 IPTV/ Video

– 886 –

Profiles
Profiles—Determines the channel switching behavior of the video client.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
option...]
$Activity_IPTV_VideoClient1 agent.pm.signalling.profile_table.appendItem

DESCRIPTION

If custom profiles is enabled, the channel watch duration (the length of time a channel is viewed) and
the channel_switch_mode (how quickly the simulated user switches from to a different channel) for all
the users’ JOIN commands are controlled by the profiles.

A Video client’s Profile table is set by modifying the options of the pm.Signaling option of the Video
Client Agent object using the appendItem command.

OPTIONS

name

This is the name of the profile table.

If enabled, the custom client profiles that have been configured will be used in a test. The duration and
channel_switch_mode configured for individual JOIN commands (Arguments for id = JoinCommand
on page 18-35) will not apply. (Default = "0").

num_profiles

This indicates the number of profiles to be added with the same parameters.

percentage

Percentage of video clients that the profile will be applied to. The percentages of all profiles must add
up to 100.

The profile table is populated by default with a couple of profiles. If you want to declare a custom
profile, you need to clear the table with the following command:
$clnt_traffic agentList(0).pm.signalling.profile_table.clear

If you do not clear the table before you start adding profiles, you will get an exception saying you have
too many profiles which add up to over 100%.

duration_min

Minimum length of time, in seconds, that users of this profile will view a channel (play a file). Minimum
= "1," Maximum = “2,147,483.” (Default = "1").

duration_max

Chapter 17 IPTV/ Video

– 887 –

Maximum length of time, in seconds, that users of this profile will view a chan(play a file). Minimum =
"1," Maximum = “2,147,483.” (Default = "1").

channel_switch_delay_min

Minimum length of time, in milliseconds, that users of this profile will pause before viewing a new
channel (requesting a new file). Minimum = “0,” Maximum = "2,147,483,647.” (Default = "0").

channel_switch_delay_max

Maximum length of time, in milliseconds, that users of this profile will pause before viewing a new
channel (requesting a new file). Minimum = “0,” Maximum = "2,147,483,647.” (Default = "0").

EXAMPLE
$Activity_IPTV_VideoClient1 agent.pm.signalling.profile_table.appendItem \-id
"ProfileTable" \-name "Fast Switching" \-num_
profiles 1 \-channel_switch_delay_max 0 \-
duration_max 30 \-duration_min
10 \-percentage 50.0 \-channel_switch_delay_min
0$Activity_IPTV_VideoClient1 agent.pm.signalling.profile_table.appendItem \-id
"ProfileTable" \-name "Slow Switching" \-num_
profiles 1 \-channel_switch_delay_max 0 \-
duration_max 300 \-duration_min
100 \-percentage 50.0 \-channel_switch_delay_min
0

SEE ALSO

Video Client Agent

Signaling

Chapter 17 IPTV/ Video

– 888 –

Channel View
Channel View Table—Describes the channel view configuration options.

DESCRIPTION

Describes the options that are specific to the channel view table in custom option for channel_switch_
mode for IPTV and multicast.

SYNOPSIS

set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem]
$Activity_IPTV_VideoClient1 agent.pm.commands(0).channelviewTable.appendItem

Options

view_sequence

Mentions the sequence in which the channel is viewed.

view_sequence

Indicates the name of the channel view table.

EXAMPLE
$Activity_IPTV_VideoClient1 agent.pm.commands(0).channelviewTable.appendItem \-id
"ChannelViewTable" \-view_sequence "0-8,9" \-name
"Fast Switching"$Activity_IPTV_VideoClient1 agent.pm.commands
(0).channelviewTable.appendItem \-id
"ChannelViewTable" \-view_sequence "0-8,9" \-name
"Slow Switching"

Chapter 17 IPTV/ Video

– 889 –

IPTV Options
IPTV Options—Describes the options that are specific to the video client in IPTV mode.

SYNOPSIS

set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_IPTV_VideoClient1 agent.pm.iptv_options.config

DESCRIPTION

Describes the options that are specific to the video client in IPTV mode. IPTV Options are configured
with the agent.pm.iptv_options.config option of activity list of the Video Client Agent.

Options

iptv_switch_delay

If iptv_switch_mode is “2” then specify the fixed length of time here. minimum = "1", maximum =
"60", default = "1".

iptv_switch_mode

Selects how the IPTV client switches from the D server stream to the A server stream. The choices are:

Value Description

“0" (Default) Stop receiving D server stream when first A server packet is received

"1" Receive D server stream for its entire duration

"2" Stop receiving D server streams after receiving A server stream for certain duration

EXAMPLE
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem$Activity_
IPTV_VideoClient1 agent.pm.iptv_options.config \-iptv_switch_delay
1 \-iptv_switch_mode 2

Chapter 17 IPTV/ Video

– 890 –

Stats
Stats—Configures the statistics that IxLoad gathers for the client’s video streams.

DESCRIPTION

Stats are configured with the agent.pm.stats.config option of activity list of the Video Client
Agent.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoClient1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_IPTV_VideoClient1 agent.pm.stats.config

Options

PerStreamEntriesPerUser

Number of streams displayed for each user in the per-Stream view of the statistics. Default = "4", Min
= "1", Max =" 4".

updateInterval

Frequency, in milliseconds, at which IxLoad gathers the Quality Metrics statistics. Default="2000", Min
= "2000", Max = "100000".

nominalDelay

Length of time that packets are held in playout buffer before being played. Default="2", Min = "1",
Max = "100000".

bufferSize

Maximum number of packets that can be stored in the playout buffer at any instance in time.
Default="65535", Min = "1", Max = "65535".

enableVuserMonitor

Enables monitoring of a virtual user. Default = false.

vuserId

ID of the virtual user that you want to monitor. Min="1" Max="2147483647" Default="1".

enableVQmonStats

If enabled, IxLoad applies the values in the Quality Metrics fields to the video streams received by the
client and computes the Quality Metrics statistics.

updateInterval

Frequency, in milliseconds, at which IxLoad gathers the statistics related to the quality metrics.
Default="2000", Min = "2000", Max = "100000".

Chapter 17 IPTV/ Video

– 891 –

MinDelay

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

MaxDelay

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

enableFrameStats

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

NomDelay

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

IgnoreLoss

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

JBEMode

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

NomDelay

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

totalLimit

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

frameLimit

This parameter is no longer used in IxLoad 4.20 and subsequent releases.

EXAMPLE

$Activity_IPTV_VideoClient1 agent.pm.stats.config \

-MinDelay 5 \

-PerStreamEntriesPerUser 4 \

-MaxDelay 80 \

-enableFrameStats false \

-NomDelay 20 \

-qualityLimit 0 \

-IgnoreLoss false \

-frameLimit 0 \

-JBEMode 0 \

-enableVQmonStats false \

Chapter 17 IPTV/ Video

– 892 –

-vuserId 1 \

-enableVuserMonitor false \

-totalLimit 0 \

-updateInterval 2000 \

-bufferSize 65535 \

-bitrateLimit 0 \

-nominalDelay 2

Chapter 17 IPTV/ Video

– 893 –

Video Server Agent
Video Server Agent - create a video server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoServer1 [$Traffic2_Network2 activityList.appendItem
options...]
$Activity_IPTV_VideoServer1 agent.config

DESCRIPTION

A video server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity IPTV_
VideoServer1 of NetTraffic
Traffic2@Network2###set Activity_IPTV_
VideoServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"Video Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
IPTV_VideoServer1 config \-enable true \-name
"IPTV_VideoServer1" \-timeline $_Match_Longest_
$Activity_IPTV_VideoServer1 agent.config \-enable
true \-name "IPTV_VideoServer1"$Activity_IPTV_
VideoServer1 agent.pm.videoConfig.config \-serverMode
0$Activity_IPTV_VideoServer1 agent.pm.videoConfig.videoList.clear$Activity_IPTV_
VideoServer1 agent.pm.videoConfig.videoList.appendItem \-id
"Video" \-dest_port_incr 0 \-addr_incr

Chapter 17 IPTV/ Video

– 894 –

"0.0.0.1" \-name "Stream0" \-stream_count
10 \- "" \-duration 10 \-IP_type
"" \-type "VoD" \-starting_dest_port
1234$Activity_IPTV_VideoServer1 agent.pm.advancedOptions.config \-enableEsm
false \-type_of_service_for_rtsp "Best Effort (0x0)" \-
enableVlanPriority_for_rtsp true \-listen_port
554 \-enableTosRTSP false \-enableTosData
false \-link_speed 1000 \-type_of_service_for_data
"Best Effort (0x0)" \-esm 1460 \-vlan_priority_
rtsp 2$Activity_IPTV_VideoServer1
agent.pm.videoProp.stream.clear$Activity_IPTV_VideoServer1
agent.pm.videoProp.stream.appendItem \-id
"Stream" \-mpeg4_contains_hint_track "" \-mpeg4_profile
"" \-num_frames 0 \-fileButton
false \-struct_c "" \-mpeg4_trackID
0 \-ip_bit_rate 3.75 \-cbr
0 \-tsperudp 7 \-h264_contains_hint_track
"" \-duration 10 \-transport
1 \-dest_port_incr 0 \-addr_incr
"0.0.0.1" \-d_server_tos_or_dscp "Best Effort (0x0)" \-h264_
trackID 0 \-tos_or_dscp "Best
Effort (0x0)" \-hor_size 0 \-filename
"" \-content "Synthetic Payload" \-same_source_ip
false \-hrd_buffer 0 \-h264_packetization_mode
1 \-hrd_rate 0 \-type
"VoD" \-enable_d_server_tos false \-profile
0 \-starting_dest_port 1234 \-duration_in_packets
0 \-file_duration 0.0 \-min_frame_size
0 \- "" \-frame_rate 0.0 \-max_ip_bit_rate
0.0 \-file_duration_in_rtp_clock 0.0 \-h264_ignore_hint_track
false \-h264_requires_fragmentation "" \-mpeg4_level
"" \-enable_tos false \-mpeg_type
"MPEG2 Transport Stream" \-name "Stream0" \-vert_
size 0 \-level 0 \-
stream_count 10 \-max_packet_rate
0.0 \-max_frame_size 0 \-mpeg4_ignore_hint_track
false \-max_allowed_requests_d_server 1 \-h264_level
"" \-h264_profile ""$Activity_IPTV_VideoServer1
agent.pm.predefined_tos_for_rtsp.clear$Activity_IPTV_VideoServer1
agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Best Effort
(0x0)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Class 1
(0x20)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Class 2
(0x40)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Class 3
(0x60)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id

Chapter 17 IPTV/ Video

– 895 –

"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Class 4
(0x80)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Express Forwarding
(0xA0)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_rtsp.appendItem \-id
"TypeOfServiceForRtsp" \-tos_val_for_rtsp "Control
(0xC0)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.clear$Activity_
IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Best Effort
(0x0)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Class 1
(0x20)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Class 2
(0x40)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Class 3
(0x60)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Class 4
(0x80)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Express Forwarding
(0xA0)"$Activity_IPTV_VideoServer1 agent.pm.predefined_tos_for_data.appendItem \-id
"TypeOfServiceForData" \-tos_val_for_data "Control (0xC0)"

SEE ALSO

ixNetTraffic

Chapter 17 IPTV/ Video

– 896 –

Video Properties
Video Properties—Adds a video stream.

SYNOPSIS

set serverTraffic [::IxLoad new ixServerTraffic options]
$serverTraffic agentList.appendItem options...
$serverTraffic agentList(0).videoProp.appendItem options...
set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoServer1 [$Traffic2_Network2 activityList.appendItem
options...]

DESCRIPTION

A videoProp object is added to the Video Client Agent object using the appendItem subcommand
from the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

Name of the video stream. (Default = “Stream0”).

type

Type of the video stream. The choices for video mode are:

Value Description

Multicast Broadcast-type real-time video stream.

VoD Video-on-Demand stream.

Note:If a stream uses a payload file containing MPEG-4 Part-2 video or H264 video, the type
must be VoD; it cannot be Multicast.

The choices for IPTV mode are:

Value Description

Chapter 17 IPTV/ Video

– 897 –

AD
Server

An A (Acquisition) server packages RTP streams into multicast UDP packets and streams
them onto the distribution network.

A D (Distribution) server caches a certain amount of the multicast video data being
streamed over the network. When a user changes a channel, the D server sends a short
unicast burst of the new channel’s video traffic for the user to view while the system
switches the user from the previous channel’s multicast group to the new chan’s group.

V
Server

A V server provides Video-on-Demand service to an IPTV client.

stream

This is a list of type Stream. The elements in this list comprise the list of streams available on the
Video server. (Default = {}).

stream_count

If the video or IPTV A Server type is Multicast, this parameter specifies the numof instances of this
stream that will be streamed out. specifies the first Multicast Group Address.

If the video or D Server type is VoD, this parameter specifies how many instances of the stream that
the server hosts.
Minimum = “1,” Maximum = “1,000.” (Default = "1").

set payloadfile

This option specifies the name of the video file that will be streamed by the IxLoad Video Server or
IPTV Server. IxLoad Video Server can stream H264 and MPEG4 encoded video track, in a video file,
provided the file is in MPEG-4 file format.

starting_multicast_group_addr

For a Multicast channel, this field specifies the address of the first multicast group that the channel will
be available on.

addr_incr

If more than one instance of the Broadcast channel will be streamed out (stream_count is greater than
1), this parameter specifies the amount of increase in each multicast group address for the streams.
Minimum = “1,” Maximum = “2,147,483,647.” (Default = "1").

starting_dest_port

For a Multicast channel, this field specifies the first port number that the channel will be available on.
Minimum = “0,” Maximum = “65,535.” (Default = "0").

dest_port_incr

If more than one instance of the Multicast channel will be streamed out (stream_count is greater than
1), this parameter specifies the amount of increase in each port number for the streams. Minimum =
“0,” Maximum = “2,147,483,647.” (Default = "0").

duration

Chapter 17 IPTV/ Video

– 898 –

If the stream type is VoD or D Server, this parameter specifies the duration of the video stream.
Minimum = "0," Maximum = “2,147,483.” (Default = "0").

EXAMPLE
set payloadfile "D:/MPEG4/Cloud-vs11-withaudio(3.75Mbps).ts.MP4"puts
$payloadfileputs "Before adding Stream1."$svr_traffic agentList
(0).pm.videoProp.stream.appendItem \ -name "Stream1" \ -
content "Real Payload" \ -filename $payloadfile \
-ip_bit_rate "3.5000" \ -type "VoD" \ -stream_
count "2" \ -duration "100"puts "After adding Stream1."#-
---#ipv6 example#-------------
---$svr_traffic agentList
(0).pm.videoConfig.videoList(0).config \ -name "Stream0" \ -
type "Multicast" \ - "FF04::13" \ -stream_count
1 \ -addr_incr "0::1"

SEE ALSO

Video Server Agent

Chapter 17 IPTV/ Video

– 899 –

Advanced Options
Advanced Options—Sets the Video server agent’s global configuration options.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoServer1 [$Traffic2_Network2 activityList.appendItem
options...]
$Activity_IPTV_VideoServer1 agent.pm.advancedOptions.config

DESCRIPTION

A Video server’s advanced configuration options are set by modifying the options of the
pm.advancedOptions.confog option of the Video Server Agent object.

SUBCOMMANDS

None.

OPTIONS

listen_port

Port that RTSP server listens on for new connections. Minimum = "1,” Maximum = “65,535.” (Default
= "554").

enableEsm

If true, the use of the ESM option is enabled. (Default = false).

enableTosRTSP

Enables the setting of the TOS (Type of Service) bits in the header of the RTSP control packets.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

enableTosData

Enables the setting of the TOS (Type of Service) bits in the header of the RTSP data packets.

Value Description

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

Chapter 17 IPTV/ Video

– 900 –

If enableEsm is true, the ESM value to negotiate with. (Default = 1,460).

type_of_service_for_rtsp

If enableTosRTSP is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes. (Default = "Best Effort 0x0"). If you want to specify the
standard choices that are in the GUI, you can use a string representation. To specify any of the other
255 TOS values, specify the decimal value. The default choices are:

Value Description

“Best Effort (0x0)“ (Default) routine priority

“Class 1 (0x20)“ Priority service, Assured Forwarding class 1

“Class 2 (0x40)“ Immediate service, Assured Forwarding class 2

“Class 3 (0x60)“ Flash, Assured Forwarding class 3

“Class 4 (0x80)“ Flash-override, Assured Forwarding class 4

“Express Forwarding (0xA0)“ Critical-ecp

“Control (0xC0)“ Internet-control

type_of_service_for_data

If enableTosData is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting
and Assured Forwarding classes for RTSP data packets. See type_of_service_for_rtsp for the list of
choices (Default = "Best Effort (0x0)").

enableVlanPriority_for_rtsp

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

enable_d_server_tos

This enables (1) the Type of Service (ToS) bits. Default = 0.

d_server_tos_or_dscp

If enable_d_server_tos is set to 1, you can set the Type of Service (ToS) bits that will be set in this
stream from the A server, D Server and V Server. The value set here can be over-ridden by the value
that is set for d_server_tos_or_dscp in Stream configuration. The available choices are:

Chapter 17 IPTV/ Video

– 901 –

Value Description

Best Effort (0x0) (Default) Routine service.

Class 1 (0x20) Priority service, Assured Forwarding class 1

Class 2 (0x40) Immediate service, Assured Forwarding class 2

Class 3 (0x60) Flash, Assured Forwarding class 3

Class 4 (0x80) Flash-override, Assured Forwarding class 4

Express Forwarding (0xA0) Critical-ecp

Control (0xC0) Internet-control

Note: This field only sets the ToS type for the multicast (data plane) traffic; the ToS type for
IGMP packets (the control plane traffic) will remain set to 0xC0.

enable_hwacc

If True, hardware acceleration is used. Default = "false".

EXAMPLE
$Activity_IPTV_VideoServer1 agent.pm.advancedOptions.config \-enableEsm
false \-type_of_service_for_rtsp "Best Effort (0x0)" \-
enableVlanPriority_for_rtsp true \-listen_port
554 \-enableTosRTSP false \-enableTosData
false \-link_speed 1000 \-type_of_service_for_data
"Best Effort (0x0)" \-esm 1460 \-vlan_priority_
rtsp 2

SEE ALSO

Video Server Agent

Chapter 17 IPTV/ Video

– 902 –

Video Config
Video Config—Contains the list of video streams hosted by the IxLoad IPTV AD and V Servers.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_IPTV_VideoServer1 [$Traffic2_Network2 activityList.appendItem
options...]
$Activity_IPTV_VideoServer1 agent.pm.videoConfig.config

DESCRIPTION

A Video server’s configuration options are set by modifying the options of the
pm.videoConfig.config option of the Video Server Agent object.

SUBCOMMANDS

None.

OPTIONS

a_port_ip

IP address of the A server port. (Default = "")

iptv_multiport_enable

Indicates whether traffic from A and D server originates from the same ixia port or multiple ports.
(Default = "0").

serverMode

Sets the server mode to Video or IPTV. (Default = "0").

EXAMPLE
$Activity_IPTV_VideoServer1 agent.pm.videoConfig.config \-a_server_ip
"10.0.2.6" \-iptv_multiport_enable 1 \-serverMode
1

SEE ALSO

Advanced Options

Chapter 17 IPTV/ Video

– 903 –

IPTV / Video Statistics
The test results are available from the location defined on the User Directories window. See User
Directories.

For the IPTV / Video client statistics,see .IPTV / Video Client Statistics

For the IPTV / Video server statistics, see IPTV / Video Server Statistics

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Note: If the client is receiving a large number of streams (for example, about 820 1Mbps
streams on an ALM1G client port), keep the page size (the number of rows) of the per-stream
statistics view small. Having large page sizes (large numbers of rows per page) causes the
statistics to not refresh correctly and causes paging (moving from one page to another) to
take a long time.

Chapter 17 IPTV/ Video

– 904 –

IPTV / Video Client Statistics
This section describes the statistics for IPTV and Video clients .

Chapter 17 IPTV/ Video

– 905 –

Global Stream Statistics

The table below lists the IxLoad IPTV / Video client global stream statistics.

Statistic Description

VoD Streams
Playback
Successful

Number of RTP streams played in which at least one packet was received.

VoD Streams With
Errors

Number of RTP streams played in which one or more packets were lost.

Frame Stats
Disabled

Deprecated

Quality Metrics
Disabled

Initially, this statistic displays no value.

If the received data rate exceeds the cut-off threshold, IxLoad stops computing
the Quality Metrics, and this statistic will display “YES”.

The value will remain YES until the end of the iteration. Once the Quality
Metrics computation is disabled during a run, it remains disabled throughout
the remainder of the run.

Prior to starting the next run (or the next iteration of the same test), this
statistic will be cleared and IxLoad will again begin computing the Quality
Metrics. It will continue to compute the metrics as long as the bit rate remains
below the cut-off threshold.

Note for Tcl API users: For this statistic, use the Aggregation Type kString.

Total Bytes Rcvd Total number of bytes received by the client.

Total packets
Rcvd

Total number of packets received by the client.

Total Loss Total number MPEG2-TS packets lost.

Unexpected UDP
Packets Received

Number of UDP packets received packets during a time when no channels are
active.

Overload Packets
Dropped

Number of RTP packets dropped because a port did not have enough computing
power to process them.

Total RTP Packets
Lost

Total number of RTP packets lost while using RTP over UDP transport.

Total Out Of Order
RTP Packets Rcvd

Total number of RTP packets received in the wrong order while using RTP over
UDP transport.

Total Duplicate Total number of duplicate RTP packets received.

Chapter 17 IPTV/ Video

– 906 –

RTP Packets

Global Jitter Average variation in arrival times of packets on all streams.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

RTCP Avg Packet
Size

Average outbound RTCP packet size.

RTCP Avg Packet
Transmission Time

Amount of time between the most recent two consecutive RTCP packets sent.

RTCP Packets
Sent

Number of RTCP packets sent.

RTP Lost
Sequence: One
Packet

Number of instances in which 1 packet was lost.

RTP Lost
Sequence: Two or
Three Packets

Number of instances in which 2 or 3 consecutive packets were lost.

RTP Lost
Sequence: Four or
Five Packets

Number of instances in which 4 or 5 consecutive packets were lost.

RTP Lost
Sequence: Six to
Ten Packets

Number of instances in which 6-10 consecutive packets were lost.

RTP Lost
Sequence: Eleven
or More Packets

Number of instances in which 11 or more consecutive packets were lost.

RTP Maximum
Lost Sequence

Maximum gap between the sequence numbers of RTP packets received on a
stream. This statistic represents the maximum burst loss that has occurred in
the network.

Jitter less than 50
us

Number of packets received with 0 to 50 microseconds of jitter.

Jitter between 50 -
100 us

Number of packets received with 50 to 100 microseconds of jitter.

Jitter between 100
- 500 us

Number of packets received with 100 -500 microseconds of jitter.

Jitter between 500 Number of packets received with 500 microseconds to 2 milliseconds of jitter.

Chapter 17 IPTV/ Video

– 907 –

us - 2 ms

Jitter between 2 -
5 ms

Number of packets received with 2 to 5 milliseconds of jitter.

Jitter between 5 -
10 ms

Number of packets received with 5 to 10 milliseconds of jitter.

Jitter greater than
10 ms

Number of packets received with more than 10 milliseconds of jitter.

Packet Size
between 0 - 100
bytes

Number of packets received that were between 100 and 200 bytes in size.

Packet Size
between 100 - 200
bytes

Number of packets received that were between 100 and 200 bytes in size.

Packet Size
between 200 - 400
bytes

Number of packets received that were between 200 and 400 bytes in size.

Packet Size
between 400 - 600
bytes

Number of packets received that were between 400 and 600 bytes in size.

Packet Size
between 600 -
1000 bytes

Number of packets received that were between 600 and 1000 bytes in size.

Packet Size
greater than 1000
bytes

Number of packets received that were larger than 1000 bytes.

Inter Packet
Arrival Time
between 0 - 2 ms

Number of packets that arrived less than 2 milliseconds after the preceding
packet was received.

Inter Packet
Arrival Time
between 2 - 5 ms

Number of packets that arrived between 2 and 5 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time
between 5 - 10 ms

Number of packets that arrived between 5 and 10 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time

Number of packets that arrived between 10 and 25 milliseconds after the
preceding packet was received.

Chapter 17 IPTV/ Video

– 908 –

between 10 - 25
ms

Inter Packet
Arrival Time
between 25 - 50
ms

Number of packets that arrived between 25 and 50 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time
between 50 - 100
ms

Number of packets that arrived between 50 and 100 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time
between 100 - 200
ms

Number of packets that arrived between 100 and 200 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time
between 200 - 500
ms

Number of packets that arrived between 200 and 500 milliseconds after the
preceding packet was received.

Inter Packet
Arrival Time
greater than 500
ms

Number of packets that arrived more than 500 milliseconds after the preceding
packet was received.

Note: The following packet latency statistics are only available for streams from an IxLoad Video
server with synthetic payloads.

Packet Latency
between 0 - 2 ms

Number of UDP packets that required between 0 and 2 milliseconds to travel
from the server to the client.

Packet Latency
between 2 - 5 ms

Number of UDP packets that required between 2 and 5 milliseconds to travel
from the server to the client.

Packet Latency
between 5 - 10 ms

Number of UDP packets that required between 5 and 10 milliseconds to travel
from the server to the client.

Packet Latency
between 10 - 25
ms

Number of UDP packets that required between 10 and 25 milliseconds to travel
from the server to the client.

Packet Latency
between 25 - 50
ms

Number of UDP packets that required between 25 and 50 milliseconds to travel
from the server to the client.

Packet Latency Number of UDP packets that required between 50 and 100 milliseconds to

Chapter 17 IPTV/ Video

– 909 –

between 50 - 100
ms

travel from the server to the client.

Packet Latency
between 100 - 200
ms

Number of UDP packets that required between 100 and 200 milliseconds to
travel from the server to the client.

Packet Latency
between 200 - 500
ms

Number of UDP packets that required between 200 and 500 milliseconds to
travel from the server to the client.

Packet Latency
greater than 500
ms

Number of UDP packets that more than 500 milliseconds to travel from the
server to the client.

Avg Packet
Latency

Average amount of time required for a packet to travel from the server to the
client.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Max Packet
Latency

Maximum amount of time required for a packet to travel from the server to the
client.

For Dummy payloads, this statistic is updated only if the packets are sent over
RTP transport.

For Synthetic payloads, this statistic is updated for packets sent over UDP or
RTP transport, but only if Hardware Acceleration is disabled.

Chapter 17 IPTV/ Video

– 910 –

Per-Stream Statistics

The table below lists the IxLoad IPTV / Video client statistics that are available on a per-stream basis.

The per-stream view displays statistics on the active stream for each user. To display meaningful
values for the Leave Latency, Channel Overlap Duration, and Channel Gap Duration statistics, you
should set the Entries per User in Per Stream Stats (on the Statistics Options tab) as follows:

l If Concurrent Channel View Sequence is set to 1, set Entries per User in Per Stream Stats to 2.

l If Concurrent Channel View Sequence is set to 2, set Entries per User in Per Stream Stats to 4
(the maximum value).

These values will ensure that the statistics values for a previous stream are retained, and that values
for the Leave Latency, Channel Overlap Duration, and Channel Gap Duration statistics will be
displayed. Otherwise, these statistics may display as 0.

Note: In Video mode, the per-stream statistics
view displays as:
Video Client Per Stream.

In IPTV mode, the per-stream statistics view
displays as :
Video Client IPTV Per Stream.

Statistic Description

Active Indicates whether the stream is active or not:

0 = inactive

1 = active

Note for Tcl API users: For this statistic, use the Aggregation Type kString.

Stream Name Name of stream.

Note for Tcl API users: For this statistic, use the Aggregation Type kString.

Flow ID Number identifying the flow used by the stream.

A flow consists of the packets flowing between a source IP:port and a destination
IP:port.

Note for Tcl API users: For this statistic, use the Aggregation Type kString.

Transport Type of transport used on the stream.

Note for Tcl API users:

0 = UDP

1 = RTP/UDP

For this statistic, use the Aggregation Type kString.

Video Codec Video codec used on the stream.

Chapter 17 IPTV/ Video

– 911 –

Note for Tcl API users: For this statistic, use the Aggregation Type kString.

Stream Bit Rate Bit rate used on stream.

Bytes Number of bytes received on the stream.

Packets Number of packets received on the stream.

Loss Number of packets lost on the stream.

Maximum Lost
Sequence

Maximum gap between the sequence numbers of RTP packets received on the
stream. This statistic represents the maximum burst loss that has occurred on
the stream.

MDI-DF Media Delivery Index - Delay Factor (MDI-DF) experienced on stream.

MIN MDI-DF Smallest MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

MAX MDI-DF Largest MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

AVG-MDI-DF Average MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

MDI-MLR Media Delivery Index - Media Loss Rate experienced on stream.

Jitter Current instantaneous jitter.

Inter Pkt Arrival
Time

Amount of time between received packets.

Min Inter Pkt
Arrival Time

Smallest amount of time between received packets, in milliseconds.

Max Inter Pkt
Arrival Time

Largest amount of time between received packets, in milliseconds.

Packet Latency
(ns)

Average packet latency on the stream.

Min Packet
Latency (ns)

Smallest packet latency on the stream.

Max Packet
Latency (ns)

Longest packet latency on the stream.

Chapter 17 IPTV/ Video

– 912 –

Play Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the IPTV client sent
an IGMP JOIN (to play a multicast channel on an AD server) or RTSP PLAY (to
play a VoD channel on a V server) and the time it received the first byte of data.

Join Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent an
IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the time it
received the first byte of data.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl API script, use the kWeightedAverage aggregation type.

Leave Latency
(ms)

Amount of time, in milliseconds, elapsed between the time the client sent an
IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) and the time it
received the last byte of data.

Leave latency has a maximum timeout of 10 seconds; if the client continues to
receive data 10 seconds after it has sent the Leave command, the latency is
measured as 10 seconds.

This statistic is valid only for IGMPv2. For IGMPv3, Leaves for multicast groups
are sent by sending an IGMP report with the modified group list.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl API script, use the kWeightedAverage aggregation type.

Channel Switch
Latency

Amount of time elapsed between the time the client sent an IGMP LEAVE to
change to a new channel, and the time it received the first byte of the new
stream.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Channel Gap
Duration

When changing channels, this statistic measures the amount of time elapsed
between the time the client received the last byte of the old stream and the time
it received the first byte of the new stream.

Channel Overlap
Duration

When changing channels, this statistic measures the amount of time that the
client was simultaneously receiving both the old and new streams.

Control Sent Indicates the type of control command that has most recently been sent:

0 = LEAVE or PAUSE/TEARDOWN sent

1 = JOIN or PLAY sent

Data Rcvd Indicates whether or not data is being received:

0 = no data received

1 = data received

RTP Packets Lost Number of RTP packets lost.

RTP Packets Out Number of RTP packets received out of order.

Chapter 17 IPTV/ Video

– 913 –

of Order

RTP Packets
Duplicated

Number of duplicate RTP packets received.

ICC Unicast
Bytes
(IPTV mode
only)

Number of unicast bytes received by the client.

ICC Unicast
Packets

(IPTV mode
only)

Number of unicast packets received by the client.

ICC Multicast
Bytes

(IPTV mode
only)

Number of multicast bytes received by the client.

ICC Multicast
Packets

(IPTV mode
only)

Number of multicast packets received by the client.

ICC Packets Lost
or Dup Due To
Switch

(IPTV mode
only)

Number of packets lost or duplicated due to switching from a unicast (D server)
stream to a multicast (A server) stream.

If packets were lost, this statistic is displayed with a minus-sign (-). For
example, -100 indicates that 100 packets were lost.

If packets were duplicated, this statistic is displayed with a plus-sign (+). For
example, +100 indicates that 100 packets were duplicated.

Unicast-
Multicast Switch
Latency (ms)

Time elapsed switching from a VOD (unicast) stream to a broadcast (multicast)
stream.

This statistic is only returned for the ICC command for MSIPTV emulation.

RTCP Packets
Sent

Number of RTCP packets sent.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Chapter 17 IPTV/ Video

– 914 –

Video Client Data Conditional Statistics

The table below lists the IxLoad IPTV / Video client data QoE Detective statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

UDP Bytes
Received

All Number of UDP bytes received.

UDP
Packets
Received

All Number of UDP packets received.

MPEG2 TS
Loss

All Number of MPEG-2 Transport Stream packets lost.

This statistic differs from the Total TS Loss statistic in that Total TS Loss
measures the total MPEG2 TS packet lost, while this statistic measures
only the loss on for the IP address, VLAN, or user.

MDI-DF
(ms)

User Media Delivery Index - Delay Factor (MDI-DF) experienced on stream.

MDI-MLR User Media Delivery Index - Media Loss Rate experienced on stream.

Avg MDI-
DF (ms)

All Average MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

Min MDI-
DF (ms)

All Smallest MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

Max MDI-
DF (ms)

All Largest MDI Delay Factor experienced on stream.

Note:When retrieved from the Tcl API, this statistic is returned in units of
nanoseconds (ns).

Stream Bit
Rate
(Kbps)

User Bit rate used on stream.

Avg All Average bit rate calculated for the stream.

Chapter 17 IPTV/ Video

– 915 –

Stream Bit
Rate
(Kbps)

Received
Bit Rate
(Kbps)

All Actual bit rate of received stream.

RTP Clock
Rate

User Clock rate used for RTP connection.

RTP SSRC User Value of the SSRC field in RTP packets in the stream.

Video PID User Package Identifier used on video stream

Audio PID User Package Identifier used on audeo stream.

RTP
Packets
Lost

All Total number of RTP packets lost while using RTP over UDP transport.

RTP
Packets
Out of
Order

All Total number of RTP packets received in the wrong order while using RTP
over UDP transport.

RTP
Packets
Duplicate

All Number of duplicate RTP packets received.

Join
Latency
(ms)

User Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the
time it received the first byte of data.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl API script, use the kWeightedAverage aggregation type.

Leave
Latency
(ms)

User Amount of time, in milliseconds, elapsed between the time the client sent
an IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) and the
time it received the last byte of data.

Leave latency has a maximum timeout of 10 seconds; if the client
continues to receive data 10 seconds after it has sent the Leave command,
the latency is measured as 10 seconds.

This statistic is valid only for IGMPv2. For IGMPv3, Leaves for multicast
groups are sent by sending an IGMP report with the modified group list.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl API script, use the kWeightedAverage aggregation type.

Channel User Average time elapsed between the time the client changed to a new

Chapter 17 IPTV/ Video

– 916 –

Switch
Latency
(ms)

channel and the time it received the first byte of the new stream.

Channel
Overlap
Duration
(ms)

User When changing channels, this statistic measures the amount of time that
the client was simultaneously receiving both the old and new streams.

Channel
Gap
Duration
(ms)

User When changing channels, this statistic measures the amount of time
elapsed between the time the client received the last byte of the old
stream and the time it received the first byte of the new stream.

Avg Inter
Pkt Arrival
Time (us)

All Amount of time between received packets.

This statistic differs from the Inter-Packet Arrival Time statistic in that this
statistic is an average, while Inter-Packet Arrival Time is an
instantaneous measure.

Min Inter
Pkt Arrival
Time (us)

All Smallest amount of time between received packets, in milliseconds.

Max Inter
Pkt Arrival
Time (us)

All Largest amount of time between received packets, in milliseconds.

Avg One
Way Delay
(us)

All Average latency on the stream measured in one direction.

Min One
Way Delay
(us)

All Shortest latency on the stream measured in one direction.

Max One
Way Delay
(us)

All Longest latency on the stream measured in one direction.

Avg Packet
Latency
(us)

All Average packet latency on the stream.

Avg Jitter
(us)

All Current instantaneous jitter.

Min Jitter
(us)

All Smallest jitter encountered on the stream.

Chapter 17 IPTV/ Video

– 917 –

Max Jitter
(us)

All Largest jitter encountered on the stream.

Transport User Type of transport used on the stream.

Note for Tcl API users:

0 = UDP

1 = RTP/UDP

For this statistic, use the Aggregation Type kString.

Chapter 17 IPTV/ Video

– 918 –

Multicast and VoD Global Statistics

The table below lists the global IxLoad IPTV / Video client multicast and VoD statistics.

Statistic Description

Active Multicast Channels Number of multicast channels joined across all users.

Multicast Channels
Requested

Number of multicast channels that the client requested.

Multicast Requests
Successful

Number of multicast requests for which the client received a
successful response.

Multicast Requests Failed Number of multicast requests for which the client received a failure
response.

VoD Streams Played Total number of VoD streams played by the client.

VoD Streams Playback
Successful

Number of VoD streams played to completion by the client.

VoD Streams Played Failed Number of VoD streams that could not be played.

Multicast and VoD QoE Detective Statistics

The table below lists the IxLoad IPTV / Video client multicast and VoD statistics that are available in
QoE Detective.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Active Multicast
Channels

All Number of multicast channels joined across all users.

Multicast Channels
Requested

All Number of multicast channels that the client requested.

Chapter 17 IPTV/ Video

– 919 –

Multicast Requests
Successful

All Number of multicast requests for which the client received a
successful response.

Multicast Requests
Failed

All Number of multicast requests for which the client received a
failure response.

VoD Streams Played All Total number of VoD streams played by the client.

VoD Streams Playback
Successful

All Number of VoD streams played to completion by the client.

VoD Streams Played
Failed

All Number of VoD streams that could not be played.

Chapter 17 IPTV/ Video

– 920 –

IGMP and MLD QoE Detective Statistics

The table below lists the IxLoad IPTV / Video client IGMP and MLD that are available in QoE Detective
view.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

IGMP Statistics

IGMPv1 Reports Sent All Number of IGMP version 1 Report messages sent.

IGMPv2 Reports Sent All Number of IGMP version 2 Report messages sent.

IGMPv2 Leaves Sent All Number of IGMP version 2 Leave messages sent.

IGMPv3 Reports Sent All Number of IGMP version 3 Report messages sent.

IGMP General Query Received All Number of IGMP General Query messages received.

IGMP Group Query Received All Number of IGMP Group Query messages received.

IGMPv3 Group Source Query
Received

All Number of IGMP version 3 Group Source Query
messages received.

IGMPv1 Reports Received All Number of IGMP version 1 Report messages received.

IGMPv2 Reports Received All Number of IGMP version 2 Report messages received.

IGMPv3 Reports Received All Number of IGMP version 3 Report messages received.

MLD Statistics

MLDv1 General Query
Received

All Number of MLD version 1 General Query messages
received.

MLDv2 General Query
Received

All Number of MLD version 2 General Query messages
received.

MLDv1 Group Query Received All Number of MLD version 1 Group Query messages
received.

MLDv2 Group Query Received All Number of MLD version 2 Group Query messages
received.

Chapter 17 IPTV/ Video

– 921 –

MLDv2 Group Source Query
Received

All Number of MLD version 2 Group Source Query
messages received.

MLDv1 Reports Sent All Number of MLD version 1 Report messages received.

MLDv2 Reports Sent All Number of MLD version 2 Report messages sent.

MLDv1 Leave Sent All Number of MLD version 1 Leave messages sent.

MLDv1 Reports Received All Number of MLD version 1 Report messages received.

MLDv2 Reports Received All Number of MLD version 2 Report messages received.

Chapter 17 IPTV/ Video

– 922 –

IPTV Global Statistics

The table below lists the IxLoad IPTV / Video client statistics for IPTV clients.

Note: IGMP and MLD are not applicable to VoD, so
in a VoD test, no IGMP or MLD statistics are
displayed.

Statistic Description

Active D Server
Channels

Number of streams currently playing on the D server.

Active V Server
Channels

Number of streams currently playing on the V server.

D Server Channels
Requested

Number of streams requested from the D server.

D Server Requests
Successful

Number of requests to the D server that were successful.

D Server Requests
Failed

Combined total of control and data requests to the D server that failed.

D Server Requests
Failed (Control)

Number of control plane requests to the D server that failed.

D Server Requests
Failed (Data)

Number of data plane requests to the D server that failed.

V Server Channels
Requested

Number of streams requested from the V server.

V Server Requests
Successful

Number of requests to the V server that were successful.

V Server Requests
Failed

Combined total of control and data requests to the V server that failed.

V Server Requests
Failed (Control)

Number of control plane requests to the V server that failed.

V Server Requests
Failed (Data)

Number of data plane requests to the V server that failed.

IGMP Queries Rcvd Number of IGMP Query messages received by the client.

IGMP Reports Sent Number of IGMP Report messages sent by the client for all users.

Chapter 17 IPTV/ Video

– 923 –

IGMP Leaves Sent Number of IGMP Leave messages sent by the client.

MLD Queries Rcvd Number of MLD Report messages received.

MLD Reports Sent Number of MLD Report messages sent.

MLD Leaves Sent Number of MLD Leave messages sent.

Join Latency Amount of time, in milliseconds, elapsed between the time the client sent an
IGMP JOIN (broadcast channel) or RTSP PLAY (VoD channel) and the time it
received the first byte of data.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl API script, use the kWeightedAverage aggregation type.

Leave Latency Amount of time, in milliseconds, elapsed between the time the client sent an
IGMP LEAVE (broadcast channel) or RTSP PAUSE (VoD channel) and the time
it received the last byte of data.

Leave latency has a maximum timeout of 10 seconds; if the client continues
to receive data 10 seconds after it has sent the Leave command, the latency
is measured as 10 seconds.

This statistic is valid only for IGMPv2. For IGMPv3, Leaves for multicast
groups are sent by sending an IGMP report with the modified group list.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl API script, use the kWeightedAverage aggregation type.

Channel Switch
Latency

Amount of time elapsed between the time the client sent an IGMP LEAVE to
change to a new channel, and the time it received the first byte of the new
stream.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP Bytes Sent Number of bytes sent by the RTSP client, including the payload and all
headers.

RTSP Bytes Received Number of bytes received in RTSP messages.

RTSP Packets Sent Number of RTSP packets sent by the client.

RTSP Packets
Received

Number of RTSP packets received by the client.

RTSP Concurrent
Sessions

Number of concurrent RTSP sessions maintained.

RTSP Connection
Rate

Rate at which the client established RTSP connections.

Chapter 17 IPTV/ Video

– 924 –

RTSP Transactions Number of RTSP transactions completed.

RTSP Transaction
Rate

Rate at which the client completed RTSP transactions.

RTSP Connections Number of RTSP connections established by the client.

RTSP Setup Latency
(ms)

Amount of time elapsed, in milliseconds, between a client sending a request
to establish an RTSP connection and receiving the first byte of the
response.Note for Tcl API users: This is a weighted statistic. If you are using
this statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP Teardown
Latency (ms)

Amount of time elapsed, in milliseconds, between a client sending a request
to end an RTSP connection and receiving the first byte of the response.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP Play Latency (0
ms - 10 ms)

Number of instances in which 0 to 10 milliseconds elapsed between the time
a client sent a PLAY command and the time it received the first byte of the
media stream.

RTSP Play Latency
(10 ms - 50 ms)

Number of instances in which 10 to 50 milliseconds elapsed between the
time a client sent a PLAY command and the time it received the first byte of
the media stream.

RTSP Play Latency
(50 ms - 100 ms)

Number of instances in which 50 to 100 milliseconds elapsed between the
time a client sent a PLAY command and the time it received the first byte of
the media stream.

RTSP Play Latency
(100 ms - 300 ms)

Number of instances in which 100 to 300 milliseconds elapsed between the
time a client sent a PLAY command and the time it received the first byte of
the media stream.

RTSP Play Latency
(300 ms - 1 s)

Number of instances in which 300 to 1000 milliseconds elapsed between the
time a client sent a PLAY command and the time it received the first byte of
the media stream.

RTSP Play Latency
(Greater Than 1s)

Number of instances in which more than one second elapsed between the
time a client sent a PLAY command and the time it received the first byte of
the media stream.

RTSP Presentations
Active

Number of RTSP presentations available.

RTSP Presentations
Playing

Number of RTSP presentations playing.

RTSP Presentations
Paused

Number of RTSP presentations paused.

Chapter 17 IPTV/ Video

– 925 –

RTSP Presentations
Requested

Number of RTSP presentations requested by the client.

RTSP Presentation
Requests Successful

Number of presentation requests sent by the client for which it received a
successful response.

RTSP Presentation
Requests Failed

Number of presentation requests sent by the client that failed.

RTSP SET
PARAMETER Sent

Number of RTSP SET PARAMETER messages sent.

RTSP GET
PARAMETER Sent

Number of RTSP GET PARAMETER messages sent.

RTSP DESCRIBE Sent Number of RTSP DESCRIBE messages sent.

RTSP SETUP Sent Number of RTSP SETUP messages sent.

RTSP PLAY Sent Number of RTSP PAUSE commands sent.

RTSP PAUSE Sent Number of RTSP PAUSE commands sent.

RTSP TEARDOWN
Sent

Number of RTSP TEARDOWN commands sent.

RTSP DESCRIBE
Successful

Number of RTSP DESCRIBE commands for which a successful response was
received.

RTSP SETUP
Successful

Number of RTSP SETUP commands for which a successful response was
received.

RTSP SET
PARAMETER
Successful

Number of RTSP SET PARAMETER commands for which a successful response
was received.

RTSP GET
PARAMETER
Successful

Number of RTSP GET PARAMETER commands for which a successful response
was received.

RTSP PLAY
Successful

Number of RTSP PLAY commands for which a successful response was
received.

RTSP PAUSE
Successful

Number of RTSP PAUSE commands for which a successful response was
received.

RTSP TEARDOWN
Successful

Number of RTSP TEARDOWN commands for which a successful response was
received.

RTSP DESCRIBE Number of RTSP DESCRIBE commands that failed.

Chapter 17 IPTV/ Video

– 926 –

Failed

RTSP SETUP Failed Number of RTSP SETUP commands that failed.

RTSP SET
PARAMETER Failed

Number of SET_PARAMETER replies received with a code other than OK
(200).

RTSP GET
PARAMETER Failed

Number of RTSP GET PARAMETER commands that failed.

RTSP PLAY Failed Number of RTSP PLAY commands that failed.

RTSP PAUSE Failed Number of RTSP PAUSE commands that failed.

RTSP TEARDOWN
Failed

Number of RTSP TEARDOWN commands that failed.

Average Play latency Average amount of time elapsed between the time the client sent a Play
command and them time it received the first byte of the video stream.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Average Pause
latency

Average amount of time elapsed between the time the client sent a Pause
command and the time it stopped receiving data from the video stream.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Video Simulated
Users

Number of users simulated by the client.

IPTV QoE Detective Statistics

The table below lists the IxLoad IPTV / Video client statistics for IPTV clients in QoE Detective.

Note: IGMP and MLD are not applicable to VoD, so in a VoD test, no IGMP or MLD statistics
are displayed.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Chapter 17 IPTV/ Video

– 927 –

Statistic QoE
Detective

Description

Active D Server Channels All Number of streams currently playing on the D server.

Active V Server Channels All Number of streams currently playing on the V server.

D Server Channels
Requested

All Number of streams requested from the D server.

D Server Requests
Successful

All Number of requests to the D server that were successful.

D Server Requests Failed All Combined total of control and data requests to the D
server that failed.

D Server Requests Failed
(Control)

All Number of control plane requests to the D server that
failed.

D Server Requests Failed
(Data)

All Number of data plane requests to the D server that
failed.

V Server Channels
Requested

All Number of streams requested from the V server.

V Server Requests
Successful

All Number of requests to the V server that were successful.

V Server Requests Failed All Combined total of control and data requests to the V
server that failed.

V Server Requests Failed
(Control)

All Number of control plane requests to the V server that
failed.

V Server Requests Failed
(Data)

All Number of data plane requests to the V server that
failed.

Chapter 17 IPTV/ Video

– 928 –

RTSP QoE Detective Statistics

The table below lists QoE Detective the IxLoad IPTV / Video client statistics for IPTV clients.

Note: IGMP and MLD are not applicable to VoD, so in a VoD test, no IGMP or MLD statistics
are displayed.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

RTSP Bytes Sent All Number of bytes sent by the RTSP client, including the payload and
all headers.

RTSP Bytes
Received

All Number of bytes received in RTSP messages.

RTSP Packets
Sent

All Number of RTSP packets sent by the client.

RTSP Packets
Received

All Number of RTSP packets received by the client.

RTSP Concurrent
Sessions

All Number of concurrent RTSP sessions maintained.

RTSP Connection
Rate

All Rate at which the client established RTSP connections.

RTSP
Transactions

All Number of RTSP transactions completed.

RTSP Transaction
Rate

All Rate at which the client completed RTSP transactions.

RTSP
Connections

All Number of RTSP connections established by the client.

RTSP Setup
Latency (ms)

All Amount of time elapsed, in milliseconds, between a client sending a
request to establish an RTSP connection and receiving the first byte
of the response.

RTSP Teardown All Amount of time elapsed, in milliseconds, between a client sending a

Chapter 17 IPTV/ Video

– 929 –

Latency (ms) request to end an RTSP connection and receiving the first byte of the
response.

Note for Tcl API users: This is a weighted statistic. If you are using
this statistic in a Tcl script, use the kWeightedAverage aggregation
type.

RTSP
Presentations
Active

All Number of RTSP presentations available.

RTSP
Presentations
Playing

All Number of RTSP presentations playing.

RTSP
Presentations
Paused

All Number of RTSP presentations paused.

RTSP
Presentations
Requested

All Number of RTSP presentations requested by the client.

RTSP
Presentation
Requests
Successful

All Number of presentation requests sent by the client for which it
received a successful response.

RTSP
Presentation
Requests Failed

All Number of presentation requests sent by the client that failed.

RTSP DESCRIBE
Sent

All Number of RTSP DESCRIBE messages sent.

RTSP SETUP Sent All Number of RTSP SETUP messages sent.

RTSP SET
PARAMETER Sent

All Number of RTSP SET PARAMETER messages sent.

RTSP GET
PARAMETER Sent

All Number of RTSP GET PARAMETER messages sent.

RTSP OPTIONS
Sent

All Number of RTSP OPTIONS messages sent.

RTSP PLAY Sent All Number of RTSP PLAY messages sent.

RTSP PAUSE Sent All Number of RTSP PAUSE commands sent.

Chapter 17 IPTV/ Video

– 930 –

RTSP TEARDOWN
Sent

All Number of RTSP TEARDOWN commands sent.

RTSP DESCRIBE
Successful

All Number of RTSP DESCRIBE commands for which a successful
response was received.

RTSP SETUP
Successful

All Number of RTSP SETUP commands for which a successful response
was received.

RTSP SET
PARAMETER
Successful

All Number of RTSP SET PARAMETER commands for which a successful
response was received.

RTSP GET
PARAMETER
Successful

All Number of RTSP GET PARAMETER commands for which a successful
response was received.

RTSP OPTIONS
Successful

All Number of RTSP OPTIONS commands for which a successful
response was received.

RTSP PLAY
Successful

All Number of RTSP PLAY commands for which a successful response
was received.

RTSP PAUSE
Successful

All Number of RTSP PAUSE commands for which a successful response
was received.

RTSP TEARDOWN
Successful

All Number of RTSP TEARDOWN commands for which a successful
response was received.

RTSP DESCRIBE
Failed

All Number of RTSP DESCRIBE commands that failed.

RTSP SETUP
Failed

All Number of RTSP SETUP commands that failed.

RTSP SET
PARAMETER
Failed

All Number of SET_PARAMETER replies received with a code other than
OK (200).

RTSP GET
PARAMETER
Failed

All Number of RTSP GET PARAMETER commands that failed.

RTSP OPTIONS
Failed

All Number of RTSP OPTIONS commands that failed.

RTSP PLAY Failed All Number of RTSP PLAY commands that failed.

RTSP PAUSE
Failed

All Number of RTSP PAUSE commands that failed.

Chapter 17 IPTV/ Video

– 931 –

RTSP TEARDOWN
Failed

All Number of RTSP TEARDOWN commands that failed.

Average Play
latency (ms)

All Average amount of time elapsed between the time the client sent a
Play command and them time it received the first byte of the video
stream.

Average Pause
latency (ms)

All Average amount of time elapsed between the time the client sent a
Pause command and the time it stopped receiving data from the
video stream.

Chapter 17 IPTV/ Video

– 932 –

Video Quality Statistics

This section describes the video quality (TVQM VQmon/HD) statistics.

Global Video Quality Statistics

The table below lists the IxLoad IPTV / Video global video quality statistics.

These statistics measure the overall video and audio quality of all the currently active streams.

Note: Relative and Absolute MOS scores are described
in Mean Opinion Score (MOS).

Statistic Description

I Frames Rcvd The number of video I-frames received.

P Frames Rcvd The number of video P-frames received.

B Frames Rcvd The number of video B-frames received.

I Frames Impaired Number of I-frames impaired due to packet loss or discards.

P Frames Impaired Number of P-frames impaired due to packet loss and/or discards. This
does not include frames impaired due to error propagation through
temporal reference.

B Frames Impaired Number of B-frames impaired due to packet loss and/or discards. This
does not include frames impaired due to error propagation through
temporal reference.

Avg Curr Abs MOS V Absolute MOS for all the currently active video streams, averaged from
stream start to the current time.

Avg Curr Rel MOS V Relative MOS for all the currently active video streams, averaged from
stream start to the current time.

Avg Curr MOS AV Audio/video (multimedia) MOS for all the currently active streams,
averaged from stream start to the current time.

Avg Curr MOS A Absolute audio MOS, averaged from stream start to the current time.

Avg Comp Abs MOS V Absolute MOS for all completed video streams, averaged across all
streams.

Avg Comp Rel MOS V Relative MOS for all completed video streams, averaged across all
streams.

Chapter 17 IPTV/ Video

– 933 –

Avg Comp MOS AV Audio/video (multimedia) MOS for all completed streams, averaged
across all streams.

Avg Comp MOS A Audio MOS for all completed streams, averaged across all streams.

Avg Interval Abs MOS V Absolute MOS, averaged over the most recent statistics Update Interval
(you can configure the Update Interval is on the video client Statistics
Options tab).

Avg Interval Rel MOS V Relative MOS averaged over the most recent statistics Update Interval
(you can configure the Update Interval on the video client Statistics
Options tab).

Avg Video Bw The average video bandwidth, in bits/second, excluding transport
packet header overhead and error correction/retransmission.

I Frame Avg Video Bw The average bandwidth of I-frame video content transmitted, in
bits/second, for all currently active streams.

P Frame Avg Video Bw The average bandwidth of P-frame video content transmitted, in
bits/second, for all currently active streams.

B Frame Avg Video Bw The average bandwidth of B-frame video content transmitted, in
bits/second, for all currently active streams.

Scene Avg Detail Level The average amount of detail in the currently active streams, expressed
on a scale of 0 (little detail) to 100 (maximum detail).

Scene Avg Panning Level The average amount of panning in the currently active streams,
expressed on a scale of 0 (no panning) to 100 (continuous panning).

Scene Avg Motion Level The average amount of motion in the currently active streams,
expressed on a scale of 0 (no motion) to 100 (continuous motion).

Per-stream Video Quality Statistics

The table below lists the IxLoad IPTV / Video client per-stream video quality statistics.

These statistics measure the video and audio quality of a single stream.

Note: Relative and Absolute MOS scores are described in Mean Opinion Score (MOS).

Chapter 17 IPTV/ Video

– 934 –

Statistic Description

TVQM Avg
Video Bw

The average video bandwidth, in bits/second, excluding transport packet header
overhead and error correction/retransmission.

TVQM Peak
Video Bw

The peak video bandwidth, in bits/second, measured during a one second window,
excluding transport packet header overhead and error correction/retransmission.

TVQM
Packets
Received

Number of stream video transport packets received properly for playout.

TVQM
Packets
Discarded

Number of stream video transport packets discarded.

TVQM
Frame Rate

The video frame rate, in frames per one thousand seconds – e.g. 29,970 equals 29.97
frames per second.

TVQM Avg
Abs MOSV

The average absolute video stream MOS over the stream duration.

TVQM Avg
Rel MOSV

The average relative video stream MOS over the stream duration.

TVQM Avg
MOSA

Absolute audio MOS, averaged from stream start to the current time.

TVQM Avg
MOSAV

The average audio/video stream MOS over the stream duration.

TVQM Int
Avg Abs
MOSV

Absolute MOS, averaged over the most recent statistics Update Interval (you can
configure the Update Interval is on the video client Statistics Options tab).

TVQM Int
Avg Rel
MOSV

Relative MOS averaged over the most recent statistics Update Interval (you can
configure the Update Interval on the video client Statistics Options tab).

TVQM I
Frames
Rcvd

The number of video I-frames received.

TVQM P
Frames
Rcvd

The number of video P-frames received.

TVQM B The number of video B-frames received.

Chapter 17 IPTV/ Video

– 935 –

Frames
Rcvd

TVQM I
Frames
Impaired

Number of I-frames impaired due to packet loss or discards.

TVQM P
Frames
Impaired

Number of P-frames impaired due to packet loss and/or discards. This does not
include frames impaired due to error propagation through temporal reference.

TVQM B
Frames
Impaired

Number of B-frames impaired due to packet loss and/or discards. This does not
include frames impaired due to error propagation through temporal reference.

TVQM
Detail Level

The instantaneous amount of detail, expressed on a scale of 0 (little detail) to 100
(maximum detail).

TVQM
Panning
Level

The instantaneous amount of panning, expressed on a scale of 0 (no panning) to 100
(continuous panning).

TVQM
Motion
Level

The instantaneous amount of motion, expressed on a scale of 0 (no motion) to 100
(continuous motion).

TVQM Inter
I Frame Gap

The average gap, in frames, between I frames (excluding the I-frames)

TVQM PPDV The stream transport Packet-to-Packet Delay Variation (RFC3550), in milliseconds.

Packet Transport Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality packet transport QoE Detective
statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE Description

Chapter 17 IPTV/ Video

– 936 –

Detective

JB Packets Rcvd User The number of stream transport packets received.

JB Packets Lost User The number of stream transport packets lost in the network.

JB Packets
Discarded

User The number of stream transport packets discarded by the endpoint
due to late arrival.

Video Description Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality video description QoE Detective
statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Codec Type User The video CODEC type for the video stream.

GOP Structure User The GOP structure expressed as a series of ‘I’, ‘B’, ‘P’ characters
describing the frame type series in the structure.

Avg GOP Length User The average GOP length, in frames.

Avg Inter I Frame
Gap (Frames)

User The average gap, in frames, between I frames (excluding the I-
frames)

Frame Rate User The video frame rate, in frames per one thousand seconds – e.g.
29,970 equals 29.97 frames per second.

Video Perceptual Quality Conditional Statistics

The table below lists the IxLoad IPTV / Video client video perceptual quality statistics.

Chapter 17 IPTV/ Video

– 937 –

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Avg
Absolute
MOS V

User The average absolute video stream MOS over the stream duration.

Avg Relative
MOS V

User The average relative video stream MOS over the stream duration.

Avg MOS A User The average audio stream MOS over the stream duration.

Avg MOS AV User The average audio/video stream MOS over the stream duration.

Interval
Absolute
MOS V

User The absolute stream instantaneous video MOS sampled at the end of the
interval configured on the video client Statistics Options tab.

Interval
Relative
MOS V

User The relative stream instantaneous video MOS sampled at the end of the
interval configured on the video client Statistics Options tab.

EPSNR
(ATIS)

User The Estimated Peak Signal to Noise Ratio (PSNR) calculated according to
ATIS specifications.

Video Frame Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality video frame QoE Detective statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Chapter 17 IPTV/ Video

– 938 –

Statistic QoE
Detective

Description

I Frames
Rcvd

User The number of video I-frames received.

I Frames
Impaired

User Number of I-frames impaired due to packet loss or discards.

P Frames
Rcvd

User The number of video P-frames received.

P Frames
Impaired

User Number of P-frames impaired due to packet loss and/or discards. This does
not include frames impaired due to error propagation through temporal
reference.

B Frames
Rcvd

User The number of video B-frames received.

B Frames
Impaired

User Number of B-frames impaired due to packet loss and/or discards. This does
not include frames impaired due to error propagation through temporal
reference.

SI Frames
Rcvd

User The number of video SI-frames received.

SI Frames
Impaired

User The number of video SI-frames impaired by packet loss or discard.

SP Frames
Rcvd

User The number of video SP-frames received.

SP Frames
Impaired

User The number of video SP-frames impaired by packet loss or discard.

I Frame
Pkts Rcvd

User The number of transport packets received containing video I-frame
information.

I Frame
Pkts Lost

User The number of transport packets lost containing video I-frame information.

I Frame
Pkts
Discarded

User The number of transport packets discarded due to late arrival containing
video I-frame information.

P Frame
Pkts Rcvd

User The number of transport packets received containing video P-frame
information.

P Frame
Pkts Lost

User The number of transport packets lost containing video P-frame information.

Chapter 17 IPTV/ Video

– 939 –

P Frame
Pkts
Discarded

User The number of transport packets discarded due to late arrival containing
video P-frame information.

B Frame
Pkts Rcvd

User The number of transport packets received containing video B-frame
information.

B Frame
Pkts Lost

User The number of transport packets lost containing video B-frame information.

B Frame
Pkts
Discarded

User The number of transport packets discarded due to late arrival containing
video B-frame information.

Bandwidth Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality bandwidth QoE Detective statistics.
These statistics pertain to the distribution of I, B, P, SI and SP video frame and audio frame bandwidth
consumption.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Avg Video
Bw (Kbps)

User The average video bandwidth, in bits/ second, measured during a one
second window, excluding transport packet header overhead and error
correction/retransmission.

Peak Video
Bw (Kbps)

All The peak video bandwidth, in bits/second, measured during a one
second window, excluding transport packet header overhead and error
correction/retransmission.

Avg Audio
Bw (Kbps)

User The average audio bandwidth, in bits/ second, measured during a one
second window, excluding transport packet header overhead and error
correction/retransmission.

Peak Audio All The peak audio bandwidth, in bits/second, measured during a one

Chapter 17 IPTV/ Video

– 940 –

Bw (Kbps) second window, excluding transport packet header overhead and error
correction/retransmission.

I Frame Avg
Video Bw
(Kbps)

User The average bandwidth of I-frame transport packets received, in
bits/second.

I Frame
Peak Video
Bw (Kbps)

All The maximum bandwidth of I-frame transport packets received, in
bits/second.

P Frame Avg
Video Bw
(Kbps)

User The average bandwidth of P-frame transport packets received, in
bits/second.

P Frame
Peak Video
Bw (Kbps)

All The maximum bandwidth of P-frame transport packets received, in
bits/second.

B Frame Avg
Video Bw
(Kbps)

User The average bandwidth of B-frame transport packets received, in
bits/second.

B Frame
Peak Video
Bw (Kbps)

All The maximum bandwidth of B-frame transport packets received, in
bits/second.

Frame Jitter Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality video jitter QoE Detective statistics.
These statistics contain the video frame jitter and transmission delay statistics.

The QoE Detective column indicates the QoE Detective views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Chapter 17 IPTV/ Video

– 941 –

Frame Inter
Arrival Jitter
(ms)

User The average frame inter-arrival jitter, in milliseconds. The inter-arrival
jitter is computed relative to the expected arrival time based on the
frame rate.

I Frame Inter
Arrival Jitter
(ms)

User The average I-frame inter-arrival jitter, in milliseconds. The inter-
arrival jitter is computed relative to the expected arrival time based on
the frame rate.

Packet Jitter Conditional Statistics

The table below lists the IxLoad IPTV / Video client video quality packet jitter QoE Detective statistics.
These statistics provide a variety of statistics about the transport packet jitter experienced throughout
the duration of the stream.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

PPDV (ms) User The stream transport Packet-to-Packet Delay Variation (RFC3550), in
milliseconds.

Max PPDV
(ms)

All The maximum stream transport Packet-to-Packet Delay Variation
(RFC3550), in milliseconds.

Scene Analysis Conditional Statistics

The table below lists the IxLoad IPTV / Video client TVQM Scene Analysis QoE Detective statistics.
These statistics describe the scene types and content detected within the video stream.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view

Chapter 17 IPTV/ Video

– 942 –

VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Scene Detail
Level

User The instantaneous amount of detail, expressed on a scale of 0 (little
detail) to 100 (maximum detail).

Scene Motion
Level

User The instantaneous amount of motion, expressed on a scale of 0 (no
motion) to 100 (continuous motion).

Scene
Panning
Level

User The instantaneous amount of panning, expressed on a scale of 0 (no
panning) to 100 (continuous panning).

Chapter 17 IPTV/ Video

– 943 –

IPTV / Video Server Statistics

Note: The video servers do not have a Ramp Down period; they stream for the duration of
the test and then stop as quickly as possible at the end of the test. Therefore, the statistics
may show the server bit rates still above 0 (zero) shortly after the end of the test.

The table below lists the IxLoad Video server statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Total Streams
Playing

Total number of video streams playing on the video server.

No of Multicast
Streams Playing

Number of multicast (broadcast-type) streams playing.

No of Unicast
Streams Playing

Number of unicast streams playing.

No of VoD Streams
Active

IP, VLAN Number of video-on-demand streams active.

No of VoD Streams
Playing

IP, VLAN Number of video-on-demand streams playing.

No of VoD Streams
Paused

IP, VLAN Number of video-on-demand streams currently paused.

No of Multicast
Streams Played

IP, VLAN Number of multicast (broadcast-type) streams played.

No of VoD Streams
Played

IP, VLAN Number of video-on-demand streams played.

Total Streaming Bit
Rate

Aggregate bit rate of all video streams playing on the server.

Multicast Streams Bit
Rate

Bit rate of multicast (broadcast-type) video streams playing on
the server.

Unicast Streams Bit
Rate

Bit rate of unicast video streams playing on the server.

Chapter 17 IPTV/ Video

– 944 –

VoD Streams Bit Rate IP, VLAN Bit rate of video-on-demand video streams playing on the
server.

No of IPTV D Server
Requests Received

IP, VLAN Number of requests received by the D server.

No of IPTV V Server
Requests Received

IP, VLAN Number of requests received by the V server.

No of IPTV D Server
Requests Successful

IP, VLAN Number of requests received by the D server that were
successful.

No of IPTV V Server
Requests Successful

IP, VLAN Number of requests received by the V server that were
successful.

No of IPTV D Server
Requests Failed

IP, VLAN Total number of requests received by the D server that failed for
all reasons.

No of IPTV V Server
Requests Failed

IP, VLAN Total number of requests received by the V server that failed for
all reasons.

No of IPTV D Server
Requests Failed for
Bandwidth

IP, VLAN Number of requests received by the D server that failed because
not enough bandwidth was available on the server.

No of IPTV V Server
Requests Failed for
Bandwidth

IP, VLAN Number of requests received by the V server that failed because
not enough bandwidth was available on the server.

No of IPTV D Server
Requests Failed for
Port Overload

IP, VLAN Number of requests received by the D server that failed because
the Ixia port that the server was running on was oversubscribed.

No of IPTV V Server
Requests Failed for
Port Overload

IP, VLAN Number of requests received by the V server that failed because
the Ixia port that the server was running on was oversubscribed.

No of IPTV D Server
Requests Failed for
Other Reasons

IP, VLAN Number of requests received by the D server that failed for
reasons other than lack of bandwidth or port overload.

No of IPTV V Server
Requests Failed for
Other Reasons

IP, VLAN Number of requests received by the V server that failed for
reasons other than lack of bandwidth or port overload.

No of IPTV Active A
Server Streams
Playing

- - Number of streams available on the A server that are currently
playing.

Chapter 17 IPTV/ Video

– 945 –

No of IPTV Active D
Server Streams
Playing

IP, VLAN Number of streams available on the D server that are currently
playing.

No of IPTV Active V
Server Streams

IP, VLAN Number of streams available on the V server.

No of IPTV Active V
Server Streams
Playing

IP, VLAN Number of streams on the V server that are currently playing.

No of IPTV Active V
Server Streams
Paused

IP, VLAN Number of streams on the V server that are currently paused.

A Server Streams Bit
Rate

- - Combined bit rate of all streams currently playing on the A
server.

D Server Streams Bit
Rate

IP, VLAN Combined bit rate of all streams currently playing on the D
server.

V Server Streams Bit
Rate

IP, VLAN Combined bit rate of all streams currently playing on the V
server.

IPTV Total Streaming
Bit Rate

- - Combined bit rate of all streams currently playing on the A, D,
and V servers.

RTSP Presentations
Received

IP, VLAN Number of RTSP Presentation requests received by the servers.

RTSP Presentations
Successful

IP, VLAN Number of RTSP Presentation requests that succeeded.

RTSP Presentations
Failed

IP, VLAN Number of RTSP Presentation requests that failed.

RTSP Bytes Sent IP, VLAN Number of RTSP-related bytes (commands and responses) sent
by the server.

RTSP Bytes Received IP, VLAN Number of RTSP-related bytes (commands and responses)
received by the server.

RTSP Packets Sent IP, VLAN Number of RTSP packets sent by the server.

RTSP Packets
Received

IP, VLAN Number of RTSP packets received the server.

RTSP Play Latency
(ms)

All Average amount of time elapsed, in milliseconds, between the
time the server received a PLAY request and the time it
transmitted the first byte of the video stream.

Chapter 17 IPTV/ Video

– 946 –

Note for Tcl API users: This is a weighted statistic. If you are
using this statistic in a Tcl script, use the kWeightedAverage
aggregation type.

RTSP Commands
Received

IP, VLAN Total number of RTSP commands of all types received by the
server.

RTSP DESCRIBE
Received

IP, VLAN Total number of RTSP DESCRIBE commands received by the
server.

RTSP SETUP
Received

IP, VLAN Total number of RTSP SETUP commands received by the server.

RTSP PLAY Received IP, VLAN Total number of RTSP PLAY commands received by the server.

RTSP PAUSE
Received

IP, VLAN Total number of RTSP PAUSE commands received by the server.

RTSP TEARDOWN
Received

IP, VLAN Total number of RTSP TEARDOWN commands received by the
server.

RTSP Response
Codes Sent (2xx)

IP, VLAN Number of 200-range (Success) responses sent.

A 200-range response indicates that the action was successfully
received, understood, and accepted.

RTSP Response
Codes Sent (3xx)

IP, VLAN Number of 300-range (Redirection) responses sent.

A 300-range response indicates that further action must be
taken in order to complete the request.

RTSP Response
Codes Sent (4xx)

IP, VLAN Number of 400-range (Client Error) responses sent.

A 400-range response indicates that the request contains bad
syntax or cannot be fulfilled.

RTSP Response
Codes Sent (5xx)

IP, VLAN Number of 500-range (Server Error) responses sent.

A 500-range response indicates that the server failed to fulfill an
apparently valid request.

RTSP Response
Codes Sent (6xx-
1xxx)

IP, VLAN Number of 600- to 1000-range responses sent.

Total Bytes Sent - - Total bytes sent by the server.

Total Packets Sent - - Total packets sent by the server.

Tx Jitter (ns) - - Variation in packet transmission times, in nanoseconds.

Tx Packets Dropped - - Number of packets dropped before transmission.

Chapter 17 IPTV/ Video

– 947 –

! 19

Chapter 17 IPTV/ Video

– 948 –

CHAPTER 18 iSCSI
This section describes the iSCSI Tcl API objects.

API Overview
The IxLoad iSCSI API consists of the iSCSI Client Agent, its commands, and a iSCSI Server Agent.

– 949 –

Chapter 18 iSCSI

– 950 –

Chapter 18 iSCSI

– 951 –

iSCSI Client Agent
<protocol> client agent - create a <protocol> client agent

SYNOPSIS

set Activity_<protocol>Client1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "<protocol> Client"]

DESCRIPTION

A <protocol> client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE
set Activity_<protocol>Client1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "<protocol> Client"]

SEE ALSO

ixNetTraffic

Chapter 18 iSCSI

– 952 –

iSCSI Client Commands
This section lists the iSCSI client agent's commands.

Chapter 18 iSCSI

– 953 –

iscsi
iscsi - configure the basic properties of an iSCSI client agent

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.iscsi.config

DESCRIPTION

This object configures the basic properties of an iSCSI client agent.

SUBCOMMANDS

None.

OPTIONS

enableAlias

Enable use of an alias during a session. Default = true.

immediateData

Indicate if ImmediateData is supported by Initiator. 0 = No, 1 = Yes, Default = "0".

initialR2T

Indicate if R2T is supported by Initiator. 0 = No, 1 = Yes, Default = "0".

initiatorAlias

Initiator alias to be used during a session. Min length = 0, Max length = 50, Default = "ixiacom-iscsi".

firstBurstLength

Maximum payload bytes of Unsolicited Data within an iSCSI sequence. Min = "512", Max =
"16777215", Default = "65535".

maxRecvDataSegmentLength

Maximum Data Segment Length the Initiator can receive in an iSCSI PDU. Min = "512", Max =
"16777215", Default="8192".

headerDigest

Enable Header Digest support. Min = "0", Max = "1", Default = "0".

initiatorName

initiator Name to be used during a session. Min Length = "10", Max Length = "255", Default =
"iqn.2010-11.com.ixia.ixload:initiator-iscsi".

dataDigest

Enable Data Digest support. Min = "0", Max = "1", Default = "0".

Chapter 18 iSCSI

– 954 –

maxBurstLength

Maximum payload bytes of Solicited Data within an iSCSI sequence. Min = "512", Max = "16777215",
Default = "262144".

EXAMPLE

$Activity_iSCSIClient1 agent.pm.iscsi.config \

-enableAlias true \

-immediateData 0 \

-initialR2T 1 \

-initiatorAlias "ixiacom-iscsi" \

-firstBurstLength 65535 \

-maxRecvDataSegmentLength 8192 \

-headerDigest 0 \

-initiatorName "iqn.2010-11.com.ixia.ixload:initiator-iscsi" \

-dataDigest 0 \

-maxBurstLength 262144

SEE ALSO

Chapter 18 iSCSI

– 955 –

iscsiTarget
iscsiTarget - configure the number of targets for an iSCSI client or server.

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.iscsiTarget.config

$Activity_iSCSIServer1 agent.pm.iscsiTarget.config

DESCRIPTION

This object configures the number of targets for an iSCSI client or server. These data structures enable
tree traversal, insertion and deletion operations.

SUBCOMMANDS

None.

OPTIONS

numberOfLuns

Number of LUNs in an activity.

maxSelfId

Assigns a unique label to each node under the tree.

numberOfTargets

Number of targets in an activity.

numberOfPortals

Number of portals in an activity.

maxPortalLabelId

Assigns a unique label to each portal (for example, TP1...TPn).

maxTargetLabelId

Assigns a unique label to each target (for example, TG1...TGn) under a portal.

EXAMPLE (client)

$Activity_iSCSIClient1 agent.pm.iscsiTarget.config \

-numberOfLuns 1 \

-maxSelfId 4 \

-numberOfTargets 1 \

Chapter 18 iSCSI

– 956 –

-numberOfPortals 1 \

-maxPortalLabelId 2 \

-maxTargetLabelId 1

SEE ALSO

Chapter 18 iSCSI

– 957 –

advOptions
advOptions - configure the advanced options of an iSCSI client agent

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.advOptions.config

DESCRIPTION

This object configures the advanced properties of an iSCSI client agent.

SUBCOMMANDS

None.

OPTIONS

enableTOS

Enables use of TOS bits in packets from the initiator. Default = 0.

commandCompletionTimeout

Time to wait for a command to be completed. Min = "1", Max = "2147483", Default = "120".

enableEsm

Enable use of ESM. Default = 0.

ipPreference

IP version (IPv4/IPv6) preference.

Choice Description

0 IPv4

1 IPv6

2 Both, IPv4 first

3 Both, IPv6 first

vlan_priority

VLAN priority. Min = "0", Max = "7", Default="0".

typeOfService

Type of service string, from availableTosList.

esm

MSS size. Min = "64", Max = "1460", Default = "1460".

Chapter 18 iSCSI

– 958 –

enableVlanPriority

Enables setting of the VLAN priority. Default = "0".

EXAMPLE

$Activity_iSCSIClient1 agent.pm.advOptions.config \

-enableTOS false \

-commandCompletionTimeout 120 \

-enableEsm false \

-ipPreference 2 \

-vlan_priority 0 \

-typeOfService "Best Effort (0x0)" \

-esm 1460 \

-enableVlanPriority false

SEE ALSO

ixNetTraffic

Chapter 18 iSCSI

– 959 –

iSCSI Server Agent
iSCSI server agent - create an iSCSI server agent

SYNOPSIS

set Activity_iSCSIServer1 [$Traffic2_Network2 activityList.appendItem \

-protocolAndType "iscsi Server"]

DESCRIPTION

An iSCSI server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE

set Activity_iSCSIServer1 [$Traffic2_Network2 activityList.appendItem \

-protocolAndType "iscsi Server"]

SEE ALSO

Chapter 18 iSCSI

– 960 –

iscsi
iscsi - configure the basic properties of an iSCSI client agent

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.iscsi.config

DESCRIPTION

This object configures the basic properties of an iSCSI client agent.

SUBCOMMANDS

None.

OPTIONS

userName

User name. minLength ="1" maxLength="256" default="someuser".

enableDataInegrity

Enable Data Integrity support. Default = false.

password

Password for user name. minLength ="1" maxLength="128" default="secret".

payloadType

Payload type. One of the following:

Choice Description

0 (default) Dummy

1 Synthetic Pattern Generator

enableAlias

Enable use of an alias during a session. Default = true.

immediateData

Indicate if ImmediateData is supported by Initiator. 0 = No, 1 = Yes, Default = "0".

initialR2T

Indicate if R2T is supported by Initiator. 0 = No, 1 = Yes, Default = "0".

initiatorAlias

Initiator alias to be used during a session. Min length = 0, Max length = 50, Default = "ixiacom-iscsi".

Chapter 18 iSCSI

– 961 –

firstBurstLength

Maximum payload bytes of Unsolicited Data within an iSCSI sequence. Min = "512", Max =
"16777215", Default = "65535".

maxRecvDataSegmentLength

Maximum Data Segment Length the Initiator can receive in an iSCSI PDU. Min = "512", Max =
"16777215", Default="8192".

headerDigest

Enable Header Digest support. Min = "0", Max = "1", Default = "0".

initiatorName

initiator Name to be used during a session. Min Length = "10", Max Length = "255", Default =
"iqn.2010-11.com.ixia.ixload:initiator-iscsi".

authenticationMethod

Authentication method. One of the following:

Choice Description

0 (default) None

1 CHAP

2 CHAP, None

dataDigest

Enable Data Digest support. Min = "0", Max = "1", Default = "0".

maxBurstLength

Maximum payload bytes of Solicited Data within an iSCSI sequence. Min = "512", Max = "16777215",
Default = "262144".

EXAMPLE

$Activity_iSCSIClient1 agent.pm.iscsi.config \

-enableAlias true \

-immediateData 0 \

-initialR2T 1 \

-initiatorAlias "ixiacom-iscsi" \

-firstBurstLength 65535 \

-maxRecvDataSegmentLength 8192 \

-headerDigest 0 \

Chapter 18 iSCSI

– 962 –

-initiatorName "iqn.2010-11.com.ixia.ixload:initiator-iscsi" \

-dataDigest 0 \

-maxBurstLength 262144

SEE ALSO

Chapter 18 iSCSI

– 963 –

iscsiTarget
iscsiTarget - configure the number of targets for an iSCSI client or server.

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.iscsiTarget.config

$Activity_iSCSIServer1 agent.pm.iscsiTarget.config

DESCRIPTION

This object configures the number of targets for an iSCSI client or server. These data structures enable
tree traversal, insertion and deletion operations.

SUBCOMMANDS

None.

OPTIONS

numberOfLuns

Number of LUNs in an activity.

maxSelfId

Assigns a unique label to each node under the tree.

numberOfTargets

Number of targets in an activity.

numberOfPortals

Number of portals in an activity.

maxPortalLabelId

Assigns a unique label to each portal (for example, TP1...TPn).

maxTargetLabelId

Assigns a unique label to each target (for example, TG1...TGn) under a portal.

EXAMPLE (client)

$Activity_iSCSIClient1 agent.pm.iscsiTarget.config \

-numberOfLuns 1 \

-maxSelfId 4 \

-numberOfTargets 1 \

Chapter 18 iSCSI

– 964 –

-numberOfPortals 1 \

-maxPortalLabelId 2 \

-maxTargetLabelId 1

SEE ALSO

Chapter 18 iSCSI

– 965 –

advOptions
advOptions - configure the advanced options of an iSCSI client agent

SYNOPSIS

$Activity_iSCSIClient1 agent.pm.advOptions.config

DESCRIPTION

This object configures the advanced properties of an iSCSI server agent.

SUBCOMMANDS

None.

OPTIONS

enableTOS

Enables use of TOS bits in packets from the initiator. Default = 0.

enableEsm

Enable use of ESM. Default = 0.

listeningPort

Port that the server listens on for new iSCSI connections. Min="1", Max="65535", Default="3260".

vlan_priority

VLAN priority. Min = "0", Max = "7", Default="0".

typeOfService

Type of service string, from availableTosList.

esm

MSS size. Min = "64", Max = "1460", Default = "1460".

enableVlanPriority

Enables setting of the VLAN priority. Default = "0".

EXAMPLE

$Activity_iSCSIServer1 agent.pm.advOptions.config \

-enableTOS false \

-enableEsm false \

-listeningPort 3260 \

-vlan_priority 0 \

Chapter 18 iSCSI

– 966 –

-typeOfService "Best Effort (0x0)" \

-esm 1460 \

-enableVlanPriority false

SEE ALSO

Chapter 18 iSCSI

– 967 –

This page intentionally left blank.

– 968 –

CHAPTER 19 IxIO
This section describes the IxIO Tcl API objects.

API Overview
The IxLoad IxIO API consists of the IxIO Client Agent and its commands

– 969 –

Chapter 19 IxIO

– 970 –

IxIO Client Agent
IxIO client agent - create an IxIO client agent

SYNOPSIS

set Activity_IxIOClient1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "IxIO Client"]

DESCRIPTION

An IxIO client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE
set Activity_IxIOClient1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "IxIO Client"]

SEE ALSO

ixNetTraffic

Chapter 19 IxIO

– 971 –

client file list
client file list - configure the list of files for an IxIO client agent

SYNOPSIS

$Activity_IxIOClient1 agent.pm.clientFiles.clientFileList.appendItem

DESCRIPTION

This object configures the list of files used by an IxIO client agent.

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command. Unless otherwise described, no values
are returned and an exception is raised for any error found.

SUBCOMMANDS

None.

OPTIONS

id

Name of the file list. Default = "ClientFile".

offsetStart

Start of the location to read or write. Default = 0.

offsetEnd

End of the location to read or write. Default = 8096.

fileType

File type. Default = "logical".

mntPath

Path for drive. "E:" \

fileName

File name. Default = "file0".

EXAMPLE

$Activity_IxIOClient1 agent.pm.clientFiles.clientFileList.appendItem \

-id "ClientFile" \

-offsetStart 0 \

-offsetEnd 8096 \

-fileType "logical" \

Chapter 19 IxIO

– 972 –

-mntPath "E:" \

-fileName "file0"

SEE ALSO

ixNetTraffic

Chapter 19 IxIO

– 973 –

advanced configuration
Advanced config - configure the advanced properties of an IxIO client agent

SYNOPSIS

$Activity_IxIOClient1 agent.pm.advancedConfiguration.config

DESCRIPTION

This object configures the advanced properties of an IxIO client agent.

SUBCOMMANDS

None.

OPTIONS

ioQueueDepth

Number of IO commands to queue per user. Default = 1.

ioQueueLimitGlobal

Global limit on the number of IO commands to be queued. Default = 0.

enableDataBufferValidation

Enable confirmation of the data read or writtern. Default = false.

EXAMPLE

$Activity_IxIOClient1 agent.pm.advancedConfiguration.config \

-ioQueueDepth 1 \

-ioQueueLimitGlobal 0 \

-enableDataBufferValidation false

SEE ALSO

ixNetTraffic

Chapter 19 IxIO

– 974 –

drive list
driveList - configure the list of drives for an IxIO client agent

SYNOPSIS

$Activity_IxIOClient1 agent.pm.basicConfiguration.driveList.appendItem

DESCRIPTION

This object configures the list of drives for an IxIO client agent.

SUBCOMMANDS

None.

OPTIONS

id

Name of the drive to mount. Default = "TargetDrive".

mntCommand

Command to mount drive. Default = (none).

mntPath

Path of mounted drive. Default = (none).

EXAMPLE

$Activity_IxIOClient1 agent.pm.basicConfiguration.driveList.appendItem \

-id "TargetDrive" \

-mntCommand "mount //host/folder /mnt/remote" \

-mntPath "E:"

SEE ALSO

ixNetTraffic

Chapter 19 IxIO

– 975 –

IxIO Client Commands
This section lists the IxIO client agent's commands.

io

io command

SYNOPSIS

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "IO"

DESCRIPTION

The io command reads or writes data on the server.

SUBCOMMANDS

None.

OPTIONS

commandType

Type of IxIO command. Default = "IO" \

fileHandle

Handle to be used to read or write. Default = "ih_<drive><file>"

cmdName

Name of the IxIO command. Default = "I/O 1"

STATISTICS

EXAMPLE

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "IO" \

-fileHandle "ih_E:/file0" \

-cmdName "I/O 1"

$Activity_IxIOClient1 agent.pm.scenarios(0).ioParameterSetList.clear

$Activity_IxIOClient1 agent.pm.scenarios(0).ioParameterSetList.appendItem \

-id "IoParameterSet" \

Chapter 19 IxIO

– 976 –

-weight 100 \

-burst 1 \

-buffer 1 \

-align 0 \

-delay 0 \

-readPercentage 50 \

-reply 0 \

-position 0

SEE ALSO

ioParameterSetList

ioParameterSetList - list of parameters for an io command.

SYNOPSIS

$Activity_IxIOClient1 agent.pm.scenarios(0).ioParameterSetList.appendItem \

-id "IoParameterSet"

DESCRIPTION

ioParameterSetList configures the list of parameters for an io command.

SUBCOMMANDS

None.

OPTIONS

id

Name of this parameter set list. Default = "IoParameterSet".

weight

Percentage of times this profile will be used when the IO command is executed during the test. Default
= 100.

burst

Number of operations to issue at the same time. Default = 1.

buffer

Amount of data to read or write at one time. Default = 1.

Chapter 19 IxIO

– 977 –

align

Aligns the buffer size with the sector size used on the target device. Default = 0.

delay

Amount of data to read or write at one time. Default = 0.

readPercentage

Percent of executions of the IO command that will be reads. Default = 50.

reply

Performs the reverse of the operation performed by the profile. Default = 0 \

position

Frequency with which the command selects a random location to perform the read or write operation.
Default = 0.

EXAMPLE

$Activity_IxIOClient1 agent.pm.scenarios(0).ioParameterSetList.clear

$Activity_IxIOClient1 agent.pm.scenarios(0).ioParameterSetList.appendItem \

-id "IoParameterSet" \

-weight 100 \

-burst 1 \

-buffer 1 \

-align 0 \

-delay 0 \

-readPercentage 50 \

-reply 0 \

-position 0

SEE ALSO

open

open command

SYNOPSIS

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "OPEN"

Chapter 19 IxIO

– 978 –

DESCRIPTION

The open command opens a file.

SUBCOMMANDS

None.

OPTIONS

commandType

Type of IxIO command. Default = "OPEN".

fileHandle

Handle to be used to open file with. Default = "handle<n>".

file

Path of file to be opened. Default = (none).

cmdName

Name of the IxIO command. Default = "OPEN <n>".

EXAMPLE

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "OPEN" \

-fileHandle "handle2" \

-file "E:/file0" \

-cmdName "OPEN 2"

SEE ALSO

close

close command

SYNOPSIS

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "CLOSE"

DESCRIPTION

The close command closes a file.

Chapter 19 IxIO

– 979 –

SUBCOMMANDS

None.

OPTIONS

commandType

Type of IxIO command. Default = "CLOSE".

fileHandle

Handle to be used to close file with. Default = "handle<n>".

cmdName

Name of the IxIO command. Default = "CLOSE <n>".

EXAMPLE

$Activity_IxIOClient1 agent.pm.scenarios.appendItem \

-commandType "CLOSE" \

-fileHandle "handle2" \

-cmdName "CLOSE 3"

SEE ALSO

Chapter 19 IxIO

– 980 –

CHAPTER 20 LDAP
This section describes the LDAP Tcl API objects.

Overview
LDAP protocol commands are organized as shown in the figure below.

– 981 –

Objectives
The objectives (userObjective) you can set for LDAP are listed below. Test objectives are set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

LDAP Client Commands
This section lists the LDAP client commands.

LDAP Client Agent

The LDAP Client Agent command defines a simulated user performing LDAP requests against one or
more LDAP servers. Refer to LDAP Client Agent for a full description of this command. The most
significant options of this command are listed below.

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Command List

This command defines the list of commands that the client sends to the server. Refer to Command List
for a full description of this command. The most significant options of this command are listed below.

Chapter 20 LDAP

– 982 –

Option Description

id LDAP command to be executed.

Global Options

The LDAP client Global Options control network level operation of the client. Refer to Global Options
for a full description of this command. The most significant options of this command are listed below.

Option Description

version Version of the LDAP protocol used for all client sessions.

persistentConnection If true, the client opens a new TCP connection for each command sent.

maxRequestsPerConn Maximum number of requests sent on each connection.

maxConcurrentConnPerUser Maximum number of concurrent connections per user.

followReferral If true (“On”), and the client receives a response that is a referral to
another server, it redirects the request to the referred server.

commandTimeout Time (in ms) to wait for a response before aborting.

mustBind If true, the client sends an implicit BIND on every new connection
that it establishes.

Control

Configures a control to be included in a list associated with a command. Refer to Control for a full
description of this command. The most significant options of this command are listed below.

Option Description

controlType LDAP OID of the control associated with the command.

criticality If true, the control is critical.

controlValue Value for control.

Chapter 20 LDAP

– 983 –

Modification

A modification to be included in the modificationList of the MODIFY command. Refer to
Modification for a full description of this command. The most significant options of this command are
listed below.

Option Description

operation Type of modification to be performed.

type Attribute to be modified.

valueList List of values for the operation.

Attribute

An attribute to be included in the searchAttributeList of the SEARCH command. Refer to Attribute
for a full description of this command. The most significant options of this command are listed below.

Option Description

attrib Attribute

Attribute Type and Values

An attribute and one or more values to be included in the attribDescValueList of the ADD
command. Refer to Attribute Type and Values for a full description of this command. The most
significant options of this command are listed below.

Option Description

type Attribute.

valueList List of values for the attribute.

Chapter 20 LDAP

– 984 –

LDAP Client Agent
LDAP Client Agent - create an LDAP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.config

DESCRIPTION

An LDAP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity LDAPClient1
of NetTraffic Traffic1@Network1###set
Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"ldap Client"]## Timeline1 for
activities LDAPClient1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue

Chapter 20 LDAP

– 985 –

1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_LDAPClient1 config
\-enable true \-name
"LDAPClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_
LDAPClient1 agent.config \-enable true \-name
"LDAPClient1"$Activity_LDAPClient1 agent.pm.DistinguishedName.DN.clear$Activity_
LDAPClient1 agent.pm.DistinguishedName.DNList.clear$Activity_LDAPClient1
agent.pm.globalOptions.config \-initiateCloseFromClient true \-
commandTimeout 10000 \-mustBind
1 \-persistentConnection 1 \-maxRequestsPerConn
10000 \-authType "CLEARTEXT Password" \-version
3 \-maxConcurrentConnPerUser 10 \-followReferral
1 \-password "ixia" \-implicitLoopCheck
true \-name "c=US,o=IXIA"$Activity_LDAPClient1
agent.pm.AddressHistory.clear$Activity_LDAPClient1 agent.pm.cmdList.clear$Activity_
LDAPClient1 agent.pm.cmdList.appendItem \-id
"BIND" \-authType "CLEARTEXT Password" \-password
"ixia" \-name "c=US,o=IXIA" \-serverAddr
"1.2.3.4"$Activity_LDAPClient1 agent.pm.cmdList(0).bindControls.clear$Activity_
LDAPClient1 agent.pm.cmdList(0).bindControls.appendItem \-id
"Control" \-controlValue "2" \-controlType
"1" \-criticality 1

SEE ALSO

ixNetTraffic

Chapter 20 LDAP

– 986 –

Command List
Command List—Creates the list of LDAP commands that the client will send to an LDAP server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.cmdList.appendItem

DESCRIPTION

A command is added to the Command List object using the appendItem subcomfrom the
ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

LDAP command to be executed. One of the following:

Command Description

BIND Exchanges authentication information between the client and server.

UNBIND Terminates an LDAP session. After transmitting an UNBIND command, the client
assumes that the session is terminated. There is no response for an UNBIND
command. When the server receives an UNBIND, it assumes that the client has terthe
session and all outstanding requests may be discarded.

SEARCH Requests that the server search its directory for information requested by the client. A
SEARCH command can be used to read attributes from a single entry, from entries
immediately below a particular entry in the directory tree, or a whole subtree of
entries.

The SEARCH option includes an Attribute List. You can use this list to add attributes to
an LDAPv3 SEARCH command. For a list of the attributes, refer to RFC 2256.

COMPARE Allows a client to ask the server whether the named entry has an attribute/value pair.

The COMPARE command allows the server to keep certain attribute/value pairs secret
(that is, not exposed for general search access) while still allowing the client limited

Chapter 20 LDAP

– 987 –

use of them. For example, some servers might use this feature for passalthough it is
insecure for the client to pass clear-text passwords in the COMPARE operation itself.

MODIFY Requests that the server edit an entry on behalf of the client.

ADD Requests that the server add an entry to the directory.

DELETE Requests that the server delete a leaf entry from the directory.

MODIFYDN Allows a client to change a distinguished name (DN) entry or to move a subtree of
entries to a new location.

THINK Causes the client to become inactive. THINK is an internal IxLoad command intended
to assist your testing; it is not a comdefined in the LDAP protocol.

If you specify identical values for the minimum and maximum intervals, the client will
be inactive for a fixed length of time. If you specify different values for the minimum
and maximum intervals, IxLoad will select a value within the range and cause the
client to be inactive for that length of time.

LOOPBEGIN An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be exea specified number of times.

For example, in a Command List that contains the following commands:

{Loop Begin}

BIND

SEARCH

UNBIND

{Loop End}

The BIND, SEARCH, and UNBIND commands would be exefor the Number of Iterations
specified for the {Loop Begin} command.

LOOPEND Ends the list of commands that will be executed by the preced{Loop Begin} command.

Arguments for id = BIND

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

name

Name of directory object that the client will bind as. (Default = "c = US,o = IXIA").

Chapter 20 LDAP

– 988 –

authType

Authentication method. The choices for authType are:

authType Description

“ANONYMOUS” No authentication. Anonymous authentication is most often used for public read-
only directories.

“CLEARTEXT
Password”

(Default) Authentication is by user name and password, transmitted
unencrypted.

“DIGEST-MD5” Authentication is by user name and password, transmitted as a SASL MD5 digest.
This method provides client authentication with protection against passive
eavesdropattacks, but does not provide protection against active intermediary
attacks.

password

Password of the user who wishes to bind. (Default = "ixia").

bindControls

List of optional controls to extend the functionality of the BIND command. See Control for a
description of how to define a control.

Arguments for id = UNBIND

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

unbindControls

List of optional controls to extend the functionality of the UNBIND command. See Control for a
description of how to define a control.

Arguments for id = SEARCH

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

baseObject

LDAP DN is the root of the subtree to be searched. (Default = "c = US,o = IXIA").

scope

Restricts the search to specific portions of the LDAP directory. The choices are:

Chapter 20 LDAP

– 989 –

Value Description

0 Base object: Only the DN specified in the Base Object field is searched.

1 Single Level: All fields at the level specified in the Base Object field are searched.

2 (default) Whole subtree: All fields at the level specified in the Base Object field and
below it are searched.

derefAliases

Indicates how aliases are to be handled. In LDAP, one entry may point to another object in the
namespace. This is called an alias entry, and it contains the DN of the object that it points to. If you
look up an object using the alias, the alias is de-referenced so that what is returned is the object
pointed to by the alias's DN. The choices are:

Value Description

0

(default) Never dereference aliases.

1 Dereference aliases after performing name resolution.

2 Dereference during name resolution.

3 Always dereference aliases.

sizeLimit

Maximum number of entries to be returned. Minimum = “0,” Maximum = “2,147,483,647.” (Default =
"10").

timeLimit

Maximum time allowed for search, in seconds. Minimum = “0,” Maximum = “2,147,483,647.” (Default
= "5").

typesOnly

Determines whether the contents of the search results contain attributes and valor only attributes: The
choices are:

Value Description

0 Both type and value.

1 (default) Only attribute type.

filter

Chapter 20 LDAP

– 990 –

Search filter. RFC 2254 defines the filter representation. minLength = "5" Default = "
(objectClass=*).”

searchAttributeList

List of attributes for the search. searchAttributeList is of type ixConfigSequenceContainer;
items are added to the list via the appendItem sub-command. See the following example:
$attribList searchAttribList.appendItem \

-attribcn

See Attribute for a description of how to configure an attribute.

searchControls

List of optional controls to extend the functionality of the SEARCH command. See Control for a
description of how to define a control.

Arguments for id = COMPARE

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

entry

Name of the entry to be compared. (Default = "c = US,o = IXIA").

attributeDesc

Attribute that is the object of the comparison.

assertionValue

Attribute value that is the object of the comparison.

compareControls

List of optional controls to extend the functionality of the COMPARE command. See Control for a
description of how to define a control.

Arguments for id = MODIFY

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

directoryObject

Directory Object to be modified. (Default = "c = US,o = IXIA").

modificationList

Chapter 20 LDAP

– 991 –

The list of modifications to be performed. See Modification for the description of a modification.

modifyControls

List of optional controls to extend the functionality of the MODIFY command. See Control for a
description of how to define a control.

Arguments for id = ADD

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

entry

Name of the entry to be compared. (Default = "c = US,o = IXIA").

attribDescValueList

List of attributes and values to be added. See Attribute Type and Values for the description of
adding an attribute type and values.

addControls

List of optional controls to extend the functionality of the ADD command. See Control for a description
of how to define a control.

Arguments for id = DELETE

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Default = "1.2.3.4").

entry

Name of the entry to be compared. (Default = "c = US,o = IXIA").

deleteControls

List of optional controls to extend the functionality of the DELETE command. See Control for a
description of how to define a control.

Arguments for id = MODIFYDN

serverAddr

IP address or host name of the LDAP server that the client will bind to. To specthe port number, add the
suffix “:< port number>” to the address or host name. If you do not specify a port number, IxLoad
sends the request to the default LDAP port, 389. (Defaul = "1.2.3.4").

entry

Name of the entry to be compared. (Default = "c = US,o = IXIA").

Chapter 20 LDAP

– 992 –

newRDN

Relative Distinguished Name (RDN) that will form the leftmost component of the new name of the
entry. (Default = "c = US,o = IXIA").

deleteoldrdn

Indicates whether the old RDN attribute values are to be deleted. The choices are:

Value Description

0 (default) False

1 True

newSuperiorPresent

Indicates whether a new superior DN is to be added. Specify the DN in the newS parameter.

Value Description

0 (default) False

1 True

newSuperior

If newSuperiorPresent is true, this is the DN of the entry that becomes the immediate superior of the
new entry. If newSuperiorPresent is false, this parameter has no effect. (Default = "c = US,o =
IXIA").

modifydnControls

List optional of controls to extend the functionality of the MODIFYDN comSee Control for a description
of how to define a control.

Arguments for id = THINK

minimumInterval

Minimum length of time to pause. Minimum = “1,000,” Maximum = "2,147,483,647." (Default =
"1,000").

maximumInterval

Maximum length of time to pause. Minimum = “1000,” Maximum = "2,147,483,647." (Default =
"1,000").

Arguments for id = LOOPBEGIN

iterations

Chapter 20 LDAP

– 993 –

Number of times to iterate. Value 0 (zero) is treated as infinity. Minimum = "0" Maximum =
"2,147,483,647.” (Default = "5").

Arguments for id = LOOPEND

None.

EXAMPLE
$Activity_LDAPClient1 agent.pm.cmdList.appendItem \-id
"BIND" \-authType "CLEARTEXT Password" \-password
"ixia" \-name "c=US,o=IXIA" \-serverAddr
"1.2.3.4"$Activity_LDAPClient1 agent.pm.cmdList(0).bindControls.clear

SEE ALSO

LDAP Client Agent

Chapter 20 LDAP

– 994 –

Global Options
Global Options - confiure an LDAP client's global options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.globalOptions.config

DESCRIPTION

An LDAP client’s global options are set by modifying the options of the pm.Glooption of the LDAP
Client Agent object using its appendItem.

SUBCOMMANDS

None.

OPTIONS

version

Version of the LDAP protocol used for all client sessions. IxLoad supports ver2 and 3. (Default = 3).

persistentConnection

If true, the client opens a new TCP connection for each command sent. The choices are:

Value Description

0 False. If “0” is specified, then the client will not reuse the TCP connection to send a request.
It will close the existing connection and open a new connection for sendeach request.

1 (default) True

If “1” is specified, then the client will use the existing TCP connection, if one exists. If the
TCP connection does not exist, then a new TCP connection will be estab

maxRequestsPerConn

Maximum number of requests that can be sent on each connection. On exceeding this limit, the
existing connection will be closed and a new one will be opened to send the next request. This
parameter is effective only when persistentConnec is “1.” Minimum = 1, Maximum = 2,147,483,647.
(Default = 100).

maxConcurrentConnPerUser

Maximum number of concurrent connections per user. Minimum = 1, Maximum = 2,147,483,647.
(Default = 10").

followReferral

Chapter 20 LDAP

– 995 –

If true (“On”), and the client receives a response that is a referral to another server, it redirects the
request to the referred server. The choices are:

Value Description

0 Off

1 (default) On

commandTimeout

Time (in ms) to wait for a response before aborting. Minimum = 1, Maximum = 2,147,483,647. (Default
= 10,000).

mustBind

If true, the client sends an implicit BIND on every new connection that it establishes. The choices are:

Value Description

0 False.

1 (default) True. If set to “1,” the client sends an implicit BIND as the first Protocol Data
Unit on every new connection that it establishes, provided that a user-configBIND is not the
next command to be sent.

Arguments for id = mustBind

name

Name of directory object that the client will bind as. (Default = "c = US,o = IXIA").

authType

Authentication method. The choices for authType are:

Value Description

“ANONYMOUS” No authentication. Anonymous authentication is most often used for public read-
only directories.

“CLEARTEXT
Password”

(Default) Authentication is by user name and password, transmitted
unencrypted.

“DIGEST-MD5” Authentication is by user name and password, transmitted as a SASL MD5 digest.
This method provides client authentication with protection against passive
eavesdrop attacks, but does not provide protection against active intermediary
attacks.

password

Password of the user who wishes to bind. (Default = "ixia").

Chapter 20 LDAP

– 996 –

EXAMPLE
$Activity_LDAPClient1 agent.pm.globalOptions.config \-initiateCloseFromClient
true \-commandTimeout 10000 \-mustBind
1 \-persistentConnection 1 \-maxRequestsPerConn
10000 \-authType "CLEARTEXT Password" \-version
3 \-maxConcurrentConnPerUser 10 \-followReferral
1 \-password "ixia" \-implicitLoopCheck
true \-name "c=US,o=IXIA"

SEE ALSO

LDAP Client Agent

Chapter 20 LDAP

– 997 –

Control
Control—An optional control to be included with a command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.cmdList(0).bindControls.appendItem

DESCRIPTION

Configures a control to be included in a list associated with a command. A conlist is of type
ixConfigSequenceContainer; items are added to the list via the appendItem subcommand.

SUBCOMMANDS

None.

OPTIONS

controlType

LDAP OID of the control associated with the command.

criticality

If true, the control is critical. The choices are:

Value Description

0 False.

1 (default) True.

controlValue

Value for control.

EXAMPLE
$Activity_LDAPClient1 agent.pm.cmdList(0).bindControls.appendItem \-id
"Control" \-controlValue "2" \-controlType
"1" \-criticality 1

SEE ALSO

Command List

Chapter 20 LDAP

– 998 –

Modification
Modification—Configures a modification by the MODIFY command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.cmdList(1).modificationList.appendItem

DESCRIPTION

A modification to be included in the modificationList of the MODIFY command. The
modificationList is of type ixConfigSequenceContainer; items are added to the list via the
appendItem subcommand.

SUBCOMMANDS

None.

OPTIONS

operation

Type of modification to be performed. The choices are:

Value Description

0 Add.

1 Delete.

2 Replace.

type

Attribute to be modified. RFC 2256 describes the LDAP attributes.

valueList

List of values for the operation. Use semicolons (;) to separate multiple values. See the following
example: “value1; value.” (Default = {}).

EXAMPLE
$Activity_LDAPClient1 agent.pm.cmdList.appendItem \-id
"MODIFY" \-serverAddr "1.2.3.4" \-directoryObject
"c=US,o=IXIA"$Activity_LDAPClient1 agent.pm.cmdList
(1).modificationList.clear$Activity_LDAPClient1 agent.pm.cmdList
(1).modificationList.appendItem \-id
"Modification" \-operation 0 \-type
"1" \-valueList "1;2;3"$Activity_LDAPClient1
agent.pm.cmdList(1).modifyControls.clear$Activity_LDAPClient1 agent.pm.cmdList

Chapter 20 LDAP

– 999 –

(1).modifyControls.appendItem \-id "Control" \-
controlValue "2" \-controlType
"1" \-criticality 1

SEE ALSO

Command List

Chapter 20 LDAP

– 1000 –

Attribute
Attribute—Configures an attribute for the SEARCH command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.cmdList(2).searchAttributeList.appendItem

DESCRIPTION

An attribute to be included in the searchAttributeList of the SEARCH command. The
searchAttributeList is of type ixConfigSequenceContainer; items are added to the list via the
appendItem subcommand.

SUBCOMMANDS

None.

OPTIONS

attrib

Attribute. RFC 2256 describes the LDAP attributes.

EXAMPLE
$Activity_LDAPClient1 agent.pm.cmdList.appendItem \-id
"SEARCH" \-typesOnly 1 \-filter
"(objectClass=*)" \-baseObject "c=US,o=IXIA" \-
derefAliases 0 \-timeLimit
5 \-serverAddr "1.2.3.4" \-sizeLimit
10 \-scope 2$Activity_LDAPClient1 agent.pm.cmdList
(2).searchControls.clear$Activity_LDAPClient1 agent.pm.cmdList
(2).searchControls.appendItem \-id "Control" \-
controlValue "2" \-controlType
"1" \-criticality 1$Activity_LDAPClient1
agent.pm.cmdList(2).searchAttributeList.clear$Activity_LDAPClient1 agent.pm.cmdList
(2).searchAttributeList.appendItem \-id
"Attribute" \-attrib "authorityRevocationList"

SEE ALSO

Command List

Chapter 20 LDAP

– 1001 –

Attribute Type and Values
Attribute Type and Values—Configures an attribute and values for the ADD command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_LDAPClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_LDAPClient1 agent.pm.cmdList(3).attribDescValueList.appendItem

DESCRIPTION

An attribute and one or more values to be included in the attribDescValueList of the ADD
command. The attribDescValueList is of type ixConfigSequenceContainer; items are added to
the list via the appendItem sub-command.

SUBCOMMANDS

None.

OPTIONS

type

Type of attribute. RFC 2256 describes the LDAP attributes.

valueList

List of values for the attribute. Use semi-colons (;) to separate multiple values. See the following
example: “value1; value2”. (Default = {}).

EXAMPLE
$Activity_LDAPClient1 agent.pm.cmdList.appendItem \-id
"ADD" \-entry "c=US,o=IXIA" \-serverAddr
"1.2.3.4"$Activity_LDAPClient1 agent.pm.cmdList
(3).attribDescValueList.clear$Activity_LDAPClient1 agent.pm.cmdList
(3).attribDescValueList.appendItem \-id
"AttributeTypeAndValues" \-type "1" \-valueList
"1;2;3"

SEE ALSO
Command List

Chapter 20 LDAP

– 1002 –

LDAP Statistics
The table below describes the LDAP statistics.

Statistic Description

LDAP Total
Requests Sent

Total number of requests of all types sent.

This statistic is the total of Total number of responses received + Total number
of requests aborted.

LDAP Total
Requests Sent per
sec

Rate at which client sent LDAP requests.

LDAP Total
Responses
Received

Total number of LDAP responses of all types received.

LDAP Total
Responses
Received per sec

Rate at which client received LDAP responses.

LDAP Total
Requests Aborted

Total number of requests of all types for which no response was received within
the time limit.

LDAP BIND
Requests Sent

Total number of BIND requests sent.

This statistic is the total of Total number of BIND responses received + Total
number of BIND requests aborted.

LDAP BIND
Responses
Received

Total number of BIND responses of all types received.

LDAP BIND
Requests Aborted

Total number of BIND requests for which no response was received within the
time limit.

LDAP BIND
Success
Responses

Total number of successful responses to BIND commands received by the
client.

LDAP BIND Failure
Responses

Total number of failure responses to BIND commands received by the client.

LDAP BIND
Responses With
Referrals

Total number of responses to BIND commands that contained referrals.

LDAP UNBIND Total number of UNBIND requests sent by the client.

Chapter 20 LDAP

– 1003 –

Requests

LDAP SEARCH
Requests Sent

Total number of SEARCH requests sent by the client.

LDAP
SearchResultDone
Responses
Received

Total number of responses received indicating that the search was completed.

This statistic is a total of = Total number of SearchResultDone with success +
Total number of SearchResultDone with failure + Total number of
SearchResultDone with sizelimit exceeded error + Total number of
SearchResultDone with timelimit exceeded error + Total number of
SearchResultDone with referral.

LDAP Search
Requests Aborted

Total number of Search requests for which no response was received within the
time limit specified on the Global tab.

LDAP
SearchResultDone
Responses With
Success

Total number of successful searches completed.

LDAP
SearchResultDone
Responses With
Failure

Total number of failed searches completed.

LDAP
SearchResultDone
Responses With
Sizelimit
Exceeded Error

Total number of searches completed whose results exceeded the size limit.

LDAP
SearchResultDone
Responses With
Timelimit
Exceeded Error

Total number of searches completed that exceeded the time limit specified on
the SEARCH form.

LDAP
SearchResultDone
Responses With
Referrals

Total number of searches completed that contained referrals.

LDAP
SearchResult
Entries Received

Total number of entries received in response to searches. One search may
return zero, one, or more than one entries.

LDAP
SearchResult
Entries Received

Total number of referrals received in response to searches. One search may
return zero, one, or more than one referrals.

Chapter 20 LDAP

– 1004 –

per sec

LDAP ADD
Requests Sent

Total number of Add requests sent by the client.

This statistic is a total of Total number of Add responses received + Total
number of Add requests aborted.

LDAP ADD
Responses
Received

Total number of Add responses received by the client.

LDAP ADD
Requests Aborted

Total number of Add requests for which no response was received within the
time limit.

LDAP ADD
Success
Responses

Total number of responses received indicating that an Add request succeeded.

LDAP ADD Failure
Responses

Total number of responses received indicating that an Add request failed.

LDAP ADD
Responses With
Referrals

Total number of responses to Add requests that contained a referral.

LDAP MODIFY
Requests Sent

Total number of Modify requests sent by the client.

This statistic is the total of: Total number of Modify responses received + Total
number of Modify requests aborted.

LDAP MODIFY
Responses
Received

Total number of responses to Modify requests received by the client.

LDAP MODIFY
Requests Aborted

Total number of Modify requests for which no response was received within the
time limit.

LDAP MODIFY
Success
Responses

Total number of responses received indicating that a Modify request succeeded.

LDAP MODIFY
Failure Responses

Total number of responses received indicating that a Modify request failed.

LDAP MODIFY
Responses With
Referrals

Total number of responses to Modify requests that contained a referral.

LDAP DELETE
Requests Sent

Total number of Delete requests sent by the client.

This statistic is the total of: Total number of Delete responses received + Total

Chapter 20 LDAP

– 1005 –

number of Delete requests aborted.

LDAP DELETE
Responses
Received

Total number of Delete responses received by the client.

LDAP DELETE
Requests Aborted

Total number of Delete requests for which no response was received within the
time limit.

LDAP DELETE
Success
Responses

Total number of responses received indicating that a Delete request succeeded.

LDAP DELETE
Failure Responses

Total number of responses received indicating that a Delete request failed.

LDAP DELETE
Responses With
Referrals

Total number of responses to Delete requests that contained a referral.

LDAP MODIFYDN
Requests Sent

Total number of ModifyDN requests sent by the client.

This statistic is the total of: Total number of ModifyDN responses received +
Total number of ModifyDN requests aborted.

LDAP MODIFYDN
Responses
Received

Total number of ModifyDN responses received by the client.

LDAP MODIFYDN
Requests Aborted

Total number of ModifyDN requests for which no response was received within
the time limit.

LDAP MODIFYDN
Success
Responses

Total number of responses received indicating that a ModifyDN request
succeeded.

LDAP MODIFYDN
Failure Responses

Total number of responses received indicating that a ModifyDN request failed.

LDAP MODIFYDN
Responses With
Referrals

Total number of responses to ModifyDN requests that contained a referral.

LDAP COMPARE
Requests Sent

Total number of Compare requests sent by the client.

This statistic is the total of: Total number of Compare responses received +
Total number of Compare requests aborted.

LDAP COMPARE
Responses
Received

Total number of Compare responses received by the client.

Chapter 20 LDAP

– 1006 –

LDAP COMPARE
Requests Aborted

Total number of Compare requests for which no response was received within
the time limit.

LDAP COMPARE
Responses With
Result TRUE

Total number of responses indicating that the string in the Compare request
existed in the directory.

LDAP COMPARE
Responses With
Result FALSE

Total number of responses indicating that the string in the Compare request did
not exist in the directory.

LDAP COMPARE
Failure Responses

Total number of responses received indicating that a Compare request failed.

LDAP COMPARE
Responses With
Referrals

Total number of responses to Compare requests that contained a referral.

LDAP Notice Of
Disconnection
Received

Total number of Notices of Disconnection received by the client.

LDAP BIND
Response Time

Average time elapsed between sending a Bind request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP SEARCH
Response Time

Average time elapsed between sending a Search request and receiving a
SearchResultDone response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP ADD
Response Time

Average time elapsed between sending an Add request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP MODIFY
Response Time

Average time elapsed between sending a Modify request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP DELETE
Response Time

Average time elapsed between sending a Delete request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Chapter 20 LDAP

– 1007 –

LDAP MODIFYDN
Response Time

Average time elapsed between sending a ModifyDN request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP COMPARE
Response Time

Average time elapsed between sending a Compare request and receiving a
complete response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP Avg Time To
Receive First Byte
Of Response

Average time required to receive the first byte of a SEARCH response. The time
is averaged because a SEARCH command may return multiple responses.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP Avg Time To
Receive Last Byte
Of Response

Average time required to receive the last byte of a SEARCH response. The time
is averaged because a SEARCH command may return multiple responses.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

LDAP Simulated
Users

Number of users simulated during the test.

LDAP Connections
Established

Total number of LDAP connections established.

An LDAP connection occurs when an LDAP client successfully connects to an
LDAP server.

LDAP Connections
Established per
sec

Rate at which the client established LDAP connections

LDAP Active
Connections

Number of simultaneous LDAP connections established.

LDAP Total
Transactions

Total number of LDAP transactions completed by the client.

An LDAP transaction occurs when an LDAP client sends a request to an LDAP
server and receives a reponse, either of success or failure.

LDAP
Transactions per
sec

Rate at which the client completed LDAP transactions.

LDAP Concurrent
Sessions

Number of simultaneous LDAP sessions in progress.

An LDAP session occurs when an LDAP client successfully connects to an LDAP
server.

Chapter 20 LDAP

– 1008 –

LDAP Total Bytes
Transmitted

Total number of bytes sent by the client in LDAP requests. This statistic counts
only the bytes in the payload portion of the LDAP packets.

LDAP Total Bytes
Received

Total number of bytes received by the client in LDAP responses.

LDAP Total Bytes
Transmitted per
sec

Rate at which the client transmitted bytes in LDAP requests.

LDAP Total Bytes
Received per sec

Rate at which the client received bytes in LDAP responses.

LDAP Total Bytes
Sent and
Received

Combined total of bytes sent and received in LDAP requests and responses.

LDAP Throughput Total throughput over the LDAP connections, in bytes per second.

! 22

Chapter 20 LDAP

– 1009 –

This page intentionally left blank.

– 1010 –

CHAPTER 21 Peer-to-Peer Application
This section describes the Peer-to-Peer Application Tcl API objects.

Objectives
The objectives (userObjective) you can set for Peer-to-Peer are listed below. Test objectives are set in
the ixTimeline object.

l simulatedUsers

l peerCount (displays as “Initiator Peer Count” in the GUI)

l connectionRate

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

l transactionRate

– 1011 –

Peer-to-Peer Application Agent
Peer-to-Peer Application Agent - create a peer-to-peer agent

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_P2PApplicationPeer1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_P2PApplicationPeer1 agent.config

DESCRIPTION

An Activity_P2PApplicationPeer1 agent is added to the activityList object. The activityList
object is added to the ixNetTraffic object using the appendItem subfrom the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity Activity_
P2PApplicationPeer1 of NetTraffic
Traffic1@Network1###set Activity_
P2PApplicationPeer1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"p2papp Peer"]$Activity_P2PApplicationPeer1 agent.config \-enable
true \

-name "P2PApplicationPeer1"

SEE ALSO

ixNetTraffic

Chapter 21 Peer-to-Peer Application

– 1012 –

FlowDefinition
FlowDefinition—Defines a list of of P2P flows.

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_P2PApplicationPeer1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_P2PApplicationPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the list of protocol flows using the appendItem subcomfrom the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

remotePeer

P2P activity that is the destination of traffic sent by this peer, and the origin of traffic received by it.

responderPort

Port number that responding peer listens on (Default=10000).

EXAMPLE
Activity_P2PApplicationPeer1 agent.pm.protocolFlows.clear$Activity_
P2PApplicationPeer1 agent.pm.protocolFlows.appendItem \

-id "InbuiltFlow" \

-remotePeer "Traffic2_P2PApplicationPeer2" \

-subType "Bittorrent" \

-flowType "Simple Bidrectional" \

-responderPort 10000

SEE ALSO

InbuiltFlow

Chapter 21 Peer-to-Peer Application

– 1013 –

InbuiltFlow
InbuiltFlow —Defines the parameters of an inbuilt P2P flow.

SYNOPSIS
$Activity_P2PApplicationPeer1 agent.pm.protocolFlows.appendItem

DESCRIPTION

An option is added to the ProtocolFlows list of using the appendItem subcomfrom the
ixConfigSequenceContainer command.

SUBCOMMANDS

None

OPTIONS

subType

The peer-to-peer protocol type:

l Bittorrent

l e-donkey

flowType

A peer-to-peer flow type defined as one of the following:

Simple Download (Bittorent)

Simple Upload (Bittorent)

Simple Bidirectional (Bittorent)

Bidirectional to Download (Bittorent)

Bidirectional to Long Download (Bittorent)

Bidirectional to Upload (Bittorent)

Bidirectional to Long Upload (Bittorent)

Download to Upload (Bittorent)

Download to Long Upload (Bittorent)

Download to Bidirectional (Bittorent)

Download to Long Bidirectional (Bittorent)

SimpleControlFlow-1 (e-donkey)

SimpleControlFlow-2 (e-donkey)

Simple Download (e-donkey)

Download to Upload (e-donkey)

Download to Long Upload (e-donkey)

Dowload to Bidirectional (e-donkey)

Download to Long Bidirectional (e-donkey)

Simple Upload (e-donkey)

Chapter 21 Peer-to-Peer Application

– 1014 –

Simple Upload to Download (e-donkey)

Upload to Bidirectional (e-donkey)

Simple Bidirectional (e-donkey)

Unknown Direction-1, Unknown Direction-2, Unknown Direction-3 (e-donkey)

Queued (e-donkey)

Queued Callback (e-donkey)

Queued Callback to Download (e-donkey)

Queued Callback to Bidirectional (e-donkey)

dataSegments

A list of DataSegment objects.

EXAMPLE
Activity_AppReplayPeer1 agent.pm.protocolFlows.clear$Activity_P2PApplicationPeer1
agent.pm.protocolFlows.appendItem \

-id "InbuiltFlow" \

-remotePeer "Traffic2_P2PApplicationPeer2" \

-subType "Bittorrent" \

-flowType "Simple Bidrectional" \

-responderPort 10000

SEE ALSO

FlowDefinition

Chapter 21 Peer-to-Peer Application

– 1015 –

Peer-to-peer Global Statistics
The following table describes the Peer-to-peer statistics.

Statistic Description

Test Objective Statistics

P2P Application
Initiator Peer Count

Number of P2P initiators created.

P2P Application
Responder Peer
Count

Number of P2P responders created.

P2P Application
Concurrent Sessions

Number of concurrent sessions established between peers.

P2P Application
Connection Rate

Rate (in connections per second) at which P2P peers connected to each
other.

P2P Application
Transaction Rate

Rate (in transactions per second) at which P2P peers completed
transactions.

For P2P peers, transactions consist of exchanges of request-response control
byte codes.

A transaction begins when an initiator sends the first control byte code, and
ends when the responder sends a control byte code in response.

If a response requires multiple control byte codes, the transaction ends
when the responder sends the final byte code.

P2P Application
Initiator Total Bytes
Sent/sec

Rate at which the initiators sent data.

P2P Application
Initiator Total Bytes
Received/sec

Rate at which the initiators received data.

P2P Application
Initiator Total
Throughput

Combined rate at which the initiators sent and received data.

P2P Application
Responder Total
Bytes Sent/sec

Rate at which the responders sent data.

Chapter 21 Peer-to-Peer Application

– 1016 –

P2P Application
Responder Total
Bytes Received/sec

Rate at which the responders received data.

P2P Application
Responder Total
Throughput

Combined rate at which the responders sent and received data.

Total Connection Statistics

P2P Application
Connection Requests
Sent

Number of connection requests sent by the initiators to the responders.

P2P Application
Connection Requests
Successful

Number of connection attempts that succeeded.

P2P Application
Connection Requests
Failed

Number of connection attempts that failed.

P2P Application
Active Connections

Number of connections currently active.

P2P Application
Connection Requests
Received

Number of connection requests received by the responders.

P2P Application
Connections
Accepted

Number of connections accepted by the responders.

This statistic measures the number of successful connections from the point
of view of the responder.

P2P Application
Connections Failed

Number of connections that were established but then closed because they
would have exceeded the maximum number of connections that the
responder could support.

The maximum number of connections that the responder can accept is
calculated based on the test configuration and depends on the resources
available on the load module, such as memory.

Total Transaction Statistics

P2P Application Total
Transactions
Initiated

Total number of P2P transactions initiated.

P2P Application Total
Transactions

Total number of P2P transactions that succeeded.

Chapter 21 Peer-to-Peer Application

– 1017 –

Successful

Total Flow Statistics

P2P Application Total
Flow Initiated

Total number of control and data flows initiated.

P2P Application Total
Active Flow

Total number of control and data flows active.

P2P Application Total
Flow Succeeded

Total number of flows of control and data that completed successfully.

P2P Application Total
Flow Failed

Total number of control and data flows that failed for any reason.

P2P Application Total
Flow Failed Error

Total number of control and data flows that failed due to a network error.

P2P Application Total
Flow Failed Timeout

Total number of control and data flows that failed due to a timeout.

P2P Application Total
Flow Failed Mismatch

Total number of control and data flows that failed because the data sent did
not match the data that was expected.

P2P Application Total
Flow Aborted

Number of P2P sessions that ended abnormally.

Initiator Total Bytes Statistics

P2P Application
Initiator Total Bytes
Sent

Total number of bytes sent by the initiators.

P2P Application
Initiator Total Bytes
Received

Total number of bytes received by the initiators.

P2P Application
Initiator Total Bytes
Sent and Received

Combined total of bytes sent and received by the initiators.

Responder Total Bytes Statistics

P2P Application
Responder Total
Bytes Sent

Total number of bytes sent by the responders.

P2P Application
Responder Total

Total number of bytes received by the responders.

Chapter 21 Peer-to-Peer Application

– 1018 –

Bytes Received

P2P Application
Responder Total
Bytes Sent and
Received

Combined total number of bytes sent and received by the responders.

Control Tx/Rx Statistics

P2P Application
Control Segment
Transmission
Initiated

Number of control flows established.

A control flow is the series of messages exchanged between peers before
beginning the data flow. Control flows can also sometimes occur between
data flows.

P2P Application
Control Segment
Transmission
Succeeded

Number of control flows that succeeded (Initiator side).

P2P Application
Control Segment
Transmission Failed

Total number of control flows that failed for any reason (Initiator side).

P2P Application
Control Segment
Transmission Failed
(Error)

Number of control flows that failed due to a network error (Initiator side).

P2P Application
Control Segment
Transmission Failed
(Timeout)

Number of control flows that failed due to a timeout (Initiator side).

P2P Application
Control Segment
Reception Initiated

Number of control flows that the responders are receiving.

P2P Application
Control Segment
Reception Succeeded

Number of control flows that completed successfully (Responder side).

P2P Application
Control Segment
Reception Failed

Number of control flows that failed to complete for any reason (Responder
side).

P2P Application
Control Segment
Reception Failed
(Error)

Number of control flows that failed to complete due to a network error
(Responder side).

Chapter 21 Peer-to-Peer Application

– 1019 –

P2P Application
Control Segment
Reception Failed
(Timeout)

Number of control flows that failed to complete due to a timeout (Responder
side).

P2P Application
Control Segment
Reception Failed
(Mismatch)

Number of control flows that failed to complete because the data sent did
not match the data that was expected (Responder side).

Data Tx/Rx Statistics

P2P Application Data
Segment
Transmission
Initiated

Number of data flows currently active.

A data flow is the stream of related payload data sent from an initiator or a
responder.

For example, if, in the Data Definition table, a Simple Upload flow is
selected and the Upload Data Size is 4096 bytes, then the transmission of
4096 bytes of data from initiator to responder constitutes one successful
data flow.

P2P Application Data
Segment
Transmission
Succeeded

Number of data flows that completed successfully (Initiator side).

P2P Application Data
Segment
Transmission Failed

Number of data flows that failed (Initiator side).

P2P Application Data
Segment
Transmission Failed
(Error)

Number of data flows that failed due to a network error (Initiator side).

P2P Application Total
Data Segment
Transmission Failed
(Timeout)

Number data flows that failed due to a timeout (Initiator side).

P2P Application Data
Segment Reception
Initiated

Number of data flows that the responders are receiving.

P2P Application Data
Segment Reception
Succeeded

Number of data flows that completed successfully (Responder side).

P2P Application Data Number of data flows that failed for any reason (Responder side).

Chapter 21 Peer-to-Peer Application

– 1020 –

Segment Reception
Failed

P2P Application Data
Flow Reception Failed
(Error)

Number of data flows that failed due to a network error (Responder side).

P2P Application Data
Segment Reception
Failed (Timeout)

Number of data flows that failed due to a timeout (Responder side).

! 23

Chapter 21 Peer-to-Peer Application

– 1021 –

This page intentionally left blank.

– 1022 –

CHAPTER 22 POP3
This section describes the POP3 Tcl API objects.

Overview
POP3 protocol commands are organized as:

l POP3 Client Agent

l Pop3Command

l POP3 Server Agent

l MailBoxItem

An additional discussion item is included:

l Using Auto-Generated Strings—which pertains to several commands.

Objectives
The objectives (userObjective) you can set for POP3 are listed below. Test objecare set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

– 1023 –

POP3 Client Agent
The POP3 Client Agent defines a simulated user performing POP3 requests against one or more POP3
servers. Refer to POP3 Client Agent for a full descripof this command. The important options of this
command are listed below.

Option Usage

enable Enables the use of the POP3 client agent.

name The name associated with the client agent.

commandList A list of commands to be sent to the server. Each list member is of type
Pop3Command.

commandTimeout Client timeout value.

Pop3Command

Each client command is a single step in the interaction. Refer to Pop3Command for a full description of
this command. The important options of this command are listed below.

Subcommand Usage

checkConfig Checks the configuration of the action.

Option Usage

command
arguments

The POP3 command, with optional arguments, to be executed.

POP3 Server Agent
The POP3 Server Agent defines the operation of the POP3 server. Refer to POP3 Server Agent for a
full description of this command. The important options of this command are listed below.

Option Usage

enable Enables the use of this server agent.

Chapter 22 POP3

– 1024 –

name The name associated with the server agent.

concurrentSessionLimit The maximum number of concurrent sessions that the server will allow.

Server_Listening_Port Port that the POP3 server listens on for new

connections.

mailbox The contents of a user’s mailbox, to be returned to the POP3 user upon
request. A list, each of whose elements are of type MailBoxItem.

MailBoxItem

Each MailBoxItem is a mail item that a POP3 user will retrieve from a server. Refer to MailBoxItem for
a full description of this command. The important options of this command are listed below.

Option Usage

count The number of messages in mailMessage to be returned.

mailMessage A reference to a mail message, of type MailMessage. MailMessage is a command
shared by the SMTP and POP3 protocols.

Chapter 22 POP3

– 1025 –

POP3 Client Agent
POP3 Client Agent - configure a POP3 client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_POP3Client1 [$Traffic1_Network1 activityList.appendItem
$Activity_POP3Client1 agent.config options...

DESCRIPTION

A POP3 client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

commandList

This is a list of type ixConfigSequenceContainer used to hold objects of type Pop3Command. The
elements in this list describe the operations to be performed by the server. (Default = {}).

commandTimeout

Amount of time allowed to an POP3 command to complete. If the command does not complete within
the allowed time, IxLoad closes the POP3 client’s connecto the POP3 server. (Default = 120).

enable

Enables the use of this client agent. (Default = true).

ipPreference

This option indicates the order by which the POP3 client will use the subnets, if there is a mixture of
IPv4 and IPv6 subnets in the network. The values are: IpPreferenceV4, IpPreferenceV6,
IpPreferenceV4Any, IpPreferenceV6Any.

loopValue

If this option is enabled (1) then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

name

Chapter 22 POP3

– 1026 –

The name associated with this object, which must be set at object creation time.

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity POP3Client1
of NetTraffic Traffic1@Network1###set
Activity_POP3Client1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"POP3 Client"]## Timeline1 for
activities POP3Client1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_POP3Client1 config
\-enable true \-name
"POP3Client1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_
POP3Client1 agent.config \-commandTimeout 120 \-enable
true \-ipPreference 0 \-name
"POP3Client1" \-vlanPriority 0 \-enableVlanPriority
false \-loopValue true$Activity_POP3Client1
agent.commandList.clearset my_Pop3Command [::IxLoad new Pop3Command]$my_Pop3Command
config \-command "USER" \-arguments
"username"$Activity_POP3Client1 agent.commandList.appendItem -object $my_
Pop3Commandset my_Pop3Command1 [::IxLoad new Pop3Command]$my_Pop3Command1 config \-
command "PASSWORD" \-arguments
"password"$Activity_POP3Client1 agent.commandList.appendItem -object $my_
Pop3Command1set my_Pop3Command2 [::IxLoad new Pop3Command]$my_Pop3Command2 config \-
command "{Get}" \-arguments
"None"$Activity_POP3Client1 agent.commandList.appendItem -object $my_Pop3Command2

SEE ALSO

ixNetTraffic

Chapter 22 POP3

– 1027 –

Pop3Command

Chapter 22 POP3

– 1028 –

Pop3Command
Pop3Command—Specifies the contents of an POP3 client command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_POP3Client1 [$Traffic1_Network1 activityList.appendItem
set my_Pop3Command [::IxLoad new Pop3Command]
$Activity_POP3Client1 agent.commandList.appendItem -object $my_Pop3Command

DESCRIPTION

An POP3Command object is added to the commandList option of the POP3 Client Agent object using
the appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

arguments

Optional arguments related to the POP3 command to be executed. One of:

Command Usage

“USER” The user name that this client will use to login to the POP3 server. You can include
variables in the user name; see Using Auto-Generated Strings.

“PASSWORD” The password used to login to the POP3 server. You can use variin this field to
generate multiple passwords. See Using Auto-Generated Strings.

“APOP” The shared secret to be used to connect to a POP3 server that uses the APOP
command to authenticate clients.

“OPEN” The name and port of the server, of the form: “<IP address>:<TCP Port Number>”

“STAT” N/A

“DELE” The ID number of the message to be deleted.

“NOOP” N/A

Chapter 22 POP3

– 1029 –

“RSET” N/A

“LIST” A single message ID or an empty string (““) for all IDs.

“UIDL” A single message ID or an empty string (““) for all IDs.

“RETR” A message ID.

“TOP” This can be either: “<Message ID>” or “<Message ID>:<Number of Lines>.”

“QUIT” N/A

“{Get}” (Default) The name and port of the server, of the form: “<symbolic/IP
address>:<TCP Port Number>”

“{Think}” The number of seconds to wait. Default is 1 second.

command

The POP3 command to be executed. One of:

Command Usage

“USER” The user name that this client will use to login to the POP3 server is specified in the
argument option. You can include variables in the user name; see Using Auto-
Generated Strings.

“PASSWORD” The password used to login to the POP3 server is specified in the argument option.
You can use variables in this field to generate mulpasswords. See Using Auto-
Generated Strings.

“APOP” The shared secret to be used to connect to a POP3 server that uses the APOP
command to authenticate clients.

APOP (Authenticated POP) is a method of authenticating a POP3 session that does
not require a cleartext password to be sent. The shared secret is a string known
only to the POP3 client and server, and is part of the authentication process.

You can use variables in this field to generate multiple shared secrets. See Using
Auto-Generated Strings.

“OPEN” Opens the TCP connection.

“STAT” Similar to the LIST command in that it causes the server to return the number of
messages in the mail drop along with the total space occupied (in octets) by those
messages. Unlike the RETR or LIST commands, STAT cannot be used to display
messages.

“DELE” Identifies a message to be deleted by passing its ID numbers in the argument
option. The LIST command returns message IDs.

Chapter 22 POP3

– 1030 –

“NOOP” A null or NO OPeration. A POP3 server’s response to a NOOP comis to do nothing.

“RSET” Resets the state of messages marked for deletion.

“LIST” Lists the number of stored messages and their combined size, in octets. You can
also use the result of this command to obtain the size of a single message; include
the message’s number as the conof the argument option.

“UIDL” Returns the Unique ID Listing for a message. If the contents of argument is empty,
a numerical listing of all messages and their associated UIDLs is returned. If the
arguments option contains a specific UIDL, then the contents of the message is
returned.

“RETR” Returns the full text of the specified message, and marks that mesas read. Passes
the message number returned by the LIST command in the argument option to
identify the message to be retrieved.

“TOP” Displays a message’s header and the specified number of lines, counted from the
top. This command takes two arguments: the mesnumber and the number of lines
to display.

The server returns the message headers followed by a blank line and then the
specified number of lines from the message.

“QUIT” Ends the POP3 session and deletes any messages marked for dele

“{Get}” (Default) An IxLoad command that retrieves all waiting messages for the user,
then logs out. {Get} is a single command that performs the same function as
multiple POP3 commands. However, {Get} is not a standard POP3 command. It is
included in IxLoad for your conveto make configuring POP3 clients easier.

“{Think}” An amount of time to wait before issuing the next command.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be executed a specified number of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

EXAMPLE
set my_Pop3Command [::IxLoad new Pop3Command]$my_Pop3Command config \-command
"USER" \-arguments "username"$Activity_POP3Client1
agent.commandList.appendItem -object $my_Pop3Commandset my_Pop3Command1 [::IxLoad
new Pop3Command]$my_Pop3Command1 config \-command
"PASSWORD" \-arguments "password"$Activity_POP3Client1
agent.commandList.appendItem -object $my_Pop3Command1set my_Pop3Command2 [::IxLoad
new Pop3Command]$my_Pop3Command2 config \-command "
{Get}" \-arguments "None"$Activity_POP3Client1

Chapter 22 POP3

– 1031 –

agent.commandList.appendItem -object $my_Pop3Command2

SEE ALSO

POP3 Client Agent

Using Auto-Generated Strings

Chapter 22 POP3

– 1032 –

POP3 Server Agent
POP3 Server Agent - create a POP3 server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_POP3Server1 [$Traffic2_Network2 activityList.appendItem
$Activity_POP3Server1 agent.config options...

DESCRIPTION

A POP3 server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

concurrentSessionLimit

The maximum number of concurrent sessions to be supported by the agent. (Default = 1,000).

enable

Enables the use of this action. (Default = true).

mailBox

This is a list of type MailBoxItem. The elements in this list are the messages that a POP3 user will
receive when he queries the mailbox. (Default = {}).

mailMessageList

This is a list of type MailMessage. The elements in this list contain the messages to be returned to a
POP3 client. (Default = {}).

name

The name associated with this object, which must be set at object creation time.

serverlisteningport

Port that the POP3 server listens on. To specify multiple ports, separate the port numbers with
commas (,). You can specify up to 50 listening ports. (Default = 110).

enableVlanPriority

Chapter 22 POP3

– 1033 –

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity POP3Server1
of NetTraffic Traffic2@Network2###set
Activity_POP3Server1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"POP3 Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
POP3Server1 config \-enable true \-name
"POP3Server1" \-timeline $_Match_Longest_$Activity_
POP3Server1 agent.config \-Server_Listening_Port 110 \-enable
true \-name "POP3Server1" \-vlanPriority
0 \-concurrentSessionLimit 1000 \-enableVlanPriority
true$Activity_POP3Server1 agent.mailMessageList.clearset Simple [::IxLoad new
MailMessage]$Simple config \-bodySizeType 0 \-name
"Simple" \-fileNameAsBody "" \-description
"100 bytes plain text body" \-textContentAsBody "" \-
bodySizeRandomMax 4096 \-bodySizeFixed
100 \-mimeTypeAndEncode 0 \-bodySizeRandomMin
1 \-bodyDataType 0 \-useFileAsBody
true \-bodyFormat 0$Simple headerList.clearset From
[::IxLoad new MailHeader]$From config \-name
"From" \-value "fromName@company.com"$Simple
headerList.appendItem -object $Fromset To [::IxLoad new MailHeader]$To config \-name
"To" \-value "toName@company.com"$Simple
headerList.appendItem -object $Toset Subject [::IxLoad new MailHeader]$Subject
config \-name "Subject" \-value
"sample subject"$Simple headerList.appendItem -object $Subject$Simple
attachmentList.clear$Activity_POP3Server1 agent.mailMessageList.appendItem -object
$Simple

SEE ALSO

ixNetTraffic

MailBoxItem

Chapter 22 POP3

– 1034 –

MailBoxItem
MailBoxItem—Specifies the contents of a mail box.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_POP3Server1 [$Traffic2_Network2 activityList.appendItem
$Activity_POP3Server1 agent.mailBox.appendItem -object $my_MailBoxItem
set my_MailBoxItem [::IxLoad new MailBoxItem]

DESCRIPTION

A MailBoxItem object is added to the mailBox option of the POP3 Server Agent object using the
appendItem subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

count

The number of copies of the mail message detained in mailMessage to be returned. (Default = 10).

SUB-OBJECTS

mailMessage

An object of type MailMessage which contains the message to be returned to the POP3 user.
(Default = {}).

EXAMPLE
set my_MailBoxItem [::IxLoad new MailBoxItem]$my_MailBoxItem config \-count
10 \-mailMessage $Simple1$Activity_POP3Server1
agent.mailBox.appendItem -object $my_MailBoxItem

SEE ALSO

POP3 Server Agent

Chapter 22 POP3

– 1035 –

Using Auto-Generated Strings
In some of the fields in the POP3 and SMTP client and server Activities, you can use sequence
generators to automatically generate multiple values for the field. For example, the POP3 Username
and Password fields both support the inclusion of variables.

See Using Automatic Sequence Generators.

Chapter 22 POP3

– 1036 –

POP3 Statistics
The test results are available from the location defined on the User Directories window. See User
Directories.

If you review your statistics and find many instances of POP3 Client statistics and server statistics that
should match but do not, that may be an indication that the Ramp Down Time is too short. When the
Ramp Down Time expires, IxLoad terminates any users that are still running. If those users still have
work in progress (such as transferring data) when IxLoad terminates them, the work will not be
completed and the effect will be that statistics that should match may not.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

For the POP3 statistics, see the following:

POP3 Client Statistics

POP3 Server Statistics

Chapter 22 POP3

– 1037 –

POP3 Client Statistics
The table below lists the statistics that IxLoad reports for POP3 clients. Statistics in the results files
and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it
from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Description

POP3
Simulated
Users

Number of simulated POP3 users.

POP3
Concurrent
Connections

Maximum number of concurrent POP3 connections maintained during the test.

POP3
Connections

Number of POP3 sessions established by the clients.

POP3
Transactions

Number of POP3 transactions completed by the clients.

POP3 Bytes Number of POP3 bytes transmitted and received by the clients.

POP3
Sessions
Requested

Number of POP3 sessions attempted by the clients.

POP3
Sessions
Established

Number of POP3 sessions established by the clients.

POP3
Sessions
Failed

Number of attempts to establish POP3 sessions that failed.

POP3 Mails
Received

Number of mail messages retrieved by the clients using POP3.

POP3
Authentication
Sent

Number of POP3 authentication messages sent by the clients.

POP3
Authentication
Ok

Number of authentication messages which resulted in the servers allowing access.

POP3 Number of authentication messages which resulted in the servers denying access.

Chapter 22 POP3

– 1038 –

Authentication
Failed

POP3 LIST
Sent

Number of POP3 LIST commands sent.

POP3 LIST Ok Number of POP3 LIST commands that received a positive response.

If an argument was given with the command, the POP3 server issues a response
with a line containing information for the message specified by the argument.

If no argument was given, the POP3 server issues a multi-line response.

POP3 LIST
Failed

Number of POP3 LIST commands that did not receive a positive response.

POP3 STAT
Sent

Number of POP3 STAT messages sent.

POP3 STAT Ok Number of POP3 STAT commands that received a positive response.

A positive response to this command consists of +OK followed by a single space,
the number of messages in the maildrop, a single space, and the size of the
maildrop in octets.

POP3 STAT
Failed

Number of POP3 STAT commands that did not receive a positive response.

POP3 RETR
Sent

Number of POP3 RETR messages sent.

POP3 RETR Ok Number of POP3 RETR messages that received a positive response.

A positive response to this command consists of an initial +OK followed by the
message corresponding to the given message-number.

POP3 RETR
Failed

Number of POP3 RETR commands that did not receive a positive response.

POP3 DELE
Sent

Number of POP3 DELE commands sent.

POP3 DELE Ok Number of POP3 DELE messages that received a positive response.

In a positive response to this message, the POP3 server marks the message as
deleted.

POP3 DELE
Failed

Number of POP3 DELE commands that did not receive a positive response.

POP3 UIDL
Sent

Number of POP3 UIDL commands sent.

Chapter 22 POP3

– 1039 –

POP3 UIDL Ok Number of POP3 UIDL messages that received a positive response.

If an argument was given, a positive response to this command consists of a line
containing information for the message passed as the argument.

If no argument was given, a positive response consists of an initial +OK followed by
multiple lines, each line containing information for one message in the maildrop.

POP3 UIDL
Failed

Number of POP3 UIDL commands that did not receive a positive response.

POP3 RSET
Sent

Number of POP3 RSET messages sent.

POP3 RSET Ok Number of POP3 RSET messages that received a positive response.

POP3 RSET
Failed

Number of POP3 RSET commands that did not receive a positive response.

POP3 NOOP
Sent

Number of POP3 NOOP messages sent.

POP3 NOOP
Ok

Number of POP3 NOOP messages that received a positive response.

POP3 NOOP
Failed

Number of POP3 NOOP commands that did not receive a positive response.

POP3 TOP
Sent

Number of POP3 TOP messages sent.

POP3 TOP Ok Number of POP3 TOP messages that received a positive response.

A positive response consists of the initial +OK followed by the headers of the
message, the blank line separating the headers from the body, and then the
number of lines indicated message's body.

POP3 TOP
Failed

Number of POP3 TOP messages that did not receive a positive response.

POP3 QUIT
Sent

Number of POP3 QUIT messages sent.

POP3 QUIT Ok Number of POP3 QUIT messages that received a positive response.

POP3 QUIT
Failed

Number of POP3 QUIT messages that did not receive a positive response.

POP3 Total
Bytes Sent

Total number of POP3-related bytes (commands, responses, and messages) sent
by the clients.

POP3 Total Total number of POP3-related bytes (commands, responses, and messages)

Chapter 22 POP3

– 1040 –

Bytes
Received

received by the clients.

POP3 Mail
Bytes
Received

Total number of bytes contained in the mail messages retrieved using POP3.

POP3
Sessions
Active

Total number of POP3 sessions in progress.

POP3
Connection
Rate

Rate at which the POP3 client established connections to the server.

POP3
Transaction
Rate

Rate at which the POP3 client completed transactions.

POP3
Concurrent
Connections

Number of POP3 connections active at the same time.

POP3
Simulated
Users

Number of simulated POP3 users.

POP3
Throughput

Rate at which the client sent and received POP3 data.

Note: If the average table and bar graphs do not contain any data for the clients, that is an
indication that they did not reach the Sustained (SU) run state. This can be caused by the
following:

1. Stopping a test during the Ramp-Up phase.

2. Configuring a large number of page requests for the client agent so that not all the users
configured for the client can attain the SU state within the allotted time.

3. Configuring a value for the statistics interval (Statistics tab) which is much larger than the
SU time.

Chapter 22 POP3

– 1041 –

POP3 Server Statistics
The table below lists the statistics that IxLoad reports for POP3 servers. Statistics in the results files
and reports are averaged over all ports. If a statistic for an interval is missing, IxLoad interpolates it
from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Description

POP3 Session Requests
Received

Number of requests to establish POP3 sessions received by the
servers.

POP3 Session Requests
Successful

Number of POP3 sessions established by the servers.

POP3 Session Requests
Failed

Number of POP3 sessions requested by the clients that the servers
failed to establish.

POP3 Total Mails Sent Total number of mail messages sent by the servers.

POP3 Total Attachments
Sent

Total number of attachments sent by the servers.

POP3 Total Mails With
Attachments Sent

Total number of messages sent that included one or more
attachments.

POP3 USER Cmds Received Number of POP3 USER commands received.

POP3 PASS Cmds Received Number of POP3 PASS commands received.

POP3 APOP Cmds Received Number of POP3 APOP commands received.

POP3 LIST Cmds Received Number of POP3 LIST commands received.

POP3 STAT Cmds Received Number of POP3 STAT commands received.

POP3 RETR Cmds Received Number of POP3 RETR commands received.

POP3 DELE Cmds Received Number of POP3 DELE commands received.

POP3 UIDL Cmds Received Number of POP3 UIDL commands received.

POP3 RSET Cmds Received Number of POP3 RSET commands received.

POP3 NOOP Cmds Received Number of POP3 NOOP commands received.

POP3 TOP Cmds Received Number of POP3 TOP commands received.

POP3 QUIT Cmds Received Number of POP3 QUIT commands received.

Chapter 22 POP3

– 1042 –

POP3 Total Bytes Sent Total number of POP3-related bytes (commands, responses, and
messages) sent by the servers.

POP3 Total Bytes Received Total number of POP3-related bytes (commands, responses, and
messages) received by the servers.

! 24

Chapter 22 POP3

– 1043 –

This page intentionally left blank.

– 1044 –

CHAPTER 23 Published Vulnerabilities and
Malware
This section describes the Tcl API for the Published Vulnerabilities and Malware plugin.

The protocol type for this plugin is "Vulnerability Peer":

set Activity_PublishedVulnerabil1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "Vulnerability Peer"]

The valid objective types for this plugin are are:

l peerCount

l throughputMBps

l throughputKBps

– 1045 –

config
Published Vulnerability Peer - create a Published Vulnerability peer

SYNOPSIS

set Activity_PublishedVulnerabil1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "Vulnerability Peer"]

$Activity_PublishedVulnerabil1 playlists.clear

$Activity_PublishedVulnerabil1 config \

-enable true \

-name "PublishedVulnerabil1" \

DESCRIPTION

A Published Vulnerability and Malware peer agent is added to the activityList option of the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command. Other ixConfigSequenceContainer subcommands may be used to modify the agentList. It
is customary to set all the options of the client agent during the appendItem call.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this peer agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE

set Activity_PublishedVulnerabil1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "Vulnerability Peer"]

Chapter 23 Published Vulnerabilities and Malware

– 1046 –

$Activity_PublishedVulnerabil1 playlists.clear

$Activity_PublishedVulnerabil1 config \

-enable true \

-name "PublishedVulnerabil1" \

-userIpMapping "1:1" \

-enableConstraint false \

-userObjectiveValue 100 \

-constraintValue 100 \

-userObjectiveType "peerCount" \

-timeline $Timeline1

$Activity_PublishedVulnerabil1 agent.config \

-cmdListLoops 0

SEE ALSO

ixNetTraffic

Chapter 23 Published Vulnerabilities and Malware

– 1047 –

advOptions
advOptions - configure the advanced options of a Published Vulnerabilities and Malware peer

SYNOPSIS

$Activity_PublishedVulnerabil1 agent.pm.advOptions.config \

-sessionTimeOut 10 \

-enableAdvanceStats false

DESCRIPTION

This command configures the advanced options of a Published Vulnerabilities and Malware peer.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

sessionTimeOut

Configures the session timeout value. (Default="10", min="1", max="3600").

enableAdvanceStats

Enables or disables advanced statistics. (Default="0 (false)).

STATISTICS

EXAMPLE

$Activity_PublishedVulnerabil1 agent.pm.advOptions.config \

-sessionTimeOut 10 \

-enableAdvanceStats false

SEE ALSO

ixNetTraffic

Chapter 23 Published Vulnerabilities and Malware

– 1048 –

attacksCmdList
attacksCmdList - configure a Published Vulnerability peer command list

SYNOPSIS

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList.appendItem \

-commandType "PlayAttacks" \

DESCRIPTION

This command configures the list of commands that Published Vulnerability and Malware peer initiator
agent will execute during a test. You should clear the command list before you begin adding commands
to it.

Add commands to the list using the appendItem subcommand from the ixConfigSequenceContainer
command. Other ixConfigSequenceContainer subcommands may be used to modify the list. It is
customary to set all the options for the command during the appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

commandType

Type of command to be added to list. Commands can be one of the following:

PlayAttacks

Plays list of attacks.

Options for PlayAttacks are:

destination

Responder peer that is the destination of this PlayAttacks command.

attackList

Name of attack list to be executed. This must be the name string as displayed in the GUI.

cmdName

Name of this command.

Chapter 23 Published Vulnerabilities and Malware

– 1049 –

LoopBeginCommand

Marks the beginning of a subset of commands that will be looped through in command list.

Options for LoopBeginCommand are:

LoopCount

Number of times to loop the subset of commands. (Default="5," min="0", max="2147483647")

LoopEndCommand

Marks the end of a subset of commands that will be looped through in command list.

There are no options for LoopEndCommand.

THINK

Pauses execution of command list.

Options for THINK are:

minimumInterval

Minimum length of time to pause execution. (Min="1", max="2147483647", default="1000")

maximumInterval

Maximum length of time to pause execution. (Min="1", max="2147483647", default="1000")

EXAMPLE

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList.clear

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList.appendItem \

-commandType "PlayAttacks" \

-destination "Traffic2_PublishedVulnerabil2" \

-attackList "All attacks" \

-cmdName "Play Attacks 1"

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1050 –

attacksCmdList nodeList
attacksCmdList nodeList - configure the list of evasion methods associated with a command list.

SYNOPSIS

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList(0).nodeList.appendItem \

-id "NodeIpFragmentReorder" \

DESCRIPTION

This command configures the list of evasion techniques associated with a specific command list. You
should clear the command list before you begin adding commands to it.

Add methods to the list using the appendItem subcommand from the ixConfigSequenceContainer
command. Other ixConfigSequenceContainer subcommands may be used to modify the list. It is
customary to set all the options for the method during the appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

Evasion method. id can be one of the following

NodeIpFragmentGlobal

Global options for the IP fragmentation evasion technique.

Options for NodeIpFragmentGlobal are:

checkBoxState

Enables or disables IP fragmentation for packets with specific flags set. (Default = false)

ack

If True, packets with the ACK flag set are not fragmented. (Default = false)

synAck

If True, packets with the SYN/ACK flag set are not fragmented. (Default = false)

syn

If True, packets with the SYN flag set are not fragmented. (Default = false)

Chapter 23 Published Vulnerabilities and Malware

– 1051 –

ackPsh

If True, packets with the ACK/PSH flag set are not fragmented. (Default = false)

rst

If True, packets with the RST flag set are not fragmented. (Default = false)

size

Size of the fragments. Must be a multiple of 8. (Default="8", min="8", max="9000")

NodeIpFragmentReorder

Fragment reorder evasion technique.

Options for NodeIpFragmentReorder are:

checkBoxState

If True, IP fragments are reordered. (Default = false)

reorder

Reorder method. (Random = 1, Reverse = 2, Default = 1)

NodeIpFragmentOverlap

Fragment overlap evasion technique.

Options for NodeIpFragmentOverlap are:

checkBoxState

If True, IP fragments are overlapped. (Default = false)

overlap

Area of fragments that overlap. (Last X bytes = 1, First X bytes = 2, Default = 2)

overlapLength

Length, in bytes, of overlapping area. Must be a multiple of 8 and less than the IP Fragment size.
(Default="8" min="8" max="9000")

NodeIpFragmentInsertNull

Null fragment insertion evasion technique.

Options for NodeIpFragmentInsertNull are:

checkBoxState

If True, null fragments are inserted. (Default = false)

hopCount

Number of hops on the network to reach the DUT. (Min="1", max="256", default="1")

Chapter 23 Published Vulnerabilities and Malware

– 1052 –

insertNull

Location where null fragments are inserted. (Before each fragment = "1", After each fragment = "2",
default = "2")

NodeIpFragmentDuplicate

Duplicate fragment evasion technique.

Options for NodeIpFragmentDuplicate are:

checkBoxState

If True, fragments are duplicated. (Default = false)

duplicate

Enables or disables fragment duplication. (Enable = "1", Disable = "2", default = 2)

EXAMPLE

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList(0).nodeList.clear

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList(0).nodeList.appendItem \

-id "NodeIpFragmentGlobal" \

-checkBoxState false \

-ack false \

-synAck false \

-syn false \

-ackPsh false \

-rst false \

-size 8

$Activity_PublishedVulnerabil1 agent.pm.attacksCmdList(0).nodeList.appendItem \

-id "NodeIpFragmentReorder" \

-checkBoxState false \

-reorder 1

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1053 –

Chapter 23 Published Vulnerabilities and Malware

– 1054 –

AddAttacks
AddAttacks - add attacks to an attack list

SYNOPSIS

agent.CallServiceEx “AddAttacks” [list“AttackListName”, “attackName1”, “attackName2”,
”attackName3”…]

DESCRIPTION

AddAttacks adds one or more attacks to an existing attack list. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

Attack list name

Name of the list to which attacks are to be added. Default="" (none).

attack names

Comma-separated list of the attacks to be added to the list. Default="" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "AddAttacks" /

[list "3623-all" "Backdoor_Win32_Redsip_A_runtime1"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1055 –

AttackListCount
AttackListCount - find the number of attacks in an attack list

SYNOPSIS

agent.CallServiceEx “AttackListCount” [list “attackListName”]

DESCRIPTION

AttackListCount returns the number of attacks in a list. This command returns a list in which the first
element is the number of attacks in the list.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

AttackListName

Name of the attack list. Default = "" (none).

EXAMPLE

$VulnActivity agent.callServiceEx “AttackListCount” [list “All attacks”]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1056 –

CreateAttackList
CreateAttackList - create a new list of attacks

SYNOPSIS

agent.CallServiceEx “CreateAttackList” [list “AttackListName”,”attackName1”, ”attackName2”…]

DESCRIPTION

CreateAttackList creates a new list of attacks. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

Attack list name

Name of the list to be created. Default="" (none).

attack names

Comma-separated list of the attacks to be included in the list. Default="none".

EXAMPLE

$VulnActivity agent.callServiceEx "CreateAttackList" /
[list "list new2" "Backdoor_Win32_Redsip_A_runtime1" /
"Adobe Acrobat and Reader 'AcroForm.api' /
Memory Corruption Vulnerability"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1057 –

CreatePlaylist
CreatePlaylist - create a playlist

SYNOPSIS

agent.CallServiceEx “CreatePlaylist” [list “attackListName”, “filter”, “filePath” “type”]

DESCRIPTION

CreatePlaylist creates a playlist of attack lists. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

attackListName

Name of the new attack. Default = "" (none).

filter

Filter criteria used to add attacks to the list. Default = "" (none).

filePath

Name and full directory path of the playlist file.

type

Type of match to the filter criteria. If True, the filter criteria must be an exact match. If False (the
default), the filter criteria can be a partial match.

EXAMPLE

$VulnActivity agent.callServiceEx "CreatePlaylist" [list cve2010 "cveid" C:/cve_playlist.txt False]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1058 –

DatabaseVersion
DatabaseVersion - return the version number of the attacks database

SYNOPSIS

agent.DatabaseVersion “DatabaseVersion” []

DESCRIPTION

DatabaseVersion returns the version number of the attacks database. This command returns a list in
which the first element is the database version number.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

None.

EXAMPLE

agent.DatabaseVersion “DatabaseVersion” []

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1059 –

DeleteAttackList
DeleteAttackList - delete an attack list

SYNOPSIS

agent.CallServiceEx “DeleteAttackList” [list “AttackListName”]

DESCRIPTION

DeleteAttackList deletes a list of attacks. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

AttackListName

Name of the list to be deleted. Default="" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "DeleteAttackList"[list "list new2"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1060 –

DeleteAttacks
DeleteAttacks - delete attacks from an attack list

SYNOPSIS

agent.CallServiceEx “DeleteAttacks” [list “AttackListName, “attackName1,attackName2”…”]

DESCRIPTION

DeleteAttacks removes attacks from an attack list. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

Attack list name

Name of the list from which attacks are to be removed. Default="" (none).

attack names

Comma-separated list of the attacks to be removed from the list. Default="" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "DeleteAttacks" [list "3623-all" "Youngzsoft_CCProxy_CONNECT_
Request_Buffer_Overflow_attack"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1061 –

ExportAttacks
ExportAttacks - export attack list

SYNOPSIS

agent.CallServiceEx “ExportAttacks” [“attackListName”,“filepath”]

DESCRIPTION

ExportAttacks exports an attack list to a .zatk format file. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

attackListName

Name of the attack list to be exported. Default = "" (none).

filepath

Full path where the file of exported attacks will be stored. Default = "" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "ExportAttacks" [list “one” “C:/attack_list.zatk”]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1062 –

GetCapture
GetCapture - return the name of the capture file associated an attack

SYNOPSIS

$VulnActivity agent.callServiceEx “GetCapture” "Backdoor_Win32_Redsip_A_runtime1"

DESCRIPTION

GetCapture returns the name of the capture file associated an attack. This command returns a list in
which the first element is the name of the capture file.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

AttackName

Name of the attack for which the capture is to be returned. Default = "" (none).

EXAMPLE

$VulnActivity agent.callServiceEx “GetCapture” "Backdoor_Win32_Redsip_A_runtime1"

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1063 –

ImportAttacks (.zatk format)
ImportAttacks - import attacks in .zatk format

SYNOPSIS

agent.CallServiceEx “ImportAttacks” [“file_path_of_the_zatk_file”]

DESCRIPTION

ImportAttacks imports user-defined attacks stored in .zatk files into the database. This command
returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

file_path_of_the_zatk_file

Full file path where the .zatk file is stored. Default = "" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "ImportAttacks" [list "C:/AttacksToImport"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1064 –

ImportUserDefinedAttacks
ImportUserDefinedAttacks - import attacks

SYNOPSIS

agent.CallServiceEx “ImportUserDefinedAttacks” [“folder_path”, “importType”]

DESCRIPTION

ImportUserDefinedAttacks imports user-defined attacks into the database. This command returns no
values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

folder_path

Full directory path where the capture files and XML metadata files are stored. Default = "" (none).

importType

Determines what happens if the imported attacks already exist in the database. If True, the imported
attacks overwrite the existing attacks. If False (the default), the imported attacks are added as new
attacks.

EXAMPLE

$VulnActivity agent.callServiceEx "ImportUserDefinedAttacks" [list "C:/Vijay" "False"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1065 –

RenameAttackList
RenameAttackList - rename an attack list

SYNOPSIS

agent.CallServiceEx “RenameAttackList” [list “AttackListName”,”NewAttackListName”]

DESCRIPTION

RenameAttackList renames an attack list. This command returns no values.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

AttackListName

Current name of the attack list. Default = "" (none).

NewAttackListName

New name of the attack list. Default = "" (none).

EXAMPLE

agent.CallServiceEx “RenameAttackList” [list “AttackListName”,”NewAttackListName”]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1066 –

RetrieveAttacks
RetrieveAttacks - retrieve the list of attacks in an attack list

SYNOPSIS

Agent.CallServiceEx “RetrieveAttacks” [list “attackListName”]

DESCRIPTION

RetrieveAttacks retrieves the list of attacks in an attack list This command returns a list which consists
of the names of the attacks in the list.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

attackListName

Name of the new attack. Default = "" (none).

EXAMPLE

$VulnActivity agent.callServiceEx "RetrieveAttacks" [list "2"]

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1067 –

SearchAttacks
SearchAttacks - search for attacks

SYNOPSIS

agent.CallServiceEx “SearchAttacks” {“valueToBeSearched”, “metadataToBeSearched”,
“isCaseSensitive”, “isExactMatch”,}

DESCRIPTION

SearchAttacks searches for attacks in the database, based on criteria you supply in the command. This
command returns a list of attacks that match the criteria you entered.

Note that the parameters for this command are bounded by braces ({ }) instead of square brackets ([
]) as for the other PVM commands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

valueToBeSearched

Value to search for. Default = "" (none).

metadataToBeSearched

Metadata to search. Default = "" (none).

isCaseSensitive

Determines whether the match should be case-sensitive or not. Values = "True", "False" (default).

isExactMatch

Determines whether the match should be a sub-string or an exact match. isExactMatch is a filter that
will return the attack only if the metadataToBeSearched value is equal with valueToBeSearched.
Values = "True", "False" (default).

EXAMPLE

$VulnActivity agent.callServiceEx "SearchAttacks" {"HIGH" "Severity" True True}

SEE ALSO

Chapter 23 Published Vulnerabilities and Malware

– 1068 –

! 25

Chapter 23 Published Vulnerabilities and Malware

– 1069 –

This page intentionally left blank.

– 1070 –

CHAPTER 24 QT
This section describes the QT Tcl API commands.

– 1071 –

Running a QuickTest from Tcl
To run a Quick Test from a Tcl script, you use the IxLoad GUI to configure a Quick Test in an RXF, then
you use a TCL script to load the RXF and start the test.

For an example of a Tcl script, see Quick Test Sample Script.

Also, a sample Quick Test Tcl script is included in the <install
path>TclScripts\Samples\Application Features directory. To run this script, set the Windows
environment variable IXLOAD_TCLAPI_REV to the value of installation folder of the IxLoad version you
intend to use. For example: C:\Program Files (x86)\Ixia\IxLoad\<version>\.

After setting the environment variable, use the following procedure to run the script:

1. Open a Windows command prompt.

2. Set the path to the Application Features directory of the version of IxLoad you want to use.

3. For example: C:\Program Files
(x86)\Ixia\IxLoad\version\TclScripts\Samples\Application Features

4. Type the full path to the Ixia Tcl shell (tclsh.exe), specify the the tcl file (file name only), and the
full path to the RXF containing the QuickTest, the press Enter to start the script.

For example:

"<path>\Tcl\8.5.12.0\bin\tclsh.exe" RunQT.tcl "D:\TCL\Demo\demo.rxf"

[full path to the TCL shell] [script] [full path to rxf file]

Chapter 24 QT

– 1072 –

startQuickTest
startQuickTest - start a Quick Test

SYNOPSIS

startQuickTest "TestName"

DESCRIPTION

This command starts a Quick Test. Run the command against the QuickTest Config object
($qtConfig), and specify the test to be started.

SUBCOMMANDS

None.

OPTIONS

TestName

Name of the Quick Test to run. If you do not specify a test, the command runs the first QuickTest
configured in the RXF.

Default = "" (none)

EXAMPLE

$qtConfig startQuickTest "QuickTest1"

SEE ALSO

Chapter 24 QT

– 1073 –

checkTestRunning
checkTestRunning - confirm test is running

SYNOPSIS

checkTestRunning

DESCRIPTION

This command checks to see if a Quick Test is running. Run the command against the QuickTest Config
object ($qtConfig).

SUBCOMMANDS

None.

OPTIONS

None

EXAMPLE

$qtConfig checkTestRunning

SEE ALSO

Chapter 24 QT

– 1074 –

stopQuickTest
stopQuickTest - stop a running Quick Test

SYNOPSIS

stopQuickTest

DESCRIPTION

This command forcefully stops a running Quick Test. Run the command against the QuickTest Config
object ($qtConfig).

SUBCOMMANDS

None.

OPTIONS

None

EXAMPLE

$qtConfig stopQuickTest

SEE ALSO

Chapter 24 QT

– 1075 –

QuickTest Sample Script
Below is a sample Quick Test Tcl script you can use as a basis for your own script.

To use this script:

1. Create a new Quick TestT test using the IxLoad GUI, assign ports to it, and then save the RXF in
the same folder as the script. For example, D:\TCL\Demo).

2. In the folder where you saved the RXF and script, create a sub-folder to store the results in (for
example: D:\TCL\Demo\Results).

3. Change the paths in the script to match the paths where you saved the RXF and script, and
created the results folder.

4. To run the script, open a Wish console and source the file.

For example: source {D:\TCL\Demo\run_qt.tcl}

#package require IxLoad
package require IxLoadCsv

####################################

Connect
::IxLoad connect localhost

Incarcare rxf
set testController [::IxLoad new ixTestController -outputDir 1]
$testController setResultDir {D:\TCL\Demo\Results}
set repository [::IxLoad new ixRepository -name {D:\TCL\Demo\demo.rxf}]

Start QT
set qtConfig [$repository getQuickTestConfig]
after 12000
$qtConfig startQuickTest "QuickTest1"

Check test is running
set timeIni [clock seconds]
while { [$qtConfig checkTestRunning] } {

after 1
set elapsed [expr [clock seconds] -$timeIni]
#puts "Elapsed $elapsed seconds"
}

Disconnect
$testController releaseConfigWaitFinish

Chapter 24 QT

– 1076 –

Chapter 24 QT

– 1077 –

This page intentionally left blank.

– 1078 –

CHAPTER 25 Radius
This section describes the Radius Tcl API objects.

Overview
The IxLoad Radius API consists of a client agent and its commands, structured as shown below.

– 1079 –

Objectives
The objectives (userObjective) you can set for Radius are listed below. Test objectives are set in the
ixTimeline object.

l transactionRate

l simulatedUsers

l concurrentSessions

Radius Client Agent

The Radius Client Agent simulates user requests for access by sending user names and passwords to a
RADIUS server, and recording the responses returned by the server. Refer to Radius Client Agent
on page 25-5 for a full description of this command. The most significant options of this command are
listed below.

Option Description

protocolAndType Protocol used by the client agent. Defines the agent as either a client or server.

Radius Command List

The Radius Command List creates the list of Radius commands that the client will send to a Radius
server. Refer to Radius Command List on page 25-11 for a full description of this command. The most
significant options of this command are listed below.

Option Description

id Command that client will send.

Global Config

The Global Config contains the parameters that define the way the IxLoad RADIUS client performs
overall. Refer to Global Config on page 25-16 for a full description of this command. The most
significant options of this command are listed below.

Option Description

Chapter 25 Radius

– 1080 –

defaultAuthentica The UDP port on the RADIUS server to which the IxLoad client
sends Access-Requests.

defaultAccounting The UDP port on the RADIUS server to which the IxLoad client
sends Accounting-Requests.

authenticationRe Number of times the IxLoad RADIUS client will re-send an
unacAccess-Request.

If the RADIUS server does not respond to an Access-Request
within the Response Timeout period, the client resends the
Access-Request.

responseTimeouot Elapsed time, in seconds, allowed for the server to respond to a
clirequest.

defaultSharedSe Secret used if no server-specific secret is configured.

To configure server-specific secrets, see Creating and Editing
Server-Specific Shared Secrets on page 23-13.

send_ACCOUNTING_REQUESTS_
when_ACCESS_REQUEST_are_
pending

Enabled: If enabled, the IxLoad client requests accounting data
even if requests for authentication (Access-Requests) are still
pend

Disabled: If disabled, the IxLoad client does not send
Accounting-data if any Access-Requests are pending.

maxPendingRe Maximum number of pending requests per client that the IxLoad
climaintains with the RADIUS server.

Specific Secrets

To configure secrets to be used with specific servers. Refer to Specific Secrets on page 25-18 for a
full description of this command. The options supported are listed below.

Option Description

sharedSecretList The list of shared secrets to be used with specific servers.

Vendor List

The Vendors tab contains the predefined vendors and their vendor-codes that the IxLoad client uses.
You cannot modify or delete the predefined vendors and codes, but you can add additional vendors and

Chapter 25 Radius

– 1081 –

codes. Refer to Vendor List on page 25-19 for a full description of this command. Attribute List

The Attributes list contains the predefined Attributes, their values, and the venthat originally specified
them. All the predefined Attributes are standard RADIUS Attributes; there are no vendor-specific
Attributes in the list. Refer to Attribute List on page 25-20 for a full description of this command.

Access Attribute Set List

Access Attribute sets are groups of Access Attributes that are included in RADIUS messages. Refer to
AccessAttribSetList on page 25-22 for a full description of this command. The most significant
options of this command are listed below.

Option Description

id This represents the name of the ACCESS attribute set.

Accounting Attribute Set List

Accounting Attribute sets are groups of Accounting Attributes that are included in RADIUS messages.
Refer to AcctngAttribSetList on page 25-23 for a full description of this command. The most
significant options of this command are listed below.

Option Description

acctngAttribVal This represents the name of the ACCOUNTING attribute set.

Chapter 25 Radius

– 1082 –

Radius Client Agent
Radius Client Agent - create a Radius client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.config

DESCRIPTION

The Radius Client Agent simulates user requests for access by sending user names and passwords to a
RADIUS server, and recording the responses returned by the server. A Radius client agent is added to
the activityList option of the ixNetTraffic object using the appendItem subcommand from the
ixConfigSequenceContainer command. Other ixConfigSequenceContainer submay be used to
modify the activityList.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new ixNetTraffic]#----------------------------------
------------------------# Activity RADIUSClient1 of NetTraffic Traffic1@Network1#---
---set Activity_RADIUSClient1
[$Traffic1_Network1 activityList.appendItem \-protocolAndType
"radius Client"]$Activity_RADIUSClient1 agent.config \-enable
true \-name "RADIUSClient1"

SEE ALSO

ixNetTraffic

Chapter 25 Radius

– 1083 –

Radius Command List
Radius Command List—Creates the list of Radius commands that the client will send to a Radius
server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.pm.cmdList.appendItem options...

DESCRIPTION

A command is added to the Radius Command List object using the appendItem subcommand from the
ixConfigSequenceContainer command (see the example).

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

Radius command to be executed. One of the following:

Command Description

ACCESS Sends an ACCESS request to a RADIUS server. An ACCESS request is a query
to determine whether a user should be allowed access to a specific NAS. The
ACCESS request also can include a request for special services that the user
may require.

ACCOUNTING Sends an ACCOUNTING request to a RADIUS server. An ACCOUNTING request
is a query for obtaining information that is used to provide accounting for a
service provided to a user.

LoginWithAccountin This is a combination of an ACCESS and ACCOUNTING comThis command
simulates a scenario in which a user logs in to a NAS port and the NAS has
accounting enabled for that user.

THINK Causes the client to become idle. {Think} is an internal IxLoad command
intended to assist your testing; it is not a command defined in the RADIUS
protocol.

If you specify identical values for the minimum and maximum times, the
client will be idle for a fixed length of time. If you specify different values for
the minimum and maximum times, IxLoad will select a value within the range
and cause the client to be idle for that length of time.

Chapter 25 Radius

– 1084 –

LoopBeginCommand An IxLoad command that you can add to the Command List to cause the
commands between it and the {LoopEndCommand} to be executed a
specified number of times.

LoopEndCommand Ends the list of commands that will be executed by the preced{Loop Begin}
command.

Arguments for id = ACCESS

serverAddr

The IP address or symbolic destination (DUT configuration) of the RADIUS server to which the IxLoad
client sends the ACCESS request packet. To specify a port, enter colon (:) then the port number after
the IP address. For example: 192.168.100.1:1813. (Default = "198.18.0.100").

authenticationMethod

Method used to establish (and in the case of EAP-MD5, encrypt) the authenticacredentials of the
simulated supplicants. Depending on the method you select, IxLoad enables and disables various
Credentials fields.

The choices are:

Value Description

PAP (minimum) Password Authentication Protocol.

CHAP Challenge Handshake Authentication Protocol. For CHAP the challenge that is normally
generated by the authenticator/RAS is internally generated by IxLoad.

EAP-
MD5

(default) Extensible Authentication Protocol, with MD5 encryption.

MS-
CHAP

Microsoft CHAP, version 1

MS-
CHAPv2

(maximum) Microsoft CHAP, version 2

userName

User name of the supplicant included in ACCESS request. maximum = 256.

password

Password for the supplicant. maximum = 128.

eapMD5Identity

If the authenticationMethod is EAP-MD5, this is the identity of the supplicant. maximum = 256.

Chapter 25 Radius

– 1085 –

attributeSetName

Attributes sent with the ACCESS request. See AccessAttribSetList on page 25-22. maximum = 256.

Arguments for id = ACCOUNTING

serverAddr

The IP address or symbolic destination (DUT configuration) of the RADIUS server to which the IxLoad
client sends the ACCOUNTING request packet. To specify a port, enter colon (:) then the port number
after the IP address. For example: 192.168.100.1:1813. (Default = "198.18.0.100")

userName

User name included in ACCOUNTING request. maximum = 256

You can use sequence generators in this field to create a range of unique user names. See Appendix
W, Using Automatic Sequence Generators.

acctSessionId

Numeric identifier of the call for which the ACCOUNTING request is being sent. maximum = 256.

acctStatusType

Type of information that the ACCOUNTING request obtains. The values are:

Value Description

1 Start (start time of call)

2 Stop (end time of call)

3 Interim-Update

7 Accounting-On

8 Accounting-Off

9-14 Reserved for Tunnel Accounting

15 Reserved for Failed

attributeSetName

Attributes sent with the ACCOUNTING request. See AcctngAttribSetList on page 25-23. maximum =
256.

Arguments for id = LoginWithAccountingEnabled

serverAddr

Chapter 25 Radius

– 1086 –

The IP address or symbolic destination (DUT configuration) of the RADIUS server to which the IxLoad
client sends the Accounting-Request packet. To speca port, enter colon (:) then the port number after
the IP address. For example: 192.168.100.1:1813. (Default = "198.18.0.100")

authenticationPort

The UDP port on the RADIUS server to which the IxLoad client sends ACCESSminimum = "1", maximum
= "65535", default = "1812”

accountingPort

The UDP port on the RADIUS server to which the IxLoad client sends ACCOUNTING requests. minimum
= "1" maximum = "65535" default= "1813"

authenticationMethod

Method used to establish (and in the case of EAP-MD5, encrypt) the authenticacredentials of the
simulated supplicants. Depending on the method you select, IxLoad enables and disables various
Credentials fields.

The choices are:

Value Description

PAP (minimum) Password Authentication Protocol.

CHAP Challenge Handshake Authentication Protocol. For CHAP the challenge that is normally
generated by the authenticator/RAS is internally generated by IxLoad.

EAP-
MD5

(default) Extensible Authentication Protocol, with MD5 encryption.

MS-
CHAP

Microsoft CHAP, version 1

MS-
CHAPv2

(maximum) Microsoft CHAP, version 2

userName

User name of the supplicant included in ACCESS request. maximum = 256.

You can insert sequence generators into this field to create unique entries autoFor information on how
to use sequence generators, see Using Automatic Sequence Generators on page A-1.

password

Password for the supplicant. maximum = 128.

You can insert sequence generators into this field to create unique entries autoFor information on how
to use sequence generators, see Using Automatic Sequence Generators on page A-1.

eapMD5Identity

Chapter 25 Radius

– 1087 –

If the authenticationMethod is EAP-MD5, this is the identity of the supplicant. maximum = 256

attributeSetName

Attributes sent with the ACCESS request. See AccessAttribSetList on page 25-22.

learnFramedIp

After the client receives an ACCESS-ACCEPT, the first ACCOUNTING-START request that it sends may
include the attribute Framed-IP, and a value for it. This parameter determines the source of the value
for the Framed-IP attribute. If this option is enabled:

l If the ACCESS-ACCEPT contains a Framed-IP attribute and a value, the cliuses the value from the
ACCESS-ACCEPT.

l If the attribute set includes a Framed-IP attribute and value, the client ignores the value in the
attribute set and uses the value from the ACCESS-ACCEPT.•If the ACCESS-ACCEPT does not
contain a Framed-IP attribute but the attribute set does, the client uses the value from the
attribute set.

l If neither the ACCESS-ACCEPT nor the attribute set con-tains a Framed-IP attribute, then this
option is ignored and the ACCOUNTING-START does not contain a Framed-IP attribute.

Default = false.

Arguments for id = THINK

minimumInterval

Minimum length of time that the user will remain inactive for. Minimum = “1,” maximum =
"2,147,483,647.” (Default = "1").

maximumInterval

Maximum length of time that the user will remain inactive for. Minimum = “1,” maximum =
"2,147,483,647.” (Default = "1").

Arguments for id = LoopBeginCommand

loopCount

Number of times to repeat the enclosed commands. '0' treated as infinity. Mini= “0,” maximum =
“2,147,483,647.” (Default = "5").

Arguments for id = LoopEndCommand

None.

EXAMPLE
$Activity_RADIUSClient1 agent.pm.cmdList.appendItem \

-id "ACCESS" \

-userName "ixia" \

Chapter 25 Radius

– 1088 –

-authenticationMethod 0 \

-attributeSetName "ACCESS-REQUEST-Attribute-Set-1" \

-eapMD5Identity "" \

-serverAddr "198.18.0.100" \

-password "ixia"

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1089 –

Global Config
Global Config—Configures the parameters that define the way the IxLoad RADIUS client performs
overall.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.pm.globalConfig.config options...

DESCRIPTION

To configure the Global Config options, use the appendItem command on the pm.optionSetManager
component of the Radius Client Agent. Note the use of the ‘pm.’ component. See the following
example:
$Activity_RADIUSClient1 agent.pm.globalConfig.config

SUBCOMMANDS

None.

OPTIONS

defaultAuthenticationPort

The UDP port on the RADIUS server to which the IxLoad client sends Access-Requests. minimum = "1",
maximum = "65535", default= "1812".

defaultAccountingPort

The UDP port on the RADIUS server to which the IxLoad client sends Accountminimum = "1", maximum
= "65535", default = "1813".

authenticationRetryCount

Number of times the IxLoad RADIUS client will re-send an unacknowledged Access-Request.

If the RADIUS server does not respond to an Access-Request within the Response Timeout period, the
client resends the Access-Request. minimum = "0", maximum = "65535", default = "3".

responseTimeouot

Elapsed time, in seconds, allowed for the server to respond to a client request. minimum = "1",
maximum = "65535", default = "5".

defaultSharedSecret

Secret used if no server-specific secret is configured. See Specific Secrets on page 25-18.
minimum = "1", maximum = "256", default = "ixia".

send_ACCOUNTING_REQUESTS_when_ACCESS_REQUEST_are_pending

Chapter 25 Radius

– 1090 –

If enabled (1), the IxLoad client requests accountdata even if requests for authentication (Access-
Requests) are still pending. If disabled (0), the IxLoad client does not send accounting data if any
Access-Requests are pending. Default = "1".

maxPendingRequestPerClient

Maximum number of pending requests per client that the IxLoad client maintains with the RADIUS
server. minimum = "1", maximum = "64000", default = "100".

EXAMPLE
$Activity_RADIUSClient1 agent.pm.globalConfig.config \-defaultAccountingPort
1813 \-defaultAuthenticationPort 1812 \-defaultSharedSecret
"ixia" \-authenticationRetryCount 3 \-accountingRetryCount
3 \-responseTimeout 5 \-send_ACCOUNTING_REQUESTS_when_
ACCESS_REQUESTS_are_pending true \-maxConcurrentSessions 100 \-
implicitLoopCheck true

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1091 –

Specific Secrets
Specific Secrets—Configures secrets to be used with specific servers.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.pm.specificSecrets.config options...

DESCRIPTION

To configure Specific Secrets, use the appendItem command on the pm.option component of the
Radius Client Agent. Note the use of the ‘pm.’ component.

SUBCOMMANDS

None.

OPTIONS

sharedSecretList

The list of shared secrets to be used with specific servers.

clientIdRange

This corresponds to the IP addresses configured in the network portion of the RADIUS client’s
NetTraffic. maximum = 256.

serverIp

IP address of the server to which the secret applies. minimum = "7" maximum = "19" default =
"198.18.0.100".

sharedSecret

The shared secret is entered in this field. minimum = "1" maximum = "256" default = "ixia".

EXAMPLE
$Activity_RADIUSClient1 agent.pm.specificSecrets.sharedSecretList.appendItem \

-id "ClientServerSecrets" \

-clientIdRange "1-5" \

-secretListString "(\"198.18.0.101\", \"ixia\"), (\"198.18.0.102\", \"ixia\")"
$Activity_RADIUSClient1 agent.pm.specificSecrets.sharedSecretList
(0).serverSecretList.appendItem \-id
"ServerSecrets" \-serverIP "198.18.0.101" \-
sharedSecret "ixia"

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1092 –

Chapter 25 Radius

– 1093 –

Vendor List
Vendor List—contains the predefined vendors and their vendor-codes that the IxLoad client uses.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.pm.vendorList.v_list.appendItem \ options...

DESCRIPTION

To configure a Vendor List, use the appendItem command on the pm.optionSetcomponent of the
Radius Client Agent. Note the use of the ‘pm.’ com

SUBCOMMANDS

None.

OPTIONS

vendorName

Name of the vendor. maximum = 256

vendorId

This is the vendor code. maximum = 8

EXAMPLE
$Activity_RADIUSClient1 agent.pm.vendorList.v_list.appendItem \-id
"Vendor" \-vendorId "NA" \

-vendorName "IETF RADIUS STANDARD" \
-isPredefined true

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1094 –

Attribute List
Attribute List—contains the predefined Attributes, their values, and the vendors that originally
specified them.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1 agent.pm.attributeList.a_list.appendItem \ options...

DESCRIPTION

To configure an Attribute List, use the appendItem command on the agent.pm component of the
Radius Client Agent. Note the use of the ‘pm.’ component.

SUBCOMMANDS

None.

OPTIONS

attributeName

Name of the attribute. maximum = "256"

attributeCode

The attribute code. minimum = "0" maximum ="255"

vendorName

Name of the vendor. maximum = "256"

vendorId

This represents the vendor id. maximum = "8"

valueType

This represents the data type of the attribute value. minimum = "0", maximum = "7"

The choices are:

Value Description

0 Integer (1 octet)

1 Integer (2 octets)

2 Integer (3 octets)

3 Integer (4 octets)

Chapter 25 Radius

– 1095 –

4 String

5 IPv4 Address

6 MTU

7 Hexadecimal

relevance

This represents the request type with which the attribute can be used. minimum = "0" maximum = "2"

The choices are:

Value Description

0 Both Authentication And Accounting

1 Authentication Only

2 Accounting Only

EXAMPLE
$Activity_RADIUSClient1 agent.pm.attributeList.a_list.appendItem \-id
"Attribute" \-attributeCode 40 \-attributeName
"Acct-Status-Type" \-valueType 3 \-relevance
2 \-vendorName "IETF RADIUS STANDARD" \-isPredefined
true

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1096 –

AccessAttribSetList
AccessAttribSetList—Configures the list of Access Attribute Sets.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
Activity_RADIUSClient1 agent.pm.accessAttribSetList.accessAttribVal\ options...

DESCRIPTION

To configure an AccessAttribSetList, use the appendItem command on the agent.pm component of
the Radius Client Agent. Note the use of the ‘pm.’ com

SUBCOMMANDS

None.

OPTIONS

attributeValueSetName

This represents the name of the ACCESS attribute set.

refCount

The numerical order of the attribute set.

EXAMPLE
$Activity_RADIUSClient1
agent.pm.accessAttribSetList.accessAttribValueSetList.appendItem \

-id "AttributeValueSet" \

-attributeValueSetName "ACCESS-REQUEST-Attribute-Set-1" \

-refCount 1

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1097 –

AcctngAttribSetList
Accounting Attribute Set List—Configures the list of Accounting Attribute Sets.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RADIUSClient1 [$Traffic1_Network1 activityList.appendItem options...]
$Activity_RADIUSClient1
agent.pm.acctngAttribSetList.acctngAttribValueSetList.appendItem \ options...

DESCRIPTION

To configure an Accounting Attribute Set List, use the appendItem command on the agent.pm
component of the Radius Client Agent. Note the use of the ‘pm.’ component.

SUBCOMMANDS

None.

OPTIONS

attributeValueSetName

This represents the name of the ACCOUNTING attribute set.

refCount

The numerical order of the attribute set.

EXAMPLE
$Activity_RADIUSClient1
agent.pm.acctngAttribSetList.acctngAttribValueSetList.appendItem \

-id "AttributeValueSet" \

-attributeValueSetName "ACCOUNTING-REQUEST-Attribute-Set-1" \

-refCount 1

SEE ALSO

Radius Client Agent

Chapter 25 Radius

– 1098 –

RADIUS Client Statistics
The table below describes the RADIUS client statistics.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

Test Objective Related Statistics

RADIUS Simulated Users - - Number of RADIUS clients (NAS, RAS, or other
RADIUS-enabled devices) simulated by the IxLoad
RADIUS client.

RADIUS Transaction Rate All Average rate at which the client completed RADIUS
transactions.

RADIUS Total Transactions All Total number of RADIUS transactions completed.

RADIUS Sessions Alive All Total number of RADIUS sessions online.

RADIUS Logged In Supplicants All Total number of simulated supplicants authenticated
by the IxLoad RADIUS client.

Authentication Statistics

RADIUS Authentications
Attempted

All Number of authentications attempted using RADIUS.

RADIUS Authentications
Succeeded

All Number of authentications that succeeded.

RADIUS Authentications Failed All Number of authentications that failed.

Access-Request and -Response Statistics

RADIUS Total Access Requests
Sent

All Number of Access-Request packets sent by the
client.

RADIUS Total Access Accept
Received

All Number of Access-Accept packets received by the
client.

RADIUS Total Access Reject
Received

All Number of Access-Reject packets received by the
client.

Chapter 25 Radius

– 1099 –

RADIUS Total Access Challenge
Received

All Number of Access-Challenge packets received by the
client.

RADIUS Total Access Request
Timeouts

All Number of Access-Request packets sent for which no
response was received within the timeout period.

RADIUS Total Invalid Replies To
Access Requests

All Number of invalid responses to Access-Request
packets received by the client.

RADIUS Total Access Request
Errors

All Total number of errors that occurred either while
sending an Access Request or afterwards.

This statistic mainly counts socket-level errors and
does not include timeouts and invalid responses,
which are counted by other statistics.

RADIUS Total Access Request
Aborted

All Number of Access-Requests that were aborted.

Successful Authentications Statistics

RADIUS Total Authentications
Succeeded Using PAP

All Number of successful PAP authentications.

RADIUS Total Authentications
Succeeded Using CHAP-MD5

All Number of successful CHAP-MD5 authentications.

RADIUS Total Authentications
Succeeded Using EAP-MD5

All Number of successful EAP-MD5 authentications.

RADIUS Total Authentications
Succeeded Using MS-CHAPv1

All Number of successful MS-CHAPv1 authentications.

RADIUS Total Authentications
Succeeded Using MS-CHAPv2

All Number of successful MS-CHAPv2 authentications.

Failed Authentications Statistics

RADIUS Total Authentications
Failed Using PAP

All Number of failed PAP authentications.

RADIUS Total Authentications
Failed Using CHAPMD5

All Number of failed CHAP-MD5 authentications.

RADIUS Total Authentications
Failed Using EAPMD5

All Number of failed EAP-MD5 authentications.

RADIUS Total Authentications
Failed Using MSCHAPv1

All Number of failed MS-CHAPv1 authentications.

Chapter 25 Radius

– 1100 –

RADIUS Total Authentications
Failed Using MSCHAPv2

All Number of failed MS-CHAPv2 authentications.

Accounting Requests Statistics

RADIUS Total Accounting
Requests Sent

All Total number of Accounting-Request packets sent by
the client.

RADIUS Total Accounting Start
Requests Sent

All Number of Accounting-Request-Start packets sent by
the client.

RADIUS Total Accounting Stop
Requests Sent

All Number of Accounting-Request-Stop packets sent by
the client.

RADIUS Total Accounting
Responses Received

All Number of Accounting-Response packets received by
the client.

RADIUS Total Timeouts for
Accounting Requests

All Total number of Accounting-Request packets for
which no response was received within the timeout
period.

RADIUS Total Timeouts for
Accounting Start Requests

All Number of Accounting-Request-Start packets for
which no response was received within the timeout
period.

RADIUS Total Timeouts for
Accounting Stop Requests

All Number of Accounting-Request-Stop packets for
which no response was received within the timeout
period.

RADIUS Total Invalid Replies To
Accounting Requests

All Total number of invalid replies to Accounting-Request
packets received by the client.

RADIUS Total Accounting
Request Errors

All Total number of timeouts and invalid responses to
Accounting-Request packets.

RADIUS Total Accounting
Request Aborted

All Total number of Accounting-Requests that were
aborted.

Request / Response Statistics

RADIUS Total Requests Sent All Total number of Access-Requests and Accounting-
Requests sent by the client.

RADIUS Total Responses
Received

All Total number of responses to Access-Requests and
Accounting-Requests received by the client.

RADIUS Total Responses To
Accounting Stop

All Total number of responses to Accounting-Request-
Stop packets received by the client.

Chapter 25 Radius

– 1101 –

Request / Response Rate Statistics

RADIUS Requests Sent Per
Second

All Rate at which the client sent Access-Request or
Accounting-Request packets.

RADIUS Responses Received
Per Second

All Rate at which the client received responses to
Access-Request or Accounting-Request packets.

RADIUS Access Requests Sent
Per Second

All Rate at which the client sent Access-Request
packets.

RADIUS Total Accounting
Requests Sent Per Second

All Rate at which the client sent Accounting-Request
packets.

RADIUS Total Accounting Start
Requests Sent Per Second

All Rate at which the client sent Accounting-Request-
Start packets.

RADIUS Total Accounting Stop
Requests Sent Per Second

All Rate at which the client sent Accounting-Request-
Stop packets.

RADIUS Total Session
Teardowns

All Number of RADIUS sessions torn down.

RADIUS Session Teardown Rate All Rate at which the client tore down RADIUS sessions.

Throughput Statistics

RADIUS Total Bytes Sent All Total number of RADIUS bytes (headers+payload)
sent.

RADIUS Total Bytes Received All Total number of RADIUS bytes (headers+payload)
received.

RADIUS Total Bytes Sent and
Received

All Combined total of RADIUS bytes (headers+payload)
sent and received.

RADIUS UDP Packets Sent All Number of UDP packets sent with RADIUS payloads.

RADIUS UDP Packets Received All Number of UDP packets received with RADIUS
payloads.

RADIUS Bytes Sent per sec All Rate at which the client sent RADIUS data, in bytes
per second.

RADIUS Bytes Received per sec All Rate at which the client received RADIUS data, in
bytes per second.

RADIUS UDP Packets Sent per
sec

All Rate at which the client sent UDP packets with
RADIUS payloads, in bytes per second.

Chapter 25 Radius

– 1102 –

RADIUS UDP Packets Received
per sec

All Rate at which the client received UDP packets with
RADIUS payloads, in bytes per second.

Retransmission Statistics

RADIUS Total Retransmissions
For Access Requests

All Total number of Access-Requests that had to be
retransmitted.

RADIUS Total Retransmissions
For Accounting Requests

All Total number of Accounting-Requests that had to be
retransmitted.

RADIUS Total Retransmissions
For Accounting Start Requests

All Total number of Accounting-Request-Start packets
that had to be retransmitted.

RADIUS Total Retransmissions
For Accounting Stop Requests

All Total number of Accounting-Request-Stop packets
that had to be retransmitted.

Response Time Statistics

RADIUS Average Time To
Receive Access Response

All Average time elapsed between the time the client
sent an Access-Request and the time it received any
type of response.

Note for Tcl API users: This is a weighted statistic. If
you are using this statistic in a Tcl script, use the
kWeightedAverage aggregation type.

RADIUS Average Time To
Receive Access Accept
Response

All Average time elapsed between the time the client
sent an Access-Request and the time it received an
Access-Accept in response.

Note for Tcl API users: This is a weighted statistic. If
you are using this statistic in a Tcl script, use the
kWeightedAverage aggregation type.

RADIUS Average Time To
Receive Access Reject Response

All Average time elapsed between the time the client
sent an Access-Request and the time it received an
Access-Reject in response.

Note for Tcl API users: This is a weighted statistic. If
you are using this statistic in a Tcl script, use the
kWeightedAverage aggregation type.

RADIUS Average Time To
Receive Accounting Response

All Average time elapsed between the time the client
sent an Accounting-Request and the time it received
an Accounting-Response.

Note for Tcl API users: This is a weighted statistic. If
you are using this statistic in a Tcl script, use the
kWeightedAverage aggregation type.

Chapter 25 Radius

– 1103 –

Access Accept Latency statistics

RADIUS Total Access Accept
Responses With Latency
Between 0 to 2 millisec

- - Number of Access Accept responses received with
latencies between 0 and 2 milliseconds.

RADIUS Total Access Accept
Responses With Latency
Between 2 to 5 millisec

- - Number of Access Accept responses received with
latencies between 2 and 5 milliseconds.

RADIUS Total Access Accept
Responses With Latency
Between 5 to 10 millisec

- - Number of Access Accept responses received with
latencies between 5 and 10 milliseconds.

RADIUS Total Access Accept
Responses With Latency
Between 10 to 50 millisec

- - Number of Access Accept responses received with
latencies between 10 and 50 milliseconds.

RADIUS Total Access Accept
Responses With Latency
Between 50 to 100 millisec

- - Number of Access Accept responses received with
latencies between 50 and 100 milliseconds.

RADIUS Total Access Accept
Responses With Latency
Between 100 to 500 millisec

- - Number of Access Accept responses received with
latencies between 100 and 500 milliseconds.

RADIUS Total Access Accept
Response With Latency Greater
Than 500 millisec

- - Number of Access Accept responses received with
latencies over 500 milliseconds.

Access Reject Latency statistics

RADIUS Total Access Reject
Responses With Latency
Between 0 to 2 millisec

- - Number of Access Reject responses received with
latencies between 0 and 2 milliseconds.

RADIUS Total Access Reject
Responses With Latency
Between 2 to 5 millisec

- - Number of Access Reject responses received with
latencies between 2 and 5 milliseconds.

RADIUS Total Access Reject
Responses With Latency
Between 5 to 10 millisec

- - Number of Access Reject responses received with
latencies between 5 and 10 milliseconds.

RADIUS Total Access Reject
Responses With Latency
Between 10 to 50 millisec

- - Number of Access Reject responses received with
latencies between 10 and 50 milliseconds.

RADIUS Total Access Reject - - Number of Access Reject responses received with

Chapter 25 Radius

– 1104 –

Responses With Latency
Between 50 to 100 millisec

latencies between 50 and 100 milliseconds.

RADIUS Total Access Reject
Responses With Latency
Between 100 to 500 millisec

- - Number of Access Reject responses received with
latencies between 100 and 500 milliseconds.

RADIUS Total Access Reject
Response With Latency Greater
Than 500 millisec

- - Number of Access Reject responses received with
latencies over 500 milliseconds.

Accounting Response Latency statistics

RADIUS Total Accounting
Responses With Latency
Between 0 to 2 millisec

- - Number of Access Response responses received with
latencies between 0 and 2 milliseconds.

RADIUS Total Accounting
Responses With Latency
Between 2 to 5 millisec

- - Number of Access Response responses received with
latencies between 2 and 5 milliseconds.

RADIUS Total Accounting
Responses With Latency
Between 5 to 10 millisec

- - Number of Access Response responses received with
latencies between 5 and 10 milliseconds.

RADIUS Total Accounting
Responses With Latency
Between 10 to 50 millisec

- - Number of Access Response responses received with
latencies between 10 and 50 milliseconds.

RADIUS Total Accounting
Responses With Latency
Between 50 to 100 millisec

- - Number of Access Response responses received with
latencies between 50 and 100 milliseconds.

RADIUS Total Accounting
Responses With Latency
Between 100 to 500 millisec

- - Number of Access Response responses received with
latencies between 100 and 500 milliseconds.

RADIUS Total Accounting
Response With Latency Greater
Than 500 millisec

- - Number of Access Response responses received with
latencies over 500 milliseconds.

! 27

Chapter 25 Radius

– 1105 –

This page intentionally left blank.

– 1106 –

CHAPTER 26 RTSP
This section describes the RTSP Tcl API objects.

Overview
RTSP protocol commands are organized as:

RTSP Client Agent

RtspCommand

RtspHeaders

RtspHeader

RTSP Server Agent

PresentationItem

Content

Stream

Objectives
The objectives (userObjective) you can set for RTSP are listed below. Test objecare set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

– 1107 –

RTSP Client Agent
The RTSP Client Agent defines a simulated user performing RTSP requests against one or more RTSP
servers. Refer to RTSP Client Agent for a full descripof this command. The important options of this
command are listed below.

Option Usage

enable Enables the use of the RTSP client agent.

name The name associated with the client agent.

rtspTransport The RTSP transport mechanism that the client will request.

commandList A list of RTSP commands that the client will transmit, with arguments. Each list
element is of type RtspCommand.

rtspHeaders A list of RTSP headers that the client will transmit with each command. Each list
element is of type RtspHeaders.

commandTimeout The client command timeout.

RtspCommand

Each client command is a single step in the interaction. Refer to RtspCommand for a full description of
this command. The important options of this command are listed below.

Option Usage

command
arguments

The RTSP command, with optional arguments, to be executed.

destination The name/address of the RTSP server.

media The URL of the media object to be controlled.

Chapter 26 RTSP

– 1108 –

RtspHeaders

The RtspHeaders command specifies a client emulation and includes a list of name=value header
pairs. Refer to RtspHeaders for a full description of this command. The important options of this
command are listed below.

Option Usage

clientEmulation Indicates the type of RTSP client to emulate.

list A list of individual RTSP headers. Each list item is of type RtspHeader.

RtspHeader

Each RtspHeader item represents a single name=value header pair. Refer to RtspHeader for a full
description of this command. The important options of this command are listed below.

Option Usage

name The name part of the pair.

value The value part of the pair.

RTSP Server Agent
The RTSP Server Agent defines the operation of the RTSP server. Refer to RTSP Server Agent for a
full description of this command. The important options of this command are listed below.

Option Usage

enable Enables the use of the server agent.

name The name associated with the server agent.

port The port number that the server will respond on.

Chapter 26 RTSP

– 1109 –

serverEmulation The type of RTSP server that the server agent will emulate.

presentationList The set of media presentations that the server will respond for. Each item is of
type PresentationItem.

contentList A list of contents that are used in the presentationList. Each item is of type
Content.

commandTimeout Response timeout value.

PresentationItem

The PresentationItem is a specification of a media presentation offered by the server. Refer to
PresentationItem for a full description of this command. The important options of this command are
listed below.

Option Usage

path The URL of the media file.

content The name of an item in the RTSP Server Agent’s contentList.

duration The length of the media presentation.

Content

The Content object is a named set of media streams. Refer to Content for a full description of this
command. The important options of this command are listed below.

Option Usage

name The name of the content.

streamList A list of streams that compose the content. Each list item is of type Stream.

Chapter 26 RTSP

– 1110 –

Stream

The Stream object is a single media stream object. Refer to Stream for a full description of this
command. The important options of this command are listed below.

Option Usage

name The name of the stream.

clockRate The sampling rate.

dataRate The data transmission rate.

packetization The time between packets.

Chapter 26 RTSP

– 1111 –

RTSP Client Agent
RTSP Client Agent - create an RTSP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_RTSPClient1 agent.config options...

DESCRIPTION

An RTSP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

commandList

This is a list of type RtspCommand used to hold RTSP commands. The elements in this list describe
the commands to be executed by the client. (Default = {}).

commandTimeout

The amount of time allowed for each command to complete, in seconds. (Default = 60).

enable

If true, this agent will be used. (Default = true).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the RTSP packets. Use the tos
option to specify the TOS bit setting.

0 (default) TOS bits not enabled.

1 TOS bits enabled.

esm

Chapter 26 RTSP

– 1112 –

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size as 1,460 bytes. (Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

name

The name associated with this object, which must be set at object creation time.

rtpTransport

The RTSP mechanism to be requested by the client. One of:

Option Usage

$::RTSP_Client(kRtpTransportTcp) TCP.

$::RTSP_Client(kRtpTransportUdp) (Default) UDP.

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Serbit setting and Assured
Forwarding classes. (Default="0"). The choices are:

0 (Default) (0x000) routine

32 (0x0020) priority service, Assured Forwarding class 1

64 (0x0040) immediate service, Assured Forwarding class 2

96 (0x0060) flash, Assured Forwarding class 3

128 (0x0080) flash-override, Assured Forwarding class 4

160 (0x00A0) critical-ecp

192 (0x00C0) internet-control

enableCustomSETUPtransportParam

This enables or disables the entry of parameters specified in the Transport: line of the RTSP SETUP
message. You can use these parameters to set or enable addiRTSP transport options on the server.
Default = false.

customSETUPtransportParam

Chapter 26 RTSP

– 1113 –

If enableCustomSETUPtransportParam is false, then the Transport: line contains the following
data, which is mandatory for RTSP:

Transport protocol, connection type (unicast or multicast), and client IP port range used for the
transport protocol. For example:
RTP/AVP;unicast;client_port=35246-35247

If enableCustomSETUPtransportParam is true, then IxLoad appends a semi-colon (;) to the mandatory
data on Transport: line, and then appends the custom data in the field.

For example, if you specify the string mode=PLAY, the Transport: line will conthe following string:
RTP/AVP;unicast;client_port=35246-35247;mode=PLAY

enableSETUPargs

If enabled, you can specify the IP address, Media and arguments (which compoof the presentation to
setup (such as “audio” or “audio, video”) for the SETUP command.

Normally, these parameters are specified in the DESCRIBE command. However, some servers do not
support the DESCRIBE command.

If no arguments are specified, IxLoad sets up the URL.

followRtspRedirects

If enabled, the client follows RTSP redirect responses from the server.

useSameRtpPort

If enabled, all RTP streams for one presentation use the same UDP port number.

RTP audio and video streams are usually sent over different UDP ports. Howsome Windows RTP servers
send both streams over the same port. If this is the case with your server, enable this option.

enableRtspProxy

If enabled, you can enter the Rtsp proxy server address.

rtspProxy

If enableRtspProxy is true, then you can enter the Rtspp proxy ip and port address.

SUB-OBJECTS

rtspHeaders

This is an object of type RtspHeaders, which holds information about the type of client emulation
desired as well as a list of RTSP headers to be supplied by the client for each request. (Default =
default object of type RtspHeaders).

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new ixNetTraffic]

Chapter 26 RTSP

– 1114 –

Activity RTSPClient1 of
NetTraffic Traffic1@Network1###set
Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"RTSP Client"]

Timeline1 for activities
RTSPClient1###set Timeline1 [::IxLoad
new ixTimeline]$Timeline1 config \-rampUpValue 1 \-
rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_RTSPClient1 config
\-enable 1 \-name
"RTSPClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1set my_
RtspHeaders [::IxLoad new RtspHeaders]$my_RtspHeaders config \-clientEmulation
1$my_RtspHeaders list.clearset User_Agent [::IxLoad new RtspHeader]$User_Agent
config \-name "User-Agent" \-value
"QTS (qtver=6.5)"$my_RtspHeaders list.appendItem -object $User_Agent$Activity_
RTSPClient1 agent.config \-enableTos 0 \-loopValue
true \-commandTimeout 60 \-enable
1 \-name "RTSPClient1" \-
setEnableCustomSETUPtransportParam true \-tos
0 \-vlanPriority 0 \-customSETUPtransportParam
"mode=PLAY" \-followRtspRedirects 0 \-enableRtspProxy
0 \-enableSETUPargs true \-rtpTransport
3 \-enableEsm 0 \-rtspProxy
"0.0.0.0:554" \-useSameRtpPort 0 \-esm
1460 \-enableVlanPriority 0 \-enableCustomSETUPtransportParam
true \-rtspHeaders $my_RtspHeaders$Activity_RTSPClient1
agent.urlList.clear$Activity_RTSPClient1 agent.setParamOptionList.clear$Activity_
RTSPClient1 agent.commandList.clearset my_RtspCommand [::IxLoad new RtspCommand]$my_
RtspCommand config \-media "/test1.mp3" \-
destination "Traffic2_RTSPServer1" \-command
"{PlayMedia}" \-arguments "PLAY_TILL_END"$Activity_
RTSPClient1 agent.commandList.appendItem -object $my_RtspCommand$Activity_
RTSPClient1 agent.getParamOptionList.clear

SEE ALSO

ixNetTraffic

RtspCommand

RtspHeaders

Chapter 26 RTSP

– 1115 –

RtspCommand
RTSP Command — Specifies an RSTP command to be executed.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
set my_RtspCommand [::IxLoad new RtspCommand]
$Activity_RTSPClient1 agent.commandList.appendItem -object $my_RtspCommand

DESCRIPTION

An RTSP command is added to the commandList option of the RTSP Client Agent object using the
appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

arguments

This option contains an argument that is used by the various commands defined in command. The type
of the value depends on the command:

command
option

Usage

“{PlayMedia}” N/A.

“DESCRIBE” N/A.

“SETUP” The transport mechanism to be used. One of: “TCP” or “UDP.”

“SET_
PARAMETER”

Takes only one string value. This string argument appear as name in one of the
entries of setParamOptionList.

“GET_
PARAMETER”

“PLAY” The playback duration, in seconds.

"{KeepAlive}" Keeps the client and server connection alive

“PAUSE” N/A.

Chapter 26 RTSP

– 1116 –

“{Think}” The length of time to pause, in seconds.

“TEARDOWN” N/A.

command

Selects the RTSP command to be used. One of:

Option Usage

“{PlayMedia}” (Default) An IxLoad command that plays the file listed in the media option. This
command sets up the RTSP control connection, requests the URL from the server,
then tears down the RTSP connection.

“DESCRIBE” Retrieves the description of a presentation or media object identified by the URL in
the media option. The server responds with a descripof the requested resource.

"{KeepAlive}" Periodically sends a short message (and empty GET_PARAMETER command) to the
server so that the server does not assume that the client is inactive and then tears
down the connection.

Although you can add a {KeepAlive} to any position in a command list, it should
typically be placed after a PLAY command.

“SETUP” Specifies the transport mechanism to be used for the streamed media. A client can
issue a SETUP request for a stream that is already playing to change transport
parameters, if the server allows it. Specify the transport mechanism in the
arguments option.

“SET_
PARAMETER”

This method requests to set the value of a parameter for a presentaor stream
specified by the URL. Specify the name of this parameter in the arguments option.

“PLAY” Tells the server to start playback using the mechanism specified by a previous
SETUP command. Specify the stream in the media option, and the playback
duration in the arguments option.

“PAUSE” Causes the stream playback to be temporarily halted. If you specify a stream in the
media option, only playback of that stream is halted. If you do not specify a
stream, all streams are paused.

“GET_
PARAMETER”

Retrieves the current value of a parameter from the server. If you issue the GET_
PARAMETER with no arguments, it functions as a keep-alive to prevent the server
from closing the connection when long presentations are playing. The IxLoad RTSP
client does not process responses to GET_PARAMETER commands.

“{Think}” An IxLoad command that pauses execution of the command list. Specify the length
of time to pause, in seconds, in the arguments option.

“TEARDOWN” Stops the stream delivery for the URL listed in the media option, freeing the
resources associated with it. After issuing the TEARcommand, the RTSP session

Chapter 26 RTSP

– 1117 –

identifier associated with the session is no longer valid.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be executed a specified number of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

destination

The RTSP server that the client will send the media URL described in media to. The media URL
identifies the set of stream to be controlled. Specify the destination as follows:

l If the destination is a real RTSP server, specify the server’s host name or IP address.

l If the destination is an IxLoad RTSP Server Agent, specify the name of the RTSP Server Agent.

l If the destination is the DUT, specify DUT:n—where DUT is the name of the DUT and n is the port
number on that DUT.

(Default = “None”).

media

The presentation URL sent to the server. The presentation URL identifies the stream to be controlled.
Media names may only contain letters, numbers, and the special symbols ‘.’, ‘,’, ‘_’, ‘/’ and ‘-’.
(Default = “None”).

In an RTSP test, you can use sequence generators in the media field of the following RTSP client
commands:
DESCRIBE{Playmedia}

EXAMPLE
set my_RtspCommand [::IxLoad new RtspCommand]$my_RtspCommand config \-media
"/test1.mp3" \-destination "Traffic2_RTSPServer1" \-
command "{PlayMedia}" \-arguments
"PLAY_TILL_END"$Activity_RTSPClient1 agent.commandList.appendItem -object $my_
RtspCommand

SEE ALSO

RTSP Client Agent

Chapter 26 RTSP

– 1118 –

RtspHeaders
RtspHeaders—Specifies RTSP headers.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_RTSPClient1 agent.config
set my_RtspHeaders [::IxLoad new RtspHeaders]

DESCRIPTION

RtspHeaders is an option of the RTSP Client Agent object and is used to specify the client emulation
and hold a list of individual RTSP headers. See the following example below.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

clientEmulation

The RTSP client application that the client emulates. One of::

Option Usage

$::RtspHeaders
(kClientEmulationTypeCustom)

If this option is selected, the conof the list option
should be used to specify the client and its options.

$::RtspHeaders
(kClientEmulationTypeQuicktime)

(Default) Apple QuickTime version 6.5.

$::RtspHeaders
(kClientEmulationTypeWindowsMediaPlayer)

Microsoft Windows Media Player.

$::RtspHeaders
(kClientEmulationTypeRealOne)

Real Networks RealMedia Player.

list

This is a list of type RtspHeader. The elements in this list describe RTSP headers. (Default = {}).

EXAMPLE

See the example for RtspHeader.

Chapter 26 RTSP

– 1119 –

SEE ALSO

RTSP Client Agent

RtspHeaders

Chapter 26 RTSP

– 1120 –

RtspsetParamOptionList
Specifies the properties of the SET_PARAMETER command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
set Option1 [::IxLoad new SetParamOption]
$Activity_RTSPClient1 agent.setParamOptionList.appendItem -object $Option1

DESCRIPTION

The SET_PARAMETER command is added to the commandList option of the RTSP Client Agent object
using the appendItem subcommand from the ixConfigSequenceContainer command. The string
specified in the arguments field of the SET_PARAMETER command appears as name in one of the entries
of setParamOptionList.

SUBCOMMANDS

None

OPTIONS

name

Each user-specified content and contentType pair, has a name associated with it. This is by default
Option1, Option2, and so on.

content

This is a user-specified string value specifying the content of the parameter. It is dependent on the
server that the client is running on.

contentType

This is a user-specified string value specifying the content type of the parameter. It is dependent on
the server that the client is running on.

EXAMPLE
set my_RtspCommand1 [::IxLoad new RtspCommand]$my_RtspCommand1 config \-media
"None" \-destination "None" \-command
"SET_PARAMETER" \-arguments "Option1"$Activity_
RTSPClient1 agent.commandList.appendItem -object $my_RtspCommand1$Activity_
RTSPClient1 agent.setParamOptionList.clearset Option1 [::IxLoad new
SetParamOption]$Option1 config \-content "12345" \-
contentType "12" \-name
"Option1"$Activity_RTSPClient1 agent.setParamOptionList.appendItem -object $Option1

SEE ALSO

RtspCommand

Chapter 26 RTSP

– 1121 –

RTSP Client Agent

Chapter 26 RTSP

– 1122 –

RtspgetParamOptionList
Specifies the properties of the GET_PARAMETER command.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
set Option1 [::IxLoad new GetParamOption]
$Activity_RTSPClient1 agent.getParamOptionList.appendItem -object $Option1

DESCRIPTION

The GET_PARAMETER command is added to the commandList option of the RTSP Client Agent object
using the appendItem subcommand from the ixConfigSequenceContainer command. The string
specified in the arguments field of the GET_PARAMETER command appears as name in one of the entries
of getParamOptionList

SUBCOMMANDS

None

OPTIONS

name

Each user-specified content and contentType pair, has a name associated with it. This is by default
Option1, Option2, and so on.

content

This is a user-specified string value specifying the content of the parameter. It is dependent on the
server that the client is running on.

contentType

This is a user-specified string value specifying the content type of the parameter. It is dependent on
the server that the client is running on.

EXAMPLE
set my_RtspCommand1 [::IxLoad new RtspCommand]$my_RtspCommand1 config \-media
"None" \-destination "None" \-command
"GET_PARAMETER" \-arguments "Option1"$Activity_
RTSPClient1 agent.commandList.appendItem -object $my_RtspCommand1$Activity_
RTSPClient1 agent.getParamOptionList.clearset Option1 [::IxLoad new
GetParamOption]$Option1 config \-content "12345" \-
contentType "12" \-name
"Option1"$Activity_RTSPClient1 agent.getParamOptionList.appendItem -object $Option1

SEE ALSO

RtspCommand

Chapter 26 RTSP

– 1123 –

RTSP Client Agent

Chapter 26 RTSP

– 1124 –

RTSP Server Agent
RTSP Server Agent

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_RTSPServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_RTSPServer1 agent.config options...

DESCRIPTION

An RTSP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

commandTimeout

The amount of time, expressed in seconds, allowed for the RTSP client to respond to a message. If no
response is received within this time, IxLoad closes the RTSP client’s connection. (Default = 60).

contentList

This is a list of type Content. The elements in this list are the media types used in the
presentationList. (Default = {}).

enable

Enables the use of this agent. (Default = true).

enableEsm

If true, the use of the esm option is enabled. (Default = false).

enableTos

Enables the setting of the TOS (Type of Service) bits in the header of the RTSP packets. Use the tos
option to specify the TOS bit setting.

0 (default) TOS bits not enabled.

1 TOS bits enabled.

Chapter 26 RTSP

– 1125 –

esm

If enableEsm is true, this option specifies the TCP Maximum Segment Size in the MSS (RX) field.
Otherwise, the TCP Maximum Segment Size as 1,460 bytes. (Default = 1,460).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

name

The name associated with this object, which must be set at object creation time.

port

The port number to which the RTSP server will respond. To specify multiple ports, separate the port
numbers with commas (,). You can specify up to 50 listenports.(Default = 554).

presentationList

This is a list of type PresentationItem. The elements in this list are the presentaavailable from the
RTSP Server Agent. (Default = {}).

serverEmulation

The RTSP server application that the server emulates. One of:

Option Usage

$::RTSP_Server
(kServerEmulationCustom)

If this option is selected, the conof the list option
should be used to specify the client and its options.

$::RTSP_Server
(kServerEmulationQuicktime)

(Default) Apple QuickTime version 6.5.

$::RTSP_Server
(kServerEmulationWindowsMediaPlayer)

Microsoft Windows Media Player.

$::RTSP_Server
(kServerEmulationRealOne)

Real Networks RealMedia Player.

tos

If enableTos is true, this option specifies the IP Precedence / TOS (Type of Service) bit setting and
Assured Forwarding classes. (Default = "0"). The choices are:

0 (Default) (0x0000) routine

Chapter 26 RTSP

– 1126 –

32 (0x0020) priority service, Assured Forwarding class 1

64 (0x0040) immediate service, Assured Forwarding class 2

96 (0x0060) flash, Assured Forwarding class 3

128 (0x0080) flash-override, Assured Forwarding class 4

160 (0x00A0) critical-ecp

192 (0x00C0) Internet-control

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new ixNetTraffic]

Activity RTSPServer1 of
NetTraffic Traffic2@Network2###set
Activity_RTSPServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"RTSP Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
RTSPServer1 config \-enable true \-name
"RTSPServer1" \-timeline $_Match_Longest_$Activity_
RTSPServer1 agent.config \-enableTos 0 \-
commandTimeout 60 \-enable
true \-serverEmulation 0 \-name
"RTSPServer1" \-tos 0 \-rtpVlanPriority
0 \-enableEsm 0 \-rtspVlanPriority
0 \-esm 1460 \-enableRTSPVlanPriority
0 \-port 554 \-enableRTPVlanPriority
0$Activity_RTSPServer1 agent.presentationList.clearset MP3_128kbit [::IxLoad new
Content]$MP3_128kbit config \-name
"MP3/128kbit"$MP3_128kbit streamList.clearset my_Stream [::IxLoad new Stream]$my_
Stream config \-clockRate "Audio MP3 (90000 Hz)" \-
dataRate 128.0 \-packetization
20$MP3_128kbit streamList.appendItem -object $my_Streamset my_PresentationItem
[::IxLoad new PresentationItem]$my_PresentationItem config \-duration
30 \-path "/test1.mp3" \-content
$MP3_128kbit$Activity_RTSPServer1 agent.presentationList.appendItem -object $my_
PresentationItem$Activity_RTSPServer1 agent.contentList.clearset Voice__1016_
[::IxLoad new Content]$Voice__1016_ config \-name
"Voice (1016)"$Voice__1016_ streamList.clearset my_Stream1 [::IxLoad new Stream]$my_
Stream1 config \-clockRate "Audio 8 bit (8000 Hz)" \-
dataRate 0.48 \-packetization
200$Voice__1016_ streamList.appendItem -object $my_Stream1$Activity_RTSPServer1
agent.contentList.appendItem -object $Voice__1016_

Chapter 26 RTSP

– 1127 –

SEE ALSO

ixNetTraffic

Content

PresentationItem

Chapter 26 RTSP

– 1128 –

PresentationItem
PresentationItem—Specifies a presentation available from a server agent.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_RTSPServer1 [$Traffic2_Network2 activityList.appendItem
set my_PresentationItem [::IxLoad new PresentationItem]
$Activity_RTSPServer1 agent.presentationList.appendItem -object $my_PresentationItem

DESCRIPTION

A PresentationItem is added to the presentationList option of the RTSP Server Agent object
using the appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

content

A reference to an item in the contentList option of the RTSP Server Agent. This must match the
name of a Content object in the contentList. (Default = ““).

duration

The maximum length of time that a stream will play, in seconds. (Default = 30).

path

The URL of the media file. (Default = “/test1.mp3”).

EXAMPLE
set my_PresentationItem [::IxLoad new PresentationItem]$my_PresentationItem config
\-duration 30 \-path
"/test1.mp3" \-content $MP3_128kbit$Activity_
RTSPServer1 agent.presentationList.appendItem -object $my_PresentationItem

SEE ALSO

RTSP Server Agent

Content

Chapter 26 RTSP

– 1129 –

Stream
Stream—Specifies a stream used in a presentation item.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_RTSPClient1 [$Traffic1_Network1 activityList.appendItem
set my_Stream [::IxLoad new Stream]
set MP3_128kbit [::IxLoad new Content]
$MP3_128kbit streamList.appendItem -object $my_Stream
$Activity_RTSPServer1 agent.presentationList.appendItem -object $my_PresentationItem

DESCRIPTION

A Stream object is a part of a Content object that is part of a PresentationItem object, which is a
member of a RTSP Server Agent object. Its options are configas per the ixConfig subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

clockRate

The rate at which a sound or moving image is sampled in order to represent it digitally, expressed in
hertz. Note: An integer value must be used. (Default = 90,000). Some typical values are::

Usage Rate

Audio MP3 90000 Hz

Audio 8 bit 8000 Hz

Audio 16 bit 16000 Hz

Video 90000 Hz

dataRate

The rate at which data is sent, expressed in kbps. (Default = 128).

packetization

The amount of time elapsed between packets, in milliseconds. (Default = 20).

EXAMPLE
set my_Stream [::IxLoad new Stream]$my_Stream config \-clockRate
"Audio MP3 (90000 Hz)" \-dataRate 128.0 \-
packetization 20$MP3_128kbit streamList.appendItem -object

Chapter 26 RTSP

– 1130 –

$my_Stream

SEE ALSO

Content

RTSP Server Agent

Chapter 26 RTSP

– 1131 –

Content
Content — Specifies the streams that compose a presentation item.

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_RTSPServer1 [$Traffic2_Network2 activityList.appendItem
set MP3_128kbit [::IxLoad new Content]
$MP3_128kbit streamList.appendItem -object $my_Stream
$Activity_RTSPServer1 agent.presentationList.appendItem -object $my_PresentationItem

DESCRIPTION

A Content object is a part of a PresentationItem object, which is a member of a RTSP Server
Agent object. Its options are configured as per the ixConfig sub-commands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

The name associated with the streams. (Default = “MP3/128kbit”).

streamList

This is a list of type Stream. The elements in this list are the streams that coma presentation.
(Default = {}).

EXAMPLE
set MP3_128kbit [::IxLoad new Content]$MP3_128kbit config \-name
"MP3/128kbit"$MP3_128kbit streamList.clearset my_Stream [::IxLoad new Stream]$my_
Stream config \-clockRate "Audio MP3 (90000 Hz)" \-
dataRate 128.0 \-packetization
20$MP3_128kbit streamList.appendItem -object $my_Streamset my_PresentationItem
[::IxLoad new PresentationItem]$my_PresentationItem config \-duration
30 \-path "/test1.mp3" \-content
$MP3_128kbit$Activity_RTSPServer1 agent.presentationList.appendItem -object $my_
PresentationItem

SEE ALSO

PresentationItem

RTSP Server Agent

Stream

Chapter 26 RTSP

– 1132 –

RTSP Statistics
For the RTSP statistics, see the following:

RTSP Client Statistics

RTSP Server Statistics

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

The test results are available from the location defined on the User Directories window. See User
Directories.

If you review your statistics and find many instances of RTSP client statistics and server statistics that
should match but do not, that may be an indication that the Ramp Down Time is too short. When the
Ramp Down Time expires, IxLoad terminates any users that are still running. If those users still have
work in progress (such as transferring data) when IxLoad terminates them, the work will not be
completed and the effect will be that statistics that should match (such as Bytes Sent) may not.

Chapter 26 RTSP

– 1133 –

RTSP Client Statistics
The table below describes the statistics available for RTSP clients.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

RTSP
Simulated
Users

- - Number of simulated RTSP users.

RTSP
Concurrent
Sessions

- - Number of concurrent RTSP sessions maintained.

RTSP
Connections

All Number of RTSP connections established.

RTSP
Connection
Rate

All Rate at which the client established RTSP connections.

RTSP
Transactions

All Number of RTSP transactions completed.

RTSP
Transaction
Rate

All Rate at which the client completed RTSP transactions.

RTP Lost
Packets

All Number of RTP packets lost during transmission.

RTP Out Of
Order Packets

All Number of RTP packets received out of order.

RTP
Concurrent
Sessions

- - Number of concurrent RTP sessions established.

RTSP
Presentations
Active

- - Number of RTSP presentations playing or paused.

Chapter 26 RTSP

– 1134 –

RTSP
Presentations
Playing

- - Number of presentations playing.

RTSP
Presentations
Paused

- - Number of presentations paused.

RTSP
Presentation
Requests
Successful

- - Number of presentations requests that succeeded.

RTSP
Presentation
Requests
Failed

- - Number of presentations requests that failed.

RTSP
Presentations
Playback
Successful

- - Number of RTSP presentation requests that resulted in actual RTP data
being received by the client.

This statistic is incremented only once for each successful RTSP PLAY
command, even if a PLAY results in multiple RTP streams being
received (for example, a video and an audio stream).

RTSP
DESCRIBE
Sent

All Number of RTSP DESCRIBE messages sent.

RTSP SETUP
Sent

All Number of RTSP SETUP messages sent.

RTSP SET
PARAMETER
Sent

All Number of RTSP SET PARAMETER messages sent.

RTSP GET
PARAMETER
Sent

All Number of RTSP GET PARAMETER messages sent.

RTSP PLAY
Sent

All Number of RTSP PLAY commands sent.

RTSP PAUSE
Sent

All Number of RTSP PAUSE commands sent.

RTSP
TEARDOWN
Sent

All Number of RTSP TEARDOWN commands sent.

Chapter 26 RTSP

– 1135 –

RTSP
DESCRIBE
Successful

All Number of RTSP DESCRIBE commands for which a successful response
was received.

RTSP SETUP
Successful

All Number of RTSP SETUP commands for which a successful response was
received.

RTSP SET
PARAMETER
Successful

All Number of SET_PARAMETER replies received with code OK (200).

RTSP GET
PARAMETER
Successful

All Number of RTSP GET PARAMETER commands for which a successful
response was received.

RTSP PLAY
Successful

All Number of RTSP PLAY commands for which a successful response was
received.

RTSP PAUSE
Successful

All Number of RTSP PAUSE commands for which a successful response was
received.

RTSP
TEARDOWN
Successful

All Number of RTSP TEARDOWN commands for which a successful
response was received.

RTSP
DESCRIBE
Failed

All Number of RTSP DESCRIBE commands that failed.

RTSP SETUP
Failed

All Number of RTSP SETUP commands that failed.

RTSP SET
PARAMETER
Failed

All Number of SET_PARAMETER replies received with a code other than OK
(200).

RTSP GET
PARAMETER
Failed

All Number of RTSP GET PARAMETER commands that failed.

RTSP PLAY
Failed

All Number of RTSP PLAY commands that failed.

RTSP PAUSE
Failed

All Number of RTSP PAUSE commands that failed.

RTSP
TEARDOWN
Failed

All Number of RTSP TEARDOWN commands that failed.

Chapter 26 RTSP

– 1136 –

RTSP
Presentations
Requested

All Number of presentation requests sent.

RTSP
Presentations
Successful

All Number of presentations received.

RTSP
Presentations
Failed

All Number of presentations requested but not received.

RTSP
Presentations
Active

All Number of presentations active.

RTSP
Presentations
Playing

All Number of presentations playing.

RTSP
Presentations
Paused

All Number of presentations paused.

RTP Packets
Received

All Number of RTP packets received.

RTP Bytes
Received

All Number of RTP bytes received.

RTSP Packets
Sent

All Number of RTSP packets received.

RTSP Packets
Received

All Number of RTSP packets received.

RTSP Bytes
Sent

All Number of RTSP bytes transmitted.

If you run RTP over TCP, the media uses the same channel opened by
the RTSP connection, so RTSP Bytes Sent also counts the bytes sent in
the RTP stream.

RTSP Bytes
Received

All Number of RTSP bytes received.

If you run RTP over TCP, the media uses the same channel opened by
the RTSP connection, so RTSP Bytes Received also counts the bytes
received in the RTP stream.

RTSP Setup
Latency (ms)

All Amount of time elapsed, in milliseconds, between a client sending a
request to establish an RTSP connection and receiving the first byte of

Chapter 26 RTSP

– 1137 –

the response.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP
Teardown
Latency (ms)

All Amount of time elapsed, in milliseconds, between a client sending a
request to end an RTSP connection and receiving the first byte of the
response.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP Play
Latency (ms)

All Amount of time elapsed, in milliseconds, between a client sending a
PLAY command and receiving the first byte of the media stream.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

RTSP Play
Latency (0 ms
- 10 ms)

All Number of instances in which 0 to 10 milliseconds elapsed between the
time a client sent a PLAY command and the time it received the first
byte of the media stream.

RTSP Play
Latency (10
ms - 50 ms)

All Number of instances in which 10 to 50 milliseconds elapsed between
the time a client sent a PLAY command and the time it received the first
byte of the media stream.

RTSP Play
Latency (50
ms - 100 ms)

All Number of instances in which 50 to 100 milliseconds elapsed between
the time a client sent a PLAY command and the time it received the first
byte of the media stream.

RTSP Play
Latency (100
ms - 300 ms)

All Number of instances in which 100 to 300 milliseconds elapsed between
the time a client sent a PLAY command and the time it received the first
byte of the media stream.

RTSP Play
Latency (300
ms - 1s)

All Number of instances in which 300 to 1000 milliseconds elapsed
between the time a client sent a PLAY command and the time it
received the first byte of the media stream.

RTSP Play
Latency
(Greater Than
1s)

All Number of instances in which more than one second elapsed between
the time a client sent a PLAY command and the time it received the first
byte of the media stream.

RTP Jitter (0
ms - 50 ms)

All Number of RTP packets received 0 to 50 milliseconds after the previous
packet.

Note: The ideal value for the ‘delta’ in packet arrival times is equal to
the duration of the media transported in the packets. For example, if a
packet contains 250ms of media, it should ideally arrive 250ms after
the preceding packet.

Chapter 26 RTSP

– 1138 –

RTP Jitter (50
ms - 100 ms)

All Number of RTP packets received 50 to 100 milliseconds after the
previous packet in the stream.

RTP Jitter (100
ms - 150 ms)

All Number of RTP packets received 100 to 150 milliseconds after the
previous packet in the stream.

RTP Jitter (150
ms - 200 ms)

All Number of RTP packets received 150 to 200 milliseconds after the
previous packet in the stream.

RTP Jitter (200
ms - 250 ms)

All Number of RTP packets received 200 to 250 milliseconds after the
previous packet in the stream.

RTP Jitter (250
ms - 300 ms)

All Number of RTP packets received 250 to 300 milliseconds after the
previous packet in the stream.

RTP Jitter (300
ms - 400 ms)

All Number of RTP packets received 300 to 400 milliseconds after the
previous packet in the stream.

RTP Jitter (400
ms - 500 ms)

All Number of RTP packets received 400 to 500 milliseconds after the
previous packet in the stream.

RTP Jitter (500
ms - 700 ms)

All Number of RTP packets received 500 to 700 milliseconds after the
previous packet in the stream.

RTP Jitter (700
ms - 1000 ms)

All Number of RTP packets received 700 to 1000 milliseconds after the
previous packet in the stream.

RTP Jitter (1 s
- 3 s)

All Number of RTP packets received 1 to 3 seconds after the previous
packet in the stream.

RTP Jitter
(Greater Than
3s)

All Number of RTP packets received more than 3 seconds after the
previous packet in the stream.

RTP
Bandwidth
Usage (0 - 30
KB/s)

All Amount of time during which RTP bandwidth usage was between 0 and
30 kilobits per second.

RTP
Bandwidth
Usage (30
KB/s - 100
KB/s)

All Amount of time during which RTP bandwidth usage was between 30 and
100 kilobits per second.

RTP
Bandwidth
Usage (100
KB/s - 300

All Amount of time during which RTP bandwidth usage was between 100
and 300 kilobits per second.

Chapter 26 RTSP

– 1139 –

KB/s)

RTP
Bandwidth
Usage (300
KB/s - 1 MB/s)

All Amount of time during which RTP bandwidth usage was between 300
kilobits and 1 megabit per second.

RTP
Bandwidth
Usage
(Greater Than
1 MB/s)

All Amount of time during which RTP bandwidth usage exceeded 1 megabit
per second.

RTP Packet
Loss
Distribution (0
Percent)

All Amount of time during which 0 percent of packets were lost.

RTP Packet
Loss
Distribution (0
- 0.1 Percent)

All Amount of time during which 0 to 0.1 percent of packets were lost.

RTP Packet
Loss
Distribution
(0.1 - 0.5
Percent)

All Amount of time during which 0.1 to 0.5 percent of packets were lost.

RTP Packet
Loss
Distribution
(0.5 - 2
Percent)

All Amount of time during which 0.5 to 2 percent of packets were lost.

RTP Packet
Loss
Distribution (2
- 5 Percent)

All Amount of time during which 2 to 5 percent of packets were lost.

RTP Packet
Loss
Distribution (5
- 100 Percent)

All Amount of time during which 5 to 100 percent of packets were lost.

OK Responses
Received

All Number of RTSP OK messages received.

This statistic is only available in Conditional View.

Chapter 26 RTSP

– 1140 –

Error
Responses
Received

All Number of RTSP error messages received.

This statistic is only available in Conditional View.

Note: If the average table and bar graphs do not contain any data for the clients, that is an
indication that they did not reach the Sustained (SU) run state. This can be caused by the
following:

1. Stopping a test during the Ramp-Up phase.

2. Configuring a large number of page requests for the client agent so that not all the users
configured for the client can attain the SU state within the allotted time.

3. Configuring a value for the statistics interval (Statistics tab) which is much larger than the
SU time.

Matching the TEARDOWN Statistics to Other Statistics

When you review the statistics from an RTSP test, you may find that the number of TEARDOWN
commands does not match the numbers of other commands. The cause may be that the test entered
the ramp down phase sooner than expected. For example:

Describe command: If an IxLoad RTSP client receives a response to a DESCRIBE command and then
the test enters the ramp down phase, the test does not send a TEARDOWN command, because no
session has been set up. In this case, the number of DESCRIBE and TEARDOWN commands will not
match.

PLAY command: For the PLAY command, sending of TEARDOWN commands depend on whether the
requested media stream plays to its end or not:

l If an IxLoad RTSP client receives a response to a PLAY command (the response being the
requested media stream), the media stream plays to its end and then the test enters the Ramp
Down phase. The test sends its own implicit TEARDOWN command immediately afterwards to
allow the test to complete gracefully. In this case, the number PLAY commands should match the
number of TEARDOWN commands.

l If the test enters the ramp down phase while the media stream is still playing, the test will not
send a TEARDOWN command. In this case, the number of PLAY and TEARDOWN commands will
not match, and the session will not be torn down gracefully. IxLoad will display a warning
message.

All other commands: If an IxLoad RTSP client receives a response to a command other than
DESCRIBE or PLAY and then the test enters the Ramp Down phase, the test sends its own implicit

Chapter 26 RTSP

– 1141 –

TEARDOWN command to allow the test to complete gracefully. In this case, the number of each
command sent should match the number of TEARDOWN commands.

To cause the statistics for TEARDOWN to match those of other commands, you can either increase the
test duration or select shorter media streams.

Chapter 26 RTSP

– 1142 –

RTSP Server Statistics
The table below describes the statistics available for RTSP servers.

The QoE Detective column indicates the views in which a statistic is available:

IP: per-IP view
User: per-User view
VLAN: per-VLAN view
All: all views

Statistic QoE
Detective

Description

RTSP
Presentations
Received

IP, VLAN Number of presentation requests received by the servers.

RTSP
Presentations
Successful

IP, VLAN Number of presentation requests that succeeded.

RTSP
Presentations
Failed

IP, VLAN Number of presentation requests that failed.

RTSP
Commands
Received

IP, VLAN Number of RTSP commands received.

RTSP DESCRIBE
Received

IP, VLAN Number of RTSP DESCRIBE commands received.

RTSP SETUP
Received

IP, VLAN Number of RTSP SETUP commands received.

RTSP PLAY
Received

IP, VLAN Number of RTSP PLAY commands received.

RTSP PAUSE
Received

IP, VLAN Number of RTSP PAUSE commands received.

RTSP
TEARDOWN
Received

IP, VLAN Number of RTSP TEARDOWN commands received.

RTSP Response
Codes Sent
(2xx)

IP, VLAN Number of 200-range (Success) responses sent.

A 200-range response indicates that the action was successfully
received, understood, and accepted.

Chapter 26 RTSP

– 1143 –

RTSP Response
Codes Sent
(3xx)

IP, VLAN Number of 300-range (Redirection) responses sent.

A 300-range response indicates that further action must be taken in
order to complete the request.

RTSP Response
Codes Sent
(4xx)

IP, VLAN Number of 400-range (Client Error) responses sent.

A 400-range response indicates that the request contains bad syntax
or cannot be fulfilled.

RTSP Response
Codes Sent
(5xx)

IP, VLAN Number of 500-range (Server Error) responses sent.

A 500-range response indicates that the server failed to fulfill an
apparently valid request.

RTSP Response
Codes Sent
(6xx- 1xxx)

IP, VLAN Number of 600- to 1000-range responses sent.

RTSP Packets
Sent

IP, VLAN Number of RTSP packets transmitted by the servers.

RTSP Packets
Received

IP, VLAN Number of RTSP packets received by the servers.

RTSP Bytes Sent IP, VLAN Number of RTSP-related bytes (commands and responses)
transmitted by the servers.

If you run RTP over TCP, the media uses the same channel opened by
the RTSP connection, so RTSP Bytes Sent also counts the bytes sent
in the RTP stream.

RTSP Bytes
Received

IP, VLAN Number of RTSP-related bytes (commands and responses) received
by the servers.

If you run RTP over TCP, the media uses the same channel opened by
the RTSP connection, so RTSP Bytes Received also counts the bytes
received in the RTP stream.

Total RTP Bytes
Sent

IP, VLAN Number of RTP bytes transmitted by the servers.

Total RTP
Packets Sent

IP, VLAN Number of RTP packets transmitted by the servers.

Total UDP
Packets Sent

IP, VLAN Number of UDP packets transmitted by the servers.

RTSP Play
Latency (ms)

IP, VLAN Average amount of time elapsed, in milliseconds, between the time a
server received a PLAY request and the time it transmitted the first
byte of the media stream.

Note for Tcl API users: This is a weighted statistic. If you are using

Chapter 26 RTSP

– 1144 –

this statistic in a Tcl script, use the kWeightedAverage aggregation
type.

Chapter 26 RTSP

– 1145 –

This page intentionally left blank.

– 1146 –

CHAPTER 27 SMTP
This section describes the SMTP Tcl API objects.

Overview
SMTP protocol commands are organized as:

SMTP Client Agent

l SmtpCommand

l MailMessage

l Header

l Attachment

SMTP Server Agent

Objectives
The objectives (userObjective) you can set for SMTP are listed below. Test objectives are set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

– 1147 –

SMTP Client Agent
The SMTP Client Agent defines a simulated user performing SMTP requests against one or more SMTP
servers. Refer to SMTP Client Agent for a full description of this command. The important options of
this command are listed below.

Option Usage

enable Enables the use of the SMTP client agent.

name The name associated with the client agent.

helloType The type of hello (HELO or EHLO) used.

commandList A list of commands to be sent to the server. Each list member is of type
SmtpCommand.

mailMessageList A list of mail messages used in various commands contained in the
commandList. Each list member is of type MailMessage.

commandTimeout Client timeout value.

SmtpCommand

Each client command is a single step in the interaction. Refer to SmtpCommand for a full description
of this command. The important subcommands and options of this command are listed below.

Subcommand Usage

checkConfig Checks the configuration of the action.

Option Usage

command
arguments

The SMTP command, with optional arguments, to be executed.

destination The name/address of the SMTP server.

mailMessage A reference to a mail message in the SMTP Client Agent’s mailMessageList.

Chapter 27 SMTP

– 1148 –

MailMessage

The MailMessage object embodies a set of mail messages, complete with headers and attachments.
Refer to MailMessage for a full description of this command. The important options of this command
are listed below.

Option Usage

name The name associated with the mail message.

bodyFormat The type of contents for the body of the message: text or HTML.

bodySizeType
bodySizeFixed
bodySizeRandomMin
bodySizeRandomMax

Controls the size of the body of the message.

headerList A set of headers to accompany the mail message. Each member is of type
Header.

attachmentList A set of attachments to accompany the mail message. Each member is of
type Attachment.

Header

The Header object embodies a single mail header for use with a mail message. Refer to Header for a
full description of this command. The important options of this command are:

Option Usage

name An e-mail header item. For example, From or To.

value / data The text for the e-mail header item. For example, “john@smith.org”.

Attachment

The Attachment object embodies a set of mail attachments, which may be included with a mail
message. Refer to Attachment for a full description of this command. The important options of this
command are listed below.

Option Usage

Chapter 27 SMTP

– 1149 –

dataType The type of contents for the body of the attachment: text or HTML.

type
fileName
sizeMin
sizeMax

Controls whether the attachment is taken from a file or generated within a size range.

countMin
countMax

Controls how many attachments of this type are attached to a mail message.

SMTP Server Agent
The SMTP Server Agent defines the operation of the SMTP server. The emulated SMTP Server Agent
accepts all mail messages sent to it, so it has few options. Refer to SMTP Server Agent for a full
description of this command. The imporoptions of this command are listed below.

Option Usage

enable Enables the use of this server agent.

name The name associated with the server agent.

concurrentSessionLimit The maximum number of concurrent sessions that the server will allow.

Server_Listening_Port Port that the SMTP server listens on for new connections.

Chapter 27 SMTP

– 1150 –

SMTP Client Agent
SMTP Client Agent - create an SMTP client

SYNOPSIS
set Traffic1_Network1 [::IxLoad new ixNetTraffic]set Activity_SMTPClient1
[$Traffic1_Network1 activityList.appendItem$Activity_SMTPClient1 agent.config
options...

DESCRIPTION

An SMTP client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

commandList

This is a list of type ixConfigSequenceContainer used to hold objects of type SmtpCommand. The
elements in this list describe the commands to be executed by the agent. (Default = {}).

commandTimeout

Amount of time allowed for an SMTP command to complete. If the command does not complete within
the allowed time, IxLoad closes the SMTP client’s conto the SMTP server. (Default = 120).

enable

Enables the use of this agent. (Default = true).

helloType

Type of HELLO command used by this SMTP client. One of::

Option Usage

$::SMTP_Client
(kHelloTypeEhlo)

(Default) EHLO. The Enhanced SMTP (ESMTP) version of HELO. The server's
response includes a list of the options that the server supports.

$::SMTP_Client
(kHelloTypeHelo)

HELO. The sender-SMTP sends a HELO to the receiver-SMTP to identify itself
and open a conAn argument sent with the command conthe host name of the
sender-SMTP.

Chapter 27 SMTP

– 1151 –

 ipPreference

This option indicates the order by which the POP3 client will use the subnets, if there is a mixture of
IPv4 and IPv6 subnets in the network. The values are: IpPreferenceV4, IpPreferenceV6,
IpPreferenceV4Any, IpPreferenceV6Any.

loopValue

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

mailMessageList

This is a list of type ixConfigSequenceContainer used to hold objects of type MailMessage. The
elements in this list are used as the contents of messages transmitted by the client. (Default = {}).

name

The name associated with this object, which must be set at object creation time.

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity SMTPClient1
of NetTraffic Traffic1@Network1###set
Activity_SMTPClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"SMTP Client"]## Timeline1 for
activities SMTPClient1###set Timeline1
[::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_SMTPClient1 config
\-enable 1 \-name
"SMTPClient1" \-enableConstraint false \-userObjectiveValue

Chapter 27 SMTP

– 1152 –

100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_
SMTPClient1 agent.config \-loopValue true \-
commandTimeout 120 \-enable
1 \-ipPreference 2 \-name
"SMTPClient1" \-vlanPriority 0 \-helloType
0 \-enableVlanPriority true$Activity_SMTPClient1
agent.mailMessageList.clearset Simple [::IxLoad new MailMessage]$Simple config \-
bodySizeType 0 \-name
"Simple" \-fileNameAsBody "" \-description
"100 bytes plain text body" \-textContentAsBody "" \-
bodySizeRandomMax 4096 \-bodySizeFixed
100 \-mimeTypeAndEncode 0 \-bodySizeRandomMin
1 \-bodyDataType 0 \-useFileAsBody
true \-bodyFormat 0$Simple headerList.clearset From
[::IxLoad new MailHeader]$From config \-name
"From" \-value "fromName@company.com"$Simple
headerList.appendItem -object $Fromset To [::IxLoad new MailHeader]$To config \-name
"To" \-value "toName@company.com"$Simple
headerList.appendItem -object $Toset Subject [::IxLoad new MailHeader]$Subject
config \-name "Subject" \-value
"sample subject"$Simple headerList.appendItem -object $Subject$Simple
attachmentList.clear$Activity_SMTPClient1 agent.mailMessageList.appendItem -object
$Simple

SEE ALSO

ixNetTraffic

SmtpCommand

MailMessage

Attachment

Header

Chapter 27 SMTP

– 1153 –

SmtpCommand
SmtpCommand—Specifies the contents of an SMTP command.

SYNOPSIS
set Traffic1_Network1 [::IxLoad new ixNetTraffic]set Activity_SMTPClient1
[$Traffic1_Network1 activityList.appendItemset my_SmtpCommand [::IxLoad new
SmtpCommand]$Activity_SMTPClient1 agent.commandList.appendItem -object $my_
SmtpCommand

DESCRIPTION

An SmtpCommand object is added to the commandList option of the SMTP Client Agent object using
the appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

arguments

Optional arguments related to the SMTP command to be executed. One of:

Option Usage

“{Send} “ N/A.

“OPEN“ N/A.

“MAIL“ The number of copies of the selected mail message to transfer. (Default = 10).

“NOOP “ N/A.

“RSET“ N/A.

“{Think}“ The length of the pause, in seconds, in the arguments option. (Default = 1).

“QUIT“ N/A.

command

The SMTP command to be executed. One of:

Option Usage

Chapter 27 SMTP

– 1154 –

“{Send} “ (Default) An IxLoad command that opens a connection to the SMTP server,
transfers all configured messages to it, then logs out. {Send} is a single command
that performs the same function as multiple SMTP commands. However, {Send} is
not a standard SMTP comIt is included in IxLoad for your convenience to make
configSMTP clients easier.

“OPEN“ Opens a connection to the SMTP server.

“MAIL“ Initiates a transaction that transfers mail messages to an SMTP server. In the
arguments option, specify the number of copies of the selected mail message to
transfer.

“NOOP “ (NO OPeration) specifies no action other than that the receiver send an OK reply.

“RSET“ Aborts the current mail transaction. Any stored sender, recipients, and mail data
are discarded. A client can issue a RSET command at any time.

“{Think}“ Pauses the mail transaction. Specify the length of the pause, in secin the
arguments option.

“QUIT“ Closes the transmission channel.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the commands
between it and the {Loop End} to be executed a specified number of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

destination

The SMTP server that the client will send the command to. Specify the destination as follows:

l If the destination is a real SMTP server, specify the server’s host name or IP address.

l If the destination is an IxLoad SMTP Server Agent, specify the name of the SMTP Server Agent.

l If the destination is the DUT, specify DUT:n – where DUT is the name of the DUT and n is the port
number on that DUT.

(Default = “198.18.1.1”).

mailMessage

A reference to an instance of the MailMessage object.(Default = ““).

EXAMPLE
set my_SmtpCommand [::IxLoad new SmtpCommand]$my_SmtpCommand config \-destination
"Traffic2_SMTPServer1" \-command "{Send}" \-
arguments "10" \-mailMessage
$Simple1$Activity_SMTPClient1 agent.commandList.appendItem -object $my_SmtpCommand

SEE ALSO

SMTP Client Agent

Chapter 27 SMTP

– 1155 –

MailMessage

Chapter 27 SMTP

– 1156 –

Header
Header—Specifies the contents of a mail message header.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SMTPClient1 [$Traffic1_Network1 activityList.appendItem
$AttachmentSmall attachmentList.appendItem -object $my_MailAttachment
$Activity_SMTPClient1 agent.mailMessageList.appendItem -object $Attach
set From4 [::IxLoad new MailHeader]
$AttachmentSmall headerList.appendItem -object $From4

DESCRIPTION

A Header object is added to the headerList option of a MailMessage object, which is list item in of
the mailMessageList option of the SMTP Client Agent object. Three required header items are
included by default:

l From

l To

l Subject

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

The e-mail header item. Example: From, To, Subject. (Default = From, To). The standard headers
that IxLoad supports are:

Option Usage

From From

To To

Subject Subject

Cc Carbon copy.

Bcc Blind carbon copy.

In addition you can include your own custom headers by editing the header fields. You can enter any
printable US ASCII characters into the fields, except the space () and the colon (:). The custom
headers accepts MIME type headers also. MIME type headers start with “Content-.”

Chapter 27 SMTP

– 1157 –

value / data

The text which forms the header. (Default = “fromName@company.com).

EXAMPLE
set From [::IxLoad new MailHeader]$From config \-name
"From" \-value "fromName@company.com"$Simple
headerList.appendItem -object $From

SEE ALSO

MailMessage

SMTP Client Agent

Chapter 27 SMTP

– 1158 –

Attachment
Attachment—Specifies the contents of a mail attachment.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SMTPClient1 [$Traffic1_Network1 activityList.appendItem
set my_MailAttachment [::IxLoad new MailAttachment]
$AttachmentSmall attachmentList.appendItem -object $my_MailAttachment
$Activity_SMTPClient1 agent.mailMessageList.appendItem -object $Attach

DESCRIPTION

An Attachment object is added to the attachmentList option of a MailMessage object, which is list
item in of the mailMessageList option of the SMTP Client Agent object.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

countMax

The upper limit on the number of attachments attached to each message. IxLoad attaches a varying
number of attachments of this type. (Default = 3).

countMin

The lower limit on the number of attachments attached to each message. IxLoad attaches a varying
number of attachments of this type. (Default = 1).

dataType

If type is set to $::Attachment(kGeneratedData), this field specifies the format of the generated
data. You can select from the following formats:

Option Usage

$::Attachment
(kPlainText)
or “Plain Text”

(Default) IxLoad generates ASCII text for the attachment.

$::Attachment
(kHtml)
or “HTML”

IxLoad generates text for the attachment that includes HTML tags.

$::Attachment
(kRandom)

IxLoad randomly generates plain text for some instances of this attachment,
and HTML for other instances.

Chapter 27 SMTP

– 1159 –

or “Random”

fileName

If type is set to $::Attachment(kExistingFile), this field specifies the file to be attached. You can
specify any file on the local IxLoad client PC or accessible over your network. (Default = “<specify
file>”).

sizeMax

If type is set to $::Attachment(kGeneratedData), this specifies the upper limit of the size of the
attachment. IxLoad generates attachments that vary randomly between the minimum and maximum
sizes. (Default = 4,096).

sizeMin

If type is set to $::Attachment(kGeneratedData), this specifies the lower limit of the size of the
attachment. IxLoad generates attachments that vary randomly between the minimum and maximum
sizes. (Default = 1,024).

type

The type of data contained in the attachment. One of:

Option Usage

$::Attachment
(kGeneratedData)
or “Generated
Data”

(Default) IxLoad automatically creates random data in the attachment. Use the
dataType option to specthe format of the generated data.

$::Attachment
(kExistingFile)
or “Existing File”

IxLoad attaches the file specified in the fileName option to the message.

EXAMPLE
set my_MailAttachment [::IxLoad new MailAttachment]$my_MailAttachment config \-
sizeMax 100 \-countMax
1 \-dataType 0 \-countMin
1 \-fileName "<specify file>" \-attchStr
"" \-type 0 \-sizeMin
100$AttachmentSmall attachmentList.appendItem -object $my_MailAttachment$Activity_
SMTPClient1 agent.mailMessageList.appendItem -object $AttachmentSmal

SEE ALSO

MailMessage

SMTP Client Agent

Chapter 27 SMTP

– 1160 –

Chapter 27 SMTP

– 1161 –

MailMessage
MailMessage—Specifies the contents of a mail message.

SYNOPSIS
set Traffic1_Network1 [::IxLoad new ixNetTraffic]set Activity_SMTPClient1
[$Traffic1_Network1 activityList.appendItemset Simple [::IxLoad new
MailMessage]$Activity_SMTPClient1 agent.mailMessageList.appendItem -object $Simple

DESCRIPTION

A MailMessage object is added to the mailMessageList option of the SMTP Client Agent object
using the appendItem subcommand from the ixConfigSequenceContainer command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

attachmentList

This is a list of type Attachment. The elements in this list are the attachments associated with the
mail message. (Default = {}).

bodyFormat

The format of the body of the mail message. One of:

Option Usage

$::MailMessage
(kBodyFormatPlainText)

(Default) The message body contains only ASCII characters and no
formatting or disinformation.

$::MailMessage
(kBodyFormatHtml)

The message body contains HTML tags for formatting and display. An
HTML message is identified by the MIME type text/html.

$::MailMessage
(kBodyFormatRandom)

Message bodies are a random mixture of plain and HTML format.

bodySizeFixed

If bodySizeType is set to $::MailMessage(kBodySizeTypeFixed), then this is the fixed size of the
message body. (Default = 100).

bodySizeRandomMax

Chapter 27 SMTP

– 1162 –

If bodySizeType is set to $::MailMessage(kBodySizeTypeRandom), then this is the maximum size of
the message body. (Default = 4,096).

bodySizeRandomMin

If bodySizeType is set to $::MailMessage(kBodySizeTypeRandom), then this is the minimum size of
the message body. (Default = 1).

bodySizeType

The manner in which the body size is specified. One of::

Option Usage

$::MailMessage
(kBodySizeTypeFixed)

(Default) The size of the message body is fixed at a single size. Enter
the size in the bodySizeoption.

$::MailMessagev
(kBodySizeTypeRandom)

The size of the message body varies ranbetween a minimum and a
maxisize. Enter the minimum and maximum sizes in the boand
booptions.

custom_mail_body_use_real_file

This option accepts boolean value of 0 or 1. If zero is given, there is no need to specify a file name.
You have to enter the mail message text in custom_mail_body_content. If 1 is given, a file name is
specified in the custom_mail_body_filename.

custom_mail_body_encode

This option specifies the encoding option for the real file. For boolean value 0, IxLoads encodes the file
using the default encoding. For already encoded files, you choose boolean value 1.

custom_mail_body_filename

This option specifies the absolute path for the real file. For example: "c:\temp.txt" \

custom_mail_body_content

This option accepts the mail message text.For example: "abcd123."

description

A short textual description for the mail message. (Default = “100 bytes plain text body”).

headerList

This is a list of type Header. The elements in this list are the headers associated with the mail
message. (Default = an object with three items in the list:
“From:fromName@company.com,” “To:toName@company.com,”“Subject:sample subject”).

name

The name associated with this object. (Default = “Simple”).

Chapter 27 SMTP

– 1163 –

mail_body_type

The mail body type can be generated or custom data. You cannot import files through Tcl so you can
work only with default or custom data. (Default = 1).

EXAMPLE
set Simple [::IxLoad new MailMessage]$Simple config \-bodySizeType
0 \-name "Simple" \-fileNameAsBody
"" \-description "100 bytes plain text body" \-
textContentAsBody "" \-bodySizeRandomMax
4096 \-bodySizeFixed 100 \-mimeTypeAndEncode
0 \-bodySizeRandomMin 1 \-bodyDataType
0 \-useFileAsBody true \-bodyFormat
0$Simple headerList.clearset From [::IxLoad new MailHeader]$From config \-name
"From" \-value "fromName@company.com"$Simple
headerList.appendItem -object $Fromset To [::IxLoad new MailHeader]$To config \-name
"To" \-value "toName@company.com"$Simple
headerList.appendItem -object $Toset Subject [::IxLoad new MailHeader]$Subject
config \-name "Subject" \-value
"sample subject"$Simple headerList.appendItem -object $Subject$Simple
attachmentList.clear$Activity_SMTPClient1 agent.mailMessageList.appendItem -object
$Simple

SEE ALSO

SMTP Client Agent

Attachment

Header

Chapter 27 SMTP

– 1164 –

SMTP Server Agent
SMTP Server Agent - configure an SMTP server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_SMTPServer1 [$Traffic2_Network2 activityList.appendItem
$Activity_SMTPServer1 agent.config options...

DESCRIPTION

An SMTP server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and getOptions
subcommands defined in the ixConfig command.

OPTIONS

concurrentSessionLimit

The maximum number of concurrent sessions to be supported by the agent. (Default = 1,000).

enable

Enables the use of this action. (Default = true).

name

The name associated with this object, which must be set at object creation time.

Server_Listening_Port

Port that the SMTP server listens on. To specify multiple ports, separate the port numbers with commas
(,). You can specify up to 50 listening ports. (Default = 25).

enableVlanPriority

VLAN Priority can be set on a per-activity basis or on a per-network (NetTraffic) basis. This parameter
sets the VLAN priority for the activity. An activity’s VLAN Priority bit setting takes precedence over a
network’s Priority bit setting. If true, IxLoad sets the VLAN Priority bit in traffic from this activity.
Configure the VLAN priority value in vlanPriority. (Default = false).

vlanPriority

When enableVlanPriority is true, this option accepts the vlan priority value.

Chapter 27 SMTP

– 1165 –

STATISTICS

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity SMTPServer1
of NetTraffic Traffic2@Network2###set
Activity_SMTPServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"SMTP Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
SMTPServer1 config \-enable true \-name
"SMTPServer1" \-timeline $_Match_Longest_$Activity_
SMTPServer1 agent.config \-Server_Listening_Port "25" \-enable
true \-name "SMTPServer1" \-vlanPriority
0 \-concurrentSessionLimit 1000 \-enableVlanPriority
false

SEE ALSO

ixNetTraffic

Chapter 27 SMTP

– 1166 –

SMTP Statistics
Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

The test results are available from the location defined on the User Directories window. See User
Directories.

If you review your statistics and find many instances of SMTP Client statistics and server statistics that
should match but do not, that may be an indication that the Ramp Down Time is too short. When the
Ramp Down Time expires, IxLoad terminates any users that are still running. If those users still have
work in progress (such as transferring data) when IxLoad terminates them, the work will not be
completed and the effect will be that statistics that should match may not.

For the SMTP statistics, see the following:

SMTP Client Statistics

SMTP Server Statistics

Chapter 27 SMTP

– 1167 –

SMTP Client Statistics
The table below lists the statistics that IxLoad reports for SMTP clients.

Statistic Description

SMTP
Sessions
Requested

Number of requests to establish SMTP sessions sent by the clients.

SMTP
Sessions
Established

Number of SMTP sessions established by the clients.

SMTP
Sessions
Failed

Number of attempts to establish SMTP sessions that failed.

SMTP Mails
Sent

Number of mail messages sent by the clients using SMTP.

SMTP
Messages
Failed

Number of messages attempted to be sent using SMTP that failed.

SMTP
Message
Timeouts

Number of messages that could not be sent due to timeouts.

SMTP HELO
Sent

Number of SMTP HELO commands sent.

SMTP HELO
Ok

Number of SMTP HELO commands that received a positive response.

SMTP HELO
Failed

Number of SMTP HELO commands that did not receive a positive response.

SMTP EHLO
Sent

Number of SMTP EHLO commands sent.

SMTP EHLO
Ok

Number of SMTP EHLO commands that received a positive response.

SMTP EHLO
Failed

Number of SMTP EHLO commands that did not receive a positive response.

SMTP MAIL
Sent

Number of SMTP MAIL commands sent.

Chapter 27 SMTP

– 1168 –

SMTP MAIL
Ok

Number of SMTP MAIL commands that received a positive response.

SMTP MAIL
Failed

Number of SMTP MAIL commands that did not receive a positive response.

SMTP RCPT
Sent

Number of SMTP RCPT commands sent.

SMTP RCPT
Ok

Number of SMTP RCPT commands that received a positive response.

SMTP RCPT
Failed

Number of SMTP RCPT commands that did not receive a positive response.

SMTP DATA
Sent

Number of SMTP DATA commands sent.

SMTP DATA
Ok

Number of SMTP DATA commands that received a positive response.

SMTP DATA
Failed

Number of SMTP DATA commands that did not receive a positive response.

SMTP NOOP
Sent

Number of SMTP NOOP commands sent.

SMTP NOOP
Ok

Number of SMTP NOOP commands that received a positive response.

SMTP NOOP
Failed

Number of SMTP NOOP commands that did not receive a positive response.

SMTP RSET
Sent

Number of SMTP RSET commands sent.

SMTP RSET
Ok

Number of SMTP RSET commands that received a positive response.

SMTP RSET
Failed

Number of SMTP RSET commands that did not receive a positive response.

SMTP QUIT
Sent

Number of SMTP QUIT commands sent.

SMTP QUIT
Ok

Number of SMTP QUIT commands that received a positive response.

SMTP QUIT
Failed

Number of SMTP QUIT commands that did not receive a positive response.

Chapter 27 SMTP

– 1169 –

SMTP Total
Bytes Sent

Total number of SMTP-related (commands, responses, and mail messages) bytes
sent by the clients.

SMTP Total
Bytes
Received

Total number of SMTP-related (commands, responses, and mail messages) bytes
received by the clients.

SMTP Total
Attachments
Sent

Total number of attachments sent by the clients.

SMTP Total
Mails with
Attachments
Sent

Total number of messages sent that included one or more attachments.

SMTP
Simulated
Users

Number of simulated SMTP users.

SMTP
Concurrent
Connections

Number of concurrent SMTP connections maintained.

SMTP
Connections

Number of SMTP connections established by the clients.

SMTP
Transactions

Number of SMTP transactions completed by the clients.

The SMTP client counts each SMTP command as one transaction. A successful
transaction is an SMTP command for which an ACK is received. An unsuccessful
transaction is one for which no ACK is received, or an error is received.

SMTP Bytes Number of SMTP-related bytes sent and received by the clients.

SMTP
Connection
Rate

Rate at which the SMTP clients established connections to servers.

SMTP
Transaction
Rate

Rate at which the SMTP clients completed SMTP transactions.

SMTP
Throughput

Rate at which the SMTP clients sent and received SMTP data.

Chapter 27 SMTP

– 1170 –

Note: If the average table and bar graphs do not contain any data for the clients, that is an
indication that they did not reach the Sustained (SU) run state. This can be caused by the
following:

1. Stopping a test during the Ramp-Up phase.

2. Configuring a large number of page requests for the client agent so that not all the users
configured for the client can attain the SU state within the allotted time.

3. Configuring a value for the statistics interval (Statistics tab) which is much larger than the
SU time.

Chapter 27 SMTP

– 1171 –

SMTP Server Statistics
The table below lists the statistics that IxLoad reports for SMTP servers.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistic Description

SMTP Session Requests
Received

Number of requests to establish SMTP sessions received by the servers.

SMTP Session Requests
Successful

Number of SMTP sessions established by the servers.

SMTP Session Requests
Failed

Number of requests to establish SMTP sessions that failed.

SMTP HELO Received Number of SMTP HELO commands received.

SMTP EHLO Received Number of SMTP EHLO commands received.

SMTP MAIL Received Number of SMTP MAIL commands received.

SMTP RCPT Received Number of SMTP RCPT commands received.

SMTP DATA Received Number of SMTP DATA commands received.

SMTP NOOP Received Number of SMTP NOOP commands received.

SMTP RSET Received Number of SMTP RSET commands received.

SMTP QUIT Received Number of SMTP QUIT commands received.

SMTP Mail Bytes
Received

Number of bytes contained in SMTP mail messages received by the
servers.

SMTP Mails Received Number of mail messages received using SMTP.

NOTE for API Users: There is a trailing space after the word ‘Received’
in the name of this statistic.

SMTP Total Bytes Sent Number of SMTP-related bytes (commands, responses, and messages)
sent.

SMTP Total Bytes
Received

Number of SMTP-related bytes (commands, responses, and messages)
received.

Chapter 27 SMTP

– 1172 –

! 29

Chapter 27 SMTP

– 1173 –

This page intentionally left blank.

– 1174 –

CHAPTER 28 SSH
This section describes the SSH Tcl API objects.

API Overview
The IxLoad SSH API consists of a client agent and its commands. The structure of the API is shown
below.

– 1175 –

Objectives
The objectives (userObjective) you can set for SSH are listed below. Test objecare set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

SSH Client Agent

Secure Shell (SSH) is a protocol for securely logging into a remote host over an insecure network.
Refer to SSH Client Agent on page 24-4 for a full description of this command. The most significant

Chapter 28 SSH

– 1176 –

options of this command are listed below.

Option Description

protocolAndType Protocol used by the client agent. Defines the agent as either a client or server.

SSH Command List

The SSH Command List creates the list of SSH commands that the client will send to a SSH server.
Refer to SSH Command List on page 24-10 for a full description of this command. The most significant
options of this command are listed below.

Option Description

id Command that client will send.

Option Set

The Option Set object configures the list of SSH options that the SSH commands will use. Refer to
Option Set on page 24-15 for a full description of this com

Option Set Manager

The Option Set Manager object configures the list of Option Sets. Refer to Option Set Manager on
page 24-16 for a full description of this command.

Global Config

Configures the parameters that define the way the IxLoad SSH client performs overall. Refer to Global
Config on page 24-18 for a full description of this com

Chapter 28 SSH

– 1177 –

Chapter 28 SSH

– 1178 –

SSH Client Agent
SSH Client Agent - create an SSH client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_SSHClient1 [$Traffic1_Network1 activityList.appendItem \ options...
$Activity_SSHClient1 agent.config

DESCRIPTION

A SSH client agent is added to the activityList option of the ixNetTraffic object using the
appendItem subcommand from the ixConfigSequenceContainer comOther
ixConfigSequenceContainer subcommands may be used to modify the agentList. It is customary to
set all the options of the client agent during the appendItem call.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new ixNetTraffic]#----------------------------------
-------------------------# Activity SSHClient1 of NetTraffic Traffic1@Network1#-----
--set Activity_SSHClient1
[$Traffic1_Network1 activityList.appendItem \-protocolAndType
"ssh Client"]$Activity_SSHClient1 agent.config \-enable
true \-name "SSHClient1"

SEE ALSO

ixNetTraffic

Chapter 28 SSH

– 1179 –

SSH Command List
SSH Command List—Creates the list of SSH commands that the client will send to a SSH server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
$Activity_SSHClient1 agent.pm.commands.appendItem \ options...

DESCRIPTION

A command is added to the SSH Command List object using the appendItem subcommand from the
ixConfigSequenceContainer command (see the example below).

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

DHCP command to be executed. One of the following:

Command Description

AuthenticateUserCom AuthenticateUserCommand simulates a key-based SSH user authentication
session establishment and termination. It sends the following messages or
commands:

Key-Exchange-Init (SSH_MSG_KEXINIT)

New-Keys (SSH_MSG_NEWKEYS)

Service-Request (SSH_MSG_SERVICE_REQUEST)

User-Authentication-Request (SSH_MSG_USERAUTH_REQUEST)

{Close}

OpenChannelCom OpenChannelCommand performs a key-based SSH user authentication,
establishes an SSH session, opens a new channel, and then terminates the
session. It is a combination of an AuthenticateUserCommand, plus an
OpenChannelComIt sends the following messages or commands:

Key-Exchange-Init (SSH_MSG_KEXINIT)

New-Keys (SSH_MSG_NEWKEYS)

Service-Request (SSH_MSG_SERVICE_REQUEST)

User-Authentication-Request (SSH_MSG_USERAUTH_REQUEST)

Channel-Open (SSH_MSG_CHANNEL_OPEN)

Chapter 28 SSH

– 1180 –

OpenShellCommand An OpenShellCommand requests that the server open a new channel and
establish a new shell process. It is a combination of an
OpenChannelCommand, plus a ChannelRequestComwith requestType set to
“shell”. It sends the following messages or commands:

{OpenChannel}

ChannelRequestCommand (SSH_MSG_CHANNEL_REQUEST) with
requestType = shell

ExecCommand An ExecCommand executes a command on the SSH server. It is a
combination of an OpenChannelCommand, plus a Chanwith requestType set
to “exec”. It sends the following messages or commands:

{OpenChannel}

Channel-Request (SSH_MSG_CHANNEL_REQUEST) with Request Type =
exec

SendDataCommand A SendDataCommand sends data over the channel estabby a previous
OpenChannelCommand.

The maximum amount of data that can be sent, depends on the channel’s
maximum packet size or its current window size, whichever is smaller.
Sending data decreases the remaining window size by the amount of data
sent.

{SendData} can send either of the following messages:

Channel-Data (SSH_MSG_CHANNEL_DATA)

Channel-Extended-Data (SSH_MSG_CHANNEL_EXTENDED_DATA)

CloseCommand A CloseCommand terminates an SSH session. It sends the folmessages or
commands:

Channel-Close (if needed) (SSH_MSG_CHANNEL_CLOSE)

Disconnect (SSH_MSG_DISCONNECT)

ThinkCommand The THINKCommand causes the client to become idle for a specified length
of time, to simulate real-world usage scenarios in which a user may spend
time absorbing or processing inforreceived from the server before sending
the next com

If you specify identical values for the minimum and maximum intervals, the
client will be inactive for a fixed length of time. If you specify different
values for the minimum and maximum intervals, IxLoad will select a value
within the range and cause the client to be inactive for that length of time.

LoopBeginCommand The Loop BeginCommand is an IxLoad command that you can add to the
Command List to cause the commands between it and the LoopEndCommand
to be executed a specified number of times.

LoopEndCommand LoopEndCommand ends the list of commands that will be exeby the

Chapter 28 SSH

– 1181 –

preceding LoopBeginCommand.

Arguments for id = AuthenticateUserCommand

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set").

userName

Name of simulated user to be authenticated.

password

The password required for the authentication.

authMethod

Method used to authenticate the user. You can select from the following method:

password: Password-based authentication

serverIPAddr

Address of the SSH server. (Default = "198.18.0.101").

Arguments for id = OpenChannelCommand

serverIPAddr

Address of the SSH server. (Default = "198.18.0.101").

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set").

userName

Name of simulated user to be authenticated.

password

The password required for the authentication.

authMethod

Method used to authenticate the user. You can select from the following method:

password: Password-based authentication

initialWindowSize

Initial size of the channel window, in bytes.

Chapter 28 SSH

– 1182 –

maximumpacketSize

Maximum size of the packets sent over the channel, in bytes.

Arguments for id = OpenShellCommand

serverIPAddr

Address of the SSH server. (Default = "198.18.0.101").

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set").

userName

Name of simulated user to be authenticated.

password

The password required for the authentication.

authMethod

Method used to authenticate the user. You can select from the following method:

password: Password-based authentication

initialWindowSize

Initial size of the channel window, in bytes.

maximumpacketSize

Maximum size of the packets sent over the channel, in bytes.

wantReply

If enabled, the server returns a message indicating the success or failure of the Channel-Request. The
IxLoad client does not display the actual text of the response.

Arguments for id = ExecCommand

serverIPAddr

Address of the SSH server. (Default = "198.18.0.101").

optionSet

Name of option set. A value for this argument must be one of the name objects from the optionSet
object. Minimum length = 1. (Default = "Default Option Set").

userName

Name of simulated user to be authenticated.

password

Chapter 28 SSH

– 1183 –

The password required for the authentication.

authMethod

Method used to authenticate the user. You can select from the following methods:

password: Password-based authentication

initialWindowSize

Initial size of the channel window, in bytes.

maximumpacketSize

Maximum size of the packets sent over the channel, in bytes.

wantReply

If enabled, the server returns a message indicating the success or failure of the Channel-Request. The
IxLoad client does not display the actual text of the response.

commandName

Name of the command to be executed on the server.

Arguments for id = SendDataCommand

dataType

Type of data to be sent to the SSH server.

l normalData: Sends normal channel data.

l extendedData: Sends extended channel data. The only type of extended data available is stderr
(SSH_EXTENDED_DATA-STDERR).

fileName

If data is imported from a file, then the path is mentioned here.

Arguments for id = CloseCommand

reasonCode

Reason for ending the session. The values are:

Code Description

1 protocolError

Disconnecting because a protocol error occurred on the client or the server.

2 keyExchangeFailed

Chapter 28 SSH

– 1184 –

Disconnecting because the key exchange failed on the client or server.

3 macError

Disconnecting because the Message Authentication Code (MAC) failed on the client or
server.

4 compressionError

Disconnecting because a compression error occurred on the client or server.

5 versionNotSuppoprted

Disconnecting because the client or server does not support the protocol version indicated in
the message.

6 hostKeyNotVerifiable

Disconnecting because the host key could not be verified.

7 connectionLost

Disconnecting because the connection was lost.

8 disconnectByApplication

Disconnection caused by an application.

9 tooManyConnections

Disconnected because the internal connection limit has been exceeded.

10 noMoreAuthenticationMethodsAvailable

Disconnecting because there are no more authentication to try. This generally means that
the client has failed in all the authenmethods available on the server.

description

Description of the reason for ending the session. The text must be in ISO-10646 UTF-8 encoding.

Arguments for id = ThinkCommand

minimumInterval

Minimum length of time that the client is idle. Minimum = “1,” maximum = “2,147,483,647.” (Default
= "1").

maximumInterval

Maximum length of time that the client is idle. Minimum = “1,” maximum = “2,147,483,647.” (Default
= "1").

Arguments for id = LoopBeginCommand

loopCount

Chapter 28 SSH

– 1185 –

Number of times to repeat the enclosed commands. '0' treated as infinity. Mini= “0,” maximum =
“2,147,483,647.” (Default = "5").

Arguments for id = LoopEndCommand

None.

EXAMPLE
$Activity_SSHClient1 agent.pm.commands.appendItem \

-id "AuthenticateUserCommand" \

-userName "ixia-user" \

-password "password" \

-optionSet "Default Option Set" \

-authMethod "password" \

-serverIPAddr "198.18.0.101"

SEE ALSO

SSH Client Agent

Chapter 28 SSH

– 1186 –

Option Set
Options Set—Configures the algorithm and language preferences that the IxLoad SSH client sends with
some commands that require or allow those preferences to be specified.

SYNOPSIS

set Activity_SSHClient1 [$Traffic1_Network1 activityList.appendItem \
$Activity_SSHClient1 agent.pm.optionSet.config \ options...

DESCRIPTION

An Options Set is a list of options, their arguments, and the commands for which those options are
used. Configure the list using the same subcommands as for ixConfig (see the example below).

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

name

Name of option set list. Minimum length = 1. (Default = "No Name")

optionsList

List of options and their arguments. See Option Set Manager. (Default = "{}).

predefined

If true, then the options in this option set are predefined for the SSH server to expose as available
options. (Default = "0").

inUse

The option set that is configured through the Option Set Manager. . (Default = 0).

EXAMPLE
$Activity_SSHClient1 agent.pm.optionSet.config \-predefined
false \-name "No Name" \-inUse
0

SEE ALSO

SSH Client Agent

Option Set Manager

Chapter 28 SSH

– 1187 –

Option Set Manager
Options Set Manager—Configures the list of Option Sets.

SYNOPSIS

set Activity_SSHClient1 [$Traffic1_Network1 activityList.appendItem \

$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList.appendItem \ options...

DESCRIPTION

To configure an Option Set Manager, use the appendItem command on the pm.optionSetManager
component of the SSH Client Agent.

SUBCOMMANDS

None.

OPTIONS

id

Key exchange algorithm to be used. Select an algorithms from the table below. Each algorithm takes
arguments, which are also listed in the table.

Option/Arguments Description

0

kexAlgoName

kexAlgoElements

Algorithms that the IxLoad SSH client proposes to protect the exchange
of public keys between itself and the SSH server.

1

serverHostKeyAlgoName

serverHostKeyAlgoElements

Algorithms that the client offers to accept for generthe server’s host key.

2

encC2SAlgoName

encC2SAlgoElements

Algorithms that the client proposes to encrypt traffic it sends to the
server.

3

encS2CAlgoName

encS2CAlgoElements

Algorithms that the client offers to accept for encrypttraffic it receives
from the server.

4

macC2SAlgoName

macC2SAlgoElements

Algorithms that the client proposes for ensuring the integrity of data it
sends to the server.

5

macS2CAlgoName

macS2CAlgoElements

Algorithms that the client offers to accept for ensurthe integrity of data it

Chapter 28 SSH

– 1188 –

receives from the server.

6

compC2SAlgoName

compC2SAlgoElements

Algorithms that the client proposes for compressing the data it sends to
the server.

7

compS2CAlgoName

compS2CAlgoElements

Algorithms that the client offers to accept for comthe data it receives
from the server.

8

languageC2SName

C2SLanguageElements

Languages that the client proposes for messages it sends to the server.

9

languageS2CName

S2CLanguageElements

Languages that the client offers to accept for mesit receives from the
server.

EXAMPLE
$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList.appendItem \

-id "OptionSet" \

-predefined true \

-name "Default Option Set" \

-inUse 0
$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList
(0).optionsList.clear$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList
(0).optionsList.appendItem \

-id "KexAlgos"
$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList(0).optionsList
(0).kexAlgoElements.clear$Activity_SSHClient1
agent.pm.optionSetManager.optionSetList(0).optionsList(0).kexAlgoElements.appendItem
\

-id "KexAlgoElement" \

-kexAlgoName "diffie-hellman-group1-sha1"
$Activity_SSHClient1 agent.pm.optionSetManager.optionSetList.appendItem \

-id "OptionSet" \
-predefined 0 \

-name "Option Set - 0" \

-inUse 0

Chapter 28 SSH

– 1189 –

SEE ALSO

Option Set

Chapter 28 SSH

– 1190 –

Global Config
Options Set Manager—Configures the parameters that define the way the IxLoad SSH client performs
overall.

SYNOPSIS

set Activity_SSHClient1 [$Traffic1_Network1 activityList.appendItem \
$Activity_SSHClient1 agent.pm.globalConfig.config \ options...

DESCRIPTION

To configure the parameters that define the way the IxLoad SSH client performs overall. Use the
appendItem command on the pm.optionSetManager component of the SSH Client Agent.

SUBCOMMANDS

None.

OPTIONS

defaultSshPort

The default Listening Port of an SSH Server. minimum = "1" maximum = "65535" default = "22".

timeout

Amount of time an SSH Client will wait for getting a response from the Server. minimum = "1"
maximum = "2000" default = "600".

defaultUserName

The default user name used to login if no other user name is specified in authentication method
configuration. minimum = "1" maximum = "255" default = "ixia-user".

password

The password to be sent to the server for password authentication. minimum = "1" maximum = "255"
default = "password".

EXAMPLE
$Activity_SSHClient1 agent.pm.globalConfig.config \-defaultSshPort
22 \-implicitLoopCheck true \-password
"password" \-defaultUserName "ixia-user" \-timeout
600

SEE ALSO

SSH Client Agent

Chapter 28 SSH

– 1191 –

SSH Client Statistics
The table below describes the SSH client statistics.

Statistic Description

Objective Statistics

Simulated
Users objective

User Count If the objective is Simulated Users, this is the number of users created.

Concurrent
Sessions
objective

SSH Concurrent
Sessions

If the objective is Concurrent Sessions, this is the number of concurrent SSH
sessions established.

Transaction Rate objective

SSH Total
Transactions

If the objective is Transaction Rate, this is the number of SSH transactions
completed.

SSH Transaction
Rate

If the objective is Transaction Rate, this is the rate at which the client
completed SSH transactions.

Connection Rate objective

SSH Connections
Established

If the objective is Connection Rate, this is the number of SSH connections
established.

SSH Connection
Rate

If the objective is Connection Rate, this is the rate at which the client
completed SSH transactions.

Authentication Statistics

User Authentication statistics

Total User
Authentication
Attempted

Total number of user authentication attempts of all types.

Total User
Authentication
Succeeded

Total number of user authentications of all types that succeeded.

Total User
Authentication

Total number of user authentications of all types that failed.

Chapter 28 SSH

– 1192 –

Failed

NEWKEYS statistics

Total NEWKEYS
Sent

Number of NEWKEYS messages sent by the client.

Total NEWKEYS
Received

Number of NEWKEYS messages received by the client.

KEXINIT statistics

Total KEXINIT
Sent

Number of KEXINIT messages sent by the client.

Total KEXINIT
Received

Number of KEXINIT messages received by the client.

Service Request statistics

Total Service
Request Sent

Total number of Service-Request messages sent by the client for all SSH
protocols.

Total Service
Accept Received

Number of Service-Accept messages received by the client.

Total Service
Request Sent -
SSH-Userauth

Number of Service-Request messages sent by the client for the SSH user
authentication protocol (SSH-USERAUTH).

Total Service
Request Sent -
SSH-Connection

Number of Service-Request messages sent by the client for the SSH connection
protocol (SSH-CONNECTION).

Total Service
Accept Received -
SSH-Userauth

Number of Service-Accept messages received for the SSH user authentication
protocol (SSH-USERAUTH).

Total Service
Accept Received -
SSH-Connection

Number of Service-Accept messages received for the SSH connection protocol
(SSH-CONNECTION).

Total Disconnect
Received

Total number of Disconnect messages received for all SSH protocols.

Total Disconnect
Received - SSH-
Userauth

Number of Disconnect messages received for the SSH user authentication
protocol (SSH-USERAUTH).

Total Disconnect Number of Disconnect messages received for the SSH connection protocol

Chapter 28 SSH

– 1193 –

Received - SSH-
Connection

(SSH-CONNECTION).

Channel Request statistics

Total Channel
Open Sent

Number of Channel Open messages sent by the client.

Total Channel
Open
Confirmation
Received

Number of Channel Open confirmation messages received by the client.

Total Channel
Open Failure
Received

Number of Channel Open failure messages received by the client.

Total Channel
Data Sent

Number of Channel Data messages sent by the client.

Total Channel
Extended Data
Sent

Number of Channel Data messages received by the client.

Total Channel
Request Sent

Number of Channel-Request messages sent.

Total Channel
Success Received

Number of Channel-Success messages sent.

Total Channel
Failure Received

Number of Channel-Failure messages sent.

Total Channel EOF
Sent

Number of Channel-EOF (End of File) messages sent.

Total Channel
Close Sent

Number of Channel-Close messages sent.

Total Channel
Request Sent -
Shell

Number of shell-related Channel-Request messages sent.

Total Channel
Request Sent -
Exec

Number of exec-related Channel-Request messages sent.

Total Channel
Success Received
- Shell

Number of shell-related Channel-Success messages received.

Chapter 28 SSH

– 1194 –

Total Channel
Success Received
- Exec

Number of exec-related Channel-Success messages received.

Total Channel
Failure Received -
Shell

Number of shell-related Channel-Failure messages received.

Total Channel
Failure Received -
Exec

Number of exec-related Channel-Failure messages received.

Total Channel EOF
Received

Total number of Channel-EOF messages received for all channels.

Total Channel
Close Received

Total number of Channel-Close messages received for all channels.

Request / Response statistics

Total Request
Sent

Total number of requests of all kinds sent.

Total Response
Received

Total number of responses of all kinds received.

Total Failure Total number of failures of kinds that occurred.

Throughput statistics

Total Bytes Sent Total number of bytes sent in SSH messages.

Total Bytes
Received

Total number of bytes received in SSH messages.

Server Response Time statistics

Service Request
Response Time

Average time elapsed, in ms, between the time the client sent a Service-
Request message and the time it received a Service-Accept or Disconnect
message in response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Userauth Request
Response Time

Average time elapsed, in ms, between the time the client sent a UserAuth-
Request message and the time it received a UserAuth-Success or UserAuth-
Failure message in response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Chapter 28 SSH

– 1195 –

Channel Open
Request Response
Time

Average time elapsed, in ms, between the time the client sent a Channel-Open-
Request message and the time it received a Channel-Open-Confirmation or
Channel-Open-Failure message in response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

Channel Request
Response Time

Average time elapsed, in ms, between the time the client sent a Channel-
Request message and the time it received a Channel-Success or Channel-
Failure message in response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

NewKeys
Response Time

Average time elapsed, in ms, between the time the client sent a KEXINIT
message and the time it received a NEWKEYS message in response.

Note for Tcl API users: This is a weighted statistic. If you are using this statistic
in a Tcl script, use the kWeightedAverage aggregation type.

! 30

Chapter 28 SSH

– 1196 –

CHAPTER 29 Stateless Peer
This section describes the Stateless Peer Tcl API objects.

Stateless Peer Overview
The Stateless Peer API consists of the Stateless Peer Agent and its commands.

Objectives
The objectives (userObjective) you can set for the Stateless Peer are listed below. Test objectives are
set in the ixTimeline object.

l simulatedUsers

l peerCount (displays as Initiator Peer Count in the GUI)

l connectionRate

l concurrentConnections

l throughputMbps

l throughputKbps

l throughputGbps

l transactionRate

– 1197 –

Stateless Peer Commands
This section lists the Application Replay Peer's commands.

Chapter 29 Stateless Peer

– 1198 –

Stateless Peer Agent
Stateless Peer Agent - create a Stateless Peer agent

SYNOPSIS

DESCRIPTION

A Stateless Peer agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

userIpMapping

Mapping between IP address usage and simulated users. Default = "1:1"

enableConstraint

If true, the constraintValue is applied. Default = false

userObjectiveValue

User objective value. Default = 100

constraintValue

If enableConstraint is true, this option specifies the constraint that is applied. Default = 100

userObjectiveType

Objective of the activity. Default = "peerCount"

timeline

Name of the timeline used for this activity. Default = $Timeline1

Chapter 29 Stateless Peer

– 1199 –

STATISTICS

EXAMPLE

set Activity_StatelessPeer1 [$myNetTraffic activityList.appendItem \

-protocolAndType "stateless Peer"]

set Timeline1 [::IxLoad new ixTimeline]

$Timeline1 config \

-rampUpValue 1 \

-offlineTime 0 \

-rampDownTime 20 \

-name "Timeline1" \

-rampUpInterval 1 \

-sustainTime 20 \

-standbyTime 0 \

-timelineType 0 \

-rampUpType 0

$Activity_StatelessPeer1 config \

-enable true \

-name "StatelessPeer1" \

-userIpMapping "1:1" \

-enableConstraint false \

-userObjectiveValue 100 \

-constraintValue 100 \

-userObjectiveType "peerCount" \

-timeline $Timeline1

SEE ALSO

ixNetTraffic

Chapter 29 Stateless Peer

– 1200 –

Chapter 29 Stateless Peer

– 1201 –

Stateless Peer Advanced Options
Advanced Options - configure the Stateless Peer's global options

SYNOPSIS

DESCRIPTION

The Advanced Options object configures the Stateless Peer's global options.

SUBCOMMANDS

None.

OPTIONS

enableTOS

If true, TOS bits are included in packets from this activity. Default = false.

typeOfService

If enableTOS is true, this option configure the TOS bit used. Default = "Best Effort (0x0)"

parallelCmdCnt

Number of commands to execute simultaneously. Default = 1.

STATISTICS

EXAMPLE

$Activity_StatelessPeer1 agent.pm.advOptions.config \

-enableTOSfalse \

-typeOfService"Best Effort (0x0)" \

-parallelCmdCnt1

SEE ALSO

Chapter 29 Stateless Peer

– 1202 –

Stateless Peer Protocol Flows
Protocol Flows - configure the Stateless Peer's commands

SYNOPSIS

$Activity_StatelessPeer1 agent.pm.protocolFlows.appendItem \

-id"LoopBeginCommand" \

-LoopCount5

DESCRIPTION

An option is added to the list of protocol flows using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

Options for LoopBeginCommand

id

Name of the command to be executed. Default = "LoopBeginCommand".

LoopCount

Number of times to execute the loop. Default = 5.

Options for GenerateStream

id

Name of the command to be executed . Default = "GenerateStream"

remotePeer

Name of the Stateless Peer that is the destination of the traffic. Default = "".

destination

Destination of traffic from this initiator. Default = "None".

l If the destination is a DUT, specify its IP address.

l If the destination is another Stateless Peer activity, specify its name.

minPacketFreq

Minimum rate at which packets will be sent. Default = 100.

maxpacketFreq

Chapter 29 Stateless Peer

– 1203 –

Maximum rate at which packets will be sent. Default = 100.

streamDur

Length of time, in seconds, to transmit the stream. Default = 20.

destinationPort

Port number on destination Stateless Peer to which traffic is sent. This can be a single port or a range
(for example: 1024-2048). Default = 0.

sourcePort

Port number on the source Stateless Peer to which traffic is sent. Default = 0.

minContentSize

Minimum size of the IP payload. Default = 1024.

maxContentSize

Maximum size of the IP payload. Default = 1024.

Options for GenerateIPStream

id

Name of the command to be executed . Default = "GenerateIPStream".

remotePeer

Name of the Stateless Peer that is the destination of the traffic. Default = "None".

proto

Protocol ID contained in traffic from the peer. The list of protocol IDs is at
http://www.iana.org/assignments/protocol-numbers/. Default = 0.

streamDur

Length of time, in seconds, to transmit the stream. Default = 20.

minPacketFreq

Minimum rate at which packets will be sent. Default = 100.

maxpacketFreq

Maximum rate at which packets will be sent. Default = 100.

minContentSize

Minimum size of the IP payload. Default = 1024.

maxContentSize

Maximum size of the IP payload. Default = 1024.

Chapter 29 Stateless Peer

– 1204 –

Options for LoopEndCommand

id

Name of the command to be executed . Default = "LoopEndCommand".

Options for Think

id

Name of the command to be executed . Default = "Think".

minimumInterval

Minimum length of time to think for. Default = 1000.

minimumInterval

Maximum length of time to think for. Default = 1000.

STATISTICS

EXAMPLE

$Activity_StatelessPeer1 agent.pm.protocolFlows.clear

$Activity_StatelessPeer1 agent.pm.protocolFlows.appendItem \

-id"LoopBeginCommand" \

-LoopCount5

$Activity_StatelessPeer1 agent.pm.protocolFlows.appendItem \

-id"GenerateStream" \

-remotePeer"None" \

-packetFreq100 \

-streamDur20 \

-destinationPort23 \

-sourcePort22 \

-contentSize1024

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.clear

Chapter 29 Stateless Peer

– 1205 –

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.appendItem \

-id"payloadHeaderRow" \

-streamIdentifierfalse \

-length1 \

-type1 \

-value"255"

$Activity_StatelessPeer1 agent.pm.protocolFlows.appendItem \

-id"LoopEndCommand"

$Activity_StatelessPeer1 agent.pm.protocolFlows.appendItem \

-id"Think" \

-minimumInterval1000 \

-maximumInterval1000

SEE ALSO

Stateless Peer Payload Header List

Protocol Header List - list of headers in the UDP packets.

SYNOPSIS

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.appendItem \

-id"payloadHeaderRow" \

-streamIdentifierfalse \

-length1 \

-type1 \

-value"255"

DESCRIPTION

payloadHeaderList defines the list of headers in the UDP packet. This list is of type
ixConfigSequenceContainer; items are added to the list via the appendItem sub-command.
(Default = {}).

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.appendItem

Chapter 29 Stateless Peer

– 1206 –

Before you add items to the list, you should clear it. For example:

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.clear

SUBCOMMANDS

None.

OPTIONS

id

Name of the header. Deafult = "payloadHeaderRow".

streamIdentifier

A boolean that indicates whether or not this header is used to identify the stream. At least one header
row must have this flag set. Default = false.

length

length of the data in the value field. Min = 1, Max = 65535, Default = 1.

type

Type of the data in the value field. Default = 1. The choices are:

Choice Description

1 1 byte

2 2 bytes

3 3 bytes

4 4 bytes

5 Fixed binary

6 Fixed ascii

value

Value of the header field. Default = "".

STATISTICS

EXAMPLE

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.clear

$Activity_StatelessPeer1 agent.pm.protocolFlows(1).payloadHeaderList.appendItem \

Chapter 29 Stateless Peer

– 1207 –

-id"payloadHeaderRow" \

-streamIdentifierfalse \

-length1 \

-type1 \

-value"255"

SEE ALSO

Stateless Peer Available TOS List

Available TOS List - list of TOS values in the UDP packets.

SYNOPSIS

$Activity_StatelessPeer1 agent.pm.availableTosList.appendItem \

-id"AvailableTypeOfService" \

-tos_value"Best Effort (0x0)"

DESCRIPTION

availableTosList defines the list of TOS values in the UDP packet. This list is of type
ixConfigSequenceContainer; items are added to the list via the appendItem sub-command.
(Default = {}).

$Activity_StatelessPeer1 agent.pm.availableTosList.appendItem

Before you add items to the list, you should clear it. For example:

$Activity_StatelessPeer1 agent.pm.availableTosList.clear

SUBCOMMANDS

None.

OPTIONS

id

Name of the TOS value. Default = "AvailableTypeOfService".

tos_value

TOS value. The possible TOS values are listed below. Default = "".

"Best Effort (0x0)"

"Class 1 (0x20)"

"Class 2 (0x40)"

Chapter 29 Stateless Peer

– 1208 –

"Class 3 (0x60)"

"Class 4 (0x80)"

"Express Forwarding (0xA0)"

"Control (0xC0)"

STATISTICS

EXAMPLE

$Activity_StatelessPeer1 agent.pm.availableTosList.clear

$Activity_StatelessPeer1 agent.pm.availableTosList.appendItem \

-id"AvailableTypeOfService" \

-tos_value"Best Effort (0x0)"

SEE ALSO

! 31

Chapter 29 Stateless Peer

– 1209 –

This page intentionally left blank.

– 1210 –

CHAPTER 30 HTTP Streaming
This section describes the Streaming Client Tcl API objects.

API Overview
The IxLoad Streaming Client API consists of the Streaming Client Agent, and its commands.

Objectives
The objectives (userObjective) you can set for Streaming Clients are listed below. Test objectives are
set in the ixTimeline object.

l simulatedUsers

– 1211 –

HTTP Streaming Client Agent
Streaming client agent - create a Streaming client agent

SYNOPSIS

set Activity_StreamingClient1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "Streaming Client"]

DESCRIPTION

A Streaming client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcomfrom the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE

set Activity_StreamingClient1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "Streaming Client"]

SEE ALSO
ixNetTraffic

Chapter 30 HTTP Streaming

– 1212 –

cmdList
cmdList - configure the list of commands that the Streaming client executes.

SYNOPSIS

$Activity_StreamingClient1 agent.pm.cmdList.appendItem \

DESCRIPTION

The cmdList object configures the list of commands that the Streaming client executes.

To add a command to the list, you use the appendItem subcommand from the
ixConfigSequenceContainer command. Other ixConfigSequenceContainer subcommands may be
used to modify the command list. It is customary to set all the options of the command list during the
appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

Before you add items to the command list, you should initialize the list by using the clear
subcommand of the ixConfigSequenceContainer command.

SUBCOMMANDS

OPTIONS

See individual commands.

EXAMPLE

$Activity_StreamingClient1 agent.pm.cmdList.clear

$Activity_StreamingClient1 agent.pm.cmdList.appendItem \

-minimumInterval 10 \

-durationType 0 \

-maximumInterval 10 \

-mediaUrl "" \

-cmdName "PLAY 4" \

-commandType "Play" \

-serverAddr ""

SEE ALSO

Chapter 30 HTTP Streaming

– 1213 –

Chapter 30 HTTP Streaming

– 1214 –

Global options
Streaming client global config - configure the global properties of a streaming client agent

SYNOPSIS

$Activity_StreamingClient1 agent.pm.globalOptions.config

DESCRIPTION

This object configures the global properties of a Streaming client agent.

SUBCOMMANDS

None.

OPTIONS

protocol

Streaming protocol.

Values Description

0 (default) HTTP Live Streaming (HLS)"

1 Silverlight Streaming

enableTos

Enables setting of TOS bits.

Default = 0

tosValue

Enables setting of TOS bits. Must be one of the settings defined in the availableTosList.

Default = ''Best Effort (0x0)"

enableEsm

Enable sending of the MSS size.

Default = 0

esm

MSS size.

Min = 64, max = 1460, default = 1460

enableVlanPriority

Enables setting of the VLAN priority.

Chapter 30 HTTP Streaming

– 1215 –

Default = 0

vlanPriority

VLAN priority.

Min = 0, max = 7, default = 0

enableUserMonitoring

Enables monitoring of a specific user.

Default = 0

monitorUserId

ID of the user to monitor.

Default = 0

bufferingType

Buffering scheme used.

Values Description

0 (default) Infinite

1 Finite

bufferValue

Size (in seconds) of the buffer for finite buffers.

Min = 1, Default = 30

EXAMPLE

$Activity_StreamingClient1 agent.pm.globalOptions.config \

-enableTos false \

-enableEsm false \

-protocol 0 \

-vlanPriority 0 \

-monitorUserId 0 \

-bufferValue 30 \

-tosValue "Best Effort (0x0)" \

-enableUserMonitoring false \

-bufferingType 0 \

Chapter 30 HTTP Streaming

– 1216 –

-esm 1460 \

-enableVlanPriority false

SEE ALSO

ixNetTraffic

Chapter 30 HTTP Streaming

– 1217 –

HTTP settings
Streaming client HTTP settings - configure the HTTP properties of a streaming client agent

SYNOPSIS

$Activity_StreamingClient1 agent.pm.httpSettings.config

DESCRIPTION

This object configures the HTTP properties of a Streaming client agent.

SUBCOMMANDS

None.

OPTIONS

httpVersion

HTTP version.

Value Description

0 HTTP 1.0

1 (default) HTTP 1.1

httpKeepalive

Enables HTTP keep alive.

Default = 0

enableTransactionsPerConnection

Enables multiple transactions per HTTP connection.

Value Description

0 (default) Maximum possible

1 Up to number specified in httpTransactionsPerConnection

httpTransactionsPerConnection

Number of transactions per HTTP connection.

Min = 1, default = 1

enableProxy

Enables use of an HTTP proxy.

Chapter 30 HTTP Streaming

– 1218 –

Default = 0

proxyIP

HTTP proxy host name or IP address. Maximum length = 255.

Default = 0.0.0.0

proxyTCPPort

HTTP proxy listening port.

Default = 80

playerEmulation

Type of player emulated by Streaming client.

Value Description

0 (default) Safari

EXAMPLE

$Activity_StreamingClient1 agent.pm.httpSettings.config \

-enableProxy false \

-enableTransactionsPerConnection 0 \

-proxyTCPPort "80" \

-httpTransactionsPerConnection 1 \

-playerEmulation 0 \

-httpKeepalive false \

-proxyIP "0.0.0.0" \

-httpVersion 1

SEE ALSO
ixNetTraffic

Chapter 30 HTTP Streaming

– 1219 –

availableTosList
availableTosList - configure the list of ToS levels for a Streaming client.

SYNOPSIS

$Activity_StreamingClient1 agent.pm.availableTosList.appendItem \

-id "AvailableTypeOfService" \

-tos_value "Best Effort (0x0)"

DESCRIPTION

The availableTosList object configures the list of available ToS levels.

To add a ToS level to the list, you use the appendItem subcommand from the
ixConfigSequenceContainer command. Other ixConfigSequenceContainer subcommands may be
used to modify the availableTosList. It is customary to set all the options of the availableTosList
during the appendItem call.

Each member of the list can be separately addressed and modified using the ixConfig subcommands.

Before you add items to the availableTosList, you should initialize the list by using the clear
subcommand of the ixConfigSequenceContainer command.

SUBCOMMANDS

OPTIONS

id

ToS list name. (Default = "AvailableTypeOfService").

tos_value

ToS level to be added to the list. Default = "" (null).

Choices:

"Best Effort (0x0)"

"Class 1 (0x20)"

"Class 2 (0x40)"

"Class 3 (0x60)"

"Class 4 (0x80)"

"Express Forwarding (0xA0)"

"Control (0xC0)"

Chapter 30 HTTP Streaming

– 1220 –

STATISTICS

EXAMPLE

$Activity_StreamingClient1 agent.pm.availableTosList.appendItem \

-id "AvailableTypeOfService" \

-tos_value "Best Effort (0x0)"

SEE ALSO

Chapter 30 HTTP Streaming

– 1221 –

Streaming Client Statistics
This section lists the statistics for HTTP Streaming Clients.

The test results are available from the location defined on the User Directories window. See User
Directories.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

HTTP Statistics

The table below lists the HTTP statistics for clients.

Statistic Description

HTTP Bytes Amount of HTTP data sent and received by the clients, in bytes.

HTTP Bytes
Received

Number of HTTP bytes received by the clients.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload can
be greater than this statistic due to increases caused by retransmits.

SSL-encrypted payload data is included in this statistic but SSL handshake overhead
is not (HTTP only).

HTTP Bytes
Sent

Number of HTTP bytes transmitted by the clients.

If you probe the network link with a sniffer, this statistic is not the same as the total
amount of TCP payload that appears on the link. The total amount of TCP payload can
be greater than this statistic (increased by retransmits) or less than this statistic
(decreased by broken or reset connections).

SSL-encrypted payload data is included in this statistic but SSL handshake overhead
is not (HTTP only).

HTTP
Connect
Time (us)

Average time elapsed between the time the client sends a SYN packet and the time it
receives the SYN/ACK.

HTTP
Connection
Attempt
Rate

Rate at which the client attempted to establish HTTP connections.

HTTP
Connection
Attempts

Total number of connections attempted.

HTTP
Connection

Rate at which the client established HTTP connections.

Chapter 30 HTTP Streaming

– 1222 –

Rate

HTTP
Connections

Total number of connections established by the clients.

HTTP
Content
Bytes
Received

Number of bytes of HTTP data received.

HTTP
Content
Bytes Sent

Number of bytes of HTTP data sent.

HTTP
Intermediate
Responses
Received
(1xx)

Number of 100-series (Informational) responses received.

100-series responses indicate a provisional response, consisting only of the Status-
Line and optional headers, and terminated by an empty line.

Refer to RFC 2616, Section 10, for a full description.

HTTP
Requests
Failed

Number of HTTP requests that failed for any reason. The statistics show the number
of requests for each URL (page).

HTTP
Requests
Failed (400)

Bad Request. Number of requests that failed due to a syntax error in the URL. The
statistics show the number of requests for each URL (page).

HTTP
Requests
Failed (401)

Unauthorized. Number of requests that failed due to because the server did not
receive the correct user name or password from the browser. The statistics show the
number of requests for each URL (page).

HTTP
Requests
Failed (403)

Forbidden. Number of requests that failed due to because the name or password
supplied by the browser are incorrect. The statistics show the number of requests for
each URL (page).

HTTP
Requests
Failed (404)

Not Found. Number of requests that failed because requested object is not stored on
the server on the path supplied. The statistics show the number of requests for each
URL (page).

HTTP
Requests
Failed (407)

Proxy Authentication Required. Number of requests that failed because access to the
URL requires authentication with a proxy server.

HTTP
Requests
Failed (408)

Timeout. Number of requests that failed due to communications between the client
and server taking too long. The statistics show the number of requests for each URL
(page).

HTTP The precondition given in one or more of the request-header fields evaluated to false

Chapter 30 HTTP Streaming

– 1223 –

Request
Precondition
Failed (412)

when it was tested on the server. This response code allows the client to place
preconditions on the current resource metainformation (header field data) and thus
prevent the requested method from being applied to a resource other than the one
intended.

HTTP
Requests
Failed (4xx
other)

Number of HTTP requests that failed for reasons other than a Bad Request (400),
Unauthorized (401), Forbidden (403), Not Found (404), Proxy Authentication
Required (407), or Timeout (408) error. The statistics show the number of requests
for each URL (page).

HTTP
Requests
Failed (4xx)

Number of 4xx-range responses received by the clients in response to an HTTP
request. The statistics show the number of requests for each URL (page).

408 responses are counted separately by the HTTP Session Timeout (408) statistic
and may or may not also be included in the HTTP Requests Failed (4xx) count. See
the description of HTTP Session Timeout (408) for more information.

HTTP
Requests
Failed (505)

HTTP Version not Supported. Number of requests that failed because the server does
not support the HTTP version used by the client. The statistics show the number of
requests for each URL (page).

HTTP
Requests
Failed (5xx
other)

Number of requests that failed for reasons other than an HTTP version mis-match
(505). The statistics show the number of requests for each URL (page).

HTTP
Requests
Failed (5xx)

Number of HTTP requests that failed due to lack of resources on the server (HTTP
500-series errors). This statistic is only incremented if the client had issued a request
to the server before receiving the 5xx response. The statistics show the number of
requests for each URL (page).

HTTP
Requests
Failed
(Aborted)

Number of HTTP requests that ended prematurely due to events outside HTTP or TCP.
For example, if any HTTP requests are pending when the Ramp-Down period ends,
those requests are aborted by IxLoad. The statistics show the number of requests for
each URL (page).

HTTP
Requests
Failed (Bad
Header)

Number of HTTP requests that failed due to a defective HTTP header. The statistics
show the number of requests for each URL (page).

HTTP
Requests
Failed
(other)

Number of requests that failed that could not be classified.

HTTP
Requests
Failed

Number of HTTP requests that failed due to a socket read error.The statistics show
the number of requests for each URL (page).

Chapter 30 HTTP Streaming

– 1224 –

(Read)

HTTP
Requests
Failed
(Timeout)

Number of HTTP requests that failed because the clients did not receive a response
within 600 seconds. The statistics show the number of requests for each URL (page).

HTTP
Requests
Failed
(Write)

Number of HTTP requests that failed due to a socket write error. The statistics show
the number of requests for each URL (page).

HTTP
Requests
Sent

Number of HTTP requests sent by the clients. The statistics show the number of
requests for each URL.

HTTP
Requests
Successful

Number of positive HTTP responses (2xx- and 3xx-range responses) received by the
clients. The statistics show the number of requests for each URL.

HTTP
Requests
Successful
(2xx)

Number of 200-series (Successful) responses received.

200-series responses indicate that the client's request was successfully received,
understood, and accepted.

HTTP
Requests
Successful
(301)

Number of 301 (Moved Permanently) responses received.

301 responses indicate that the requested resource has been assigned a new
permanent URI and any future references to this resource should use one of the
returned URIs.

HTTP
Requests
Successful
(302)

Number of 302 (Found) responses received.

302 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP
Requests
Successful
(303)

Number of 303 (See Other) responses received.

303 responses indicate that the response to the request can be found under a
different URI and should be retrieved using a GET method on that resource.

HTTP
Requests
Successful
(307)

Number of 307 (Temporary Redirect) responses received.

307 responses indicate that the requested resource resides temporarily under a
different URI.

HTTP
Requests
Successful

Number of 300-series (Redirection) responses received.

300-series responses indicate that further action needs to be taken by the user agent
in order to fulfill the request.

Chapter 30 HTTP Streaming

– 1225 –

(3xx)

HTTP
Session
Timeouts
(408)

Number of HTTP 408 responses received. This statistic includes all 408 responses
received regardless of whether they were received for a pending HTTP request or not.

IxLoad counts 408 responses differently depending on whether or not a client has a
pending HTTP request:

l If a client has an HTTP request pending and it receives a 408 response, IxLoad
increments the HTTP Received 408, HTTP Requests Failed (4xx), and HTTP
Requests Failed statistics.

If a client does not have an HTTP request pending and it receives a 408 response,
IxLoad only increments the HTTP Received 408 statistic.

HTTP
Sessions
Rejected
(503)

Service Unavailable. Number of HTTP sessions that could not be established due to
lack of resources on the server.

HTTP
Throughput

Rate at which the client sent and received HTTP traffic.

HTTP Time
To First Byte
(us)

Average time elapsed before clients received the first byte of an HTTP response.

HTTP Time
To Last Byte
(us)

Average time elapsed before clients received the last byte of an HTTP response.

HTTP
Transaction
Rate

Rate at which the client completed HTTP transactions.

HTTP
Transactions

Total number of transactions completed by the clients.

HTTP
Transactions
Active

Number of HTTP transactions transferring HTTP commands or data.

! 32

Chapter 30 HTTP Streaming

– 1226 –

CHAPTER 31 Telnet
This section describes the Telnet Tcl API objects.

API Overview
Telnet protocol commands are organized as a simple structure.

l Telnet Client Agent

l Telnet Client Basic Options

l Telnet Client Advanced Options

l Telnet Client Command

l Telnet Server Agent

l Telnet Server Agent

l Telnet Server Basic Options

l Telnet Server Advanced Options

Objectives
The objectives (userObjective) you can set for Telnet are listed below. Test objectives are set in the
ixTimeline object.

l connectionRate

l transactionRate

l simulatedUsers

l concurrentConnections

– 1227 –

Telnet Client Agent
The Telnet Client Agent defines a client performing Telnet commands. Refer to Telnet Client Agent
for a full description of this command.

The important options and subobjects of this command are listed below.

Option Usage

enable Enables the use of the Telnet client agent.

name The name associated with the client agent.

Option Usage

basic Basic Telnet client options, as described in - Telnet Client Basic Options.

advanced Advanced Telnet client options, as described in - Telnet Client Advanced
Options

commands A list of Telnet commands to be executed, as described in - Telnet Client
Command.

Telnet Client Basic Options

This object holds the basic options associated with a Telnet client. Refer to Telnet Client Basic
Options for a full description of this command. The important options of this command are listed
below.

Option Usage

expectTimeout Time to wait for any command to complete.

comandPrompt The default value of the command prompt.

enableOptions Enables option negotiation.

Chapter 31 Telnet

– 1228 –

Telnet Client Advanced Options

The Telnet client advanced options control network level operation of the client. Refer to Telnet
Client Advanced Options for a full description of this command. The important options of this
command are listed below.

Option Usage

enableEsm Enable the use of ESM.

esm The ESM value.

Telnet Client Command

The Telnet command object specifies a single Telnet command to be executed by the client. Refer to
Telnet Client Command for a full description of this comThe important options of this command are
listed below.

Command Option Related Option Usage

id = OpenCommand serverIP The IP name or address of the Telnet server to login
to.

expect The string to wait for after sending the command(s).

id = LoginCommand send The user name to send.

expect The string to wait for after sending the command.

id =
PasswordCommand

send The password to send.

expect The string to wait for after sending the command.

id = SendCommand send A string to be sent.

expect The string to wait for after sending the command.

id = ThinkCommand minimumInterval The sleep min value.

maximumInterval The sleep max value.

id = Exit send The string to be sent to end the session.

Chapter 31 Telnet

– 1229 –

Telnet Server Agent
The Telnet Server Agent defines a server performing Telnet commands. Refer to Telnet Server
Agent for a full description of this command. The important options and subobjects of this command
are listed below.

Option Usage

enable Enables the use of the Telnet server agent.

name The name associated with the server agent.

Option Usage

basic Basic Telnet server options, as described in - Telnet Server Basic Options.

advanced Advanced Telnet server options, as described in - Telnet Server Advanced
Options

Telnet Server Basic Options

This object holds the basic options associated with a Telnet server. Refer to Telnet Server Basic
Options for a full description of this command. The imporoptions of this command are listed below.

Option Usage

commandPrompt The command prompt to send to clients.

listenPort The port that the Telnet server listens on.

closeCommand The value of the exit command expected from the client.

supressGoAhead Suppress the ‘go ahead’ command.

echo Causes the server to echo received characters.

linemode Causes the line-mode option to be negotiated with the client.

Chapter 31 Telnet

– 1230 –

Telnet Server Advanced Options

The Telnet server advanced options control network level operation of the server. Refer to Telnet
Client Advanced Options for a full description of this command. The important options of this
command are:

Option Usage

enableEsm Enable the use of ESM.

esm The ESM value.

Chapter 31 Telnet

– 1231 –

Telnet Client Agent
Telnet Client Agent - create a Telnet client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TelnetClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_TelnetClient1 agent.config

DESCRIPTION

A Telnet client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

implicitLoopCheck

If this option is enabled (1), then the client progresses through the command list repeatedly until the
test’s sustain time. If the option is disabled (0), then the client will progress through the command list
only once, and then go idle. (Default = 0).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity
TelnetClient1 of NetTraffic
Traffic1@Network1###set Activity_
TelnetClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"Telnet Client"]## Timeline1 for
activities TelnetClient1###set
Timeline1 [::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime

Chapter 31 Telnet

– 1232 –

0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"$Activity_TelnetClient1
config \-enable true \-name
"TelnetClient1" \-enableConstraint false \-userObjectiveValue
100 \-constraintValue 100 \-userObjectiveType
"simulatedUsers" \-timeline $Timeline1$Activity_
TelnetClient1 agent.config \-enable true \-name
"TelnetClient1"$Activity_TelnetClient1 agent.pm.advanced.config \-enableTOS
true \-esm 1460 \-enableEsm
true \-implicitLoopCheck true \-typeOfService
"Best Effort (0x0)"$Activity_TelnetClient1 agent.pm.basic.config \-commandPrompt
"#" \-expectTimeout 120 \-enableOptions
true$Activity_TelnetClient1 agent.pm.ipHistory.clear$Activity_TelnetClient1
agent.pm.ipHistory.appendItem \-id "Ip" \-name
""$Activity_TelnetClient1 agent.pm.commands.clear$Activity_TelnetClient1
agent.pm.commands.appendItem \-id
"TelnetSessionCommand" \-userName "root\[00-\]" \-
exitCommand "exit" \-loginPrompt
"login:" \-send "ls" \-commandPrompt
"{Default Command Prompt}" \-passwordPrompt "Password:" \-
symServerIP "Traffic2_TelnetServer1:23" \-expect
"{Default Command Prompt}" \-password "password\[00-
\]"$Activity_TelnetClient1 agent.pm.availableTosList.clear$Activity_TelnetClient1
agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Best Effort
(0x0)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 1
(0x20)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 2
(0x40)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 3
(0x60)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 4
(0x80)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Express
Forwarding (0xA0)"$Activity_TelnetClient1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Control (0xC0)"

SEE ALSO

Telnet Client Basic Options

Telnet Client Advanced Options

Telnet Client Command

ixNetTraffic

Chapter 31 Telnet

– 1233 –

Telnet Client Basic Options
Telnet Client Basic Options - configure a Telnet client's basic options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TelnetClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_TelnetClient1 agent.pm.basic.config

DESCRIPTION

Telnet basic options are set through the pm.basic option of the Telnet Client Agent object.

SUBCOMMANDS

None.

OPTIONS

commandPrompt

The default value of the command prompt. This is referenced in - Telnet Client Command expect
option as {Default Command Prompt}. (Default = “#”).

enableOptions

If true, enables option negotiation with the Telnet server. (Default = 3).

expectTimeout

The time, in seconds, to wait for receipt of the expected response. (Default = 120).

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity
TelnetClient1 of NetTraffic
Traffic1@Network1###set Activity_
TelnetClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"Telnet Client"]$Activity_TelnetClient1 agent.pm.basic.config \-commandPrompt
"#" \-expectTimeout 120 \-enableOptions
true

SEE ALSO

Telnet Client Agent

Chapter 31 Telnet

– 1234 –

Telnet Client Advanced Options
Telnet Client Advanced Options - configure a Telnet client's advanced options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TelnetClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_TelnetClient1 agent.pm.advanced.config options...

DESCRIPTION

Telnet advanced options are set through the pm.advanced option of the Telnet Client Agent
object.

SUBCOMMANDS

None.

OPTIONS

enableEsm

If true, enables the use of ESM. (Default = false).

esm

If enableEsm is true, the ESM value to negotiate with. (Default = 1,460).

EXAMPLE
$Activity_TelnetClient1 agent.pm.advanced.config \-enableTOS
true \-esm 1460 \-enableEsm
true \-implicitLoopCheck true \-typeOfService
"Best Effort (0x0)"

SEE ALSO

Telnet Client Agent

Chapter 31 Telnet

– 1235 –

Telnet Client Command
Telnet Client Command - configure a command that the Telnet client will execute

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TelnetClient1 [$Traffic1_Network1 activityList.appendItem
$Activity_TelnetClient1 agent.pm.commands.appendItem

DESCRIPTION

A Telnet command is added to the pm.commands option of the Telnet Client Agent object using its
appendItem.

SUBCOMMANDS

None.

OPTIONS

id

Specifies the type of command defined. The remaining options in this command are dependent on this
setting. One of:

Option Usage

OpenCommand Open a connection to a Telnet server.

LoginCommand Login to the Telnet server, sending the user name.

PasswordCommand Send a password.

SendCommand Send an arbitrary string.

ThinkCommand Wait for a random period of time within a specirange.

ExitCommand Close the session with the Telnet server.

“{LoopBegin}” An IxLoad command that you can add to the Command List to cause the
commands between it and the {Loop End} to be executed a specified number
of times.

“{LoopEnd}” Ends the list of commands that will be executed by the preceding {Loop Begin}
command.

Chapter 31 Telnet

– 1236 –

Options for id = OpenCommand

expect

The expected response from the command. (Default = “login:”).

serverIP

The name or IP address of the Telnet server or Telnet server activity. (Default = “”).

Options for id = LoginCommand

expect

The expected response from the command. (Default = “Password::”).

send

The login name to send to the Telnet server. (Default = “root”).

You can insert sequence generators into this field to create unique entries autoFor example:
$clnt_traffic agentList(0).pm.commands.appendItem \ -id

"LoginCommand" \ -send "kaushik\[00-\]" \
-expect "Password:"

For information on how to use sequence generators, see the AutoSequence Generators appendix.

Options for id = PasswordCommand

expect

The expected response from the command. The default value of this option may be referenced by using
the text {Default Command Prompt}.

send

The password to send to the Telnet server. (Default = “root”).

You can insert sequence generators into this field to create unique entries automatically.
$clnt_traffic agentList(0).pm.commands.appendItem \ -id
"PasswordCommand" \ -send "124444\[a-\]" \
-expect "$"

For information on how to use sequence generators, see the AutoSequence Generators appendix.

Options for id = SendCommand

expect

The expected response from the command. The default value of this option may be referenced by using
the text {Default Command Prompt}.

send

The string to send to the Telnet server. (Default = “root”).

Chapter 31 Telnet

– 1237 –

Options for id = ThinkCommand

maxInterval

The upper limit of a randomly chosen sleep, expressed in microseconds. (Default = 1,000)

minInterval

The lower limit of a randomly chosen sleep, expressed in microseconds. (Default = 1,000).

Options for id = ExitCommand

send

The string to send to the Telnet server to exit the Telnet session. (Default = “exit”).

EXAMPLE
$Activity_TelnetClient1 agent.pm.commands.appendItem \-id
"TelnetSessionCommand" \-userName "root\[00-\]" \-exitCommand
"exit" \-loginPrompt "login:" \-send "ls"
\-commandPrompt "{Default Command Prompt}" \-passwordPrompt
"Password:" \-symServerIP "Traffic2_TelnetServer1:23" \-expect
"{Default Command Prompt}" \-password "password\[00-\]"

SEE ALSO

Telnet Client Agent

Chapter 31 Telnet

– 1238 –

Telnet Server Agent
Telnet Server Agent - create a Telnet server

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_TelnetServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_TelnetServer1 agent.config

DESCRIPTION

A Telnet server agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this action. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

Note that a number of login failures may be visible in the statistics. These are caused by aborted
logins at the time of test ramp-down.

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity
TelnetServer1 of NetTraffic
Traffic2@Network2###set Activity_
TelnetServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"Telnet Server"]set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]$Activity_
TelnetServer1 config \-enable true \-name
"TelnetServer1" \-timeline $_Match_Longest_$Activity_
TelnetServer1 agent.config \-enable true \-name
"TelnetServer1"$Activity_TelnetServer1 agent.pm.advanced.config \-enableTOS

Chapter 31 Telnet

– 1239 –

true \-esm 1460 \-enableEsm
true \-typeOfService "Best Effort (0x0)"$Activity_
TelnetServer1 agent.pm.basic.config \-linemode false
\-listenPort "23" \-echo
true \-commandPrompt "#" \-suppressGoAhead
true \-closeCommand "exit"$Activity_TelnetServer1
agent.pm.availableTosList.clear$Activity_TelnetServer1
agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Best Effort
(0x0)"$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 1
(0x20)"$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 2 (0x40)"

$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 3
(0x60)"$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Class 4
(0x80)"$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Express
Forwarding (0xA0)"$Activity_TelnetServer1 agent.pm.availableTosList.appendItem \-id
"AvailableTypeOfService" \-tos_value "Control (0xC0)"

SEE ALSO

Telnet Server Basic Options

Telnet Server Advanced Options

Chapter 31 Telnet

– 1240 –

Telnet Server Basic Options
Telnet Server Basic Options - configure a Telnet server' basic options

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_TelnetServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_TelnetServer1 agent.pm.basic.config

DESCRIPTION

Telnet basic options are set through the pm.basic option of the Telnet Server Agent object (see
the example below).

SUBCOMMANDS

None.

OPTIONS

closeCommand

The value of the close command expected from the client. (Default = “exit”).

commandPrompt

The command prompt to send to clients. (Default = “#”).

echo

Causes the server to echo received characters. (Default = true).

linemode

Causes the line-mode option to be negotiated with the client. (Default = false).

listenPort

Port that the Telnet server listens on. To specify multiple ports, separate the port numbers with
commas (,). You can specify up to 50 listening ports. (Default = 23).

suppressGoAhead

If true, suppress the ‘go ahead’ command. (Default = true).

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity
TelnetServer1 of NetTraffic
Traffic2@Network2###set Activity_
TelnetServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"Telnet Server"]$Activity_TelnetServer1 agent.pm.basic.config \-linemode
false \-listenPort "23" \-echo

Chapter 31 Telnet

– 1241 –

true \-commandPrompt "#" \-suppressGoAhead
true \-closeCommand "exit"

SEE ALSO

Telnet Server Agent

Chapter 31 Telnet

– 1242 –

Telnet Server Advanced Options
Telnet Server Advanced Options - configure a Telnet server's advanced options

SYNOPSIS

set Traffic2_Network2 [::IxLoad new ixNetTraffic]
set Activity_TelnetServer1 [$Traffic2_Network2 activityList.appendItem options...]
$Activity_TelnetServer1 agent.pm.advanced.config

DESCRIPTION

Telnet advanced options are set through the pm.advanced option of the Telnet Server Agent object
(see the example below).

SUBCOMMANDS

None.

OPTIONS

enableEsm

If true, enables the use of ESM. (Default = false).

esm

If enableEsm is true, the ESM value to negotiate with. (Default = 1,460).

EXAMPLE
set Traffic2_Network2 [::IxLoad new
ixNetTraffic]## Activity
TelnetServer1 of NetTraffic
Traffic2@Network2###set Activity_
TelnetServer1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"Telnet Server"]$Activity_TelnetServer1 agent.pm.advanced.config \-enableTOS
true \-esm 1460 \-enableEsm
true \-typeOfService "Best Effort (0x0)"

SEE ALSO
Telnet Server Agent

Chapter 31 Telnet

– 1243 –

Telnet Statistics
For the Telnet statistics, see the following sections.

Telnet Client Statistics

Telnet Server Statistics

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

The test results are available from the location defined on the User Directories window. See User
Directories.

Chapter 31 Telnet

– 1244 –

Telnet Client Statistics
The table below describes the Telnet client statistics.

Statistic Description

Connection Statistics

Telnet Active
Connections

Number of active Telnet connections.

A connection refers to the TCP connection established to start a Telnet
session.

Telnet Total
Connections
Requested

Number Telnet connections requested by the client.

Telnet Total
Connections
Succeeded

Number of Telnet connections established by the client.

Telnet Total
Connections Failed

Number of failed attempts to establish Telnet connections.

Telnet Total
Connections
Latency

Average amount of time required to establish a Telnet connection.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Telnet Total
Sessions
Completed

Total number of Telnet sessions in which all the Telnet commands in the
session completed successfully.

A session refers to a sequence of Telnet commands that that begins with a
Telnet OPEN command, may be followed by one or more Telnet commands,
and ends by being terminated with a Telnet EXIT command.

If the each command in the sequence is completed successfully, the session is
counted as being completed successfully.

Telnet Total
Sessions Not
Completed

Total number of Telnet sessions that were established but in which one or
more commands did not complete successfully.

Telnet Average
Session Length

Average Telnet session duration.

Note for Tcl API users: This is a weighted statistic. If you are using this
statistic in a Tcl script, use the kWeightedAverage aggregation type.

Login Statistics

Telnet Total Login
Prompts Received

Total number of login prompts received.

Chapter 31 Telnet

– 1245 –

Telnet Total Login
Prompts Not
Received

Total number instances in which the client connected to the server but did not
receive a login prompt in return.

Telnet Total
Password Prompts
Received

Total number of password prompts received.

Telnet Total
Password Prompts
Not Received

Total number of instances in which the client sent a user name to the server
but did not receive a password prompt in return.

Telnet Total Logins
Sent

Total number of logins sent by the clients.

Telnet Total Logins
Succeeded

Total number of successful logins by the clients.

Telnet Total Logins
Failed

Total number of login attempts that failed.

Telnet Total Logins
Failed (Timed Out)

Total number of login attempts that failed because a response was not
received within the timeout period.

Telnet Total Logins
Failed (Other)

Total number of login attempts that failed for reasons other than a timeout.

Telnet Total
Passwords Sent

Total number of passwords sent by the client.

Telnet Total
Passwords
Succeeded

Total number of passwords that succeeded.

Telnet Total
Passwords Failed

Total number of passwords that failed.

Telnet Total
Passwords Failed
(Timed Out)

Total number of passwords that failed because no response was received
within the timeout period.

Telnet Total
Passwords Failed
(Other)

Total number of passwords that failed for reasons other than a timeout.

Transaction Statistics

Telnet Total
Transactions

Total number of Telnet transactions completed.

One transaction consists of a LOGIN, PASSWORD, SEND, or EXIT command

Chapter 31 Telnet

– 1246 –

and the response to it.

Telnet Total
Commands Sent

Total number of SEND commands sent by the client.

Telnet Total
Commands
Succeeded

Number of SEND commands during a Telnet session that succeeded.

IxLoad considers a command to be successful if the client sent a SEND
command to the server and the server returned the expected string.

Telnet Total
Commands Failed

Number of SEND commands that failed.

IxLoad considers a command to have failed if the client sent a SEND command
to the server and the server did not return the expected string.

Telnet Total
Commands Failed
(Timed Out)

Total number of SEND commands that failed because no response was
received within the timeout period.

Telnet Total
Commands Failed
(Other)

Total number of SEND commands that failed for reasons other than a timeout.

Bytes Statistics

Telnet Total Bytes
Sent

Total number of bytes sent over Telnet connections.

Telnet Total Bytes
Received

Total number of bytes received by the client over Telnet.

Telnet Total Bytes
Sent And Received

Total number of bytes sent and received by the client over Telnet.

Telnet Total
Throughput

Total throughput over Telnet.

Echo Options Statistics

Telnet Total Echo
Options Do
Received

Number of requests received from the server to begin using the Echo option.

Telnet Total Echo
Options Dont
Received

Number of requests received from the server to stop using the Echo option.

Telnet Total Echo
Options Will
Received

Number of responses received from the server agreeing to use the Echo
option.

Chapter 31 Telnet

– 1247 –

Telnet Total Echo
Options Wont
Received

Number of responses received from the server rejecting use of the Echo
option.

Telnet Total Echo
Options Do Sent

Number of requests sent to the server to begin using the Echo option.

Telnet Total Echo
Options Dont Sent

Number of requests sent to the server to stop using the Echo option.

Telnet Total Echo
Options Will Sent

Number of responses sent by the client agreeing to use the Echo option.

Telnet Total Echo
Options Wont Sent

Number of responses sent by the client rejecting use of the Echo option.

Suppress Go Ahead Options

Telnet Total
Suppress Go Ahead
Options Do
Received

Number of requests received from the server to begin using the Go Ahead
option.

Telnet Total
Suppress Go Ahead
Options Dont
Received

Number of requests received from the server to stop using the Go Ahead
option.

Telnet Total
Suppress Go Ahead
Options Will
Received

Number of responses received from the server agreeing to use the Go Ahead
option.

Telnet Total
Suppress Go Ahead
Options Wont
Received

Number of responses received from the server rejecting use of the Go Ahead
option.

Telnet Total
Suppress Go Ahead
Options Do Sent

Number of requests sent to the server to begin using the Go Ahead option.

Telnet Total
Suppress Go Ahead
Options Don't Sent

Number of requests sent to the server to stop using the Go Ahead option.

Telnet Total
Suppress Go Ahead
Options Will Sent

Number of responses sent by the client agreeing to use the Go Ahead option.

Chapter 31 Telnet

– 1248 –

Telnet Total
Suppress Go Ahead
Options Wont Sent

Number of responses sent by the client rejecting use of the Go Ahead option.

Line Mode Options Statistics

Telnet Total Line
Mode Options Do
Received

Number of requests received from the server to begin using the Line Mode
option.

Telnet Total Line
Mode Options Dont
Received

Number of requests received from the server to stop using the Line Mode
option.

Telnet Total Line
Mode Options Will
Received

Number of responses received from the server agreeing to use the Line Mode
option.

Telnet Total Line
Mode Options Wont
Received

Number of responses received from the server rejecting use of the Line Mode
option.

Telnet Total Line
Mode Options Do
Sent

Number of requests sent to the server to begin using the Line Mode option.

Telnet Total Line
Mode Options Dont
Sent

Number of requests sent to the server to stop using the Line Mode option.

Telnet Total Line
Mode Options Will
Sent

Number of responses sent by the client agreeing to use the Line Mode option.

Telnet Total Line
Mode Options Wont
Sent

Number of responses sent by the client rejecting use of the Line Mode option.

Sub-Options Statistics

Telnet Total
Suboptions
Received

Total number of Telnet sub-options received by the client.

Telnet Total
Suboptions Sent

Total number of Telnet sub-options sent by the client.

Line Mode Sub-Options Edit Mask Statistics

Chapter 31 Telnet

– 1249 –

Telnet Total Line
Mode Suboptions
Edit Mask Received

Total number of Telnet sub-option edit masks received by the client.

Telnet Total Line
Mode Suboptions
Edit Mask Sent

Total number of Telnet sub-option edit masks sent by the client.

Chapter 31 Telnet

– 1250 –

Telnet Server Statistics
The table below describes the Telnet server statistics.

Statistic Description

Connection Statistics

Telnet Active
Connections

Number of Telnet connections up.

A connection refers to the TCP connection established to start a Telnet
session.

Telnet Total Accepted
Connections

Total number of requests for Telnet connections accepted by the server.

Username Statistics

Telnet Login Prompts
Sent

Number of login prompts sent by the server to the clients.

Telnet UserNames
Succeeded

Number of user names accepted by the server.

Telnet UserNames Failed Number of instances in which the server did not receive a user name for
any reason.

Telnet UserNames Failed
(Timed Out)

Number of instances in which the server did not receive a user name
within the timeout period.

Telnet UserNames Failed
(Other)

Number of instances in which the server did not receive user names for
reasons other than a timeout.

Password Statistics

Telnet Password Prompts
Sent

Number of password prompts sent by the server to the clients.

Telnet Passwords
Succeeded

Number of passwords accepted by the server.

Telnet Passwords Failed Number of passwords rejected for any reason by the server.

Telnet Passwords Failed
(Timed Out)

Number of passwords rejected by the server because they were not
received within the specified time.

Telnet Passwords Failed
(Other)

Number of passwords rejected by the server for reasons other than a
timeout.

Login Statistics

Chapter 31 Telnet

– 1251 –

Telnet Logins Succeeded Number of successful logins to the server.

A successful login occurs when the server received a user name and
password from the client and then returned a command prompt.

Telnet Logins Failed Number of attempts to login to the server that failed.

Transaction Statistics

Telnet Commands
Processed

Total number of SEND commands received over Telnet connections and
executed on the server.

Byte Statistics

Telnet Total Bytes Sent Total number of bytes sent over Telnet connections by the server.

Telnet Total Bytes
Received

Total number of bytes received over Telnet connections by the server.

Telnet Total Bytes Sent
And Received

Total number of bytes sent and received over Telnet by the server.

Telnet Total Throughput Total Telnet throughput.

Generic Option Statistics

Telnet Option Negotiation
Failed

Total number of attempts to negotiate Telnet options that failed for any
reason.

Telnet Option Negotiation
Failed (Timed Out)

Total number of attempts to negotiate Telnet options that failed because
no response was received within the timeout period.

Telnet Option Negotiation
Failed (Other)

Total number of attempts to negotiate Telnet options that failed for
reasons other than a timeout.

Generic Sub-Option Statistics

Telnet Suboption
Negotiation Failed

Total number of attempts to negotiate Telnet sub-options that failed for
any reason.

Telnet Suboption
Negotiation Failed (Timed
Out)

Total number of attempts to negotiate Telnet sub-options that failed
because no response was received within the timeout period.

Telnet Suboption
Negotiation Failed
(Other)

Total number of attempts to negotiate Telnet sub-options that failed for
reasons other than a timeout.

Echo Option Statistics

Telnet Echo Options DO Number of requests sent by the server to the client to begin using the

Chapter 31 Telnet

– 1252 –

Sent Echo option.

Telnet Echo Options WILL
Sent

Number of responses sent by the server agreeing to begin using the
Echo option.

Telnet Echo Options
DONT Sent

Number of requests sent by the server to the client to stop using the
Echo option.

Telnet Echo Options
WONT Sent

Number of responses sent by the server rejecting use of the Echo
option.

Telnet Echo Options DO
Received

Number of requests received by the server to begin using the Echo
option.

Telnet Echo Options WILL
Received

Number of responses received by the server agreeing to begin using the
Echo option.

Telnet Echo Options
DONT Received

Number of responses received by the server rejecting use of the Echo
option.

Telnet Echo Options
WONT Received

Number of responses received by the server agreeing to stop using the
Echo option.

GA Suppress Option Statistics

Telnet GA Suppress
Options DO Sent

Number of requests sent by the server to suppress Go Ahead messages.

Effectively, the server requests the clients not to send Go Ahead
messages.

Telnet GA Suppress
Options WILL Sent

Number of the responses sent by the server agreeing to suppress Go
Ahead messages.

Telnet GA Suppress
Options DONT Sent

Number of requests sent by the server asking the clients not to supress
Go Ahead messages.

Effectively, the server requests that the clients send Go Ahead
messages.

Telnet GA Suppress
Options WONT Sent

Number of responses sent by the server rejecting suppression of Go
Ahead messages.

Effectively, the server signals that it will send Go Ahead messages.

Telnet GA Suppress
Options DO Received

Number of requests received by the server to suppress Go Ahead
messages.

Effectively, the server is being requested to not send Go Ahead
messages.

Telnet GA Suppress
Options WILL Received

Number of responses received by the server indicating that the client
will suppress Go Ahead messages.

Chapter 31 Telnet

– 1253 –

Effectively, the clients agree to not send Go Ahead messages.

Telnet GA Suppress
Options DONT Received

Number of requests received by the server to not suppress Go Ahead
messages.

Effectively, the server is being requested to send Go Ahead messages.

Telnet GA Suppress
Options WONT Received

Number of responses received by the server indicating that the client
will not suppress Go Ahead messages.

Effectively, the clients agree to send Go Ahead messages.

Line-Mode Option Statistics

Telnet Line-mode Options
DO Sent

Number of requests sent by the server to the clients to begin using the
Line Mode option.

Telnet Line-mode Options
WILL Sent

Number of responses sent by the server agreeing to begin using the Line
mode option.

Telnet Line-mode Options
DONT Sent

Number of requests sent by the server to the clients to stop using the
Line Mode option.

Telnet Line-mode Options
WONT Sent

Number of responses sent by the server agreeing to stop using the Line
mode option.

Telnet Line-mode Options
DO Received

Number of requests received by the server to begin using the Line Mode
option.

Telnet Line-mode Options
WILL Received

Number of responses received by the server agreeing to begin using the
Line Mode option.

Telnet Line-mode Options
DONT Received

Number of requests received by the server to stop using the Line Mode
option.

Telnet Line-mode Options
WONT Received

Number of responses received by the server rejecting use of the Line
Mode option.

Line-Mode Sub-Option Statistics

Telnet Line-mode Sub-
options Sent

Number of messages setting the Line Mode sub-options sent by the
server.

Telnet Line-mode Sub-
options Received

Number of messages setting the Line Mode sub-options received by the
server.

Special Statistics

Telnet Line-mode Edit
Mask Sent

Number of Line Mode Edit Mask messages sent by the server.

Chapter 31 Telnet

– 1254 –

Telnet Line-mode Edit
Mask Received

Number of Line Mode Edit Mask messages received by the server.

Chapter 31 Telnet

– 1255 –

This page intentionally left blank.

– 1256 –

CHAPTER 32 TFTP
This section describes the TFTP Tcl API objects.

Overview
The IxLoad TFTP API consists of a client agent and its commands, structured as shown below.

Objectives
The objectives (userObjective) you can set for TFTP are listed below. Test objectives are set in the
ixTimeline object.

l transactionRate

l simulatedUsers

– 1257 –

TFTP Client Agent

Trivial File Transfer Protocol (TFTP) is a very simple file transfer protocol that functions essentially like
a stripped-down version of FTP. Refer to TFTP Client Agent on page 26-3 for a full description of this
command. The most significant options of this command are listed below.

Option Description

enable Enables the use of the TFTP client agent.

name Name associated with the client agent.

TFTP Command List

The TFTP Command List creates the list of TFTP commands that the client will send to a TFTP server.
Refer to TFTP Command List on page 26-8 for a full description of this command. The most significant
options of this command are listed below.

Option Description

id Command that client will send.

TFTP Client Advanced Options

The TFTP client advanced options define additional connection options. Refer to TFTP Client
Advanced for a full description of this command. The important options of this command are listed
below.

Option Usage

responseTimeout Time, in seconds, that the client waits for a response from the server.

ipPreference If you have a mixture of IPv4 and IPv6 subnets configured on the client network,
these fields select the order that the TFTP client will use the subnets.

numberOfRetries Number of times that the TFTP client will re-send an un-acknowledged GET (RRQ
packet) or PUT (WRQ packet) command.

Chapter 32 TFTP

– 1258 –

Chapter 32 TFTP

– 1259 –

TFTP Client Agent
TFTP Client Agent - create a TFTP client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TFTPClient1 [$Traffic1_Network1 activityList.appendItem \ options...]
$Activity_TFTPClient1 agent.config \

DESCRIPTION

A TFTP client agent is added to the activityList option of the ixNetTraffic object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. It is customary to
set all the options of the client agent during the appendItem call.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new ixNetTraffic]#----------------------------------
---------------------# Activity TFTPClient1 of NetTraffic Traffic1@Network1#--------
---set Activity_TFTPClient1 [$Traffic1_
Network1 activityList.appendItem \-protocolAndType "tftp
Client"]$Activity_TFTPClient1 agent.config \-enable
true \-name "TFTPClient1"

SEE ALSO

ixNetTraffic

Chapter 32 TFTP

– 1260 –

TFTP Command List
TFTP Command List—Creates the list of TFTP commands that the client will send to a TFTP server.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
$Activity_TFTPClient1 agent.pm.cmdList.appendItem \ options...

DESCRIPTION

A command is added to the TFTP Command List object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

id

TFTP command to be executed. One of the following:

Command Description

GETCommand The GET command retrieves a file from a TFTP Server by sending an RRQ
(Read request) packet.

PUTCommand The PUT command stores a file on a server by sending a WRQ request. The
file can be an actual file, or a dummy file that consists of generated data.

ThinkCommand The THINK Command causes the client to become idle for a specified length
of time, to simulate real-world usage scenarios in which a user may spend
time absorbing or processing information received from the server before
sending the next command.

If you specify identical values for the minimum and maxintervals, the client
will be inactive for a fixed length of time. If you specify different values for the
minand maximum intervals, IxLoad will select a value within the range and
cause the client to be inactive for that length of time.

LoopBeginCommand The Loop BeginCommand is an IxLoad command that you can add to the
Command List to cause the combetween it and the LoopEndCommand to be
executed a specified number of times.

LoopEndCommand LoopEndCommand ends the list of commands that will be executed by the
preceding LoopBeginCommand.

Chapter 32 TFTP

– 1261 –

Arguments for id = GET Command

getFileName

Specifies the name and path of the file to be retrieved. The file path must be Unix-style. For example:
/abcd/foo.txt

You can include sequence generators in this field to generate requests for multiple files automatically.
(Default = ““).

enableFileSizeOption

If enabled, the client includes the Transfer Size (tsize) option in the RRQ packet, with the value set to
0. (Default = “0”).

transportMode

Type of data contained in file to be transferred:

Value Description

netascii (Default)

0

octet 1

enableBlkSizeOption

If true, the client suggests the size of the Data field to be used in DATA packets from the server.
(Default = “0”).

enableTimeoutOption

If enabled, the client includes the Timeout (tout) option in the RRQ packet, with the value configured
on the Advanced Options. (Default = “0”).

blksize

Specifies the value of the block size, if it is enabled. (Default = “512”).

serverAddr

IP address and port number of the external TFTP server. If you do not specify a port number, the IxLoad
client uses port 69. (Default = "198.18.0.100").

Arguments for id = PUT Command

fileType

The file type can be of:

Value Description

0

Chapter 32 TFTP

– 1262 –

real file (Default)

dummy file 1

transportMode

Type of data contained in file to be transferred:

Value Description

netascii (Default)

0

octet 1

enableBlkSizeOption

If true, the client suggests the size of the Data field to be used in DATA packets from the server.
(Default = “0”).

remoteFileName

Name and path that the file will be stored on the remote server. (Default = “”).

dummyFileRange

If selected as fileType, the IxLoad TFTP client transfers a file composed of generrandom data.
(Default = "8-8").

blksize

Specifies the value of the block size, if it is enabled. (Default = “512”).

serverAddr

IP address and port number of the external TFTP server. If you do not specify a port number, the IxLoad
client uses port 69. (Default = "198.18.0.100").

putFileName

Specifies the name of the file. (Default = “”).

Arguments for id = ThinkCommand

minimumInterval

Minimum length of time that the client is idle. Minimum = “1000,” maximum = “2,147,483,647.”
(Default = "1000").

maximumInterval

Maximum length of time that the client is idle. Minimum = “1000,” maximum = “2,147,483,647.”
(Default = "1000").

Chapter 32 TFTP

– 1263 –

Arguments for id = LoopBeginCommand

loopCount

Number of times to repeat the enclosed commands. '0' treated as infinity. Mini= “0,” maximum =
“2,147,483,647.” (Default = "5").

Arguments for id = LoopEndCommand

None.

EXAMPLE
$Activity_TFTPClient1 agent.pm.cmdList.appendItem \-id
"GET" \-getFileName "" \-enableFileSizeOption
false \-transportMode 0 \-enableBlkSizeOption
false \-enableTimeoutOption false \-blksize
"512" \-serverAddr "198.18.0.100"

SEE ALSO

TFTP Client Agent

Chapter 32 TFTP

– 1264 –

TFTP Client Advanced
TFTP Client Advanced Options - configure a TFTP client's advanced options

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TFTPClient1 [$Traffic1_Network1 activityList.appendItem \.]
$Activity_TFTPClient1 agent.pm.advOptions.config options...

DESCRIPTION

A TFTP client’s advanced options are set by modifying the options of the pm.advanced option of the
TFTP Client Agent object using its appendItem.

SUBCOMMANDS

None.

OPTIONS

responseTimeout

Time, in seconds, that the client waits for a response from the server. You can enter values from 1 to
255 seconds.

This value is included as the value for the Tout option included with an RRQ (GET command) or WRQ
(PUT command). Minimum = "1", Maximum = "2147483", Default = "20".

ipPreference

If you have a mixture of IPv4 and IPv6 subnets configured on the client network, these fields select the
order that the TFTP client will use the subnets. The values are:

Value Description

0 IPv4: The client will use addresses from the IPv4 subnets only.

1 IPv6: The client will use addresses from the IPv6 subnets only.

2
(default)

Both, IPv4 first: The client will use addresses from the IPv4 subnets first, then if it needs
more addresses, it will use addresses from the IPv6 subnets.

3 Both, IPv6 first: The client will use addresses from the IPv6 subnets first, then if it needs
more addresses, it will use addresses from the IPv4 subnets.

numberOfRetries

Number of times that the TFTP client will re-send an un-acknowledged GET (RRQ packet) or PUT (WRQ
packet) command. (Default = “3”).

Chapter 32 TFTP

– 1265 –

EXAMPLE
$Activity_TFTPClient1 agent.pm.advOptions.config \-responseTimeout
120 \-implicitLoopCheck true \-ipPreference
2 \-numberOfRetries 3

SEE ALSO

TFTP Client Agent

TFTP Command List

Chapter 32 TFTP

– 1266 –

TFTP Server Agent
TFTP Server Agent - create a TFTP server

SYNOPSIS

set Activity_TFTPServer1 [$myNetTraffic activityList.appendItem \
-protocolAndType "tftp Server"]

DESCRIPTION

A TFTP server agent is added to the activityList option of the ixNetTraffic object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. It is customary to
set all the options of the client agent during the appendItem call.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this server agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

timeline

The name of the timeline to be used with this object.

STATISTICS

EXAMPLE

set Activity_TFTPServer1 [$myNetTraffic activityList.appendItem \

-protocolAndType "tftp Server"]

set _Match_Longest_ [::IxLoad new ixMatchLongestTimeline]

$Activity_TFTPServer1 config \

Chapter 32 TFTP

– 1267 –

-enable true \

-name "TFTPServer1" \

-timeline $_Match_Longest_

SEE ALSO

ixNetTraffic

Chapter 32 TFTP

– 1268 –

fileList
fileList - add files to a TFTP server

SYNOPSIS
$Activity_TFTPServer1 agent.pm.files.fileList.appendItem \-id
"File" \-filePath "<Dummy File>" \-fileName
"/#1"

DESCRIPTION

The fileList object adds files to the list of files hosted by a TFTP server. Files can be real files or
simulated ("dummy") files.

To add a file to the list, you use the appendItem subcommand from the ixConfigSequenceContainer
command. Other ixConfigSequenceContainer subcommands may be used to modify the fileList. It is
customary to set all the options of the fileList during the appendItem call.

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands.

Before you add items to the fileList, you should initialize the list by using the clear subcommand of
the ixConfigSequenceContainer command.

SUBCOMMANDS

OPTIONS

id

Server file list name. (Default = "File").

filePath

For an actual file, this is the name and full path of the file. For a simulated file, this is <Dummy File>.
(Default = "<Dummy File>").

fileName

For an actual file, fileName is the label of the file, as advertised by the server. For a simulated file,
fileName is the size of the file, in the format /#n, where n is the size in bytes. For example, for a 64-
byte simulated file, specify /#64. (Default = "/#1").

STATISTICS

EXAMPLE

$Activity_TFTPServer1 agent.pm.files.fileList.clear

Chapter 32 TFTP

– 1269 –

$Activity_TFTPServer1 agent.pm.files.fileList.appendItem \

-id "File" \

-filePath "<Dummy File>" \

-fileName "/#1"

SEE ALSO

Chapter 32 TFTP

– 1270 –

advanced
advanced - configure a TFTP server's global properties

SYNOPSIS
$Activity_TFTPServer1 agent.pm.advanced.config \-enableTOS
false \

DESCRIPTION

The advanced object configures the TFTP server's global properties. .

SUBCOMMANDS

OPTIONS

enableTOS

Enables use of Type of Service (TOS) bits in TFTP packets. Configure the selected ToS type in
typeOfService. Default = "false".

enableFileSizeOption

If enabled and the server receives a GET or PUT request from client with the File Size Option set, the
server responds by sending an OACK with containing the size of file size, in octets. Default = "false".

enableBlkSizeOption

Causes the server to negotiate a Block Size with the client. Configure the server's Block Size value in
the blkSize option. Default = "false".

enableTimeoutOption

Causes the server to negotiate a timeout interval with the client. Configure the server's timeout value
in the responseTimeOut field. Default = "false".

typeOfService

ToS bit set in traffic from the TFTP server. To configure the list of allowed ToS settings, create an
availableTosList object. Default = "Best Effort (0x0)".

blkSize

Block size used when enableBlkSizeOption is true. Default = "512".

retryCount

Number of DATA or ACK/OACK packets to be re-sent to the client if no response is received. Default =
"3".

responseTimeOut

Length of time, in seconds, that the server waits for a response from the client. Default = "120".

Chapter 32 TFTP

– 1271 –

tftpPort

Port number that the TFTP server listens on. Default = "69".

STATISTICS

EXAMPLE

$Activity_TFTPServer1 agent.pm.advanced.config \

-enableTOS false \

-enableFileSizeOption false \

-enableBlkSizeOption false \

-enableTimeoutOption false \

-typeOfService "Best Effort (0x0)" \

-blkSize "512" \

-retryCount 3 \

-responseTimeOut 120 \

-tftpPort 69

SEE ALSO

Chapter 32 TFTP

– 1272 –

TFTP Client Statistics
The table below describes the TFTP client statistics.

Statistic Description

Test Objective Statistics

TFTP Simulated
Users

Number of TFTP users simulated.

TFTP Transactions Number of TFTP transactions completed.

TFTP Transaction
Rate

Rate at which TFTP transactions were completed.

Upload / Download Statistics

TFTP Total File
Download
Requests Sent

Number of GET commands (RRQ requests) sent by the client.

TFTP Total File
Download
Requests
Successful

Number of files that the client successfully downloaded.

TFTP Total File
Download
Requests Failed

Number of files that the client failed to download.

TFTP Total File
Upload Requests
Sent

Number of PUT commands (WRQ requests) sent by the client.

TFTP Total File
Upload Requests
Successful

Number of files that the client successfully uploaded.

TFTP Total File
Upload Requests
Failed

Number of files that the client failed to upload.

ACK / OACK Statistics

TFTP Total
Acknowledgement
(ACK) Sent

Number of ACK packets sent by the client.

Chapter 32 TFTP

– 1273 –

TFTP Total
Acknowledgement
(ACK) Received

Number of ACK packets received by the client.

TFTP Total Option
Acknowledgement
(OACK) Received

Number of OACK packets received by the client.

Bytes Sent / Received Statistics

TFTP Total Bytes
Sent

Total number of bytes sent in TFTP packets of all types.

TFTP Total Bytes
Received

Total number of bytes received in TFTP packets of all types.

TFTP Total Bytes
Sent And
Received

Combined total of bytes sent and received in TFTP packets of all types.

Data Bytes Sent / Received Statistics

TFTP Total Data
Bytes Sent

Number of bytes sent in DATA packets.

TFTP Total Data
Bytes Received

Number of bytes received in DATA packets.

TFTP Total Data
Bytes Sent per
sec

Rate, in bytes per second, at which the client sent DATA packets.

TFTP Total Data
Bytes Received
per sec

Rate, in bytes per second, at which the client received DATA packets.

Bytes Sent / Received Rate Statistics

TFTP Total Bytes
Sent per sec

Rate, in bytes per second, at which the client sent TFTP packets of all types.

TFTP Total Bytes
Received per sec

Rate, in bytes per second, at which the client received TFTP packets of all
types.

TFTP Total Bytes
Sent And
Received per sec

Combined rate, in bytes per second, at which the client sent and received TFTP
packets of all types.

TFTP Total Out of
Sequence Packets

Number of TFTP packets that were received out of order.

Chapter 32 TFTP

– 1274 –

Received

Error Statistics

TFTP Total
Timeouts
Received

Number of timeouts received.

TFTP Total Errors Number of ERROR packets received by the client.

TFTP Total Errors
Received In
Response to Read
Request

Number of ERROR packets that the client received in response to a GET
command (RRQ request).

TFTP Total Errors
Received In
Response to Write
Request

Number of ERROR packets that the client received in response to a PUT
command (WRQ request).

TFTP ERROR
Received (code 0)

Number of ERROR packets received with error code 0 (Not defined, see error
message (if any)).

TFTP ERROR
Received (code 1)

Number of ERROR packets received with error code 1 (File not found).

TFTP ERROR
Received (code 2)

Number of ERROR packets received with error code 2 (Access violation).

TFTP ERROR Sent
(code 3)

Number of ERROR packets sent with error code 3 (Disk full or allocation
exceeded).

In addition to sending error code 3 packets in case of disk full or allocation
exceeded errors, the client will also send an error code 3 packet if the server
responds to the client's RRQ with an OACK that contains a tsize that the client
cannot handle.

TFTP ERROR
Received (code 3)

Number of ERROR packets received with error code 3 (Disk full or allocation
exceeded).

In addition to receiving error code 3 packets in case of disk full or allocation
exceeded errors on the server, if the client sends a WRQ with a tsize that the
server cannot handle, the server returns an error code 3 packet.

TFTP ERROR
Received (code 4)

Number of ERROR packets received with error code 4 (Illegal TFTP operation).

TFTP ERROR
Received (code 5)

Number of ERROR packets received with error code 5 (Unknown transfer ID).

Chapter 32 TFTP

– 1275 –

TFTP ERROR
Received (code 6)

Number of ERROR packets received with error code 6 (File already exists).

TFTP ERROR
Received (code 7)

Number of ERROR packets received with error code 7 (No such user).

TFTP ERROR Sent
(code 8)

Number of ERROR packets sent with error code 8 (Block size rejected).

TFTP ERROR
Received (code 8)

Number of ERROR packets received with error code 8 (Block size rejected).

TFTP Other error Number of ERROR packets received that were not error codes 1-8.

Chapter 32 TFTP

– 1276 –

TFTP Server Statistics
The table below describes the TFTP server statistics.

Statistic Description

TFTP Request / Response Statistics

TFTP Total Download
Request Received

Number of GET requests received.

TFTP Total Download
Request Succeeded

Number of GET requests completed successfully.

TFTP Total Download
Request Failed

Number of GET requests that failed.

TFTP Total Upload Request
Received

Number of PUT requests received.

TFTP Total Upload Request
Succeeded

Number of PUT requests completed successfully.

TFTP Total Upload Request
Failed

Number of PUT requests that failed.

TFTP Total ACK Sent Number of ACK responses sent.

TFTP Total ACK Received Number of ACK responses received.

TFTP Total OACK Sent Number of OACK responses sent.

Total Bytes Stats

TFTP Total Bytes Sent Number of bytes sent in TFTP packets of all types.

TFTP Total Bytes Received Number of bytes received in TFTP packets of all types.

TFTP Total Bytes Sent And
Received

Combined total of bytes sent and received in TFTP packets of all
types.

TFTP Throughput Combined rate, in bytes per second, at which the server sent and
received TFTP packets of all types.

Data Bytes Statistics

TFTP Total Data Bytes Sent Number of bytes sent in DATA packets.

TFTP Total Data Bytes
Received

Number of bytes received in DATA packets.

Chapter 32 TFTP

– 1277 –

TFTP Total Data Bytes Sent
And Received

Combined total of bytes sent and received in DATA packets.

TFTP Data Throughput Combined rate, in bytes per second, at which the server sent and
received DATA packets.

Error Statistics

TFTP Total Errors Received Total number of TFTP error messages received.

TFTP Total Timeout Errors Number of times that the server did not receive a response within the
timeout period.

TFTP ERROR Sent (code 0) Number of error code 0 messages sent.

Error code 0 is undefined; a description of the error may be in the
string portion of the message.

TFTP ERROR Sent (code 1) Number of error code 1 messages sent.

Error code 1 is: File not found.

TFTP ERROR Sent (code 2) Number of error code 2 messages sent.

Error code 2 is: Access violation.

TFTP ERROR Received (code
3)

Number of error code 3 messages received.

Error code 3 is: Disk full or allocation exceeded.

TFTP ERROR Sent (code 3) Number of error code 3 messages sent.

Error code 3 is: Disk full or allocation exceeded.

TFTP ERROR Sent (code 4) Number of error code 4 messages received.

Error code 4 is: Illegal TFTP operation.

TFTP ERROR Sent (code 5) Number of error code 5 messages received.

Error code 5 is: Unknown transfer ID.

TFTP ERROR Sent (code 6) Number of error code 6 messages received.

Error code 6 is: File already exists.

TFTP ERROR Sent (code 7) Number of error code 7 messages received.

Error code 7 is: No such user.

TFTP ERROR Received (code
8)

Number of error code 8 messages received.

Error code 8 is sent to terminate a transfer due to a failure in option
negotiation.

TFTP ERROR Sent (code 8) Number of error code 8 messages received.

Chapter 32 TFTP

– 1278 –

Error code 8 is sent to terminate a transfer due to a failure in option
negotiation.

TFTP Other error Number of TFTP errors that were not classified as error code 0-8.

! 34

Chapter 32 TFTP

– 1279 –

This page intentionally left blank.

– 1280 –

CHAPTER 33 Trace File Replay
This section describes the Trace File Replay Tcl API objects.

Overview
The IxLoad Trace File Replay API consists of client agent and server agents and their commands.

Figure 22-1.Trace File Replay Client API Structure

Objectives
The objectives (userObjective) you can set for Trace File Replay are listed below. Test objectives are
set in the ixTimeline object.

l simulatedUsers

Trace File Replay Client Commands
This section lists the Trace File Replay client commands.

– 1281 –

Trace File Replay Client Agent

The Trace File Replay Client Agent command defines a client that will transmit a packet stream to a
Trace File Replay Server Agent. Refer to Trace File Replay Client Agent on page 22-5 for a full
description of this command. The most sigoptions of this command are listed below.

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Options

The Options command configures the Trace File Replay client’s options. Refer to Options on page 22-7
for a full description of this command. The most signifioptions of this command are listed below.

Option Description

destinationServerActivity Name of the IxLoad Trace File Replay server that the client will connect
to.

traceFileName Name and path of the pcap-format trace file that the client will use to
generate the traffic stream.

replayBidirectional
Traffic

If true, the client uses the same trace (pcap) file as selected for the
server agent.

enableFilter If true, the filters in the client’s filterList are applied to the incoming
packet stream from the server.

filterList List of filters applied to incoming packet stream.

Chapter 33 Trace File Replay

– 1282 –

Filter List

The Filter List command configures a filter to be applied to the packet stream. Refer to Filter List on
page 22-9 for a full description of this command. The most significant options of this command are
listed below.

Option Description

protocol Protocol to be filtered.

srcDest Address type that ipSubnet applies to.

ipSubnet IP address to be filtered.

prefixLength Subnet mask applied to address to be filtered.

srcDestPort Port type that portNumber applies to.

portNumber Port number to be filtered.

Trace File Replay Server Commands
The Trace File Replay Server API structure is shown below.

Trace File Replay Server Agent

The Trace File Replay Server Agent command defines a server that transmits a packet stream to a
Trace File Replay client. Refer to Trace File Replay Client Agent on page 22-5 for a full
description of this command. The most significant options of this command listed below.

Chapter 33 Trace File Replay

– 1283 –

Option Description

enable Enables the use of this client agent.

name The name associated with this object, which must be set at object creation time.

protocol Protocol used by the client agent.

type Defines the agent as either a client or server.

Trace File Options

The Trace File Options command configures the list of parameters for a Trace File Replay server. Refer
to Trace File Options on page 22-13 for a full descripof this command. The most significant options
of this command are listed below.

Option Description

sourceClientActivity Name of the IxLoad Trace File Replay client that the server will connect to.

traceFileName Name and path of the pcap-format trace file that the client will use to
generate the traffic stream.

useDefaultTraceFile If true, the client uses the same trace (pcap) file as selected for the server
agent.

enableFilter If true, the filters in the client’s filterList are applied to the incoming packet
stream from the server.

filterList List of filters to be applied to the specified trace (pcap) file.

Advanced Options

The Trace File Server Advanced Options command configures the advanced options for a Trace File
Replay server. Refer to Advanced Options on page 22-14 for a full description of this command. The
most significant options of this comare listed below.

Option Description

serverNetworkList List of IP addresses in the trace (pcap) file identified as server addresses.

useSpecifiedServerAddr If true, the server scans the trace file and automatically deterwhich

Chapter 33 Trace File Replay

– 1284 –

addresses are server addresses.

Server Network List

The Server Network List command configures the list of server IP addresses in the trace (pcap) file.
Refer to Server Network List on page 22-15 for a full description of this command. The most
significant options of this command are listed below.

Option Description

ipSubnet IP address identified as a server IP address.

prefixLength Width of subnet mask applied to subnetID.

Chapter 33 Trace File Replay

– 1285 –

Trace File Replay Client Agent
Trace File Replay Client Agent - create a Trace File Replay client

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TraceFileReplClient1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_TraceFileReplClient1 agent.config

DESCRIPTION

A Trace File Replay client agent is added to the activityList object. The activityL object is added
to the ixNetTraffic object using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this client agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set Traffic1_Network1 [::IxLoad new
ixNetTraffic]## Activity
TraceFileReplClient1 of NetTraffic
Traffic1@Network1###set Activity_
TraceFileReplClient1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"capturereplay Client"]$Activity_TraceFileReplClient1 agent.config \-enable
true \-name "TraceFileReplClient1"

SEE ALSO

ixNetTraffic

Chapter 33 Trace File Replay

– 1286 –

Options
Options—Configures the list of parameters for a Trace File Replay client.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TraceFileReplClient1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_TraceFileReplClient1 agent.pm.options.config

DESCRIPTION

An option is added to the list of Options using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

destinationServerActivity

Name of the IxLoad Trace File Replay server that the client will connect to. (Default = {}).

traceFileName

Name and path of the pcap-format trace file that the client will use to generate the traffic stream.
(Default = {}).

replayBidirectionalTraffic

If true, the client uses the same trace (pcap) file as selected for the server agent. (Default =
true).

enableFilter

If true, the filters in the client’s filterList are applied to the incoming packet stream from the
server.

filterList

List of filters to be applied to the specified trace (pcap) file. This is a list of Filter List objects.
(Default = {}).

EXAMPLE
$Activity_TraceFileReplClient1 agent.pm.options.config \-traceFileName
"" \-destinationServerActivity "" \-serverAddrString
"" \-enableFilter false \-replayBidirectionalTraffic
true

Chapter 33 Trace File Replay

– 1287 –

SEE ALSO

Trace File Replay Client Agent

Chapter 33 Trace File Replay

– 1288 –

Filter List
Filter List—Configures a filter to be applied to the packet stream.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TraceFileReplClient1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_newClientActivity1 agent.pm.filterList.appendItem

DESCRIPTION

The Filter List command configures a filter that can be applied to the incoming packet stream. This
command is added to the list of Trace File Replay client agent object using the appendItem
subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

protocol

Protocol to be filtered. The choices are:

l (default) TCP

l UDP

l ICMP

l Any

srcDest

Address type that ipSubnet applies to. The choices are:

l (default) Source

l Destination

l Both

l Any

ipSubnet

IP address to be filtered. This is one of the IP addresses contained within the trace file.

prefixLength

Subnet mask applied to address to be filtered. Packets matching the subnet mask will be accepted.
The choices are “1” through “32.” (Default = "24").

Chapter 33 Trace File Replay

– 1289 –

srcDestPort

Port type that portNumber applies to. The choices are:

l Source

l (default) Destination

l Any

portNumber

Port number to be filtered.

EXAMPLE

$Activity_newClientActivity1 agent.pm.filterList2.appendItem \-id
"FilterElement" \-ipSubnet "198.18.1.1" \-portNumber
"33729" \-srcDestPort "Source" \-protocol
"TCP" \-prefixLength "32" \-srcDest
"Any"

Chapter 33 Trace File Replay

– 1290 –

Enable Filter
Enable Filter—Enables the client’s list of filters to be applied to the incoming packet stream.

SYNOPSIS

set Traffic1_Network1 [::IxLoad new ixNetTraffic]
set Activity_TraceFileReplClient1 [$Traffic1_Network1 activityList.appendItem
options...]
$Activity_TraceFileReplClient1 agent.pm.options.config

DESCRIPTION

Enable Filter causes the Trace File Replay client to use the filters configured on the client to be applied
to the trace (pcap) file configured for the Trace File Replay client. The Trace File Replay client can
specify its filters only if the useDefaultTraceFile option is disabled.

This command is added to the list of Trace File Replay client agent object using the appendItem
subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enableFilter

If true, the client applies the client-side filters to the incoming packet stream. (Default = 0).

EXAMPLE
$Activity_TraceFileReplClient1 agent.pm.options.config \-enableFilter
true \

SEE ALSO

Options

Chapter 33 Trace File Replay

– 1291 –

Trace File Replay Server Agent
Trace File Replay Server Agent

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$ServerTraffic1_ServerNetwork1 activityLoption...]
$Activity_newServerActivity1 agent.config

DESCRIPTION

A Trace File Replay server agent is added to the activityList object. The activi object is added to
the ixNetTraffic object using the appendItem subcomfrom the ixConfigSequenceContainer
command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

enable

Enables the use of this server agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

EXAMPLE
set ServerTraffic1_ServerNetwork1 [::IxLoad new
ixNetTraffic]## Activity
newServerActivity1 of NetTraffic
ServerTraffic1@ServerNetwork1###set
Activity_newServerActivity1 [$ServerTraffic1_ServerNetwork1 activityList.appendItem
\-protocolAndType "capturereplay Server"]$Activity_
newServerActivity1 agent.config \-enable true \-
name "newServerActivity1"

SEE ALSO

ixNetTraffic

Chapter 33 Trace File Replay

– 1292 –

Trace File Options
Trace File Options—Configures the list of parameters for a Trace File Replay server.

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$ServerTraffic1_ServerNetwork1 activityLoption...]
$Activity_newServerActivity1 agent.pm.traceFileOptions.config

DESCRIPTION

An option is added to the list of Options using the appendItem subcommand from the
ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

sourceClientActivity

Name of the IxLoad Trace File Replay client that the server will connect to.

traceFileName

Name and path of the pcap-format trace file that the server will use to generate the traffic stream.
(Default = {}).

enableFilter

If true, the filters in the client’s filterList are applied to the incoming packet stream from the
server.

filterList

List of filters applied to incoming packet stream. This is a list of Filter List objects. (Default =
{}).

EXAMPLE
$Activity_newServerActivity1 agent.pm.traceFileOptions.config \

-enableFiltertrue \

-traceFileName"C:/Program Files/Ixia/IxLoad/ \
\Repository/Samples/TraceFileReplay/Captures/oracle1.cap" \

-clientAddrString"sym:newServerActivity1!ClientTraffic1_newClientActivity1" \

-sourceClientActivity"ClientTraffic1_newClientActivity1"

Chapter 33 Trace File Replay

– 1293 –

SEE ALSO

Trace File Replay Server Agent

Chapter 33 Trace File Replay

– 1294 –

Server Network List
Server Network List—Lists of server IP addresses contained in trace (pcap) file.

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$ServerTraffic1_ServerNetwork1 activityLoption...]
$Activity_newServerActivity1 agent.pm.advancedOptions.serverNet

DESCRIPTION

Server Network List is a list of IP addresses and subnet masks contained within the trace (pcap) file
that are determined (either manually by the user/application or automatically by IxLoad) to be server
addresses.

This command is added to the list of Trace File Replay server agent advancedOpusing the appendItem
subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

ipSubnet

IP address identified as a server IP address.

prefixLength

Width of subnet mask applied to ipSubnet.

EXAMPLE
$Activity_newServerActivity1 agent.pm.advancedOptions.serverNetworkList.appendItem
\-id "Network" \-prefixLength
"32" \-ipSubnet "198.18.1.11"

SEE ALSO

Advanced Options

Chapter 33 Trace File Replay

– 1295 –

Advanced Options
Advanced Options—Configures the list of advanced options for a Trace File Replay server.

SYNOPSIS

set ServerTraffic1_ServerNetwork1 [::IxLoad new ixNetTraffic]
set Activity_newServerActivity1 [$ServerTraffic1_ServerNetwork1 activityLoption...]
$Activity_newServerActivity1 agent.pm.advancedOptions.config

DESCRIPTION

The Advanced Options command configures the global options of a Trace File Replay server. The
command is configured using the config subcommand of the ixConfig command.

SUBCOMMANDS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

OPTIONS

serverNetworkList

List of IP addresses in the trace (pcap) file identified as server addresses. See Server Network List.

useSpecifiedServerAddr

If true, the server scans the trace file and automatically determines which addresses are server
addresses. IxLoad adds the IP addresses to the Server Network List.

EXAMPLE
$Activity_newServerActivity1 agent.pm.advancedOptions.config \-
useSpecifiedServerAddr true

SEE ALSO

Trace File Replay Server Agent

Server Network List

Chapter 33 Trace File Replay

– 1296 –

Statistics
For Trace File Replay client statistics, see Trace File Replay Client Statistics.

For Trace File Replay server statistics, see Trace File Replay Server Statistics.

For TCP statistics, see TCP, Run State, and Curve Segment Statistics.

Chapter 33 Trace File Replay

– 1297 –

Trace File Replay Client Statistics
The following table describes the statistics for the Trace File Replay client.

Statistic Description

Trace File Replay Client
Initializing State

Number of users currently being initialized.

Trace File Replay Client
Synchronizing State

Number of users currently awaiting synchronization.

Trace File Replay Client
Active State

Number of users currently active.

TraceFileReplay Client
Packets Sent

Number of packets sent by the Trace File Replay client.

TraceFileReplay Client TCP
Packets Sent

Number of TCP packets sent by the Trace File Replay client.

TraceFileReplay Client UDP
Packets Sent

Number of UDP packets sent by the Trace File Replay client.

TraceFileReplay Client ARP
Packets Sent

Number of ARP packets sent by the Trace File Replay client.

TraceFileReplay Client ICMP
Packets Sent

Number of ICMP packets sent by the Trace File Replay client.

TraceFileReplay Client Other
Packets Sent

Number of packets sent by the Trace File Replay client that were not
TCP, UDP, ARP, or ICMP packets.

TraceFileReplay Client
Discarded Packets

Number packets discarded by the Trace File Replay client.

TraceFileReplay Client Bytes
Sent

Number of bytes sent by the Trace File Replay client.

TraceFileReplay Client TCP
Bytes Sent

Number of TCP bytes sent by the Trace File Replay client.

TraceFileReplay Client UDP
Bytes Sent

Number of UDP bytes sent by the Trace File Replay client.

TraceFileReplay Client ARP
Bytes Sent

Number of ARP bytes sent by the Trace File Replay client.

TraceFileReplay Client ICMP
Bytes Sent

Number of ICMP bytes sent by the Trace File Replay client.

Chapter 33 Trace File Replay

– 1298 –

TraceFileReplay Client Other
Bytes Sent

Number of bytes sent by the Trace File Replay client that were not
TCP, UDP, ARP, or ICMP bytes.

TraceFileReplay Client
Discarded Bytes

Number of bytes discarded by the Trace File Replay Client.

Chapter 33 Trace File Replay

– 1299 –

Trace File Replay Server Statistics
The following table describes the statistics for the Trace File Replay server.

Statistic Description

Trace File Replay Server
Initializing State

Number of users currently being initialized.

Trace File Replay Server
Synchronizing State

Number of users currently awaiting synchronization.

Trace File Replay Server
Active State

Number of users currently active.

TraceFileReplay Server
Packets Sent

Number of packets sent by the Trace File Replay server.

TraceFileReplay Server TCP
Packets Sent

Number of TCP packets sent by the Trace File Replay server.

TraceFileReplay Server UDP
Packets Sent

Number of UDP packets sent by the Trace File Replay server.

TraceFileReplay Server ARP
Packets Sent

Number of ARP packets sent by the Trace File Replay server.

TraceFileReplay Server ICMP
Packets Sent

Number of ICMP packets sent by the Trace File Replay server.

TraceFileReplay Server Other
Packets Sent

Number of packets sent by the Trace File Replay server that were
not TCP, UDP, ARP, or ICMP packets.

TraceFileReplay Server
Discarded Packets

Number packets discarded by the Trace File Replay server.

TraceFileReplay Server Bytes
Sent

Number of bytes sent by the Trace File Replay server.

TraceFileReplay Server TCP
Bytes Sent

Number of TCP bytes sent by the Trace File Replay server.

TraceFileReplay Server UDP
Bytes Sent

Number of UDP bytes sent by the Trace File Replay server.

TraceFileReplay Server ARP
Bytes Sent

Number of ARP bytes sent by the Trace File Replay server.

TraceFileReplay Server ICMP
Bytes Sent

Number of ICMP bytes sent by the Trace File Replay server.

Chapter 33 Trace File Replay

– 1300 –

TraceFileReplay Server Other
Bytes Sent

Number of bytes sent by the Trace File Replay server that were not
TCP, UDP, ARP, or ICMP bytes.

TraceFileReplay Server
Discarded Bytes

Number of bytes discarded by the Trace File Replay server.

Chapter 33 Trace File Replay

– 1301 –

This page intentionally left blank.

– 1302 –

CHAPTER 34 VDI
This section describes the VDI Tcl API objects.

API Overview
The IxLoad VDI API consists of the VDI Client Agent and its commands.

– 1303 –

VDI Client Agent
VDI client agent - create a VDI/RDP client agent

SYNOPSIS

set Activity_VDIClient1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "rdp Client"]

DESCRIPTION

A VDI client agent is added to the activityList object. The activityList object is added to the
ixNetTraffic object using the appendItem subcommand from the ixConfigSequenceContainer
command.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

STATISTICS

EXAMPLE

set Activity_VDIClient1 [$Traffic1_Network1 activityList.appendItem \
-protocolAndType "rdp Client"]

SEE ALSO
ixNetTraffic

Chapter 34 VDI

– 1304 –

settings
settings - configure the settings of a VDI client agent

SYNOPSIS

$Activity_VDIClient1 agent.pm.settings.config

DESCRIPTION

This object configures the settings for a VDI client agent.

SUBCOMMANDS

None.

OPTIONS

resolutionH

Horizontal resolution. Default = 600.

encryption

Type of encryption. One of the following:

Choice Description

0 (default) Full encryption

1 Login encryption only

2 None

enableVDI

Enables use of a connection server. Default = false.

connectionServerPort

Connection server listening port. Default = 443.

connectionServer

Hostname or IP address of connection server. Default = "" (none)

depth

Color depth (number of bits per pixel) of remote desktop. Default = 8.

enableTunnel

Use secure tunnel to establish connection to remote desktop. Default = true.

desktopPool

Chapter 34 VDI

– 1305 –

Name of desktop pool. Default = "" (none).

credentialsFullPath

Path of credentials file. Default = "" (none).

resolutionW

Vertical resolution of remote desktop. Default = 800.

EXAMPLE

$Activity_VDIClient1 agent.pm.settings.config \

-resolutionH 600 \

-encryption 0 \

-enableVDI false \

-connectionServerPort 443 \

-connectionServer "" \

-depth 8 \

-enableTunnel true \

-desktopPool "" \

-credentialsFullPath "" \

-resolutionW 800

SEE ALSO
ixNetTraffic

VDI Client Commands
This section lists the VDI client agent's commands.

Chapter 34 VDI

– 1306 –

CHAPTER 35 VoIP H.248 Peer
The IxLoad VoIP H.248 Peer Tcl API consists of a VoIP MGW and VOIP MGC Peer agent, with separate
APIs for configuring each major aspect of the agent’s functionality.

There is also a TermGroup Agent with separate configuration parameters.

l When defined on a MGW activity, a TermGroup refers to terminations present on that gateway.

l When defined on a MGC activity, a TermGroup refers to terminations managed by that controller.

Limitations
The following restrictions and limitations of the VoIP H.248 Peer API exist:

l Individual VoIP H248 script functions can not be added and edited from the Tcl API. Instead, you
must add and configure the test scenario in the Scenario Editor, then save the test scenario file
and pass it as an argument to the ScenarioSettings API class.

– 1307 –

VoIP H248 Peer API Commands
The IxLoad VoIP H248 Peer API commands are organized as shown in the figures below.

VoIP H248 MGW Peer API Structure

VoIP H248 Term Group API Structure

Chapter 35 VoIP H.248 Peer

– 1308 –

Chapter 35 VoIP H.248 Peer

– 1309 –

VoIP H248 MGC/MGW Peer API Objects
The following table summarizes the VoIP H248 MGC/MGW Peer API Objects

Object Description

VoIP H248
Peer Agent

Top-level object defining the VoIP H248 Peer activity.

H248 Settings Configures the H.248 Settings separately for the Media Gateway or Media
Controller.

Automatic Sets the automatic functionality parameters for the MGC and MGW side.

SimulatedMGC
/ MGW

Simulates the source address in H.248 messages, designates the simulation type,
and so on. Also contains the list of all termination groups associated with the
gateway or controller.

TermGroups Contains the list of all termination groups associated with the gateway or
controller. Each termination groups has a name and two expressions to generate
termination names. When a new TermGroup is added, a new activity is added in the
same NetTraffic.

Profiles A collection of packages where each package is a collection of events, signals,
statistics, properties, and procedures. During registration, an MGW declares a
supported profile and MGC sends audit commands to find the packages that are
supported by a particular profile.

The profile selected in Profiles depends on the SimulatedMGW type declared in
SimulatedMGW/MGC.

Packages A collection of events, signals, statistics, properties, and procedures.

Properties H.248 has two basic components: Terminations and Contexts. Terminations have
properties, which can be inspected and modified by the MGC.

Signals Represents the signals of a transmission.

Statistics Represents the statistics available for MGC and MGW.

Events Represents the events of a transmission.

Chapter 35 VoIP H.248 Peer

– 1310 –

VoIP H248 TermGroup Peer API Objects
The following table summarizes the VoIP H248 TermGroup API Objects

Object Description

VoIP H248
MGC/MGW
TermGroup Agent

Top-level object defining the VoIP H248 MGC/MGW TermGroup agent activity.

Scenario Settings Selects the Test Scenario file; corresponds to the Scenario Settings GUI tab.

Codec Settings List of Data Codecs and Codecs objects.

Data Codecs Data codec with parameters.

Codecs Audio codec with parameters.

Other Settings VoIP H323 Peer miscellaneous parameters; corresponds to the Other Settings
GUI tab.

SDP Settings H.248 uses SDP for specification and negotiation of media capabilities of GW
terminations. SDP information is sent using a Stream descriptor that specifies
as a single bi-directional media stream.

RTP Settings RTP transport configuration; corresponds to the RTP Settings GUI tab.

Audio Settings Audio settings; corresponds to the Audio GUI tab.

Custom Activity
Link Settings,
CustomParameters

BHCA objective configuration; corresponds to the Custom Parameters GUI tab.

Execution Settings Run-time test configuration; corresponds to the Execution Settings GUI tab.

Chapter 35 VoIP H.248 Peer

– 1311 –

VoIP H248 Peer Agent
VoIP H248MGW or H248MGC Peer Agent

SYNOPSIS
set Activity_H248MGC1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGC Peer"]

DESCRIPTION

A VoIP H.248 Peer agent is added to the agentList option of the ixConfig object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. See the
following example:
set Activity_H248MGC1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGC Peer"]

$Activity_H248MGC1 config \-enable 1 \-name
"H248MGC1"

$Activity_H248MGC1 agent.config \-enable 1 \-name
"H248MGC1" \-uniqueID 1

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:
$Activity_H248MGC1 agent(0).config -name “H248MGC Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

uniqueID

The unique ID of this object. (Default = 1)

STATISTICS

The available H248/MEGACO statistics are listed in below:

Chapter 35 VoIP H.248 Peer

– 1312 –

Statistic Description

H.248 MGC Transport

Bytes Sent The number of bytes sent by MGC.

Bytes Received The number of bytes received by MGC.

Messages Sent The number of messages sent by MGC.

Messages Received The number of messages received by MGC.

Avg Sent/Received Message Size The average sent/received messages size by MGC.

H.248 MGC Transactions

Transaction Requests Sent The number of transaction requests sent by MGC.

Transaction Requests Received The number of transaction requests received by MGC.

Transaction Replies Sent The number of transaction replies sent by MGC.

Transaction Replies Received The number of transaction replies received by MGC.

Transaction Pending Sent The number of 'Transaction pending' responses sent
by MGC.

Transaction Pending Received The number of 'Transaction pending' responses
received by MGC.

Transaction Response Ack Sent The number of Ack transaction responses sent by
MGC.

Transaction Response Ack
Received

The number of Ack transaction responses received by
MGC.

H.248 MGC Retransmissions

Retransmitted Transaction
Requests Sent

The number of retransmitted transaction requests
sent.

Retransmitted Transaction
Requests Received

The number of retransmitted transaction requests
received.

Retransmitted Transaction Replies
Sent

The number of retransmitted transaction replies sent.

Retransmitted Transaction Replies
Received

The number of retransmitted transaction replies
received.

Chapter 35 VoIP H.248 Peer

– 1313 –

H.248 MGC Commands

Add command requests sent The number of Add command requests sent by MGC.

Add command replies received The number of Add command replies received by
MGC.

Modify command requests sent The number of Modify command requests sent by
MGC.

Modify command replies received The number of Modify command replies received by
MGC.

Move command requests sent The number of Move command requests sent by MGC.

Move command replies received The number of Move command replies received by
MGC.

Subtract command requests sent The number of Move command requests sent by MGC.

Subtract command replies received The number of Move command replies received by
MGC.

AuditValue command requests sent The number of AuditValue command requests sent by
MGC.

AuditValue command replies
received

The number of AuditValue command replies received
by MGC.

AuditCapability command requests
sent

The number of AuditCapability command requests
sent by MGC.

AuditCapability command replies
received

The number of AuditCapability command replies
received by MGC.

ServiceChange command requests
sent

The number of ServiceChange command requests
sent by MGC.

ServiceChange command requests
received

The number of ServiceChange command requests
received by MGC.

ServiceChange command replies
sent

The number of ServiceChange command replies sent
by MGC.

ServiceChange command replies
received

The number of ServiceChange command replies
received by MGC.

Notify command requests received The number of Notify command requests received by
MGC.

Chapter 35 VoIP H.248 Peer

– 1314 –

Notify command replies sent The number of Notify command replies sent by MGC.

H.248 MGC Protocol Errors

4xx Errors The number of 4xx error messages sent and received
by MGC.

5xx Errors The number of 5xx error messages sent and received
by MGC.

H.248 MGC Errors

Transport Errors The number of transport protocol errors.

SDP Errors The number of SDP errors.

Parser Errors The number of parser errors.

H.248 MGC Received Requests/Replies

Transactions Not Matched The number of transactions not matched.

Transactions Matched The number of transactions matched.

Discarded Transactions The number of discarded transactions.

Processed Transactions The number of processed transactions.

Auto Processed Transactions The number of automatically processed transactions.

H.248 MGW Transport

Bytes Sent The number of bytes sent by MGW.

Bytes Received The number of bytes received by MGW.

Messages Sent The number of messages sent by MGW.

Messages Received The number of messages received by MGW.

Avg Sent/Received Message Size The average sent/received messages size by MGW.

H.248 MGW Transactions

Transaction Requests Sent The number of transaction requests sent by MGW.

Transaction Requests Received The number of transaction requests received by
MGW.

Transaction Replies Sent The number of transaction replies sent by MGW.

Chapter 35 VoIP H.248 Peer

– 1315 –

Transaction Replies Received The number of transaction replies received by MGW.

Transaction Pending Sent The number of 'Transaction pending' responses sent
by MGW.

Transaction Pending Received The number of 'Transaction pending' responses
received by MGW.

Transaction Response Ack Sent The number of Ack transaction responses sent by
MGW.

Transaction Response Ack
Received

The number of Ack transaction responses received by
MGW.

H.248 MGW Retransmissions

Retransmitted Transaction
Requests Sent

The number of retransmitted transaction requests
sent.

Retransmitted Transaction
Requests Received

The number of retransmitted transaction requests
received.

Retransmitted Transaction Replies
Sent

The number of retransmitted transaction replies sent.

Retransmitted Transaction Replies
Received

The number of retransmitted transaction replies
received.

H.248 MGW Commands

Add command requests received The number of Add command requests received by
MGW.

Add command replies sent The number of Add command replies sent by MGW.

Modify command requests received The number of Modify command requests received by
MGW.

Modify command replies sent The number of Modify command replies sent by MGW.

Move command requests received The number of Move command requests received by
MGW.

Move command replies sent The number of Move command replies sent by MGW.

Subtract command requests
received

The number of Move command requests received by
MGW.

Subtract command replies sent The number of Move command replies sent by MGW.

Chapter 35 VoIP H.248 Peer

– 1316 –

AuditValue command requests
received

The number of AuditValue command requests
received by MGW.

AuditValue command replies sent The number of AuditValue command replies sent by
MGW.

AuditCapability command requests
received

The number of AuditCapability command requests
received by MGW.

AuditCapability command replies
sent

The number of AuditCapability command replies sent
by MGW.

ServiceChange command requests
sent

The number of ServiceChange command requests
sent by MGW.

ServiceChange command requests
received

The number of ServiceChange command requests
received by MGW.

ServiceChange command replies
sent

The number of ServiceChange command replies sent
by MGW.

ServiceChange command replies
received

The number of ServiceChange command replies
received by MGW.

Notify command requests sent The number of Notify command requests received by
MGW.

Notify command replies received The number of Notify command replies sent by MGW.

H.248 MGW Protocol Errors

4xx Errors The number of 4xx error messages sent and received
by MGW.

5xx Errors The number of 5xx error messages sent and received
by MGW.

H.248 MGW Errors

Transport Errors The number of transport protocol errors.

SDP Errors The number of SDP errors.

Parser Errors The number of parser errors.

H.248 MGW Received Requests/Replies

Transactions Not Matched The number of transactions not matched.

Transactions Matched The number of transactions matched.

Chapter 35 VoIP H.248 Peer

– 1317 –

Discarded Transactions The number of discarded transactions.

Processed Transactions The number of processed transactions.

Auto Processed Transactions The number of automatically processed transactions.

H.248 Loop Rate

Loops-per-second The per polling interval loops-per-second value. Global

EXAMPLE
Activity H248MGC1 of NetTraffic
Traffic1@Network1###set Activity_
H248MGC1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGC Peer"]

$Activity_H248MGC1 config \-enable 1 \-name
"H248MGC1"

$Activity_H248MGC1 agent.config \-enable 1 \-name
"H248MGC1" \-uniqueID 1

SEE ALSO

ixConfig

Chapter 35 VoIP H.248 Peer

– 1318 –

Simulated MGC
VoIP H248 Simulated MGC settings

SYNOPSIS
set Activity_H248MGC1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGC Peer"]$Activity_H248MGC1 agent.config$Activity_H248MGC1
agent.pm.simulatedMGC.config

DESCRIPTION

Simulates the source address in H.248 messages, designates the simulation type, and so on. Also
contains the list of all termination groups associated with the gateway or controller.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

sourcePort

Indicates the port number of the source address. Default = "2944"

mgcName

Indicates the device name or DNS name. It is not used when MID format is IP Address or IP
Address:port.

NOTE: Sequence generator expressions are also supported, for example, MEGACOCA|00-|.

controlledGWType

Indicates the gateway types. The types are:

l Border Gateway (IP2IP)

l Trunking Gateway (PSTN2IP)

l Residential Gateway (PSTN2IP)

l Access Gateway (PSTN2IP)

mid

Indicates the format of the source address in H.248 messages. The options are:

l IP Address

l IP Address:port

l Device Name

l MGC DNS Name

Chapter 35 VoIP H.248 Peer

– 1319 –

l MGC DNS Name:port

EXAMPLE
set Activity_H248MGC1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGC Peer"]

$Activity_H248MGC1 config \-enable 1 \-name
"H248MGC1"

$Activity_H248MGC1 agent.config \-enable 1 \-name
"H248MGC1" \-uniqueID 1

$Activity_H248MGC1 agent.pm.simulatedMGC.config \-sourcePort
"2944" \-mgcName "MEGACOCA\[00-\]" \-
controlledGWType 1 \-mid
1

$Activity_H248MGC1 agent.pm.simulatedMGC.termGroups.clear

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1320 –

Simulated MGW
VoIP H248 Simulated MGW settings

SYNOPSIS
set Activity_H248MGW1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config$Activity_H248MGW1
agent.pm.simulatedMGW.config

DESCRIPTION

Simulates the source address in H.248 messages, designates the simulation type, and so on. Also
contains the list of all termination groups associated with the gateway.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

sourcePort

Indicates the port number of the source address. Default = "2944"

gwName

Indicates the device name or DNS name. It is not used when MID format is IP Address or IP
Address:port.

NOTE: Sequence generator expressions are also supported, for example, MEGACOCA|00-|.

simulatedType

Indicates the gateway types. The types are:

l Border Gateway (IP2IP)

l Trunking Gateway (PSTN2IP)

l Residential Gateway (PSTN2IP)

l Access Gateway (PSTN2IP)

dest

The address of the controlling MGC, specified as an activity name or an IP address, followed by a port
number.

mid

Indicates the format of the source address in H.248 messages. The format options are:

l IP Address

Chapter 35 VoIP H.248 Peer

– 1321 –

l IP Address:port

l Device Name

l GW DNS Name

l GW DNS Name:port

EXAMPLE
$Activity_H248MGW1 agent.pm.simulatedMGW.config \

-sourcePort "2944" \

-gwName "MEGACOGW|00-|" \

-simulatedType 1 \

-dest "Traffic1_H248MGC1:2944" \

-mid 1

$Activity_H248MGW1 agent.pm.simulatedMGW.termGroups.clear

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1322 –

H248 TermGroups
VoIP H248 MGW/MGC TermGroup settings

SYNOPSIS
H248 MGW TermGroupset Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem
\-protocolAndType "H248MGW Peer"]$Activity_H248MGW1
agent.config \$Activity_H248MGW1 agent.pm.simulatedMGW.termGroups.appendItem\

H248 MGC TermGroupset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem
\-protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.simulatedMGC.termGroups.appendItem\

DESCRIPTION

The list of all termination groups associated with the selected gateway or controller type.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

enabled

If true, the term group is enabled. Default=false

id

Indicates the term group identification ID. Default=TermGroup

name

Indicates the name of the term group. For example: "H248TermGroupMGC1" \

physicalId

The physical identification of the term group. If a message with termination name $ and without a
physical name is received, the message can not be handled.

mgw

Indicates the media gateway.

rootTermination

Enables a request that is addressed to the ROOT termination. The request may be processed only by
an user from a Termination Group marked as Root in the SimulatedMGC/MGW. Default = 0

rtpId1

Chapter 35 VoIP H.248 Peer

– 1323 –

The RTP termination ID.

rtpId2

The second RTP termination ID.

EXAMPLE
$Activity_H248MGC1 agent.pm.simulatedMGC.termGroups.appendItem \-id
"TermGroup" \-name "H248TermGroupMGC1" \-
physicalId "tdm/s_0/e1_{000-}/{00-29}" \-enabled
true \-mgw "Traffic2_H248MGW1:2944" \-
rootTermination 0 \-rtpId1
"Ephemeral/0/0/\[00000-\]" \-rtpId2 ""

SEE ALSO

Simulated MGW

Simulated MGC

Chapter 35 VoIP H.248 Peer

– 1324 –

MGW Automatic
VoIP H248 MGW Automatic settings

SYNOPSIS
H248 MGW Automaticset Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem
\-protocolAndType "H248MGW Peer"]$Activity_H248MGW1
agent.config \$Activity_H248MGW1 agent.pm.automatic.config \

DESCRIPTION

Automatic Settings specifies the automatic functionality parameters for the MGW side.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

autoReplyServiceChange

If true, enables auto reply for Service Change. In this condition, Service Change requests are not
dispatched to TermGroup users. Default=false.

autoReplyAuditRequests

If true, auto reply for Audit requests are not dispatched to TermGroup users.

Note: If a TermGroup associated with this MGW has WaitAuditVal or WaitAuditCap in scenario, the
functions end with a Timeout status.

sendTransAck

If true, enables sending of Transaction Ackowledgement. In the enabled state, Ack is sent after each
reply is received, and a Transaction Ack is expected after each reply sent. Default=false.

sendTransPend

If true, enables sending of TransactionPending reply. TransactionPending is sent when a
TransactionRequest is received. The request is a retransmission. Default=false.

autoReplyModifyOnRoot

If true, Modify requests with Termination ROOT are not dispatched to
TermGroup users.

Note: If a TermGroup associated with ROOT on this MGW has WaitModify in scenario, the function
ends with a Timeout status.

sendModifyOnRoot

Chapter 35 VoIP H.248 Peer

– 1325 –

If true, Modify requests with Termination ROOT are not dispatched to TermGroup users.
Default=false.

enableRetransmissions

If true, enables retransmissions of messages for which a response has not been received.
Default=false

maxRetransmissions

When enableRetransmissions is configured true, this is the maximum number of retransmissions.
Default=1

retransmissionInterval

When enableRetransmissions is configured true, this is the time in milliseconds for the first
retransmission. Default=10

commonDigitMap

If true, the Gateway uses a specified default digit map. Default=false.

digitMapName

When commonDigitMap is true, this specifies the name of the default digit map. Default="dgmap"

digitMapValue

When commonDigitMap is true, this specifies the value of the default digit map.
Default="1234567890"

startWithRestart

If true, the simulated MGW automatically registers with the MGC.

Note: Retransmissions for each transaction are not counted.

retryCount

Indicates the number of transactions with ServiceChange(Restart) generated.

Note: Retransmissions for each transactions are not counted.

timeoutBetweenRetries

Indicates the time between two transactions with ServiceChange(Restart) generated.

maxInactivityTime

The maximum inactivity time, after which an Inaqctivity event is generated.

EXAMPLE
$Activity_H248MGW1 agent.pm.automatic.config \-enableRetransmissions
false \-_gbCommonDigitMap false \-maxInactivityTime
0 \-startWithRestart true \-sendTransPend
false \-commonDigitMap false \-retransmissionInterval
10 \-autoReplyToModifyOnRoot true \-digitMapName
"" \-digitMapValue "" \-autoReplyServiceChange

Chapter 35 VoIP H.248 Peer

– 1326 –

false \-sendTransAck false \-autoReplyAuditRequests
false \-retryCount 5 \-timeoutBetweenRetries
5 \-maxRetransmissions 1

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1327 –

MGC Automatic
VoIP H248 MGC Automatic settings

SYNOPSIS
H248 MGC Automaticset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem
\-protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.automatic.config \

DESCRIPTION

Automatic Settings specifies the automatic functionality parameters for the MGC side.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

autoReplyService
Change

If true, enables auto reply for Service Change. In this condition, Service Change requests are not
dispatched to TermGroup users. Default=false.

autoReplyNotify

If true, enables auto reply for Notify. Default=false.

sendModifyOnRoot

If true, Modify requests with Termination ROOT are not dispatched to TermGroup users.
Default=false

sendTransAck

If true, enables sending of Transaction Ackowledgement. In the enabled state, Ack is sent after each
reply is received, and a Transaction Ack is expected after each reply sent. Default=false.

sendTransPend

If true, enables sending of TransactionPending reply. TransactionPending is sent when a
TransactionRequest is received. The request is a retransmission. Default=false.

enableRetransmissions

If true, enables retransmissions of messages for which a response has not been received.
Default=false

retransmissionInterval

Chapter 35 VoIP H.248 Peer

– 1328 –

If enableRetransmissions is true, this specifies the time in milliseconds for the first retransmission.
Default=10

maxRetransmissions

If enableRetransmissions is true, this specifies the maximum number of retransmissions.
Default=1

waitRestart

If true, enables the restart procedure. Default=true.

timeoutForRestart

IfwaitRestart is true, this indicates the time before restart. Default=0

auditValue

If true, sends an AuditValue request with the specified context, termination, and descriptors specified.
Default=false.

auditContextVal

When auditValue is true, this specifies the context ID to which the AuditValue request is sent.
Default="-".

auditTerminationVal

When auditValue is true, this specifies thetermination ID to which the AuditValue request is sent.
Default="ROOT"

digitMapVal

If true, includes the descriptor in the request. Default=false

eventsVal

If true, includes the descriptor in the request. Default=false

eventBufferVal

If true, includes the descriptor in the request. Default=false

mediaVal

If true, includes the descriptor in the request. Default=false

modemVal

If true, includes the descriptor in the request. Default=false

multiplexerVal

If true, includes the descriptor in the request. Default=false

observedEventsVal

If true, includes the descriptor in the request. Default=false

Chapter 35 VoIP H.248 Peer

– 1329 –

packagesVal

If true, includes the descriptor in the request. Default=true

statisticsVal

If true, includes the descriptor in the request. Default=false

signalsVal

If true, includes the descriptor in the request. Default=false

auditCapabilities

If true, sends an AuditCapabilities request with context, termination, and
descriptors as specified. Default=false

auditContextCap

When auditCapabilities is true, this specifies the context ID to which the AuditCapabilities request
is sent. Default="-"

auditTerminationCap

When auditCapabilities is true, this specifies the termination ID to which the AuditCapabilities
request is sent. Default="ROOT"

digitMapVal

If true, includes the descriptor in the request. Default=false.

eventsCap

If true, includes the descriptor in the request. Default=false.

eventBufferCap

If true, includes the descriptor in the request. Default=false

mediaCap

If true, includes the descriptor in the request. Default=false

modemCap

If true, includes the descriptor in the request. Default=false

multiplexerCap

If true, includes the descriptor in the request. Default=false

observedEventsCap

If true, includes the descriptor in the request. Default=false

statisticsCap

If true, includes the descriptor in the request. Default=false

Chapter 35 VoIP H.248 Peer

– 1330 –

signalsCap

If true, includes the descriptor in the request. Default=false.

digitMapPerMGW

If true, sets a default DigitMap for the gateway. Default=false.

digitMapName

When digitMapPerGW is true, this specifies the name of the default Digit Map. Default="dgmap".

digitMapValue

When digitMapPerGW is true, this specifies the value of the default digit map.
Default="1234567890".

enableKeepAlive

If true, activates the MGC keepalive mechanism by sending an inactivity timeout parameter to the
GW. Default=false.

maxInactivityTime

If the Inactivity Timer Package is selected and the enableKeepAlive option is enabled, the configured
timeout value value is sent to the GW. Default=10000.

EXAMPLE
$Activity_H248MGC1 agent.pm.automatic.config \-enableKeepAlive
false \-signalsCap false \-eventBufferVal
false \-sendTransPend false \-modemVal
false \-digitMapName "dgmap" \-autoReplyNotify
false \-multiplexerVal false \-eventsVal
false \-auditTerminationCap "ROOT" \-timeoutForRestart
0 \-packagesVal true \-mediaCap
false \-statisticsCap false \-autoReplyServiceChange
false \-auditTerminationVal "ROOT" \-auditCapabilities
false \-sendTransAck false \-observedEventsCap
false \-maxRetransmissions 1 \-auditValue
false \-digitMapPerMGW false \-maxInactivityTime
10000 \-signalsVal false \-auditContextVal
"-" \-statisticsVal false \-digitMapValue
"1234567890" \-eventsCap false \-sendModifyOnRoot
false \-enableRetransmissions false \-mediaVal
false \-retransmissionInterval 10 \-modemCap
false \-eventBufferCap false \-observedEventsVal
false \-digitMapVal false \-waitRestart
true \-auditContextCap "-" \-multiplexerCap
false

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1331 –

Chapter 35 VoIP H.248 Peer

– 1332 –

Profiles
VoIP H248 MGC/MGW Profiles Settings

SYNOPSIS
MGC Profileset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \MGW Profileset Activity_
H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248MGW1
agent.pm.profiles.config \

DESCRIPTION

A collection of packages where each package is a collection of events, signals, statistics, properties,
and procedures.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

profile

The name of the profile. Default="ETSI_TGW/1"

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.config \-profile
"ETSI_TGW/1"

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1333 –

Packages
VoIP H248 MGC/MGW Packages

SYNOPSIS
MGC Packagesset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \$Activity_H248MGC1
agent.pm.profiles.packages.appendItemMGW Packagesset Activity_H248MGW1 [$Traffic2_
Network2 activityList.appendItem \-protocolAndType "H248MGW
Peer"]$Activity_H248MGW1 agent.config \$Activity_H248MGW1 agent.pm.profiles.config
\$Activity_H248MGW1 agent.pm.profiles.packages.appendItem

DESCRIPTION

A collection of events, signals, statistics, properties, and procedures.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Shows the package type and package description of the supported packages for a particular profile
type. Default="Package"

supported

Indicates the packages supported by the selected profile.

NOTE: The is editable when a custom profile is selected.

hexid

Indicates the hexadecimal id. Default=1

version

Indicates the protocol version. Allowed values are 1, 2, or 3. Default=2

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.packages.appendItem \-id
"Package" \-supported 0 \-hexid
1 \-version 2

SEE ALSO

Profiles

Chapter 35 VoIP H.248 Peer

– 1334 –

Chapter 35 VoIP H.248 Peer

– 1335 –

Events
VoIP H248 MGC/MGW Events

SYNOPSIS
MGC Packagesset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \$Activity_H248MGC1
agent.pm.profiles.packages.appendItem$Activity_H248MGC1 agent.pm.profiles.packages
(0).events.appendItem \MGW Packagesset Activity_H248MGW1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGW Peer"
]$Activity_H248MGW1 agent.config \$Activity_H248MGW1 agent.pm.profiles.config

\$Activity_H248MGW1 agent.pm.profiles.packages.appendItem$Activity_H248MGW1
agent.pm.profiles.packages(0).events.appendItem \

DESCRIPTION

Configures a collection of events.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the identification for events. Default="CID"

hexid

Indicates the hexadecimal id. Default=1

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.packages(1).events.appendItem \-id
"CID" \-hexid 1

SEE ALSO

Packages

Chapter 35 VoIP H.248 Peer

– 1336 –

Properties
VoIP H248 MGC/MGW Properties

SYNOPSIS
MGC Packagesset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \$Activity_H248MGC1
agent.pm.profiles.packages.appendItem$Activity_H248MGC1 agent.pm.profiles.packages
(2).properties.appendItem \MGW Packagesset Activity_H248MGW1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGW Peer"
]$Activity_H248MGW1 agent.config \$Activity_H248MGW1 agent.pm.profiles.config

\$Activity_H248MGW1 agent.pm.profiles.packages.appendItem$Activity_H248MGW1
agent.pm.profiles.packages(2).properties.appendItem \

DESCRIPTION

Configures a collection of properties.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the identification for properties. Default="CID"

hexid

Indicates the hexadecimal id. Default=1

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.packages(2).properties.appendItem \-id
"CID" \-hexid 1

SEE ALSO

Packages

Chapter 35 VoIP H.248 Peer

– 1337 –

Signals
VoIP H248 MGC/MGW Signals

SYNOPSIS
MGC Packagesset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \$Activity_H248MGC1
agent.pm.profiles.packages.appendItem$Activity_H248MGC1 agent.pm.profiles.packages
(5).signals.appendItem \MGW Packagesset Activity_H248MGW1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGW Peer"
]$Activity_H248MGW1 agent.config \$Activity_H248MGW1 agent.pm.profiles.config

\$Activity_H248MGW1 agent.pm.profiles.packages.appendItem$Activity_H248MGC1
agent.pm.profiles.packages(5).signals.appendItem \

DESCRIPTION

Configures a collection of signals.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the identification for signals. Default="CID"

hexid

Indicates the hexadecimal id. Default=1

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.packages(5).signals.appendItem \-id
"CID" \-hexid 1

SEE ALSO

Packages

Chapter 35 VoIP H.248 Peer

– 1338 –

Statistics
VoIP H248 MGC/MGW Statistics

SYNOPSIS
MGC Packagesset Activity_H248MGC1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGC Peer"]$Activity_H248MGC1
agent.config \$Activity_H248MGC1 agent.pm.profiles.config \$Activity_H248MGC1
agent.pm.profiles.packages.appendItem$Activity_H248MGC1 agent.pm.profiles.packages
(16).statistics.appendItem \MGW Packagesset Activity_H248MGW1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGW Peer"
]$Activity_H248MGW1 agent.config \$Activity_H248MGW1 agent.pm.profiles.config

\$Activity_H248MGW1 agent.pm.profiles.packages.appendItem$Activity_H248MGW1
agent.pm.profiles.packages(16).statistics.appendItem \

DESCRIPTION

Configures a collection of statistics.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the identification for statistics. Default="CID"

hexid

Indicates the hexadecimal id. Default=1

EXAMPLE
$Activity_H248MGC1 agent.pm.profiles.packages(16).statistics.appendItem \-id
"CID" \-hexid 5

SEE ALSO

Packages

Chapter 35 VoIP H.248 Peer

– 1339 –

H248 Settings
VoIP H248 Settings for MGW or MGC

SYNOPSIS
H248 Settings for MGWset Activity_H248MGW1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGW Peer"
]$Activity_H248MGW1 agent.config$Activity_H248MGW1 agent.pm.h248Settings.config

H248 Settings for MGCset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config$Activity_H248MGC1 agent.pm.h248Settings.config \

DESCRIPTION

H248 Settings specifies the H248 protocol settings for MGC and MGW.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

enableTos

Enables the type of service for H248.

transportType

Indicates the transport type of type UDP.

ipPreference

Indicates the IP preference of IPv4 or IPv6.

tos

Indicates whether the TOS/DSCP byte setting is taken into consideration when sending SIP packets.

textEncoding

Indicates the type of text encoding:

l Compact

l Normal

l Pretty

nUdpMaxSize

Indicates the maximum size of UDP. Default=1024

Chapter 35 VoIP H.248 Peer

– 1340 –

protocolVersion

Indicates the versions of the protocol type. Allowed values of protocol versions are 1, 2, or 3.

encodingType

Indicates the encoding type of type text.

EXAMPLE
$Activity_H248MGW1 agent.pm.h248Settings.config \-enableTos
false \-transportType 0 \-ipPreference
0 \-tos 0 \-textEncoding
3 \-nUdpMaxSize 1024 \-protocolVersion
3 \-encodingType 0

$Activity_H248MGC1 agent.pm.h248Settings.config \-enableTos
false \-transportType 0 \-ipPreference
0 \-tos 0 \-textEncoding
3 \-nUdpMaxSize 1024 \-protocolVersion
3 \-encodingType 0

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1341 –

Codec Settings
VoIP H248 MGC/MGW Term Group Codec settings

SYNOPSIS
VoIP H248 MGC TermGroup Codec Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.codecSettings.config \VoIP H248 MGW TermGroup Codec Settingsset Activity_
H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.codecSettings.config \

DESCRIPTION

Codec Settings contains the list of codecs that is used by the VoIP H248 MGC/MGW Term Groups in the
test. Codec Settings is a list of one or more codec (audio codec) objects. To add codec objects, use
the appendItem command. To clear the codec settings, use the clear subcommand.

SUBCOMMANDS

None

OPTIONS

codecs_number

Indicates the codec numbers. Default=2

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.codecSettings.config \-codecs_number
2

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1342 –

Data Codecs
VoIP H248 MGC/MGW Term Group Data Codecs

SYNOPSIS
VoIP H248 MGC TermGroup Data Codec Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.codecSettings.config \$Activity_H248TermGroupMGC1
agent.pm.codecSettings.dataCodecs.appendItem \VoIP H248 MGW TermGroup Data Codec
Settingsset Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem \-
protocolAndType "H248MGW Peer"]$Activity_H248MGW1
agent.config \$Activity_H248TermGroupMGW1 agent.pm.codecSettings.config \$Activity_
H248TermGroupMGW1 agent.pm.codecSettings.dataCodecs.appendItem \

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.codecSettings.dataCodecs.clear

Chapter 35 VoIP H.248 Peer

– 1343 –

$Activity_H248TermGroupMGC1 agent.pm.codecSettings.dataCodecs.appendItem \-id
"Rtp2833Events" \-dPayloadType 100

$Activity_H248TermGroupMGC1 agent.pm.codecSettings.dataCodecs.appendItem \-id
"Rtp2833Tones" \-dPayloadType 101

SEE ALSO

Codec Settings

Chapter 35 VoIP H.248 Peer

– 1344 –

Codecs
VoIP H248 MGC/MGW Term Group Audio Codecs

SYNOPSIS
VoIP H248 MGC TermGroup Codecsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.codecSettings.config \$Activity_H248TermGroupMGC1
agent.pm.codecSettings.codecs.appendItem \VoIP H248 MGW TermGroup Data Codecsset
Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.codecSettings.config \$Activity_H248TermGroupMGW1
agent.pm.codecSettings.codecs.appendItem \

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs. To add
a codec object, use the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

The codec type, which is one of the following:

Codec Description

CodecAMR Adaptive multi-rate codec

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG726x40 G.726 codec @ 40 Kbps

Chapter 35 VoIP H.248 Peer

– 1345 –

CodecG729A G.729 Annex-A codec

CodeciLBC iLBC codec

Options for CodecAMR

dPayloadIn

Incoming dynamic payload type. Default="98" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="98" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 14. Default=14.

payloadFormat

Payload format.

Value Usage

0 (default) Bandwidth-efficient format

1 Octet-aligned format

mode

Codec bit rate. One of the following:

Mode Description

0 (default) 4.75 kbps

1 5.15 kbps

2 5.90 kbps

3 6.70 kbps

4 7.40 kbps

5 7.95 kbps

6 10.20 kbps

7 12.20 kbps

Chapter 35 VoIP H.248 Peer

– 1346 –

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Chapter 35 VoIP H.248 Peer

– 1347 –

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.

Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

Chapter 35 VoIP H.248 Peer

– 1348 –

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="104" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.codecSettings.codecs.clear

$Activity_H248TermGroupMGC1 agent.pm.codecSettings.codecs.appendItem \-id
"CodecG711u" \-dPayloadOut 0 \-dPayloadIn

Chapter 35 VoIP H.248 Peer

– 1349 –

0 \-frameSize 160

$Activity_H248TermGroupMGC1 agent.pm.codecSettings.codecs.appendItem \-id
"CodecG711a" \-dPayloadOut 8 \-dPayloadIn
8 \-frameSize 160

SEE ALSO

Codec Settings

Chapter 35 VoIP H.248 Peer

– 1350 –

Other Settings
VoIPH248 MGC/MGW Term Group Peer Other Settings

SYNOPSIS
VoIP H248 MGC TermGroup Other Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.otherSettings.configVoIP H248 MGW TermGroup Other Settingsset Activity_
H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.otherSettings.config

DESCRIPTION

This object configures the VoIP H248 MGC/MGW Term Group Peer activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated H.248 Term Group phones/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

Chapter 35 VoIP H.248 Peer

– 1351 –

VOIP_IPAddress2

See VOIP_Var0.

VOIP_IPAddress3

See VOIP_Var0.

VOIP_IPAddress4

See VOIP_Var0.

ipPreference

Type of addressing to be used on the subnet that the VOIP H248 Term Group runs on.

Value Usage

0 (default) IPv4

1 IPv6

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.otherSettings.config \-VOIP_Var1
"" \-VOIP_Var0 "" \-VOIP_Var3
"" \-VOIP_Var2 "" \-VOIP_Var4
"" \-VOIP_IPAddress4 "" \-VOIP_IPAddress1
"" \-VOIP_IPAddress0 "" \-VOIP_IPAddress3
"" \-VOIP_IPAddress2 ""

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1352 –

SDP Settings
VoIPH248 MGC/MGW Term Group SDP Settings

SYNOPSIS
VoIP H248 MGC TermGroup SDP Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.sdpSettings.config \VoIP H248 MGW TermGroup SDP Settingsset Activity_
H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.sdpSettings.config \

DESCRIPTION

H.248 uses SDP for specification and negotiation of media capabilities of GW terminations. SDP
information is sent using a Stream descriptor that specifies as a single bi-directional media stream.

SUBCOMMANDS

None.

OPTIONS

replaceAutoSdpTemplate

If true, the auto SDP template constructed from the codec list can be overridden by editing the SDP
template. Default=false

encodeRtpMap

If true, a static payload type is included in the auto SDP. Default=false

replaceAutoSDP

If true, the auto SDP description constructed from the codecs list is overridden by editing the SDP
template. Default=false

skipSdpProcessing

If true, the MGC automatically processes and sends Local descriptors (the SDP template). Default=0

autoSdpTemplate

The SDP string that is used when the Auto option is selected for an SDP descriptor. Default="v=0

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.sdpSettings.config \-replaceAutoSdpTemplate
false \-encodeRtpMap false \-replaceAutoSDP
false \-skipSdpProcessing 0 \

-autoSdpTemplate"v=0 c=IN IP4 \$

m=audio \$ RTP/AVP 0" \

Chapter 35 VoIP H.248 Peer

– 1353 –

-autoSDP"v=0 o=- 0 0 IN IP4 \
[\$VOIP_MediaIP\] s=session c=IN IP4 \[\$VOIP_MediaIP\] b=CT:1000 t=0 0 m=audio \
[\$VOIP_MediaBasePort\] RTP/AVP 0 101 a=rtpmap:0 PCMU/8000\a=rtpmap:101 telephone-
event/8000\a=fmtp:101 0-16"

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1354 –

RTP Settings
VoIPH248 MGC/MGW TermGroup RTP settings

SYNOPSIS
VoIP H248 MGC TermGroup RTP Settings$Activity_H248TermGroupMGC1
agent.pm.rtpSettings.configVoIP H248 MGW TermGroup RTP Settings$Activity_
H248TermGroupMGW1 agent.pm.rtpSettings.config

DESCRIPTION

The RTP Settings configure the VoIPH248 MGC/MGW TermGroup RTP transport settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

If true, enables use of RTP to transport the media traffic. Default= False

rtpPort

The port used for RTP streaming. Default="10000".

enableRTCP

Enables the sending and receiving of RTCP packets.

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

If true, enables the computation of advanced RTP statistics.

enablePerStream

Enables computation of per-stream statistics.

enableMDI

Enables computation of MDI DF and MDI MLR statistics.

enableNBExec

If true, all RTP functions from a scenario execute in a non-blocking mode, i.e the current function from
a channel executes in the background, allowing the execution to continue on that channel with the
next script function. Default= False.

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.rtpSettings.config \-enableRTP

Chapter 35 VoIP H.248 Peer

– 1355 –

true \-enableRTCP false \-enableMDI
false \-chEnableHwAcc true \-chDisableHwAcc
false \-enableAdvStatCalc false \-enablePerStream
false \-rtpPort "\[10000-65535,4\]" \-enableNBExec
false

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1356 –

Audio Settings
H.248 TermGroup audio settings

SYNOPSIS
$Activity_H248TermGroupMGC1 agent.pm.rtpSettings.config\$Activity_H248TermGroupMGW1
agent.pm.rtpSettings.config

DESCRIPTION

The Audio Settings configure the VoIPH248 TermGroup audio RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be miliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following values:

l Best Effort (0x00): Routine service

Chapter 35 VoIP H.248 Peer

– 1357 –

l Class 1 (0x20): Priority service, Assured Forwarding class 1

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 35 VoIP H.248 Peer

– 1358 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp
false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-metricsQoV 0 \-useSilence

Chapter 35 VoIP H.248 Peer

– 1359 –

false \-silenceMode 1 \

SEE ALSO

Chapter 35 VoIP H.248 Peer

– 1360 –

Execution Settings
VoIP H248 MGC/MGW Term Group Execution Settings

SYNOPSIS
VoIP H248 MGC TermGroup Execution Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.executionSettings.config \VoIP H248 MGW TermGroup Execution Settingsset
Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.executionSettings.config \

DESCRIPTION

This object defines the execution settings for the VoIP H248 MGC/MGW Term Group.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

gracefulRampDown

If enabled, allows the user to exit gracefully after a session. Default=1

loopCount

If loopMode is 1, this option defines the number of loops that the test performs. Default="1".

loopPreDelay

Delay before first loop (ms). Default="0".

loopMode

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

loopMidDelay

Delay between loops (ms). Default="0".

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.executionSettings.config \-gracefulRampDown

Chapter 35 VoIP H.248 Peer

– 1361 –

1 \-loopMidDelay 0 \-loopPreDelay
0 \-loopCount 2 \-loopMode
1

SEE ALSO

VoIP H248 Peer Agent

Chapter 35 VoIP H.248 Peer

– 1362 –

Scenario Settings
VoIP H248 MGC/MGW TermGroup Scenario Settings

SYNOPSIS
VoIP H248 MGC TermGroup Scenario Settingsset Activity_H248MGC1 [$Traffic2_Network2
activityList.appendItem \-protocolAndType "H248MGC Peer"
]$Activity_H248MGC1 agent.config \$Activity_H248TermGroupMGC1

agent.pm.scenarioSettings.config \VoIP H248 MGW TermGroup Scenario Settingsset
Activity_H248MGW1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"H248MGW Peer"]\$Activity_H248MGW1 agent.config \$Activity_H248TermGroupMGW1
agent.pm.scenarioSettings.config \

DESCRIPTION

Scenario Settings specifies the test scenario file that will be used by the Tcl script.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP H248 Peer activity. Default=0

EXAMPLE
$Activity_H248TermGroupMGC1 agent.pm.scenarioSettings.config \

-scenarioFile "C:\\Documents and Settings\\bmoraru\\My \
Documents\\Load3.70\\test1.tst" \

-activeScenarioChannel0

SEE ALSO

VoIP H248 Peer Agent

! 37

Chapter 35 VoIP H.248 Peer

– 1363 –

This page intentionally left blank.

– 1364 –

CHAPTER 36 VoIP H.323 Peer
The IxLoad VoIP H.323 Peer Tcl API consists of a VoIP H.323 Peer agent, with separate APIs for
configuring each major aspect of the agent’s functionality.

API Overview

Limitations
The following restrictions and limitations of the VoIPH.323 Peer API exist:

l Individual VoIP H323 script functions can not be added and edited from the Tcl API. Instead, you
must add and configure the commands in the Scenario Editor, save the test scenario file, then
pass it as an argument to the
ScenarioSettings API class.

l Implementation of the BHCA objective features relies on two classes,
CustomParameters and CustomActivityLinkSettings that have to be
configured using the same parameters.

– 1365 –

VoIP H323 Peer API Commands
The IxLoad VoIP H323 Peer API commands are organized as shown in the following figure.

Chapter 36 VoIP H.323 Peer

– 1366 –

VoIP H323 Peer API Objects
The following table summarizes the VoIP H323 Peer API Objects

Object Description

VoIP H323 Peer Agent Top-level object defining the VoIP H323 Peer activity.

Scenario Settings Selects the Test Scenario file; corresponds to the Scenario Settings GUI
tab.

Codec Settings List of Codecs objects.

Codecs Audio codec with parameters.

H323 Settings VoIP H323 Peer parameters; corresponds to the H323 Settings GUI tab.

Execution Settings Run-time test configuration; corresponds to the Execution Settings GUI
tab.

Terminal Capability Configures the terminal capability settings.

Dial Plan Configures the registration names, phone numbers, and source, destination,
and transfer addresses for the channels/phones; corresponds to the Dial
Plan GUI tab.

RTP Settings RTP transport configuration; corresponds to the RTP Settings GUI tab.

Audio Settings Audio settings; corresponds to the Audio GUI tab.

Other Settings VoIP H323 Peer miscellaneous parameters; corresponds to the Other
Settings GUI tab.

Custom Activity Link
Settings,
CustomParameters

BHCA objective configuration; corresponds to the Custom Parameters GUI
tab.

Chapter 36 VoIP H.323 Peer

– 1367 –

VoIP H323 Peer Agent
VoIP H323 Peer Agent

SYNOPSIS
set Activity_VoIPH323Peer1 \[$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]

DESCRIPTION

A VoIP H.323 Peer agent is added to the agentList option of the ixConfig object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. See the
following example:
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer2
config \-enable true \-name
"VoIPH323Peer1" \-enableConstraint false \-userObjectiveValue
1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1 \

$Activity_VoIPH323Peer1 agent.config \-enable true
\-name "VoIPH323Peer1"

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:
$Activity_VoIPH323Peer1 agent(0).config -name “VoIPH323Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

uniqueID

The unique ID of this object. (Default = 1)

STATISTICS

The available H.323 statistics are listed below.

Statistic Description Per
Channel/Global

Chapter 36 VoIP H.323 Peer

– 1368 –

VoIPH323 Channels

Total Channels The per polling interval total number of channels,
a sum of active and non-active channels.

Global

Completed Channels The per polling interval number of COMPLETED
channels. A channel is COMPLETED if all the
channel loops were COMPLETED.

Global

Warning Channels The per polling interval number of WARNING
channels. A channel is WARNING if all the
channel loops were COMPLETED or WARNING and
at least one loop had a WARNING result.

Global

Failed Channels The per polling interval number of FAILED
channels. A channel is FAILED if all the channel
loops were COMPLETED or WARNING, and at least
one loop was FAILED.

Global

Aborted Channels The per polling interval number of ABORTED
channels. A channel is ABORTED if all the channel
loops were COMPLETED, WARNING, FAILED, or
ABORTED and at least one loop was ABORTED.

Global

Active Channels The per polling interval number of active
channels. Active channels are the channels
executing a scenario channel functions flow.

Global

VoIPH323 Loops

Completed Channel Loops The cumulative count of COMPLETED channel
loops. A channel loop is COMPLETED if all
executed script functions in the corresponding
scenario channel produced SKIPPED or
COMPLETED results.

Global

Warning Channel Loops The cumulative count of WARNING channel loops.
A channel loop has a WARNING result if all
executed script functions in the corresponding
scenario channel produced SKIPPED,
COMPLETED, or WARNING results and at least
one script function had a WARNING result.

Global

Failed Channel Loops The cumulative count of FAILED channel loops. A
channel loop is FAILED if all executed script
functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, WARNING, or
FAILED results and at least one script function
had a FAILED result.

Global

Chapter 36 VoIP H.323 Peer

– 1369 –

Aborted Channel Loops The cumulative count of ABORTED channel loops.
A channel loop is FAILED if all the executed script
functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, WARNING,
FAILED, or ABORTED results and at least one
script function had an ABORTED result.

Global

Total Channel Loops The cumulative count of executed loops. Global

Interloop Duration (Avg) [ms] The time gap between loops. Global

VoIPH323 Calls

Attempted Calls The number of initiated calls. Global

Connected Calls The number of established calls. Global

Received Calls The number of received incoming calls. Global

Answered Calls The number of answered incoming calls. Global

End Calls Initiated The count of initiated end call procedures,
incremented whenever an Initiate EndCall
(EndCall with "Wait other party to disconnect"
option is disabled) command execution is started.

Global

End Calls Received The count of received end call procedures,
incremented whenever an Await EndCall(EndCall
with "Wait other party to disconnect" option is
enabled) command execution is started.

Global

End Calls Completed The count of completed end call procedures. Global

Active Calls The number of active calls at one time.

For the initiator side a call is active after having
sent a SETUP message and until receiving or
sending a RELEASE COMPLETE message.

For the terminating side, a call is active after
having received SETUP message and until
sending or receiving RELEASE COMPLETE
message.

Global

Busy Calls Updated when an incoming call is received for an
alias/number on which an existing call is in
progress.

Global

VoIPH323 Call Rates

Attempted calls/s, The per polling interval rates for the above Global

Chapter 36 VoIP H.323 Peer

– 1370 –

Connected Calls/s,

Received Calls/s,

Answered Calls/s,

Rejected
Calls/s,

Busy Calls/s

VoIPH323 Call statistics.

VoIPH323 Busy Hour Call Measurements

BHCA The per polling interval Busy Hour Call Attempts
rate that represents the number of calls initiated
in one hour.

Global

BHCC The per polling interval Busy Hour Call
Completions rate that represents the number of
calls initiated and connected in one hour.

Global

VoIPH323 Call Times

Call Setup Time (Avg) [ms] The average duration between the moment a call
is initiated and call is connected.

Global

Talk Time (Avg) [ms] The average talk time (the duration between the
moment the call is connected and the moment the
call is disconnected by one of the parties).

Global

End Call Time (Avg) [ms] From the time the EndCall is executed to the time
it takes to tear down the call and complete the
EndCall execution.

Global

Total Call Duration (Avg) [ms] The average call duration. When referring to a
single call: (Entire) Call Length = Call Setup-Time
+ Talk Time + Call Teardown Time.

Global

VoIPH323 Registrations

Attempted Registrations This statistic is updated when a RRQ is sent.
Note: It is not updated when a light-weight RRQ
is sent.

Global

Successful Registrations This statistic is updated when a RFC is received
for an RRQ which is not a light weight RRQ.

Global

Failed Registrations This statistic is updated when a RRJ is received
for an RRQ which is not a light weight RRQ.

Global

Attempted DeRegistrations This statistic is updated when an URQ is sent. Global

Chapter 36 VoIP H.323 Peer

– 1371 –

Successful De-Registrations The cumulative count of successful de-
registrations, incremented when the phone
receives the reply UnregisterConfirm message
from the gatekeeper.

Global

Failed De-Registrations This statistic is updated when an URJ is received. Global

VoIPH323 Registration Rates

Attempted Registrations /sec The per polling interval rate of attempted
registrations.

Global

Successful Registrations /sec The per polling interval rate of successful
registrations.

Global

Attempted DeRegistrations
/sec

The per-polling interval rate of attempted de-
registrations.

Global

Successful DeRegistrations
/sec

The per polling interval rate of successful
registrations.

Global

VoIPH323 Registration Times

Registration Time (Avg) [ms] The registration time from the time a RRQ is sent
to the time a RCF is received.

Note: This statistic is not updated for light-
weight RRQ transactions.

Global

DeRegistration Time (Avg)
[ms]

The de-registration time from the time an URQ is
sent to the time an UCF is received.

Global

VoIPH323 Gatekeeper Discovery Requests

VoIPH323 GK Request GRQ
Transmitted

The number of Gatekeeper requests transmitted. Global

VoIPH323 GK Confirm GCF
Received

The number of Gatekeeper confirmations
received.

Global

VoIPH323 GK Reject GRJ
Received

The number of Gatekeeper Rejects received. Global

VOIPH323 GRQ Timed Out The number of sent Gatekeeper requests that
timed out.

Global

VoIPH323 Gatekeeper Registration Requests

VoIPH323 Registration
Request RRQ Transmitted

The number of sent Registration Requests
messages transmitted.

Global

Chapter 36 VoIP H.323 Peer

– 1372 –

VoIPH323 Registration
Confirm RCF Received

The number of received confirmation messages. Global

VoIPH323 Registration Reject
RRJ Received

The number of received reject messages. Global

VOIPH323 RRQ Timed Out The number of sent request messages that timed
out.

Global

VoIPH323 Gatekeeper Admission Requests

VoIPH323 Admission Request
ARQ Transmitted

The number of admission request messages
transmitted.

Global

VoIPH323 Admission Confirm
ACF Received

The number of admission confirmations received. Global

VoIPH323 Admission Reject
ARJ Received

The number of admission rejects received. Global

VOIPH323 ARQ Timed Out The number of sent admission request messages
that timed out.

Global

VoIPH323 Gatekeeper Disengage Requests

VoIPH323 Disengage Request
DRQ Transmitted

The number of disengage requests transmitted. Global

VoIPH323 Disengage Confirm
DCF Received

The number of disengage confirmation messages
received.

Global

VoIPH323 Disengage Reject
DRJ Received

The number of disengage reject messages
received.

Global

VOIPH323 DRQ Timed Out The number of sent request messages that timed
out.

Global

VoIPH323 Disengage Request
DRQ Received

The number of disengage requests received. Global

VoIPH323 Disengage Confirm
DCF Transmitted

The number of disengage confirmations received. Global

VoIPH323 Gatekeeper Unregistration Requests

VoIPH323 Unregister Request
URQ Transmitted

The number of unregister requests transmitted. Global

VoIPH323 Unregister Confirm
UCF Received

The number of unregister confirmations received. Global

Chapter 36 VoIP H.323 Peer

– 1373 –

VoIPH323 Unregister Reject
URJ Received

The number of unregister reject messages
received.

Global

VOIPH323 URQ Timed Out The number of unregister messages that timed
out.

Global

VoIPH323 URQ Received The number of unregister request messages
received.

VoIPH323 UCF Transmitted The number of unregister confirmation messages
transmitted.

VoIPH323 H225 Requests and Responses

VoIPH323 Setup Transmitted The number of Setup messages transmitted. Global

VoIPH323 Setup Received The number of Setup messages received. Global

VoIPH323 CallProceeding
Transmitted

The number of CallProceeding messages
transmitted.

Global

VoIPH323 CallProceeding
Received

The number of CallProceeding messages
received.

Global

VoIPH323 Alerting
Transmitted

The number of Alerting messages transmitted. Global

VoIPH323 Alerting Received The number of Alerting messages received. Global

VoIPH323 Connect
Transmitted

The number of Connect messages transmitted. Global

VoIPH323 Connect Received The number of Connect messages received. Global

VoIPH323 releaseComplete
Transmitted

The number of releasecomplete messages
transmitted.

Global

VoIPH323 H245 Requests and Responses

VoIPH323 TCS Transmitted The number of TerminalCapabilitySet messages
transmitted.

Global

VoIPH323 TCS Received The number of TerminalCapabilitySet messages
received.

Global

VoIPH323 TCSAck
Transmitted

The number of
TerminalCapabilitySetAcknowledgement
messages transmitted.

Global

VoIPH323 TCSAck Received The number of Global

Chapter 36 VoIP H.323 Peer

– 1374 –

TerminalCapabilitySetAcknowledgement
messages received.

VoIPH323
masterSlaveDetermination
Transmitted

The number of MasterSlaveDetermination
messages transmitted.

Global

VoIPH323
masterSlaveDetermination
Received

The number of MasterSlaveDetermination
messages received.

Global

VoIPH323
masterSlaveDeterminationAck
Transmitted

The number of MasterSlaveDetermination
Ackowledgement messages transmitted.

Global

VoIPH323
masterSlaveDeterminationAck
Received

The number of
MasterSlaveDeterminationAckowledgement
messages received.

Global

VoIPH323 openLogicalChannel
Transmitted

The number of OpenLogicalChannel messages
transmitted.

Global

VoIPH323 openLogicalChannel
Received

The number of OpenLogicalChannel messages
received.

Global

VoIPH323
openLogicalChannelAck
Transmitted

The number of
OpenLogicalChannelAckowledgement messages
transmitted.

Global

VoIPH323
openLogicalChannelAck
Received

The number of
OpenLogicalChannelAckowledgement messages
received.

Global

VoIPH323
closeLogicalChannel
Transmitted

The number of CloseLogicalChannel messages
transmitted.

Global

VoIPH323
closeLogicalChannel Received

The number of CloseLogicalChannel messages
received.

Global

VoIPH323
closeLogicalChannelAck
Transmitted

The number of
CloseLogicalChannelAckowledgement messages
transmitted.

Global

VoIPH323
closeLogicalChannelAck
Received

The number of
CloseLogicalChannelAckowledgement messages
received.

Global

VoIPH323 H245 Reject Messages

Chapter 36 VoIP H.323 Peer

– 1375 –

VoIPH323 TCSReject
Transmitted

The number of TerminalCapabilitySet reject
messages transmitted.

Global

VoIPH323 TCSReject Received The number of TerminalCapabilitySet reject
messages received.

Global

VoIPH323
masterSlaveDetermination-
Reject Transmitted

The number of MasterSlaveDetermination reject
messages transmitted.

Global

VoIPH323
masterSlaveDetermination-
Reject Received

The number of MasterSlaveDetermination reject
messages received.

Global

VoIPH323
openLogicalChannelReject
Transmitted

The number of OpenLogicalChannel reject
messages transmitted.

Global

VoIPH323
openLogicalChannelReject
Received

The number of OpenLogicalChannel reject
messages received.

Global

VoIPH323 Errors

Trigger Errors The total number of trigger errors. Global

RTP Errors The total number of RTP related errors,
incremented when any RTP script function is
failing or exiting on the Warning or Timeout
outputs. Possible causes include media sessions
that have been closed by the signaling engine, or
Generate DTMF/MF/Tone or Detect
DTMF/MF/Tone functions that failed.

This statistic is also incremented when the
signaling engine cannot start a media session,
such as when the negotiated codec or the
negotiated ptime is unsupported.

Global

Internal Errors The total number of internal errors. Global

Timeout Errors The total number of script functions that have
timed out.

Global

Transport Errors The total number of transport errors reported
during I/O operation.

Global

VoIPH323 Specific Errors

Parser Error The total number of parser errors encountered Global

Chapter 36 VoIP H.323 Peer

– 1376 –

during parsing.

Call Flow Errors The total number of H323 call flow errors. Global

VoIPH323 Throughput

VoIPH323 Bytes
Transmitted/sec

The total number of bytes transmitted in H.323
call signaling and call control packets (excluding
RTP packets).

Global

VoIPH323 Bytes Received/sec The total number of bytes received in H.323 call
signaling and call control packets (excluding RTP
packets).

Global

VoIPH323 Bytes Transmitted
And Received/sec

The total number of bytes transmitted and
received in H.323 call signaling and call control
packets (excluding RTP packets).

Global

VoIPH323 Other

ActiveCallers The instantaneous value of H323 callers (on the
scenario channel that the objective is applied to)
that are active at a given time during the test
execution. An emulated H323 caller is considered
to be active if he has completed the execution of
the Start script function and has not yet reached
the Stop function.

Global

Note: Statistics from the Other category are only stored in application-generated CSV files
and are not displayed in any of the predefined views, but can be assigned to custom statistics
views of the StatViewer module.

EXAMPLE
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]

set Timeline1 [::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"

$Activity_VoIPH323Peer1 config \-enable true \-name
"VoIPH323Peer1" \-enableConstraint false \-userObjectiveValue

Chapter 36 VoIP H.323 Peer

– 1377 –

1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1

$Activity_VoIPH323Peer1 agent.config \-enable true
\-name "VoIPH323Peer1" \

SEE ALSO

ixConfig

Chapter 36 VoIP H.323 Peer

– 1378 –

Codec Settings
VoIP H323 Peer Codec Settings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.codecSettings.config \

DESCRIPTION

Codec Settings contains the list of codecs that will be used by the VoIP H323 Peers in the test. Codec
Settings is a list of one or more codec (audio codec) objects. To add codec objects, use the
appendItem command. To clear the codec settings, use the clear subcommand.

SUBCOMMANDS

clear

Clears the list of codec settings. For example:
$Activity_VoIPH323Peer1 agent.pm.codecSettings.codecs.clear

OPTIONS

codecs_number

Indicates the codec numbers. Default= 0

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.codecSettings.config \-codecs_number
0

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1379 –

Codecs
VoIP H323 Peer Audio Codec

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.codecSettings.config \$Activity_
VoIPH323Peer1 agent.pm.codecSettings.codecs.appendItem \

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs. To add
a codec object, use the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

CodecAMR Adaptive multi-rate codec

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG726x40 G.726 codec @ 40 Kbps

CodecG729A G.729 Annex-A codec

CodecILBC Internet low-bitrate codec

Options for CodecAMR

dPayloadIn

Chapter 36 VoIP H.323 Peer

– 1380 –

Incoming dynamic payload type. Default="98" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="98" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 14. Default=14.

payloadFormat

Payload format.

Value Usage

0 (default) Bandwidth-efficient format

1 Octet-aligned format

mode

Codec bit rate. One of the following:

Mode Description

0 (default) 4.75 kbps

1 5.15 kbps

2 5.90 kbps

3 6.70 kbps

4 7.40 kbps

5 7.95 kbps

6 10.20 kbps

7 12.20 kbps

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Chapter 36 VoIP H.323 Peer

– 1381 –

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Chapter 36 VoIP H.323 Peer

– 1382 –

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.
Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="104" min="0" max="127".

Chapter 36 VoIP H.323 Peer

– 1383 –

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.codecSettings.codecs.clear

$Activity_VoIPH323Peer1 agent.pm.codecSettings.codecs.appendItem \-id
"CodecG711u" \-dPayloadOut 0 \-dPayloadIn
0 \-frameSize 160

$Activity_VoIPH323Peer1 agent.pm.codecSettings.codecs.appendItem \-id
"CodecG711a" \-dPayloadOut 8 \-dPayloadIn
8 \-frameSize 160

SEE ALSO

Codec Settings

Chapter 36 VoIP H.323 Peer

– 1384 –

Data Codecs
VoIP H248 MGC/MGW Term Group Data Codecs

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.codecSettings.config \$Activity_
VoIPH323Peer1 agent.pm.codecSettings.dataCodecs.appendItem \

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.codecSettings.dataCodecs.clear

$Activity_VoIPH323Peer1 agent.pm.codecSettings.dataCodecs.appendItem \-id
"Rtp2833Events" \-dPayloadType 100

$Activity_VoIPH323Peer1 agent.pm.codecSettings.dataCodecs.appendItem \-id

Chapter 36 VoIP H.323 Peer

– 1385 –

"Rtp2833Tones" \-dPayloadType 101

$Activity_VoIPH323Peer1 agent.pm.codecSettings.codecs.clear

SEE ALSO

Codec Settings

Chapter 36 VoIP H.323 Peer

– 1386 –

Other Settings
VoIPH323 Peer Other Settings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.otherSettings.config \

DESCRIPTION

This object configures the VoIP H323 Peer activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated H.323 phones/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

VOIP_IPAddress2

See VOIP_Var0.

Chapter 36 VoIP H.323 Peer

– 1387 –

VOIP_IPAddress3

See VOIP_Var0.

VOIP_IPAddress4

See VOIP_Var0.

ipPreference

Type of addressing to be used on the subnet that the VOIP H323 Peer runs on.

Value Usage

0 (default) IPv4

1 IPv6

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.otherSettings.config \-ipPreference
0 \-stackConfigFilename "" \-VOIP_Var1
"" \-VOIP_Var0 "" \-VOIP_Var3
"" \-VOIP_Var2 "" \-VOIP_Var4
"" \-VOIP_IPAddress4 "" \-totalUserCount
0 \-VOIP_IPAddress1 "" \-VOIP_IPAddress0
"" \-VOIP_IPAddress3 "" \-VOIP_IPAddress2
""

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1388 –

RTP Settings
VoIPH323 Peer RTP Settings

SYNOPSIS

$Activity_VoIPH323Peer1 agent.pm.rtpSettings.config \
-optionvalue

DESCRIPTION

RTP Settings configures the VoIPH323Peer RTP transport settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

Enables use of RTP to transport the media traffic.

0 = disabled (default)

1 = enabled

rtpPort

RTP port number. Default="10000".

Note: Valid port numbers are between 1000 and 65534.

enableRTCP

Enables the sending and receiving of RTCP packets.

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

Enables the computation of advanced RTP statistics.

enablePerStream

Enables computation of per-stream statistics.

enableMDI

Enables computation of MDI DF and MDI MLR statistics.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.rtpSettings.config \-enableRTP
true \-enableRTCP false \-enableMDI

Chapter 36 VoIP H.323 Peer

– 1389 –

false \-chEnableHwAcc true \-enableAdvStatCalc
false \-enablePerStream false \-rtpPort
"\[10000-65535,4\]" \

SEE ALSO

Chapter 36 VoIP H.323 Peer

– 1390 –

Audio Settings
VoIPH323 Peer audio settings

SYNOPSIS
$Activity_VoIPH323Peer1 agent.pm.audioSettings.config \

DESCRIPTION

The Audio Settings configure the VoIPH323 Peer audio RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be milliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

l The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following
values:

l Best Effort (0x00): Routine service

Chapter 36 VoIP H.323 Peer

– 1391 –

l Class 1 (0x20): Priority service, Assured Forwarding class 1

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 36 VoIP H.323 Peer

– 1392 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp
false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-metricsQoV 0 \-useSilence

Chapter 36 VoIP H.323 Peer

– 1393 –

false \-silenceMode 1 \

SEE ALSO

Chapter 36 VoIP H.323 Peer

– 1394 –

Video Settings
VoIPH323 Peer Video Settings

SYNOPSIS
$Activity_VoIPH323Peer1 agent.pm.VideoSettings.config \

-optionvalue

DESCRIPTION

Video Settings configures the VoIPH323 Peer’s video settings.

SUBCOMMANDS

None.

OPTIONS

enableVideo

Enables use of video as media traffic.

0 = disabled (default)

1 = enabled

videoClip

Name of the video file. Default = “Fire_avc.mp4”

playTypeVideo

Determines parameters for running video. Following values are available:

Value Usage

0 (default) Play for clip duration

1 Play for specified duration.

2 Conference mode

videoDuration

If playTypeVideo = 1, determines duration of video. Maximum value = 259200000.

videoDurationUnit

Unit of duration. The following values are available:

Value Usage

Chapter 36 VoIP H.323 Peer

– 1395 –

0 milliseconds

1 seconds

2 minutes

3 hours

useConference

If playTypeVideo = 2, enables use of conference mode. The following values are available:

Value Usage

0 All speak

1 Sequential

2 Random

confVideoDuration

If playTypeVideo = 2, enables selection of conference video duration.

confVideoDurationUnit

If playTypeVideo = 2, enables selection unit of conference video duration. The following values are
available:

Value Usage

0 milliseconds

1 seconds

2 minutes

3 hours

confDuration

If playTypeVideo = 2, enables selection of conference audio duration.

confDurationUnit

If playTypeVideo = 2, enables selection unit of conference audio duration. The following values are
available:

Value Usage

0 milliseconds

Chapter 36 VoIP H.323 Peer

– 1396 –

1 seconds

2 minutes

3 hours

enableTosVideo

Enables use of TOS/DSCP. Use the tosVideo option to specify the TOS/DSCP value.

tosVideo

The following values are available:

Value Usage

0 Best Effort (0x00)"

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

7 Custom

useMosVideo

Enables computation of MOS.

0 = disabled (default)

1 = enabled

Note: If MOS computation is enabled, the enableVideoOWD option also has to be enabled.

enableVideoOWD

If enabled, the One-way Delay metric is computed, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default = disabled.

ignoreHintTrack

If enabled, the hint track (if any) in the video clip is ignored. The video streaming uses a new hint
track which is recreated using one of the packetization modes defined by hintTrackType. Default =
disabled.

Chapter 36 VoIP H.323 Peer

– 1397 –

hintTrackType

Allows to select the packetization mode. The following values are available:

Value Usage

0 (default) Single NAL Unit

1 STAP-A, with FU-A fragmentation

AdvancedVideoSettings

If enabled, allows selecting the advanced settings. Valid only for H323 activities.

enableCustomMaxMBPS

If enabled, allows selecting the maximum number of macroblocks per second supported. Default =
disabled.

customMaxMBPS

The maximum number of macroblocks per second supported.

enableCustomMaxFS

If enabled, allows selecting the maximum frame size supported. Default = disabled.

customMaxFS

The maximum frame size supported.

enableCustomMaxDPB

If enabled, allows selecting the maximum decoded picture buffer size supported. By default it is
disabled.

customMaxDPB

The maximum decoded picture buffer size supported.

enableCustomMaxBRandCPB

If enabled, allows selecting the maximum supported video bitrate and coded picture buffer.

customMaxBRandCPB

The maximum number of static macroblocks per second.

enableMaxStaticMBPS

If enabled, allows selecting the maximum number of static macroblocks per second. Default =
disabled.

maxStaticMBPS

The maximum number of static macroblocks per second.

enableMaxRcmdNalUnitSize

Chapter 36 VoIP H.323 Peer

– 1398 –

If enabled, allows selecting the maximum recommended NALU size. Default = disabled.

enableMaxNalUnitSize

If enabled, allows selecting the maximum NALU size supported. Default = disabled.

maxNalUnitSize

The maximum NALU size supported.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.videoSettings.config \-rotationScheme
0 \-confDuration 1 \-useMosVideo
false \-enableVideoOWD false \-ignoreHintTrack
false \-enableTosVideo true \-enableVideo
true \-videoClip "Fire_avc.mp4" \-
useH323AdvancedSettings false \-videoDuration
5 \-confVideoDurationUnit 1 \-useConference
false \-confDurationUnit 1 \-confVideoDuration
1 \-videoDurationUnit 1 \-hintTrackType
1 \-fmtp "" \-rtpmap
"" \-playTypeVideo 0 \-tosValVideo
32

SEE ALSO

Chapter 36 VoIP H.323 Peer

– 1399 –

Alternative Capability Value Set List
VoIP H323 Alternative Capability Value Set List

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1
agent.pm.alternativeCapabilitySetList.alternativeCapabilityValueSetList.appendItem \

DESCRIPTION

Helps to configure the alternative capability value list.

SUBCOMMANDS

None.

OPTIONS

id

Indicates the id of the alternative capability name.
Default= "AlternativeCapability"

alternativeCapabilityName

The name of the alternative capability list.
Default= "Default_Alternative_Capability"

refCount

The reference count that is used to deallocate objects which are no longer referenced. Default= 0

EXAMPLE
$Activity_VoIPH323Peer1
agent.pm.alternativeCapabilitySetList.alternativeCapabilityValueSetList.appendItem \

-id "AlternativeCapability" \

-alternativeCapabilityName"Default_Alternative_Capability" \

-refCount 0

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1400 –

Capability List
VoIP H323 Alternative Capability Value Set List

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1
agent.pm.alternativeCapabilitySetList.alternativeCapabilityValueSetList.appendItem
\$Activity_VoIPH323Peer1
agent.pm.alternativeCapabilitySetList.alternativeCapabilityValueSetList.capabilityL
ist.appendItem \

DESCRIPTION

Helps to configure the capability list.

SUBCOMMANDS

None.

OPTIONS

id

Indicates the id of the capability list. Default= "Capability".

transportType

The transport type used for the VoIP data for the various versions. Default= 3.

capabilityTableEntryNumber

The number that is entered in the capability table. This table is referred to take policy actions based on
whether the system has a particular capability. Default= 1

EXAMPLE
$Activity_VoIPH323Peer1
agent.pm.alternativeCapabilitySetList.alternativeCapabilityValueSetList.capabilityL
ist.appendItem \-id "Capability" \-
transportType 3 \-capabilityTableEntryNumber
1

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1401 –

Custom Activity Link Settings
VoIP H323 Peer CustomActivityLinkSettings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.customActivityLinkSettings.config \

DESCRIPTION

CustomActivityLinkSettings configures the settings for the BHCA objective for VoIPH323 Peer
activities. This options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the IxLoad
GUI.

Note: The CustomActivityLinkSettings class must be configured alongside the CustomParameters
class that implements the same functionality.

Note: CPS objective related settings are not available for VoIPH323 Peer activities.

SUBCOMMANDS

None.

OPTIONS

bhcaObjectiveValue

The BHCA test objective value. Default="80000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

Chapter 36 VoIP H.323 Peer

– 1402 –

callSetupTime

Estimated call setup time. Default="500".

callTeardownTime

Estimated call teardown time. Default="500".

interCallDuration

Inter-call duration. Default="4000".

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.customActivityLinkSettings.config \-talkTime
40000 \-cpsObjectiveValue 100 \-cpsType
0 \-cpsInterCallDuration 150 \-channelsNo
1 \-cpsTalkTime 750 \-cpsOverheadTime
100 \-cpsChannelsNo 100 \-bhcaType
0 \-callTeardownTime 500 \-interCallDuration
4000 \-bhcaObjectiveValue 80000 \-callSetupTime
500

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1403 –

Execution Settings
VoIP H323 Peer Execution Settings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.executionSettings.config \

DESCRIPTION

This object defines the execution settings for the VoIP H323 Peer.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

gracefulRampDown

If enabled, the execution is stopped gracefully and the call is closed before the rampdown period ends.

loopCount

If loopMode is 1, this option defines the number of loops that the test performs.

Default="1".

loopPreDelay

Delay before first loop (ms). Default="0".

loopMode

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

loopMidDelay

Delay between loops (ms). Default="0".

phoneRule

Defines how phone numbers are incremented for H323 activity.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.executionSettings.config \-gracefulRampDown

Chapter 36 VoIP H.323 Peer

– 1404 –

true \-loopCount 1 \-loopPreDelay
0 \-loopMode 0 \-loopMidDelay
0 \-phoneRule 1

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1405 –

Simultaneous Capability
VoIP H323 Simultaneous Capability

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.simultaneousCapability.config \

DESCRIPTION

Configures the simultaneous capability name.

SUBCOMMANDS

None.

OPTIONS

refCount

The reference count that is used to deallocate objects which are no longer referenced. Default= 0

simultaneousCapabilityName

The name of the simultaneous capability. Default= ""

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.simultaneousCapability.config \-refCount
0 \-simultaneousCapabilityName ""

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1406 –

H323 Settings
VoIP H323 Peer Signaling Settings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.h323Settings.config \

DESCRIPTION

This object defines the VoIP H323 Peer settings.

SUBCOMMANDS

None.

OPTIONS

enableParallelH245

If true, H.323 initiates parallel H.245 channel establishment simultaneously with FastStart. Default=
False

Note: This option is enabled only if enableFastStart is true.

useGKforAdmission

If true, MakeCall sends ARQ request to gatekeeper and waits for ACF request before establishing the
call. Default= False

H225Version

The version specified in the protocol-identifier field of the Q.931 and RAS packet. Default= 5

rasRetryCount

Sets the number of retries to be done for RAS requests. Default= 1

enableDisengage

If true, EndCall request sends a Disengage message to the gatekeeper. Default= False

textUserUser

Specifies the user informaion to be sent in the Q.931 User-User IE. This can be either a character string
or a byte stream encoded in hexadecimal digits. Default= False

bandwidth

The value of bandwidth requested by the endpoint and also advertised in RAS messages. Default= 64
Kbps

textDisplay

Specifies the display information that is sent in the Q.931 Display IE.

Chapter 36 VoIP H.323 Peer

– 1407 –

enableH245tunneling

If true, H323 uses tunnel H.245 payloads within Q.931/H.225 packets. Default= True

enableCallAlerting

If true, sends out a call alerting message. Default= False

GKAdresstext

If enableAutoGKDiscovery is false, you can specify IP address or hostname for up to three
gatekeepers. The plug-in, in this case, accepts redirection requests for the gatekeepers. Default=
False

enableTos

If true, allows to configure Type of Service.TOS value is set for all UDP and TCP packets originating
from the IxLoad H.323 stack.

useRegistration
Parameters

If true, the values sent by the gatekeeper during registration overrides the corresponding values set by
the user for various parameters. Default= False

enableFastStart

If true, H.323 call establishment tries to use the FastStart mechanism. Default= True

ckHexUserUserData

If true, the user information that is sent in the Q.391 UserUser IE can be sent as a byte stream encoded
in hexadecimal digits. Default= False

rasTimeout

Sets the number of seconds after which a RAS request reaches time-out state if no response to that
request is received in the specified period. After a timeout, retry happens if so configured. Default= 4
seconds

enableCallProceeding

If true, sends out a call proceeding message. Default= False

enableRas

If true, RAS message is sent and received. Default= False

enableKeepAliveReg

If true, sends keep alive ARQ to the gatekeeper. Default= False

GKAddress

If enableAutoGKdiscovery is true, the IP address or hostname can be specified up to three
gatekeepers.

tosVal

Chapter 36 VoIP H.323 Peer

– 1408 –

If enableTos is true, this option sets the value of the TOS bits.

Value Usage

0 (default) Best Effort (0x00)

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

displayData

Specifies the display information to be sent in the Q.931 Display IE. This is IA5 character string. This
field supports sequence generators. Default= "Ixia\[00-\]" \

terminalType

Indicates the type of the endpoint. The terminal types are:

l Terminal Entity Without MC

l Gatekeeper Entity Without MC

H245Version

Specified version in the protocol-identifier field of the H.245 packet. Default= 9.

autoRegisterToGk

If true, H.323 MakeCall option sends RAS signaling (including registration) to establish the call and
EndCall unregisters with the gatekeeper. Default= False.

userUserData

Specifies the user information to be sent in the Q.931 User-User IE. This can be either IA5 character
string or a byte stream encoded in hexadecimal digits. This field supports sequence generators for IA5
characters. Default= "1234\[00-\]" \.

enableAutoGKdiscovery

If true, Automatic Gatekeeper Discovery is attempted by sending GRQ to the well-known Discovery
Multicast Address. Default= False.

callSignalingViaUDP

If true, call signaling is done over UDP and not over TCP as per Annex E specification. Default=
False.

Chapter 36 VoIP H.323 Peer

– 1409 –

enableH323

If true, the H323 script functions are executed; otherwise they are skipped. Default= True.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.h323Settings.config \-enableParallelH245
false \-useGKforAdmission false \-H225Version
5 \-rasRetryCount 1 \-enableDisengage
false \-textUserUser false \-bandwidth
64 \-textDisplay false \-enableH245tunneling
true \-enableCallAlerting false \-GKAddresstext
false \-enableTos false \-useRegistrationParameters
false \-enableFastStart true \-bandwidthtext
false \-ckHexUserUserData false \-rasTimeout
4 \-enableCallProceeding false \-enableRas
false \-enableKeepAliveReg false \-GKAddress
"198.18.80.80" \-tosVal 0 \-displayData
"Ixia\[00-\]" \-terminalType 50 \-H245Version
9 \-autoRegisterToGk false \-userUserData
"1234\[00-\]" \-enableH323 true

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1410 –

Simultaneous Capability Value Set List
VoIP H323 Simultaneous Capability Value Set List

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.terminalCapabilitySet.config
\$Activity_VoIPH323Peer1
agent.pm.terminalCapabilitySet.simultaneousCapabilityList.appendItem

DESCRIPTION

Helps to configure the simultaneous capability list.

SUBCOMMANDS

None.

OPTIONS

id

Indicates the id of the simultaneous capability name. Default= "SimultaneousCapabilityName"

refCount

The reference count that is used to deallocate objects which are no longer referenced. Default= 0

simultaneousCapabilityName

The name of the simultaneous capability list. Default= "Default_Simultaneous_Capability"

EXAMPLE
$Activity_VoIPH323Peer1
agent.pm.simultaneousCapabilitySetList.simultaneousCapabilityValueSetList.appendItem
\

-id "SimultaneousCapability" \

-refCount 0 \

-simultaneousCapabilityName "Default_Simultaneous_Capability"

SEE ALSO

Terminal Capability Set

Chapter 36 VoIP H.323 Peer

– 1411 –

Alternative Capability List
VoIP H323 Alternative Capability List

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1
agent.pm.simultaneousCapabilitySetList.simultaneousCapabilityValueSetList.alternati
veCapabilityList.appendItem \

DESCRIPTION

Configures the alternative capability list.

SUBCOMMANDS

None.

OPTIONS

id

Indicates the id of the alternative capability name. Default= "AlternativeCapabilityName"

alternativeCapabilityName

The name of the alternative capability list. Default= "Default_Alternative_Capability"

EXAMPLE
$Activity_VoIPH323Peer1
agent.pm.simultaneousCapabilitySetList.simultaneousCapabilityValueSetList.alternati
veCapabilityList.appendItem \

-id "AlternativeCapabilityName" \
-alternativeCapabilityName "Default_Alternative_Capability"

SEE ALSO

Simultaneous Capability Value Set List

Chapter 36 VoIP H.323 Peer

– 1412 –

Alternative Capability
VoIP H323 Alternative Capability

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.alternativeCapability.config \

DESCRIPTION

Configures the alternative capability descriptors.

SUBCOMMANDS

None.

OPTIONS

alternativeCapabilityName

The name of the alternative capability. Default= "".

refCount

The reference count that is used to deallocate objects which are no longer referenced. Default= 0.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.alternativeCapability.config \-
alternativeCapabilityName "" \-refCount
0

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1413 –

Dial Plan
VoIP H323 Peer Dial Plan

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.dialPlan.config \

DESCRIPTION

The Dial Plan object configures the registration names, phone numbers, and source, destination, and
transfer addresses for the channels/phones emulated by the VoIP H323 Peer activity.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

_useSPB

Method used to select phone number.

Value Usage

0 Use the phone number specified by pattern.

1 Use the phone number specified by Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (_useSPb=1). The generated Tcl script will run only on the machine it has been
generated on and only if the correspon-ding Phonebook entry has not yet been deleted since the
generation of the Tcl code.

_symDestStr

String identifying the VoIP H323 Peer that is the destination for traffic from this VoIP H323 Peer
activity. Default="None".

_sPhone

If _useSPb is 0, this option specifies the phone number. You can use sequence generators in this field
to generate multiple phone numbers. See the sequence generator appendix. Default="160
[00000000-]".

_sBp

If _useSPb is 1, this option specifies the phone book entry name.
Default="<None>".

Chapter 36 VoIP H.323 Peer

– 1414 –

srcPhoneType

Indicates the type of source phone number.

Value Usage

0 Specified by sourcePhoneSpecified as digits (default).

1 Specified by sourcePhoneBook as a file name.

_dBp

If _useDPb is 1, this option specifies the phone book file name.
Default="<None>".

ovrDestPhone

Enables overriding of phone number from the destination VoIP H323 Peer.
Default= False.

_dPhone

If _useDPb is 0, this option specifies the phone number. Default="170[00000000-]".

_useDPb

Method used to select the phone number used to override destination phone number.

Value Usage

0 (default) Specify pattern.

1 Specify Phonebook entry.

Note: This option appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (useDestPhoneBook=1). The generated Tcl script will run only on the machine it
has been generated on and only if the corresponding Phonebook entry has not yet been deleted since
the generation of the Tcl code.

destPhoneType

Method used to select phone number.

Value Usage

0 (default) Use the phone number specified by pattern.

1 Use the phone number specified by Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (useSourcePhoneBook=1). The generated Tcl script will run only on the machine

Chapter 36 VoIP H.323 Peer

– 1415 –

it has been generated on and only if the corresponding Phonebook entry has not yet been deleted
since the generation of the Tcl code.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.dialPlan.config \-_useSPb
0 \-symDestStr "Traffic2_VoIPH323Peer2" \-_sPhone
"160\[00000000-\]" \-_sBp "<None>" \-
srcPhoneType 0 \-_dBp
"<None>" \-ovrDestPhone false \-_dPhone
"170\[00000000-\]" \-_useDPb 0 \-destPhoneType
0

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1416 –

Terminal Capability Set
VoIP H323 Terminal Capability Set

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"] \$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.terminalCapabilitySet.config \

DESCRIPTION

Configures the terminal capability descriptors.

SUBCOMMANDS

None.

OPTIONS

defaultCodecIndex

Helps to edit the default codex index. Default = 0.

defaultCodecName

Helps to edit the default codec name. Default = ““.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.terminalCapabilitySet.config \-defaultCodecIndex
0 \-defaultCodecName ""

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1417 –

Simultaneous Capability List
VoIP H323 Simultaneous Capability List

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"] \$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.terminalCapabilitySet.config
\$Activity_VoIPH323Peer1
agent.pm.terminalCapabilitySet.simultaneousCapabilityList.appendItem

DESCRIPTION

Helps to configure the simultaneous capability list.

SUBCOMMANDS

None.

OPTIONS

id

Indicates the id of the simultaneous capability name. Default= "SimultaneousCapabilityName".

simultaneousCapabilityName

The name of the simultaneous capability list. Default= "Default_Simultaneous_Capability".

EXAMPLE
$Activity_VoIPH323Peer1
agent.pm.terminalCapabilitySet.simultaneousCapabilityList.appendItem \

-id "SimultaneousCapabilityName" \

-simultaneousCapabilityName"Default_Simultaneous_Capability"

SEE ALSO

Terminal Capability Set

Chapter 36 VoIP H.323 Peer

– 1418 –

Scenario Settings
VoIP H323 Peer Scenario Settings

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 agent.pm.scenarioSettings.config \

DESCRIPTION

Scenario Settings specifies the test scenario file that will be used by the Tcl script.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP H323 Peer activity.
Default=0.

EXAMPLE
$Activity_VoIPH323Peer1 agent.pm.scenarioSettings.config \

-scenarioFile"C:\\Documents and Settings\\supanda\\Desktop \
\\H323-rxf\\Simple H323 calls with FirstConnect..tst" \

-activeScenarioChannel0

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1419 –

Custom Parameters
VoIPH323 Peer CustomParameters

SYNOPSIS
set Activity_VoIPH323Peer1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPH323 Peer"]$Activity_VoIPH323Peer1
agent.config \$Activity_VoIPH323Peer1 customParameters.config \

DESCRIPTION

CustomParameters configures the settings for the BHCA objective for VoIPH323Peer activities. This
options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the GUI.

Note: The CustomParameters class has to be configured alonside the CustomActivityLinkSettings
class that implements the same functionality.

Note: CPS objective related settings are not available for VoIPH323 Peer activities.

SUBCOMMANDS

None.

OPTIONS

bhcaObjectiveValue

The BHCA test objective value. Default="80000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

interCallDuration

Chapter 36 VoIP H.323 Peer

– 1420 –

Inter-call duration. Default="4000".

callSetupTime

Estimated call setup time. Default="500".

callTeardownTime

Estimated call teardown time. Default="500".

EXAMPLE
$Activity_VoIPH323Peer1 customParameters.config \-talkTime
40000 \-cpsObjectiveValue 100 \-cpsType
0 \-cpsInterCallDuration 150 \-channelsNo
1 \-cpsTalkTime 750 \-cpsOverheadTime
100 \-cpsChannelsNo 100 \-bhcaType
0 \-callTeardownTime 500 \-interCallDuration
4000 \-bhcaObjectiveValue 80000 \-callSetupTime
500

SEE ALSO

VoIP H323 Peer Agent

Chapter 36 VoIP H.323 Peer

– 1421 –

This page intentionally left blank.

– 1422 –

CHAPTER 37 VoIP MGCP
The IxLoad VoIP MGCP Peer Tcl API consists of VoIP GW and VOIP MGC agents with separate APIs for
configuring each major aspect of the agent’s functionality.

There is also an Endpoint Agent with separate configuration parameters.

l When defined on a GW activity, an Endpoint agent refers to endpoints present on that gateway.

l When defined on a CA activity, an Endpoint agent refers to endpoints managed by that controller.

Limitations
The following restrictions and limitations of the VoIP MGCP Peer API exist:

l Individual VoIP MGCP script functions can not be added and edited from the Tcl API. Instead, you
must add and configure the test scenario in the Scenario Editor, then save the test scenario file
and pass it as an argument to the
ScenarioSettings API class.

– 1423 –

VoIP MGCP Peer API Commands
The IxLoad VoIP MGCP Peer API commands are organized as shown in the figure below.

Figure 30-2.VoIP MGCP GW Peer API Structure

Chapter 37 VoIP MGCP

– 1424 –

Chapter 37 VoIP MGCP

– 1425 –

VoIP MGCP CA/MGW Peer API Objects
The table below summarizes the VoIP MGCP CA/GW API objects.

Object Description

VoIP
MGCP CA
Agent

Top-level object defining the VoIP CA activity.

VoIP
MGCP GW
Agent

Top-level object defining the VoIP GW activity.

MGCP
Settings

Configures the MGCP Settings separately for the Media Gateway or Media Controller.
Also contains the list of all endpoint groups associated with the gateway or controller.

Automatic
Settings

Sets the automatic functionality parameters for the MGC and GW side.

Endpoints Contains the list of all endpoint groups associated with the gateway or controller. When
a new Endpoint is added, a new activity is added in the same NetTraffic.

Gateways The list of CA-controlled Gateways.

Chapter 37 VoIP MGCP

– 1426 –

VoIP MGCP Endpoint Peer API Objects
The table below summarizes the MGCP Endpoint API objects.

Object Description

VoIP MGCP Endpoint Agent Top-level object defining the VoIP MGCP CA/GW Endpoint agent
activity.

Scenario Settings This object corresponds to the Scenario Settings GUI tab and
enables the selection of the scenario channel.

Execution Settings Run-time test configuration; corresponds to the Execution Settings
GUI tab.

Endpoints The list of simulated endpoint groups.

Codec Settings List of Data Codecs and Codecs objects.

Data Codecs Data codec with parameters.

Codecs Audio codecs with parameters.

SDP Settings The SDP settings for the simulated endpoints.

RTP Settings RTP transport configuration corresponding to the RTP Settings GUI
tab.

SRTP Settings SRTP settings corresponding to the SRTP GUI tab.

Other Settings VoIP MGCP Peer miscellaneous parameters which corresponds to
the Other Settings GUI tab.

Custom Activity Link Settings,
CustomParameters

BHCA objective configuration which corresponds to the Custom
Parameters GUI tab.

Chapter 37 VoIP MGCP

– 1427 –

MGCP GW Agent
VoIP MGCPGW Agent

SYNOPSIS
set Activity_MGCPGW1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpGw Peer"]

DESCRIPTION

A VoIP MGCPGW agent is added to the agentList option of the ixConfig object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. See the
following example:
set Activity_MGCPGW1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpGw Peer"]

$Activity_MGCPGW1 config \-enable 1 \-name
"MGCPGW1"

$$Activity_MGCPGW1 agent.config \-cmdListLoops 0

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:
$Activity_MGCPGW1 agent(0).config -name “MgcpGw Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = 1).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

The available MGCP statistics are listed in the table below.

Statistic Description Applies
To

MGCP Transactions

Transactions
Sent

The number of transactions sent from test start. MGW,
CA

Chapter 37 VoIP MGCP

– 1428 –

Transactions
Received

The number of transactions received from test start. MGW,
CA

Transactions
Failed

The number of transactions initiated and failed from test start. MGW,
CA

MGCP Transaction Rates

Transactions
Sent/sec

The number of transactions sent per second from test start. MGW,
CA

Transactions
Received/sec

The number of transactions received per second from test start. MGW,
CA

Transactions
Failed/sec

The number of transactions failed per second from test start. MGW,
CA

MGCP Transaction Times

Transactions
Sent Duration
(ms) (min,
avg, max)

The min/max/average duration of sent transactions. MGW,
CA

Transactions
Received
Duration (ms)
(min, avg,
max)

The min/max/average duration of sent transactions. MGW,
CA

MGCP Calls

Calls
Attempted

The number of attempted calls since test start. This statistic is
incremented when the phone number digits are dialed.

MGW,
CA

Calls Received The number of received calls since test start. This statistic is
incremented when a receiver connection becomes sendreceive.

MGW,
CA

Calls
Connected

The number of connected calls since test start. This statistic is
incremented when a connection state becomes sendreceive following
an originated call.

MGW,
CA

Calls Answered The number of calls since test start that were not answered. This
statistic is incremented when a receiver endpoint sends an RQNT
(S:L/rg).

MGW,
CA

Calls Busy The number of calls since test start that resulted in an endpoint busy
condition. This statistic is incremented when an originating call is in
hd state.

MGW,
CA

Chapter 37 VoIP MGCP

– 1429 –

Calls Rejected The number of calls since test start that were rejected. This statistic is
incremented when a delete call message is received before the call is
connected.

MGW,
CA

MGCP Call Times

MGCP Call
Setup Time for
MGW (ms)
(min, avg,
max)

The min/max/average call setup time from the MGW perspective.

This is defined as the time duration between the first digit is sent and
the moment when the MGCP connection becomes sendrecv.

MGW

MGCP Call
Setup Time for
CA (ms) (min,
avg, max)

The min/max/average call setup time from the CA perspective.

This is the time duration between the moment the RQNT with rg (or
wt) is sent and the moment when the MGCP connection becomes
sendrecv.

CA

MGCP End Call
Time MGW
(ms) (min,
avg, max)

The min/max/average end call call time from the MGW perspective.

This is the duration between the DLCX is received and the NTFY (hu)
is sent, or inversed flow.

MGW

MGCP End Call
Time CA (ms)
(min, avg,
max)

The min/max/average end call call time from the CA perspective.

This is the time duration between the DLCX is sent and the NTFY (hu)
is received.

CA

MGCP Post Dial
Delay (ms)
(min, avg,
max)

The min/max/average post dial delay.

This is defined as the time between the last digit is sent and moment
when the MGCP connection becomes sendrecv.

MGW

MGCP Post
Pickup Delay
(ms) (min,
avg, max)

The min/max/average post pickup delay.

This is defined as the time duration between the NTFY (hd) sent and
the moment when the MGCP connection becomes sendrecv.

MGW

MGCP Media
Delay Tx (ms)

The transmitting side media delay.

This is the time duration between the moment the call setup is
finished and the moment the first RTP packet is received.

MGW

MGCP Media
Delay Rx (ms)

The receiving side media delay.

The time duration between the moment the call setup is finished and
the moment the first RTP packet is received.

CA

MGCP Total
Call Time (min,
avg, max)

The min/max/average total call time, which includes the call setup
time, talk time, and end call time.

MGW,
CA

Chapter 37 VoIP MGCP

– 1430 –

This is defined as the time duration between the NTFY (hd)
sent/received and the moment when the End Call is finished (NTFY
(hu) after DLCX, or DLCX after NTFY(hu)).

MGCP Call Rates

Calls
Attempted/sec

The number of attempted calls per second since test start. MGW,
CA

Calls
Received/sec

The number of received calls per second since test start. MGW,
CA

Calls
Connected/sec

The number of connected calls per second since test start. MGW,
CA

MGCP Commands

MGCP RSIP
Sent

Number of MGCP RSIP commands sent by the MGW since test start,
including retransmitted commands.

MGW

MGCP NTFY
Sent

Number of MGCP NTFY commands sent by the MGW since test start,
including retransmitted commands.

MGW

MGCP DLCX
Sent

Number of MGCP DLCX commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP RQNT
Received

Number of MGCP RQNT commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP CRCX
Received

Number of MGCP CRCX commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP MDCX
Received

Number of MGCP MDCX commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP DLCX
Received

Number of MGCP DLCX commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP AUCX
Received

Number of MGCP AUCX commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP AUEP
Received

Number of MGCP AUEP commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP EPCF
Received

Number of MGCP EPCF commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP RSIP
Received

Number of MGCP RSIP commands received by the MGW since test
start, including retransmitted commands.

MGW

Chapter 37 VoIP MGCP

– 1431 –

MGCP NTFY
Received

Number of MGCP NTFY commands received by the CA since test start,
including retransmitted commands.

CA

MGCP DLCX
Received

Number of MGCP DLCX commands received by the MGW since test
start, including retransmitted commands.

MGW

MGCP RQNT
Sent

Number of MGCP RQNT commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP CRCX
Sent

Number of MGCP CRCX commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP MDCX
Sent

Number of MGCP MDCX commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP DLCX
Sent

Number of MGCP DLCX commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP AUCX
Sent

Number of MGCP AUCX commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP AUEP
Sent

Number of MGCP AUEP commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP EPCF
Sent

Number of MGCP EPCF commands sent by the CA since test start,
including retransmitted commands.

CA

MGCP Responses

MGCP 1xx
Received

The number of 1xx responses received since test start, including
retransmissions.

MGW,
CA

MGCP 1xx Sent The number of 1xx responses sent since test start, including
retransmissions.

MGW,
CA

MGCP 2xx
Received

The number of 2xx responses received since test start, including
retransmissions.

MGW,
CA

MGCP 2xx Sent The number of 2xx responses sent since test start, including
retransmissions.

MGW,
CA

MGCP 4xx
Received

The number of 4xx responses received since test start, including
retransmissions.

MGW,
CA

MGCP 4xx Sent The number of 4xx responses sent since test start, including
retransmissions.

MGW,
CA

MGCP 5xx
Received

The number of 4xx responses received since test start, including
retransmissions.

MGW,
CA

Chapter 37 VoIP MGCP

– 1432 –

MGCP 5xx Sent The number of 5xx responses sent since test start, including
retransmissions.

MGW,
CA

MGCP 5xx
Received

The number of 5xx responses received since test start, including
retransmissions.

MGW,
CA

MGCP Messages

MGCP msgs tx The number of sent MGCP messages since test start. MGW,
CA

MGCP msgs rx The number of received MGCP messages since test start. MGW,
CA

MGCP matched
msgs

The number of matched MGCP messages since test start. MGW,
CA

MGCP
commands tx

The number of sent MGCP commands since test start. MGW,
CA

MGCP
commands rx

The number of received MGCP commands since test start. MGW,
CA

MGCP
responses tx

The number of sent MGCP responses since test start. MGW,
CA

MGCP
responses rx

The number of received MGCP responses since test start. MGW,
CA

MGCP Retransmissions TX

MGCP
retransmitted
messages sent

The percentage of retransmitted messages sent. MGW,
CA

MGCP
messages sent

The percentage of distinct messages sent, not including
retransmissions sent.

MGW,
CA

MGCP Retransmissions RX

MGCP
retransmitted
messages
received

The percentage of retransmitted messages received. MGW,
CA

MGCP
messages
received

The percentage of distinct messages received, not including received
retransmissions.

MGW,
CA

Chapter 37 VoIP MGCP

– 1433 –

MGCP Restart Duration

MGCP RSIP-
Restart
Duration

The duration of MGW restarts with a restart reason.

This is the time elapsed between the sending of an RSIP
(reason=restart) command and the receiving of a 200 OK response.

MGW

MGCP RSIP-
Forced
Duration

The duration of MGW restarts with a forced reason.

This is the time elapsed between the sending of an RSIP
(reason=forced) command and the receiving of a 200 OK response.

MGW

MGCP Active Calls/Transactions

Number of
active calls

The number of active calls. MGW,
CA

Number of
active
transactions

The number of active transactions. MGW,
CA

MGCP Errors

MGCP Call Flow
Errors

The number of call flow errors. Such an error occurs when:

l A gateway has no IP assigned;

l A script function exits on the Error output

MGW,
CA

MGCP Parser
Errors

The number of MGCP parser errors. This statistic is incremented when
a MGCP message is received with the first line malformed. When a
parser error occurs, the message is not dispatched any more.

MGW,
CA

MGCP Parser
Warnings

The number of MGCP parser warning. This statistic is incremented
when a MGCP message is received with a malformed line. When a
parser warning occurs, the message is still dispatched.

MGCP SDP
Errors

The number of SDP errors. This statistic is incremented in any of the
following situations:

l The SDP body cannot be constructed (invalid or empty custom
SDP);

l The SDP parsing error occurred;

l The SDP negotiation failed;

l The SDP Glare;

MGW,
CA

MGCP RTP
Errors

The number of RTP errors. MGW,
CA

MGCP
Transport

The number of errors resulting in the incapability to send a message. MGW,
CA

Chapter 37 VoIP MGCP

– 1434 –

Errors

MGCP Protocol
Errors

The number of MGCP protocol errors. This statistic is incremented in
any of the following situations:

l An RSIP with restart method is received for a gateway that is
already restarted;

l An RSIP with force method is received for a gateway that is
already force-restarted;

l An invalid message is intended to be sent;

l A message with an incompatible version is received;

l An RSIP message is received on a gateway;

l An inappropriate parameters has been received for a certain
endpoint state;

l An invalid message is received (with not allowed parameters for
that message);

MGW,
CA

MGCP Timeout
Errors

The number of MGCP timeout errors. This statistic is incremented
when a Wait-type script function timeout period has expired or when
the transaction timeout period has expired.

MGW,
CA

MGCP Unknown
Phone No

The number of errors having an unknown destination phone number as
a cause. This statistic is incremented only on the Call Agent when the
dialed phone number received through a NTFY command is not defined
in the Call Agent.

CA

MGCP Unknown
Endpoint

The number of errors having a failed endpoint resolution as cause.
This statistic is incremented when the GW/CA received a MGCP
command for an endpoint that is not defined on the gateway/call
agent.

MGW,
CA

MGCP Incorrect
ConnectionId

The number of errors caused by an incorrect connection id parameter.
This statistic is incremented on the Call Agent when it receives a
ConnectionId (I) parameter in a MDCX or DLCX command and that
connection has not been created.

MGCP Incorrect
CallId

The number of errors caused by an incorrect call id parameter. This
statistic is incremented on the Gateway/Call Agent when it receives a
CallId (C) parameter in a MDCX, CRCX, or DLCX command and there is
no connection created for that call id.

MGCP
Unsupported
Functionality

This statistic is incremented when the SDP information that is
intended to be sent references a connection that has already been
deleted.

MGCP Unknown
Restart Method

This statistic is incremented whenever a RSIP message is received
with an unknown RM parameter value.

Chapter 37 VoIP MGCP

– 1435 –

MGCP Unknown
Gateway IP

This statistic is incremented every time a Call Agent tries to send a
message to a gateway whose IP cannot be determined.

EXAMPLE
Activity MGCPGW1 of NetTraffic
Traffic1@Network1###set Activity_
MGCPGW1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpGw Peer"]

$Activity_MGCPGW1 config \-enable 1 \-name
"MGCPGW1"

$Activity_MGCPGW1 agent.config \-cmdListLoops 0

SEE ALSO

ixConfig

Chapter 37 VoIP MGCP

– 1436 –

MGCP Settings (GW)
VoIP MGCP simulated GW settings

SYNOPSIS
set Activity_MGCPGW1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpGw Peer"]$Activity_MGCPGW1 config \$Activity_MGCPGW1
agent.pm.mgcpSettings.config

DESCRIPTION

Simulates the source address in MGCP messages and contains the list of all endpoint groups
provisioned on the GW.

SUBCOMMANDS

Endpoints.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

port

The MGCP listening port. Default = "2427".

callAgent

The address of the controlling CA as a symbolic link or as an IP address.

enableTos

Enables use of TOS/DSCP settings. When enableTos is configured to 1, the tos option specifies the
TOS/DSCP value.

0 = TOS disabled (default)

1= TOS enabled

tosVal

If enableTos is configured 1, this option sets the value of the TOS bits.

Value Usage

0 (default) Best Effort (0x00)

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

Chapter 37 VoIP MGCP

– 1437 –

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

domainName

The MGCP GW domain name. Sequence generator expressions are supported, for example, gw[001-
100].ixialab.com which defines a number of 100 hosts, gw001 through gw100.

mgcpVersion

The currently supported MGCP version.

ncsTgcpVersion

The currently supported NCS version.

udpMaxSize

The maximum UDP size for MGCP traffic.

ipPreference

The IP preference, IPv4 or IPv6.

EXAMPLE
$Activity_MGCPGW1 agent.pm.mgcpSettings.config \-enableTos
false \-tosVal 0 \-domainName
"gw[001-100].ixialab.com" \-ncsTgcpVersion "NCS 1.0" \-
callAgent "Traffic2_MGCPCA1" \-udpMaxSize
1470 \-mgcpActivitiesCount 0 \-ipPreference
0 \-mgcpVersion "1.0" \-port
"2427"

$Activity_MGCPGW1 agent.pm.mgcpSettings.endpoints.clear

SEE ALSO

VoIP MGCPGW Agent

Chapter 37 VoIP MGCP

– 1438 –

Automatic Settings (GW)
VoIP MGCP GW automatic settings.

SYNOPSIS
s$Activity_MGCPGW1 agent.pm.automaticSettings.config \

DESCRIPTION

Defines automatic settings for the MGCP GW.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

rsipAtBegin

If configured to true, an RSIP command is sent at the test start.

restartDelay

If rsipAtBegin is configured true, this specifes a restart delay value (Default=0).

rsipAtEnd

If configured to true, an RSIP command is sent at the test end.

retransmit

If configured to true, this option enables retransmissions of message for whom a reply has not been
received.

ignoreRecvRetransmit

If configured true, retransmissions are ignored.

retransmTimerType

Specifies a timer type as either of the following:

l 0 = A timer value is specified

l 1 = The timer value is calculated internally according to RFC 3435

retransmTimerDuration

If retransmTimerType is configured 0, this specifies a retransmission timer value (default = 3000
ms).

transactionTimeout

Specifies a transaction timeout (default = 50000 ms).

Chapter 37 VoIP MGCP

– 1439 –

waitTimeout

Specifies a wait timeout (default = 50000 ms).

EXAMPLE
$Activity_MGCPGW1 agent.pm.automaticSettings.config \-restartDelay
"0" \-ignoreRecvRetransmit true \-rsipAtBegin
true \-transactionTimeout 50000 \-retransmTimerType
0 \-rsipAtEnd true \-waitTimeout
50000 \-retransmTimerDuration 3000 \-retransmit
true

SEE ALSO

MGCP Settings (GW)

Chapter 37 VoIP MGCP

– 1440 –

Endpoints
VoIP MGCP GW endpoint group settings.

SYNOPSIS
$Activity_MGCPGW1 agent.pm.mgcpSettings.endpoints.appendItem

DESCRIPTION

Defines the properties of an endpoint group provisioned on the GW.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the endpoint group id.

endpoint

Indicates the endpoint group name.

NOTE: Sequence generator expressions are supported, such as for example, aaln[1-3].

enabled

Indicates if the endpoint group is active (true) or not (disabled = false).

activity

The name of the corresponding Endpoint activity.

EXAMPLE
$Activity_MGCPGW1 agent.pm.mgcpSettings.endpoints.appendItem \-id
"Endpoint" \-endpoint "aaln1" \-enabled
true \-activity "Endpoint1"

SEE ALSO

Chapter 37 VoIP MGCP

– 1441 –

MGCP CA Agent
VoIP MGCPCA Agent

SYNOPSIS
set Activity_MGCPCA1 [$Traffic2_Network2 activityList.appendItem \-protocolAndType
"MgcpCa Peer"]

$Activity_MGCPCA1 config \-enable 1 \-name
"MGCPCA1"

DESCRIPTION

A VoIP MGCPCA agent is added to the agentList option of the ixConfig object using the appendItem
subcommand from the ixConfigSequenceContainer command. Other ixConfigSequenceContainer
subcommands may be used to modify the agentList. See the following example:
set Activity_MGCPCA1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpCa Peer"]

$Activity_MGCPCA1 config \-enable 1 \-name
"MGCPCA1"

$$Activity_MGCPCA1 agent.config \-cmdListLoops 0

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:
$Activity_MGCPCA1 agent(0).config -name “MgcpCa Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = 1).

name

The name associated with this object, which must be set at object creation time.

EXAMPLE
Activity MGCPCA1 of NetTraffic
Traffic1@Network1###set Activity_
MGCPCA1 [$Traffic1_Network1 activityList.appendItem \-protocolAndType
"MgcpCa Peer"]

$Activity_MGCPCA1 config \-enable 1 \-name

Chapter 37 VoIP MGCP

– 1442 –

"MGCPCA1"

SEE ALSO

ixConfig

Chapter 37 VoIP MGCP

– 1443 –

MGCP Settings (CA)
VoIP MGCP Simulated CA settings

SYNOPSIS
$Activity_MGCPCA1 agent.pm.mgcpSettings.config \

DESCRIPTION

Simulates the source address in MGCP messages, designates the MGCP CA settings. Also contains the
list of all gateways and endpoint groups controlled by the CA.

SUBCOMMANDS

Endpoints, Gateways.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

port

The MGCP CA listening port (default 2727).

mgcpVersion

The currently supported MGCP version.

ncsTgcpVersion

The currently supported NCS version.

enable Tos

Enables use of TOS/DSCP settings. When enableTos is configured to 1, the tos option specifies the
TOS/DSCP value.

0 = TOS disabled (default)

1= TOS enabled

tosval

If enableTos is configured 1, this option sets the value of the TOS bits.

Value Usage

0 (default) Best Effort (0x00)

1 Class 1 (0x20)

2 Class 2 (0x40)

Chapter 37 VoIP MGCP

– 1444 –

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

useDigitMap

If configured true, a digit map is specified.

digitMap

The digit map to be send to the GW.

ipPreference

The IP address preference, IPv4 or IPv6.

udpMaxSize

The maximum UDP size for MGCP traffic.

EXAMPLE
$Activity_MGCPCA1 agent.pm.mgcpSettings.config \-enableTos
false \-tosVal 0 \-digitMap
"160xxxxxx" \-ipPreference 0 \-ncsTgcpVersion
"NCS 1.0" \-useDigitMap true \-mgcpActivitiesCount
0 \-udpMaxSize 1470 \-mgcpActivityId
0 \-mgcpVersion "1.0" \-port
2727

SEE ALSO

Endpoints

Gateways

Chapter 37 VoIP MGCP

– 1445 –

Automatic Settings (CA)
VoIP MGCP CA automatic settings

SYNOPSIS
s$Activity_MGCPCA1 agent.pm.automaticSettings.config \

DESCRIPTION

The automated settings for the simulated CA.

SUBCOMMANDS

None

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

rsipAtBegin

If configured to true, an RSIP command is awaited at test start.

restartDelay

If rsipAtBegin is configured true, this specifies a restart delay value (Default=0).

rsipAtEnd

If configured to true, an RSIP command is awaited at test end.

retransmit

If configured to true, retransmissions are enabled.

ignoreRecvRetransmit

If configured true, retransmissions are ignored.

retransmTimerType

Specifies a timer type as either of the following:

l 0 = A timer value is specified

l 1 = The timer value is calculated internally according to RFC 3435

retransmTimerDuration

If retransmTimerType is configured 0, this specifies a retransmission timer value (default = 3000
ms).

transactionTimeout

Specifies a transaction timeout (default = 50000 ms).

Chapter 37 VoIP MGCP

– 1446 –

waitTimeout

Specifies a wait timeout (default = 50000 ms).

EXAMPLE
$Activity_MGCPCA1 agent.pm.automaticSettings.config \-restartDelay
"0" \-ignoreRecvRetransmit true \-rsipAtBegin
true \-transactionTimeout 50000 \-retransmTimerType
0 \-rsipAtEnd true \-waitTimeout
50000 \-retransmTimerDuration 3000 \-retransmit
true

SEE ALSO

Chapter 37 VoIP MGCP

– 1447 –

Endpoints
VoIP MGCPCA controlled Endpoint settings.

SYNOPSIS
$Activity_MGCPCA1 agent.pm.mgcpSettings.endpoints.clear$Activity_MGCPCA1
agent.pm.mgcpSettings.endpoints.appendItem \

DESCRIPTION

The properties of endpoint groups controlled by the CA.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the endpoind group id.

set

Indicates the endpoint set id.

endpoint

Indicates the endpoint group name.

NOTE: Sequence generator expressions are supported, for example, aaln[1-3].

enabled

Indicates if the endpoint group is active (true) or not (disabled = false).

activity

The name of the corresponding MGCP Endpoint activity.

EXAMPLE
$Activity_MGCPCA1 agent.pm.mgcpSettings.endpoints.clear

$Activity_MGCPCA1 agent.pm.mgcpSettings.endpoints.appendItem \-id
"Endpoint" \-set "Set1" \-endpoint
"aaln1" \-enabled true \-activity
"Endpoint2"

SEE ALSO

Gateways

Chapter 37 VoIP MGCP

– 1448 –

Chapter 37 VoIP MGCP

– 1449 –

Gateways
VoIP MGCP controlled GW settings

SYNOPSIS
$Activity_MGCPCA1 agent.pm.mgcpSettings.gateways.clear

$Activity_MGCPCA1 agent.pm.mgcpSettings.gateways.appendItem \

DESCRIPTION

The properties of gateways controlled by the CA.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

id

Indicates the gateway id.

set

Indicates the name of the endpoint set.

endpoint

Indicates the endpoint group name.

NOTE: Sequence generator expressions are supported, for example, aaln[1-3].

gateway

A controlled gateway.

NOTE: Sequence generator expressions are supported, for example gw[001-100].ixialab.com.

EXAMPLE
$Activity_MGCPCA1 agent.pm.mgcpSettings.gateways.clear

$Activity_MGCPCA1 agent.pm.mgcpSettings.gateways.appendItem \-id
"Gateway" \-set "Set1" \-endpoint
"aaln1" \-gateway "gw\[001-100\].ixialab.com"

SEE ALSO

Endpoints

Chapter 37 VoIP MGCP

– 1450 –

Scenario Settings
VoIP MGCP Endpoint scenario settings.

SYNOPSIS
$Activity_Endpoint2 agent.pm.scenarioSettings.config \

DESCRIPTION

Specifies the test scenario file and channel executed by the Tcl script.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP MGCP Endpoint activity.
Default=0.

EXAMPLE
$Activity_Endpoint2 agent.pm.scenarioSettings.config \-scenarioFile
"C:\\Documents and Settings\\user11\\Desktop\\MGCP rxf\\MBCP_BC_GWvsCA.tst" \-
activeScenarioChannel 1

SEE ALSO

Chapter 37 VoIP MGCP

– 1451 –

Execution Settings
VoIP MGCP Endpoint execution settings.

SYNOPSIS
$Activity_Endpoint2 agent.pm.executionSettings.config \

DESCRIPTION

This object defines the execution settings for the VoIP MGCP Endpoint.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

gracefulRampDown

If enabled, allows the user to exit gracefully after a session. Default=1

loopCount

If loopMode is 1, this option defines the number of loops that the test performs.

Default="1".

loopPreDelay

Delay before first loop (ms). Default="0".

loopMode

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

loopMidDelay

Delay between loops (ms). Default="0".

EXAMPLE
$Activity_Endpoint2 agent.pm.executionSettings.config \-gracefulRampDown
true \-loopMidDelay 0 \-loopPreDelay
0 \-loopCount 1 \-loopMode
1

Chapter 37 VoIP MGCP

– 1452 –

SEE ALSO

Chapter 37 VoIP MGCP

– 1453 –

Custom Activity Link Settings
VoIP MGCP Endpoint link settings.

SYNOPSIS
$Activity_Endpoint1 agent.pm.customActivityLinkSettings.config \

DESCRIPTION

This object defines the link settings for the VoIP MGCP Endpoint.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

bhcaObjectiveValue

The BHCA test objective value. Default="80000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

callSetupTime

Estimated call setup time. Default="500".

callTeardownTime

Estimated call teardown time. Default="500".

interCallDuration

Chapter 37 VoIP MGCP

– 1454 –

Inter-call duration. Default="4000".

cpsObjectiveValue

The Calls per Second test objective value. Default="100"

cpsType

Determines how the CPS objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

CPS objective will be met by specifying the talk time. Based on the the talk time value
specified in cpstalkTime, the cpsChannelsNo value is computed.

1 CPS objective will be met by specifying the number of channels. Based on the the
channels number value specified in cpsChannelsNo, the cpstalkTime value is
computed.

cpsTalkTime

If cpsType is 0, this option specifies the Talk Time that will be used to attain the CPS test objective.
Default="40000".

cpsChannelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the CPS test
objective. Default="100".

cpsOverheadTime

Indicates the duration of all other actions on the channel except the talk time and minimum inter-call
duration.

cpsInterCallDuration

The minimum time interval between the end of a call on a Voice channel and the start of a new call on
the same voice channel.

lpsObjectiveValue

The Loops-per-Second test objective value. Default="100".

lpsType

The mode in which the Loops-per-Second objective is met, either by specifying the talk time or the
number of channels, as follows:

Value Usage

0
(default)

LPS will be met by specifying the talk time. Specify the talk time in lpstalkTime.

1 LPS will be met by specifying the number of channels. Specify the number of channels

Chapter 37 VoIP MGCP

– 1455 –

in lpschannelsNo.

lpsTalkTime

If lpsType is configured 0, this is the estimated talk time value. Default="750".

lpsChannelsNo

If lpsType is configured 1, this is the estimated talk time value. Default="100".

lpsOverheadTime

The estimated overhead time. Default="1500".

lpsInterloopDuration

The estimated interloop duration. Default="2000".

lpsActiveChannel

The referenced test scenario channel.

activeUsersNo

The total number of simulated VoIP users (for ActiveCallers test objective). Default="100".

activeUsersObjectValue

The ActiveCallers test objective value. Active callers at any time represent a subset of the total
number of users. Default="100".

activeUserChannel

The referenced test scenario channel.

activeUsersTalkTime

The estimated talk time for the ActiveCallers test objective. Default="750".

EXAMPLE
$Activity_Endpoint1 agent.pm.customActivityLinkSettings.config \-lpsActiveChannel
0 \-talkTime 40000 \-lpsTalkTime
750 \-interCallDuration 4000 \-callSetupTime
500 \-lpsChannelsNo 100 \-activeUsersNo
100 \-cpsType 0 \-lpsObjectiveValue
100 \-lpsInterLoopDuration 2000 \-cpsOverheadTime
1500 \-activeUsersChannel 0 \-activeUsersObjectiveValue
100 \-cpsInterCallDuration 2000 \-lpsOverheadTime
1500 \-lpsType 0 \-callTeardownTime
500 \-bhcaObjectiveValue 80000 \-cpsObjectiveValue
100 \-activeUsersTalkTime 750 \-cpsTalkTime
750 \-bhcaType 0 \-channelsNo
100 \-cpsChannelsNo 100

Chapter 37 VoIP MGCP

– 1456 –

SEE ALSO

Chapter 37 VoIP MGCP

– 1457 –

Simulated Endpoints
Simulated endpoint settings.

SYNOPSIS
$Activity_Endpoint2 agent.pm.endpoints.config \

DESCRIPTION

This object configures the simulated endpoint settings of an Endpoint activity. This object can reside
both under an MGCP GW and MGCP CA object.

SUBCOMMANDS

None.

OPTIONS

endpointName

The endpoint name.

Note: Sequence generator expressions are supported, for example, aaln[1-3].

gwIpAsName

If configured true, the gwName parameter is specified as an IP address, otherwise it is specified as a
fully qualified host name.

gwName

The GW(s) the endpoint is provisioned on.

Note: Sequence generator expressions are supported, for example, gw[001-100].ixialab.com.

destPhoneSource

Defines the mode in which the destination phone number (for GW) or source phone number (for CA) is
specified:

0 = The phone number is specified by the destPhoneUser parameter

1 = The phone number is specified by a phone book entry (destPhonePB parameter)

2 = The phone number is taken from the CA activity (available for an MGCP GW activity)

destPhonePB

If destPhoneSource is configured with a value of 2, this specifies a phone book entry.

destPhoneUser

If destPhoneSource is configured with a value of 0, this specifies the call destination phone (for GW)
or source phone (for CA).

Note: Sequence generator expressions are supported, for example, 170[000000-].

Chapter 37 VoIP MGCP

– 1458 –

EXAMPLE
$Activity_Endpoint2 agent.pm.endpoints.config \-gwIpAsName
false \-destPhone "170\[000000-\]" \-_labelDestPhone
false \-destPhonePreview "" \-gwName
"gw\[01-10\].ixialab.com" \-endpointName "aaln1" \-
destPhoneType 0 \-destPhoneSource
0 \-destPhonePB "<None>" \-_phoneNoFromCA
false \-destPhoneUser "170\[000000-\]"

SEE ALSO

MGCP Settings (GW)

MGCP CA Agent

Chapter 37 VoIP MGCP

– 1459 –

Data Codecs
VoIP MGCP Endpoint Group Data Codecs

SYNOPSIS
$Activity_Endpoint1 agent.pm.codecSettings.dataCodecs.clear$Activity_Endpoint1
agent.pm.codecSettings.dataCodecs.appendItem \

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_Endpoint1 agent.pm.codecSettings.dataCodecs.clear

$Activity_Endpoint1 agent.pm.codecSettings.dataCodecs.appendItem \-id
"Rtp2833Events" \-dPayloadType 100

SEE ALSO

Codec Settings

Chapter 37 VoIP MGCP

– 1460 –

Chapter 37 VoIP MGCP

– 1461 –

Codecs
VoIP MGCP CA/GW Endpoint audio codecs

SYNOPSIS
$Activity_Endpoint1 agent.pm.codecSettings.codecs.clear$Activity_Endpoint1
agent.pm.codecSettings.codecs.appendItem \

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs. To add
a codec object, use the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

The codec type, which is one of the following:

Codec Description

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG726x40 G.726 codec @ 40 Kbps

CodecG729A G.729 Annex-A codec

CodeciLBC iLBC codec

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

Chapter 37 VoIP MGCP

– 1462 –

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Chapter 37 VoIP MGCP

– 1463 –

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.

Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Chapter 37 VoIP MGCP

– 1464 –

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="104" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

EXAMPLE
$Activity_Endpoint1 agent.pm.codecSettings.codecs.clear$Activity_Endpoint1
agent.pm.codecSettings.codecs.appendItem \-id
"CodecG711u" \-dPayloadOut 0 \-dPayloadIn
0 \-frameSize 160

SEE ALSO

Codec Settings

Chapter 37 VoIP MGCP

– 1465 –

SDP Settings
VoIP MGCP Endpoint SDP Settings

SYNOPSIS
$Activity_Endpoint1 agent.pm.sdpSettings.config \

DESCRIPTION

MGCP uses SDP for specification and negotiation of media capabilities of GW endpoints. SDP
information is sent using a stream descriptor that specifies a single bi-directional media stream.

SUBCOMMANDS

None.

OPTIONS

useCustomSdp

If true, the auto SDP template constructed from the codec list can be overridden by editing the SDP
template. Default=false.

customSPDP

The SDP string that is used when the Auto option is selected for an SDP descriptor.

EXAMPLE
$Activity_Endpoint1 agent.pm.sdpSettings.config \-useCustomSDP
false \-customSDP "v=0 \o=- 0 0 IN IP4 <\$VOIP_
SignalingIP> \s=session \c=IN IP4 <\$VOIP_MediaIP> \t=0 0 \m=audio <\$VOIP_
MediaBasePort> RTP/AVP 0 8 100 101 \a=rtpmap:0 PCMU/8000 \a=rtpmap:8 PCMA/8000
\a=rtpmap:100 telephone-event/8000 \a=rtpmap:101 tone/8000 \a=ptime:20"

SEE ALSO

VoIP MGCPGW Agent

Chapter 37 VoIP MGCP

– 1466 –

RTP Settings
VoIP MGCP Endpoint RTP settings

SYNOPSIS
$Activity_Endpoint1 agent.pm.rtpSettings.config \

DESCRIPTION

The RTP Settings configure the VoIP MGCP MGC/GW Endpoint group RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

If true, enables use of RTP to transport the media traffic. Default= false.

enableRTCP

If true, enables use of RTCP for RTP traffic. Default= false.

rtpPort

The port used for audio/video RTP streaming. Default="10000".

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

If true, enables the computation of advanced audio RTP statistics.

enableMDI

Enables computation of MDI DF and MDI MLR statistics.

enableNBExec

If true, all RTP functions from a scenario execute in a non-blocking mode, i.e the current function from
a channel executes in the background, allowing the execution to continue on that channel with the
next script function. Default= False.

EXAMPLE
$Activity_Endpoint1 agent.pm.rtpSettings.config \-enableRTP
false \-enableRTCP false \-chEnableHwAcc
true \-chDisableHwAcc false \-enableAdvStatCalc
false \-enablePerStream false \

-enableMDI false \
-rtpPort "\[10000-65535,4\]" \-enableNBExec

Chapter 37 VoIP MGCP

– 1467 –

false

SEE ALSO

VoIP MGCPGW Agent

Chapter 37 VoIP MGCP

– 1468 –

Audio Settings
VoIP MGCP MGC/GW Endpoint audio settings

SYNOPSIS
$Activity_Endpoint1 agent.pm.audioSettings.config \

DESCRIPTION

The Audio Settings configure the VoIP MGCP MGC/GW Endpoint audio RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be miliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following values:

l Best Effort (0x00): Routine service

l Class 1 (0x20): Priority service, Assured Forwarding class 1

Chapter 37 VoIP MGCP

– 1469 –

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jjitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 37 VoIP MGCP

– 1470 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

EXAMPLE
$Activity_Endpoint1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp
false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-metricsQoV 0 \-useSilence

Chapter 37 VoIP MGCP

– 1471 –

false \-silenceMode 1 \

SEE ALSO

VoIP MGCPGW Agent

Chapter 37 VoIP MGCP

– 1472 –

Other Settings
VoIPMGCP MGC/GW EndpointGroup Other Settings

SYNOPSIS
$Activity_Endpoint1 agent.pm.otherSettings.config \

DESCRIPTION

This object configures the VoIP MGCP MGC/GW Endpoint Group activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated MGCP Endpoint Group phones/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

VOIP_IPAddress2

See VOIP_Var0.

VOIP_IPAddress3

See VOIP_Var0.

Chapter 37 VoIP MGCP

– 1473 –

VOIP_IPAddress4

See VOIP_Var0.

EXAMPLE
$Activity_Endpoint1 agent.pm.otherSettings.config \-VOIP_Var1
"" \-VOIP_Var0 "" \-VOIP_Var3
"" \-VOIP_Var2 "" \-VOIP_Var4
"" \-VOIP_IPAddress4 "" \-VOIP_IPAddress1
"" \-VOIP_IPAddress0 "" \-VOIP_IPAddress3
"" \-VOIP_IPAddress2 ""

SEE ALSO

VoIP MGCPGW Agent

Chapter 37 VoIP MGCP

– 1474 –

CHAPTER 38 VoIP SIP Cloud
The IxLoad VoIP SIP Cloud Peer Tcl API consists of a VoIP SIP Cloud Peer agent, with separate APIs for
configuring each major aspect of the agent’s functionality.

Limitations
The following restrictions and limitations of the VoIP SIP Cloud Peer API exist:

l A VoIPSIP Cloud Peer activity and the VoIPSIP Peer activity it is associated to must reside on the
same NetTraffic.

l A network range assigned to a VoIPSIP Cloud necessarily has to be of the Round-Robin IP
distribution type.

– 1475 –

VoIP SIP Cloud API Commands
The IxLoad VoIP SIP Cloud API commands are organized as shown in the figure below.

Chapter 38 VoIP SIP Cloud

– 1476 –

API Objects
The following table lists the VoIP SIP Cloud Peer API objects

Object Description

VoIP SIPCloud Peer Agent Top-level object defining the VoIP SIP Cloud Peer activity.

Settings VoIPSIP Cloud IP addressing type settings.

SipServerList List of SIP Proxy servers emulated by the activity.

Chapter 38 VoIP SIP Cloud

– 1477 –

VoIPSIP Cloud Agent
VoIPSIPCloud Peer Agent

SYNOPSIS

set Activity_VoIPSIPPeer1 [$Traffic1_Network1 activityList.appendItem \

-protocolAndType "VoIPSIPCloud Peer"]

DESCRIPTION

A VoIPSIPCloud Peer agent is added to the agentList option of the ixConfig object using the
appendItem subcommand from the ixConfigSequenceContainer command, as shown in the
following example:

set Activity_VoIPSipCloud1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPSipCloud Peer"]

$Activity_VoIPSipCloud1 config \-enable true \-name
"VoIPSipCloud1"

$Activity_VoIPSipCloud1 agent.config \-enable true
\-name "VoIPSipCloud1"

Each member of the list may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by using
the following command:

$Activity_VoIPSipCloud1 agent(0).config -name “VoIPSIP Cloud Peer2”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

The following table lists the statistics published by this object.

Chapter 38 VoIP SIP Cloud

– 1478 –

Statistic Description Per
Channel/Global

Dispatched
messages

This statistic is incremented when a received message has been
parsed and a matching dispatching rule was found for it.

Global

Undispatched
messages

This statistic is incremented when a received message has been
parsed and a matching dispatching rule was not found for it.

Global

Sent
Messages

This statistics is incremented when an message was sent from a
server in the cloud.

Global

Parsed
Messages

This statistic is incremented when a message was successfully
parsed.

Global

Parser errors This statistic is incremented on the cloud in the data process
function, after parsing the received stream, if we receive parser
errors when we try to process the stream.

Global

Bytes
Transmitted

This statistic is incremented only on the cloud for sent messages.
Messages sent by a SIP peer through the cloud will not be
accounted to the SIP peer's bytes sent.

Global

Bytes
Received

This statistic is incremented only on the cloud for received
messages. Messages received by a SIP peer through the cloud will
not be accounted to the SIP peer's bytes received.

Global

EXAMPLE
set Activity_VoIPSipCloud1 [$Traffic1_Network1 activityList.appendItem \-
protocolAndType "VoIPSipCloud Peer"]

$Activity_VoIPSipCloud1 config \-enable true \-name
"VoIPSipCloud1"

$Activity_VoIPSipCloud1 agent.config \-enable true
\-name "VoIPSipCloud1"

SEE ALSO

ixConfig

Chapter 38 VoIP SIP Cloud

– 1479 –

Settings
VoIPSIPCloud Peer Settings

SYNOPSIS

$Activity_VoIPSipCloud1 agent.pm.settings.config \

-ipPreference 0

$Activity_VoIPSipCloud1 agent.pm.settings.sipServerList.clear

DESCRIPTION

Contains the preferred IP addressing type used, IPv4- or IPv6-only.

SUBCOMMANDS

None.

OPTIONS

ipPreference

The preferred IP address type:

0 = Only IPv4 (default)

1 = Only IPv6

EXAMPLE
$Activity_VoIPSipCloud1 agent.pm.settings.config \-ipPreference
0

SEE ALSO

Chapter 38 VoIP SIP Cloud

– 1480 –

SIP Server List
SIP Proxy Servers List

SYNOPSIS

$Activity_VoIPSipCloud1 agent.pm.settings.sipServerList.appendItem \

-optionvalue

DESCRIPTION

A SipServerList contains the list of SIP Proxy Servers emulated by the VoIPSIP Cloud Peer. To add
SipServer objects, use the appendItem subcommand from the ixConfigSequenceContainer
command.

Note: The SipServerList class has to be configured alonside the CloudServers class of a VoIP SIP
Peer that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

id

The SIP server list ID.

firstIp

The first IP address in the network range associated with the SIP Proxy server. This is the SIP Proxy
server that is located at the cloud boundary.

name

The server name (default sip_server#1 and subsequent strings).

rangeType

The range type, which can be only IP for VoIP SIP Cloud peers.

ipAddr

The start IP address of the associated network range.

netMask

The network mask.

ipStep

The incrementation step of the start IP address (default "0.0.0.1).

attachedInfo

Chapter 38 VoIP SIP Cloud

– 1481 –

An extra string associated with the proxy, such as for example a domain name (default = sip-test.my-
domain.com).

ipCount

The number of hosts (default = 1).

port

The SIP port (default = 5060).

ipType

The IP addressing type, IPv4 or or IPv6.

EXAMPLE
$Activity_VoIPSipCloud1 agent.pm.settings.sipServerList.appendItem \

-id"SipServer" \

-firstIp"172.20.13.1" \

-name"sip_server#1" \

-rangeType"IP" \

-ipAddr"Network Range 2 in Network1 (172.20.13.1+1)" \

-ipStep"0.0.0.1" \

-attachedInfo"sip-test.my-domain.com" \

-netMask"255.254.0.0" \

-ipCount"1" \

-port5060 \

-ipType"IPv4"

SEE ALSO

! 40

Chapter 38 VoIP SIP Cloud

– 1482 –

CHAPTER 39 VoIP SIP Peer
The IxLoad VoIP SIP Peer Tcl API consists of a VoIP SIP Peer agent, with separate APIs for configuring
each major aspect of the agent’s functionality.

Note: IxLoad supports two different approaches for SIP protocol testing:

l Basic SIP protocol testing support, the simpler of the two supported approaches for SIP testing,
is based on SIP Client and SIP Server activities having only limited call flow configuration
capabilities.
The Tcl API configuration commands corresponding to this approach are covered in SIP
Protocol Support.

l Advanced SIP testing support is based on VoIPSIPPeer activities capable of executing more
complex, custom protocol message flows.
The Tcl API configuration commands for this approach are covered in this chapter.

Limitations
The following restrictions and limitations of the VoIP SIP Peer API exist:

l The PhoneBook and other related classes, such as PhoneBookEntry, cannot be edited from the Tcl
API.

l Individual VoIP SIP script functions cannot be added and edited from the Tcl API. Instead, you
must add and configure the commands in the Scenario Editor, save the test scenario file, then
pass it as an argument to the Scenario Settings API class.

l Implementation of the BHCA and CPS objective features relies on two classes,
CustomParameters and CustomActivityLinkSettings that have to be configured using the
same parameters.

– 1483 –

VoIP SIP Peer API Commands
The IxLoad VoIP SIP Peer API commands are organized as shown in the figure below.

Chapter 39 VoIP SIP Peer

– 1484 –

VoIP SIP Peer API Objects
The table below summarizes the objects in the VoIP SIP Peer API.

Object Description

VoIP SIP Peer
Agent

Top-level object defining the VoIP SIP Peer activity.

Codec Settings List of Data Codecs and Codecs objects.

Data Codecs Data codec with parameters.

Codecs Audio codec with parameters.

Other Settings VoIP SIP Peer miscellaneous parameters; corresponds to the Other Settings tab
in GUI.

Signaling Settings VoIP SIP Peer parameters corresponding to the SIP Settings GUI tab.

Edit Contact Replacement contact information; corresponds to Override Contact control on
the Contact Settings tab in GUI.

RTP Settings RTP transport configuration; corresponds to the RTP Settings GUI tab.

Audio Settings Audio settings; corresponds to the Audio GUI tab.

T.38 Settings T.38 IP fax settings; corresponds to the T.38 GUI tab.

T.30 Settings T.30 settings; corresponds to the T.30 GUI tab.

SRTP Settings SRTP configuration corresponding to the SRTP Settings GUI tab.

MSRP Settings MSRP configuration that corresponds to the MSRP GUI tab.

MSRP GUI files The configuration of files sent over an established MSRP session.

MSRP Relays The configuration of MSRP relays an endpoint authenticates against.

Custom Activity
Link Settings

BHCA and CPS objective configuration; corresponds to the Custom Parameters
GUI tab.

Execution Settings Run-time test configuration; corresponds to the Execution Settings GUI tab.

Transfer Address Configures a SIP transfer address. corresponds to the Transfer Address window
opened from the SIP Settings GUI tab.

Scenario Settings Selects the Test Scenario file; corresponds to the Scenario Settings GUI tab.

Dial Plan Configures the source, destination, and transfer addresses and phone numbers
for the channels/endpoints; corresponds to the Dial Plan GUI tab.

Chapter 39 VoIP SIP Peer

– 1485 –

Timer Settings Configures session refresh and SIP message retransmission settings;
corresponds to the Automatic GUI tab.

TLS Settings TLS transport configuration corresponding to the TLS GUI tab.

TlsCyphers Configures a list of cyphers supported by the VoIPSipPeer activity.

CustomParameters BHCA and CPS objective configuration; corresponds to the Custom Parameters
GUI tab.

Advanced Settings Configures a VoIPSIP Cloud Peer activity associated with the VoIPSIP Peer.
Corresponds to the SIP Cloud Settings GUI tab.

CloudServers Configures the list of SIP Proxy servers emulated by a VoIPSIP Cloud Peer.

ServerRules Configures a list of rules associated with each emulated SIP Proxy server in the
cloud.

CloudRules Configures a list of dispatching rules that override the default VoIP SIP Cloud
rules.

RuleData Configures the processing operations applied to incoming SIP messages for
extracting an overriding dispatching rule. Corresponds to the Edit Cloud Rule
GUI.

Chapter 39 VoIP SIP Peer

– 1486 –

VoIP SIP Peer Agent
VoIP SIP Peer Agent

SYNOPSIS
set Activity_VoIPSIPPeer1 [$SIP_Network1 activityList.appendItem \-protocolAndType
"VoIPSIP Peer"]

DESCRIPTION

A VoIP SIP Peer agent is added to the agentList option of the ixConfig object using the appendItem
subcommand from the ixConfigSequenceContainer command. Other ixConfigSequenceContainer
subcommands may be used to modify the agentList. See the following example:
set Activity_VoIPSIPPeer1 [$SIP_Network1 activityList.appendItem \-protocolAndType
"VoIPSIP Peer"]

$Activity_VoIPSIPPeer1 config \-enable true \-name
"VoIPSIPPeer1" \-enableConstraint false \-userObjectiveValue
1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1

$Activity_VoIPSIPPeer1 agent.config \-enable true
\-name "VoIPSIPPeer1"

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:

$Activity_VoIPSIPPeer1 agent(0).config -name “VoIPSIP Peer new”

SUBCOMMANDS

None

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

The statistics published by this agent are listed below.

Statistic Description Per
Channel/Global

Chapter 39 VoIP SIP Peer

– 1487 –

VoIPSIP Channels

Successful Channels The instantaneous number of COMPLETED channels. A
channel is COMPLETED if all the channel loops were
COMPLETED.

Global

Warning Channels The instantaneous number of WARNING channels. A
channel is WARNING if all the channel loops were
COMPLETED or WARNING and at least one loop had a
WARNING result.

Global

Failed Channels The instantaneous number of FAILED channels. A
channel is FAILED if all the channel loops were
COMPLETED or WARNING, and at least one loop was
FAILED.

Global

Aborted Channels The instantaneous number of ABORTED channels. A
channel is ABORTED if all the channel loops were
COMPLETED, WARNING, FAILED, or ABORTED and at
least one loop was ABORTED.

Global

Active Channels The instantaneous number of active channels. Active
channels are the channels executing a scenario
channel functions flow.

Global

Total Channels The instantaneous total number of channels, a sum of
active and non-active channels.

Global

VoIPSIP Loops

Successful Channel Loops The cumulative count of COMPLETED channel loops. A
channel loop is COMPLETED if all executed script
functions in the corresponding scenario channel
produced SKIPPED or COMPLETED results.

Global

Warning Channel Loops The cumulative count of WARNING channel loops. A
channel loop has a WARNING result if all executed
script functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, or WARNING results
and at least one script function had a WARNING
result.

Global

Failed Channel Loops The cumulative count of FAILED channel loops. A
channel loop is FAILED if all executed script functions
in the corresponding scenario channel produced
SKIPPED, COMPLETED, WARNING, or FAILED results
and at least one script function had a FAILED result.

Global

Aborted Channel Loops The cumulative count of ABORTED channel loops. A Global

Chapter 39 VoIP SIP Peer

– 1488 –

channel loop is FAILED if all the executed script
functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, WARNING, FAILED,
or ABORTED results and at least one script function
had an ABORTED result.

Total Channel Loops The cumulative count of executed loops. Global

Interloop Duration (Avg)
[ms]

The time gap between loops. Global

VoIPSIP Loop Rate

Loops-per-second The instantaneous loops-per-second value, taking
into account started loops.

Global

VoIPSIP Calls

Attempted Calls The cumulative count of initiated calls. This statistic is
incremented when an INVITE for a new dialog is sent.

Global

Connected Calls The cumulative count of established calls. This
statistic is incremented when a 200 OK response is
received and the SDP negotiation is successful for the
call.

Global

Received Calls The cumulative count of received incoming calls. This
statistic is incremented when an INVITE for a new
dialog is parsed and matched.

Global

Answered Calls The cumulative count of answered incoming calls. This
statistic is incremented when a 200 OK message is
sent and the SDP negotiation is successful for the call.

Global

Rejected Calls The cumulative count of rejected incoming calls. Global

Failed Calls The cumulative count of failed calls.

This statistic is calculated at the end of the script loop
as (Attempted Calls - Connected Calls) on originating
endpoints and as (Received Calls - Answered Calls)
on receiving endpoints.

NOTE: This statistic deals only with failed
originated/received calls - problems with the initiation
part of the call and not with the successful conclusion
of the call.

Global

Transferred Calls The cumulative count of originated or incoming calls
that were transferred.

Global

Chapter 39 VoIP SIP Peer

– 1489 –

Busy Calls The cumulative count of originated or incoming calls
that were rejected with busy cause.

Global

Redirected Calls The cumulative count of originated or incoming calls
that were redirected.

Global

Calls with Authentication
Required

The cumulative count of originated or incoming calls
that required use of authentication.

Global

Calls Over UDP The cumulative count of completed originated or
incoming calls using UDP transport.

Global

Calls Over TCP The cumulative count of completed originated or
incoming calls using TCP transport.

Global

Calls Over TLS The cumulative count of completed originated or
incoming calls using TLS transport.

Global

Calls Over Mixed
Transport

The cumulative count of completed originated or
incoming calls using mixed UDP/TCP transport.

Global

Active Calls The cumulative count of active calls at one time.

For the initiator side a call is active after having sent
an ACK message and until receiving or sending a 200
OK for BYE message, depending on who is
disconnecting the session.

For the terminating side, a call is active after having
sent an 200 OK for INVITE message (with SDP
negotiation having completed successfully) and until
sending or receiving a 200 OK for BYE message,
depending on the party disconnecting the session.

Global

End Calls Initiated The cumulative count of initiated end call procedures,
incremented whenever a SIP BYE message is sent.

Global

End Calls Received The cumulative count of received end call procedures,
incremented whenever a SIP BYE message is
received.

Global

End Calls Completed The cumulative count of completed end call
procedures.

Global

VoIPSIP Call Rates

Attempted calls/s,

Connected Calls/s,

Received Calls/s,

The rates for the above VoIPSIP Call statistics. Global

Chapter 39 VoIP SIP Peer

– 1490 –

Answered Calls/s,

Rejected
Calls/s,

Transferred Calls/s,

Busy Calls/s,

Redirected Calls/s,
Calls with Authentication
Required/s,

Calls Over
UDP /s,

Calls Over
TCP /s,

Calls Over
TLS /s,

VoIPSIP Call Times

Call Setup Time (Avg)
[ms]

The average duration between the moment a call is
initiated (e.g. a SIP INVITE request message is
sent/received) and the moment the call is connected
(e.g. SIP ACK for INVITE is sent/received).

Global

Talk Time (Avg) [ms] The average talk time (the duration between the
moment the call is connected and the moment the call
is disconnected by one of the parties).

Global

Call End Time (Avg) [ms] The average duration between the moment a call
disconnect is initiated (e.g. a SIP BYE request
message is sent) and the moment the call is cleared
(e.g. a 200 OK response is received)

Global

Total Call Duration (Avg)
[ms]

The average call duration. When referring to a single
call: (Entire) Call Length = Call Setup-Time + Talk
Time + Call Teardown Time.

Global

VoIPSIP Session Refreshes

Attempted Session
Refreshes

The cumulative count of attempted session refreshes
(re-registrations, re-invites, updates treated as
refreshes).

Received Session
Refreshes

The cumulative count of received session refreshes
(re-invites, updates treated as refreshes).

Successful Session
Refreshes

The cumulative count of successful session refreshes
(ACK received for INVITE refresh, 200 Ok to UPDATE

Chapter 39 VoIP SIP Peer

– 1491 –

sent, or 200 Ok received for REGISTER)

Failed Session Refreshes The cumulative count of failed session refreshes (non
2xx responses and transaction failures).

VoIPSIP SSL Handshake

Client Hello Sent The cumulative count of Client Hello messages sent. Global

Client Hello Received The cumulative count of Client Hello messages
received.

Global

Server Hello Sent The cumulative count of Server Hello messages sent. Global

Server Hello Received The cumulative count of Server Hello messages
received.

Global

SSL Negotiations Finished
Successfully

The cumulative count of SSL sessions negotiations
finished successfully.

Global

SSL Errors Sent The cumulative count of errors sent. Global

SSL Errors Received The cumulative count of errors received. Global

SSL Alerts Sent The cumulative count of SSL alerts of all types sent. Global

SSL Alerts Received The cumulative count of SSL alerts of all types
received.

Global

VoIPSIP SSL Throughput

SSL Throughput (Mbps) The combined rate at which the peer sends and
receives SSL data.

Global

SSL Tx Rate (Mbps),
SSL Rx Rate (Mbps)

The total bytes sent/received over the SSL
connection, including control and data bytes.

Global

VoIPSIP SSL Warning Alerts

SSL Alerts Sent (user_
canceled)

The cumulative count of User Canceled alerts sent. Global

SSL Alerts Sent
(unsupported_
certificate)

The cumulative count of Unsupported Certificate
alerts sent.

Global

SSL Alerts Sent (record_
over-flow)

The cumulative count of Record Overflow alerts sent. Global

SSL Alerts Sent (no_ The cumulative count of No Renegotiation alerts sent. Global

Chapter 39 VoIP SIP Peer

– 1492 –

renegotia-tion)

SSL Alerts Sent (no_
certificate)

The cumulative count of No Certificate alerts sent. Global

VoIPSIP SSL Fatal Alerts

SSL Alerts Sent
(unknown_ca)

The cumulative count of Unknown CA alerts sent. Global

SSL Alerts Sent
(unexpected_message)

The cumulative count of Unexpected Message alerts
sent.

Global

SSL Alerts Sent
(protocol_version)

The cumulative count of Protocol Versionmessages
sent.

Global

SSL Alerts Sent (internal_
error)

The cumulative count of Internal Error messages
sent.

Global

SSL Alerts Sent
(insufficient_security)

The cumulative count of Insufficient Security alerts
sent.

Global

SSL Alerts Sent (illegal_
parameter)

The cumulative count of Illegal Parameter alerts sent. Global

SSL Alerts Sent
(handshake_failure)

The cumulative count of Handshake Failure alerts
sent.

Global

SSL Alerts Sent (export_
restriction)

The cumulative count of Export Restriction alerts
sent.

Global

SSL Alerts Sent
(decompression_failure)

The cumulative count of Decompression Failure alerts
sent.

Global

SSL Alerts Sent (decode_
error)

The cumulative count of Decode Error alerts sent. Global

SSL Alerts Sent (bad_
record_mac)

The cumulative count of Bad MAC Record alerts sent. Global

SSL Alerts Sent (access_
denied)

The cumulative count of Access Denied alerts sent. Global

SSL Alerts Received
(unknown_ca)

The cumulative count of Unknown CA alerts received.
An Unknown CA alert is sent if a valid certificate chain
or partial chain was received, but the certificate was
not accepted because the CA certificate could not be
located or could not be matched with a known, trusted
CA.

Global

Chapter 39 VoIP SIP Peer

– 1493 –

SSL Alerts Received
(unexpected_
message)

The cumulative count of Unexpected Message alerts
received. An Unexpected Message alert is sent when
an SSL peer receives a message that it was not
expecting, for example if it received handshake data
when it was expecting application data.

Global

SSL Alerts Received
(protocol_
version)

The cumulative count of Protocol Version alerts
received. A Protocol Version alert is sent if the
protocol version the client has attempted to negotiate
is recognized, but not supported. (For example, old
protocol versions might be avoided for security
reasons).

Global

SSL Alerts Received
(internal_error)

The cumulative count of Internal Error alerts
received. An Internal Error alert is sent if an internal
error unrelated to the peer or the correctness of the
protocol makes it impossible to continue, such as a
memory allocation failure.

Global

SSL Alerts Received
(insufficient_
security)

The cumulative count of Insufficient Security
messages received. An Insufficient Security alert is
returned instead of a Handshake Failure when a
negotiation has failed specifically because the peer
requires ciphers more secure than those supported by
the client.

Global

SSL Alerts Received
(illegal_
parameter)

The cumulative count of Illegal Parameter alerts
received. An Illegal Parameter alert is sent if a field in
the handshake was out of range or inconsistent with
other fields.

Global

SSL Alerts Received
(handshake_
failure)

The cumulative count of Handshake Failure alerts
received. The reception of a Handshake Failure alert
message indicates that the sender was unable to
negotiate an acceptable set of security parameters
from the options available.

Global

SSL Alerts Received
(decompression_failure)

The cumulative count of Decompression Failure alerts
received. A Decompression Failure alert is sent when
the decompression function received improper input
(data that expanded to an excessive length).

Global

SSL Alerts Received
(decode_error)

The cumulative count of Decode Error alerts received.
A Decode Error alert is sent when a message could
not be decoded because a field was out of the
specified range or the length of the message was
incorrect.

Global

Chapter 39 VoIP SIP Peer

– 1494 –

SSL Alerts Received
(bad_record_
mac)

The cumulative count of Bad MAC Record alerts
received. A Bad MAC Record alert is sent when a
message is received with an incorrect MAC (Message
Authentication Code).

Global

SSL Alerts Received
(access_
denied)

The cumulative count of Access Denied alerts
received. An Access Denied alert is sent if a valid
certificate was received, but when access control was
applied, the sender decided not to proceed with
negotiation.

Global

SSL Alerts Received
(export_
restriction)

The cumulative count of Export Restriction alerts
received. An Export Restriction alert is sent when a
negotiation not in compliance with export restrictions
was detected; for example, attempting to transfer a
1024 bit ephemeral RSA key for the RSA_EXPORT
handshake method.

Global

VoIPSIP SSLv2 Errors

SSL Errors Sent
(unsupported certificate)

The cumulative count of Unsupported Certificate error
messages sent.

Global

SSL Errors Sent
(undefined error)

The cumulative count of Undefined Error messages
sent.

Global

SSL Errors Sent (no
cipher)

The cumulative count of No Cipher messages sent. Global

SSL Errors Sent (bad
certificate)

The cumulative count of Bad Certificate error
messages. sent.

Global

SSL Errors Received
(unsupported certificate)

The cumulative count of Unsupported Certificate error
messages received. This error is returned when a peer
receives a certificate type that it does not support.

An Unsupported Certificate error is recoverable for
client authentication only.

Global

SSL Errors Received
(undefined error)

The cumulative count of Undefined Error messages
received. An Undefined Error is returned by the client
to the peer when it cannot find a supported cipher or
key size that is also supported by the peer.

An Undefined Error is not recoverable.

Global

SSL Errors Received (no
cipher)

The cumulative count of No Cipher messages
received. A No Cipher error is returned by the client to
the peer when it cannot find a cipher or key size that it

Global

Chapter 39 VoIP SIP Peer

– 1495 –

supports that is also supported by the peer.

A No Cipher error is not recoverable.

SSL Errors Received (no
certificate)

The cumulative count of No Certificate error messages
received. When a REQUEST-CERTIFICATE message is
sent, this error may be returned if the client has no
certificate to reply with.

A No Certificate error is recoverable for client
authentication only.

Global

SSL Errors Received (bad
certificate)

The cumulative count of Bad Certificate error
messages received. A Bad Certificate error is returned
when a certificate is deemed `bad' by the receiving
party, either because the signature of the certificate
was bad, or the values in the certificate were
inappropriate (for example, a name in the certificate
did not match the expected name).

A Bad Certificate error is recoverable for client
authentication only.

Global

VoIPSIP Delays

Post Dial Delay (Avg)
[ms]

The per polling interval time elapsed between sending
an INVITE message and receiving an answer from the
peer endpoint. This statistic is relevant for the call
originating endpoint.

Global

Media Delay TX (Avg)
[ms],

Media Delay TX (Max)
[ms],

Media Delay TX (Min)
[ms]

The per polling interval average/min/max media
delay computed as the time elapsed between the
sending of the SIP INVITE and the receiving of the first
RTP packet at the call initiating endpoint.

The media delay value includes the full call setup time
and the time it takes to receive the first media packet
at the call initiating endpoint.

This statistic is relevant for the call originating
endpoint.

Global

Media Delay RX (Avg)
[ms],

Media Delay RX (Max)
[ms],

Media Delay RX (Min)
[ms]

The per polling interval average/min/max time
elapsed between receiving the initial SIP INVITE and
receiving the first media packet.

The media delay includes the call setup delay and
post-pickup delay.

This statistic is relevant for the call terminating
endpoint.

Global

Chapter 39 VoIP SIP Peer

– 1496 –

Post-Pickup Delay (Avg)
[ms],

Post-Pickup Delay (Max)
[ms],

Post-Pickup Delay (Min)
[ms]

The per polling interval average/min/max time
elapsed between answering the call and receiving the
first media packet.

The post pickup delay is computed as time between
the sending of the SIP 200 OK response (after
receiving the SIP INVITE) and the receiving of the first
RTP packet.

This statistic is relevant for the call terminating
endpoint.

Global

VoIPSIP Registrations

Attempted Registrations The cumulative count of generated registrations,
retransmissions of REGISTER and REGISTER w/ Auth
messages not taken into account. This count includes
automatic registration or registration refreshes.

Global

Successful Registrations The cumulative count of registration messages that
completed successfully. This count includes automatic
registration or registration refreshes.

Global

Failed Registrations The cumulative count of failed registrations, defined
as an initial REGISTER request followed by a final
response from the destination registrar or interim
proxies indicating a failure. This count includes
automatic registration or registration refreshes.

A failure response is described as a 4XX (excepting
the 401 and 407 responses), 5XX, or 6XX message.

Notes:

l An unsuccessful registration at loop end is
considered a failed registration.

l Since registration attempts are often repeated, a
failed scenario must identify a
failure response associated with the final
attempt.

Global

Attempted De-
Registrations

The cumulative count of de-registration attempts
computed as the number of sent registrations having a
zero Expires header value.

Global

Successful De-
Registrations

The cumulative count of de-registration attempts that
completed successfully.

Global

Failed De-Registrations The cumulative count of failed de-registration
attempts.

Global

Chapter 39 VoIP SIP Peer

– 1497 –

Registration Time (Avg)
[ms]

The time elapsed between sending a registration
request and receiving a final successful response, in
milliseconds.

Global

De-Registration Time
(Avg) [ms]

The time elapsed between sending a de-registration
request and receiving a final successful response, in
milliseconds.

Global

VoIPSIP Registration Rates

Attempted Registrations
/sec

The per polling interval rate of attempted
registrations, including automatic registration or
registration refreshes.

Global

Successful Registrations
/sec

The per polling interval rate of successful
registrations, including automatic registration or
registration refreshes.

Global

Attempted De-
Registrations /sec

The per-polling interval rate of attempted de-
registrations, including automatic registration or
registration refreshes.

Global

Successful De-
Registrations /sec

The per polling interval rate of successful
registrations.

Global

VoIPSIP SIP Messages

Requests Sent The cumulative count of sent SIP requests. Global

Requests Parsed The cumulative count of received and parsed SIP
requests.

Global

Requests Matched The cumulative count of matched SIP requests. Global

Responses Sent The cumulative count of sent SIP responses. Global

Responses Parsed The cumulative count of received and parsed SIP
responses.

Global

Responses Matched The cumulative count of matched SIP responses. Global

INVITE Requests Sent The cumulative count of SIP INVITE messages sent by
the client.

Global

INVITE Requests Parsed The cumulative count of received and parsed SIP
INVITE requests.

Global

INVITE Requests Matched The cumulative count of received, parsed, and
matched SIP INVITE requests.

Global

Chapter 39 VoIP SIP Peer

– 1498 –

INVITE Requests
Retransmitted

The cumulative count of received SIP INVITE requests
that were retransmissions.

Global

ACK Requests Sent The cumulative count of SIP ACK messages sent by
the client.

Global

ACK Requests Parsed The cumulative count of received and parsed SIP ACK
requests.

Global

ACK Requests Matched The cumulative count of received, parsed, and
matched SIP ACK requests.

Global

ACK Requests
Retransmitted

The cumulative count of received SIP ACK requests
that were retransmissions.

Global

BYE Requests Sent The cumulative count of SIP BYE messages sent by
the client.

Global

BYE Requests Parsed The cumulative count of received and parsed SIP BYE
requests.

Global

BYE Requests Matched The cumulative count of received, parsed, and
matched SIP BYE requests.

Global

BYE Requests Internally
Matched

The cumulative count of SIP BYE requests that caused
a "disconnect" during an RTP function execution, but
were not explicitly expected in the test scenario.

Global

BYE Requests
Retransmitted

The cumulative count of received SIP BYE requests
that were retransmissions.

Global

CANCEL Requests Sent The cumulative count of SIP CANCEL messages sent
by the client.

Global

CANCEL Requests Parsed The cumulative count of received and parsed SIP
CANCEL requests.

Global

CANCEL Requests
Matched

The cumulative count of received, parsed, and
matched SIP CANCEL requests.

Global

CANCEL Requests
Retransmitted

The cumulative count of received SIP CANCEL
requests that were retransmissions.

Global

OPTIONS Requests Sent The cumulative count of SIP OPTIONS messages sent
by the client.

Global

OPTIONS Requests
Parsed

The cumulative count of received and parsed SIP
OPTIONS requests.

Global

OPTIONS Requests The cumulative count of received, parsed, and Global

Chapter 39 VoIP SIP Peer

– 1499 –

Matched matched SIP OPTIONS requests.

OPTIONS Requests
Retransmitted

The cumulative count of received SIP OPTIONS
requests that were retransmissions.

Global

REGISTER Requests Sent The cumulative count of sent SIP REGISTER
messages.

Global

REGISTER Requests
Parsed

The cumulative count of received and parsed SIP
REGISTER requests.

Global

REGISTER Requests
Matched

The cumulative count of received, parsed, and
matched SIP REGISTER requests.

Global

REGISTER Requests
Retransmitted

The cumulative count of received SIP REGISTER
requests that were retransmissions.

Global

NOTIFY Requests Sent The cumulative count of sent SIP NOTIFY requests. Global

NOTIFY Requests Parsed The cumulative count of received and parsed SIP
NOTIFY requests.

Global

NOTIFY Requests
Matched

The cumulative count of received, parsed, and
matched SIP NOTIFY requests.

Global

NOTIFY Requests
Retransmitted

The cumulative count of received SIP NOTIFY requests
that were retransmissions.

Global

SUBSCRIBE Requests
Sent

The cumulative count total number of sent SIP
SUBSCRIBE requests.

Global

SUBSCRIBE Requests
Parsed

The cumulative count of received and parsed SIP
SUBSCRIBE requests.

Global

SUBSCRIBE Requests
Matched

The cumulative count of received, parsed, and
matched SIP SUBSCRIBE requests.

Global

SUBSCRIBE Requests
Retransmitted

The cumulative count of received SIP SUBSCRIBE
requests that were retransmissions.

Global

REFER Requests Sent The cumulative count of sent SIP REFER requests. Global

REFER Requests Parsed The cumulative count of received and parsed SIP
REFER requests.

Global

REFER Requests Matched The cumulative count of received, parsed, and
matched SIP REFER requests.

Global

REFER Requests
Retransmitted

The cumulative count of received SIP REFER requests
that were retransmissions.

Global

Chapter 39 VoIP SIP Peer

– 1500 –

MESSAGE Requests Sent The cumulative count of sent SIP MESSAGE requests. Global

MESSAGE Requests
Parsed

The cumulative count of received and parsed SIP
MESSAGE requests.

Global

MESSAGE Requests
Matched

The cumulative count cumulative count of received,
parsed, and matched SIP MESSAGE requests.

Global

MESSAGE Requests
Retransmitted

The cumulative count of received SIP MESSAGE
requests that were retransmissions.

Global

INFO Requests Sent The cumulative count of sent SIP INFO requests. Global

INFO Requests Parsed The cumulative count of received and parsed SIP INFO
requests.

Global

INFO Requests Matched The cumulative count of received, parsed, and
matched SIP INFO requests.

Global

INFO Requests
Retransmitted

The cumulative count of received SIP INFO requests
that were retransmissions.

Global

UPDATE Requests Sent The cumulative count of sent SIP UPDATE requests. Global

UPDATE Requests Parsed The cumulative count of received and parsed SIP
UPDATE requests.

Global

UPDATE Requests
Matched

The cumulative count of received, parsed, and
matched SIP UPDATE requests.

Global

UPDATE Requests
Retransmitted

The cumulative count of received SIP UPDATE
requests that were retransmissions.

Global

PRACK Requests Sent The cumulative count of sent SIP PRACK requests. Global

PRACK Requests Parsed The cumulative count of received and parsed SIP
PRACK requests.

Global

PRACK Requests Matched The cumulative count of received, parsed, and
matched SIP PRACK requests.

Global

PRACK Requests
Retransmitted

The cumulative count of received SIP PRACK requests
that were retransmissions.

Global

UNKNOWN Requests
Parsed

The cumulative count of received and parsed SIP
UNKNOWN requests.

Global

UNKNOWN Requests
Matched

The cumulative count of unknown received, parsed
and matched SIP request messages. A SIP request
message is considered unknown if the method is none

Global

Chapter 39 VoIP SIP Peer

– 1501 –

of the INVITE, ACK, OPTIONS, BYE, CANCEL,
REGISTER, REFER, NOTIFY, SUBSCRIBE, MESSAGE,
PRACK, INFO, UPDATE supported methods.

UNKNOWN Responses
Parsed

The cumulative count of received and parsed SIP
UNKNOWN responses.

Global

UNKNOWN Responses
Matched

The cumulative count of unknown received, parsed,
and matched SIP response messages. A SIP response
message is considered unknown if the response code
is other than 100-699.

Global

1xx responses sent The cumulative count of sent SIP 1xx response
messages.

Global

1xx responses parsed The cumulative count of received and parsed SIP 1xx
response messages.

Global

1xx responses matched The cumulative count of received, parsed, and
matched SIP 1xx response messages.

Global

2xx responses sent The cumulative count of sent SIP 2xx response
messages.

Global

2xx responses parsed The cumulative count of received and parsed SIP 2xx
response messages.

Global

2xx responses matched The cumulative count of received, parsed, and
matched SIP 2xx response messages.

Global

3xx responses sent The cumulative count of sent SIP 3xx response
messages.

Global

3xx responses parsed The cumulative count of received and parsed SIP 3xx
response messages.

Global

3xx responses matched The cumulative count of received, parsed, and
matched SIP 3xx response messages.

Global

4xx responses sent The cumulative count of sent SIP 4xx response
messages.

Global

4xx responses parsed The cumulative count of received and parsed SIP 4xx
response messages.

Global

4xx responses matched The cumulative count of received, parsed, and
matched SIP 4xx response messages.

Global

5xx responses sent The cumulative count of sent SIP 5xx response Global

Chapter 39 VoIP SIP Peer

– 1502 –

messages.

5xx responses parsed The cumulative count of received and parsed SIP 5xx
response messages.

Global

5xx responses matched The cumulative count of received, parsed, and
matched SIP 5xx response messages.

Global

6xx responses sent The cumulative count of sent SIP 6xx response
messages.

Global

6xx responses parsed The cumulative count of received and parsed SIP 6xx
response messages.

Global

6xx responses matched The cumulative count of received, parsed, and
matched SIP 6xx response messages.

Global

Retransmitted Msgs The cumulative count of retransmitted SIP messages. Global

Ignored Re-transmissions The cumulative count of parsed and ignored
retransmitted messages following the enabling of the
Ignore Retransmissions option.

Global

Requests Orphans The cumulative count of failures to identify a call
recipient for SIP request messages when running in a
multiple channels per IP:port configuration.

Global

Responses Orphans The cumulative count of failures to identify a call
recipient for SIP response messages when running in a
multiple channels per IP:port configuration.

Global

VoIPSIP Errors

Transport Errors The cumulative count of transport errors, occurring
when a SIP message could not be sent due to a socket
error or a failed DNS server query.

Global

SIP Call Flows Errors The cumulative count of SIP call flow errors. Global

SIP Parser Errors The cumulative count of SIP parser errors. A SIP
parser error indicates a message with an invalid
request/status line or invalid (malformed) message
headers.

Note: In case the message has parser errors in the
mandatory headers (To, From, CSeq, Call-ID, Via),
the message is dropped without the statistic being
incremented.

In case the message has parser errors in the non-

Global

Chapter 39 VoIP SIP Peer

– 1503 –

mandatory headers, the parser error statistic is
incremented and the execution continues with the
malformed message, without the message being
dropped.

At the same time, a new parser_errors.log log file
comprising the most recent 100 entries is created on
the port CPU in the /tmp/ folder.

SIP SDP Errors The cumulative count of SIP SDP errors. A SDP error
occurs when an invalid SDP is parsed, when two offers
or two answers are received in a row in the same
session or when the SDP negotiation fails as described
in RFC 3264.

Global

SIP Internal Errors The cumulative count of SIP internal errors. Global

Trigger Errors The cumulative count of trigger errors. Global

RTP Errors The cumulative count of RTP related errors,
incremented when any RTP script function is failing or
exiting on the Warning or Timeout outputs. Possible
causes include media sessions that have been closed
by the signaling engine, or Generate
DTMF/MF/Tone or Detect DTMF/MF/Tone
functions that failed.

This statistic is also incremented when the signaling
engine cannot start a media session, such as when
the negotiated codec or the negotiated ptime is
unsupported.

Global

Internal Errors The cumulative count of internal errors. Global

Timeout Errors The cumulative count of script functions that have
timed out.

Global

VoIPSIP Busy Hour Call Measurements

BHCA The per polling interval Busy Hour Call Attempts rate
that represents the number of calls initiated in one
hour.

Global

BHCC The per polling interval Busy Hour Call Completions
rate that represents the number of calls initiated and
connected in one hour.

Global

Chapter 39 VoIP SIP Peer

– 1504 –

VoIPSIP Other

Extract Variables Errors The number of encountered ExtractVariable function
errors, occurring when at least one variable could not
be extracted.

Global

Requests Sent /s The number of sent SIP requests per second. Global

Requests Parsed /s The number of parsed SIP requests per second. Global

Requests Matched /s The number of matched SIP requests per second. Global

Responses Sent/s The number of sent SIP responses per second. Global

Responses Parsed/s The number of parsed SIP responses per second. Global

Responses Matched /s The number of parsed SIP responses per second. Global

INVITE | ACK | CANCEL |
OPTIONS | REGISTER |
NOTIFY | SUBSCRIBE |
REFER | MESSAGE | INFO
| UPDATE | PRACK |
UNKNOWN | BYE
Requests Sent /s

The rate of SIP requests of the given message type
sent.

Global

INVITE | ACK | CANCEL |
OPTIONS | REGISTER |
NOTIFY | SUBSCRIBE |
REFER | MESSAGE | INFO
| UPDATE | PRACK |
UNKNOWN | BYE
Requests Parsed /s

The rate of SIP requests of the given message type
parsed.

Global

BYE Requests Internally
Matched /s

The rate of BYE messages received when executing
RTP functions.

Global

1xx | 2xx | 3xx | 4xx |
5xx | 6xx Responses Sent
/s

The rate of SIP responses of the given type sent. Global

1xx | 2xx | 3xx | 4xx |
5xx | 6xx Responses
Parsed /s

The rate of SIP responses of the given type parsed. Global

Retransmitted Msgs /s The rate of retransmitted SIP messages. Global

Requests Orphans /s The rate of failures to identify a call recipient for SIP
request messages when running in a multiple

Global

Chapter 39 VoIP SIP Peer

– 1505 –

channels per IP:port configuration.

Responses Orphans /s The rate of failures to identify a call recipient for SIP
response messages when running in a multiple
channels per IP:port configuration.

Global

Bytes Received /s The incoming SIP byte rate. Global

TX Messages, TX
Messages /s

The number of outbound SIP messages, rate of SIP
outbound messages.

Global

TX SIP Msg Length (Avg),
TX SIP Msg Length (Min),
TX SIP Msg Length (Max)

The Avg/Min/Max outbound SIP message length. Global

Bytes Transmitted, Bytes
Received, Bytes
Transmitted /s

The number of SIP bytes sent, received, rate of SIP
bytes sent

Global

RX SIP Msg Length (Min),
RX SIP Msg Length (Avg),
RX SIP Msg Length (Max)

The Avg/Min/Max inbound SIP message length. Global

RX Messages, RX
Messages /sec

The number of inbound SIP messages, rate of inbound
SIP messages

Global

Triggers Sent, Triggers
Sent /s

The number of triggers sent, rate of triggers sent Global

Triggers Received,
Triggers Received /s

The number of triggers received, rate of triggers
received

Global

Triggers Bytes Sent,
Triggers Bytes Sent /s

The number of trigger bytes sent, rate of trigger bytes
sent.

Global

Triggers Bytes Received,
Triggers Bytes Received
/s

The number of trigger bytes received, rate of trigger
bytes received.

Global

ActiveCallers The instantaneous value of SIP callers (on the
scenario channel that the objective is applied to) that
are active at a given time during the test execution.
An emulated VoIPSIP caller is considered to be active
if he has completed the execution of the Start script
function and has not yet reached the Stop function.

Global

Chapter 39 VoIP SIP Peer

– 1506 –

Note: Statistics from the Other category are only stored in application-generated CSV files
and are not displayed in any of the predefined views, but can be assigned to custom statistics
views of the StatViewer module.

EXAMPLE
set my_network1 [::IxLoad new ixNetTraffic]

Activity VoIPSIPPeer2 of
NetTraffic my_network1###set Activity_
VoIPSIPPeer2 [$my_network1 activityList.appendItem \-protocolAndType
"VoIPSIP Peer"]## Timeline1 for
activitiy VoIPSIPPeer2,
VoIPSIPPeer3###set Timeline1
[::IxLoad new ixTimeline]

$Timeline1 config \-rampUpValue 1 \-rampUpType
0 \-offlineTime 0 \-rampDownTime
60 \-standbyTime 0 \-iterations
1 \-rampUpInterval 1 \-sustainTime
80 \-timelineType 0 \-name
"Timeline1"

$Activity_VoIPSIPPeer2 config \-enable true \-name
"VoIPSIPPeer2" \-enableConstraint false \-userObjectiveValue
1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1

$Activity_VoIPSIPPeer2 agent.config \-enable true
\-name "VoIPSIPPeer2"

SEE ALSO

ixConfig

Chapter 39 VoIP SIP Peer

– 1507 –

Codec Settings
VoIP SIP Peer Codec Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Codec Settings contains the list of codecs that will be used by the VoIP SIP peers in the test. Codec
Settings is a list of one or more codec (audio codec) or dataCodec objects. To add codec or
dataCodec objects, use the appendItem command.

SUBCOMMANDS

None

OPTIONS

None.

EXAMPLE

See the examples for Data Codecs and Codecs.

SEE ALSO

Data Codecs

Codecs

Chapter 39 VoIP SIP Peer

– 1508 –

Data Codecs
VoIP SIP Peer Data Codecs

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.codecSettings.dataCodecs.clear

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Events" \

-dPayloadType100

Chapter 39 VoIP SIP Peer

– 1509 –

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Tones" \

-dPayloadType101

SEE ALSO

Codec Settings

Chapter 39 VoIP SIP Peer

– 1510 –

Codecs
VoIP SIP Peer Audio Codec

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

CodecAMR Adaptive multi-rate codec

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG726x40 G.726 codec @ 40 Kbps

CodecG729A G.729 Annex-A codec

CodecILBC Internet Low Bit Rate Codec

Options for CodecAMR

dPayloadIn

Chapter 39 VoIP SIP Peer

– 1511 –

Incoming dynamic payload type. Default="98" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="98" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 14. Default=14.

payloadFormat

Payload format.

Value Usage

0 (default) Bandwidth-efficient format

1 Octet-aligned format

mode

Codec bit rate. One of the following:

Mode Description

0 (default) 4.75 kbps

1 5.15 kbps

2 5.90 kbps

3 6.70 kbps

4 7.40 kbps

5 7.95 kbps

6 10.20 kbps

7 12.20 kbps

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Chapter 39 VoIP SIP Peer

– 1512 –

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Chapter 39 VoIP SIP Peer

– 1513 –

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.

Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

Chapter 39 VoIP SIP Peer

– 1514 –

dPayloadOut

Outgoing dynamic payload type. Default="104" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG726x40

dPayloadIn

Incoming dynamic payload type. Default="105" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="105" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 50, 100, 150. Default=50.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

Chapter 39 VoIP SIP Peer

– 1515 –

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

Options for CodecILBC

dPayloadIn

Incoming dynamic payload type. Default="97" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="97" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 38, 50, Custom. Default=38.

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.codecSettings.codecs.clear

$Activity_VoIPPeer1 agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711u" \

-dPayloadOut0 \

-dPayloadIn0 \

-frameSize160

$Activity_VoIPPeer1 agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711a" \

-dPayloadOut8 \

-dPayloadIn8 \

-frameSize160

SEE ALSO

Codec Settings

Chapter 39 VoIP SIP Peer

– 1516 –

Other Settings
VoIP SIP Peer Other Settings

SYNOPSIS
$Activity_VoIPSIP Peer1 agent.pm.otherSettings.config \

-optionvalue

DESCRIPTION

This object configures the VoIP SIP Peer activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated endpoints/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

VOIP_IPAddress2

See VOIP_Var0.

Chapter 39 VoIP SIP Peer

– 1517 –

VOIP_IPAddress3

See VOIP_Var0.

VOIP_IPAddress4

See VOIP_Var0.

ipPreference

Type of addressing you want to use on the subnet that the VOIP SIP Peer runs on.

Value Usage

0 (default) IPv4

1 IPv6

bUseStun

Enables use of a STUN server.

Value Usage

0
(default)

Disabled

1 Enabled. Configure the STUN server’s address and port number in stunAddr and
stunPort.

stunAddr

If bUseStun is 1, this option configures the STUN server’s address. You can include sequence
generators in this field to generate multiple addresses. The STUN server address must be an IPv4
address. Default="127.0.0.1".

stunPort

If bUseStun is 1, this option configures the STUN port number. You can include sequence generators in
this field to generate multiple port numbers. Default="3478".

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.otherSettings.config \

-ipPreference0 \

-stunAddr"127.0.0.1" \

-stunPort"3478" \

-bUseStunfalse \

-VOIP_Var1"" \

-VOIP_Var0"" \

Chapter 39 VoIP SIP Peer

– 1518 –

-VOIP_Var3"" \

-VOIP_Var2"" \

-VOIP_Var4"" \

-VOIP_IPAddress4"" \

-VOIP_IPAddress1"" \

-VOIP_IPAddress0"" \

-VOIP_IPAddress3"" \

-VOIP_IPAddress2""

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1519 –

Signaling Settings
VoIP SIP Peer Signaling Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.signalingSettings.config \

-optionvalue

DESCRIPTION

This object defines the VoIP Peer SIP settings.

SUBCOMMANDS

None.

OPTIONS

enableSIP

Enables use of SIP signaling for the VoIPSIP Peer activity.

0 = SIP disabled

1 = SIP enabled (default)

port

Port used for SIP. You can use Sequence Generators in this field to generate multiple port numbers.
See the Sequence Generator appendix for more information. Default="[5060-]".

Note: Valid port numbers are between 1000 and 65534.

realm

SIP registration realm (for User Agent Client (UAC) authentication with a registrar). Default="" (null).

user

User name of the emulated device (for User Agent Client (UAC) authentication with a registrar).
Default="Anonymous".

passwd

SIP registration password (for User Agent Client (UAC) authentication with a registrar). Default=""
(null).

enableTos

Enables use of TOS/DSCP. Use the tos option to specify the TOS/DSCP value.

0 = TOS disabled (default)

1= TOS enabled

Chapter 39 VoIP SIP Peer

– 1520 –

tosVal

If enableTos is 1, this option sets the value of the TOS bits.

Value Usage

0 (default) Best Effort (0x00)

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

useServer

Enables use of a proxy server.

0 = disabled (default

1 = enabled

srvAddr

If useServer is 1, this option configures the proxy server address. You can use Sequence Generators
in this field to generate multiple addresses. See the Sequence Generator appendix for more
information. (Default = ““).

srvPort

If useServer is 1, this option configures the proxy server port number. You can use Sequence
Generators in this field to generate multiple port numbers. See the Sequence Generator appendix for
more information. (Default="5060")

srvDomain

If useServer is 1, this option configures the proxy server domain or local IP address. Default=""
(null).

outboundProxy

Enables the use of an outbound Proxy that receives requests from a client, even though it may not be
the server resolved by the Request-URI.

0 = disabled (default)

1 = enabled

registrarSrv

Chapter 39 VoIP SIP Peer

– 1521 –

Enables the use of a Registrar Proxy, a server that accepts register requests and places the information
it receives in requests into the location service for the domain it handles.

0 = disabled (default)

1 = enabled

ovrContact

If set to 1, the default Contact message header (AUTO_CONTACT) is ignored and the settings specified
by Edit Contact are used

0 = disabled (default)

1 = enabled

ovrDest

If set to 1, this parameter enables you to specify a new destination host setting overriding the default
setting.

0 = disabled (default)

1 = enabled

ovrDestHostPort

If set to 1, this parameter enables you to specify a new destination port setting overriding the default
setting.

0 = disabled (default)

1 = enabled

nUdpMaxSize

Specifies the maximum SIP message size, beyond which messages are truncated, when the used
transport protocol is UDP. Min="1024" Max="4000" Default="1024".

telURISource, telURIDest

If configured true, a tel URI is used for source and destination.

enableRetransmissions

If configured true, enables the retransmission of certain SIP messages, both requests and responses,
for script functions pertaining to the activity. Retransmission is a mechanism whereby messages are
re-sent with a pattern, until either a response message is received or a maximum timeout value is
reached.

T1, T2

Specifies the retransmission timers.

ignoreRetransmissions

When selected, this option determines ignoring all the received retransmissions.

ovrTrans

Chapter 39 VoIP SIP Peer

– 1522 –

If configured true, the preferred transport type for SIP messages can be selected as either of the
following, overriding the scenario-level settings:

ovrTransOption

If ovrTrans is configured true, this parameter specifies the preferred transport as listed in the table
below.

0 = UDP only

1 = TCP only

2 = UDP

3 = TCP

tcpWriteImmediate

If configured true, SIP messages are sent immediately instead of being queued.

ovrTimeout

If configured true, the timeout of the Wait Response (...) and the Wait ACK script functions is specified
by the global 64*T1 value, instead of the function-level value.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.signalingSettings.config \-tcpWriteImmediate
false \-telURISource false \-enableSIP
true \-srvPort "5060" \-port
"\[5060-\]" \-realm "" \-ovrDest
false \-nUdpMaxSize 1024 \-srvDomain
"" \-telURIDest false \-ovrTimeout
false \-enableRetransmissions false \-enableTos
false \-srvAddr "" \-ovrDestHostPort
"" \-passwd "" \-T2
4000 \-T1 500 \-outboundProxy
false \-user "Anonymous" \-useServer
false \-registrarSrv false \-tosVal
0 \-ovrContact false \-ovrTrans
false \-useDnsSrv false \-ovrTransOption
0 \-ignoreRetransmissions true

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1523 –

Edit Contact
VoIP SIP Peer Edit Contact

SYNOPSIS
$Activity_VoIPSIPPeer1 agent.pm.editContact.config \

-optionvalue

DESCRIPTION

If the ovrContact option in Contact Settings is enabled, Edit Contact defines the replacement
contact information.

SUBCOMMANDS

None.

OPTIONS

useDomainName

Domain name to be used.

Value Usage

0 (default) Use the domain associated with the source IP address

1 Use the domain specified in domainName.

domainName

If useDomainName is 1, this option specifies the domain name.
Default="mysipdomain.ixiacom.com"

_useEPb

Source of phone number.

Value Usage

0 (default) Use the phone number specified in _ePhone.

1 Use the phone number specified by a Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (_useEPb=1). The generated tcl script will run only on the machine it has been
generated on and only if the corresponding Phonebook entry has not yet been deleted since the
generation of the tcl code.

_ePhone

Chapter 39 VoIP SIP Peer

– 1524 –

If _useEPb is 0, this identifies the phone number to be used. Default="160[00000000-]"

_ckETelURI

Enable usage of Tel URI parameters.

0 = disabled (default)

1 = enabled. Specify the Tel URI parameters in _eTelURIparams.

_eTelURIparams

If _ckETelURI =1, this option specifies the Tel URI parameters.
Default="phone-context=example.com".

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.editContact.config \

-_useEPb0 \

-domainName"mysipdomain.ixiacom.com" \

-_eBp"<None>" \

-_ePhone"160\[00000000-\]" \

-ePhoneType0 \

-_eTelURIparams"phone-context=example.com" \

-useDomainName0 \

-editTelPar"" \

-ePhone"160\[00000000-\]" \

-_ckETelURIfalse

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1525 –

RTP Settings
VoIP SIP Peer RTP Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.rtpSettings.config \

-optionvalue

DESCRIPTION

RTP Settings configures the VoIPSIPPeer RTP transport settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

Enables use of RTP to transport the media traffic.

0 = disabled (default)

1 = enabled

rtpPort

RTP port number. Default="10000".

Note: Valid port numbers are between 1000 and 65534.

enableRTCP

Enables the sending and receiving of RTCP packets.

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

Enables the computation of advanced RTP statistics.

enablePerStream

Enables computation of per-stream statistics.

enableMDI

Enables computation of MDI DF and MDI MLR statistics.

enableNBExec

Chapter 39 VoIP SIP Peer

– 1526 –

If true, all RTP functions from a scenario execute in a non-blocking mode, i.e the current function from
a channel executes in the background, allowing the execution to continue on that channel with the
next script function. Default= False.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.rtpSettings.config \-enableRTP
true \-enableRTCP false \-enableMDI
false \-chEnableHwAcc true \-chDisableHwAcc
false \-enableAdvStatCalc false \-enablePerStream
false \-rtpPort "\[10000-65535,4\]" \-enableNBExec
false

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1527 –

Audio Settings
VoIPSIP Peer audio settings

SYNOPSIS
$Activity_VoIPSipPeer1 agent.pm.audioSettings.config \

DESCRIPTION

The Audio Settings configure the VoIPSIP Peer audio RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be miliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following values:

l Best Effort (0x00): Routine service

l Class 1 (0x20): Priority service, Assured Forwarding class 1

Chapter 39 VoIP SIP Peer

– 1528 –

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 39 VoIP SIP Peer

– 1529 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp
false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-activityIdQoV 0 \-metricsQoV

Chapter 39 VoIP SIP Peer

– 1530 –

0 \-useSilence false \-silenceMode
1 \

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1531 –

Video Settings
VoIP SIP Peer Video Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.VideoSettings.config \
-optionvalue

DESCRIPTION

Video Settings configures the VoIPSIP Peer’s video settings.

SUBCOMMANDS

None.

OPTIONS

enableVideo

Enables use of video as media traffic.

0 = disabled (default)

1 = enabled

videoClip

Name of the video file. Default = “Fire_avc.mp4”

playTypeVideo

Determines parameters for running video. Following values are available:

Value Usage

0 (default) Play for clip duration

1 Play for specified duration.

2 Conference mode

videoDuration

If playTypeVideo = 1, determines duration of video. Maximum value = 259200000.

videoDurationUnit

Unit of duration. Following values are available:

Value Usage

Chapter 39 VoIP SIP Peer

– 1532 –

0 milliseconds

1 seconds

2 minutes

3 hours

useConference

If playTypeVideo = 2, enables use of conference mode. Following values are available:

Value Usage

0 All speak

1 Sequential

2 Random

confVideoDuration

If playTypeVideo = 2, enables selection of conference video duration.

confVideoDurationUnit

If playTypeVideo = 2, enables selection unit of conference video duration. The following values are
available:

Value Usage

0 milliseconds

1 seconds

2 minutes

3 hours

confDuration

If playTypeVideo = 2, enables selection of conference audio duration.

confDurationUnit

If playTypeVideo = 2, enables selection unit of conference audio duration. The following values are
available:

Value Usage

0 milliseconds

Chapter 39 VoIP SIP Peer

– 1533 –

1 seconds

2 minutes

3 hours

enableTosVideo

Enables use of TOS/DSCP. Use the tosVideo option to specify the TOS/DSCP value.

tosVideo

The following values are available:

Value Usage

0 Best Effort (0x00)"

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

7 Custom

useMosVideo

Enables computation of MOS.

0 = disabled (default)

1 = enabled

Note: If MOS computation is enabled, the enableVideoOWD option also has to be enabled.

enableVideoOWD

If enabled, the One-way Delay metric is computed, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default = disabled.

ignoreHintTrack

If enabled, the hint track present in the video clip is ignored. The video streaming uses a new hint
track which is recreated using one of the packetization modes defined by hintTrackType. By default it
is disabled.

Chapter 39 VoIP SIP Peer

– 1534 –

hintTrackType

Allows to select the packetization mode. The following values are available:

Value Usage

0 (default) Single NAL Unit

1 STAP-A, with FU-A fragmentation

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.videoSettings.config \-rotationScheme
0 \-confDuration 1 \-useMosVideo
false \-enableVideoOWD false \-ignoreHintTrack
false \-enableTosVideo true \-enableVideo
true \-videoClip "Fire_avc.mp4" \-
useH323AdvancedSettings false \-videoDuration
5 \-confVideoDurationUnit 1 \-useConference
false \-confDurationUnit 1 \-confVideoDuration
1 \-videoDurationUnit 1 \-hintTrackType
1 \-fmtp "" \-rtpmap
"" \-playTypeVideo 0 \-tosValVideo
32

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1535 –

T.38 Settings
VoIP SIP Peer T.38 Settings

SYNOPSIS
$Activity_VoIPSIPPeer1 agent.pm.Fax(T.38)Settings.config \

-optionvalue

DESCRIPTION

T.38 Settings configures the VoIP SIPPeer’s fax T.38 settings.

SUBCOMMANDS

None.

OPTIONS

enableT38

Enables use of 'T.38 Fax Session' script function.

0 = disabled (default)

1 = enabled

t38Port

The T.38 listening port. Default = “40000”. This parameter specifies a valid port (1000-65535) or
simple sequence generator expression (e.g. [1000-2000,2])

faxImage

Fax image to be sent. Default = “Ixia2Pages.tif”

t38TransportType

The transport protocol used for carrying the T.38 traffic. Default = “1”

The following values are available

Value Usage

0 TCP

1 UDP

t38UdpEncapsulation

If t38TransportType = 1, t38UdpEncapsulation defines the protocol used to encapsulate T.38
messages. The following values are available:

Chapter 39 VoIP SIP Peer

– 1536 –

Value Usage

0 UDPTL

1 RTP

t38PayloadType

The payload type identifier. Minimum = 0, Maximum = 127, and Default = 102

useFaxVersion

If enabled, allows selecting the T.38 protocol version.

faxVersion

If useFaxVersion is enabled, used to identify the T.38 protocol version, 0, 1, 2, or 3 (default = 0).

useT38MaxBitrate

If enabled, allows selecting the maximum fax transmission rate.

t38MaxBitrate

The maximum fax transmission rate supported by the endpoint (default = 5). The following values are
allowed:

Value Usage

0 2.4 kbps

1 4.8 kbps

2 7.2 kbps

3 9.6 kbps

4 12 kbps

5(default) 14.4 kbps

6 16.8 kbps

7 19.2 kbps

8 21.6 kbps

9 24 kbps

10 26.4 kbps

11 28.8 kbps

Chapter 39 VoIP SIP Peer

– 1537 –

12 31.2 kbps

13 33.6 kbps

useT38RateMgmt

If enabled, allows selecting the fax rate management model.

t38RateMgmt

The fax rate management model as defined in T.38. Following values are allowed:

Value Usage

0 Transferred TCF

1 Local TCF

useErrorRecoverySchema

If enabled, allows selecting the desired error correction scheme.

errorRecoverySchema

The desired error correction scheme. The following values are allowed:

Value Usage

0 (default) Redundancy

1 FEC

useT38MaxDatagramSize

If enabled, allows selecting the maximum datagram size.

t38MaxDatagramSize

The maximum datagram size (default = 256), which represents the maximum number of bytes that
can be stored on the remote device before an overflow condition occurs. Minimum = 0, Maximum =
256.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.t38Settings.config \-enableT38
true \-t38TranscodingMMR false \-t38UdpEncapsulation
0 \-useT38MaxBitrate true \-t38RateMgmt
0 \-t38TranscodingJBIG false \-t38TransportType
1 \-t38Port "40000" \-t38FillBitRemoval
0 \-faxVersion 0 \-useT38FillBitRemoval
false \-useT38RateMgmt true \-faxImage
"Ixia2Pages.tif" \-useT38MaxBufferSize false \-
errorRecoverySchema 0 \-t38MaxDatagramSize

Chapter 39 VoIP SIP Peer

– 1538 –

256 \-t38MaxBufferSize 200 \-useFaxVersion
true \-useT38MaxDatagramSize true \-t38MaxBitrate
5 \-t38PayloadType 102 \-useErrorRecoverySchema
true

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1539 –

T.30 Settings
VoIP SIP Peer T.30 Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.Fax(T.30)Settings.config \
-optionvalue

DESCRIPTION

T.30 Settings configures the VoIP SIPPeer’s fax T.30 settings.

SUBCOMMANDS

None.

OPTIONS

t30StationId

The fax station's identifier sent in CSI, TSI and CIG. Required valid station ID or sequence generator
expression (e.g. '5551[000-]'). Default = "5551[000-]"

t30SendCoding

The highest coding scheme available to compress the page data when sending. The following values
are available:

Value Usage

0 MH

1 MR

2 (Default) MMR

t30SendDataRate

The data rate for sending. The following values are available:

Value Usage

0 V.27 ter 2.4

1 V.27 ter 4.8

2 V.17 7.2

3 V.17 9.6

Chapter 39 VoIP SIP Peer

– 1540 –

4 V.17 12

5(default) V.17 14.4

6 V.29 7.2

7 V.29 9.6

8 V.34 16.8

9 V.34 19.2

10 V.34 21.6

11 V.34 24

12 V.34 26.4

13 V34 28.8

14 V.34 31.2

15 V34 33.6

t30SendPageSize

The page size for sending. The following values are available:

Value Usage

0 A4 (210x297 mm)

1 B4 (255x364 mm)

2 A3 (297x420 mm)

t30SendMSLT

The minimum transmission time of one coded scan line. Default = 0

The following values are available:

Value Usage

0 (default) Auto (based on DIS)

1 5 ms T7.7 = T3.85

2 10 ms T7.7 = 1/2 T3.85

3 10 ms T7.7 = T3.85

Chapter 39 VoIP SIP Peer

– 1541 –

4 20 ms T7.7 = 1/2 T3.85

5 20 ms T7.7 = T3.85

6 40 ms T7.7 = 1/2 T3.85

7 40 ms T7.7 = T3.85

t30SendProtocol

The protocol used for fax sending. The following values are available

Value Usage

0 non-ECM

1 (default) ECM.

t30SendResolution

The horizontal and vertical resolution of the page image. The following values are available

Value Usage

0 (default) R8x3.85 lines/mm

1 R8x7.7 lines/mm

2 R8x15.4 lines/mm

3 200x200 dots/inch

sendCNG

If enabled, CNG message is sent.

t30ReceiveCoding

The highest coding scheme available to compress the page data when receiving. The following values
are available:

Value Usage

0 MH

1 MR

2 (Default) MMR

t30ReceivePageSize

The page size for receiving. The following values are available:

Chapter 39 VoIP SIP Peer

– 1542 –

Value Usage

0 A4 (210x297 mm)

1 B4 (255x364 mm)

2 (default) A3 (297x420 mm)

t30ReceiveMSLT

The minimum transmission time of one coded scan line. Default = 0

The following values are available:

Value Usage

0 (default) 0 ms T7.7 = T3.85

1 5 ms T7.7 = T3.85

2 10 ms T7.7 = 1/2 T3.85

3 10 ms T7.7 = T3.85

4 20 ms T7.7 = 1/2 T3.85

5 20 ms T7.7 = T3.85

6 40 ms T7.7 = 1/2 T3.85

7 40 ms T7.7 = T3.85

t30ReceiveProtocol

The protocol used for fax receiving. The following values are available:

Value Usage

0 non-ECM

1 (default) ECM.

sendCedBeforeDIS

If enabled, allows the answering fax to send a CED (Called station Id) signal.

t30ReceiveModulations

Allows to select the receiving protocol. The following values are available:

Value Usage

Chapter 39 VoIP SIP Peer

– 1543 –

0 V.27

1 (default) V.27/V.29

2 V.27/V.29/V.17

3 V.27/V.29/V.17/V.34

t30ReceiveR8x3

If enabled, receive resolution is R8x3.85 lines/mm.

t30ReceiveR8x7

If enabled, receive resolution is R8x7.7 lines/mm.

t30ReceiveR8x15

If enabled, receive resolution is R8x15.4 lines/mm.

t30Receive200x200

If enabled, receive resolution is 200x200 dots/inch.

EXAMPLE

$Activity_VoIPSipPeer1 agent.pm.t30Parameters.config \

-t30SendResolution 0 \

-sendCedBeforeDIS 1 \

-t30ReceiveR8x7 true \

-t30SendPageSize 0 \

-t30ReceiveR8x3 true \

-t30SendProtocol 1 \

-t30ReceiveProtocol 1 \

-sendCNG 1 \

-t30SendCoding 0 \

-t30ReceiveMSLT 0 \

-t30SendMSLT 0 \

-t30ReceiveCoding 2 \

-t30ReceivePageSize 2 \

-t30ReceiveModulations 3 \

-t30ReceiveR8x15 true \

Chapter 39 VoIP SIP Peer

– 1544 –

-t30StationId "5551\[000-\]" \

-t30SendDataRate 5 \

-t30Receive200x200 true

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1545 –

Timer Settings
VoIP SIP Peer Timer Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.TimerSettings.config \

-optionvalue

DESCRIPTION

Timer Settings configures the VoIP SIPPeer’s timer settings.

SUBCOMMANDS

None.

OPTIONS

enableTimers

If enabled, the session refresh mechanism according to RFC4028 (Session Timers in SIP) and the
registration refresh mechanism according tor RFC3261 (Session Initiation Protocol) is allowed.

expirationValList

Defines the expiration value for each message.

sessionRefreshType

Allows you to select the session refresh time. The following values are available:

Value Usage

0 After specified seconds.

1 (default) After specified % of negotiated value.

2 With specified seconds before expiration

refreshAfterSecs

If sessionRefreshType = 0, minimum = 1, maximum = 9999, and default = 3000

refreshAfterPercent

If sessionRefreshType = 1, minimum = 1, maximum = 100, and default = 50

refreshInSecs

If sessionRefreshType = 2, minimum = 1, maximum = 9999, and default = 32

enableRetransmissions

Chapter 39 VoIP SIP Peer

– 1546 –

If enabled, allows retransmission of certain SIP messages, both requests and responses, for script
functions pertaining to the activity.

ignoreRetransmissions

If enabled, determines ignoring all the received retransmissions.

retransmitACK

If enabled, allows retransmission of the 200 Ok final response to an INVITE transaction causes the ACK
message, in accordance with the provisions of RFC3261.

autoEndCall

If enabled, allows automatic deletion of active calls at the end of test loops

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.timerSettings.config \-enableRetransmissions
false \-retransmitACK true \-refreshInSecs
32 \-refreshAfterSecs 3000 \-T2
4000 \-T1 500 \-refreshAfterPercent
50 \-ignoreRetransmissions true \-ovrTimeout
false \-sessionRefreshType 1 \-autoEndCall2
true \-enableTimers false

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1547 –

SRTP Settings
VoIP SIP Peer SRTP Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.srtpSettings.config \
-optionvalue

DESCRIPTION

SRTP Settings configures the VoIP SIPPeer’s SRTP settings.

SUBCOMMANDS

None.

OPTIONS

benableSRTP

Enables use of SRTP to transport the media traffic.

l false = disabled (default)

l true = enabled

bDisableSRTPAuthentication

If true, this option disables SRTP authentication.

bDisableSRTPEncryption

If true, this option disables SRTP stream encryption.

bIncludeMKI

If true, the generated SRTP packets include the MKI field.

bDisableValidations

If true, none of the validations below are performed on the received SRTP packets:

- SRTP packet authentication tag is not verified

- Master Key expiration is not verified

- SRTP packet MKI field is ignored

bDisableSRTCPEncryption

If true, this option disables SRTCP stream encryption.

bAllowOnlySecureStreams

If true, the SDP offer comprises only secure streams and SDP negotiates only secure streams.

Chapter 39 VoIP SIP Peer

– 1548 –

bDisableMasterSalt

If true, the Master Salt value is null instead of it being randomly generated.

bStaticMasterKeySalt

If true, this option determines the use of a static master key and salt.

_masterKeySelection

Specifies if a single key or multiple keys are used:

l 0 = A single key is used. The key is specified by the staticSingleKeySalt parameter.

l 1 = Multiple static keys are used. Keys are obtained from a file specified by the staticKeyFile
parameter.

staticSingleKeySalt

If bStaticMasterKeySalt is true, this parameter defines a key value.

staticKeyFile

If bStaticMasterKeySalt is true, this parameter defines a file containing multiple key values.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.srtpSettings.config \-bDisableSRTPAuthentication
false \-bIncludeMKI true \-bEnableSRTP
true \-bDisableValidations false \-bDisableSRTCPEncryption
false \-bStaticMasterKeySalt true \-bAllowOnlySecureStreams
false \-bDisableMasterSalt false \-staticSingleKeySalt
"BjVFszwVXnYB2Rtr6BbFfbvDkuFtUjJWUCClq4gP" \-staticKeyFile
"" \-bDisableSRTPEncryption false \-_masterKeySelection
0

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1549 –

MSRP Settings
VoIPSIP Peer MSRP Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.msrpSettings.config \
-optionvalue

DESCRIPTION

Configures the settings for the MSRP endpoints emulated by a VoIPSIP Peer activity..

SUBCOMMANDS

None

OPTIONS

enableMSRP

Enables or disable MSRP emulation.

l false = disabled (default)

l true = enabled

msrpPort

Specifies the MSRP listening port (default 2855).

domainType

Defines the domain type, which can be specified using a domain name (for a '0' value) or using an IP
address (for a '1' value).

localDomain

When the domainType parameter is configured to a value of '0', this specifies the name of the local
domain, possibly using a sequence generator expression.

relaysCount

Specifies the number of configured MSRP relays.

firstRelayIsIPv4

If true (and if firstRelayIpEnabled is configured true), it specifies that the fistRelayIp parameter
contains an IPv4 address, otherwise it contains an IPv6 address.

firstRelayIpEnabled

If true, the first relay is specified using an IP address.

firstRelayIp

Specifies the IP address of the first relay.

Chapter 39 VoIP SIP Peer

– 1550 –

msrpRelayPort

Specifies the first relay's listening port.

automaticMSRPAuth

If selected, the emulated MSRP endpoints are authenticated at the start of the execution against all
defined relay servers. The used credentials are those used by the emulated UAs of the VoIPSIP
activity.

msrpReuseTCP

If true, the MSRP endpoint re-uses an existing TCP connection when establishing a new MSRP session.

msrpSessionTimeout

Specifies the time after which the session is closed (ms).if no connection was established or no data
was received.

msrpTransactionTimeout

Specifies how long (the time period is expressed in ms) an MSRP endpoint waits for a response to a
sent MSRP request.

msrpFirstChunkTimeout

Specifies the period of time an MSRP endpoint waits for a message to arrive (ms).

msrpInterChunkTimeout

Specifies how long an MSRP endpoint waits for receiving subsequent chunks from a multipart
('chunked') message (ms).

enableMSRPTos

Enables use of TOS/DSCP. Use the tosMSRPVal option to specify the TOS/DSCP value.

tosMSRPVal

The following values are available:

Value Usage

0 Best Effort (0x00)"

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

Chapter 39 VoIP SIP Peer

– 1551 –

6 Control (0xC0)

7 Custom

EXAMPLE

$Activity_VoIPSipPeer1 agent.pm.msrpSettings.config \

-tosMSRPVal 0 \

-relaysCount 2 \

-domainType 0 \

-enableMSRPTos false \

-firstRelayIpEnabled true \

-msrpRelayPort 2855 \

-msrpFirstChunkTimeout 60000 \

-msrpReuseTCP true \

-automaticMSRPAuth true \

-firstRelayIp "10.10.10.1" \

-msrpInterChunkTimeout 30000 \

-firstRelayIsIPv4 true \

-msrpTransactionTimeout 30000 \

-msrpSessionTimeout 10000 \

-msrpPort "2855" \

-enableMSRP true \

-localDomain "alice\[00-99\].example.com"

SEE ALSO

MSRP Relays

MSRP GUI Files

Chapter 39 VoIP SIP Peer

– 1552 –

MSRP GUI Files
VoIP SIP Peer MSRP GUI Files

SYNOPSIS

$Activity_Make_Call agent.pm.msrpSettings.msrpGuiFiles.appendItem \
-optionvalue

DESCRIPTION

Configures the VoIP SIP Peer’s files transmitted over established MSRP sessions.

SUBCOMMANDS

None

OPTIONS

synthetic

Defines the file type, synthetic (for a '0' value) or real (for a '1' value).

name

The file name (for both synthetic and real files).

type

Depending on the transmitted file type, this parameter needs configured to either values:

l plain/text

l application/octet-stream

l binary/octet-stream

l image/jpeg

l video/mpeg

l audio/basic

fileClientPath

The complete file path for real files to be transmitted.

size

The file size in bytes.

EXAMPLE

$Activity_Make_Call agent.pm.msrpSettings.msrpGuiFiles.appendItem \

-id "FileRecord" \

-synthetic 0 \

Chapter 39 VoIP SIP Peer

– 1553 –

-name "synthetic_1.bin" \

-fileHash "" \

-nameSynthetic "synthetic_1.bin" \

-type "application/octet-stream" \

-fileClientPath "" \

-size 20971520

SEE ALSO

MSRP Settings

MSRP Relays

Chapter 39 VoIP SIP Peer

– 1554 –

MSRP Relays
MSRP Relays

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.msrpSettings.relays.appendItem \
-optionvalue

DESCRIPTION

Configures a list of MSRP relays.

SUBCOMMANDS

None

OPTIONS

relayAddress

Specifies an MSRP relay address.

addressPort

Specifies the relay MSRP port, or 0 if the default port is to be used.

EXAMPLE

$Activity_VoIPSipPeer1 agent.pm.msrpSettings.relays.clear

$Activity_VoIPSipPeer1 agent.pm.msrpSettings.relays.appendItem \

-id "RelayServer" \

-RelayAddress "relay1.example.com" \

-AddressPort 0

SEE ALSO

MSRP Settings

Chapter 39 VoIP SIP Peer

– 1555 –

Custom Activity Link Settings
VoIP SIP Peer CustomActivityLinkSettings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.customActivityLinkSettings.config \
-option value

DESCRIPTION

CustomActivityLinkSettings configures the BHCA and CPS objective settings for VoIP SIP Peer
activities. This options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the GUI.

Note: The CustomActivityLinkSettings class has to be configured alongside the
CustomParameters class that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

bhcaObjectiveValue

The BHCA test objective value. Default="80000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

callSetupTime

Estimated call setup time. Default="500".

Chapter 39 VoIP SIP Peer

– 1556 –

callTeardownTime

Estimated call teardown time. Default="500".

interCallDuration

Inter-call duration. Default="4000".

cpsObjectiveValue

The CPS test objective value.

cpsType

Determines how the CPS objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

CPS objective will be met by specifying the talk time. Based on the the talk time value
specified in talkTime, the cpsChannelsNo value is computed.

1 CPS objective will be met by specifying the number of channels.

Based on the the channels number value specified in cpsChannelsNo, the talkTime
value is computed.

cpsTalkTime

If cpsType is 0, this option specifies the Talk Time that will be used to attain the CPS test objective.
Default="40000".

cpsChannelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the CPS test
objective. Default="100".

cpsOverheadTime

Indicates the duration of all other actions on the channel except the talk time and minimum inter-call
duration.

cpsInterCallDuration

The minimum time interval between the end of a call on a Voice channel and the start of a new call on
the same voice channel

EXAMPLE
$Activity_Make_Call agent.pm.customActivityLinkSettings.config \-talkTime
40000 \-cpsObjectiveValue 100 \-cpsType
0 \-cpsInterCallDuration 2000 \-channelsNo
100 \-cpsTalkTime 750 \-cpsOverheadTime
1500 \-cpsChannelsNo 425 \-bhcaType
0 \-callTeardownTime 500 \-interCallDuration
4000 \-bhcaObjectiveValue 100 \-callSetupTime
500

Chapter 39 VoIP SIP Peer

– 1557 –

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1558 –

Execution Settings
VoIP SIP Peer Execution Settings

SYNOPSIS

$Activity_<VoIPSIPPeer activity name>agent.pm.executionSettings.config \

-optionvalue

DESCRIPTION

This object defines the execution settings for the VoIP SIP Peer activity.

SUBCOMMANDS

None.

OPTIONS

loopMode

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

loopCount

If loopMode is 1, this option defines the number of loops that the test performs. Default="1".

loopPreDelay

Delay before first loop (ms). Default="0", min="0" max="3600000".

loopMidDelay

Delay between loops (ms). Default="0" min="0" max="3600000".

aliases

Number of aliases (phone numbers) per channel. Default="1", min="1" max="16000".

multipleUsersPerIO

Specifies if multiple VoIPSIP channels can share the same IP:port.

ipRule

A simulated VoIPSIP channel is uniquely identified by IP address, TCP/UDP/TLS port, and Phone
number. This option selects the rule used for the IP address portion of the channel mapping rule.

Chapter 39 VoIP SIP Peer

– 1559 –

l 0 = Use same value (per port)

l 1 = Use consecutive values (per port) (default)

l 2 = Use same value for every X channels. Specify the value for X in -ipRuleCh.

ipRuleCh

If ipRule is Use same value every, this specifies the number of channels. (Default="1" min="1"
max="100000")

portRule

A simulated VoIPSIP channel is uniquely identified by IP address, TCP/UDP/TLS port, and Phone
number. This option selects the rule used for the TCP/UDP portion of the channel mapping rule.

l 0 = Use same value (default)

l 1 = Use consecutive values (per port)

l 2 = Use consecutive values (per activity)

l 3 = Use same value for every X channels. Specify the value for X in -portRuleCh.

portRuleCh

If portRule is Use same value every, this specifies the number of channels. (Default="1"
min="1" max="100000").

phoneRule

A simulated VoIPSIP channel is uniquely identified by IP address, TCP/UDP/TLS port, and Phone
number. This option selects the rule used for the Phone number portion of the channel mapping rule.

l 0 = Use consecutive values (per port) (default)

l 1 = Use consecutive values (per activity)

rtpIpRule

A simulated RTP channel is uniquely identified by the IP address and UDP port. This option selects the
rule used for the IP address portion of the RTP channel allocation.

l 0 = Use same value (per port) (default)

l 1 = Use consecutive values (per port)

l 2 = Use same value for every X channels. Specify the value for X in the rtpIpRuleCh parameter.

rtpIpRuleCh

If rtpIpRule is Use same value every, this parameter specifies the number of channels.

rtpPortRule

This option selects the rule used for the port portion of the RTP channel allocation.

l 0 = Use same value (default)

l 1 = Use consecutive values (per port)

l 2 = Use consecutive values (per activity)

Chapter 39 VoIP SIP Peer

– 1560 –

l 3 = Use same value for every X channels. Specify the value for X in rtpPortRuleCh.

rtpPortRuleCh

If rtpPortRule is Use same value every, this parameter specifies the number of channels.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.executionSettings.config \-portRuleCh
1 \-rtpPortRule 0 \-multipleUsersPerIO
false \-loopMidDelay 0 \-loopCount
1 \-rtpIpRule 1 \-rtpIpRuleCh
1 \-rtpPortRuleCh 1 \-loopPreDelay
0 \-loopMode 0 \-phoneRule
0 \-portRule 0 \-ipRule
1 \-ipRuleCh 1 \-aliases
1

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1561 –

Transfer Address
VoIP SIP Peer Transfer Address

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.transferAddress.config \

-option value

DESCRIPTION

Transfer Address configures a SIP transfer address (see RFC 3261).

SUBCOMMANDS

None.

OPTIONS

symTransferStr

Name of the VoIP SIP Peer configured as transfer destination (Default="None").

overridePhoneNo

Enables override of phone numbers from destination VoIP SIP Peer.

Value Usage

0 (default) Disabled

1 Enabled

_useTPb

If overridePhoneNo is 1, this option selects the source of the replacement phone numbers.

Value Usage

0 (default) Use phone number specified by _tPhone.

1 Use phone number specified by Phonebook entry.

Note: This options appears in the generated Tcl code only if the test configuration contains a reference
to a Phonebook entry (_useTPb=1). The generated tcl script will run only on the machine it has been
generated on and only if the correspon-ding Phonebook entry has not yet been deleted since the
generation of the Tcl code.

_tPhone

Chapter 39 VoIP SIP Peer

– 1562 –

If _useTPb is 0, this option specifies the replacement phone numbers. You can use sequence
generators in this field. Default="150[00000000-]".

_ckTTelURIParams

Enables insertion of Tel URI parameters.

Value Usage

0 (default) Disabled

1 Enabled

_tTelURIparams

If _ckTTelURIParams is 1, this option specifies the Tel URI parameters. Default="phone-
context=example.com".

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.transferAddress.config \

-overridePhoneNofalse \

-_useTPb0 \

-tPhone"150\[00000000-\]" \

-transTelPar"" \

-_tPhone"150\[00000000-\]" \

-_ckTTelURIParamsfalse \

-symTransferStr"None" \

-tPhoneType0 \

-_tTelURIparams"phone-context=example.com" \

-_tBp"<None>"

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1563 –

Scenario Settings
VoIP SIP Peer Scenario Settings

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.scenarioSettings.config \

-option value

DESCRIPTION

Scenario Settings specifies the test scenario file used by the Tcl script.

SUBCOMMANDS

None.

OPTIONS

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP SIP Peer activity (Default=0).

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.scenarioSettings.config \

-scenarioFile"E:\\ScenarioTestFiles\\Basic_Call_TCP.tst" \

-activeScenarioChannel0

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1564 –

Dial Plan
VoIP SIP Peer Dial Plan

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.dialPlan.config \

-option value

DESCRIPTION

The Dial Plan object configures the source, destination, and transfer addresses and phone numbers for
the channels/endpoints simulated by the VoIPSIPPeer activity.

SUBCOMMANDS

None.

OPTIONS

sourceIPs

List of IPs taken from the associated network (read-only).

_useSPb

Method used to select phone number.

Value Usage

0 Use the phone number specified by pattern.

1 Use the phone number specified by Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (_useSPb=1). The generated Tcl script will run only on the machine it has been
generated on and only if the correspon-ding Phonebook entry has not yet been deleted since the
generation of the Tcl code.

_sPhone

If _useSPb is 0, this option specifies the phone number. You can use sequence generators in this field
to generate multiple phone numbers. See the sequence generator appendix. Default="160
[00000000-]".

_ckSTelURIParams

Enables insertion of Tel URI parameters.

Value Usage

Chapter 39 VoIP SIP Peer

– 1565 –

0 (default) Disabled

1 Enabled

_sTelURIparams

If _ckSTelURIParams is 1, this option specifies the Tel URI parameters. Default="phone-
context=example.com".

symDestStr

String identifying the VoIP SIP Peer or VoIP Skinny Peer that is the destination for traffic from this VoIP
SIP Peer activity. Default="None".

ovrDestPhone

Enables overriding of phone number from the destination VoIP Peer.

Value Usage

0 (default) Disabled

1 Enabled

_useDPb

Method used to select the phone number used to override destination phone number.

Value Usage

0 (default) Specify pattern.

1 Specify Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (_useDPb=1). The generated Tcl script will run only on the machine it has been
generated on and only if the correspon-ding Phonebook entry has not yet been deleted since the
generation of the Tcl code.

_dPhone

If _useDPb is 0, this option specifies the phone number.
Default="170[00000000-]".

_ckDTelURIParams

Enables insertion of Tel URI parameter.

Value Usage

0 (default) Disabled

Chapter 39 VoIP SIP Peer

– 1566 –

1 Enabled

_dTelURIparams

If _ckDTelURIParams is 1, this option configures the Tel URI parameters. Default="phone-
context=example.com".

EXAMPLE
$Activity_VoIPSIPPeer1 agent.pm.dialPlan.config \

-_useSPb0 \

-symDestStr"sip server_VoIPSIPPeer2:5060" \

-_sTelURIparams"phone-context=example.com" \

-destPhoneType0 \

-_sPhone"160\[00000000-\]" \

-_dTelURIparams"phone-context=example.com" \

-_sBp"<None>" \

-srcPhoneType0 \

-_dBp"<None>" \

-ovrDestPhonefalse \

-destTelPar"" \

-_ckSTelURIParamsfalse \

-_dPhone"170\[00000000-\]" \

-srcPhone"160\[00000000-\]" \

-destPhone"160\[00000000-\]" \

-_useDPb0 \

-_ckDTelURIParamsfalse \

-srcTelPar""

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1567 –

TLS Settings
Configures VoIP SIP Peer TLS settings.

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.tlsSettings.config \
-optionvalue

DESCRIPTION

Specifies TLS settings for SIP traffic.

SUBCOMMANDS

None.

OPTIONS

enableTLS

Enables use of TLS to transport the SIP traffic.

false = disabled (default)

true = enabled

tlsProtocol

Specifies the TLS protocol version used:

l 0 = TLS 1.0 Only (Default)

l 1 = SSL 3.0 Only

l 2 = TLS + SSL

tlsPort

Specifies the TLS listening port (default=5061).

tlsEnableTcpKeepAlive

If configured true, enables the TCP keep alive mechanism on the VoIPSIPPeer-emulated endpoints.

tlsReuseConnection

If configured true, an `alias' parameter is added in the Via header of SIP requests sent by the
VoIPSipPeer activity, such as to enable the TLS connection reuse mechanism.

When this option is set to the true value, the Mutual Authentication option is automatically selected.

tlsMutual

If configured true, mutual authentication is performed. When this parameter is configured true, the
tlsAuthClient option also has to be configured true.

Chapter 39 VoIP SIP Peer

– 1568 –

tlsAuthClient

If configured true, client authentication at the TLS connection establishment stage is also performed.
By default, only the server authenticates itself by presenting a certificate.

tlsSessionRefresh

If configured true, TLS renegotiation is enabled at the interval of time specified by the
tlsRefreshInterval parameter.

tlsRefreshInterval

When the tlsSessionRefresh option is configured true, this parameter specifies the refresh interval.

ignoreSubjectAltName

If configured true, the verification of the Subject Alternative Name certificate parameter is not
performed and the connection is re-used for which the `alias' parameter of the Via header was
received.

sipScheme

Specifies the scheme, sip or sips, used for the construction of the Request-URI for the following SIP
message headers: Contact, From, To, Reply-To, Via, Record-Route.

0 = sip

1 = sips

tlsTransportType

Specifies the transport protocol – TCP or TLS – used in the construction of SIP Request-URIs, the
Contact message header and the `sent-protocol' parameter of Via message headers

0 = TCP

1 = TLS

tlsDisableUdpAndTcp

If true, the VoIPSIP peer only accepts TLS connections, rejecting any UDP or TCP connections.

tlsCertificatesPath

Specifies the certificates location, a folder containing the certificates files. Default = ““.

tlsPublicKeyCertificate

Specifies the name of the certificate file containing the public key, or a sequence specifying a set of
certificate file names.

tlsPrivateKeyCertificate

Specifies the name of the certificate file containing the private key, or a sequence specifying a set of
certificate file names.

tlsPassword

Chapter 39 VoIP SIP Peer

– 1569 –

Specifies an optional parameter, defined as a string or a sequence, representing the password used to
encrypt the private key. Default = ““.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.tlsSettings.config \-tlsProtocol
2 \-tlsPublicKeyCertificate "" \-tlsEnableTcpKeepAlive
false \-tlsReuseConnection false \-tlsPort
"5061" \-tlsSessionRefresh false \-enableTLS
false \-ignoreSubjectAltName false \-tlsAuthClient
0 \-tlsPrivateKeyCertificate "" \-tlsPassword
"" \-tlsMutual false \-tlsRefreshInterval
3600 \-sipScheme 0 \-tlsTransportType
0 \-tlsDisableUdpAndTcp true \-tlsCertificatesPath
""

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1570 –

TLS Cyphers
SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.tlsSettings.tlsCyphers.appendItem \

-option value

DESCRIPTION

The tlsCyphers object configures a list of cyphers supported by the VoIPSipPeer activity. Cyphers are
added to the list using the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

The TLS cypher list Id.

enabled

If configured true, the use of the given cipher is advertised (default = false).

name

The cypher name.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.tlsSettings.tlsCyphers.clear

$Activity_VoIPSipPeer1 agent.pm.tlsSettings.tlsCyphers.appendItem \-id
"TlsCyphers" \-enabled true \-name
"AES128-SHA"

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1571 –

Custom Parameters
VoIP SIP Peer CustomParameters.

SYNOPSIS

$Activity_VoIPSIPPeer1 customParameters.config \
-option value

DESCRIPTION

CustomParameters configures the settings for the BHCA objective for VoIP SIP Peer activities. This
options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the GUI.

Note: The CustomParameters class has to be configured alongside the
CustomActivityLinkSettings class that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

bhcaObjectiveValue

The BHCA test objective value. Default="80000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

callSetupTime

Estimated call setup time. Default="500".

Chapter 39 VoIP SIP Peer

– 1572 –

callTeardownTime

Estimated call teardown time. Default="500".

interCallDuration

Inter-call duration. Default="4000".

cpsObjectiveValue

The CPS test objective value.

cpsType

Determines how the CPS objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

CPS objective will be met by specifying the talk time. Based on the the talk time value
specified in talkTime, the cpsChannelsNo value is computed.

1 CPS objective will be met by specifying the number of channels.

Based on the the channels number value specified in cpsChannelsNo, the talkTime
value is computed.

cpsTalkTime

If cpsType is 0, this option specifies the Talk Time that will be used to attain the CPS test objective.
Default="40000".

cpsChannelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the CPS test
objective. Default="100".

cpsOverheadTime

Indicates the duration of all other actions on the channel except the talk time and minimum inter-call
duration.

cpsInterCallDuration

The minimum time interval between the end of a call on a Voice channel and the start of a new call on
the same voice channel.

EXAMPLE
$Activity_Make_Call customParameters.config \-talkTime
40000 \-cpsObjectiveValue 100 \-cpsType
0 \-cpsInterCallDuration 2000 \-channelsNo
100 \-cpsTalkTime 750 \-cpsOverheadTime
1500 \-cpsChannelsNo 425 \-bhcaType
0 \-callTeardownTime 500 \-interCallDuration
4000 \-bhcaObjectiveValue 100 \-callSetupTime
500

Chapter 39 VoIP SIP Peer

– 1573 –

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1574 –

Advanced Settings
Configures a VoIPSIP Cloud Peer activity that is associated with the VoIPSIP Peer.

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.advancedSettings.config \
-option value

DESCRIPTION

Advanced Settings configure the use of a specified VoIPSIP Cloud Peer conjointly with the SIP Peer.

The SIP Proxy servers emulated by the VoIPSIP Cloud Peer can be configured to add Via and Record-
Route message headers to SIP messages traversing them.

SUBCOMMANDS

None.

OPTIONS

useCloud

If true, this option enables use of a VoIPSIP cloud with the VoIPSIP Peer.

false = disabled (default)

true = enabled

ovrCloudRules

If configured true, default dispatching rules are being overridden.

cloud

Specifies the SIP cloud to use.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.advancedSettings.config \-useCloud
true \-ovrCloudRules false \-cloud
"VoIPSipCloud1"

SEE ALSO

Cloud Servers

Chapter 39 VoIP SIP Peer

– 1575 –

Cloud Servers
Configures a list of SIP Proxy Servers emulated by a VoIPSIP Loud Peer.

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.cloudServers.appendItem \
-option value

DESCRIPTION

This object configures a list of SIP Proxy Servers emulated by a VoIPSIP Cloud Peer activity. SIP
proxies are added to the list using the appendItem command.

Note: The CloudServers class has to be configured alongside the SipServerList class of a VoIP SIP
Cloud Peer that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

id

The cloud server's list ID.

firstIp

The first IP address in the network range associated with the SIP Proxy server. This is the SIP Proxy
server that is located at the cloud boundary.

name

The server name (default sip_server#1 and subsequent strings).

rangeType

The range type, which can be Virtual IP and IP.

ipAddr

The starting IP address of the associated network range.

netMask

The network mask.

ipStep

The increment step of the starting IP address (default "0.0.0.1").

attachedInfo

Chapter 39 VoIP SIP Peer

– 1576 –

An extra string associated with the proxy, such as a domain name (default = sip-test.my-
domain.com).

ipCount

The number of hosts (default = 1).

port

The SIP port (default = 5060).

ipType

The IP addressing type, IPv4 or IPv6.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.cloudServers.clear

$Activity_VoIPSipPeer1 agent.pm.cloudServers.appendItem \

-id"CloudServer" \

-firstIp"172.20.13.1" \

-name"sip_server#1" \

-rangeType"IP" \

-ipAddr"Network Range 2 in Network1 (172.20.13.1+1)" \

-ipStep"0.0.0.1" \

-attachedInfo"sip-test.my-domain.com" \

-netMask"255.254.0.0" \

-ipCount"1" \

-port5060 \

-ipType"IPv4"

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1577 –

Server Rules
Configures a list of rules associated with each emulated SIP Proxy server in the VoIPSIP Cloud Peer.

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.advancedSettings.serverRules.appendItem \
-option value

DESCRIPTION

This object configures a rules list. For each SIP server in the cloud, its associated rule specifies if a Via
or a Record-Route header are added to SIP messages traversing the server. Rules are added to the
list using the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

The server rules list ID.

recordRoute

If true, a SIP Record-Route message header is added to SIP messages (default = true).

via

If true, a SIP Record-Route message header is added to SIP messages (default = true).

name

The name of the SIP Proxy server (default = sip_server#<n>).

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.advancedSettings.serverRules.clear

$Activity_VoIPSipPeer1 agent.pm.advancedSettings.serverRules. \
appendItem \-id "ServerRule" \-recordRoute
true \-via true \-name
"sip_server#1"

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1578 –

Cloud Rules
Configures a list of dispatching rules that override the default VoIP SIP Cloud rules.

SYNOPSIS

$Activity_VoIPSIPPeer1 agent.pm.cloudRules.rulesList.appendItem \
-option value

DESCRIPTION

A new dispatching rule is added to the rulesList of the cloudRules object using the appendItem
subcommand from the ixConfigSequenceContainer command.

SUBCOMMANDS

None.

OPTIONS

id

The cloud rules list Id.

when

Specifies the SIP message that is processed for extracting a rule.

where

l Extracts the variable from the request line, or from parts of it, as follows:

l Entire First Line

l Request Line - Method

l Request Line - Request-URI

l Request Line - Request-URI - Phone

l Request Line - SIP Version

refine

Specifies if further processing is applied or not:

l N/A: No further processing is applied

l Refined: Further processing is applied, as defined by a RuleData object.

formula

A formula that is defined using the same syntax as a sequence generator expression. Form the
extracted string matched against the dispatching formula, the message is dispatched to a specific SIP
channel.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.cloudRules.rulesList.clear

Chapter 39 VoIP SIP Peer

– 1579 –

$Activity_VoIPSipPeer1 agent.pm.cloudRules.rulesList.appendItem \-id
"CloudRule" \-where "Request Line - Request-URI -
Phone" \-when "INVITE" \-refine
"N/A" \-formula "160\[00000000-\]"

SEE ALSO

RuleData

Chapter 39 VoIP SIP Peer

– 1580 –

RuleData
Configures the processing operations applied to incoming message for extracting a dispatching rule.

SYNOPSIS

$Activity_VoIPSipPeer agent.pm.cloudRules.rulesList(0).ruleData.config \

-option value

DESCRIPTION

A RuleData object defining further processing that is applied to a string after it is extracted from a SIP
message. This object corresponds to the Edit Cloud Rule GUI in the application.

SUBCOMMANDS

None.

OPTIONS

what

Defines the extraction scope as one of the following:

l 0 = Entire SIP request

l 1 = Request line

l 2 = Header

l 3 = SIP message body

reqLine

If what is configured to the value ‘1’, this parameter specifies which part of the request line the string is
extracted from:

l 0 = Entire First Line

l 1 = Request Line - Request-URI - Phone

l 2 = Request Line - Method

l 3 = Request Line - Request-URI

l 4 = Request Line - SIP Version

headerType

If what is configured to the value ‘2’, this parameter specifies a header type that is being extracted
(default = To).

compactForm

If what is configured to the value ‘2’, this parameter defines the compact form of the SIP message
header specified by the headerType parameter.

Chapter 39 VoIP SIP Peer

– 1581 –

occurFrom, endOccur

If what is configured to the value ‘2’, this parameter specifies between which occurrences extraction is
done.

whatExtract

If what is configured to the value ‘2’, this parameter specifies which part of the header is extracted:

l 0 = Whole header value

l 1 = Header value without parameters

l 2 = The parameter specified by paramName

l 3 = Phone value from URI

extractHeaderName

When the whatExtract parameter is configured to the value ‘0’, if this option is configured true, the
header name is also extracted.

paramName

When the whatExtract parameter is configured to the value ‘2’, this option extracts the value of the
named parameter.

revHeaderOrder

When configured true, this option to true processes the occurrences in reverse order, starting from the
last up to the first.

keepHeaderCrlf

When configured true, the last Carriage Return/Line Feed character extracted into the variable is kept.

Note: The parameters above correspond to Step 2 in the dispatching rules definition window of the
IxLoad GUI.

usePosition

Specifies the mode in which an extracted substring is delimited:

l 0 = The substring is marked by delimiters.

l 1 = The substring is marked by position.

beginAfter

If this parameter is configured true, a substring is delimited by the afterStr and afterOccur
parameters.

This parameter is relevant when usePosition is configured to the value ‘0’.

afterStr, afterOccur

The substring start is indicated by these parameters.

endBefore

Chapter 39 VoIP SIP Peer

– 1582 –

If this parameter is configured true, a substring is delimited by the endStr and endOccur parameters.

endStr, endOccur

The substring end is indicated by these parameters.

positionFrom, positionTo

If usePosition is configured to the value ‘1’, these parameters specify the delimiting positions for
position-based substring extraction.

formula

Specifies a formula that is defined using the same syntax as a sequence generator expression. The
extracted string matched against the dispatching formula and the message is dispatched to a specific
SIP channel.

Note: The parameters above correspond to Step 3 in the dispatching rules definition window of the
IxLoad GUI.

EXAMPLE
$Activity_VoIPSipPeer1 agent.pm.cloudRules.rulesList.appendItem \-id
"CloudRule" \-where "Request Line - Request-URI -
Phone" \-when "INVITE" \-refine
"Refined" \-formula "160\[00000000-\]"

$Activity_VoIPSipPeer1 agent.pm.cloudRules.rulesList(0).ruleData. \ config \
-positionFrom "1" \-what
1 \-endBefore true \-extractHeaderName
false \-headerType "To" \-whatExtract
3 \-occurFrom "1" \-formula
"160\[00000000-\]" \-endStr ">" \-usePosition
0 \-endOccur "last" \-positionTo
"last" \-reqLine 1 \-keepHeaderCrlf
false \-compactForm "t" \-paramName
"" \-afterOccur "1" \-beginAfter
true \-afterStr "<" \-occurTo
"1" \-revHeaderOrder false

SEE ALSO

Chapter 39 VoIP SIP Peer

– 1583 –

This page intentionally left blank.

– 1584 –

CHAPTER 40 VoIP Skinny Peer
The IxLoad VoIP Skinny Peer Tcl API consists of a VoIP Skinny Peer agent, with separate APIs for
configuring each major aspect of the agent’s functionality.

Limitations
The following restrictions and limitations of the VoIPSkinny Peer API exist:

l The PhoneBook and other related classes, such as PhoneBookEntry, can not be edited from the
Tcl API.

l Individual VoIP Skinny script functions can not be added and edited from the Tcl API. Instead,
you must add and configure the commands in the Scenario Editor, save the test scenario file,
then pass it as an argument to the
ScenarioSettings API class.

l Implementation of the BHCA objective features relies on two classes,
CustomParameters and CustomActivityLinkSettings that have to be
configured using the same parameters.

– 1585 –

VoIP Skinny Peer API Commands
The IxLoad VoIP Skinny Peer API commands are organized as shown in the figure below.

Chapter 40 VoIP Skinny Peer

– 1586 –

VoIP Skinny API Objects
The table below lists the VoIP Skinny Peer API objects.

Object Description

VoIP Skinny Peer
Agent

Top-level object defining the VoIP Skinny Peer activity.

Scenario Settings Selects the Test Scenario file; corresponds to the Scenario Settings GUI
tab.

Codec Settings List of Data Codecs and Codecs objects.

Data Codecs Data codec with parameters.

Codecs Audio codec with parameters.

Skinny Settings VoIP Skinny Peer Skinny parameters; corresponds to the Skinny Settings
GUI tab.

CallManager CallManager object with parameters.

Execution Settings Run-time test configuration; corresponds to the Execution Settings GUI
tab.

Dial Plan Configures the registration names, phone numbers, and source, destination,
and transfer addresses for the channels/phones; corresponds to the Dial
Plan GUI tab.

RTP Settings RTP transport configuration; corresponds to the RTP Settings GUI tab.

Audio Settings Audio settings; corresponds to the Audio GUI tab.

Other Settings VoIP Skinny Peer miscellaneous parameters; corresponds to the Other
Settings GUI tab.

Custom Activity Link
Settings,
CustomParameters

BHCA objective configuration; corresponds to the Custom Parameters GUI
tab.

Chapter 40 VoIP Skinny Peer

– 1587 –

VoIP Skinny Peer Agent
VoIP Skinny Peer Agent

SYNOPSIS

set Activity_VoIPSkinnyPeer1 \

[$ClientNetwork1 activityList.appendItem \

-protocolAndType"VoIP Skinny Peer"]

DESCRIPTION

A VoIP Skinny Peer agent is added to the agentList option of the config object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. See the
following example:
set Activity_VoIPSkinnyPeer2 [$skinny_client_ClientNetwork1 \
activityList.appendItem \-protocolAndType "VoIP Skinny Peer"
]$Activity_VoIPSkinnyPeer2 config \-enable true \-
name "VoIPSkinnyPeer2" \-enableConstraint
false \-userObjectiveValue 1 \-constraintValue
100 \-userObjectiveType "channels" \-timeline
$Timeline3 \

$Activity_VoIPSkinnyPeer2 agent.config \-enable
true \-name "VoIPSkinnyPeer2"

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:
$Activity_VoIPSkinnyPeer1 agent(0).config -name “VoIP Skinny Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

STATISTICS

The table below lists the statistics published by this object.

Chapter 40 VoIP Skinny Peer

– 1588 –

Note: Statistics from this category are not displayed in any of the pre-defined
views, but can be assigned to custom statistics views.

Statistic Description Per
Channel/Global

VoIPSkinny Channels

Successful
Channels

The per polling interval number of COMPLETED channels. A
channel is COMPLETED if all the channel loops were
COMPLETED.

Global

Warning
Channels

The per polling interval number of WARNING channels. A
channel is WARNING if all the channel loops were
COMPLETED or WARNING and at least one loop had a
WARNING result.

Global

Failed Channels The per polling interval number of FAILED channels. A
channel is FAILED if all the loops of the channel were
COMPLETED, WARNING, or FAILED and at least one loop
was FAILED.

Global

Aborted Channels The per polling interval number of ABORTED channels. A
channel is ABORTED if all the channel loops of the channel
were COMPLETED, WARNING, FAILED, or ABORTED and at
least one loop was ABORTED.

Global

Active Channels The per polling interval number of active channels. Active
channels are the channels executing a scenario channel
functions flow.

Global

Total Channels The per polling interval total number of channels, a sum of
active and non-active channels.

Global

VoIPSkinny Loops

Successful
Channel Loops

The cumulative count of COMPLETED channel loops. A
channel loop is COMPLETED if all executed script functions
in the corresponding scenario channel produced SKIPPED or
COM-PLETED function results.

Global

Warning Channel
Loops

The cumulative count of WARNING channel loops. A
channel loop has a WARNING result if all executed script
functions in the corresponding scenario channel produced
SKIPPED, COMPLETED, or WARNING function results and at
least one script function had a WARNING result.

Global

Failed Channel The cumulative count of FAILED channel loops. A channel Global

Chapter 40 VoIP Skinny Peer

– 1589 –

Loops loop is FAILED if all executed script functions in the
corresponding scenario channel produced SKIPPED,
COMPLETED, WARNING, or FAILED function results and at
least one script function had a FAILED result.

Aborted Channel
Loops

The cumulative count of ABORTED channel loops. A channel
loop is FAILED if all executed script functions in the
corresponding scenario channel produced SKIPPED,
COMPLETED, WARNING, FAILED, or ABORTED function
results and at least one script function had an ABORTED
result.

Global

Total Channel
Loops

The cumulative count of total executed loops. Global

Inter Loop
Duration (Avg)
(ms)

The average time gap between loops. Global

VoIPSkinny Calls

Attempted Calls The number of originated calls - not necessarily answered
or connected. This statistic is updated whenever the
skNewCall, SkRedial, or SkMeetMeConfrn softkey is sent. It
is also incremented when a transfer or a conference is
initiated, i.e. a SkTrnsfer or a SkConfrn softkey is sent for
the first time.

Global

Connected Calls The number of calls successfully connected from the
originator point of view. This statistic is incremented
whenever the originating side receives a
StartMediaTransmissionmessage.

Global

Received Calls The number of received calls, not necessarily answered.
This statistic is incremented whenever the CallState
TsRingIn or the CallState TsWaitCalling message is
received by the call terminating side.

Global

Answered Calls The number of calls received, successfully answered and
connected. This statistic is incremented whenever the
receiving side receives a StartMediaTransmission
message.

Global

Transferred Calls The number of transferred calls. This statistic is updated
whenever the CallState TsOnHook message is received,
after the second SkTransfer softkey was sent, to complete
the transfer.

Global

Chapter 40 VoIP Skinny Peer

– 1590 –

Active Calls Number of active calls at one time.
This statistic is incremented when the
StartMediaTransmissionmessage is received, and is
decremented when the CallState TsOnHook message is
received or at the end of the loop.

Global

Busy Calls The number of calls that were rejected with the party being
busy as a cause. This statistic is incremented when the
CallState TsBusy message is received.

Global

End Call Initiated The number of initiated end call operations. This statistic is
updated whenever the skEndCall softkey is sent.

Global

End Call
Received

This statistic is updated whenever the CallState TsOnHook
message is received, without the skEndCall softkey being
previously sent.

Global

End Calls
Completed

This statistic is updated whenever the CallState TsOnHook
message is received after having sent a SkEndCall softkey.

Global

Answered Calls
TX

The number of acknowledged calls (answered), but not
necessarily connected. This statistic is incremented when
the CallState TsConnectedmessage is received by
originating side.

Global

Attempted
Answered Calls
RX

The number of calls received and answered, but not
necessarily completed. This statistic is incremented
whenever the SkAnswer softkey event is sent by the
receiving side.

Global

VoIPSkinny Call Rates

Attempted Calls
/s,
Connected Calls
/s,
Received Calls
/sec,
Answered Calls
/s,
Rejected Calls /s,
Calls with
Authentication
Required /s,
Transferred Calls
/s,
Busy Calls /s,
Redirected Calls

The per polling interval rates corresponding to some of the
previous VoIPSkinny Calls statistics.

Global

Chapter 40 VoIP Skinny Peer

– 1591 –

/s

VoIPSkinny Call Times

Call Setup Time
TX Avg (ms)

The time it takes to setup a call and receive a call
acceptance acknowledgement from the remote endpoint,
including the post-dial delay and computed as the time
between the SkNewCall and the StartMediaTransmission
events.

Global

Call Setup Time
RX Avg (ms)

The time from receiving the request for the call until
receiving the final caller acknowledgment that the call
setup has been successfully completed, computed as time
between the CallState TsRingIn and the StartMedia
Transmission events.

Global

Talk Time
(Avg)

The active conversational between the
StartMediaTransmissionmessage until the
CloseReceiveChannel message.

Global

End Call Time
(Avg)

The time between the sending the SkEndCall softkey and
receiving the CallState TsOnHook message.

Global

Total Call
Duration (Avg)

The total call duration comprising the call setup, talk, and
end call times.

Global

VoIpSkinny Delays

Post Dial Delay
(Avg) [ms]

The per polling interval time elapsed between sending of
the last dialed number digit and receiving of a
CallStateMessage TsRingOut, TsCongestion, TsBusy, or
TsInvalidNumber message.

Global

Media Delay TX
(Avg) [ms],

Media Delay TX
(Max) [ms],

Media Delay TX
(Min) [ms]

The per polling interval average/min/max media delay,
including both the call setup delay and the post dial delay,
is delimited in time by the sending of the last dialed digit
and the receiving of the first RTP packet at the call initiating
endpoint.

Global

Media Delay RX
(Avg) [ms],

The per polling interval average/min/max time elapsed
between receiving the CallState TsRingInmessage and

Global

Chapter 40 VoIP Skinny Peer

– 1592 –

Media Delay RX
(Max) [ms],

Media Delay RX
(Min) [ms]

receiving the first media packet.

The media delay includes both the call setup delay and
post-pickup delay.

Post-Pickup
Delay (Avg)
[ms],

Post-Pickup
Delay (Max)
[ms],

Post-Pickup
Delay (Min) [ms]

The per polling interval average/min/max time elapsed
between sending the SoftKeyEventMessage (SoftKeyEvent
= Answer) and receiving the first media packet.

Global

Dial Tone Delay
(Avg) [ms]

The per polling interval time elapsed between sending the
OffHook message or the NewCall softkey and receiving the
StationStartToneMessage (DtDialTone).

Global

Busy Tone Delay
(Avg) [ms]

The per polling interval time elapsed between sending the
NewCall softkey included in the OffHook message and
receiving the StationStartToneMessage (DtLineBusyTone).

Global

VoIPSkinny Registrations

Attempted
Registrations

The cumulative count of attempted registrations,
incremented when a phone is starting registration with the
primary CCM. If the phone is already registered, the
statistic is not incremented.

Note: If a problem occurs with the primary CCM, the phone
tries to re-register with the second CCM and the statistic is
incremented.

Global

Successful
Registrations

The cumulative count of successful registrations,
incremented when a registration completes, that is all the
registration sequence messages have been sent and replies
for them have been received from the primary CCM.

Global

Failed
Registrations

The cumulative count of failed registrations, incremented
whenever the CCM replies with the RegisterReject
message, the timeout for the registration function expires,
or in case of connection failure.

Global

Attempted De-
Registrations

The cumulative count of attempted de-registrations,
incremented when a phone is starting de-registration with

Global

Chapter 40 VoIP Skinny Peer

– 1593 –

the primary CCM by sending the Unregister message.

Successful De-
Registrations

The cumulative count of successful de-registrations,
incremented when the phone receives the reply
UnregisterAck message from the primary CCM.

Global

Failed De-
Registrations

The cumulative count of failed de-registrations,
incremented when the timeout for the Skinny Unregister
Client script function expires.

Global

Registration Time
(Avg) [ms]

The time it takes for the registration function to complete,
including the time for the establishment of the primary and
secondary CCM connections, the time spent to send all the
registration sequence messages and to receive the replies
from the primary CCM.

Global

DeRegistration
Time (Avg) [ms]

The time is takes the phone to send the Unregister message
and to wait for the reply UnregisterAck message from the
primary CCM.

Global

VoIPSkinny Registration Rates

Attempted
Registrations /s

The per polling interval attempted registration rate. Global

Successful
Registrations /s

The per polling interval successful registration rate. Global

Attempted De-
Registrations /s

The per polling interval attempted de-registration rate. Global

Successful De-
Registrations /s

The per polling interval successful de-registration rate. Global

VoIPSkinny Errors

Transport Errors The number of Skinny transport errors, occurring when a
Skinny message cannot be sent due to a socket error.

Global

Trigger Errors The number of trigger errors. Global

RTP Errors The total number of RTP related errors, incremented when
any RTP script function is failing or exiting on the Warning
or Timeout outputs.

Global

Timeout Errors The number of script functions timeout errors. Global

Internal Errors The total number of internal errors. Global

Chapter 40 VoIP Skinny Peer

– 1594 –

VoIPSkinny Busy Hour Call Measurements

BHCA The Busy Hour Call Attempts rate that represents the
number of calls initiated in one hour.

Global

BHCC The Busy Hour Call Completions rate that represents the
number of calls initiated and connected in one hour.

Global

VoIPSkinny Other

Payload Bytes
Received,
Payload Bytes
Received/s

The inbound RTP payload bytes number, inbound RTP
payload bytes rate.

Both

Triggers Sent,
Triggers Sent /s

The number of triggers sent, the rate of triggers sent. Global

Triggers
Received,
Triggers
Received /s

The number of triggers received, the rate of triggers
received

Global

Triggers Bytes
Sent,
Triggers Bytes
Sent /s

The number of trigger bytes sent, the rate of trigger bytes
sent.

Global

Triggers Bytes
Received,
Triggers Bytes
Received /s

The number of trigger bytes received, the rate of trigger
bytes received.

Global

Table 29-1.VoIPSkinnyPeer Statistics

Statistic Description Per
Channel/Global

VoIPSkinny Channels

Successful
Channels

The per polling interval number of COMPLETED channels. A
channel is COMPLETED if all the channel loops were COMPLETED.

Global

Warning
Channels

The per polling interval number of WARNING channels. A channel
is WARNING if all the channel loops were COMPLETED or
WARNING and at least one loop had a WARNING result.

Global

Chapter 40 VoIP Skinny Peer

– 1595 –

Failed
Channels

The per polling interval number of FAILED channels. A channel is
FAILED if all the loops of the channel were COMPLETED,
WARNING, or FAILED and at least one loop was FAILED.

Global

Aborted
Channels

The per polling interval number of ABORTED channels. A channel
is ABORTED if all the channel loops of the channel were
COMPLETED, WARNING, FAILED, or ABORTED and at least one
loop was ABORTED.

Global

Active
Channels

The per polling interval number of active channels. Active
channels are the channels executing a scenario channel functions
flow.

Global

Total Channels The per polling interval total number of channels, a sum of active
and non-active channels.

Global

VoIPSkinny Loops

Successful
Channel Loops

The cumulative count of COMPLETED channel loops. A channel
loop is COMPLETED if all executed script functions in the
corresponding scenario channel produced SKIPPED or COM-
PLETED function results.

Global

Warning
Channel Loops

The cumulative count of WARNING channel loops. A channel loop
has a WARNING result if all executed script functions in the
corresponding scenario channel produced SKIPPED, COMPLETED,
or WARNING function results and at least one script function had
a WARNING result.

Global

Failed Channel
Loops

The cumulative count of FAILED channel loops. A channel loop is
FAILED if all executed script functions in the corresponding
scenario channel produced SKIPPED, COMPLETED, WARNING, or
FAILED function results and at least one script function had a
FAILED result.

Global

Aborted
Channel Loops

The cumulative count of ABORTED channel loops. A channel loop
is FAILED if all executed script functions in the corresponding
scenario channel produced SKIPPED, COMPLETED, WARNING,
FAILED, or ABORTED function results and at least one script
function had an ABORTED result.

Global

Total Channel
Loops

The cumulative count of total executed loops. Global

Inter Loop
Duration (Avg)
(ms)

The average time gap between loops. Global

Chapter 40 VoIP Skinny Peer

– 1596 –

VoIPSkinny Calls

Attempted
Calls

The number of originated calls - not necessarily answered or
connected. This statistic is updated whenever the skNewCall,
SkRedial, or SkMeetMeConfrn softkey is sent. It is also
incremented when a transfer or a conference is initiated, i.e. a
SkTrnsfer or a SkConfrn softkey is sent for the first time.

Global

Connected
Calls

The number of calls successfully connected from the originator
point of view. This statistic is incremented whenever the
originating side receives a StartMediaTransmission message.

Global

Received Calls The number of received calls, not necessarily answered. This
statistic is incremented whenever the CallState TsRingIn or
the CallState TsWaitCalling message is received by the call
terminating side.

Global

Answered
Calls

The number of calls received, successfully answered and
connected. This statistic is incremented whenever the receiving
side receives a StartMediaTransmission message.

Global

Transferred
Calls

The number of transferred calls. This statistic is updated
whenever the CallState TsOnHook message is received, after
the second SkTransfer softkey was sent, to complete the
transfer.

Global

Active Calls Number of active calls at one time.
This statistic is incremented when the StartMediaTransmission
message is received, and is decremented when the CallState
TsOnHook message is received or at the end of the loop.

Global

Busy Calls The number of calls that were rejected with the party being busy
as a cause. This statistic is incremenented when the CallState
TsBusy message is received.

Global

End Call
Initiated

The number of initiated end call operations. This statistic is
updated whenever the skEndCall softkey is sent.

Global

End Call
Received

This statistic is updated whenever the CallState TsOnHook
message is received, without the skEndCall softkey being
previously sent.

Global

End Calls
Completed

This statistic is updated whenever the CallState TsOnHook
message is received after having sent a SkEndCall softkey.

Global

Answered The number of acknowledged calls (answered), but not Global

Chapter 40 VoIP Skinny Peer

– 1597 –

Calls TX necessarily connected. This statistic is incremented when the
CallState TsConnected message is received by originating
side.

Attempted
Answered
Calls RX

The number of calls received and answered, but not necessarily
completed. This statistic is incremented whenever the SkAnswer
softkey event is sent by the receiving side.

Global

VoIPSkinny Call Rates

Attempted
Calls /s,
Connected
Calls /s,
Received Calls
/sec,
Answered
Calls /s,
Rejected Calls
/s,
Calls with
Authentication
Required /s,
Transferred
Calls /s,
Busy Calls /s,
Redirected
Calls /s

The per polling interval rates corresponding to some of the
previous VoIPSkinny Calls statistics.

Global

VoIPSkinny Call Times

Call Setup
Time TX Avg
(ms)

The time it takes to setup a call and receive a call acceptance
acknowledgement from the remote endpoint, including the post-
dial delay and computed as the time between the SkNewCall and
the StartMediaTransmission events.

Global

Call Setup
Time RX Avg
(ms)

The time from receiving the request for the call until receiving the
final caller acknowledgment that the call setup has been
successfully completed, computed as time between the
CallState TsRingIn and the StartMedia
Transmission events.

Global

Talk Time
(Avg)

The active conversational between the
StartMediaTransmission message until the
CloseReceiveChannel message.

Global

End Call Time
(Avg)

The time between the sending the SkEndCall softkey and
receiving the CallState TsOnHook message.

Global

Chapter 40 VoIP Skinny Peer

– 1598 –

Total Call
Duration (Avg)

The total call duration comprising the call setup, talk, and end
call times.

Global

VoIpSkinny Delays

Post Dial
Delay (Avg)
[ms]

The per polling interval time elapsed between sending of the last
dialed number digit and receiving of a CallStateMessage
TsRingOut, TsCongestion, TsBusy, or TsInvalidNumber
message.

Global

Media Delay
TX (Avg)
[ms],

Media Delay
TX (Max)
[ms],

Media Delay
TX (Min) [ms]

The per polling interval average/min/max media delay, including
both the call setup delay and the post dial delay, is delimited in
time by the sending of the last dialed digit and the receiving of
the first RTP packet at the call initiating endpoint.

Global

Media Delay
RX (Avg)
[ms],

Media Delay
RX (Max)
[ms],

Media Delay
RX (Min) [ms]

The per polling interval average/min/max time elapsed between
receiving the CallState TsRingIn message and receiving the
first media packet.

The media delay includes both the call setup delay and post-
pickup delay.

Global

Post-Pickup
Delay (Avg)
[ms],

Post-Pickup
Delay (Max)
[ms],

Post-Pickup
Delay (Min)
[ms]

The per polling interval average/min/max time elapsed between
sending the SoftKeyEventMessage (SoftKeyEvent = Answer)
and receiving the first media packet.

Global

Dial Tone
Delay (Avg)
[ms]

The per polling interval time elapsed between sending the
OffHook message or the NewCall softkey and receiving the
StationStartToneMessage (DtDialTone).

Global

Busy Tone
Delay (Avg)
[ms]

The per polling interval time elapsed between sending the
NewCall softkey included in the OffHook message and receiving
the StationStartToneMessage (DtLineBusyTone).

Global

Chapter 40 VoIP Skinny Peer

– 1599 –

VoIPSkinny Registrations

Attempted
Registrations

The cumulative count of attempted registrations, incremented
when a phone is starting registration with the primary CCM. If the
phone is already registered, the statistic is not incremented.

Note: If a problem occurs with the primary CCM, the phone tries
to re-register with the second CCM and the statistic is
incremented.

Global

Successful
Registrations

The cumulative count of successful registrations, incremented
when a registration completes, that is all the registration
sequence messages have been sent and replies for them have
been received from the primary CCM.

Global

Failed
Registrations

The cumulative count of failed registrations, incremented
whenever the CCM replies with the RegisterReject message,
the timeout for the registration function expires, or in case of
connection failure.

Global

Attempted De-
Registrations

The cumulative count of attempted de-registrations, incremented
when a phone is starting de-registration with the primary CCM by
sending the Unregister message.

Global

Successful De-
Registrations

The cumulative count of successful deregistrations, incremented
when the phone receives the reply UnregisterAck message from
the primary CCM.

Global

Failed De-
Registrations

The cumulative count of failed deregistrations, incremented when
the timeout for the Skinny Unregister Client script function
expires.

Global

Registration
Time (Avg)
[ms]

The time it takes for the registration function to complete,
including the time for the establishment of the primary and
secondary CCM connections, the time spent to send all the
registration sequence messages and to receive the replies from
the primary CCM.

Global

DeRegistration
Time (Avg)
[ms]

The time is takes the phone to send the Unregister message and
to wait for the reply UnregisterAck message from the primary
CCM.

Global

VoIPSkinny Registration Rates

Attempted
Registrations
/s

The per polling interval attempted registration rate. Global

Successful The per polling interval successful registration rate. Global

Chapter 40 VoIP Skinny Peer

– 1600 –

Registrations
/s

Attempted De-
Registrations
/s

The per polling interval attempted de-registration rate. Global

Successful De-
Registrations
/s

The per polling interval successful de-registration rate. Global

VoIPSkinny Errors

Transport
Errors

The number of Skinny transport errors, occuring when a Skinny
message cannot be sent due to a socket error.

Global

Trigger Errors The number of trigger errors. Global

RTP Errors The total number of RTP related errors, incremented when any
RTP script function is failing or exiting on the Warning or Timeout
outputs.

Global

Timeout Errors The number of script functions timeout errors. Global

Internal Errors The total number of internal errors. Global

VoIPSkinny Busy Hour Call Measurements

BHCA The Busy Hour Call Attempts rate that represents the number of
calls initiated in one hour.

Global

BHCC The Busy Hour Call Completions rate that represents the number
of calls initiated and connected in one hour.

Global

VoIPSkinny Other

Payload Bytes
Received,
Payload Bytes
Received/s

The inbound RTP payload bytes number, inbound RTP payload
bytes rate.

Both

Triggers Sent,
Triggers Sent
/s

The number of triggers sent, the rate of triggers sent. Global

Triggers
Received,
Triggers

The number of triggers received, the rate of triggers received Global

Chapter 40 VoIP Skinny Peer

– 1601 –

Received /s

Triggers Bytes
Sent,
Triggers Bytes
Sent /s

The number of trigger bytes sent, the rate of trigger bytes sent. Global

Triggers Bytes
Received,
Triggers Bytes
Received /s

The number of trigger bytes received, the rate of trigger bytes
received.

Global

Note: Statistics from this category are not displayed in any of the pre-defined views, but can be
assigned to custom statistics views.

EXAMPLE
set Activity_VoIPSkinnyPeer1 [$myNetTraffic activityList.appendItem \-
protocolAndType "VoIPSkinny Peer"]

set Timeline1 [::IxLoad new ixTimeline]$Timeline1 config \-rampUpValue
1 \-rampUpType 0 \-offlineTime
0 \-rampDownTime 20 \-standbyTime
0 \-iterations 1 \-rampUpInterval
1 \-sustainTime 20 \-timelineType
0 \-name "Timeline1"

$Activity_VoIPSkinnyPeer1 config \-enable 1 \-name
"VoIPSkinnyPeer1" \-enableConstraint false \-
userObjectiveValue 100 \-constraintValue
100 \-userObjectiveType "channels" \-timeline
$Timeline1

$Activity_VoIPSkinnyPeer1 agent.config \-enable 1
\-name "VoIPSkinnyPeer1"

SEE ALSO

ixConfig

Chapter 40 VoIP Skinny Peer

– 1602 –

Scenario Settings
VoIP Skinny Peer Scenario Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.scenarioSettings.config \

-option value

DESCRIPTION

Scenario Settings specifies the test scenario file that will be used by the Tcl script.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP Skinny Peer activity. Default
= 0.

EXAMPLE

$Activity_VoIPSkinnyPeer1 agent.pm.scenarioSettings.config \

-scenarioFile"E:\\ScenarioTestFiles\\Skinny.tst" \

-activeScenarioChannel0

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1603 –

Execution Settings
VoIP Skinny Peer Execution Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.executionSettings.config \

-optionvalue

DESCRIPTION

This object defines the execution settings for the VoIP Skinny Peer.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

loopMode

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

loopCount

If loopMode is 1, this option defines the number of loops that the test performs. Default="1".

loopPreDelay

Delay before first loop (ms). Default="0", min="0" max="3600000".

loopMidDelay

Delay between loops (ms). Default="0" min="0" max="3600000".

aliases

Number of aliases (phone numbers) per channel. Default="1", min="1" max="16000".

EXAMPLE

$Activity_VoIPSkinnyPeer1 agent.pm.executionSettings.config \

-loopMidDelay0 \

Chapter 40 VoIP Skinny Peer

– 1604 –

-loopCount1 \

-loopPreDelay0 \

-loopMode0 \

-aliases1

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1605 –

Dial Plan
VoIP Skinny Peer Dial Plan

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.dialPlan.config \

-option value

DESCRIPTION

The Dial Plan object configures the registration names, phone numbers, and source, destination, and
transfer addresses for the channels/phones emulated by the VoIP Skinny Peer activity.

SUBCOMMANDS

None.

OPTIONS

The options for this command are configured and read using the standard config, cget, and
getOptions subcommands defined in the ixConfig command.

Source options

useSourcePhoneBook

Method used to select phone number.

Value Usage

0 Use the phone number specified by pattern.

1 Use the phone number specified by Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (useSourcePhoneBook=1). The generated Tcl script will run only on the machine
it has been generated on and only if the corresponding Phonebook entry has not yet been deleted
since the generation of the Tcl code.

sourcePhoneSpecified

If useSourcePhoneBook is 0, this option specifies the phone number. You can use sequence generators
in this field to generate multiple phone numbers. See the sequence generator appendix.
Default="160[00000000-]".

sourcePhoneType

Type of source phone number:

0 = Specifyied by sourcePhoneSpecified as digits (default).

Chapter 40 VoIP Skinny Peer

– 1606 –

1 = Specified by sourcePhoneBook as a file name.

sourcePhoneBook

If useSourcePhoneBook is 1, this option specifies the phone book entry name.
Default="<None>".
Destination options

useDestPhoneBook

Method used to select the phone number used to override destination phone number.

Value Usage

0 (default) Specify pattern.

1 Specify Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (useDestPhoneBook=1). The generated Tcl script will run only on the machine it
has been generated on and only if the corresponding Phonebook entry has not yet been deleted since
the generation of the Tcl code.

destPhoneSpecified

If useDestPhoneBook is 0, this option specifies the phone number.
Default="170[00000000-]".

destPhoneType

Type of destination phone number:

0 = Specifyied by destPhoneSpecified as digits (default).

1 = Specified by destPhoneBook as a file name.

destPhoneBook

If useDestPhoneBook is 1, this option specifies the phone book file name.

Default="<None>".

symDestStr

String identifying the VoIP Skinny Peer that is the destination for traffic from this VoIP Skinny Peer.
Default="None".

ovrDestPhone

Enables overriding of phone number from the destination VoIP Skinny Peer.

Value Usage

0 (default) Disabled

Chapter 40 VoIP Skinny Peer

– 1607 –

1 Enabled

Registration options

useSourceRegBook

Method used to select registration names.

Value Usage

0 Use the phone number specified by pattern.

1 Use the phone number specified by Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (useSourcePhoneBook=1). The generated Tcl script will run only on the machine
it has been generated on and only if the correspon-ding Phonebook entry has not yet been deleted
since the generation of the Tcl code.

sourceRegSpecified

If useSourceRegBook is 0, this option specifies the phone number. Default="SEP0000000[15000-]".

sourceRegType

Type of registration names.

0 = Specified by sourceRegSpecified as digits (default).

1 = Specified by sourceRegBook as a file name.

sourceRegBook

If useSourceRegBook is 1, this option specifies the phone book file name. Default="<None>".

Transfer and Conference options

useTransferPhoneBook

Method used to select the phone number used to override transfer and conference phone number.

Value Usage

0 (default) Specify pattern.

1 Specify Phonebook entry.

Note: This options appears in the generated tcl code only if the test configuration contains a reference
to a Phonebook entry (transferPhoneBook). The generated Tcl script will run only on the machine it
has been generated on and only if the corresponding Phonebook entry has not yet been deleted since
the generation of the Tcl code.

transferPhoneSpecified

Chapter 40 VoIP Skinny Peer

– 1608 –

If useTransferPhoneBook is 0, this option specifies the phone number. Default="180[00000000-]".

transferPhoneType

Type of transfer phone number type.

0 = Specified by transferPhoneSpecified as digits (default).

1 = Specified by transferPhoneBook as a file name.

transferPhoneBook

If useTransferPhoneBook is 1, this option specifies the phone book file name.
Default="<None>".

symTransferStr

String identifying the VoIP Skinny Peer used for transfer and conference functions. Default="None".

ovrTransferPhone

Enables overriding of phone number from the transfer and conferencing VoIP Skinny Peer.

Value Usage

0 (default) Disabled

1 Enabled

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.dialPlan.config \-useSourcePhoneBook 0
\-sourcePhoneSpecified "160\[00000000-\]" \-sourcePhoneType 0
\-sourcePhoneBook "<None>" \

-useDestPhoneBook 0 \
-destPhoneSpecified "170\[00000000-\]" \
-destPhoneType 0 \-destPhoneBook "<None>" \

-symDestStr "None" \
-ovrDestPhone false
-useSourceRegBook 0 \-sourceRegSpecified "SEP0000000\[15000-
\]" \-sourceRegType 0 \-sourceRegBook "<None>"
\-useTransferPhoneBook 0 \-transferPhoneSpecified "180\[00000000-\]"
\-transferPhoneType 0 \-transferPhoneBook "<None>" \-
symTransferStr "None" \-ovrTransferPhone false \

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1609 –

Skinny Settings
VoIP Skinny Peer Signaling Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.signalingSettings.config \

-optionvalue

DESCRIPTION

This object defines the VoIP Skinny Peer Skinny settings.

SUBCOMMANDS

None.

OPTIONS

enableSkinny

Enables use of Skinny signaling for the VoIP Skinny Peer.

0 = Skiny disabled

1 = Skinny enabled (default)

skinny_enableTos

Enables use of TOS/DSCP. Use the skinny_tos option to specify the TOS/DSCP value.

0 = TOS disabled (default)

1= TOS enabled

skinny_tos

If skinny_enableTos is 1, this option sets the value of the TOS bits.

Value Usage

0 (default) Best Effort (0x00)

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

Chapter 40 VoIP Skinny Peer

– 1610 –

6 Control (0xC0)

seqRegistration

Enables Sequential Registration. 0 = Disabled (default), 1= Enabled.

failDirectly

If seqRegistration = 1, this option controls the registration failure behavior enforced by the Cisco
CallManager.

0 = Do not fail if previously failed (default),

1= Fail registration if previously failed.

skinnyVersion

Version of Skinny protocol used.

0 = Skinny version 4 (default)

1 = Skinny version 5

ccm_number

Cisco Call Manager number. (default = 0).

cmVersion

Cisco Call Manager version (default = 3.4). Note: This is a string value.

secondaryKeepAlive

Interval (in seconds) at which secondary keep alive messages are sent. (default = 60).

primaryKeepAlive

Interval (in seconds) at which primary keep alive messages are sent. (default = 60).

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.skinnySettings.config \-seqRegistration
false \-skinnyVersion 0 \-skinnyServer
false \-_gbSeqRegistration false \-skinny_tos
0 \-skinny_enableTos false \-_skinnyClient1
false \-ccm_number 0 \-failDirectly
false \-cmVersion "3.4" \-secondaryKeepAlive
60 \-primaryKeepAlive 30 \-enableSkinny
true \-_enableSkinny1 false

SEE ALSO

Call Managers

Chapter 40 VoIP Skinny Peer

– 1611 –

Call Managers
List of VoIP Skinny Peer Call Managers

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.signalingSettings.appendItem \

-optionvalue

DESCRIPTION

This object contains the list of VoIP Skinny Peer Skinny Call Managers.

SUBCOMMANDS

The following subcommands are available to handle options. Except where noted, no value is returned;
an exception is raised in the case of an error. In all cases where they are used the option must begin
with a hyphen (-). The value must be of a type appropriate for the option.

appendItem option value option value...

The appendItem subcommand may be used to add an item to a list. Any number of options in the listed
item may be set as part of the append.

configItem index option value option value...

The configItem subcommand may be used to configure a particular item in a list. Any number of
options in the list item may be set. The index argument is used to indicate which item in the list is to
be configured.

clear

The clear subcommand may be used to delete all listed items from a list.

deleteItem index

The deleteItem subcommand may be used to delete a listed item from a list. The index argument is
used to indicate which item in the list is to be configured.

getItem index

The getItem subcommand may be used to retrieve an item from a list. The index argument is used to
indicate which item in the list is to be retrieved. This subcommand returns the object from the list.

indexCount

The indexCount subcommand returns the number of objects in the list.

OPTIONS

id

Chapter 40 VoIP Skinny Peer

– 1612 –

Name of the Call Manager. Default="callManager".

cmPort

Call Manager port number. Default="2000"

cmAddress

Call Manager IP address. Default="127.0.0.1"

EXAMPLE
$Activity_VoIPSkinnyPeer1 \ agent.pm.skinnySettings.callManagers.appendItem-id
"callManager" \-cmPort "2000" \-cmAddress "127.0.0.1"

SEE ALSO

Skinny Settings

Chapter 40 VoIP Skinny Peer

– 1613 –

Codec Settings
VoIP Skinny Peer Codec Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Codec Settings contains the list of codecs that will be used by the VoIP Skinny Peers in the test. Codec
Settings is a list of one or more codec (audio codec) or dataCodec objects. To add codec or
dataCodec objects, use the appendItem command. To clear the codec settings, use the clear
subcommand.

SUBCOMMANDS

clear

Clears the list of codec settings. For example:
$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.codecs.clear

OPTIONS

None.

EXAMPLE

See the examples for Data Codecs and Codecs.

SEE ALSO

Data Codecs

Codecs

Chapter 40 VoIP Skinny Peer

– 1614 –

Data Codecs
VoIP Skinny Peer Data Codecs

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_VoIPSkinnyPeer1 \ agent.pm.codecSettings.dataCodecs.clear

$Activity_VoIPSkinnyPeer1 \ agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Events" \

-dPayloadType100

Chapter 40 VoIP Skinny Peer

– 1615 –

$Activity_VoIPSkinnyPeer1 \ agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Tones" \

-dPayloadType101

SEE ALSO

Codec Settings

Chapter 40 VoIP Skinny Peer

– 1616 –

Codecs
VoIP Skinny Peer Audio Codec

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs. To add
a codec object, use the appendItem command.

SUBCOMMANDS

None.

OPTIONS

id

Codec type. One of the following:

Codec Description

CodecAMR Adaptive multi-rate codec

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG729A G.729 Annex-A codec

Options for CodecAMR

dPayloadIn

Incoming dynamic payload type. Default="98" min="0" max="127".

dPayloadOut

Chapter 40 VoIP Skinny Peer

– 1617 –

Outgoing dynamic payload type. Default="98" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 14. Default=14.

payloadFormat

Payload format.

Value Usage

0 (default) Bandwidth-efficient format

1 Octet-aligned format

mode

Codec bit rate. One of the following:

Mode Description

0 (default) 4.75 kbps

1 5.15 kbps

2 5.90 kbps

3 6.70 kbps

4 7.40 kbps

5 7.95 kbps

6 10.20 kbps

7 12.20 kbps

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Chapter 40 VoIP Skinny Peer

– 1618 –

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Chapter 40 VoIP Skinny Peer

– 1619 –

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.

Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

dPayloadOut

Chapter 40 VoIP Skinny Peer

– 1620 –

Outgoing dynamic payload type. Default="104" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.codecSettings.codecs.clear

$Activity_VoIPSkinnyPeer1 \ agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711u" \

-dPayloadOut0 \

-dPayloadIn0 \

-frameSize160

$Activity_VoIPSkinnyPeer1 \ agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711a" \

-dPayloadOut8 \

-dPayloadIn8 \

Chapter 40 VoIP Skinny Peer

– 1621 –

-frameSize160

SEE ALSO

Codec Settings

Chapter 40 VoIP Skinny Peer

– 1622 –

RTP Settings
VoIPSkinny Peer RTP Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.rtpSettings.config \
-optionvalue

DESCRIPTION

RTP Settings configures the VoIPSIPPeer RTP transport settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

Enables use of RTP to transport the media traffic.

0 = disabled (default)

1 = enabled

rtpPort

RTP port number. Default="10000".

Note: Valid port numbers are between 1000 and 65534.

enableRTCP

Enables the sending and receiving of RTCP packets.

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

Enables the computation of advanced RTP statistics.

enablePerStream

Enables computation of per-stream statistics.

enableMDI

Enables the Media Delay Index.

enableNBExec

Chapter 40 VoIP Skinny Peer

– 1623 –

If true, all RTP functions from a scenario execute in a non-blocking mode, i.e the current function from
a channel executes in the background, allowing the execution to continue on that channel with the
next script function. Default= False.

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.rtpSettings.config \-enableRTP
true \-enableRTCP false \-enableMDI
false \-chEnableHwAcc true \-chDisableHwAcc
false \-enableAdvStatCalc false \-enablePerStream
false \-rtpPort "\[10000-65535,4\]" \-enableNBExec
false

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1624 –

Audio Settings
VoIPSkinny Peer audio settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.audioSettings.config

DESCRIPTION

The Audio Settings configure the VoIPSkinny Peer audio RTP settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be milliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following values:

l Best Effort (0x00): Routine service

Chapter 40 VoIP Skinny Peer

– 1625 –

l Class 1 (0x20): Priority service, Assured Forwarding class 1

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 40 VoIP Skinny Peer

– 1626 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp
false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-metricsQoV 0 \-useSilence

Chapter 40 VoIP Skinny Peer

– 1627 –

false \-silenceMode 1 \

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1628 –

Other Settings
VoIPSkinny Peer Other Settings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.otherSettings.config \
-optionvalue

DESCRIPTION

This object configures the VoIP Skinny Peer activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated Skinny phones/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

VOIP_IPAddress2

See VOIP_Var0.

Chapter 40 VoIP Skinny Peer

– 1629 –

VOIP_IPAddress3

See VOIP_Var0.

VOIP_IPAddress4

See VOIP_Var0.

ipPreference

Type of addressing to be used on the subnet that the VOIP Skinny Peer runs on.

Value Usage

0 (default) IPv4

1 IPv6

EXAMPLE
$Activity_VoIPSkinnyPeer1 agent.pm.otherSettings.config \-ipPreference
0 \-VOIP_Var1 "" \-VOIP_Var0
"" \-VOIP_Var3 "" \-VOIP_Var2
"" \-VOIP_Var4 "" \-VOIP_IPAddress4
"" \-VOIP_IPAddress1 "" \-VOIP_IPAddress0
"" \-VOIP_IPAddress3 "" \-VOIP_IPAddress2
""

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1630 –

Custom Activity Link Settings
VoIP Skinny Peer CustomActivityLinkSettings

SYNOPSIS

$Activity_VoIPSkinnyPeer1 agent.pm.customActivityLinkSettings.config \
-option value

DESCRIPTION

CustomActivityLinkSettings configures the settings for the BHCA objective for VoIPSkinny Peer
activities. This options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the IxLoad
GUI.

Note: The CustomActivityLinkSettings class has to be configured alonside the CustomParameters
class that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

interCallDuration

Inter-call duration. Default="4000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

callSetupTime

Chapter 40 VoIP Skinny Peer

– 1631 –

Estimated call setup time. Default="500".

callTeardownTime

Estimated call teardown time. Default="500".

bhcaObjectiveValue

BHCA objective value. Default="80000".

EXAMPLE
$Activity_VoIPSkinnyPeer1 \ agent.pm.customActivityLinkSettings.config\

-talkTime40000 \

-channelsNo100 \

-bhcaType0 \

-callTeardownTime500 \

-interCallDuration4000 \

-bhcaObjectiveValue80000 \

-callSetupTime500

SEE ALSO

Chapter 40 VoIP Skinny Peer

– 1632 –

Custom Parameters
VoIPSkinny Peer CustomParameters

SYNOPSIS

$Activity_VoIPSkinnyPeer1 customParameters.config \

-option value

DESCRIPTION

CustomParameters configures the settings for the BHCA objective for VoIPSkinny Peer activities. This
options in this object correspond to the controls on the Custom Parameters tab for a
NetTraffic/ActivityLink in the Timeline and Objective branch of the Test Configuration tree in the GUI.

Note: The CustomParameters class has to be configured alonside the CustomActivityLinkSettings
class that implements the same functionality.

SUBCOMMANDS

None.

OPTIONS

talkTime

If bhcaType is 0, this option specifies the Talk Time that will be used to attain the BHCA test objective.
Default="40000".

interCallDuration

Inter-call duration. Default="4000".

bhcaType

Determines how the BHCA objective will be met: by specifying the talk time or the number of channels.

Value Usage

0
(default)

BHCA will be met by specifying the talk time. Specify the talk time in talkTime.

1 BHCA will be met by specifying the number of channels. Specify the number of
channels in channelsNo.

channelsNo

If bhcaType is 1, this option specifies the number of channels that will be used to attain the BHCA test
objective. Default="100".

callSetupTime

Estimated call setup time. Default="500".

Chapter 40 VoIP Skinny Peer

– 1633 –

callTeardownTime

Estimated call teardown time. Default="500".

bhcaObjectiveValue

BHCA objective value. Default="80000".

EXAMPLE
$Activity_VoIPSkinnyPeer1 customParameters.config\

-talkTime40000 \

-channelsNo100 \

-bhcaType0 \

-callTeardownTime500 \

-interCallDuration4000 \

-bhcaObjectiveValue80000 \

-callSetupTime500

SEE ALSO

! 42

Chapter 40 VoIP Skinny Peer

– 1634 –

CHAPTER 41 VoIP No Call Control Peer
The IxLoad VoIP No Call Control Peer Tcl API consists of a VoIP No Call Control Peer agent, with
separate APIs for configuring each major aspect of the agent’s functionality.

Limitations
The following restrictions and limitations of the VoIP No Call Control Peer API exist:

l The PhoneBook and other related classes, such as PhoneBookEntry, cannot be edited from the Tcl
API.

l Individual VoIP No Call Control script functions cannot be added and edited from the Tcl API.
Instead, you must add and configure the commands in the Scenario Editor, save the test scenario
file, then pass it as an argument to the Scenario Settings API class.

– 1635 –

VoIP No Call Control Peer API Commands
The IxLoad VoIP No Call Control Peer API commands are organized as shown in the figure below.

Chapter 41 VoIP No Call Control Peer

– 1636 –

VoIP No Call Control Peer API Objects
The table below summarizes the objects in the VoIP No Call Control Peer API.

Object Description

VoIP No Call
Control Peer
Agent

Top-level object defining the VoIP No Call Control Peer activity.

Execution
Settings

Run-time test configuration; corresponds to the Execution Settings GUI tab.

Scenario
Settings

Selects the Test Scenario file; corresponds to the Scenario Settings GUI tab.

Dial Plan Configures the source, destination, and transfer addresses and phone numbers
for the channels/endpoints; corresponds to the Dial Plan GUI tab.

Codec Settings Contains a list of Data Codecs and Codecs objects.

Data Codecs Data codec with parameters.

Codecs Audio codec with parameters.

RTP Settings RTP transport configuration; corresponds to the RTP Settings GUI tab.

Audio Settings Audio settings; corresponds to the Audio GUI tab.

Video Settings Video settings; corresponds to the Video GUI tab.

T.38 Settings T.38 IP fax settings; corresponds to the T.38 GUI tab.

T.30 Settings T.30 settings; corresponds to the T.30 GUI tab.

SRTP Settings SRTP configuration corresponding to the SRTP Settings GUI tab.

Other Settings VoIP No Call Control Peer miscellaneous parameters; corresponds to the Other
Settings tab in GUI.

Chapter 41 VoIP No Call Control Peer

– 1637 –

VoIP No Call Control Peer Agent
VoIP No Call Control Peer Agent

SYNOPSIS
set Activity_VoIPNoCCPeer1 [$Traffic_Network1 activityList.appendItem \-
protocolAndType "VoIPNoCC Peer"]

DESCRIPTION

A VoIP No Call Control Peer agent is added to the agentList option of the ixConfig object using the
appendItem subcommand from the ixConfigSequenceContainer command. Other
ixConfigSequenceContainer subcommands may be used to modify the agentList. See the
following example:
set Activity_VoIPNoCCPeer1 [$Traffic_Network1 activityList.appendItem \-
protocolAndType "VoIPNoCC Peer"]

$Activity_VoIPNoCCPeer1 config \-enable true \-name
"VoIPNoCCPeer1" \-enableConstraint false \-userObjectiveValue
1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1

$Activity_VoIPNoCCPeer1 agent.config \-cmdListLoops true
\

Each member of the list, however may be separately addressed and modified using the ixConfig
subcommands. For example, the first agent uses an index of 0 and its name may be modified by:

$Activity_VoIPNoCCPeer1 agent(0).config -name “VoIPNoCC Peer new”

SUBCOMMANDS

None.

OPTIONS

enable

Enables the use of this agent. (Default = true).

name

The name associated with this object, which must be set at object creation time.

timeline

The timeline configured for the test.

Chapter 41 VoIP No Call Control Peer

– 1638 –

STATISTICS

The statistics published by this agent are listed in VoIP No Call Control Statistics.

EXAMPLE
set my_network1 [::IxLoad new ixNetTraffic]

Activity VoIPNoCCPeer1 of
NetTraffic my_network1###set
Activity_VoIPNoCCPeer1 [$my_network1 activityList.appendItem \-protocolAndType
"VoIPNoCC Peer"]## Timeline1
for activitiy VoIPNoCCPeer1###set
Timeline1 [::IxLoad new ixTimeline]

$Timeline1 config \-rampUpValue 1 \-rampUpType
0 \-offlineTime 0 \-rampDownTime
60 \-standbyTime 0 \-iterations
1 \-rampUpInterval 1 \-sustainTime
80 \-timelineType 0 \-name
"Timeline1"

$Activity_VoIPNoCCPeer1 config \-enable true \-name
"VoIPNoCCPeer1" \-enableConstraint false \-userObjectiveValue
1 \-constraintValue 100 \-userObjectiveType
"channels" \-timeline $Timeline1

SEE ALSO

ixConfig

Chapter 41 VoIP No Call Control Peer

– 1639 –

NoCallControl VOIP Statistics
The following No Call Control statistics are computed:

Statistic Description Advanced Per
Channel/Global

Channels

Successful
Channels

The instantaneous number of COMPLETED channels. A
channel is COMPLETED if all the channel loops were
COMPLETED.

- Global

Warning
Channels

The instantaneous number of WARNING channels. A
channel is WARNING if all the channel loops were
COMPLETED or WARNING and at least one loop had a
WARNING result.

- Global

Failed
Channels

The instantaneous number of FAILED channels. A
channel is FAILED if all the channel loops were
COMPLETED or WARNING, and at least one loop was
FAILED.

- Global

Aborted
Channels

The instantaneous number of ABORTED channels. A
channel is ABORTED if all the channel loops were
COMPLETED, WARNING, FAILED, or ABORTED and at
least one loop was ABORTED.

- Global

Active
Channels

The instantaneous number of active channels. Active
channels are the channels executing a scenario
channel functions flow.

- Global

Total
Channels

The instantaneous total number of channels, a sum of
active and non-active channels.

- Global

Loops

Successful
Channel
Loops

The cumulative count of COMPLETED channel loops. A
channel loop is COMPLETED if all executed script
functions in the corresponding scenario channel
produced SKIPPED or COMPLETED results.

- Global

Warning
Channel
Loops

The cumulative count of WARNING channel loops. A
channel loop has a WARNING result if all executed
script functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, or WARNING results
and at least one script function had a WARNING result.

- Global

Failed The cumulative count of FAILED channel loops. A - Global

Chapter 41 VoIP No Call Control Peer

– 1640 –

Channel
Loops

channel loop is FAILED if all executed script functions
in the corresponding scenario channel produced
SKIPPED, COMPLETED, WARNING, or FAILED results
and at least one script function had a FAILED result.

Aborted
Channel
Loops

The cumulative count of ABORTED channel loops. A
channel loop is FAILED if all the executed script
functions in the corresponding scenario channel
produced SKIPPED, COMPLETED, WARNING, FAILED,
or ABORTED results and at least one script function
had an ABORTED result.

- Global

Total
Channel
Loops

The cumulative count of executed loops. - Global

Interloop
Duration
(Avg) [ms]

The average time gap between loops. - Global

Bytes

Bytes Sent The total number (cumulative) of bytes sent in RTP
packets, including the RTP header and the RTP
payload.

- Both

Bytes
Received

The total number (cumulative) of bytes received in
RTP packets, including the RTP header and the RTP
payload.

- Both

Errors

Transport
Errors

The cumulative count of transport errors, occurring
when a SIP message could not be sent due to a socket
error or a failed DNS server query.

- Global

Trigger Errors The cumulative count of trigger errors. - Global

RTP Errors The cumulative count of RTP related errors,
incremented when any RTP script function is failing or
exiting on the Warning or Timeout outputs. Possible
causes include media sessions that have been closed
by the signaling engine, or Generate
DTMF/MF/Tone or Detect DTMF/MF/Tone
functions that failed.

This statistic is also incremented when the signaling
engine cannot start a media session, such as when the
negotiated codec or the negotiated ptime is

- Global

Chapter 41 VoIP No Call Control Peer

– 1641 –

unsupported.

Internal
Errors

The cumulative count of internal errors. - Global

Timeout
Errors

The cumulative count of script functions that have
timed out.

- Global

RTP MOS

MOS Instant
(Avg)

The per polling interval MOS score. No Global

MOS Instant
Worst

The per polling interval lowest MOS score. No Global

MOS Instant
Best

The per polling interval highest MOS score. No Global

MOS The average MOS score for the elapsed test duration. No Both

MOS Worst The lowest MOS score for the elapsed test duration. No Both

MOS Best The highest MOS score for the elapsed test duration. No Both

MOS Per Call
(Avg)

The average MOS score per call. No Global

MOS Per Call
Worst

The lowest MOS score per call. No Global

MOS Per Call
Best

The highest MOS score per call. No Global

RTP MOS per Call Distribution

Excellent -
calls with
MOS
between 4
and 4.5

The percentage of calls with MOS score values
between 4 and 5

No Global

Good - calls
with MOS

The percentage of calls with MOS score values
between 3.5 and 4

No Global

Chapter 41 VoIP No Call Control Peer

– 1642 –

between 3.5
and 4

Fair - calls
with MOS
between 3
and 3.5

The percentage of calls with MOS score values
between 3 and 3.5

No Global

Poor - calls
with MOS
between 2
and 3

The percentage of calls with MOS score values
between 2 and 3

No Global

Bad - calls
with MOS
between 1
and 2

The percentage of calls with MOS score values
between 1 and 2

No Global

RTP MOS Instant

Calls with
excellent
MOS (4 -
4.5)

The instantaneous number of calls with MOS scores
between 4 and 4.5

No Global

Calls with
good MOS
(3.5 - 4)

The instantaneous number of calls with MOS scores
between 3.5 and 4

No Global

Calls with fair
MOS (3 -
3.5)

The instantaneous number of calls with MOS scores
between 3 and 3.5

No Global

Calls with
poor MOS (2
- 3)

The instantaneous number of calls with MOS scores
between 2 and 3

No Global

Calls with
bad MOS (1 -
2)

The instantaneous number of calls with MOS scores
between 1 and 2

No Global

Intervals
with
excellent
MOS (4 -
4.5)

The number of intervals with MOS scores between 4
and 4.5

Note: For the purpose of MOS computation, calls are
sequenced into intervals with a duration of 4 seconds.

No Global

Intervals
with good

The number of intervals with MOS scores between 3.5
and 4

No Global

Chapter 41 VoIP No Call Control Peer

– 1643 –

MOS (3.5 -
4)

Note: For the purpose of MOS computation, calls are
sequenced into intervals with a duration of 4 seconds.

Intervals
with fair MOS
(3 - 3.5)

The number of intervals with MOS scores between 3
and 3.5

Note: For the purpose of MOS computation, calls are
sequenced into intervals with a duration of 4 seconds.

No Global

Intervals
with poor
MOS (2 - 3)

The number of intervals with MOS scores between 2
and 3

Note: For the purpose of MOS computation, calls are
sequenced into intervals with a duration of 4 seconds.

No Global

Intervals
with bad
MOS (1 - 2)

The number of intervals with MOS scores between 1
and 2

Note: For the purpose of MOS computation, calls are
sequenced into intervals with a duration of 4 seconds.

No Global

RTP Jitter and Delay

Interarrival
Jitter
Average (µs)

The per polling interval interarrival jitter value over
RTP streams, in microseconds (as defined in RFC
3550).

Yes Both

Interarrival
Jitter Max
(µs)

The maximum Interarrival Jitter Average (ms) value
among RTP streams for the elapsed test duration, in
microseconds (as defined in RFC 3550).

Yes Global

Delay
Variation
Jitter
Average (µs)

The per polling interval delay variation jitter value
calculated for all packets, in microseconds (as defined
in RFC 3550).

Yes Both

Delay
Variation
Jitter Max
(µs)

The maximum value of the Delay Variation Jitter
Average (ms) value for the elapsed test duration, in
microseconds (as defined in RFC 3550).

Yes Global

One Way
Delay
Average (µs)

The per polling interval time spent by the packet on
the network from the moment it is sent until it is
received.

Note: Depending on whether RTCP support is selected
or not, the OWD computation method is different:

l With RTCP support selected, the OWD value is
computed at different time intervals, using RTCP
information

No Both

Chapter 41 VoIP No Call Control Peer

– 1644 –

l Without RTCP support selected, the OWD value is
computed for every RTP packet sent, using an
RTP header extension.

One Way
Delay Max
(µs)

The maximum One Way Delay Average (ms) value for
the elapsed test duration.

No Global

RTP QoS

Bytes Sent The total number (cumulative) of bytes sent in RTP
packets, including the RTP header and the RTP
payload.

No Both

Packets Sent The total number (cumulative) of sent RTP packets. No Both

Bytes
Received

The total number (cumulative) of bytes received in
RTP packets, including the RTP header and the RTP
payload.

No Both

Packets
Received

The total number (cumulative) of received RTP
packets.

No Both

Bytes Sent/s The rate of sent RTP bytes, including the RTP header
and the RTP payload.

No Both

Bytes
Received /s

The rate of received RTP bytes, including the RTP
header and the RTP payload.

No Both

Throughput
inbound

The inbound bandwidth, taking into account the RTP
header and payload.

No Both

Throughput
outbound

The outbound bandwidth, taking into account the RTP
header and payload.

No Both

Tx Packets
Dropped

The total number of RTP packets dropped at
transmission.

No Global

Lost Packets The total number (cumulative) of lost RTP packets,
defined as the difference between the number of
packets expected at the receiving side and the actual
number of packets received.

No Both

Maximum The maximum number of consecutive RTP packets No Both

Chapter 41 VoIP No Call Control Peer

– 1645 –

Consecutive
Lost Packets

lost.

Bytes Lost
Percentage
[%]

The percentage of lost bytes. No Both

Packet Errors
Received

The total number (cumulative) of packets received
with RTP header errors.

No Both

Packet Size
Mismatched

The total number (cumulative) of RTP packet size
mismatches (packets that have other size than
expected).

Yes Both

Packet Codec
Mismatched

The total number of RTP codec mismatches (packets
that have other payload type than expected).

Yes Both

Duplicate
Packets
Received

The total number (cumulative) of successive RTP
packets received with the same sequence number.

No Both

Late Packets
Received

The total number (cumulative) of RTP packets
received with a delay greater than the GUI-defined
jitter buffer size (expressed in milliseconds).

No Both

Misordered
Packets
Received

The total number (cumulative) of RTP packets with the
sequence number smaller than the previous valid
sequence number.

No Both

RTP Packet Errors

Packet Loss
Correlation

A counter defining the "burstiness" of the packet loss,
computed as the number of lost packets divided by the
number of loss sequences.

Yes Both

Packet Loss
Percentage
[%]

The percentage of RTP packets received with errors. Yes Both

Packet
Misorder
Percentage
[%]

The percentage of misordered packets. Yes Both

Packet Errors
Percentage
[%]

The percentage of RTP packets received with errors. Yes Both

Packet The percentage of RTP duplicate packets. Yes Both

Chapter 41 VoIP No Call Control Peer

– 1646 –

Duplicate
Percentage
[%]

RTP Jitter Distribution

RTP Packets
With Delay
Variation
Jitter Up To
1ms

The number of packets received with delay variation
jitter up to 1 millisecond (ms).

No Both

RTP Packets
With Delay
Variation
Jitter Up To
3ms

The number of packets received with delay variation
jitter up to 3 milliseconds (ms).

No Both

RTP Packets
With Delay
Variation
Jitter Up To
5ms

The number of packets received with delay variation
jitter up to 5 milliseconds (ms).

No Both

RTP Packets
With Delay
Variation
Jitter Up To
10ms

The number of packets received with delay variation
jitter up to 10 milliseconds (ms).

No Both

RTP Packets
With Delay
Variation
Jitter Up To
20ms

The number of packets received with delay variation
jitter up to 20 milliseconds (ms).

No Both

RTP Packets
With Delay
Variation
Jitter Up To
40ms

The number of packets received with delay variation
jitter up to 40 milliseconds (ms).

No Both

RTP Packets
With Delay
Variation
Jitter More
Than 40ms

The number of packets received on the stream with
delay variation jitter over 40 milliseconds (ms).

No Both

Chapter 41 VoIP No Call Control Peer

– 1647 –

RTP DTMF, MF and Tone

DTMF Digits
Sent

The total number of DTMF digits sent by the Generate
DTMF and the Path Confirmation (using DTMFs)
script function.

No Both

DTMF
Sequences
Sent

The total number of DTMF digits sequences sent by the
Generate DTMF and the Path Confirmation (using
DTMFs) script function.

No Both

DTMFs
Detected

The total number of DTMF digits detected. No Both

DTMFs
Matched

The total number of received DTMF sequences that
matched the sequence specified in the Detect DTMF
or the Path Confirmation script function.

No Both

DTMFs Not
Matched

The total number of received DTMF sequences that did
not match the sequence specified in the Detect
DTMF or the Path Confirmation script function.

No Both

Good DTMF
Sequences
Detected

The total number of DTMF sequences detected and
matched by the Path Confirmation script function.

No Both

Bad DTMF
Sequences
Detected

The total number of path confirmation DTMF sequences
detected, but not matched, by the Path
Confirmation script function.

No Both

DTMF
Detection
Timeout

The total number of DTMF detection attempts that
ended because of a timeout condition.

No Both

MF Digits
Sent

The total number of MF digits sent by the Generate
MF or the Path Confirmation (using MFs) script
function.

No Both

MF
Sequences
Sent

The total number of MF sequences sent by Generate
MF or the Path Confirmation (using MFs) script
function.

No Both

MFs Detected The total number of MF digits detected. No Both

MFs Matched The total number of received MF sequences that
matched the sequence specified in the Detect MF or
the Path Confirmation script function.

No Both

MFs Not
Matched

The total number of received MF sequences that did No Both

Chapter 41 VoIP No Call Control Peer

– 1648 –

not match the sequence specified in the Detect MF or
the Path Confirmation script function.

Good MF
Sequences
Detected

The total number of path confirmation MF sequences
detected and matched by the Path Confirmation
script function.

No Both

Bad MF
Sequences
Detected

The total number of path confirmation MF sequences
detected, but not matched, by the Path
Confirmation script function.

No Both

MF Detection
Timeout

The total number of MF detection attempts that ended
because of a timeout condition.

No Both

Custom
Tones Sent

The total number of custom tones sent by the
Generate Tone or the Path Confirmation (using
custom tones) script function.

No Both

Custom Tone
Sequences
Sent

The total number of sent custom tone sequences by
the Generate Tone or the Path Confirmation
(using custom tones) script function.

No Both

Custom
Tones
Detected

The total number of detected custom tones. No Both

Custom
Tones
Matched

The total number of matched custom tones. No Both

Custom
Tones Not
Matched

The total number of not matched custom tones No Both

Custom Tone
Detection
Timeout

The total number of custom tone detection attempts
that ended because of a timeout condition.

This statistic is also incremented when the
synchronization tone timeout of the Path
Confirmation function expires. Path Confirmation
functions use such a tone for the purpose of
synchronizing functions on different channels.

No Both

RTP R-Factor & MOS Degradation

R-Factor
Instant (Avg)

The per polling interval value for the capability of the
RTP channel to support audio transmissions.

Yes Both

Chapter 41 VoIP No Call Control Peer

– 1649 –

R-Factor
Instant Worst

The per polling interval lowest R-Factor Instant (Avg)
value.

Yes Both

R-Factor
Instant Best

The per polling interval highest R-Factor Instant (Avg)
value.

Yes Both

MOS Instant
(Avg)

The per polling interval MOS score. No Both

MOS Instant
Worst

The per polling interval lowest MOS Instant (Avg)
score.

No Both

MOS Instant
Best

The per polling interval highest MOS Instant (Avg)
score.

No Both

Loss
Degradation

The per polling interval quality degradation that can
be attributed to network packet loss.

Yes Both

Jitter
Degradation

The per polling interval quality degradation due to the
packet discards in conditions of jitter buffer overflow or
downflow.

Yes Both

Delay
Degradation

The per polling interval quality degradation that can
be attributed to delay.

Yes Both

Codec
Degradation

The per polling interval quality degradation that can
be attributed to audio encoder/decoder selection.

Yes Both

RTP Consecutive Lost Datagrams Distribution

Consecutive
Lost of One
Packet
Sequences

The per test total number of consecutive one lost RTP
packet sequences.

Yes Both

Consecutive
Lost of Two
or Three
Packets
Sequences

The per test total number of consecutive two or three
lost RTP packets sequences.

Yes Both

Consecutive
Lost of Four
or Five
Packets
Sequences

The per test total number of consecutive four or five
lost RTP packets sequences.

Yes Both

Consecutive
Lost of Six to

The per test total number of consecutive six to ten lost
RTP packets sequences.

Yes Both

Chapter 41 VoIP No Call Control Peer

– 1650 –

Ten Packets
Sequences

Consecutive
Lost of
Eleven or
More Packets
Sequences

The per test total number of consecutive more than ten
lost RTP packets sequences.

Yes Both

RTP Playbacks & Records

Successful
Records

The total number (cumulative statistic) of successful
RTP records, incremented when the last RTP packet of
an encoded wave file was received.

This statistic is incremented only when the Talk or
VoiceSession script functions are present in the
scenario.

No Global

Successful
Playbacks

The total number (cumulative statistic) of successful
RTP playbacks, incremented when the last RTP packet
of an encoded wave file was transmitted.

This statistic is incremented only when the Talk or
VoiceSession script functions are present in the
scenario.

No Global

Failed
Records

The total number (cumulative statistic) of failed RTP
records, incremented when the Talk or VoiceSession
functions fail due to either of the following reasons:

l The signaling engine has not negotiated a
corresponding media session that has Rx or RxTx
capabilities.

l The RTP function is disconnected due to the
signaling engine closing the media session.

No Global

Failed
Playbacks

The total number (cumulative statistic) of failed RTP
playbacks, incremented when the Talk or
VoiceSession functions fail due to either of the
following reasons:

l The signaling engine has not negotiated a
corresponding media session that has Tx or TxRx
capabilities.

l The RTP function is disconnected due to the
signaling engine closing the media session.

No Global

Functions
Disconnected

The total number (cumulative statistic) of failed RTP
playbacks, incremented when the Multimedia Session

No Global

Chapter 41 VoIP No Call Control Peer

– 1651 –

function fails due to the following reason:

l The function is disconnected due to the signaling
engine closing the media session.

RTCP

RTCP Packet
Size TX
(Avg)

The per polling interval average outbound RTCP
packet size.

No Both

RTCP Packet
Size RX
(Avg)

The per polling interval average inbound RTCP packet
size.

No Both

RTCP Packet
Transmission
Time (Avg)
[ms]

The per polling interval amount of time between the
last two consecutive RTCP packets sent.

No Both

RTCP Packet
Arrival Time
(Avg) [ms]

The per polling interval amount of time between the
last two consecutive RTCP packets received.

No Both

RTCP
Packets
Sent,
RTCP
Packets
Received

The total number (cumulative) of sent/received RTCP
packets.

No Both

SRTP

Negotiated
Unsecured
Streams

The total number of unsecured streams negotiated. No Global

Negotiated
Secured
Streams

The total number of secured streams negotiated. No Global

SRTP
Packets
Sent,
SRTP
Packets
Received

The total number (cumulative) of sent/received SRTP
packets.

No Global

SRTP
Packets

The number of packets that failed the SRTP validation. No Global

Chapter 41 VoIP No Call Control Peer

– 1652 –

Discarded

SRTCP
Packets
Discarded

The number of packets that failed the SRTCP
validation.

No Global

SRTP Master
Key Switches

The number of times the master key used was
switched within an existing stream (number of re-
keying's).

No Global

Media Flows

Expected
Audio Flows

The cumulative count of negotiated audio flows. No Global

Audio Flows The cumulative count of actually sent audio flows. No Global

Audio
Concurrent
Flows

The instantaneous number of audio flows. No Global

Expected
Video Flows

The cumulative count of negotiated video flows. No Global

Video Flows The cumulative count of actually sent video flows. No Global

Video
Concurrent
Flows

The instantaneous number of video flows.

Expected
T.38 Flows

The cumulative count of negotiated T.38 flows. No Global

T.38 Flows The cumulative count of actually sent T.38 flows. No Global

Expected
Media Flows

The cumulative count of negotiated media flows, a
sum of audio and video flows.

No Global

Media Flows The cumulative count of actually transmitted media
flows, a sum of audio and video flows.

No Global

RTP Per Channel

Per-channel RTP statistics comprise statistics from the other categories marked with the Both value
in the Per Channel / Global column, plus the following:

Local IP and
Port

The channel local IP and port. No Per Channel

Chapter 41 VoIP No Call Control Peer

– 1653 –

Destination
IP and Port

The channel remote IP and port. No Per Channel

Largest
Bytes Gap

The number of RTP bytes comprised in a consecutive
sequence of lost packets, calculated as the maximum
consecutive number of packets lost multiplied by the
dimension of the RTP data in one packet.

Per Channel

Chapter 41 VoIP No Call Control Peer

– 1654 –

Scenario Settings
VoIP No Call Control Peer Scenario Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.scenarioSettings.config \

-option value

DESCRIPTION

Scenario Settings specifies the test scenario file used by the Tcl API script.

SUBCOMMANDS

None.

OPTIONS

scenarioFile

The full path to the test scenario file for the activity.

activeScenarioChannel

Test scenario channel (0-based index) that is associated with the VoIP No Call Control Peer activity
(Default=0).

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.scenarioSettings.config \

-scenarioFile"D:\\ScenarioTestFiles\\RTPCall.tst" \

-activeScenarioChannel0

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1655 –

Execution Settings
VoIP No Call Control Peer Execution Settings

SYNOPSIS

$Activity_<VoIPNoCCPeer activity name>agent.pm.executionSettings.config \

-optionvalue

DESCRIPTION

This object defines the execution settings for the VoIP No Call Control Peer activity.

SUBCOMMANDS

None.

OPTIONS

rtpIpRule

A simulated RTP channel is uniquely identified by the IP address and port. This option selects the rule
used for the IP address portion of the RTP channel allocation.

l 0 = Use same value (per port) (default)

l 1 = Use consecutive values (per port)

l 2 = Use same value for every X channels. Specify the value for X in the rtpIpRuleCh parameter.

rtpPortRule

This option selects the rule used for the port portion of the RTP channel allocation.

l 0 = Use same value (default)

l 1 = Use consecutive values (per port)

l 2 = Use consecutive values (per activity)

l 3 = Use same value for every X channels. Specify the value for X in rtpPortRuleCh.

gracefulRampDown

If configured true, the execution is stopped gracefully and the call is closed before the ramp-down
period ends.

rtpIpRuleCh

If rtpIpRule is Use same value every, this specifies the number of channels.

rtpPortRuleCh

If rtpPortRule is Use same value every, this parameter specifies the number of channels.

loopMode

Chapter 41 VoIP No Call Control Peer

– 1656 –

Defines how many loops are executed for every voice channel corresponding to this activity.

Value Description

0 (default) Loop for the entire test duration.

1 Execute a number of loops. Specify the number of loops in loopCount.

looCount

If loopMode is 1, this option defines the number of loops that the test performs. Default="1".

loopPreDelay

Delay before first loop (ms). Default="0", min="0" max="3600000".

loopMidDelay

Delay between loops (ms). Default="0" min="0" max="3600000".

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.executionSettings.config \

-rtpPortRule 0 \

-gracefulRampDown true \

-rtpIpRule 1 \

-rtpIpRuleCh 1 \

-rtpPortRuleCh 1 \

-loopPreDelay 0 \

-loopMode 0 \

-loopCount 1 \

-loopMidDelay 0

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1657 –

Dial Plan
VoIP No Call Control Peer Dial Plan

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.dialPlan.config \

-option value

DESCRIPTION

The Dial Plan object configures the destination for the RTP traffic generated by the VoIPNoCCPeer
activity.

SUBCOMMANDS

None.

OPTIONS

rtpIpRule2

This option selects the rule used for the IP address portion of the destination RTP channel, when a DUT
of the 'Virtual DUT' type is configured.

l 0 = Use same value (per port) (default)

l 1 = Use consecutive values (per port)

l 2 = Use same value for every X channels. Specify the value for X in the rtpIpRuleCh2 parameter.

rtpPortRule2

This option selects the rule used for the port portion of the destination RTP channel allocation, when a
DUT of the 'Virtual DUT' type is configured.

l 0 = Use same value (default)

l 1 = Use consecutive values (per port)

l 2 = Use consecutive values (per activity)

l 3 = Use same value for every X channels. Specify the value for X in rtpPortRuleCh2.

rtpIpRuleCh2

If rtpIpRule2 is Use same value every, this specifies the number of channels having the same IP
value.

rtpPortRuleCh2

If rtpPortRule2 is Use same value every, this parameter specifies the number of channels having
the same port value.

symDestStr

Chapter 41 VoIP No Call Control Peer

– 1658 –

String identifying the VoIP No Call Control Peer that is the destination for traffic from this activity.
Default="None".

EXAMPLE

$Activity_VoIPNoCCPeer1 agent.pm.dialPlan.config \

-rtpIpRuleCh2 1 \

-rtpPortRuleCh2 1 \

-symDestStr "Traffic2_VoIPNoCCPeer2:\[10000-65535,4\]" \

-rtpIpRule2 1 \

-rtpPortRule2 0

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1659 –

Codec Settings
VoIP No Call Control Peer Codec Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.config \

-optionvalue

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Codec Settings contains the list of codecs that will be used by the VoIP No Call Control peers in the
test. Codec Settings defines a video codec and configures a list of one or more codec (audio codec) or
dataCodec objects. To add codec or dataCodec objects, use the appendItem command.

SUBCOMMANDS

None.

OPTIONS

videoPayloadType

This option selects the type of the video payload, in case video traffic is generated. In the current
implementation, this is always '96'.

codecs_number

This option selects the type of the video codec used, in case video traffic is generated. In the current
implementation, this is always '0', which corresponds to the H.264 video codec.

EXAMPLE

See the examples for Data Codecs and Codecs, as well as the following example:

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.config \

-videoPayloadType 96 \

-codecs_number 0

SEE ALSO

Data Codecs

Codecs

Chapter 41 VoIP No Call Control Peer

– 1660 –

Codecs
VoIP No Call Control Peer Audio Codec

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.codecs.appendItem \
-optionvalue

DESCRIPTION

Codecs configures an audio codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

The audio codec type, one of the following:

Codec Description

CodecAMR Adaptive multi-rate codec

CodecG711u G.711 mu-law codec

CodecG711a G.711 A-law codec

CodecG723x153 G.723.1 codec @ 5.3 kbps

CodecG723x163 G.723.1 codec @ 6.3 kbps

CodecG726x16 G.726 codec @ 16 Kbps

CodecG726x24 G.726 codec @ 24 Kbps

CodecG726x32 G.726 codec @ 32 Kbps

CodecG726x40 G.726 codec @ 40 Kbps

CodecG729A G.729 Annex-A codec

CodecILBC Internet Low Bit Rate Codec

Options for CodecAMR

dPayloadIn

Chapter 41 VoIP No Call Control Peer

– 1661 –

Incoming dynamic payload type. Default="98" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="98" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 14. Default=14.

payloadFormat

Payload format.

Value Usage

0 (default) Bandwidth-efficient format

1 Octet-aligned format

mode

Codec bit rate. One of the following:

Mode Description

0 (default) 4.75 kbps

1 5.15 kbps

2 5.90 kbps

3 6.70 kbps

4 7.40 kbps

5 7.95 kbps

6 10.20 kbps

7 12.20 kbps

Options for CodecG711u

dPayloadIn

Incoming dynamic payload type. Default="0" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="0" min="0" max="127".

frameSize

Chapter 41 VoIP No Call Control Peer

– 1662 –

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG711a

dPayloadIn

Incoming dynamic payload type. Default="8" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="8" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 40, 80, 160, 240. Default=160.

Options for CodecG723x153

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 20. Default=20.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Options for CodecG723x163

dPayloadIn

Incoming dynamic payload type. Default="4" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="4" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 24. Default=24.

Chapter 41 VoIP No Call Control Peer

– 1663 –

Options for CodecG726x16

dPayloadIn

Incoming dynamic payload type. Default="102" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="102" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 20, 40, 60. Default=20.

Options for CodecG726x24

dPayloadIn

Incoming dynamic payload type. Default="103" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="103" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 30, 60, 90. Default=30.

Options for CodecG726x32

dPayloadIn

Incoming dynamic payload type. Default="104" min="0" max="127".

Chapter 41 VoIP No Call Control Peer

– 1664 –

dPayloadOut

Outgoing dynamic payload type. Default="104" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 40, 80, 120. Default=40.

Options for CodecG726x40

dPayloadIn

Incoming dynamic payload type. Default="105" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="105" min="0" max="127".

byteOrder

Byte order.

Option Description

0 (default) Big Endian

1 Little Endian

frameSize

Bytes per frame. Must be one of the following: 50, 100, 150. Default=50.

Options for CodecG729

dPayloadIn

Incoming dynamic payload type. Default="18" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="18" min="0" max="127".

cbxFrameSize

Bytes per frame. Must be one of the following: 10, 20, 30, 40, 50, Custom. Default=10.

Chapter 41 VoIP No Call Control Peer

– 1665 –

customFrameSize

If cbxFrameSize is Custom, this option configures the custom frame size. Default="120" min="10"
max="200".

Options for CodecILBC

dPayloadIn

Incoming dynamic payload type. Default="97" min="0" max="127".

dPayloadOut

Outgoing dynamic payload type. Default="97" min="0" max="127".

frameSize

Bytes per frame. Must be one of the following: 38, 50, Custom. Default=38.

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.codecs.clear

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711u" \

-dPayloadOut0 \

-dPayloadIn0 \

-frameSize160

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.codecs.appendItem \

-id"CodecG711a" \

-dPayloadOut8 \

-dPayloadIn8 \

-frameSize160

SEE ALSO

Codec Settings

Chapter 41 VoIP No Call Control Peer

– 1666 –

Data Codecs
VoIP No Call Control Peer Data Codecs

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.dataCodecs.appendItem \
-optionvalue

DESCRIPTION

Data Codecs configures a data codec object, which is added to the Codec Settings list of codecs.

SUBCOMMANDS

None.

OPTIONS

id

The data codec type, one of the following:

Codec Description

Rtp2833Events Named Events Payload format used for carrying DTMF digits and other line and
trunk signals as events.

Rtp2833Tones RTP Payload format that can represent tones consisting of one or more frequencies.

dPayloadType

Payload type used for RTP data packets. Default=(see table) min="96" max="127"

Codec Default value for dPayloadType

Rtp2833Events 100

Rtp2833Tones 101

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.dataCodecs.clear

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Events" \

-dPayloadType100

Chapter 41 VoIP No Call Control Peer

– 1667 –

$Activity_VoIPNoCCPeer1 agent.pm.codecSettings.dataCodecs.appendItem \

-id"Rtp2833Tones" \

-dPayloadType101

SEE ALSO

Codec Settings

Chapter 41 VoIP No Call Control Peer

– 1668 –

Audio Settings
VoIP No Call Control Peer audio settings

SYNOPSIS
$Activity_VoIPNoCCPeer1 agent.pm.audioSettings.config \

DESCRIPTION

The Audio Settings configure the VoIP No Call Control Peer audio settings.

SUBCOMMANDS

None.

OPTIONS

enableAudio

If selected, audio script functions are executed, otherwise they are skipped.

audioClip

The played audio clip file.

playTypeAudio

The mode in which the clip is played.

Value Usage

0
(default)

The clip is played for clip duration or for the duration of the Talk Time parameter in the
case of BHCA/CPS/LPS objectives.

1 The clip is played for a user-defined duration.

audioDurationUnit

The play duration unit, which can be miliseconds (0), seconds (1), minutes (2), or hours (3).

outputLevel

The output level of the played clip.

enableTosRtp

Enables use of TOS/DSCP. Use the rtpTos option to specify the TOS/DSCP value. Default= False

rtpTosVal

The Type of Service (TOS/DSCP) byte setting in the sent RTP packets has one of the following values:

l Best Effort (0x00): Routine service

l Class 1 (0x20): Priority service, Assured Forwarding class 1

Chapter 41 VoIP No Call Control Peer

– 1669 –

l Class 2 (0x40): Immediate service, Assured Forwarding class 2

l Class 3 (0x60): Flash, Assured Forwarding class 3

l Class 4 (0x80): Flash-override, Assured Forwarding class 4

l Express Forwarding (0xA0): Critical-ecp

l Control (0xC0): Internet-control

l Custom: A user-specified value.

useMOS

Enables the computation of MOS scores. Default= False.

enableAudioOWD

If true, IxLoad computes the One-way Delay metric, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default= False

useJitter

If true, enables use of a jitter buffer. Default= False.

jitMs

If useJitter is 1, this option configures the size of the jitter buffer, in milliseconds. Default="20"
min="1" max="3000".

useJitComp

If true, enables dynamic modification of the jitter buffer size. Default= False.

jitCMs

If useJitComp is 1, this option configures the maximum size in of the jitter buffer, in milliseconds.
Default="1000" min="0" max="3000".

jitCMaxDrop

If useJitComp is 1, this option configures the condition - a maximum number of consecutive packets
dropped - that determines the jitter buffer size to be increased.

enableQoV

If true, this enables QoV P.862 PESQ and P.56 QoV computation. Default= False.

channelTypeQoV

When enableQoV is true, this specifies the objective type as either of the following:

l Number of channels (0)

l Percentage (1)

valueQoV

Chapter 41 VoIP No Call Control Peer

– 1670 –

When enableQoV is true, this specifies the number of channels for which PESQ and P.56 QoV metrics
are computed (when channelTypeQoV is 0). Alternatively this represents the percentage of channels
for which PESQ and P.56 QoV metrics are computed (when channelTypeQoV is 1).

unitsQoV

The channels selection mode, which can be any of the following:

l First channels (0)

l Last channels (1)

l Evenly-spaced channels (2)

l Random (3)

metricsQoV

When enableQoV is true, this specifies the metric that is calculated by the Zion card. Available
options are:

l PESQ and P.56 (0)

l PESQ (1)

l P56 (2)

useSilence

If true, RTP packets containing artificial background noise are sent when no other media (DTMF, MF,
real payload, and so on) is sent over the communication channel. Default= False.

silenceMode

If useSilence is 1, this option configures the silence mode.

Value Usage

0 Null data encoded

1 (default) Comfort noise.

enableAudioOWD

If enabled, the One-way Delay metric is computed, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default = disabled.

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.audioSettings.config \-enableAudio
true \-audioClip "US_042.wav" \-playTypeAudio
0 \-audioDurationUnit 1 \-audioDuration
10 \-outputLevel -20-enableAudioOWD
false \-enableTosRtp false \-rtpTosVal
32 \-useMos false \-useJitter
false \-jitMs 20 \-useJitComp

Chapter 41 VoIP No Call Control Peer

– 1671 –

false \-jitCMs 1000 \-jitCMaxDrop
7 \-enableQoV false \-channelTypeQoV
0 \-valueQoV 100 \-unitsQoV
0 \-activityIdQoV 0 \-metricsQoV
0 \-useSilence false \-silenceMode
1 \

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1672 –

Video Settings
VoIP No Call Control Peer Video Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.VideoSettings.config \
-optionvalue

DESCRIPTION

Video Settings configures the VoIP No Call Control Peer’s video settings.

SUBCOMMANDS

None.

OPTIONS

enableVideo

Enables use of video as media traffic.

l 0 = disabled (default)

l 1 = enabled

videoClip

Name of the video file. Default = “Fire_avc.mp4”

playTypeVideo

Determines parameters for running video. Following values are available:

Value Usage

0 (default) Play for clip duration

1 Play for specified duration.

2 Conference mode

videoDuration

If playTypeVideo = 1, determines duration of video. Maximum value = 259200000.

videoDurationUnit

Unit of duration. Following values are available:

Value Usage

Chapter 41 VoIP No Call Control Peer

– 1673 –

0 milliseconds

1 seconds

2 minutes

3 hours

useConference

If playTypeVideo = 2, enables use of conference mode. Following values are available:

Value Usage

0 All speak

1 Sequential

2 Random

confVideoDuration

If playTypeVideo = 2, enables selection of the conference video duration.

confVideoDurationUnit

If playTypeVideo = 2, enables selection unit of conference video duration. The following values are
available:

Value Usage

0 milliseconds

1 seconds

2 minutes

3 hours

confDuration

If playTypeVideo = 2, enables selection of the conference audio duration.

confDurationUnit

If playTypeVideo = 2, enables selection unit of conference audio duration. The following values are
available:

Value Usage

0 milliseconds

Chapter 41 VoIP No Call Control Peer

– 1674 –

1 seconds

2 minutes

3 hours

enableTosVideo

Enables use of TOS/DSCP. Use the tosVideo option to specify the TOS/DSCP value.

tosVideo

The following values are available:

Value Usage

0 Best Effort (0x00)"

1 Class 1 (0x20)

2 Class 2 (0x40)

3 Class 3 (0x60)

4 Class 4 (0x80)

5 Express Forwarding (0xA0)

6 Control (0xC0)

7 Custom

useMosVideo

Enables computation of MOS.

0 = disabled (default)

1 = enabled

Note: If MOS computation is enabled, the enableVideoOWD option also has to be enabled.

enableVideoOWD

If enabled, the One-way Delay metric is computed, a network measurement specifying the amount of
time (in ms) that a packet has spent on the network before it was received on the destination side.
Default = disabled.

ignoreHintTrack

If enabled, the hint track present in the video clip is ignored. The video streaming uses a new hint
track which is recreated using one of the packetization modes defined by hintTrackType. By default it
is disabled.

Chapter 41 VoIP No Call Control Peer

– 1675 –

hintTrackType

Allows to select the packetization mode. The following values are available:

Value Usage

0 (default) Single NAL Unit

1 STAP-A, with FU-A fragmentation

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.videoSettings.config \-rotationScheme
0 \-confDuration 1 \-useMosVideo
false \-enableVideoOWD false \-ignoreHintTrack
false \-enableTosVideo true \-enableVideo
true \-videoClip "Fire_avc.mp4" \-
useH323AdvancedSettings false \-videoDuration
5 \-confVideoDurationUnit 1 \-useConference
false \-confDurationUnit 1 \-confVideoDuration
1 \-videoDurationUnit 1 \-hintTrackType
1 \-fmtp "" \-rtpmap
"" \-playTypeVideo 0 \-tosValVideo
32

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1676 –

T.30 Settings
VoIP No Call Control Peer T.30 Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.t30parameters.config \
-optionvalue

DESCRIPTION

T.30 Settings configures the VoIP No Call Control Peer’s fax T.30 settings.

SUBCOMMANDS

None.

OPTIONS

t30StationId

The fax station's identifier sent in CSI, TSI and CIG. Required valid station ID or sequence generator
expression (e.g. '5551[000-]'). Default = "5551[000-]"

t30SendCoding

The highest coding scheme available to compress the page data when sending. The following values
are available:

Value Usage

0 MH

1 MR

2 (Default) MMR

t30SendDataRate

The data rate for sending. The following values are available:

Value Usage

0 V.27 ter 2.4

1 V.27 ter 4.8

2 V.17 7.2

3 V.17 9.6

Chapter 41 VoIP No Call Control Peer

– 1677 –

4 V.17 12

5(default) V.17 14.4

6 V.29 7.2

7 V.29 9.6

8 V.34 16.8

9 V.34 19.2

10 V.34 21.6

11 V.34 24

12 V.34 26.4

13 V34 28.8

14 V.34 31.2

15 V34 33.6

t30SendPageSize

The page size for sending. The following values are available:

Value Usage

0 A4 (210x297 mm)

1 B4 (255x364 mm)

2 A3 (297x420 mm)

t30SendMSLT

The minimum transmission time of one coded scan line. Default = 0

The following values are available:

Value Usage

0 (default) Auto (based on DIS)

1 5 ms T7.7 = T3.85

2 10 ms T7.7 = 1/2 T3.85

3 10 ms T7.7 = T3.85

Chapter 41 VoIP No Call Control Peer

– 1678 –

4 20 ms T7.7 = 1/2 T3.85

5 20 ms T7.7 = T3.85

6 40 ms T7.7 = 1/2 T3.85

7 40 ms T7.7 = T3.85

t30SendProtocol

The protocol used for fax sending. The following values are available

Value Usage

0 non-ECM

1 (default) ECM.

t30SendResolution

The horizontal and vertical resolution of the page image. The following values are available

Value Usage

0 (default) R8x3.85 lines/mm

1 R8x7.7 lines/mm

2 R8x15.4 lines/mm

3 200x200 dots/inch

sendCNG

If enabled, CNG message is sent.

t30ReceiveCoding

The highest coding scheme available to compress the page data when receiving. The following values
are available:

Value Usage

0 MH

1 MR

2 (Default) MMR

t30ReceivePageSize

The page size for receiving. The following values are available:

Chapter 41 VoIP No Call Control Peer

– 1679 –

Value Usage

0 A4 (210x297 mm)

1 B4 (255x364 mm)

2 (default) A3 (297x420 mm)

t30ReceiveMSLT

The minimum transmission time of one coded scan line. Default = 0

The following values are available:

Value Usage

0 (default) 0 ms T7.7 = T3.85

1 5 ms T7.7 = T3.85

2 10 ms T7.7 = 1/2 T3.85

3 10 ms T7.7 = T3.85

4 20 ms T7.7 = 1/2 T3.85

5 20 ms T7.7 = T3.85

6 40 ms T7.7 = 1/2 T3.85

7 40 ms T7.7 = T3.85

t30ReceiveProtocol

The protocol used for fax receiving. The following values are available:

Value Usage

0 non-ECM

1 (default) ECM.

sendCedBeforeDIS

If enabled, allows the answering fax to send a CED (called station Id) signal.

t30ReceiveModulations

Allows to select the receiving protocol. The following values are available:

Value Usage

Chapter 41 VoIP No Call Control Peer

– 1680 –

0 V.27

1 (default) V.27/V.29

2 V.27/V.29/V.17

3 V.27/V.29/V.17/V.34

t30ReceiveR8x3

If enabled, receive resolution is R8x3.85 lines/mm.

t30ReceiveR8x7

If enabled, receive resolution is R8x7.7 lines/mm.

t30ReceiveR8x15

If enabled, receive resolution is R8x15.4 lines/mm.

t30Receive200x200

If enabled, receive resolution is 200x200 dots/inch.

EXAMPLE

$Activity_VoIPNoCCPeer1 agent.pm.t30Parameters.config \

-t30SendResolution 0 \

-sendCedBeforeDIS 1 \

-t30ReceiveR8x7 true \

-t30SendPageSize 0 \

-t30ReceiveR8x3 true \

-t30SendProtocol 1 \

-t30ReceiveProtocol 1 \

-sendCNG 1 \

-t30SendCoding 0 \

-t30ReceiveMSLT 0 \

-t30SendMSLT 0 \

-t30ReceiveCoding 2 \

-t30ReceivePageSize 2 \

-t30ReceiveModulations 3 \

-t30ReceiveR8x15 true \

Chapter 41 VoIP No Call Control Peer

– 1681 –

-t30StationId "5551\[000-\]" \

-t30SendDataRate 5 \

-t30Receive200x200 true

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1682 –

T.38 Settings
VoIP No Call Control Peer T.38 Settings

SYNOPSIS
$Activity_VoIPNoCCPeer1 agent.pm.t38Settings.config \

-optionvalue

DESCRIPTION

T.38 Settings configures the VoIP No Call Control Peer’s fax T.38 settings.

SUBCOMMANDS

None.

OPTIONS

enableT38

Enables use of 'T.38 Fax Session' script function.

0 = disabled (default)

1 = enabled

t38Port

The T.38 listening port. Default = “40000”. This parameter specifies a valid port (1000-65535) or
simple sequence generator expression (e.g. [1000-2000,2])

faxImage

Fax image to be sent. Default = “Ixia2Pages.tif”

t38TransportType

The transport protocol used for carrying the T.38 traffic. Default = “1”

The following values are available

Value Usage

0 TCP

1 UDP

t38UdpEncapsulation

If t38TransportType = 1, t38UdpEncapsulation defines the protocol used to encapsulate T.38
messages. The following values are available:

Value Usage

Chapter 41 VoIP No Call Control Peer

– 1683 –

0 UDPTL

1 RTP

t38PayloadType

The payload type identifier. Minimum = 0, Maximum = 127, and Default = 102

useFaxVersion

If enabled, allows selecting the T.38 protocol version.

faxVersion

If useFaxVersion is enabled, used to identify the T.38 protocol version, 0, 1, 2, or 3 (default = 0).

useT38MaxBitrate

If enabled, allows selecting the maximum fax transmission rate.

t38MaxBitrate

The maximum fax transmission rate supported by the endpoint (default = 5). The following values are
allowed:

Value Usage

0 2.4 kbps

1 4.8 kbps

2 7.2 kbps

3 9.6 kbps

4 12 kbps

5(default) 14.4 kbps

6 16.8 kbps

7 19.2 kbps

8 21.6 kbps

9 24 kbps

10 26.4 kbps

11 28.8 kbps

12 31.2 kbps

13 33.6 kbps

Chapter 41 VoIP No Call Control Peer

– 1684 –

useT38RateMgmt

If enabled, allows selecting the fax rate management model.

t38RateMgmt

The fax rate management model as defined in T.38. Following values are allowed:

Value Usage

0 Transferred TCF

1 Local TCF

useErrorRecoverySchema

If enabled, allows selecting the desired error correction scheme.

errorRecoverySchema

The desired error correction scheme. The following values are allowed:

Value Usage

0 (default) Redundancy

1 FEC

useT38MaxDatagramSize

If enabled, allows selecting the maximum datagram size.

t38MaxDatagramSize

The maximum datagram size (default = 256), which represents the maximum number of bytes that
can be stored on the remote device before an overflow condition occurs. Minimum = 0, Maximum =
256.

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.t38Settings.config \-enableT38
true \-t38TranscodingMMR false \-t38UdpEncapsulation
0 \-useT38MaxBitrate true \-t38RateMgmt
0 \-t38TranscodingJBIG false \-t38TransportType
1 \-t38Port "40000" \-t38FillBitRemoval
0 \-faxVersion 0 \-useT38FillBitRemoval
false \-useT38RateMgmt true \-faxImage
"Ixia2Pages.tif" \-useT38MaxBufferSize false \-
errorRecoverySchema 0 \-t38MaxDatagramSize
256 \-t38MaxBufferSize 200 \-useFaxVersion
true \-useT38MaxDatagramSize true \-t38MaxBitrate
5 \-t38PayloadType 102 \-useErrorRecoverySchema
true

Chapter 41 VoIP No Call Control Peer

– 1685 –

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1686 –

RTP Settings
VoIP No Call Control Peer RTP Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.rtpSettings.config \

-optionvalue

DESCRIPTION

RTP Settings configures the VoI PNo Call Control Peer RTP transport settings.

SUBCOMMANDS

None.

OPTIONS

enableRTP

Enables use of RTP to transport the media traffic.

0 = disabled (default)

1 = enabled

rtpPort

RTP port number. Default="10000".

Note: Valid port numbers are between 1000 and 65534.

enableRTCP

Enables the sending and receiving of RTCP packets.

chEnableHwAcc

If true, enables hardware acceleration for RTP traffic. Default=false.

enableAdvStatCalc

Enables the computation of advanced RTP statistics.

enablePerStream

Enables computation of per-stream statistics.

enableMDI

Enables computation of MDI DF and MDI MLR statistics.

enableNBExec

Chapter 41 VoIP No Call Control Peer

– 1687 –

If true, all RTP functions from a scenario execute in a non-blocking mode, i.e the current function from
a channel executes in the background, allowing the execution to continue on that channel with the
next script function. Default= False.

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.rtpSettings.config \-enableRTP
true \-enableRTCP false \-enableMDI
false \-chEnableHwAcc true \-chDisableHwAcc
false \-enableAdvStatCalc false \-enablePerStream
false \-rtpPort "\[10000-65535,4\]" \-enableNBExec
false

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1688 –

SRTP Settings
VoIP No Call Control Peer SRTP Settings

SYNOPSIS

$Activity_VoIPNoCCPeer1 agent.pm.srtpSettings.config \
-optionvalue

DESCRIPTION

SRTP Settings configures the VoIP No Call Control Peer’s SRTP settings.

SUBCOMMANDS

None.

OPTIONS

benableRTP

Enables use of SRTP to transport the media traffic.

l false = disabled (default)

l true = enabled

bDisableSRTPAuthentication

If true, this option disables SRTP authentication.

bDisableSRTPEncryption

If true, this option disables SRTP stream encryption.

bIncludeMKI

If true, the generated SRTP packets include the MKI field.

bDisableValidations

If true, none of the validations below are performed on the received SRTP packets:

- SRTP packet authentication tag is not verified

- Master Key expiration is not verified

- SRTP packet MKI field is ignored

bDisableSRTCPEncryption

If true, this option disables SRTCP stream encryption.

bAllowOnlySecureStreams

If true, the SDP offer comprises only secure streams and SDP negotiates only secure streams.

Chapter 41 VoIP No Call Control Peer

– 1689 –

bDisableMasterSalt

If true, the Master Salt value is null instead of it being randomly generated.

bStaticMasterKeySalt

If true, this option determines the use of a static master key and salt.

_masterKeySelection

Specifies if a single key or multiple keys are used:

l 0 = A single key is used. The key is specified by the staticSingleKeySalt parameter.

l 1 = Multiple static keys are used. Keys are obtained from a file specified by the staticKeyFile
parameter.

staticSingleKeySalt

If bStaticMasterKeySalt is true, this parameter defines a key value.

staticKeyFile

If bStaticMasterKeySalt is true, this parameter defines a file containing multiple key values.

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.srtpSettings.config \-bDisableSRTPAuthentication
false \-bIncludeMKI true \-bEnableSRTP
true \-bDisableValidations false \-bDisableSRTCPEncryption
false \-bStaticMasterKeySalt true \-bAllowOnlySecureStreams
false \-bDisableMasterSalt false \-staticSingleKeySalt
"BjVFszwVXnYB2Rtr6BbFfbvDkuFtUjJWUCClq4gP" \-staticKeyFile
"" \-bDisableSRTPEncryption false \-_masterKeySelection
0

SEE ALSO

Chapter 41 VoIP No Call Control Peer

– 1690 –

Other Settings
VoIP No Call Control Peer Other Settings

SYNOPSIS
$Activity_VoIPNoCCPeer1 agent.pm.otherSettings.config \

-optionvalue

DESCRIPTION

This object configures the VoIP No Call Control Peer activity’s miscellaneous options.

SUBCOMMANDS

None.

OPTIONS

VOIP_Var0

The VOIP_Var1...VOIP_Var5 and VOIP_IPAddr1...VOIP_IPAddr5 string-type variables supporting
generator expressions enable you to generate 10 series of global variables whose values are used at
runtime by the simulated endpoints/channels. Default="".

Use the VOIP_Var1…VOIP_Var5 variables to represent phone numbers, and the VOIP_IPAddr1…VOIP_
IPAddr5 to represent IP addresses.

VOIP_Var1

See VOIP_Var0.

VOIP_Var2

See VOIP_Var0.

VOIP_Var3

See VOIP_Var0.

VOIP_Var4

See VOIP_Var0.

VOIP_IPAddress0

See VOIP_Var0.

VOIP_IPAddress1

See VOIP_Var0.

VOIP_IPAddress2

See VOIP_Var0.

Chapter 41 VoIP No Call Control Peer

– 1691 –

VOIP_IPAddress3

See VOIP_Var0.

VOIP_IPAddress4

See VOIP_Var0.

ipPreference

Type of addressing you want to use on the subnet that the VOIP No Call Control Peer runs on.

Value Usage

0 (default) IPv4

1 IPv6

EXAMPLE
$Activity_VoIPNoCCPeer1 agent.pm.otherSettings.config \

-ipPreference0 \

-VOIP_Var1"" \

-VOIP_Var0"" \

-VOIP_Var3"" \

-VOIP_Var2"" \

-VOIP_Var4"" \

-VOIP_IPAddress4"" \

-VOIP_IPAddress1"" \

-VOIP_IPAddress0"" \

-VOIP_IPAddress3"" \

-VOIP_IPAddress2""

SEE ALSO

| B

Chapter 41 VoIP No Call Control Peer

– 1692 –

CHAPTER 42 IP, TCP, Run State, and Curve
Segment L2/L3, and Port CPU Statistics
Statistics in the results files and reports are averaged over all ports. If a statistic for an interval is
missing, IxLoad interpolates it from the statistic immediately prior to it and the statistic after it.

For the per-Interface and TCP statistics, see Per-Interface and TCP Statistics.

For the Run State statistics, see Run State Statistics.

For the Curve Segment statistics, see Curve Segment Statistics.

Notes:

l IxLoad increments its TCP statistics at the time it causes a TCP packet to be generated.
If a lower layer process in the TCP stack fails the transmit a packet, IxLoad does not
update its statistics accordingly.

l If a process sends a SYN to the server port to which there is no corresponding listening
socket, the Ixia port stack generates an RST, and the IxLoad will be unaware of the
RST.

– 1693 –

Per-Interface and TCP Statistics
The TCP statistics are displayed by most of IxLoad's protocols in their statistics views in StatViewer. In
the first table below, Caption is the label shown in StatViewer for a statistic. Name is the name of the
statistic as it appears in the Stats Catalog. To make queries from the API, you must use a statistic's
name.

For the per-Interface and TCP statistics see the following:

Per-Interface Statistics

TCP Statistics

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1694 –

TCP Statistics
The following TCP statistics are available for some, but not all, protocols and are published on a per-
protocol basis, not on a per-interface basis. At the time of printing, the following protocols do not
support TCP statistics:

Radius WAP

TFTP Trace File Replay

DHCP

To confirm that TCP statistics are available, configure a test in the GUI, refresh the stat views, and
then display the list of statistics in the view editor. If TCP statistics are listed, the protocol supports
them.

FTP displays TCP statistics separately for the control and data connections. For the list of TCP statistics
captions displayed in the FTP statistics views, see FTP Captions for TCP Statistics.

The table below describes the TCP statistics.

Statistic Description

TCP
Simulated
Users

Number of simulated users.

Physical Rx
Drops

Number of incoming packets dropped due to buffer overflow.

Physical Tx
Drops

Number of outgoing packets dropped due to buffer overflow.

Typically, this is caused by stopping a large test or configuring a Ramp Down time
that is too short.

TCP
Connection
Lifetime

Amount of time elapsed between the time the first SYN in the TCP connection
handshake is received and the last FIN or ACK sent or the TCP connection.

This statistic measures the total lifetime of a connection through all three major
stages of the connection: handshake duration + data transfer duration + close
duration.

SYNs Sent
(caption)

TCP SYN Sent
(name)

Number of connection requests (SYNs) sent.

Only the initial SYN sent is counted in this statistic; retried SYNs are not included.
Retried SYNs are counted in the TCP Retries statistic..

SYNs
Received
(caption)

Number of connection requests (SYNs) received.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1695 –

TCP SYN
Received
(name)

SYN/SYN-
ACKs
Received
(caption)

TCP SYN_
SYN-ACK
Received
(name)

Number of connection requests (SYNs) and connection request acknowledgments
(SYN and ACK flags set) received.

TCP SYN
Failed

Number of connection requests (SYNs) sent for which a reset (RST) was received.

SYN-ACKs
Sent
(caption)

TCP SYN-ACK
Sent (name)

Number of connection request acknowledgments (SYN and ACK flags set) sent.

Connection
Requests
Failed
(caption)

TCP
Connection
Requests
Failed (name)

Number of attempts to establish connections which did not result in connections
being created.

TCP
Connections
Established

Number of connections established.

Note: For a peer-to-peer protocol, this statistic counts the aggregate number of
connections established, not the number established from the point of view of one
side or the other.

FINs Sent
(caption)

TCP FIN Sent
(name)

Number of connection termination requests (FINs) sent.

Only the initial FIN sent is counted in this statistic; retried FINs are not included.
Retried FINs are counted in the TCP Retries statistic.

FINs
Received
(caption)

TCP FIN

Number of connection termination requests (FINs) received.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1696 –

Received
(name)

FIN-ACKs
Sent
(caption)

TCP FIN-ACK
Sent (name)

Number of connection termination acknowledgments (FIN-ACK) sent.

Only the initial FIN-ACK sent is counted in this statistic; retried FINs are not
included. Retried FINs are counted in the TCP Retries statistic..

FIN-ACKs
Received
(caption)

TCP FIN-ACK
Received
(name)

Number of connection termination acknowledgments (FIN-ACK) received.

Resets Sent
(caption)

TCP Resets
Sent (name)

Number of Resets (RST) sent for any reason.

Under some scenarios, the number of RSTs may not match between the client and
server.

For example, an Abort following a request generates two RSTs. On the client side,
when the first RST is sent, the socket context is destroyed and hence only one RST
is included in the client’s TCP stats. However, on the server, receiving the first RST
doesn't destroy the socket context immediately and so the second RST received is
the one that is updated.

Resets
Received
(caption)

TCP Resets
Received
(name)

Number of Resets (RST) received. Includes RSTs received as responses to SYNs
and for any other reasons.

TCP Bytes
Sent

Number of bytes sent in TCP packets.

TCP Bytes
Received

Number of bytes received in TCP packets.

Retries
(caption)

TCP Retries
(name)

Total number of retries attempted for all segments.

Timeouts
(caption)

TCP Timeouts

Total number of timeouts that occurred for all segments.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1697 –

(name)

Accept Queue
Entries
(caption)

TCP Accept
Queue Entries
(name)

Number of entries in the listening socket's queue of connections awaiting
acceptance.

Listen Queue
Drops
(caption)

TCP Listen
Queue Drops
(name)

Number of incoming SYN packets dropped from the socket listen queue.

An incoming SYN packet is held in a listen queue while the host replies with a
SYN+ACK and waits for the confirming ACK (the three-way handshake). A listen
queue in this state is called a half-open connection.

TCP
Connections
in
ESTABLISHED
State

Number of TCP connections in the ESTABLISHED state.

A connection in the ESTABLISHED state can transfer data between the two ends in
both directions.

TCP
Connections
in SYN-SENT
State

Number of TCP connections in the SYN-SENT state.

A client enters the SYN-SENT state after it has sent a SYN segment to the server to
open a connection.

TCP
Connections
in SYN-
RECEIVED
State

Number of TCP connections in the SYN-RECEIVED state.

A server enters the SYN-RECEIVED state after it receives a SYN from a client,
requesting a connection. The server replies with a SYN+ACK segment.

TCP
Connections
in FIN-WAIT-
1 State

Number of TCP connections in the FIN-WAIT-1 state.

Sockets in the FIN-WAIT-1 state are closed and tearing down the connection.

TCP
Connections
in FIN-WAIT-
2 State

Number of TCP connections in the FIN-WAIT-2 state.

A connection in the FIN-WAIT-2 state has closed the local socket and is waiting for
shutdown from the remote socket.

TCP
Connections
in TIME-WAIT
State

Number of TCP connections in the TIME-WAIT state.

A connection in the TIME-WAIT state has closed the local socket and is waiting for
remote shutdown retransmission.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1698 –

TCP
Connections
in CLOSE
State

Number of TCP connections in the CLOSE state.

A connection in the CLOSE state is closed.

TCP
Connections
in CLOSE-
WAIT State

Number of TCP connections in the CLOSE-WAIT state.

A connection in the CLOSE-WAIT state is waiting for the local socket to close after a
remote shut down.

TCP
Connections
in LAST-ACK
State

Number of TCP connections in the LAST-ACK state.

A connection in the LAST-ACK state is performing a remote shutdown; it will close
the connection and wait for the acknowledgment.

TCP
Connections
in LISTENING
State

Number of TCP connections in the LISTENING state.

A socket in the LISTENING state is listening for an incoming connection.

TCP
Connections
in CLOSING
State

Number of TCP connections in the CLOSING state.

A socket in the CLOSING state is closed, has performed a remote shutdown, and is
waiting for the acknowledgment.

FTP Captions for TCP Statistics

FTP displays TCP statistics separately for the control and data connections. For the list of TCP statistics
captions displayed in the FTP statistics views, see the table below.

Statistic Description

TCP Statistics for Control Connections

Control SYNs Sent Number of SYNs sent on control connections.

See SYNs Sent in the TCP Statistics table.

Control SYNs
Received

Number of connection requests (SYNs) received on control connections.

See SYNs Received in the TCP Statistics table.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1699 –

Control SYN/SYN-
ACKs Received

Number of connection requests (SYNs) and connection request
acknowledgements (SYN and ACK flags set) received on control connections.

See SYN/SYN-ACKs Received in the TCP Statistics table.

Control SYN-ACKs
Sent

Number of connection request acknowledgements (SYN and ACK flags set)
sent on control connections.

See SYN-ACKs Sent in the TCP Statistics table.

Control Connection
Requests Failed

Number of attempts to establish control connections which did not result in
connections being created.

See Connection Requests Failed in the TCP Statistics table.

Control FINs Sent Number of connection termination requests (FINs) sent on control connections.

See FINs Sent in the TCP Statistics table.

Control FINs
Received

Number of connection termination requests (FINs) received on control
connections.

See FINs Received in the TCP Statistics table.

Control FIN-ACKs
Sent

Number of connection termination acknowledgements (FIN-ACK) sent on
control connections.

See FIN-ACKs Sent in the TCP Statistics table.

Control FIN-ACKs
Received

Number of connection termination acknowledgements (FIN-ACK) received on
control connections.

See FIN-ACKs Received in the TCP Statistics table.

Control Resets
Sent

Number of Resets (RST) sent on control connections.

See Resets Sent in the TCP Statistics table.

Control Resets
Received

Number of Resets (RST) received on control connections.

See Resets Received in the TCP Statistics table.

Control Retries Total number of retries attempted on control connections for all segments.

See Retries in the TCP Statistics table.

Control Timeouts Total number of timeouts that occurred on control connections for all
segments.

See Timeouts in the TCP Statistics table.

Control Accept
Queue Entries

Number of entries in the listening socket's queue of control connections
awaiting acceptance.

See Accept Queue Entries in the TCP Statistics table.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1700 –

Control Listen
Queue Drops

Number of incoming SYN packets on control connections dropped from the
socket listen queue.

See Listen Queue Entries in the TCP Statistics table.

TCP Statistics for Data Connections

Data SYNs Sent Number of SYNs sent on data connections.

See SYNs Sent in the TCP Statistics table.

Data SYNs
Received

Number of connection requests (SYNs) received on data connections.

See SYNs Received in the TCP Statistics table.

Data SYN/SYN-
ACKs Received

Number of connection requests (SYNs) and connection request
acknowledgements (SYN and ACK flags set) received on data connections.

See SYN/SYN-ACKs Received in the TCP Statistics table.

Data SYN-ACKs
Sent

Number of connection request acknowledgements (SYN and ACK flags set)
sent on data connections.

See SYN-ACKs Sent in the TCP Statistics table.

Data Connection
Requests Failed

Number of attempts to establish data connections which did not result in
connections being created.

See Connection Requests Failed in the TCP Statistics table.

Data FINs Sent Number of connection termination requests (FINs) sent on data connections.

See FINs Sent in the TCP Statistics table.

Data FINs
Received

Number of connection termination requests (FINs) received on data
connections.

See FINs Received in the TCP Statistics table.

Data FIN-ACKs
Sent

Number of connection termination acknowledgements (FIN-ACK) sent on data
connections.

See FIN-ACKs Sent in the TCP Statistics table.

Data FIN-ACKs
Received

Number of connection termination acknowledgements (FIN-ACK) received on
data connections.

See FIN-ACKs Received in the TCP Statistics table.

Data Resets Sent Number of Resets (RST) sent on data connections.

See Resets Sent in the TCP Statistics table.

Data Resets
Received

Number of Resets (RST) received on data connections.

See Resets Received in the TCP Statistics table.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1701 –

Data Retries Total number of retries attempted on data connections for all segments.

See Retries in the TCP Statistics table.

Data Timeouts Total number of timeouts that occurred on data connections for all segments.

See Timeouts in the TCP Statistics table.

Data Accept Queue
Entries

Number of entries in the listening socket's queue of data connections awaiting
acceptance.

See Accept Queue Entries in the TCP Statistics table.

Data Listen Queue
Drops

Number of incoming SYN packets on data connections dropped from the socket
listen queue.

See Listen Queue Entries in the TCP Statistics table.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1702 –

Advanced TCP Statistics
The following TCP statistics are available if you check the Enable TCP Advanced Stats option on the
Test Options window. (see Test Options). These statistics will be present in the CSV when the option is
enabled, and you can create a custom view in the Statistics Viewer with these statistics, if required.

The table below describes the Advanced TCP statistics.

Statistic Description

TCP Lost
Retransmits

Retransmissions for segments that have not been acknowledged.

TCP Fast
Retransmits

Retransmissions that occurred before the retransmission timer expired because the
other side sent three ACKs for the same segment.

TCP Forward
Retransmits

Number of segments retransmitted even though there was no indication that they
were actually lost.

Retransmission stopped when either of the following occurs:

l The maximum time to wait for a remote response is reached. This timeout
occurs when the total time of all retransmission intervals exceeds the
maximum time to wait for a remote response.

l The number of retransmissions configured in maximum retransmissions per
packet is reached.

Forward Retransmits occur only on SACK-negotiated connections.

TCP Slow Start
Retransmits

Retransmissions during the Slow Start phase.

TCP Local
Advertisement
Window

Window size advertised by the local side.

TCP Remote
Advertisement
Window

Window size advertised by the remote side.

TCP Syn-
SynAck Time

Average time elapsed between the time the SYN was sent and the SYN-ACK was
received.

TCP Syn-
SynAck Time
Squared

Variation in the TCP Syn-SynAck Time.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1703 –

Per-Interface Statistics
The table below describes the per-Interface statistics.

Statistic Description

Packets
Sent

Number of IP packets sent.

Packets
Received

Number of IP packets received.

Bytes Sent Number of bytes sent in IP packets.

Bytes
Received

Number of bytes received in IP packets.

Fragments
Received

Number of IP packet fragments received.

Note:When a Stateless Peer activity is configured, the Fragments Received statistic
is updated only if, on the receiving side, either the Send Timestamp or Enable Out of
Order setting is enabled (on the Stateless Peer Settings, Advanced Options tab).

Reassembly
Timeouts

Number of fragmented IP packets that could not be reassembled within the timeout
period.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1704 –

Run State Statistics
The Run State statistics (see the table below) identify the phase that the test is in at a given time.The
Run State statistics are stored in the CSV files, and can be retrieved using the IxLoad Tcl API.

To retrieve Run State statistics, use the same syntax as for any other statistic. However, if you are
retrieving a list of statistics, the Run State statistics must in first in the list, ahead of any other type of
statistics.

For examples of how to retrieve Run State statistics, see the HTTP_StateStats.tcl or HTTP_
StateStats_SM.tcl sample scripts in the <install path>\TclScripts\Samples\Stats directory).

There are different Run States for Basic timelines and for Advanced timelines.

Run State Description

Basic Timeline

ID Idle

RU Ramp Up

SU Sustain

RD Ramp Down

Advanced Timeline

ID Idle

LR Linear segment

LU Linear segment, Upwards

LD Linear segment, Downwards

LI Linear segment, Idle

ST Steps segment, Upwards

SD Steps segment, Downwards

BU Bursts segment

BR Bursts segment, Right skew

BL Bursts segment, Left skew

PU Pulses segment

PO Poisson segment

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1705 –

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1706 –

Curve Segment Statistics
In a test that uses an Advanced timeline, the Curve Segment statistics identify the segment that is
active at a given time. The Curve Segment statistics are stored in the CSV files, and can be retrieved
using the IxLoad Tcl API.

Curve Segments are numbered starting with 0 (zero), and continuing through the nth segment.
Segment 0 is the segment during which test initialization occurs; no traffic is sent during segment 0.
For a Basic timeline, the Curve Segment is always 0.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1707 –

Connection Latency Statistics
The table below describes the connection latency statistics.

Statistic Description

Connection Latency 0 - 10
µsec

Number of connections established after a delay of 0 to 10
microseconds.

Connection Latency 10 - 20
µsec

Number of connections established after a delay of 10 to 20
microseconds.

Connection Latency 20 - 30
µsec

Number of connections established after a delay of 20 to 30
microseconds.

Connection Latency 30 - 40
µsec

Number of connections established after a delay of 30 to 40
microseconds.

Connection Latency 40 - 50
µsec

Number of connections established after a delay of 40 to 50
microseconds.

Connection Latency 50 - 60
µsec

Number of connections established after a delay of 50 to 60
microseconds.

Connection Latency 60 - 70
µsec

Number of connections established after a delay of 60 to 70
microseconds.

Connection Latency 70 - 80
µsec

Number of connections established after a delay of 70 to 80
microseconds.

Connection Latency 90 - 100
µsec

Number of connections established after a delay of 90 to 100
microseconds.

Connection Latency 100 - 200
µsec

Number of connections established after a delay of 100 to 200
microseconds.

Connection Latency 200 - 300
µsec

Number of connections established after a delay of 200 to 300
microseconds.

Connection Latency 300 - 400
µsec

Number of connections established after a delay of 300 to 400
microseconds.

Connection Latency 400 - 500
µsec

Number of connections established after a delay of 400 to 500
microseconds.

Connection Latency 500 - 600
µsec

Number of connections established after a delay of 500 to 600
microseconds.

Connection Latency 600 - 700
µsec

Number of connections established after a delay of 600 to 700
microseconds.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1708 –

Connection Latency 700 - 800
µsec

Number of connections established after a delay of 700 to 800
microseconds.

Connection Latency 800 - 900
µsec

Number of connections established after a delay of 800 to 900
microseconds.

Connection Latency 900 - 1000
µsec

Number of connections established after a delay of 900 to 1000
microseconds.

Connection Latency > 1000
µsec

Number of connections established after a delay of over 1000
microseconds.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1709 –

IxServer Layer 2-3 Statistics
The table below describes the Layer 2 and 3 IxServer statistics available in IxLoad.

In the IxLoad GUI, IxServer statistics are displayed in separate views for client/peer and server ports.
The views appear automatically in the top-level statistics views. Each view column (except for the Link
State and Line Speed statistics) has a summary footer value showing the cumulative values for all
ports in the view.

Notes:

l If you aggregate 1G and 10G ports, no ARP stats are displayed.

l If you aggregate 10G ports, only statistics from port 13 are
displayed.

Statistic Description

Bits
Received
Rate (Kb/s)

Rate at which bits are being received.

Bits Sent
Rate (Kb/s)

Rate at which bits are being transmitted.

Bytes
Received

Total number of bytes received.

Bytes Sent Total number of bytes transmitted.

Frames Sent Number of frames successfully transmitted.

This statistic does not include frames retransmitted due to collisions.

Frames Sent
Rate

Rate at which frames are being transmitted.

This statistic does not include frames retransmitted due to collisions.

Line Speed For Ethernet load modules, this statistic indicates the speed, in Mbps, negotiated on
the link.

For POS modules, this statistic indicates the POS level: OC-3, OC-12, or OC-48

Link State Connectivity on the link. This statistic can be one of the following values:

Up: A link is established with another device.

Loopback: The port has loopback enabled.

Down: There is no connection to another device.

Receive Arp Number of ARP replies received.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1710 –

Reply

Receive Arp
Request

Number of ARP requests received.

Transmit Arp
Reply

Number of ARP replies sent.

Transmit Arp
Request

Number of ARP requests sent.

Valid Frames
Received

Number of valid frames received.

A valid frame is a frame that is 64 bytes to 1518 bytes long, including the FCS but
excluding the preamble and SFD. The frame length must be an integer number of
octets.

Only frames that have a valid FCS are counted by this statistic.

VLAN-tagged frames that are larger than 1518 bytes but less than 1522 bytes are
also included in this statistic.

Valid Frames
Received
Rate

Rate at which valid frames are being received.

See Valid Frames Received (above) for a description of what constitutes a valid
frame.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1711 –

IxServer Port CPU Statistics
The table below describes the IxServer Port CPU statistics available in IxLoad.

For the Tcl API, the stat source type for the Port CPU statistics is: Port Monitor

Statistic Description

Total Memory (KB) Total amount of RAM installed on the port, in KB.

Tcl API name: Total Memory

Free Memory (KB) Amount of RAM currently available on the port, in KB.

Tcl API name: Free Memory

% Disk Utilization Percentage of space used on the RAM disk installed on the port.

Tcl API name: RAM Disk Utilization

CPU Load Avg (1 Minute) CPU load, averaged over the previous minute.

CPU Load Avg (5 Minutes) CPU load, averaged over the previous 5 minutes.

CPU Load Avg (15 Minutes) CPU load, averaged over the previous 15 minutes.

Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics

– 1712 –

IN
D
EX

A

Access Attribute Set List 1082

AccessAttribSetList 1097

Accounting Attribute Set List 1082

AcctngAttribSetList 1098

AddAttacks 1055

advanced 1271

Advanced Options 1284, 1296

Advanced Settings 1575

Advanced TCP Statistics 1703

advOptions 1048

Alternative Capability 1413

Alternative Capability List 1412

Alternative Capability Value Set List 1400

API Objects 1477

API Overview 1175, 1211, 1227, 1303,
1365

Attachment 1149, 1158-1159

AttackListCount 1056

attacksCmdList 1049

attacksCmdList nodeList 1051

Attribute 984, 1001

Attribute List 1095

Attribute Type and Values 984, 1002

Audio Settings 1357, 1391, 1469, 1528,
1625, 1669

Automatic Settings (CA) 1446

Automatic Settings (GW) 1439

availableTosList 1220

C

Call Managers 1612

Capability List 1401

checkTestRunning 1074

Cloud Rules 1579

Cloud Servers 1576

cmdList 1213

Codec Settings 1342, 1379, 1508, 1614,
1660

Codecs 1345, 1380, 1462, 1511, 1617,
1661

Command List 982, 987

config 1046

Connection Latency Statistics 1708

Content 1110, 1132

Control 983, 998

– 1713 –

CreateAttackList 1057

CreatePlaylist 1058

Curve Segment Statistics 1707

Custom Activity Link Settings 1402, 1454, 1556,
1631

Custom Parameters 1420, 1572, 1633

customer assistance iv

D

Data Codecs 1343, 1385, 1460, 1509, 1615,
1667

DatabaseVersion 1059

DeleteAttackList 1060

DeleteAttacks 1061

Dial Plan 1414, 1565, 1606, 1658

E

Edit Contact 1524

Enable Filter 1291

Endpoints 1441, 1448

Events 1336

Execution Settings 1361, 1404, 1452, 1559,
1604, 1656

ExportAttacks 1062

F

fileList 1269

Filter List 1283, 1289

FlowDefinition 1013

G

Gateways 1450

GetCapture 1063

Global Config 1080, 1090, 1177, 1191

Global options 1215

Global Options 983, 995

H

H248 Settings 1340

H248 TermGroups 1323

H323 Settings 1407

Header 1149, 1157

HTTP settings 1218

HTTP Statistics 1222

HTTP Streaming 1211

HTTP Streaming Client Agent 1212

I

ImportAttacks (.zatk format) 1064

ImportUserDefinedAttacks 1065

InbuiltFlow 1014

IP, TCP, Run State, and Curve Segment L2/L3, and
Port CPU Statistics 1693

IxServer Layer 2-3 Statistics 1710

IxServer Port CPU Statistics 1712

L

LDAP 981

LDAP Client Agent 982, 985

LDAP Client Commands 982

LDAP Statistics 1003

Limitations 1307, 1365, 1423, 1475, 1483,
1585, 1635

M

MailBoxItem 1025, 1035

MailMessage 1149, 1156, 1159, 1162

INDEX

– 1714 –

Matching the TEARDOWN Statistics to Other
Statistics 1141

MGC Automatic 1328

MGCP CA Agent 1442

MGCP GW Agent 1428

MGCP Settings (CA) 1444

MGCP Settings (GW) 1437

MGW Automatic 1325

Modification 984, 999

MSRP GUI Files 1553

MSRP Relays 1555

MSRP Settings 1550

N

New in this Release 3

NoCallControl VOIP Statistics 1640

O

Objectives 982, 1011, 1023, 1080, 1107, 1147,
1176, 1197, 1211, 1227, 1257, 1281

Option Set 1177, 1187

Option Set Manager 1177, 1188

Options 1282, 1287

Other Settings 1351, 1387, 1473, 1517, 1629,
1691

Overview 981, 1023, 1079, 1107, 1147, 1257,
1281

P

Packages 1334

Peer-to-Peer Application 1011

Peer-to-Peer Application Agent 1012

Peer-to-peer Global Statistics 1016

Per-Interface and TCP Statistics 1694

Per-Interface Statistics 1704

POP3 1023

POP3 Client Agent 1024, 1026

POP3 Client Statistics 1038

POP3 Server Agent 1024, 1033

POP3 Server Statistics 1042

POP3 Statistics 1037

Pop3Command 1024, 1029

PresentationItem 1110, 1129

product support iv

Profiles 1333

Properties 1337

Published Vulnerabilities andMalware 1045

Q

QT 1071

QuickTest Sample Script 1076

R

Radius 1079

Radius Client Agent 1080, 1083

RADIUS Client Statistics 1099

Radius Command List 1080, 1084

RenameAttackList 1066

RetrieveAttacks 1067

RTP Settings 1355, 1389, 1467, 1526, 1623,
1687

RTSP 1107

RTSP Client Agent 1108, 1112

RTSP Client Statistics 1134

INDEX

– 1715 –

RTSP Server Agent 1109, 1125

RTSP Server Statistics 1143

RTSP Statistics 1133

RtspCommand 1108, 1116

RtspgetParamOptionList 1123

RtspHeader 1109

RtspHeaders 1109, 1119

RtspsetParamOptionList 1121

RuleData 1581

Run State Statistics 1705

Running a QuickTest from Tcl 1072

S

Scenario Settings 1363, 1419, 1451, 1564, 1603,
1655

SDP Settings 1353, 1466

SearchAttacks 1068

Server Network List 1285, 1295

Server Rules 1578

settings 1305

Settings 1480

Signaling Settings 1520

Signals 1338

Simulated Endpoints 1458

SimulatedMGC 1319

SimulatedMGW 1321

Simultaneous Capability 1406

Simultaneous Capability List 1418

Simultaneous Capability Value Set List 1411

SIP Server List 1481

Skinny Settings 1610

SMTP 1147

SMTP Client Agent 1148, 1151

SMTP Client Statistics 1168

SMTP Server Agent 1150, 1165

SMTP Server Statistics 1172

SMTP Statistics 1167

SmtpCommand 1148, 1154

Specific Secrets 1081, 1092

SRTP Settings 1548, 1689

SSH 1175

SSH Client Agent 1176, 1179

SSH Client Statistics 1192

SSH Command List 1177, 1180

startQuickTest 1073

Stateless Peer 1197

Stateless Peer Advanced Options 1202

Stateless Peer Agent 1199

Stateless Peer Available TOS List 1208

Stateless Peer Commands 1198

Stateless Peer Overview 1197

Stateless Peer Payload Header List 1206

Stateless Peer Protocol Flows 1203

Statistics 1297, 1339

stopQuickTest 1075

Stream 1111, 1130

Streaming Client Statistics 1222

support services iv

INDEX

– 1716 –

T

T.30 Settings 1540, 1677

T.38 Settings 1536, 1683

TCP Statistics 1695, 1699

technical support iv

Telnet 1227

Telnet Client Advanced Options 1229, 1235

Telnet Client Agent 1228, 1232

Telnet Client Basic Options 1228, 1234

Telnet Client Command 1229, 1236

Telnet Client Statistics 1245

Telnet Server Advanced Options 1231, 1243

Telnet Server Agent 1230, 1239

Telnet Server Basic Options 1230, 1241

Telnet Server Statistics 1251

Telnet Statistics 1244

Terminal Capability Set 1417

TFTP 1257

TFTP Client Advanced 1265

TFTP Client Advanced Options 1258

TFTP Client Agent 1258, 1260

TFTP Client Statistics 1273

TFTP Command List 1258, 1261

TFTP Server Agent 1267

TFTP Server Statistics 1277

Timer Settings 1546

TLS Cyphers 1571

TLS Settings 1568

Trace File Options 1284, 1293

Trace File Replay 1281

Trace File Replay Client Agent 1282, 1286

Trace File Replay Client Commands 1281

Trace File Replay Client Statistics 1298

Trace File Replay Server Agent 1283, 1292

Trace File Replay Server Commands 1283

Trace File Replay Server Statistics 1300

Transfer Address 1562

U

Using Auto-Generated Strings 1036

V

VDI 1303

VDI Client Agent 1304

VDI Client Commands 1306

Vendor List 1081, 1094

Video Settings 1395, 1532, 1673

VoIP H.248 Peer 1307

VoIP H.323 Peer 1365

VoIP H248 MGC/MGW Peer API Objects 1310

VoIP H248 Peer Agent 1312

VoIP H248 Peer API Commands 1308

VoIP H248 TermGroup Peer API Objects 1311

VoIP H323 Peer Agent 1368

VoIP H323 Peer API Commands 1366

VoIP H323 Peer API Objects 1367

VoIP MGCP 1423

VoIP MGCP CA/MGW Peer API Objects 1426

VoIP MGCP Endpoint Peer API Objects 1427

VoIP MGCP Peer API Commands 1424

INDEX

– 1717 –

VoIP No Call Control Peer 1635

VoIP No Call Control Peer Agent 1638

VoIP No Call Control Peer API Commands 1636

VoIP No Call Control Peer API Objects 1637

VoIP SIP Cloud 1475

VoIP SIP Cloud API Commands 1476

VoIP SIP Peer 1483

VoIP SIP Peer Agent 1487

VoIP SIP Peer API Commands 1484

VoIP SIP Peer API Objects 1485

VoIP Skinny API Objects 1587

VoIP Skinny Peer 1585

VoIP Skinny Peer Agent 1588

VoIP Skinny Peer API Commands 1586

VoIPSIP Cloud Agent 1478

INDEX

– 1718 –

Ixia, a Keysight Business
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1738

© Keysight Technologies, 2004–2020

	Contacting Us
	About this Guide
	Conventions
	Related Documentation

	Chapter 5 New in this Release
	Chapter 1 Introduction
	Background Reading
	Using a License Server

	Network Setup
	Configuring a Network Address on the IxLoad Development Station
	Testing the Development Station’s Routing
	Configuring a Permanent Route to Ixia Ports
	Setting Ixia Chassis Base Addresses

	Backward Compatibility
	Deprecated Commands
	Python Support
	PERL Support

	Chapter 2 Quick Start
	Windows
	Using The Sample Tcl Scripts
	Running the sample scripts
	Monitoring Status and Retrieving Results

	Unix/Linux
	Installing IxLoad Tcl

	Editing the setup_simple.tcl script
	Running the sample scripts
	Monitoring Status and Retrieving Results

	Chapter 3 API Overview
	Tcl API Structure
	Mandatory Objects to Complete a Script
	Multi Version Support

	General API Conventions
	Objects
	Lists of Objects
	Constants
	Strings and Numbers

	TCL API Internal Overview
	Windows Overview
	Unix Overview
	Object Structure

	Building an IxLoad Test
	Step 1: Initial Overhead
	Step 2: Define the TrafficFlow
	Step 3: Define the TrafficColumn
	Step 4: Define the NetTraffic
	Step 5: Define ixSubscriberNetTraffic
	Step 6: Define the NetworkGroup
	Step 7: Define the NetworkGroup
	Step 8: Define the NetworkRange
	Step 9: Define the ixTimeline
	Step 10: Prepare to Run the Test
	Step 11: Start the Test
	Stopping a Test by Pressing Enter

	Running an IxLoad Tcl Script
	Windows
	Unix / Linux
	Maximum Numbers of Scripts That Can Be Run
	Modifying Older Scripts

	API Description
	Network Commands
	DUT Commands
	Traffic Commands
	Test Structure Commands
	Test Operation Commands
	Debugging

	Sample Scripts Shipped with IxLoad
	Example Program

	Chapter 4 IxLoad Tcl API Commands
	::IxLoad
	ixChassisChain
	IxChassisBuilder
	ixCustomPortMap
	Steps for Custom Traffic Mapping

	ixPlaylists
	ixPort
	ixSubmap
	ixSubmapRange
	ixIntRange
	ixRepository
	ixSendEventCommand
	ixStatCatalogItem
	ixStatFilter
	ixStatSpec
	ixTest
	ixTestController
	ixTestControllerMonitor
	statCollectorUtils
	ixScriptGen
	ixTimeline
	ixSubscriberNetTraffic
	ixNetTraffic
	activityList
	ixTrafficFlow
	ixTrafficColumn
	ixNetworkGroup
	ixDut
	ixDutConfigVirtual
	ixDutNetworkRange
	ixDutProtocolPortRange
	ixDutConfigVip
	ixDutConfigSLB
	ixView
	ixClientNetwork
	ixClientTraffic
	ixClientTrafficNetworkMapping
	ixNetworkRange
	ixServerNetwork
	ixServerTraffic
	ixServerTrafficNetworkMapping
	ixWaitEventCommand

	Chapter 5 Internal Commands
	duplicate
	ixConfig
	ixConfigSequenceContainer
	ixConfigSortedNamedItemList

	Chapter 6 Network Stack API
	Network Stack Overview
	Network Stack Hierarchy
	Test, scenario, and column

	Network Group Overview
	Global plugins
	Stacks and Protocol Plugins
	Global options
	Network Group Settings
	L2 Plugin

	Ethernet Plugin
	Physical Layer Example

	Layer 2 Protocols (MAC / VLAN)
	L2EthernetPlugin
	L2 Ethernet (MAC/VLAN) Port Group Data
	MAC Session Data
	MAC Range
	VLAN ID Range
	Layer 2 Example

	Emulated Router Plugin
	EmulatedRouterRange
	Emulated Router Example

	IP Plugin
	Port Group Data
	IP Session Data
	IpV4V6Plugin
	IP Plugin Example

	StaticARP
	DHCP Client and Server
	DHCP Client Plugin
	DHCP Server Plugin

	Authentication Extension Plugins
	WebAuthPlugin
	802.1x plugin
	EAPoUDP plugin

	Impair Plugin
	ImpairRange
	ImpairProfile
	Impair Plugin Example

	IPSec Plugin
	IPSecRange
	Network Config
	Authentication
	IKE Phase 1
	IKE Phase 2
	Identification
	IKE Control
	Keys
	Tunnel Setup
	Certificates
	EAP Common
	EAP AKA
	EAP SIM
	IPSec Example

	PPPoX Plugin
	PppoxPortGroupData
	PLSessionDataBase
	PppoxRangeList
	PppoxAcNameList
	PppoxAcMacList
	PppoX Plugin Example

	L2TP Plugin
	Network Group Settings
	L2tpSessionData
	Basic parameters
	L2TP Control Plane
	L2TP Data Plane
	L2TP Authentication
	LNS
	L2tp Plugin Example

	GTPSPlugin
	GTP SGSN Plugin
	GTP GGSN Plugin

	eGTP Plugin
	eGTP Plugin MME eNB S1 S11 commands
	eGTP Plugin Network Commands
	eGTP eGTP PGW S5 S8 commands
	eGTP eGTP SGSN RNC S4 commands
	eGTP SGW S1 S11 commands
	eGTP Plugin DNS commands
	eGTP Base objects

	DSLite Plugin
	DSLite Range

	Global Services Plugins
	Filter Plugin
	Gratuitous ARP Plugin
	DNS Plugin
	TCP Plugin
	Routes Plugin
	Dynamic Control Plane plugin

	Mobile Subscribers Plugins
	MobileSubscribersPlugin
	Radius Plugin
	Mobile Subscribers Example

	Chapter 7 AppReplay
	Objectives
	Application Replay Peer Agent
	Flow Definition
	LoopBeginCommand
	LoopEndCommand
	Think
	availableTosList
	Advanced Options

	Global Statistics

	Chapter 8 AppMix
	Creating an AppMix Object
	Adding Flows to an AppMix Object
	Setting Flow Parameters
	Configuring Flow Commands
	Flow Protocols
	Setting Flow Endpoints
	Flow Endpoints

	Chapter 9 Bulk MGCP
	API Overview
	MGCP Client API
	Objectives

	MGCP Server API
	MGCP Server Agent

	Parameters
	MGCP Client Agent
	Parameters
	Low Level Parameters
	DNS Record
	Endpoint Names
	Media Settings
	Commands
	Custom Endpoint Names

	MGCP Server Agent
	Parameters
	Low Level Parameters
	DNS Updates
	Endpoint Names
	Custom Endpoint Names

	Bulk MGCP Statistics
	Bulk MGCP Client Statistics
	Bulk MGCP Server Statistics

	Chapter 10 Bulk SIP
	Overview
	Objectives
	SIP Client Commands
	SIP Client Agent
	General Settings
	Content of Messages
	Rules
	State Machine
	Media Settings
	Audio Clips Pool
	Video Settings
	Scenarios

	SIP Server Commands
	SIP Server Agent
	General Settings
	Content of Messages
	Rules
	State Machine
	Media Settings
	Audio Clips Pool
	Scenarios

	SIP Client Agent
	General Settings
	Content of Messages
	State Machine
	Media Settings
	Video Settings
	Scenarios

	SIP Server Agent
	General Settings
	Content of Messages
	State Machine
	Media Settings
	Scenarios

	Using Variables in SIP Fields
	Bulk SIP Statistics
	Bulk SIP Client Statistics
	Bulk SIP Server Statistics

	Chapter 11 CIFS
	API Overview
	Objectives

	CIFS Client Agent
	CIFS Client Commands
	CIFS Basic configuration
	CIFS Advanced configuration

	CIFS Server Agent
	CIFS configuration
	User Info
	Advanced configuration
	Shared Pool

	Statistics
	CIFS Client Statistics
	CIFS Server Statistics

	Chapter 12 DHCP
	Overview
	Objectives

	DHCP Client Agent
	DHCP Command List
	Advanced Options
	Relay Agent
	Option
	Option Set
	Option Set Manager
	Option Choices

	IP Address
	Using Variables in DHCP Fields
	DHCP Statistics
	Effect of Options on DHCP Packet Size

	Chapter 13 DNS
	Overview
	Objectives

	DNS Client Agent
	DNS Client Query
	DNS Client Advanced Options

	DNS Server Agent
	DNS Server Zone Management
	DNS Server Zone Configuration
	DNS Server Advanced Options
	DNS Server Resource Record

	DNS Statistics
	DNS Client Statistics
	DNS Server Statistics

	Chapter 14 FTP
	Overview
	Objectives
	FTP Client Agent
	FTP Client Action

	FTP Server Agent
	realFileList

	FTP Client Agent
	FTP Client Action

	FTP Server Agent
	FTP Statistics
	FTP Client Statistics
	FTP Server Statistics

	Chapter 15 HTTP
	Overview
	Objectives

	HTTP Client Agent
	HTTP Client Profile
	HTTP Client Action

	HTTP Server Agent
	ixCookieContent
	ixCookieObject
	ixResponseHeader
	PageObject
	CustomPayloadObject
	Supported Ciphers

	Using Sequence Generators in HTTP Client Commands and Server Header Name=Valu...
	Using System Variables

	Statistics
	HTTP Server Statistics
	HTTP Client Statistics
	TCP Reset Statistics
	IxLoad Statistics Interpolation

	Chapter 16 IMAP
	API Overview
	Objectives

	IMAP Client Agent
	IMAP Commands
	IMAP Client Advanced Options

	IMAP Server Agent
	IMAP Server Advanced Options
	IMAP Server Config
	Mails
	Mail Message Instance List
	All Mail Messages

	Using Auto-Generated Strings
	IMAP Statistics
	IMAP Client Statistics
	IMAP Server Statistics

	Chapter 17 IPTV/ Video
	Overview
	Video
	IPTV
	Objectives
	Video Client API Structure

	Video Client Agent
	Commands
	Advanced
	Header
	Signaling
	Profiles
	Channel View
	IPTV Options
	Stats

	Video Server Agent
	Video Properties
	Advanced Options
	Video Config

	IPTV / Video Statistics
	IPTV / Video Client Statistics
	IPTV / Video Server Statistics

	Chapter 18 iSCSI
	API Overview
	iSCSI Client Agent
	iSCSI Client Commands
	iscsi
	iscsiTarget
	advOptions

	iSCSI Server Agent
	iscsi
	iscsiTarget
	advOptions

	Chapter 19 IxIO
	API Overview
	IxIO Client Agent
	client file list
	advanced configuration
	drive list
	IxIO Client Commands

	Chapter 20 LDAP
	Overview
	Objectives
	LDAP Client Commands

	LDAP Client Agent
	Command List
	Global Options
	Control
	Modification
	Attribute
	Attribute Type and Values

	LDAP Statistics

	Chapter 21 Peer-to-Peer Application
	Objectives
	Peer-to-Peer Application Agent
	FlowDefinition
	InbuiltFlow

	Peer-to-peer Global Statistics

	Chapter 22 POP3
	Overview
	Objectives
	POP3 Client Agent
	POP3 Server Agent

	POP3 Client Agent
	Pop3Command

	POP3 Server Agent
	MailBoxItem

	Using Auto-Generated Strings
	POP3 Statistics
	POP3 Client Statistics
	POP3 Server Statistics

	Chapter 23 Published Vulnerabilities and Malware
	config
	advOptions
	attacksCmdList
	attacksCmdList nodeList

	AddAttacks
	AttackListCount
	CreateAttackList
	CreatePlaylist
	DatabaseVersion
	DeleteAttackList
	DeleteAttacks
	ExportAttacks
	GetCapture
	ImportAttacks (.zatk format)
	ImportUserDefinedAttacks
	RenameAttackList
	RetrieveAttacks
	SearchAttacks

	Chapter 24 QT
	Running a QuickTest from Tcl
	startQuickTest
	checkTestRunning
	stopQuickTest
	QuickTest Sample Script

	Chapter 25 Radius
	Overview
	Objectives

	Radius Client Agent
	Radius Command List
	Global Config
	Specific Secrets
	Vendor List
	Attribute List
	AccessAttribSetList
	AcctngAttribSetList

	RADIUS Client Statistics

	Chapter 26 RTSP
	Overview
	Objectives
	RTSP Client Agent
	RTSP Server Agent

	RTSP Client Agent
	RtspCommand
	RtspHeaders
	RtspsetParamOptionList
	RtspgetParamOptionList

	RTSP Server Agent
	PresentationItem
	Stream
	Content

	RTSP Statistics
	RTSP Client Statistics
	RTSP Server Statistics

	Chapter 27 SMTP
	Overview
	Objectives
	SMTP Client Agent
	SMTP Server Agent

	SMTP Client Agent
	SmtpCommand
	Header
	Attachment
	MailMessage

	SMTP Server Agent
	SMTP Statistics
	SMTP Client Statistics
	SMTP Server Statistics

	Chapter 28 SSH
	API Overview
	Objectives

	SSH Client Agent
	SSH Command List
	Option Set
	Option Set Manager
	Global Config

	SSH Client Statistics

	Chapter 29 Stateless Peer
	Stateless Peer Overview
	Objectives
	Stateless Peer Commands

	Stateless Peer Agent
	Stateless Peer Advanced Options
	Stateless Peer Protocol Flows

	Chapter 30 HTTP Streaming
	API Overview
	Objectives

	HTTP Streaming Client Agent
	cmdList
	Global options
	HTTP settings
	availableTosList
	Streaming Client Statistics

	Chapter 31 Telnet
	API Overview
	Objectives
	Telnet Client Agent
	Telnet Server Agent

	Telnet Client Agent
	Telnet Client Basic Options
	Telnet Client Advanced Options
	Telnet Client Command

	Telnet Server Agent
	Telnet Server Basic Options
	Telnet Server Advanced Options

	Telnet Statistics
	Telnet Client Statistics
	Telnet Server Statistics

	Chapter 32 TFTP
	Overview
	Objectives

	TFTP Client Agent
	TFTP Command List
	TFTP Client Advanced

	TFTP Server Agent
	fileList
	advanced

	TFTP Client Statistics
	TFTP Server Statistics

	Chapter 33 Trace File Replay
	Overview
	Objectives
	Trace File Replay Client Commands
	Trace File Replay Server Commands

	Trace File Replay Client Agent
	Options
	Filter List
	Enable Filter

	Trace File Replay Server Agent
	Trace File Options
	Server Network List
	Advanced Options

	Statistics
	Trace File Replay Client Statistics
	Trace File Replay Server Statistics

	Chapter 34 VDI
	API Overview
	VDI Client Agent
	settings
	VDI Client Commands

	Chapter 35 VoIP H.248 Peer
	Limitations
	VoIP H248 Peer API Commands
	VoIP H248 MGC/MGW Peer API Objects
	VoIP H248 TermGroup Peer API Objects

	VoIP H248 Peer Agent
	Simulated MGC
	Simulated MGW
	H248 TermGroups
	MGW Automatic
	MGC Automatic
	Profiles
	Packages
	Events
	Properties
	Signals
	Statistics
	H248 Settings
	Codec Settings
	Data Codecs
	Codecs
	Other Settings
	SDP Settings
	RTP Settings
	Audio Settings
	Execution Settings
	Scenario Settings

	Chapter 36 VoIP H.323 Peer
	API Overview
	Limitations

	VoIP H323 Peer API Commands
	VoIP H323 Peer API Objects

	VoIP H323 Peer Agent
	Codec Settings
	Codecs
	Data Codecs
	Other Settings
	RTP Settings
	Audio Settings
	Video Settings
	Alternative Capability Value Set List
	Capability List
	Custom Activity Link Settings
	Execution Settings
	Simultaneous Capability
	H323 Settings
	Simultaneous Capability Value Set List
	Alternative Capability List
	Alternative Capability
	Dial Plan
	Terminal Capability Set
	Simultaneous Capability List
	Scenario Settings
	Custom Parameters

	Chapter 37 VoIP MGCP
	Limitations
	VoIP MGCP Peer API Commands
	VoIP MGCP CA/MGW Peer API Objects
	VoIP MGCP Endpoint Peer API Objects

	MGCP GW Agent
	MGCP Settings (GW)
	Automatic Settings (GW)
	Endpoints
	MGCP CA Agent
	MGCP Settings (CA)
	Automatic Settings (CA)
	Endpoints
	Gateways
	Scenario Settings
	Execution Settings
	Custom Activity Link Settings
	Simulated Endpoints
	Data Codecs
	Codecs
	SDP Settings
	RTP Settings
	Audio Settings
	Other Settings

	Chapter 38 VoIP SIP Cloud
	Limitations
	VoIP SIP Cloud API Commands
	API Objects

	VoIPSIP Cloud Agent
	Settings
	SIP Server List

	Chapter 39 VoIP SIP Peer
	Limitations
	VoIP SIP Peer API Commands
	VoIP SIP Peer API Objects

	VoIP SIP Peer Agent
	Codec Settings
	Data Codecs
	Codecs
	Other Settings
	Signaling Settings
	Edit Contact
	RTP Settings
	Audio Settings
	Video Settings
	T.38 Settings
	T.30 Settings
	Timer Settings
	SRTP Settings
	MSRP Settings
	MSRP GUI Files
	MSRP Relays
	Custom Activity Link Settings
	Execution Settings
	Transfer Address
	Scenario Settings
	Dial Plan
	TLS Settings
	TLS Cyphers
	Custom Parameters
	Advanced Settings
	Cloud Servers
	Server Rules
	Cloud Rules
	RuleData

	Chapter 40 VoIP Skinny Peer
	Limitations
	VoIP Skinny Peer API Commands
	VoIP Skinny API Objects

	VoIP Skinny Peer Agent
	Scenario Settings
	Execution Settings
	Dial Plan
	Skinny Settings
	Call Managers
	Codec Settings
	Data Codecs
	Codecs
	RTP Settings
	Audio Settings
	Other Settings
	Custom Activity Link Settings
	Custom Parameters

	Chapter 41 VoIP No Call Control Peer
	Limitations
	VoIP No Call Control Peer API Commands
	VoIP No Call Control Peer API Objects
	VoIP No Call Control Peer Agent
	NoCallControl VOIP Statistics

	Scenario Settings
	Execution Settings
	Dial Plan
	Codec Settings
	Codecs
	Data Codecs
	Audio Settings
	Video Settings
	T.30 Settings
	T.38 Settings
	RTP Settings
	SRTP Settings
	Other Settings

	Chapter 42 IP, TCP, Run State, and Curve Segment L2/L3, and Port CPU Statistics
	Per-Interface and TCP Statistics
	TCP Statistics
	Advanced TCP Statistics
	Per-Interface Statistics

	Run State Statistics
	Curve Segment Statistics
	Connection Latency Statistics
	IxServer Layer 2-3 Statistics
	IxServer Port CPU Statistics

	INDEX

