
IxOS

Release 9.24

TCL Development Guide

Document version: 202207081603+05:30

Notices
Copyright Notice
© Keysight Technologies 1997–2022

No part of this document may be
reproduced in any form or by any means
(including electronic storage and retrieval
or translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies, Inc.
as governed by United States and
international copyright laws.

Warranty
The material contained in this document is
provided “as is,” and is subject to being
changed, without notice, in future
editions. Further, to the maximum extent
permitted by applicable law, Keysight
disclaims all warranties, either express or
implied, with regard to this manual and
any information contained herein,
including but not limited to the implied
warranties of merchantability and fitness
for a particular purpose. Keysight shall not
be liable for errors or for incidental or
consequential damages in connection with
the furnishing, use, or performance of this
document or of any information contained
herein. Should Keysight and the user have
a separate written agreement with
warranty terms covering the material in
this document that conflict with these
terms, the warranty terms in the separate
agreement shall control.

Technology Licenses
The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

U.S. Government Rights
The Software is "commercial computer
software," as defined by Federal
Acquisition Regulation ("FAR") 2.101.
Pursuant to FAR 12.212 and 27.405-3 and
Department of Defense FAR Supplement
("DFARS") 227.7202, the U.S. government
acquires commercial computer software

under the same terms by which the
software is customarily provided to the
public. Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User License
Agreement (EULA), a copy of which can be
found at
http://www.keysight.com/find/sweula.
The license set forth in the EULA
represents the exclusive authority by
which the U.S. government may use,
modify, distribute, or disclose the
Software. The EULA and the license set
forth therein, does not require or permit,
among other things, that Keysight: (1)
Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish
to, or otherwise provide, the government
rights in excess of these rights customarily
provided to the public to use, modify,
reproduce, release, perform, display, or
disclose commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except to
the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Keysight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR
27.401 or DFAR 227.7103-5 (c), as
applicable in any technical data. 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

– ii –

http://www.keysight.com/find/sweula

Contacting Us

Keysight headquarters
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1738
www.ixiacom.com/contact/info

Support

Global Support +1 818 595 2599 support@ixiacom.com

Regional and local support contacts:

APAC Support +91 80 4939 6410 support@ixiacom.com

Australia +61-742434942 support@ixiacom.com

EMEA Support +40 21 301 5699 support-emea@ixiacom.com

Greater China Region +400 898 0598 support-china@ixiacom.com

Hong Kong +852-30084465 support@ixiacom.com

India Office +91 80 4939 6410 support-india@ixiacom.com

Japan Head Office +81 3 5326 1980 support-japan@ixiacom.com

Korea Office +82 2 3461 0095 support-korea@ixiacom.com

Singapore Office +65-6215-7700 support@ixiacom.com

Taiwan (local toll-free number) 00801856991 support@ixiacom.com

– iii –

https://www.ixiacom.com/contact/info
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-emea@ixiacom.com?subject=Enquiry
mailto:support-china@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support-india@ixiacom.com?subject=Enquiry
mailto:support-japan@ixiacom.com?subject=Enquiry
mailto:support-korea@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry
mailto:support@ixiacom.com?subject=Enquiry

Documentation conventions
The following documentation conventions are used in this guide:

Describing interactions with the UI

You can interact with products by using different input methods: keyboard, mouse, touch, and more. So
in most parts of the user documentation, generic verbs have been used that work with any input method.
In cases where input-neutral verbs do not work, mouse-specific verbs are used as the first choice,
followed by touch-specific verbs as the second choice.

See the following table for examples on how you can interpret the different input methods.

Input-neutral Mouse Touch

SelectModify. ClickModify. TapModify.

Select Accounts > Other
accounts > Add an account.

Click Accounts > Other
accounts > Add an account.

Tap Accounts > Other
accounts > Add an account.

To open the document in Outline
view, select View > Outline.

To open the document in Outline
view, click View > Outline.

To open the document in
Outline view, tap View >
Outline.

Select Protocols. Click the Protocols tab. Tap Protocols.

-NA- Double-click the Client wizard. Double-tap the Client wizard.

Open the Packages context
menu.

Right-click Packages to open
the shortcut menu.

Long tap Packages to open the
shortcut menu.

Deprecated words

The following words have been replaced with new words, considering the audience profile, our modern
approach to voice and style, and our emphasis to use input-neutral terms that support all input methods.

Old usage… New usage…

shortcut menu, right-click menu context menu

click, right-click select

drag and drop drag

Documentation conventions

– iv –

C
O
N
TE
N
TS

Contacting Us iii

Documentation conventions iv

About this Guide xxiv

Purpose xxiv

Manual Content xxiv

Related Documentation xxv

Technical Support xxv

Chapter 1 Tcl API Overview 1

ScriptGen 2

What’s New in Version 9.24? 3

All Deprecated Commands and Options 3

Fully Qualified Port Name 15

Handling FQPN in Tcl APIs 16

FQPN supported APIs 19

Convert FQPN to Legacy Port Format 19

Convert Legacy Port Format to FQPN 19

Chapter 2 Quick Start 21

Installing the IxOS Tcl Client 21

About IxOS Native TCL Console for Linux 22

UNIX Environment 22

UNIX Installation Notes 24

Windows Environment 25

IxSampleTcl Test Program 26

– v –

Chapter 3 High-Level and Utility API Description 33

Initialization, Setup and Cleanup 33

Mapping and Port Lists 34

Including Source Code 37

Chassis and TclServer Connection 37

General Purpose Commands 39

cleanUp 40

Port Ownership 40

ixLogin / ixLoginWithPurpose / ixLogout 40

ixCheckOwnership 40

ixPortTakeOwnership / ixTakeOwnership / ixPortClearOwnership / ixClearOwnership 41

Data Transmission 41

Setup 42

Negotiation 44

Start Transmit 44

Calculation Utilities 46

Data Capture and Statistics 47

Setup 48

Capture Data 50

Statistics 51

ARP 52

ixEnableArpResponse / ixEnablePortArpResponse 52

ixDisableArpResponse / ixDisablePortArpResponse 52

ixClearPortArpTable / ixClearArpTable 52

ixTransmitPortArpRequest / ixTransmitArpRequest 52

Console Output and Logging 53

Error messages 53

Console Output 53

Logging 54

– vi –

Port CPU Control 54

Issue Port CPU Commands 54

Miscellaneous Commands 55

Chapter 4 Programming 57

API Structure and Conventions 57

Standard Sub-Commands 57

Standard Return Codes 59

Sequence of Steps 60

How to write efficient scripts 66

Multi-Client Usage 67

Mpexpr versus Expr 67

Chapter 5 IxTclHal API Description 69

Chassis, Cards and Ports 69

session 71

version 71

chassisChain 71

timeServer 72

chassis 72

card 73

port 74

Circuit 102

10GE 106

Data Transmission 114

Streams and Flows 114

Frame Data 121

Data Capture and Statistics 153

filter 153

filterPallette 155

capture 156

– vii –

captureBuffer 157

qos 159

atmReassembly 159

atmFilter 160

stat 161

statGroup, statList and statWatch 162

packetGroupStats 164

vsrStat 167

vsrError 167

atmStat 168

streamTransmitStats 169

Data Capture and Statistics 170

Data Capture and Statistics 188

Data Capture and Statistics 206

Data Capture and Statistics 224

Data Capture and Statistics 242

Data Capture and Statistics 260

Data Capture and Statistics 278

Data Capture and Statistics 296

Data Capture and Statistics 314

Data Capture and Statistics 332

Data Capture and Statistics 368

Data Capture and Statistics 386

Data Capture and Statistics 404

Data Capture and Statistics 422

Interface Table 440

protocolServer 440

Interface Table 441

Using DHCP with Interfaces 447

– viii –

Using DHCPv6 with Interfaces 449

Using PTP with Interfaces 451

Using Fibre Channel and FCoE 451

IP 451

Interface Table versus IP Address Table 453

sfpPlus 454

Port CPU Control 454

Port CPU Control 454

Issue Port CPU Command 455

serviceManager 456

Appendix 1 IxTclHAL Commands 459

FQPN support 459

arp 462

associationHeader 470

atmFilter 471

atmHeader 473

atmHeaderCounter 477

atmOam 480

atmOamActDeact 487

atmOamAis 490

atmOamFaultManagementCC 491

atmOamFaultManagementLB 492

atmOamRdi 493

atmOamTrace 494

atmPort 497

atmReassembly 499

atmStat 503

autoDetectInstrumentation 508

basicLinkServices 513

– ix –

bert 515

bertErrorGeneration 523

bertUnframed 526

capture 531

captureBuffer 538

card 546

cdlPreamble 590

cfpPort 592

chassis 593

chassisChain 609

collisionBackoff 611

conditionalStats 612

conditionalTable 616

customOrderedSet 618

dataIntegrity 619

dcc 625

dhcp 628

dhcpV4DiscoveredInfo 638

dhcpV4Properties 639

dhcpV4Tlv 641

dhcpV6DiscoveredInfo 642

dhcpV6Properties 644

dhcpV6Tlv 646

discoveredAddress 647

discoveredList 648

discoveredNeighbor 649

encHeader 650

espHeader 652

extendedLinkServices 653

– x –

fcEOF 659

fcNameServer 660

fcNameServerQuery 662

fcoe 663

fcoeDiscoveredInfo 676

fcoeNameServer 678

fcPlogi 680

fcoePlogi 681

fcoeProperties 682

fcPort 690

fcProperties 692

fcSOF 695

fecError 696

fibreChannel 702

filter 725

filterPallette 738

fipTlv 752

flexibleTimestamp 753

forcedCollisions 756

frameRelay 759

gfp 765

gfpOverhead 771

gre 773

hdlc 777

icmp 784

icmpV6 789

icmpV6Error 793

icmpV6Informational 795

icmpV6MulticastListener 796

– xi –

icmpV6NeighborDiscovery 797

icmpV6OptionLinkLayerDestination 800

icmpV6OptionLinkLayerSource 801

icmpV6OptionMaxTransmissionUnit 802

icmpV6OptionPrefixInformation 804

icmpV6OptionRedirectedHeader 805

icmpV6OptionUserDefine 807

icmpV6UserDefine 808

IFRHeader 809

igmp 810

igmpGroupRecord 816

interfaceEntry 818

interfaceIpV4 824

interfaceIpV6 825

interfaceTable 825

ip 843

ipAddressTable 859

ipAddressTableItem 861

ipV6 864

ipV6Address 881

ipV6Authentication 888

ipV6Destination 890

ipV6Fragment 892

ipV6HopByHop 894

ipV6OptionPAD1 897

ipV6OptionPADN 898

ipV6OptionJumbo 899

ipV6OptionRouterAlert 900

ipV6OptionBindingUpdate 901

– xii –

ipV6OptionBindingAck 903

ipV6OptionHomeAddress 904

ipV6OptionBindingRequest 905

ipV6OptionMIpV6UniqueIdSub 906

ipV6OptionMIpV6AlternativeCoaSub 907

ipV6OptionUserDefine 908

ipV6Routing 909

ipx 911

isl 921

kp4FecError 925

lasi 931

latencyBin 934

lcas 935

linkFaultSignaling 937

macSecChannel 941

macSecRx 943

macSecTag 945

macSecTx 950

mii 952

miiae 957

mmd 961

mmdRegister 962

mpls 964

mplsLabel 967

networkHeader 969

npivProperties 974

oamEventNotification 977

oamEventOrgTlv 979

oamFrameTlv 980

– xiii –

oamFramePeriodTlv 981

oamHeader 983

oamInformation 988

oamLocalInformationTlv 990

oamLoopbackControl 992

oamOrganizationSpecific 993

oamOrganizationSpecificTlv 993

oamPort 994

oamRemoteInformationTlv 998

oamStatus 1000

oamSummaryTlv 1002

oamSymbolPeriodTlv 1003

oamVariableRequest 1005

oamVariableRequestTlv 1006

oamVariableResponse 1007

oamVariableResponseTlv 1008

opticalDigitalWrapper 1010

packetGroup 1011

packetGroupStats 1030

packetGroupThresholdList 1038

packetLengthInsertion 1041

pauseControl 1044

pcsLaneError 1048

pcsLaneStatistics 1050

pcpuCommandService 1054

poeAutoCalibration 1059

poePoweredDevice 1061

poeSignalAcquisition 1071

port 1074

– xiv –

portCpu 1125

portGroup 1127

ppp 1134

pppStatus 1143

prbsCapture 1148

protocol 1149

protocolOffset 1154

protocolServer 1156

protocolPad 1157

ptp 1158

ptpAnnounce 1166

ptpDelayRequest 1170

ptpDelayResponse 1171

ptpDiscoveredInfo 1172

ptpFollowUp 1174

ptpProperties 1175

ptpSync 1179

qos 1180

resourceGroupEx 1185

rip 1187

ripRoute 1191

rprFairness 1193

rprOam 1202

rprProtection 1205

rprRingControl 1209

rprTlvBandwidthPair 1213

rprTlvIndividualBandwidth 1214

rprTlvNeighborAddress 1216

rprTlvStationName 1217

– xv –

rprTlvTotalBandwidth 1219

rprTlvVendorSpecific 1220

rprTlvWeight 1222

rprTopology 1223

rxLaneDiag 1226

sequenceNumberUdf 1235

serviceManager 1238

session 1241

sfpPlus 1242

sonet 1244

sonetCircuit 1253

sonetCircuitList 1255

sonetCircuitProperties 1262

sonetError 1264

sonetOverhead 1270

splitPacketGroup 1272

srpArp 1275

srpDiscovery 1281

srpIps 1284

srpMacBinding 1289

srpUsage 1290

stackedVlan 1293

stat 1295

statAggregator 1351

statGroup 1354

statList 1355

statWatch 1356

stream 1360

streamExtractorFilter 1385

– xvi –

streamExtractorModifier 1390

streamQueue 1392

streamQueueList 1394

streamRegion 1396

streamTransmitStats 1398

tableUdf 1402

tableUdfColumn 1408

transceiver 1410

tcp 1422

tcpRoundTripFlow 1426

timeServer 1432

txLane 1439

txRxPreamble 1441

udf 1444

udp 1457

usb 1463

version 1465

VFTHeader 1467

vlan 1468

vsrError 1472

vsrStat 1480

weightedRandomFramesize 1485

xaui 1491

xfp 1493

Appendix 2 Utility Commands 1497

FQPN support 1497

byte2IpAddr 1497

calculateFPS 1497

calculateFPSPortPath 1498

– xvii –

calculateGapBytes 1499

calculateGapBytesPortPath 1500

calculateMaxRate 1501

calculateMaxRatePortPath 1501

calculatePercentMaxRate 1502

calculatePercentMaxRatePortPath 1505

cleanUp 1505

clearAllMyOwnership 1506

dectohex 1506

disableUdfs 1507

enableEvents 1507

errorMsg 1508

getErrorString 1508

getStatLabel 1509

hextodec 1509

host2addr 1510

logMsg 1510

logOff 1511

logOn 1511

mpexpr 1512

showCmd 1512

user 1513

Appendix 3 High-Level API 1515

FQPN support 1515

getAllPorts 1518

getRxPorts 1518

getTxPorts 1519

issuePcpuCommand 1520

ixAbortPoeArm 1521

– xviii –

ixAbortPortPoeArm 1522

ixArmPoeTrigger 1523

ixArmPortPoeTrigger 1523

ixCheckLinkState 1524

ixCheckOwnership 1526

ixCheckPPPState 1528

ixCheckPortTransmitDone 1530

ixCheckTransmitDone 1532

ixClearArpTable 1535

ixClearOwnership 1536

ixClearPacketGroups 1538

ixClearPerStreamTxStats 1541

ixClearPortArpTable 1541

ixClearPortPacketGroups 1543

ixClearPortStats 1545

ixClearScheduledTransmitTime 1546

ixClearStats 1547

ixClearTimeStamp 1549

ixCollectStats 1551

ixConnectToChassis 1554

ixConnectToChassisReadOnly 1556

ixConvertFromSeconds 1557

ixConnectToTclServer 1558

ixConvertToSeconds 1559

ixCreatePortListWildCard 1559

ixCreateSortedPortList 1561

ixDisableArpResponse 1562

ixDisablePortArpResponse 1564

ixDisconnectFromChassis 1566

– xix –

ixDisconnectTclServer 1567

ixEnableArpResponse 1568

ixEnablePortArpResponse 1570

ixEnableIntrinsicLatencyAdjustment 1572

ixEnablePortIntrinsicLatencyAdjustment 1573

ixErrorInfo 1574

ixGetChassisID 1575

ixGetLineUtilization 1576

ixGlobalSetDefault 1577

ixInitialize 1578

ixIsIntrinsicLatencyAdjustmentEnabled 1580

ixIsOverlappingIpAddress 1581

ixIsSameSubnet 1582

ixIsValidHost 1583

ixIsValidNetMask 1584

ixIsValidUnicastIp 1584

ixLoadPoePulse 1585

ixLoadPortPoePulse 1586

ixLogin 1587

ixLoginWithPurpose 1588

ixLogout 1589

ixMiiConfig utilities 1590

ixPortClearOwnership 1592

ixPortTakeOwnership 1593

ixProxyConnect 1595

ixPuts 1597

ixRequestStats 1598

ixResetPortSequenceIndex 1599

ixResetSequenceIndex 1600

– xx –

ixRestartAutoNegotiation 1603

ixRestartPortAutoNegotiation 1603

ixRestartPortPPPAutoNegotiation 1604

ixRestartPPPNegotiation 1605

ixSetAdvancedStreamSchedulerMode 1606

ixSetAutoDetectInstrumentationMode 1608

ixSetCaptureMode 1609

ixSetDataIntegrityMode 1612

ixSetPacketFlowMode 1614

ixSetPacketGroupMode 1616

ixSetPacketStreamMode 1619

ixSetPortAdvancedStreamSchedulerMode 1621

ixSetPortCaptureMode 1623

ixSetPortDataIntegrityMode 1625

ixSetPortPacketFlowMode 1626

ixSetPortPacketGroupMode 1628

ixSetPortPacketStreamMode 1630

ixSetPortSequenceCheckingMode 1632

ixSetPortTcpRoundTripFlowMode 1634

ixSetScheduledTransmitTime 1636

ixSetSequenceCheckingMode 1637

ixSetTcpRoundTripFlowMode 1639

ixSimulatePhysicalInterfaceDown 1641

ixSimulatePhysicalInterfaceUp 1642

ixSimulatePortPhysicalInterfaceDown 1643

ixSimulatePortPhysicalInterfaceUp 1643

ixSource 1644

ixStartAtmOamTransmit 1645

ixStartCapture 1646

– xxi –

ixStartCollisions 1648

ixStartPacketGroups 1650

ixStartPortAtmOamTransmit 1653

ixStartPortCapture 1654

ixStartPortCollisions 1656

ixStartPortPacketGroups 1658

ixStartPortTransmit 1661

ixStartStaggeredTransmit 1663

ixStartTransmit 1665

ixStopAtmOamTransmit 1667

ixStopCapture 1668

ixStopCollisions 1671

ixStopPacketGroups 1673

ixStopPortAtmOamTransmit 1676

ixStopPortCapture 1677

ixStopPortCollisions 1679

ixStopPortPacketGroups 1681

ixStopPortTransmit 1684

ixStopTransmit 1686

ixTakeOwnership 1689

ixTransmitArpRequest 1690

ixTransmitPortArpRequest 1693

ixUtils 1695

ixWriteConfigToHardware 1695

ixWritePortsToHardware 1698

map 1699

Appendix 4 IxTcl Server Usage 1703

IxTcl Server 1703

Installation and Invocation 1703

– xxii –

IxTcl Server Usage 1703

Options 1705

Advanced Usage 1706

Appendix 5 Reserved Keywords 1709

INDEX 1735

– xxiii –

About this Guide
The information in this section is provided to help you navigate this guide and make better use of its
content. A list of related documentation is also included.

The Third-Party Software License document is included with the download package.

Purpose
This guide describes the structure and conventions of the IxExplorer Tcl API and provides detailed
information on all API commands. Information is provided on protocol support and indicates the
commands, sub-commands, options, and statistics that apply to each protocol.

Manual Content
This guide contains the following sections:

Section Description

About this Guide Provides information on this guide, including its purpose, content, and related
documentation. Also explains how to contact technical support.

Chapter 1, Tcl API
Overview

Provides a brief overview of the Tcl API and the features that are new to this
release.

Chapter 2, Quick
Start

An overview of a complete, useful Tcl example program. Using this, the basic flow
of programming and operation can be viewed.

Chapter 3, High-
Level and Utility
API Description

Organizes the High-Level and Utility APIs into related discussion groups and
describes how to use them at a high level.

Chapter 4,
Programming

Explains the basic structure and operation of all of the Tcl Commands.

Chapter 5,
IxTclHal API
Description

Organizes the APIs into related discussion groups and describes how to use them
at a high level.

Appendix 1,
IxTclHAL
Commands

An alphabetical set of reference sheets for all non-protocol related Tcl Commands.

– xxiv –

Section Description

Appendix 2,
Utility Commands

An alphabetical set of reference sheets for additional test related commands.

Appendix 3, High-
Level API

Commands which perform a combination of functions against a number of ports.

Appendix 4, IxTcl
Server Usage

Explains the usage of Tcl Server.

Appendix 5,
Reserved
Keywords

Provides the keywords that are used in IxOS setup. These keywords should not be
used as variable names in customer scripts, failing which they will conflict with
code execution and exhibit unwanted behavior.

Related Documentation
The following guides may help you learn more about Tcl API for IxExplorer. The guides are available on
the CD shipped with the application, as well as on the Ixia website at www.ixiacom.com.

l IxExplorer User Guide—Details the usage of the IxExplorer GUI for operation with an Ixia chassis
and Ixia load modules.

l Ixia Platform Reference Guide—Provides a detailed list of all currently supported Ixia chassis and
Ixia load modules, as well as general information regarding various technologies covered by Ixia
products.

l IxServer User Guide—Details the usage of the IxServer GUI for operation on an Ixia chassis.

Technical Support
You can obtain technical support for any Ixia product by contacting Ixia Technical Support by any of the
methods mentioned on the inside cover of this guide. Technical support from Ixia’s corporate
headquarters is available Monday through Friday from 06:00 to 18:00, Pacific Standard Time (excluding
American holidays). Technical support from Ixia’s EMEA and India locations is available Monday through
Friday, 08:00 to 17:00 local time (excluding local holidays).

About this Guide

– xxv –

http://www.ixiacom.com/

CHAPTER 1 Tcl API Overview
The Ixia Tcl Command library provides full access to the Ixia hardware platform. Configurations can be
sent to the hardware and various programs can be created and executed on the system. Tcl scripting
allows automation of testing procedures when tens to thousands of ports are involved. Ixia’s Tcl
Command Library is built using a combination of commands that are written in Tcl and commands that
are implemented in C/C++. The figure below shows the location of the C++ API Client (IxTclHAL) in the
overall picture of the Ixia hardware platform.

Note: TCL version 8.5 and 8.6 are supported.

Figure: System Overview Diagram

– 1 –

The IxServer module resides on the computer connected to the test hardware and is responsible for
control and operation of the hardware. A single IxServer module exists per chassis.

The IxHAL (Hardware Abstraction Layer) is a C++ based application that provides a higher level
abstraction of the Ixia hardware. Working with IxServer, it operates the hardware chassis, cards and
ports. When the test software (IxExplorer, IxAutomate (formerly IxScriptMate), Tcl based applications)
reside on a different computer than the test hardware, an additional IxHAL copy resides on the remote
machine. These two copies act in concert to provide a single interface to upper layers of software.

IxHAL serves as a buffer for configuration information, saving and buffering this data until it receives a
command to transfer the data to or from the hardware through IxServer. The IxExplorer software, for
example, uses its copy of IxHAL to hold configuration data until it is transferred to the hardware.

In the case of Tcl applications, the Tcl Command Library is a set of Tcl commands that are used to
configure the traffic generation, capture and statistics parameters on the Ixia hardware platform. Tcl
applications use these commands to configure test parameters and then use a ‘set’ option to transfer the
information into IxHAL. A ‘write’ option causes IxHAL to send the information to the hardware. To retrieve
status, captured data and statistics the application uses a ‘get’ option which retrieves the information
from IxHAL into IxTclHAL. A ‘cget’ option retrieves these values for use in Tcl applications.

Discussions of Tcl commands can be found in the following chapters:

l IxTclHal API Description: A discussion of the Tcl commands in IxTclHAL.
l Appendix A - IxTclHAL Commands: A complete description of the Tcl Command Library.
l Appendix B - Utility Commands: A number of additional provided utility commands.a number of
additional Tcl commands that are used in most tests.

l Appendix C - High-Level API: A number of additional Tcl commands that are used in most tests.

Custom applications or test scripts can be written using Ixia's Tcl Command Library. For Windows users,
as in standard Tcl/Tk packages, Ixia provides a Dynamic Link Library (DLL) file for Windows 2000/XP that
may be loaded into a standard Tcl shell or Wish Console. The DLL gives access to the IxTclHal Command
library.

For Unix users, the IxTclHal package connects to an instance of a TclServer on a Ixia chassis, where the
DLL is used.

After installing the Tcl Client on the workstation, the Tcl package can be loaded by launching the Tcl Shell
(double-clicking theWish Console icon on the Desktop) and typing in the following command:

%package require IxTclHal

Now all the Ixia Tcl commands are available. If a new script is to be written, this should be the first line of
the script file. The package command can also be used inside a previously written script, which could be
loading other Tcl extensions such as Expect, Tcl-DP.

ScriptGen
ScriptGen is an auxiliary Tcl tool that is installed as part of the Tcl Client package. It’s purpose is to create
a Tcl program which reflects the configuration of a particular port. ScriptGen is run from a Wish Console
and the resulting program is written to disk and shown in the console window. The configuration of the
port may have been established through the use of any of the following Ixia tools: IxExplorer, IxAutomate

Chapter 1 Tcl API Overview

– 2 –

(formerly IxScriptmate), or TCL API. The operation of ScriptGen is described in Appendix A of the
IxExplorer User Guide.

What’s New in Version 9.24?
Following feature has been added in this release:

l New transceiver commands added to modify Module Signal Integrity Control settings. See
transceiver.

All Deprecated Commands and Options
The following table lists the commands, sub-commands and options which have been deprecated through
the lifetime of the IxOS Tcl API. Refer to the appropriate guide release to determine the reason for the
deprecation.

Note that the Usability column displays whether the command is a placeholder or it should not be used.
The explanation of these options is as follows:

l Placeholder: The command or option has been coded to return a set value so as not to break
previous scripts.

l Do not use: The command can still be used, but we do not recommend as it might break scripts in
future releases.

Table: All deprecated commands and options

Command Sub-commands Options

First
depreca
ted
release Usability

<many
commands>

decode - chassis, card, port are
required

3.70 Placeholder

atmHeader ATM
encapsulation
options that do
not begin with
atmEncapsulatio
n

3.80 Placeholder

calculateFPS
calculateFrameRate

All All 5.10 Do not use

calculateGapBytes All All 3.80 Do not use

captureFilterError errOversize,
errUndersize,
errFragment

5.10 Do not use

Chapter 1 Tcl API Overview

– 3 –

Command Sub-commands Options

First
depreca
ted
release Usability

card getInterface 3.70 Do not use

(type) cardUSB 5.20 Do not use

txClockDeviation
Lan

5.30SP1 Do not use

txClockDeviation
Wan

5.30SP1 Do not use

chassis baseAddressMas
k

5.00 Do not use

chassis write 4.10 Do not use

writeAll 4.10 Do not use

filterPallette type1, type2
typeMask1,
typeMask2

3.65 Do not use

filterPallette config -pattern1
"080201' used to
work, but no
longer. In 5.0
and up, must be
specified as
filterPallete
config
-pattern1 '08 02
01'.

5.0 Use space
between hex
bytes

frameRelay dlciCore 4.10 Do not use

fcoeProperties enableKeepAlive
s

5.70 Do not use

gapClockTicks 9.10 Do not use

interfaceEntry atmMode 3.80 Placeholder

ATM
encapsulation
options that do
not begin with

3.80 Placeholder

Chapter 1 Tcl API Overview

– 4 –

Command Sub-commands Options

First
depreca
ted
release Usability

atmEncapsulatio
n

interfaceTable all sendArpClear
[description]
(only the
description part
of the command
is deprecated)

5.00 Do not use

ipAddressTableItem ATM
encapsulation
options that do
not begin with
atmEncapsulatio
n

3.80 Do not use

isl encapSA,
encapDA

3.80 Do not use

hsa 4.10 Do not use

ixInitialize All All 3.80 Do not use

ixIs___Installed All All 3.80 Do not use

licenseManagement 5.00 Do not use

master Do not use

port dataScrambling
lineScrambling

3.70 Do not use

portFeaturePack
etFlow-ImageFile

4.10 Do not use

portPosFraming
portEthernetFra
ming

pre 3.65 Do not use

rateMode 3.65 Do not use

sonetInterface 3.70 Do not use

Chapter 1 Tcl API Overview

– 5 –

Command Sub-commands Options

First
depreca
ted
release Usability

sonetOperation 3.70 Do not use

useRecoveredClo
ck

3.65 Do not use

(portMode)
portUsbMode

5.20 Do not use

(type)
portUsbUsb
portUsbEthernet
port10100UsbSh
4

5.20 Do not use

getInterface 3.70 Placeholder

portGroup get pre 3.65 Do not use

protocol dutStripTag 3.65 Placeholder

protocoloffset enable 4.10 Placeholder

sonet B1, B2, B3 3.50 Do not use

errorDuration 3.50 Do not use

insertBipErrors 3.50 Do not use

lossOfFrame 3.50 Do not use

lossOfSignal 3.50 Do not use

periodicB1, B2, B3 3.50 Do not use

periodicLossOfFrame 3.50 Do not use

protocolServer

enableBgp4CreateInterface 7.51 Do not use

enableBgp4Service 7.51 Do not use

enableIgmpCreateInterface 7.51 Do not use

enableIgmpQueryResponse 7.51 Do not use

Chapter 1 Tcl API Overview

– 6 –

Command Sub-commands Options

First
depreca
ted
release Usability

enableIsisCreateInterface 7.51 Do not use

enableIsisService 7.51 Do not use

enableLdpService 7.51 Do not use

enableMldService 7.51 Do not use

enableOspfCreateInterface 7.51 Do not use

enableOspfService 7.51 Do not use

enableOspfV3Service 7.51 Do not use

enablePimsmService 7.51 Do not use

enableRipCreateInterface 7.51 Do not use

enableRipService 7.51 Do not use

enableRipngService 7.51 Do not use

enableRsvpCreateInterface 7.51 Do not use

enableRsvpService 7.51 Do not use

stat enableUsbExtendedStats 4.00 Placeholder

usb* 4.00

counterVal 5.10 Do not use

counterRate 5.10 Do not use

enableOspfStats 7.51 Do not use

ospfTotalSessions 7.51 Do not use

ospfFullNeighbors 7.51 Do not use

ospfSessionFlap 7.51 Do not use

enableIsisStats 7.51 Do not use

Chapter 1 Tcl API Overview

– 7 –

Command Sub-commands Options

First
depreca
ted
release Usability

enableRsvpStats 7.51 Do not use

isisSessionsConfiguredL1 7.51 Do not use

isisSessionsUpL1 7.51 Do not use

isisNeighborsL1 7.51 Do not use

isisSessionFlapL1 7.51 Do not use

isisSessionsConfiguredL2 7.51 Do not use

isisSessionsUpL2 7.51 Do not use

isisNeighborsL2 7.51 Do not use

isisSessionFlapL2 7.51 Do not use

isisL1DBSize 7.51 Do not use

isisL2DBSize 7.51 Do not use

isisRBridgesLearned 7.51 Do not use

isisMacGroupRecordsLearned 7.51 Do not use

isisIpV4GroupRecordsLearned 7.51 Do not use

isisIpV6GroupRecordsLearned 7.51 Do not use

isisTrillRbridgeChannelEchoTx 7.51 Do not use

isisTrillRbridgeChannelEchoRx 7.51 Do not use

isisTrillRbridgeChannelEchoRepl
yTx

7.51 Do not use

isisTrillRbridgeChannelEchoRepl
yRx

7.51 Do not use

rsvpIngressLSPsConfigured 7.51 Do not use

rsvpIngressLSPsUp 7.51 Do not use

rsvpEgressLSPsUp 7.51 Do not use

Chapter 1 Tcl API Overview

– 8 –

Command Sub-commands Options

First
depreca
ted
release Usability

rsvpSessionFlap 7.51 Do not use

rsvpIngressSubLSPsConfigured 7.51 Do not use

rsvpIngressSubLSPsUp 7.51 Do not use

rsvpEgressSubLSPsUp 7.51 Do not use

ldpSessionsUp 7.51 Do not use

ldpSessionsConfigured 7.51 Do not use

ldpSessionFlap 7.51 Do not use

enableLdpStats 7.51 Do not use

stpSessionFlap 7.51 Do not use

enableStpStats 7.51 Do not use

ldpBasicSessionsUp 7.51 Do not use

enableOspfV3Stats 7.51 Do not use

ospfV3SessionsConfigured 7.51 Do not use

ospfV3SessionsUp 7.51 Do not use

ospfV3SessionFlap 7.51 Do not use

rxIgmpFrames 7.51 Do not use

txIgmpFrames 7.51 Do not use

pimsmRoutersConfigured 7.51 Do not use

pimsmRoutersRunning 7.51 Do not use

pimsmNeighborsLearned 7.51 Do not use

pimsmSessionFlap 7.51 Do not use

enablePimsmStats 7.51 Do not use

enableMldStats 7.51 Do not use

Chapter 1 Tcl API Overview

– 9 –

Command Sub-commands Options

First
depreca
ted
release Usability

rxMldFrames 7.51 Do not use

txMldFrames 7.51 Do not use

eigrpRoutersConfigured 7.51 Do not use

eigrpRoutersRunning 7.51 Do not use

eigrpNeighborsLearned 7.51 Do not use

eigrpNeighborDeleted 7.51 Do not use

enableEigrpStats 7.51 Do not use

bfdRoutersConfigured 7.51 Do not use

bfdRoutersRunning 7.51 Do not use

bfdSessionsConfigured 7.51 Do not use

bfdSessionsAutoConfigured 7.51 Do not use

bfdAutoConfiguredSessionsUp 7.51 Do not use

bfdSessionsUp 7.51 Do not use

bfdSessionFlap 7.51 Do not use

enableBfdStats 7.51 Do not use

cfmBridgesConfigured 7.51 Do not use

cfmBridgesRunning 7.51 Do not use

cfmMepsConfigured 7.51 Do not use

cfmMepsRunning 7.51 Do not use

cfmSessionFlap 7.51 Do not use

cfmMasConfigured 7.51 Do not use

cfmMasRunning 7.51 Do not use

cfmRemoteMepsLearned 7.51 Do not use

Chapter 1 Tcl API Overview

– 10 –

Command Sub-commands Options

First
depreca
ted
release Usability

cfmTrunksConfigured 7.51 Do not use

cfmTrunksRunning 7.51 Do not use

enableCfmStats 7.51 Do not use

lacpFramesReceived 7.51 Do not use

lacpFramesSent 7.51 Do not use

lacpMarkerFramesReceived 7.51 Do not use

lacpMarkerFramesSent 7.51 Do not use

lacpMarkerResponseReceived 7.51 Do not use

lacpMarkerResponseSent 7.51 Do not use

lacpSessionState 7.51 Do not use

lacpSessionFlap 7.51 Do not use

enableLacpStats 7.51 Do not use

oamLinksConfigured 7.51 Do not use

oamLinksRunning 7.51 Do not use

oamSessionFlap 7.51 Do not use

oamInformationPDUsSent 7.51 Do not use

oamInformationPDUsReceived 7.51 Do not use

oamEventNotificationPDUsSent 7.51 Do not use

oamEventNotificationPDUsRecei
ved

7.51 Do not use

oamVariableRequestPDUsSent 7.51 Do not use

oamVariableRequestPDUsRecei
ved

7.51 Do not use

oamVariableResponsePDUsSent 7.51 Do not use

Chapter 1 Tcl API Overview

– 11 –

Command Sub-commands Options

First
depreca
ted
release Usability

oamVariableResponsePDUsRece
ived

7.51 Do not use

oamLoopbackControlPDUsSent 7.51 Do not use

oamLoopbackControlPDUsRecei
ved

7.51 Do not use

oamOrgSpecificPDUsSent 7.51 Do not use

oamOrgSpecificPDUsReceived 7.51 Do not use

enableOamStats 7.51 Do not use

mplsTpCccvConfigured 7.51 Do not use

mplsTpCccvUp 7.51 Do not use

mplsTpCccvDown 7.51 Do not use

enableMplsTpStats 7.51 Do not use

elmiUniCConfigured 7.51 Do not use

elmiUniCRunning 7.51 Do not use

elmiUniNConfigured 7.51 Do not use

elmiUniNRunning 7.51 Do not use

elmiUniSessionFlap 7.51 Do not use

elmiSessionOperational 7.51 Do not use

elmiCheckTx 7.51 Do not use

elmiCheckRx 7.51 Do not use

elmiFullEnquiryTx 7.51 Do not use

elmiFullEnquiryRx 7.51 Do not use

elmiFullStatusTx 7.51 Do not use

elmiFullStatusRx 7.51 Do not use

Chapter 1 Tcl API Overview

– 12 –

Command Sub-commands Options

First
depreca
ted
release Usability

elmiFullEnquiryContinuedTx 7.51 Do not use

elmiFullEnquiryContinuedRx 7.51 Do not use

elmiFullStatusContinuedTx 7.51 Do not use

elmiFullStatusContinuedRx 7.51 Do not use

elmiAsyncStatusTx 7.51 Do not use

elmiAsyncStatusRx 7.51 Do not use

enableElmiStats 7.51 Do not use

lldpSent 7.51 Do not use

lldpReceived 7.51 Do not use

lldpRxAgeout 7.51 Do not use

bgpTotalSessions 7.51 Do not use

bgpTotalSessionsEstablished 7.51 Do not use

bgpSessionFlap 7.51 Do not use

ethernetOAMInformationPDUsS
ent

7.51 Do not use

ethernetOAMInformationPDUsR
eceived

7.51 Do not use

ethernetOAMEventNotificationP
DUsReceived

7.51 Do not use

ethernetOAMLoopbackControlP
DUsReceived

7.51 Do not use

ethernetOAMOrgPDUsReceived 7.51 Do not use

ethernetOAMVariableRequestPD
UsReceived

7.51 Do not use

ethernetOAMVariableResponseP
DUsReceived

7.51 Do not use

Chapter 1 Tcl API Overview

– 13 –

Command Sub-commands Options

First
depreca
ted
release Usability

ethernetOAMUnsupportedPDUs
Received

7.51 Do not use

enableIgmpStats 7.51 Do not use

enableBgpStats 7.51 Do not use

enableIcmpStats 7.51 Do not use

enableEthernetOamStats 7.51 Do not use

stream fir 3.70 Do not use

fcs options:
good, alignErr,
dribbleErr, bad,
none

3.80 Do not use

rateMode:useGa
p,
usePercentRate

3.80 useGap
deprecated in
favor of ifg;
usePercentRa
te deprecated
in favor of
percentPacke
tRate

setGaps 5.10 Do not use

setIFG 5.10 Do not use

setLoopCount 5.20 Do not use

setNumFrames 5.20 Do not use

streamQueue aal5BitRate 3.80 Do not use

tcp options 5.10 Do not use

timeserver timeSource
(some options)

4.00 Do not use

e1T1Status 4.00 Do not use

Chapter 1 Tcl API Overview

– 14 –

Command Sub-commands Options

First
depreca
ted
release Usability

timeOfDay 4.00 Do not use

udf counterType 5.10 on boards
and modes
that support
udfSize,
countertype
is deprecated
in favor of
udfSize

usb Entire command Entire command 4.00 Placeholder

weightedRandomFr
amesize

randomType:
UUNet and
Lucent options

3.80 Do not use

Fully Qualified Port Name
Fully Qualified Port Name (FQPN) format uniquely identifies the port. It is the concatenation of path and
port ID.

FQPN is given in the following format:

deviceIP/{subpath}/frontPanelPort.{fanout}

The identifiers are defined in the following table:

Identifier Definition

deviceIP Root of the path , such as IPv4/6 address or host name of the chassis.

subpath Optional. It is the module ID, if available. Default is 1.

frontPanelPort Required. Identifies the front panel port labeling.

fanout Optional. Identifies the full speed port, if omitted.

Following is the example to show FQPN in in a load module:

hercules/1/15.1

In this example,

Chapter 1 Tcl API Overview

– 15 –

l device specified is Hercules
l subpath is not specified. Hence, default card 1 is mentioned.
l front panel port specified is 15
l fanout is 1. This is not unique, all modes can have it.

Note: FQPN is supported for AresOne-S load module only and not other load modules. Backward
compatibility is also supported for AresOne-S.

Handling FQPN in Tcl APIs
Instead sending the list, a string will be sent to fetch the port ID. Following code block shows the string
with respect to a load module as an example:

set portName "starappliance1/15.4"
port get $portName
port config -loopback 1
port set $portName
port write $portName

Example
#**#
#The test script does the below operation and checks if all passes with
#New port format:
#1. Factory reset default in both ports
#2. Perform SCD enable/disable on TxPort and check link state on RxPort
#3. Start capture on TxPort
#4. Start traffic on TxPort
#5. Validate traffic stats
#6. Validate capture frames on RxPorts
#How to run the script:
#1. Copy this file to any Linux Chassis/Windows Client
#2. If Linux Chassis, run this using Ixia Wish Console
#3. If Windows Chassis, run this by sourcing it from Ixia Wish Console
#Note:
#FQPN is only supported on Star and not other Load Modules.
#**#
set newPortFormat 1
set iterations 2
set chassisIP 127.0.0.1
#********************************New Port Format******************************#
set newPortlist1 "127.0.0.1/1.1"
set newPortlist2 "127.0.0.1/3.1"
#**#
#********************************Old Port Format******************************#
set legacyPortlist1 "1 1 1"
set legacyPortlist2 "1 1 3"
#**#

Chapter 1 Tcl API Overview

– 16 –

if {$newPortFormat} {
set PortList1 [list $newPortlist1]
set PortList2 [list $newPortlist2]
} else {
set PortList1 [list $legacyPortlist1]
set PortList2 [list $legacyPortlist2]
}
set PortList "$PortList1 $PortList2"
puts "Port list 1 is : $PortList1"
puts "Port list 2 is : $PortList2"
puts "PortList is : $PortList"
package req IxTclHal
ixConnectToChassis $chassisIP
#Setting factory reset default in both the ports
port setFactoryDefaults {*}$PortList1
port set {*}$PortList1
port setFactoryDefaults {*}$PortList2
port set {*}$PortList2
port write {*}$PortList1
port write {*}$PortList2
puts "Factory reset default done in both the ports : $PortList1 , $PortList2"
after 2000
#Enabling SCD on TxPort and checking if RxPort is down
puts "Enabling SCD in $PortList1"
port get {*}$PortList1
port config -enableSimulateCableDisconnect true
port set {*}$PortList1
port write {*}$PortList1
after 5000
puts "Checking linkstate in $PortList2"
port get {*}$PortList2
if {![port cget -linkState]} {
puts "Success: Link in $PortList2 is down"
} else {
puts "Failure: Link in $PortList2 is up"
return 0
}
#Disabling SCD on TxPort and checking if RxPort is up
puts "Disabling SCD in $PortList1"
port get {*}$PortList1
port config -enableSimulateCableDisconnect false
port set {*}$PortList1
port write {*}$PortList1
after 5000
puts "Checking linkstate in $PortList2"
port get {*}$PortList2
if {[port cget -linkState]} {
puts "Success: Link in $PortList2 is up"

Chapter 1 Tcl API Overview

– 17 –

} else {
puts "Failure: Link in $PortList2 is down"
return 0
}
#Setting stream with 100 frames
stream get {*}$PortList1 1
stream config -dma stopStream
stream config -numFrames 100
stream set {*}$PortList1 1
stream write {*}$PortList1 1
puts "Stream $PortList1 1 is set to 100 frames"
#Clearing stats and then starting the traffic/capture
if {[ixClearStats PortList]} {
puts "ERROR: Clearing stats in $PortList"
}
if {[ixStartCapture PortList2]} {
puts "ERROR: Starting capture in $PortList2"
}
if {[ixStartTransmit PortList1]} {
puts "ERROR: Starting transmit in $PortList1"
}
after 2000
if {[ixStopTransmit PortList1]} {
puts "ERROR: Stopping transmit in $PortList1"
}
if {[ixStopCapture PortList2]} {
puts "ERROR: Stopping capture in $PortList2"
}
after 2000
#Get the stats using the new port format
stat get statAllStats {*}$PortList1
set txFramesSent [stat cget -framesSent]
set txBytesSent [stat cget -bytesSent]
set txBitsSent [stat cget -bitsSent]
stat get statAllStats {*}$PortList2
set rxFramesReceived [stat cget -framesReceived]
set rxBytesReceived [stat cget -bytesReceived]
set rxBitsReceived [stat cget -bitsReceived]
capture get {*}$PortList2
set numFramesCaptured [capture cget -nPackets]
#Comaparing the stats
if { $txFramesSent == $rxFramesReceived } {
puts "Tx/Rx frames equal: $txFramesSent == $rxFramesReceived"
} else {
puts "ERROR: Tx/Rx frames not equal: $txFramesSent == $rxFramesReceived"
return 0
}
if { $txBytesSent == $rxBytesReceived } {

Chapter 1 Tcl API Overview

– 18 –

puts "Tx/Rx bytes equal: $txBytesSent == $rxBytesReceived"
} else {
puts "ERROR: Tx/Rx bytes not equal: $txBytesSent == $rxBytesReceived"
return 0
}
if { $txBitsSent == $rxBitsReceived } {
puts "Tx/Rx bits equal: $txBitsSent == $rxBitsReceived"
} else {
puts "ERROR: Tx/Rx bits not equal: $txBitsSent == $rxBitsReceived"
return 0
}
if { $txFramesSent == $numFramesCaptured } {
puts "Captured frames equal: $txFramesSent == $numFramesCaptured"
} else {
puts "ERROR: Captured frames not equal: $txFramesSent == $numFramesCaptured"
return 0
}
ixDisconnectFromChassis
puts "EXITING FROM THE TEST"

FQPN supported APIs
To view the list of FQPN supported TCL APIs, see the following topics:

l IxTclHAL commands
l High level APIs
l Utility commands

Convert FQPN to Legacy Port Format
We can convert the FQPN format to legacy port format using the following command:

ixUtils convertPortPathToIdTriple $FQPN_Format

Example
set newPort localhost/1.1
set oldPort [ixUtils convertPortPathToIdTriple $newPort]

Convert Legacy Port Format to FQPN
We can convert the the Legacy port format to FQPN format using the following command:

port getId $chassisID $cardID $portID 1

Example
set oldPort [list 1 1 49]
set newPort [port getId $oldPort 1]

Chapter 1 Tcl API Overview

– 19 –

This page intentionally left blank.

– 20 –

CHAPTER 2 Quick Start

Installing the IxOS Tcl Client
This chapter provides a quick means of getting started with the Tcl API. An example test is presented and
explained.

The IxOS Tcl Client provides an interface between an Ixia Tcl client application and Ixia IxOS Tcl
functions. It runs on the Unix / Linux host.

The Windows version of IxOS Tcl Client is included with the IxOS software package; the Unix/Linux
version is supplied as a separate a self-extracting archive (.bin) file. You can download it from Ixia’s
website, www.ixiacom.com.

There are several versions of the IxOS Tcl Client. The correct file to install depends on the set up of the
UNIX/Linux machine. Table:Tcl Client Install Files details the files and their use.

Table:Tcl Client Install Files

Install File Purpose

IxOS#.##
FreeBSD.bin

For FreeBSD operating system.

IxOS#.##Linux.bin. For Linux platforms older than Redhat 9.

IxOS#.##Linux64.bin For Linux 64 bit installer.

The versions of UNIX/Linux operating systems that are supported are:

l Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8
l Ubuntu 18, Ubuntu 19, Ubuntu 20
l CentOS 7, CentOS 8

Note: For 64-bit Linux systems, you should use the ixos9.10.XXX.XXXLinux64.bin. The installation
is the same as described in the previous procedure.

Other versions of Linux may operate properly, but are not officially supported.

To install the IxOS TCL Client, do the following:

– 21 –

http://www.ixiacom.com/

1. Download the self-extracting archive that contains the Unix/Linux Tcl client.

2. Use the following command to make the archive file executable:
chmod +x <archive file name>

chmod +x IxOS#.##Linux.bin

(where #.## is the version number)

3. Execute the archive to extract the installation files and begin the installation:
./<archive file name>

./IxOS#.##Linux.bin

The installation is a typical InstallShield installation. The installer prompts you to select the version
of the Tcl Client you want to install.

4. Select the version and select Next.
The installer also prompts you to select the path where the Tcl Client is installed. The default path is
the current folder.

5. Accept the default installation path or enter an alternative, then select Next.

Note: For 64-bit Linux systems, you should use the ixos6.60.XXX.XXXLinux64.bin. The installation
is the same as described in the previous procedure.

About IxOS Native TCL Console for Linux
The new Platform Independent TCL includes the following executables:

l Existing executables: ixtcl8.5.17, ixtcl8.6.6, ixwish8.5.17, ixwish8.6.6
l New executables: ixtcl8.6.8-native, ixtcl8.5.15-native, ixwish8.5.15-native, ixwish8.6.8-native

Why IxOS Native Tcl Console?

When using traditional Platform Independent TCL (that is, ixtcl8.5.17 or ixtcl8.6.6) from Linux-based
clients, connection to the chassis is made through the TCL server causing slowness when compared to
Windows Wish Console. However, the native TCL console (that is, ixtcl8.6.8-native or ixtcl8.5.15-native)
directly connects to chassis without needing TCL Server, thus improving overall performance as the
number of TCL APIs increases when compared to traditional Platform Independent TCL. The behaviour of
native TCL Console for Linux-based clients is similar to that of Windows Wish Console, hence the
command ixConnectToTclServer returns successfully without actually doing anything (to allow executing
TCL scripts written for traditional Platform Independent TCL).

Note: IxOS Native TCL Console can be used against both Native and Window chassis.

UNIX Environment
On UNIX system, when IxOS client is installed, files named ixtcl and ixtcl-native are created under bin dir.
This file sets up the environment variables needed to run the IxOS client and starts their respective shells.

To start up the ixtcl shell follow these steps:

Chapter 2 Quick Start

– 22 –

1. cd /opt/ixia/ixos-api/X.X.X.X/bin

2. ./ixtcl

To start up the ixtcl-native shell follow these steps:

1. cd /opt/ixia/ixos-api/X.X.X.X/bin

2. ./ixtcl-native

When running scripts using TCL interpreter installed by the Operating System, set following environment
variables as prerequisites:

1. TCLLIBPATH=”/opt/ixia/ixos-api/X.X.X.X/lib”

2. IXIA_VERSION=X.X.X.X

Note: TCL interpreter installed by the Operating System cannot be used to run ixtcl-native because
it needs to use TCL interpreter provided by Ixia to load Ixia specific binary dependencies.

Note: PIT Notes:
l The Platform Independent tgz packages do not contain Perl, Python or Tcl interpreters. The
Ixia dependencies (mpexpr, snit, tclx) are also not included. Download the all-in-one
language packages and dependencies installer for Linux x86 and x64 to use with any app PIT
installer from the Ixia website.

l It is required to install lftp, in case you want to connect to a Virtual Machine (VM) chassis
through Tcl, from a Linux client.

Environment Variables

This section describes the environment variables that are set during installation.

Environment
Variable Description

TCLLIBPATH Contains the paths to the tcl packages (located in /opt/ixia/ixos-
api/<version>/lib/<packetName>). This variable is set by ixtcl or ixwish. The paths
are separated by a single space.

LD_LIBRARY_
PATH

This is a colon-separated set of directories where libraries are searched before the
standard set of directories. The script adds the paths to the libraries required by the
packages to the existing settings of the variable.

IXIA_RESULTS_
DIR

Results of all Ixia tests are placed in this directory.

IXIA_LOGS_DIR Run-time Logs of all Ixia tests are placed in this directory.

IXIA_SAMPLES The Samples files are located under this directory.

IXIA_VERSION It signifies the ixos-api version to be used.

Chapter 2 Quick Start

– 23 –

UNIX Installation Notes
To run the GUI installer, your client computer must be configured with an operational X-windows server
computer.

Be sure to set your DISPLAY environment variable to the host name or IP address of the client computer
on which you want the installer GUI to display. The following examples explain the setting of the DISPLAY
environment variable using various shells. If you need environment configuration assistance beyond this,
consult your System Administrator.

// enable connections to X Server
xhost + or xhost [remote hostname]

// set DISPLAY environment variable
// determine shell
echo $SHELL

// depending on what shell you use - Bourne shell (bsh or sh),
// Bash (bash- Bourne shell again), C shell (csh) or Korn shell (ksh);
// set DISPLAY environment variable:

// bash:
export DISPLAY=hostname:0

// bsh or ksh:
DISPLAY=hostname:0
export DISPLAY

// csh:
setenv DISPLAY hostname:0

If you are updating an existing installation, be sure to run the installer as the same user who initially
installed the software.

Always run the uninstaller before removing any files manually.

If you are installing as the root user using an install location in a network-mounted file system, ensure
that you have write permission to the file system.

To install the Tcl Client on Linux computer, perform the following steps:

Note: The binary file name ‘IxOS<version>Linux.bin’ is used in the following example. In most
cases, the file name is different.

1. Download either the ZIP, BIN or TAR file from the Ixia Web site.

2. Extract and copy all folders and files from the ZIP, BIN or TAR file into the lib folder of the IxOS client
installation.

3. Copy the IxOS<version>Linux.bin file to the Linux system.

4. Change the file's attribute to make it executable. Example: chmod +x IxOS<version>Linux.bin

Chapter 2 Quick Start

– 24 –

5. Execute the IxOS installer file (use the –i gui option if your Linux version supports a graphical user
interface). Example: ./IxOS<version>Linux.bin

6. When the installer prompts you, select Tcl version 8.5 (required).

7. Follow the rest of the instructions to complete the installation.

8. Follow the installation prompts to complete the installation.

9. After installation, set the following variables (

Note: The following examples match the sample installation. You must alter these parameters to
match your installation.

export IXIA_HOME=/opt/ixia/tcl/8.5.17.0 IXIA_VERSION=6.91.XXX.XXX
export TCLLIBPATH=$IXIA_HOME/lib

10. Alternatively, specify the following environment variable to specify the location the log, sample, and
results files for IxOS:

IXIA_LOGS_DIR=/tmp/Ixia/Logs
IXIA_RESULTS_DIR=/tmp/Ixia/Results
IXIA_SAMPLES=/tmp/Ixia//samples
IXIA_TCL_DIR=$IxiaLibPath

11. If the Tcl option was installed with an IxOS installation, add Ixia's bin and lib folder to the PATH and
LD_LIBRARY_PATH variable to use it. For example:

IxiaLibPath=$IXIA_HOME/lib
IxiaBinPath=$IXIA_HOME/bin
PATH=$IxiaBinPath:.:$TCLBinPath:$PATH
LD_LIBRARY_PATH=$IxiaLibPath:$LD_LIBRARY_PATH

If the installation fails, check that there is enough disk space on the system by using the df -ak command.

There must enough space in the /tmp folder (to extract the files), and in the target folder (where files are
to be installed). If the /tmp directory does not have enough space, specify the directory by setting
IATEMPDIR environment and specifying the path to the folder where you have enough free space. The
following example shows the use of the options:

export IATEMPDIR=<tempdir>
./IxOSx.xx.XXX.XXXLinux.bin

Windows Environment
On Windows operating system, the IxiaWish.tcl file is installed as part of the IxOS client installation. The
path to the IxiaWish.tcl file is similar to this:
C:\Program Files\Ixia\IxOS\<version>\TclScripts\bin\IxiaWish.tcl

This IxiaWish.tcl file sets up the environment variables needed to run the IxOS Tcl client. When Tcl 8.5
wish is started, IxiaWish.tcl is sourced to set up the IxTclHAL environment as part of the startup.

Alternatively, you can use a third-party wish like ActiveTcl, and set up the environment for accessing the
IxOS Tcl package by sourcing the file named in the path above.

Connect to IxServer

Chapter 2 Quick Start

– 25 –

To connect to IxServer, perform the following steps:

1. Source the environment file for tarball.

2. ixConnectToTclServer <chassis-name>

3. ixConnectToChassis <chassis-name>

IxSampleTcl Test Program
The IxSampleTcl.tcl file is included just below, along with comments which explain the test.

##
IxTclHAL Version :5.20.0.165
Product version :5.20.0 Build 165#
File: IxSampleTCL.tcl
#
Copyright © 1997 - 2009 by IXIA
All Rights Reserved.
#
The following is an example of how streams, ports and filters are configured,
data capture started, transmission started and statistics collected.
The chassis is connected to first, streams are created, filters are set,
then capture is started on Rx port and transmisssion is started on Tx port.
After the transmition is complete, some statistics are collected and
displayed
to standard out.
Note: This test requires two ports which should be connected via loopback
cable.
#
##
This package is required to have access to the Ixia Tcl commands
package req IxTclHal
set userName IxiaTclUser
set hostname localhost
set retCode $::TCL_OK

If on unix/linux, we must connect to the tclServer. This would need to be
uncommented and a tclServer host name would need to be supplied. :
NOTE: IxTclServer should not run on the chassis.
#if {[isUNIX]} {
set retCode [ixConnectToTclServer $hostname]
#}
ixPuts "\n\tIxia Tcl Sample Script"
Log in user
ixLogin $userName
ixPuts "\nUser logged in as: $userName"
set recCode [ixConnectToChassis $hostname]
if {$retCode != $::TCL_OK} {
return $retCode
}

Chapter 2 Quick Start

– 26 –

set chasId [ixGetChassisID $hostname]
set card 1
#added line below on July 2 to make ports selectable instead of hardwired
set port1 3
set port2 4

Assume transmit from port 1 to port 2 on same card for this example
set portList [list [list $chasId $card $port1] [list $chasId $card $port2]]
Decide on some mac & ip addresses - lots of ways to do this, this is one
example

set macAddress(sa,$chasId,$card,$port1) [format "be ef be ef %02x %02x" $card $port1]
set macAddress(sa,$chasId,$card,$port2) [format "be ef be ef %02x %02x" $card $port2]
set macAddress(da,$chasId,$card,$port1) $macAddress(sa,$chasId,$card,$port2)
set macAddress(da,$chasId,$card,$port2) $macAddress(sa,$chasId,$card,$port1)

set ipAddress(sa,$chasId,$card,$port1) [format "199.17.%d.%d" $card $port1]
set ipAddress(sa,$chasId,$card,$port2) [format "199.17.%d.%d" $card $port2]
set ipAddress(da,$chasId,$card,$port1) $ipAddress(sa,$chasId,$card,$port2)
set ipAddress(da,$chasId,$card,$port2) $ipAddress(sa,$chasId,$card,$port1)

Take ownership of the ports
if [ixTakeOwnership $portList] {
return $::TCL_ERROR
}

proc clearOwnershipAndLogout {} {
global portList
ixClearOwnership $portList
Log off user
ixLogout
cleanUp
}

Display version information
ixPuts "\nIxTclHAL Version :[version cget -ixTclHALVersion]"
ixPuts "Product version :[version cget -productVersion]"
ixPuts "Installed version :[version cget -installVersion]\n"
Set ports to factory defaults. Dumps out on error.
ixPuts "Setting ports to factory defaults..."
foreach item $portList {
scan $item "%d %d %d" chasId card port
if [port setFactoryDefaults $chasId $card $port] {
errorMsg "Error setting factory defaults on $chasId.$card.$port]."
clearOwnershipAndLogout
return $::TCL_ERROR
}

Chapter 2 Quick Start

– 27 –

}
Writes port properties in hardware
if {[ixWritePortsToHardware portList]} {
clearOwnershipAndLogout
return $::TCL_ERROR
}

Check the link state of the ports
if {[ixCheckLinkState portList]} {
clearOwnershipAndLogout
return $::TCL_ERROR
}

ixPuts "Configuring streams..."
ixGlobalSetDefault
protocol config -ethernetType ethernetII
protocol config -name ip
Set up some generic stream config items that are shared on all streams
generated.

stream config -numFrames 10
stream config -rateMode streamRateModePercentRate
stream config -percentPacketRate 42

foreach item $portList {
scan $item "%d %d %d" chasId card port
set frameSize 64 ;# we will make 20 streams w/incr. framesizes

ip config -sourceIpAddr $ipAddress(sa,$chasId,$card,$port)
ip config -destIpAddr $ipAddress(da,$chasId,$card,$port)

######debug lines added by cz june 26#####
puts "debug info source IP address for port $port is:$ipAddress
(sa,$chasId,$card,$port)"
puts "debug info destination IP address for port $port is:$ipAddress
(da,$chasId,$card,$port)"
######debug#####

if [ip set $chasId $card $port] {
logMsg "Error setting IP on $chasId,$card,$port"
set retCode $::TCL_ERROR
break
}
stream config -sa $macAddress(sa,$chasId,$card,$port)
stream config -da $macAddress(da,$chasId,$card,$port)

Chapter 2 Quick Start

– 28 –

######debug lines added by cz june 26#####
puts "debug info source MAC for port $port is:$macAddress(sa,$chasId,$card,$port)"
puts "debug info destination MAC for port $port is:$macAddress
(da,$chasId,$card,$port)"
######debug#####

stream config -dma advance
set udfPattern [lrange [stream cget -da] 2 end]
######debug lines added by cz june 26#####
puts "udfPattern is :$udfPattern"
######debug#####
udf config -enable true
udf config -offset 42
udf config -initval $udfPattern
udf config -countertype c32
udf config -maskselect {00 00 00 00}
udf config -maskval {00 00 00 00}
udf config -random false
udf config -continuousCount false
udf config -repeat 1
if [udf set 4] {
errorMsg "Error setting UDF 4"
set retCode $::TCL_ERROR
break
}
Configure 20 streams on Tx port
for {set streamId 1} {$streamId < 20} {incr streamId} {
stream config -name "Stream $streamId - IP sample stream"
stream config -framesize $frameSize
incr frameSize 42
if [stream set $chasId $card $port $streamId] {
errorMsg "Error setting stream $chasId,$card,$port.$streamId -
$ixErrorInfo"
set retCode $::TCL_ERROR
break
}
}

incr streamId -1
Set last stream to STOP
stream config -dma stopStream
if [stream set $chasId $card $port $streamId] {
errorMsg "Error setting stream $chasId,$card,$port.$streamId -
$ixErrorInfo"
set retCode $::TCL_ERROR
break
}

Chapter 2 Quick Start

– 29 –

TK change
set rxUdfPattern [lrange $macAddress(sa,$chasId,$card,$port) 2 end]

Set the filter parameters
filterPallette config -pattern2 $rxUdfPattern
filterPallette config -patternOffset2 [udf cget -offset]
filter config -userDefinedStat2Pattern pattern2
filter config -userDefinedStat2Enable true
filter config -userDefinedStat2Error errGoodFrame
filter config -captureTriggerEnable true
filter config -captureFilterEnable true
if [filterPallette set $chasId $card $port] {
errorMsg "Error setting filter pallette for $chasId,$card,$port."
set retCode $::TCL_ERROR
break
}
if [filter set $chasId $card $port] {
errorMsg "Error setting filters on $chasId,$card,$port."
set retCode $::TCL_ERROR
break
}
}

Dump out now if there were any errors.. maybe you want to throw instead of a
return.
if {$retCode != $::TCL_OK} {
clearOwnershipAndLogout
return $retCode
}

Writes all the configuration on ports in hardware
NOTE: This does NOT take link down, so no point in checking link state
afterward and no need for any delays
Also note that this is an example of a throw instead of a return
if [ixWriteConfigToHardware portList] {
return -code error
}
Zero all statistic counters on ports
if [ixClearStats portList] {
return -code error
}
ixPuts "Start capture..."
if [ixStartCapture portList] {
return -code error
}
ixPuts "Start transmit..."
if [ixStartTransmit portList] {
return -code error

Chapter 2 Quick Start

– 30 –

}
Let it transmit for a bit; if this were a real test, we might want to wait for
approx. the total transmit time. Since it's not, 1 sec is sufficient for the
streams we've created.
after 1000
Checks whether transmission is done on a group of ports
if {[ixCheckTransmitDone portList] == $::TCL_ERROR} {
clearOwnershipAndLogout
return -code error
} else {
ixPuts "Transmission is complete."
}

Stop capture on ports - not really necessary, as any read of capture will
automatically stop capture
ixPuts "Stop capture..."
if [ixStopCapture portList] {
clearOwnershipAndLogout
return -code error
}

This api will request stats from all ports in the portList - it's really
efficient and the best way to collect stats when you have multiple ports to
contend with.
ixRequestStats portList
foreach item $portList {
scan $item "%d %d %d" chasId card port
if {[statList get $chasId $card $port]} {
ixPuts "Error getting stats for $chasId,$card,$port"
set retCode $TCL_ERROR
break
}

note that if a stat is not supported on a particular port type, the cget
will throw so it is best to protect that in the following fashion:
if [catch {statList cget -scheduledFramesSent} numTxFrames] {
set numTxFrames 0
ixPuts "WARNING: -scheduledFramesSent not supported on
$chasId,$card,$port. Value set to 0"
}

if [catch {statList cget -userDefinedStat2} numRxFrames] {
set numRxFrames 0
ixPuts "WARNING: -userDefinedStat2 not supported on $chasId,$card,$port.
Value set to 0"
}

if [captureBuffer get $chasId $card $port 1 $numRxFrames] {

Chapter 2 Quick Start

– 31 –

ixPuts "Error getting captureBuffer on $chasId $card $numRxFrames"
set retCode $::TCL_ERROR
#break removed by cz on July 2nd 2009
#break
}

ixPuts "Port: $chasId,$card,$port"
ixPuts -nonewline "Speed: [stat getLineSpeed $chasId $card $port]\t"
ixPuts -nonewline "Frames sent: $numTxFrames\t"
ixPuts -nonewline "Frames Rcvd: $numRxFrames\t"
ixPuts "Number of packets captured :[captureBuffer cget -numFrames]\n"
}

ixPuts "\nSample test complete.\n"
clearOwnershipAndLogout

Chapter 2 Quick Start

– 32 –

CHAPTER 3 High-Level and Utility API
Description
This chapter presents a description of the High-Level API commands organized by major topics, as
mentioned in the following list:

l Initialization, Setup and Cleanup—basic overhead to set up the test.
l Port Ownership—commands to control port ownership and sharing.
l Data Transmission—setup for data transmission.
l Data Capture and Statistics—setup for data capture and statistics.
l Console Output and Logging—output messages to the console and log files.

This chapter provides an overview of the high-level API functions and utility commands. The full details of
the commands described herein may be found in the following appendices:

l Appendix 2 - Utility Commands includes complete descriptions of each of the Utility commands.
l Appendix 3 - High-Level API includes complete descriptions of each of the high-level commands.

The high-level commands are characterized by one or more of the following characteristics:

l They perform a combination of IxTclHAL commands.
l They perform one or more IxTclHAL commands over a range of ports.
l They control test operation sequences

Arguments to the high-level APIs are passed in one of the following two ways:

l By value: Denoted by (By value) in the Appendix C description. By value arguments are either a
constant or a $variable reference. For example: 32, {{1 1 1} {1 2 1}} or $portList

l By reference: Denoted by (By reference) in the Appendix C description. By reference arguments
must be references to variables, without the '$'. For example, pl after set pl {{1 1 1} [1 1 2}} or
one2oneArray.

Read the individual description pages in the Appendices to determine which arguments are passed by
reference and by value.

Initialization, Setup and Cleanup
The commands in this section relate to overhead operations necessary to prepare for data transmission,
capture and statistical analysis. The commands covered in this section are the following:

– 33 –

l Mapping and Port Lists
n map
n ixCreatePortListWildCard
n ixCreateSortedPortList
n getAllPorts, getRxPorts and getTxPorts

l Including Source Code
n ixSource

l Chassis and TclServer Connection
n ixConnectToTclServer / ixDisconnectTclServer
n ixProxyConnect
n ixConnectToChassis / ixDisconnectFromChassis
n ixGetChassisID
n user

l General Purpose Commands
n ixWritePortsToHardware
n ixWriteConfigToHardware

l cleanUp
n cleanUp

Mapping and Port Lists
Four types of traffic mappings are common in TCL tests, as shown in Figure: Traffic Mappings.

1. One-to-one mapping: One transmit port is mapped to one receive port. For example, port 1 of the
Ixia chassis transmits to port 1 of the DUT, which forwards traffic back on its port 2 to Ixia chassis
port 2.

2. One-to-many mapping: One transmit port is mapped to multiple receive ports. For example, port 1
of the Ixia chassis transmits to port 1 of the DUT, which forwards back on its ports 2, 3, and 4 to Ixia
chassis ports 2, 3, and 4.

3. Many-to-one mapping: Multiple transmit ports mapped to a single receive port. For example, ports
1, 2, and 3 of Ixia chassis transmit to ports 1, 2, and 3 of the DUT, which forwards back on its port 4
to Ixia chassis port 4.

4. Many-to-many mapping: Multiple transmit ports are mapped to multiple receive ports. For example,
port 1 of the Ixia chassis transmits to port 1 of the DUT, which forwards back on its ports 2, 3, and 4
to Ixia chassis ports 2, 3, and 4; at the same time, port 2 of the Ixia chassis transmits to port 2 of
the DUT which forwards back on its ports 1, 3, 4 to Ixia chassis ports 1, 3, and 4; and so on. In this
mapping, all ports transmit to and receive from all other ports in the system.

The traffic mapping is a logical collection of ports and configurations stored in memory. It simplifies the
identification of transmit and receive ports during the configuration of streams and filters.

Figure: Traffic Mappings

Chapter 3 High-Level and Utility API Description

– 34 –

Tcl programmers find it convenient to configure their ports using the map utility command in one of the
following four global arrays:

l one2oneArray: Sets up one transmit and one receive port for traffic flow. The transmit/receive port
pair that has been configured once cannot be used in a different port pair. That is, each port pair is
mutually exclusive.

l one2manyArray: Sets up one transmit port and multiple receive ports. Each group of transmit and
its multiple receive ports is mutually exclusive with other groups.

l many2oneArray: Sets up multiple transmit ports and one receive port. Each group of multiple
transmit ports and its receive port is mutually exclusive with other groups.

l many2manyArray: Sets up multiple transmit ports and multiple receive ports. Any port may
transmit and receive to any other port in any group of ports.

map

The map command is used to define any of the four basic array types. Refer to “map” for full details. The
important options and sub-commands of this command are:

Member Usage

type The type of mapping; one of one2one, one2many, many2one ormany2many.

Table:map Options

Chapter 3 High-Level and Utility API Description

– 35 –

Member Usage

Member Usage

add Adds a new transmit port - receive port pair to the mapping.

del Deletes a transmit port - receive port pair from the mapping.

new Clears the current map and creates a new map as described in type, above.

show Shows the current map configuration.

Any of the four global arrays may be used in most of the high-level commands where a portList is called
for as mentioned in the following list:

l one2oneArray
l one2manyArray
l many2oneArray
l many2manyArray

The command uses the part of the array appropriate to the command; for example, ixStartTransmit
uses only the transmit ports of the array. Alternatively, any command that calls for a portListmay
construct an array of ports and use it as an argument. Two alternative forms are defined in the following
list:

l {{1 1 1} {1 1 2} {1 1 3} {1 1 4}}: four ports: chassis 1, card 1, ports 1-4
l {1,1,1 1,1,2 1,1,3 1,1,4}: four ports: chassis 1, card 1, ports 1-4. Specifications are separated by
spaces.

ixCreatePortListWildCard

Port lists may of course be created by hand. For example:

{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}

The ixCreatePortListWildCard command can be used to build a sorted list containing wild card
characters (*) to indicate all cards and/or all ports. For example,

ixCreatePortListWildCard {{1 * *}} - all cards and all ports on chassis 1
ixCreatePortListWildCard {{1 1 *} {1 2 1} {1 2 2}} - all ports on card 1 and ports 1
and 2 on card 2.

A wild card cannot be used for chassis ID. Also, if a combination of a list element containing wild cards and
port numbers are used, then the port list passedmust be in a sorted order. The format of this command
is as follows:

ixCreatePortListWildCardOptions portList [excludePortList]

where portList is the list of ports (with wildcards) to be included, and excludePortList is a list of ports,
which may not contain wildcards, which should be omitted from the returned list.

Refer to “ixCreatePortListWildCard” for full details of this command.

Chapter 3 High-Level and Utility API Description

– 36 –

ixCreateSortedPortList

The ixCreateSortedPortList command can be used to construct a port list for a range of ports–from a
port on a single card to another port on a different card. For example:

ixCreateSortedPortList {1 1 1} {1 5 4} {{1 3 2}}- all ports between chassis 1 card 1
port 1 and port 4 on card 5, excluding card 3 port 2.

The format of this command is as follows:

ixCreateSortedPortList portFrom portTo exclude

where portFrom is the first port in the range and portTo is the last port in the range. These are individual
port specifications–not a list of lists as in other commands. exclude is a list of lists indicating individual
ports to be omitted from the list; an empty list is expressed as {{}}.

Refer to “ixCreateSortedPortList” for full details of this command.

getAllPorts, getRxPorts and getTxPorts

These three utility command all serve to retrieve the ports associated with a map array. The three
commands are the following:

l "getAllPorts": Returns all of the ports associated with an array.
l "getRxPorts": Returns just the receive ports associated with an array.
l "getTxPorts": Returns just the transmit ports associated with an array.

Including Source Code

ixSource

The ixSource command is very useful in sourcing large number of .tcl files from a folder or a number of
individual files. It may be called with either a single folder name or a set of full path names. In the former
case, all the .tcl files within the folder are sourced and in the latter case, each of the individual files are
sourced. The format of this command is as follows:

ixSource {fileNames | directoryName}

where fileNames is any number of files to be sourced and directoryName is the folder name where all the
files under that folder are going to be sourced.

Refer to “ixSource” for full details on this command.

Chassis and TclServer Connection
Several commands are available to initialize connection to the chassis chain to be used for testing.
Provisions are included to connect to TclServer from Unix platforms.

When connecting to a TCL Server or IxServer specifically on a Native IxOS Chassis, IPv6 address can be
provided as follows: ixConnectToChassis aa:bb:cc::d

Chapter 3 High-Level and Utility API Description

– 37 –

ixConnectToTclServer / ixDisconnectTclServer

It can be used from a Unix client to connect to a host that runs the TclServer, or disconnect from the
server. The format of this command is as follows:

ixConnectToTclServer serverName

ixDisconnectTclServer

where serverName is the hostname or IP address of the Windows based machine hosting the IxTclServer.

Refer to “ixConnectToTclServer”and “ixDisconnectTclServer” for a full description of this command.

ixProxyConnect

The ixProxyConnect command combines the functions of ixTclSrvConnect and IxConnectToChassis.
The format of this command is as follows:

ixProxyConnect chassisName chassisList [cableLen [logfilename]]

where chassisName is the hostname or IP address of a host running TclServer which is used from Unix
clients, chassisList is a list of all of the chassis in the chain - either IP addresses or host names that can be
resolved through DNS, cableLen is the length of cables that connects the chassis, and logfilename is the
file to create to store log messages.

Refer to “ixProxyConnect” for a full description of this command.

ixConnectToChassis / ixDisconnectFromChassis

The ixConnectToChassis command is called from IxConnectToChassis. It connects to a list of chassis
given the host names or IP addresses. The format of these commands are as follows:

ixConnectToChassis chassisList [cableLen]

ixDisconnectFromChassis

where chassisList is a list of all of the chassis in the chain - either IP addresses or host names that can be
resolved through DNS and cableLen is the length of cables that connects the chassis.

Refer to “ixConnectToChassis” and “ixDisconnectFromChassis” for a full description of these commands.

Connect to a Ixia Chassis from a Linux Client

The ixConnectToChassis command is used to connect to a Virtual Chassis from a Linux machine, as
shown in the following sample script. Before connecting to the IxVM Linux Chassis, do the following:

l Copy the file, IxOSApiPlatform Independent Tcl.tar.gz in your linux machine. It is a platform
dependent TCL.

l Run the command, tar -xf IxOSApiPlatform Independent Tcl.tar.gz to extract the file in the folder
where you have the tar file.

You can run the tclsh command by setting up the environment. For detailed info see UNIX Environment.

Chapter 3 High-Level and Utility API Description

– 38 –

ixGetChassisID

This command obtains the chassis ID of a chassis given its hostname or IP address. This command is
needed after using ixConnectToChassis or ixProxyConnect to obtain automatically assigned chassis IDs.
The format of the command is:

ixGetChassisID chassisName

where chassisName is the hostname or IP address of the chassis. Refer to “ixGetChassisID” for a full
description of this command.

user

This command has no effect on test operation. Rather it provides a means of storing global information
about the user and the DUT. The only sub-commands available are config and cget. The important
options of this command are mentioned in the following table:

Member Usage

productname Name of the DUT being tested.

version Version number of the product.

serial# Serial number of the product.

username The name of the user running the tests.

Table:user Options

Refer to “user” for a full description of this command.

General Purpose Commands
The following two commands are invaluable tools for committing large amounts of configuration
information to the hardware.

ixWriteConfigToHardware

This command commits the configuration of streams, filters, and protocol information on a group of ports
to hardware. The format of the command is as follows:

ixWriteConfigToHardware portList

where portList is a list of ports to apply the command to. Refer to “ixWriteConfigToHardware” for full
description of this command.

ixWritePortsToHardware

In addition to performing all of the functions of IxWriteConfigToHardware, this command commits the
configuration of ports such as MII properties on 10/100 interface (speed, duplex modes, auto-
negotiation), port properties on Gigabit interfaces, and PPP parameters on Packet over SONET interfaces

Chapter 3 High-Level and Utility API Description

– 39 –

on a group of ports to hardware. Link may drop as a result of this command’s execution. The format of the
command is as follows:

ixWritePortsToHardware portList

where portList is a list of ports to apply the command to. Refer to “ixWritePortsToHardware” for full
description of this command.

cleanUp

cleanUp

The cleanUp command may be used to reset the Ixia hardware and to undo the effects of the package
require IxTclHal command. The state of the wish shell is reset back to its initial state with respect to Ixia
software execution. Refer to “cleanUp” for full description of this command.

Port Ownership
Ports on chassis may be shared among a number of users. The following commands in this section control
user login and port sharing:

l ixLogin / ixLoginWithPurpose / ixLogout
l ixCheckOwnership
l ixPortTakeOwnership / ixTakeOwnership / ixPortClearOwnership / ixClearOwnership

An additional utility command is available to clear all port ownership for the current user. This is as
follows:

l clearAllMyOwnership

ixLogin / ixLoginWithPurpose / ixLogout
The ixLogin command registers a name to associate with port ownership and the ixLogout command
dissociates ownership. The format of these commands are as follows:

ixLogin ixiaUser

ixLoginWithPurpose userName purpose userEmail

ixLogout

where ixiaUser is the name of the current user.

Refer to “ixLogin”, ixLoginWithPurpose, and “ixLogout” for full details on these commands.

ixCheckOwnership
The ixCheckOwnership command is used to check for the availability of a number of ports before taking
ownership. The format of this command is as follows:

ixCheckOwnership portList

Chapter 3 High-Level and Utility API Description

– 40 –

where portList is a list of ports, which may contain wildcards. The ixCheckOwnership command requires
that the list be passed by value. For example,

set p1 {{1 1 1} {1 1 2}}
ixCheckOwnership $p1

A value of 0 is returned if all of the ports are available. Refer to “ixCheckOwnership” for a full description
of this command.

ixPortTakeOwnership / ixTakeOwnership / ixPortClearOwnership
/ ixClearOwnership
The ixPortTakeOwnership and ixTakeOwnership commands take ownership of a single port or list of
ports, respectively. The ixPortClearOwnership and ixClearOwnership commands give the ports back.
The format of these commands are as follows:

ixPortTakeOwnership chassisID cardID portID [takeType]

ixTakeOwnership portList [takeType]

ixPortClearOwnership chassisID cardID portID [takeType]

ixClearOwnership [portList [takeType]]

where chassisID, cardID and portID define an individual port, portList is a list of ports and takeTypemay
be force to force the taking or release of ownership regardless of ownership by another user. The port list
must be passed by value as in the ixCheckOwnership command. A call to ixClearOwnership without any
arguments clears all ports owned by the currently logged on user.

Refer to “ixPortTakeOwnership”, “ixTakeOwnership”, “ixPortClearOwnership”and“ixClearOwnership” for
complete descriptions of these commands.

Data Transmission
The data transmission commands relate the preparation for, or the transmission of data to the DUT.
Several utility commands, which calculate frequently used values, are detailed as well. The commands
covered are as follows:

l Setup
n ixCheckLinkState
n ixCheckPPPState
n ixSetPortPacketFlowMode / ixSetPacketFlowMode
n ixSetPortPacketStreamMode / ixSetPacketStreamMode
n ixSetPortAdvancedStreamSchedulerMode / ixSetAdvancedStreamSchedulerMode
n ixSetPortTcpRoundTripFlowMode / ixSetTcpRoundTripFlowMode
n disableUdfs

l Negotiation

Chapter 3 High-Level and Utility API Description

– 41 –

n ixRestartPortAutoNegotiation / ixRestartAutoNegotiation
n ixRestartPortPPPNegotiation / ixRestartPPPNegotiation

l Start Transmit
n ixStartPortTransmit / ixStartTransmit / ixStopPortTransmit / ixStopTransmit
n ixStartStaggeredTransmit
n ixCheckPortTransmitDone / ixCheckTransmitDone
n ixStartPortCollisions / ixStartCollisions / ixStopPortCollisions / ixStopCollisions
n ixStartPortAtmOamTransmit / ixStartAtmOamTransmit / ixStopPortAtmOamTransmit /
ixStopAtmOamTransmit

n ixClearScheduledTransmitTime / ixSetScheduledTransmitTime
n ixLoadPoePulse / ixLoadPortPoePulse

l Calculation Utilities
n calculateMaxRate
n host2addr
n byte2IpAddr
n dectohex
n hextodec

Setup

ixCheckLinkState

The ixCheckLinkState command checks the link state on a group of ports. This command should be
called early in the script to ensure that all links are up before any traffic is transmitted to the DUT. The
format of the command is as follows:

ixCheckLinkState portList

where portList is the set of ports to check. A success value of 0 is returned if all of the ports have link.

Refer to “ixCheckLinkState” for a complete explanation of this command.

ixCheckPPPState

The ixCheckPPPState command checks the state on a group of POS ports. This command should be
called early in the script to ensure that all POS ports are up before any traffic is transmitted to the DUT.
The format of the command is as follows:

ixCheckPPPState portList

where portList is the set of ports to check. A success value of 0 is returned if all of the ports have link.

Refer to “ixCheckPPPState” for a complete explanation of this command.

Chapter 3 High-Level and Utility API Description

– 42 –

ixSetPortPacketFlowMode / ixSetPacketFlowMode

These commands set the mode of the indicated ports to flow mode as opposed to stream mode. The
format of these commands are as follows:

ixSetPortPacketFlowMode chassisID cardID portID [write]

ixSetPacketFlowMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortPacketFlowMode” and “ixSetPacketFlowMode” for a complete explanation of these
commands.

ixSetPortPacketStreamMode / ixSetPacketStreamMode

These commands set the mode of the indicated ports to stream mode as opposed to flow mode. The
format of these commands are as follows as follows:

ixSetPortPacketStreamMode chassisID cardID portID [write]

ixSetPacketStreamMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortPacketStreamMode” and “ixSetPacketStreamMode” for a complete explanation of
these commands.

ixSetPortAdvancedStreamSchedulerMode /
ixSetAdvancedStreamSchedulerMode

These commands set the mode of the indicated ports to advanced stream scheduler mode. The format of
these commands are as follows:

ixSetPortAdvancedStreamSchedulerMode chassisID cardID portID [write]

ixSetAdvancedStreamSchedulerMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortAdvancedStreamSchedulerMode” and “ixSetAdvancedStreamSchedulerMode” for a
complete explanation of these commands.

ixSetPortTcpRoundTripFlowMode / ixSetTcpRoundTripFlowMode

These commands set the mode of the indicated ports to TCP round trip flow mode as opposed to flow or
stream mode. The format of these commands are as follows:

ixSetPortTcpRoundTripFlowMode chassisID cardID portID [write]

ixSetTcpRoundTripFlowMode portList [write]

Chapter 3 High-Level and Utility API Description

– 43 –

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortTcpRoundTripFlowMode” and “ixSetTcpRoundTripFlowMode” for a complete
explanation of these commands.

disableUdfs

The disableUfs command disables one or more UDFs. The format of the command is as follows:

disableUdfs udfList

where udfList is a list of values in the range 1-4. For example, {1 2 3 4}. A call to stream set is needed to
write these values to the hardware.

Refer to “disableUdfs” for a full description of this command.

Negotiation

ixRestartPortAutoNegotiation / ixRestartAutoNegotiation

These commands are used to restart auto-negotiation on a port or list of ports. The format of these
commands are as follows:

ixRestartPortAutoNegotiation chassisID cardID portID

ixRestartAutoNegotiation portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixRestartAutoNegotiation” and “ixRestartPortAutoNegotiation” for complete descriptions of
these commands.

ixRestartPortPPPNegotiation / ixRestartPPPNegotiation

These commands are used to restart PPP negotiation on a port or list of ports. The format of these
commands are as follows:

ixRestartPortPPPNegotiation chassisID cardID portID

ixRestartPPPNegotiation portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixRestartPortPPPAutoNegotiation” and “ixRestartPPPNegotiation” for complete descriptions of
these commands.

Start Transmit

ixStartPortTransmit / ixStartTransmit / ixStopPortTransmit / ixStopTransmit

These commands are used to start and then stop transmission on a single port or a group of ports. The
ixStartCapture or ixStartPortCapture should be used before these commands. The format of these
commands are as follows:

Chapter 3 High-Level and Utility API Description

– 44 –

ixStartPortTransmit chassisID cardID portID

ixStartTransmit portList

ixStopPortTransmit chassisID cardID portID

ixStopTransmit portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixStartPortTransmit”, “ixStartTransmit”, “ixStopPortTransmit”and “ixStopTransmit” for
complete descriptions of these commands.

ixStartStaggeredTransmit

This command performs the same function as ixStartTransmit, but staggers the time from one port’s
start to the next by 25 - 30ms. The format of this command is as follows:

ixStartStaggeredTransmit portList

where portList identifies a number of ports to start staggered transmission on.

Refer to “ixStartStaggeredTransmit” for a complete descriptions of this command.

ixCheckPortTransmitDone / ixCheckTransmitDone

These commands poll a single port or list of ports to determine when all data has been transmitted to the
DUT. This command does not return until transmission is complete on all the ports referenced.Note:
These commands should be called no earlier than one second after starting transmit with ixStartTransmit
or ixStartPortTransmit. We recommend that an after 1000 statement be included after each start
transmit. The format of these commands are as follows:

ixCheckPortTransmitDone chassisID cardID portID

ixCheckTransmitDone portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixCheckPortTransmitDone” and “ixCheckTransmitDone” for a complete explanation of these
commands.

ixStartPortCollisions / ixStartCollisions / ixStopPortCollisions /
ixStopCollisions

These commands are used to start and then stop generation of forced collisions on a single port or list of
ports. The forcedCollisions commandshould be used before these commands to set up the
parameters for collision generation. The format of these commands are as follows:

ixStartPortCollisions chassisID cardID portID

ixStartCollisions portList

ixStopPortCollisions chassisID cardID portID

ixStopCollisions portList

Chapter 3 High-Level and Utility API Description

– 45 –

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixStartPortCollisions”, “ixStartCollisions”, “ixStopPortCollisions”and “ixStopCollisions” for
complete descriptions of these commands.

ixStartPortAtmOamTransmit / ixStartAtmOamTransmit /
ixStopPortAtmOamTransmit / ixStopAtmOamTransmit

These commands are used to start and then stop ATM OAM message transmit on a single port or list of
ports. The atmOam commandshould be used before these commands to set up the parameters for
collision generation. The format of these commands are as follows:

ixStartPortAtmOamTransmit chassisID cardID portID

ixStartAtmOamTransmit portList

ixStopPortAtmOamTransmit chassisID cardID portID

ixStopAtmOamTransmit portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixStartAtmOamTransmit”, “ixStopPortAtmOamTransmit”,
“ixStartPortAtmOamTransmit”and “ixStopAtmOamTransmit” for complete descriptions of these
commands.

ixClearScheduledTransmitTime / ixSetScheduledTransmitTime

These commands are used to reset and set the transmit duration for ports that support that feature.
Streams may be programmed for continuous transmit and these commands used to limit the overall test
to a period of time.

Refer to ixClearScheduledTransmitTime and ixSetScheduledTransmitTime, for complete descriptions of
these commands.

ixLoadPoePulse / ixLoadPortPoePulse

These commands are used to send a pulse on Power over Ethernet modules.

Refer to ixLoadPoePulse and ixLoadPortPoePulse, for complete descriptions of these commands.

Calculation Utilities

calculateMaxRate

The calculateMaxRate command calculates the maximum frame rate for a port, based on the frame size
and preamble size. The format of the command is as follows:

calculateMaxRate chassis card port [frameSize preambleOrAtmEncap]

where chassis, card, port: a port of the type that you wish the maximum frame rate calculated for;
frameSize: The size of the frame (default = 64);
preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The

Chapter 3 High-Level and Utility API Description

– 46 –

values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8).

host2addr

This command converts an IP address in dotted notation to a list of hex bytes. The format of the
command is as follows:

host2addr IPaddr

where IPaddr is the address in dotted notation. The result is a list of four hex byte values.

Refer to “host2addr” for a full description of this command.

byte2IpAddr

This command converts a list of four hex bytes into an IP address in dotted notation. The format of the
command is as follows:

byte2IpAddr hexIPaddr

where hexIPaddr is the address as a list of four hex byte values. The result is a dotted notation.

Refer to “byte2IpAddr” for a full description of this command.

dectohex

This command converts a decimal number to hexadecimal notation. The format of the command is as
follows:

dectohex decnum

where decnum is the decimal value. The result is in hexadecimal notation.

Refer to “dectohex” for a full description of this command.

hextodec

This command converts a hexadecimal number to decimal notation. The format of the command is as
follows:

hextodec hexnum

where hexnum is the hexadecimal value. The result is in decimal notation.

Refer to “hextodec” for a full description of this command.

Data Capture and Statistics
The commands in this section relate to setup for data capture, initiating data capture and collection of
statistics. Although this section follows the one on data transmission, all capture setup and initiation
should be done before any data transmission is started. The commands covered in this section are as
follows:

Chapter 3 High-Level and Utility API Description

– 47 –

l Setup
n ixSetPortCaptureMode / ixSetCaptureMode
n ixSetPortPacketGroupMode / ixSetPacketGroupMode
n ixClearTimeStamp
n ixClearPortStats / ixClearStats
n ixClearPortPacketGroups/ ixClearPacketGroups
n ixResetSequenceIndex/ ixResetPortSequenceIndex

l Capture Data
n ixStartPortCapture / ixStartCapture / ixStopPortCapture / ixStopCapture
n ixStartPortPacketGroups / ixStartPacketGroups / ixStopPortPacketGroups /
ixStopPacketGroups

l Statistics
n ixCollectStats

Setup
The data capture and statistics setup commands should be performed before any data capture operations
are started.

ixSetPortCaptureMode / ixSetCaptureMode

These commands sends a message to the IxServer to set the receive mode of a single port or list of ports
to Capture mode. This mode must be used when traffic is to be captured in the capture buffer. This mode
is mutually exclusive with the Packet Group receive mode. The format of these commands are as follows:

ixSetPortCaptureMode chassisID cardID portID [write]

ixSetCaptureMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortCaptureMode” and “ixSetCaptureMode” for a full description of these commands.

ixSetPortPacketGroupMode / ixSetPacketGroupMode

These commands send a message to the IxServer to set the receive mode of a single port or list of ports
to Packet Group mode. This mode must be used when real-time latency metrics are to be obtained. This
mode is mutually exclusive with the Capture receive mode, for some modules. The format of these
commands are as follows:

ixSetPortPacketGroupMode chassisID cardID portID [write]

ixSetPacketGroupMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Chapter 3 High-Level and Utility API Description

– 48 –

Refer to “ixSetPortPacketGroupMode” and “ixSetPacketGroupMode” for a full description of these
commands.

ixSetPortDataIntegrityMode / ixSetDataIntegrityMode

These commands send a message to the IxServer to set the receive mode of a single port or list of ports
to Data Integrity mode. The format of these commands are:

ixSetPortDataIntegrityMode chassisID cardID portID [write]

ixSetDataIntegrityMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortDataIntegrityMode” and “ixSetDataIntegrityMode” for a full description of these
commands.

ixSetPortSequenceCheckingMode / ixSetSequenceCheckingMode

These commands send a message to the IxServer to set the receive mode of a single port or list of ports
to Sequence Checking mode. The format of these commands are as follows:

ixSetPortSequenceCheckingMode chassisID cardID portID [write]

ixSetSequenceCheckingMode portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Refer to “ixSetPortSequenceCheckingMode” and “ixSetSequenceCheckingMode” for a full description of
these commands.

ixClearTimeStamp

The ixClearTimeStamp command sends a message to the IxServer to synchronize the timestamp on a
group of chassis. This feature is useful for calculating latency on ports across chassis. The format of this
command is as follows:

ixClearTimeStamp portList

where portList identifies a number of ports.

Refer to “ixClearTimeStamp” for a full description of this command.

ixClearPortStats / ixClearStats

These commands clear all of the statistics counters on a single port or list of ports (except for the stats in
the Latency/Sequence view). The format of these commands is as follows:

ixClearPortStats chassisID cardID portID

ixClearStats portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Chapter 3 High-Level and Utility API Description

– 49 –

Refer to “ixClearPortStats” and “ixClearStats” for a full description of these commands.

ixClearPortPacketGroups/ ixClearPacketGroups

These commands clear all of the packet group counters on a single port or list of ports. The format of
these commands is as follows:

ixClearPortPacketGroups chassisID cardID portID

ixClearPacketGroups portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixClearPacketGroups” and “ixClearPortPacketGroups” for a full description of these commands.

ixResetSequenceIndex/ ixResetPortSequenceIndex

These commands send a message to the IxServer to reset the sequence index of a single port or a list of
ports. The format of these commands are as follows:

ixResetPortSequenceIndex chassisID cardID portID [write]

ixResetSequenceIndex portList [write]

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports. The
write argument commits the settings to the hardware immediately.

Note: The ixResetSequenceIndex command should be used before you start any traffic
transmission.

Refer to “ixResetSequenceIndex” and “ixResetPortSequenceIndex” for a full description of these
commands.

Capture Data

ixStartPortCapture / ixStartCapture / ixStopPortCapture / ixStopCapture

These commands start and stop port capture on a single port or on a group of ports. The format of these
commands is as follows:

ixStartPortCapture chassisID cardID portID

ixStartCapture portList

ixStopPortCapture chassisID cardID portID

ixStopCapture portList

where chassisID, cardID, and portID identify a single port and portList identifies a number of ports.

Refer to “ixStartPortCapture”, “ixStartCapture”, “ixStopPortCapture”and “ixStopCapture” for complete
descriptions of these commands.

Chapter 3 High-Level and Utility API Description

– 50 –

ixStartPortPacketGroups / ixStartPacketGroups / ixStopPortPacketGroups /
ixStopPacketGroups

These commands start and stop calculation of real-time latency metrics on a single port or on a group of
ports. Both packet groups and wide packet groups count the number of frames received per packet group
ID (PGID) and calculate the minimum, maximum and average latencies. The format of these commands
is as follows:

ixStartPortPacketGroups chassisID cardID portID

ixStarts portList

ixStopPortPacketGroups chassisID cardID portID

ixStopPacketGroups portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixStartPacketGroups”, “ixStartPortPacketGroups”,
“ixStopPortPacketGroups”and “ixStopPacketGroups” for complete descriptions of these commands.

Statistics

ixCollectStats

This command gathers the same specified statistic from a number of ports and places the results in a
return array. The format of this command is as follows:

ixCollectStats portList statName RxStats TotalStats

where portList identifies a number of ports to collect statistics from, statName is the name of the statistic
to collect, RxStats is the returned array of statistics and TotalStats is the returned total number of frames
(that is, the sum of RxStats). statNamemust match one of the standard options defined in the stat
command (“stat”). RxStats is an array whose indices are the ports over which the statistics were
collected.

Note that the RxStats indices are separated by commas and not spaces as in other array references used
with maps. Also recall that most of the statistics collected are 64-bit values, as indicated in the stat
command. Calculations on these values should be performed using the mpexpr command.

Refer to “ixCollectStats” for a full description of this command.

ixRequestStats

This command requests that the statistics associated with a list of ports or a port map be retrieved at the
same time. The statistics are then read using the statList command. The format of the command is as
follows:

ixRequestStats portList

where portList identifies a map name or list of ports.

Chapter 3 High-Level and Utility API Description

– 51 –

ARP
All of the commands in this section require that the ip command be used on the port(s) before any ARP
command.

ixEnableArpResponse / ixEnablePortArpResponse
These commands enable ARP response to ARP requests on a single port or list of ports. The format of
these commands is as follows:

ixEnablePortArpResponse chassisID cardID portID

ixEnableArpResponse portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixEnableArpResponse” and “ixEnablePortArpResponse” for a full description of these commands.

ixDisableArpResponse / ixDisablePortArpResponse
These commands disable ARP response to ARP requests on a single port or list of ports. The format of
these commands is as follows:

ixDisablePortArpResponse chassisID cardID portID

ixDisableArpResponse portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixDisableArpResponse” and “ixDisablePortArpResponse” for a full description of these
commands.

ixClearPortArpTable / ixClearArpTable
These commands clear all of the statistics counters on a single port or list of ports. The format of these
commands is as follows:

ixClearPortArpTable chassisID cardID portID

ixClearArpTable portList

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.

Refer to “ixClearStats” and “ixClearPortStats” for a full description of these commands.

ixTransmitPortArpRequest / ixTransmitArpRequest
These commands signal the protocol server to start transmission of ARP requests as indicated through the
arpServer command on a single port or list of ports. The format of these commands is as follows:

ixTransmitPortArpRequest chassisID cardID portID

ixTransmitArpRequest portList

Chapter 3 High-Level and Utility API Description

– 52 –

where chassisID, cardID, and portID identifies a single port and portList identifies a number of ports.
Refer to “ixTransmitPortArpRequest” and “ixTransmitArpRequest” for a full description of these
commands.

Console Output and Logging
The commands in this section relate to textual output to the console and to the operation of the log file.
The commands covered in this section are as follows:

l Console Output
n ixPuts

l Logging
n logOn / logOff
n logMsg
n enableEvents

Error messages

ixErrorInfo

Refer to “ixErrorInfo” for a full description of this global variable. The $::ixErrorInfo global variable
holds the text associated with the error return from most TCL API commands. For example:

ixPuts $::ixErrorInfo

setIxErrorInfo

This command expects a string as parameter (msg) and does not return anything. The string (msg) is set
as the value of ixErrorInfo.

errorMsg

The errorMsg command outputs its arguments to the error file with or without a newline. The format of
the command is as follows:

errorMsg [-nonewline] arg...

where -nonewline indicates that a newline should not be appended to the output and arg... is any number
of arguments, which is concatenated and logged.

Refer to “errorMsg” for a full description of this command.

Console Output

ixPuts

Refer to “ixPuts” for a full description of this command. The ixPuts command outputs its arguments to
the console window with or without a newline. The format of the command is as follows:

ixPuts [-nonewline] arg...

Chapter 3 High-Level and Utility API Description

– 53 –

where -nonewline indicates that a newline should not be appended to the output and arg... is any number
of arguments, which is concatenated and printed.

Logging

logOn / logOff

These commands enable and disable logging. The logOn command also defines the name of the log file.
The format of these commands are as follows:

logOn filename

logOff

where filename is the name of the log file to be created.

Refer to “logOn” and “logOff” for a full description of these commands.

logMsg

The logMsg command outputs its arguments to the log file with or without a newline. The format of the
command is as follows:

logMsg [-nonewline] arg...

where -nonewline indicates that a newline should not be appended to the output and arg... is any number
of arguments, which is concatenated and logged.

Refer to “logMsg" for a full description of this command.

enableEvents

This command enables or disables the creation of a separate log file to hold errors and warnings produced
by API calls. The log file created includes the time and date of creation and is held in C:\Program
Files\Ixia. This feature is enabled by default on Windows-based machines and disabled by default on
Unix-based machines.

Refer to “enableEvents” for a full description of this command.

Port CPU Control
The API commands related to controlling code and command execution on port CPUs is documented in
Port CPU Control. This section discusses a high-level API command which may be used as a replacement
for the pcpuCommandService.

Issue Port CPU Commands

issuePcpuCommand

The issuePcpuCommand command executes a Linux command on a set of ports. Refer to
issuePcpuCommand for a complete description of this command. The format of this command is as
follows:

Chapter 3 High-Level and Utility API Description

– 54 –

issuePcpuCommand portList command

where portList is a TCL list of ports passed in by reference and command is the text of the command to be
executed, which must use an absolute path. For example, ‘/bin/ls’. No filename expansion is performed
on the command. For example, ‘/bin/ls /bin/ix*’ finds no matches. This, and the restriction on absolute
path, may be avoided by executing the command through a bash shell, as in the following example:

set portList [list [list 1 1 1] [list 1 1 2]]
issuePcpuCommand portList “/bin/bash -c ‘ls -l /bin/ix*’”

The result of the command’s execution indicates whether the command was sent to the ports or not. No
indication is given that the ports actually ran successfully on the ports. The individual port by port result
of the command can be retrieved by using the getFirst / getNext functions of pcpuCommandService.

Miscellaneous Commands
Several additional commands are available. The commands in this category are described in the following
table:

Table:Miscellaneous Commands

Command Arguments Usage

ixIsOverlappingIpAddress ipAddress1
count1
ipAddress2
count2

Determine whether two IP address ranges overlap.

ixIsSameSubnet ipAddress1
mask1
ipAddress2
mask2

Determine whether two IP subnets overlap.

ixIsValidHost ipAddress
mask

Determines whether the host part of a masked address
is valid.

ixIsValidNetMask mask Determines a net mask validity.

ixIsValidUnicastIp ipAddress Determines Unicast IP address validity.

ixConvertFromSeconds time
hours
minutes
seconds

Consvert time into hours, minutes and seconds.

ixConvertToSeconds hours
minutes
seconds

Converts a number of hours, minutes and seconds into
a number of seconds.

Chapter 3 High-Level and Utility API Description

– 55 –

This page intentionally left blank.

– 56 –

CHAPTER 4 Programming

API Structure and Conventions
This chapter discusses general structure of the Ixia Tcl commands and suggested programming
sequence.

Most of the Tcl commands have the following same basic structure:

l A number of configuration options that are used to set test and other parameters.
l A standard set of options that push the data options toward the hardware and read information back
from the hardware.

l Additional command specific options used to perform special settings or operations.

Standard Sub-Commands
The standard sub-commands that come with most commands are mentioned in the following table:

Method Usage

config Sets a specified value to a specific option, which is most often a desired hardware
setting. The value is stored in an object in IxTclHAL temporarily.

cget Gets a specified option's value, which was stored in the IxTclHAL object.

set Information is transferred from the IxTclHAL object to the IxHal software layer, but not
sent to the hardware. The setmethod takes as arguments the chassis ID, card number
and port number being addressed.

write Information previously transferred to the IxHal software layer is sent to the
hardware.The writemethod takes as arguments the chassis ID, card number and port
number being addressed. Although each class provides its own write method, it is
usually more convenient to call ixWriteConfigToHardware, which sends all outstanding
set's to the hardware at the same time.

get Information from the hardware is read out to the IxHal layer and into the member
variables. In many cases, the IxHal layer holds more information than is represented in
a single set of member variables and additional methods are needed to obtain more
data. The getmethod takes as arguments the chassis ID, card number and port number
being addressed.

Table:Standard Options

– 57 –

Method Usage

setDefault Default values for the members are set.

decode A captured frame is analyzed and appropriate member variables are set to reflect the
contents of the frame.

In general, hardware parameters may be saved through the use of a ‘config’ and ‘set’ option and then
retrieved at any later time by a ‘get’ option followed by a ‘cget’ option. This is because the IxHal level
maintains memory of all of the settings. This relationship of methods is illustrated in Table:Standard
Options.

Note that a single instance of each command exists, with a set of associated data variables, called
standard options. The standard options from one command are often used in another. For example, the
ipAddressTable command uses the standard options from the ipAddressTableItem command. The
most recent standard options from the ipAddressTableItem command are used by the ipAddressTable
command. Ensure that the standard options from dependent commands are set immediately before being
used. Intervening commands may interfere.

The values defined in the tables for each of the API commands may be used in the following ways:

l As an argument to a config command. For example:

port config -masterSlave portMaster -and

port config -masterSlave $::portMaster

are valid. In the first case, the port config command figures out the value of portMaster (0). In the
second case, the global variable $::portMaster (which is defined in the IxTclHal package) is used to
determine a value of 0. The :: qualifier indicates that the variable is defined in the global context.

l As a variable used for comparison. For example:

port get 1 1 1
set msValue [port cget -masterSlave]
if [$msValue == $::portMaster] ...

Here the $:: form must be used to refer to the value of portMaster

Figure: Standard Method Relationships

Chapter 4 Programming

– 58 –

Standard Return Codes
All commands in the TCL API use a common set of return codes. These codes are listed in Table:TCL API
Return Codes. These codes are global TCL variables, which may be referred with a preceding ‘$’ (for
example, $ixTcl_ok) in a global context or a preceding ‘$::’ (for example, $::ixTcl_ok) in any context. The
symbolic codes should be used in preference to literal values.

Code Value Usage

ixTcl_ok 0 No error, successful return.

Table:TCL API Return Codes

Chapter 4 Programming

– 59 –

Code Value Usage

TCL_ OK

ixTcl_generalError
TCL_ ERROR

1 An error has occurred.

ixTcl_
versionMismatch

2 The software version for the TCL API does not match that used on a
connected chassis.

ixTcl_chassisTimeout 3 A timeout occurred while connecting to a chassis.

ixTcl_notAvailable 100 A port may not exist or may be in use by another user.

ixTcl_
unsupportedFeature

101 The port does not support a feature.

ixTcl_outOfMemory 102 The TCL execution has run out of main memory.

ixTcl_
addedAsDisabled

103 The entry was added, but was disabled due to quantity or volume
constraints.

ixTcl_notLicensed 104 Not licensed

ixTcl_
noWriteRequired

200 Writing not required

ixTcl_
invalidChassisChain

201 Invalid chassis chain

ixTcl_
hardwareConflict

202 When adding a load module, a duplicate load module serial number
was encountered.

Sequence of Steps
The following sequence of steps should be followed to write a successful Tcl script:

1. Load the IxTclHal package.

The IxTclHal package contains all the Ixia Tcl Library commands. After loading this package, these
commands are made available in the test script. The format of using the package command is as
follows:

package require IxTclHal

Note that this adds a large number of commands to Tcl, which causes the '?' command (list
available commands) to take up to a minute to execute.

2. Connect to the chassis on which the test is to be executed.

Chapter 4 Programming

– 60 –

After loading the package, the chassis has to be connected to where the test is going to be
executed. The following commands are used to connect and set up the chassis parameters:

chassis add <hostname or IPv4/IPv6 address>
chassis config -id <chassisID>
chassis set <hostname or IPv4/IPv6 address>

The chassis add command connects to the chassis. The chassis config -id command associates a
numeric ID with the chassis. The chassis set command sets the ID of the chassis in IxHAL. It is
important to assign a chassisID to the chassis as it is used in the map command. If multiple chassis
are to be used, then multiple chassis add commands must be given and each chassis should be
assigned a unique ID.

Alternatively, the following sequence could be used:

ixConnectToChassis <hostname or IPv4/IPv6 address>
set chassisID [ixGetChassisID <hostname or IPv4/IPv6 address>]

The ixConnectToChasssis takes care of all three steps in the previous example, assigning a chassis
ID on its own. The call to ixGetChassisID is needed to retrieve the assigned chassis ID for future
use.

3. Set up the traffic mapping

This is an optional step. The mechanism for setting up traffic mapping is provided only for
convenience. You may use your own methods for storing this information.

Before any test can be executed, it is important to specify the flow of traffic, that is, the transmit
and receive ports. The mapping for these ports is specified using the map command as follows:

map config –type one2one; # or one2many, many2one, many2many
map add <TxChassisID> <TxCardID> <TxPortID> <RxChassisID> <RxCardID> <RxPortID>

This command stores the transmit chassis, card, port and receive chassis, card, port combinations
in a Tcl array within the scope of the Tcl script. There are four types of mappings, as mentioned in
the following list:

a. One to One mapping

b. One to Many mapping

c. Many to One mapping

d. Many to Many mapping

For the mappings specified in a), b), c), and d) above, the chassis, card, port combinations are
stored in Tcl arrays one2oneArray, one2manyArray, many2oneArray and many2manyArray,
respectively.

Each Transmit/Receive combination in one2oneArray is unique. That is, there is only one Receive
port for each Transmit port. The Receive port may also be set as Transmit port. Similarly, for the
one2manyArray, any Transmit port cannot be used as a Receive port for a different set, and for the
many2oneArray, any Receive port cannot be used in a different set of the many-to-one map. The
many2manyArray can contain any combination of transmit and receive ports. A port can be

Chapter 4 Programming

– 61 –

assigned to be a Receive port for any number of Transmit ports and can also act as a Transmit port
for several Receive ports.

Table:Traffic Map Array

Array Type Format

one2oneArray one2oneArray(txChassis,txCard,txPort)
{{rxChassis rxCard rxPort}}

one2manyArray one2manyArray(txChassis,txCard,txPort)
{{rxChassis1 rxCard1 rxPort1}
{rxChassis2 rxCard2 rxPort2} …………
{rxChassisN rxCardN rxPortN}}

many2oneArray many2oneArray(rxChassis,rxCard,rxPort)
{{txChassis1 txCard1 txPort1}
{txChassis2 txCard2 txPort2} ……….
{txChassisN txCardN txPortN}}

many2manyArray many2manyArray(txChassis,txCard,txPort)
{{rxChassis1 rxCard1 rxPort1}
{rxChassis2 rxCard2 rxPort2} …….
{rxChassisN rxCardN rxPortN}}

Themap command is very useful when writing scripts. Upon closer inspection, it is apparent that
the Transmit ports in the traffic flow are all stored as elements of the arrays (except for
many2oneArray) and the Receive ports are stored as values (Tcl Lists) of these arrays. This method
of storage allows a great deal of flexibility when this information is needed. In Tcl, the command
[array names one2oneArray], for example, gives access to all the Transmit ports and to access the
Receive port, $one2oneArray($txChassis,$txCard,$txPort) gives the list with the Receive chassis,
card, port combination.

4. Set up test related parameters

The test related information such as duration of test, number of trials, configuration of learn frames
and IP/IPX addresses may be set up next.

5. Configure the port parameters

The port parameters such as speed, duplex, loopback and auto-negotiation must be set in IxHAL
and then in hardware (by sending the message to IxServer). The following steps should be followed
to configure the ports:

port config -autonegotiate true
port config -duplex full
port config -numAddresses 1
port config -MacAddress {00 01 02 03 04 05}
port set $chassisID $cardID $portID
port write $chassisID $cardID $portID

Chapter 4 Programming

– 62 –

The addresses for the ports are assigned in this step. Note that for the Tcl scripts, the addresses are
assigned to ports but they are actually configured in the streams (see step 6). This is due to the fact
that when executing tests that send and receive traffic from switches and routers, addresses are
assigned to physical ports. The concept of streams is invisible to the switches and routers. The MAC
address is assigned to the port using the port config -MacAddress command. The source and
destination IP addresses are assigned to ports using the ip command. Similarly, the IPX network
and node addresses and sockets are assigned to ports using the ipx command. The following
example shows the assignment of IP addresses to a port:

ip config -sourceIpAddr 198.18.1.100
ip config -destDutIpAddr 198.18.1.1
ip config -destClass classC
ip config -sourceClass classC
ip set $chassisID $cardID $portID

6. Configure the streams on the transmit ports

The traffic is sent in streams, which contain the frame characteristics. Multiple streams may be
created per port. The important parameters in the stream are frame size, inter-frame gap, frame
data type, the number of frames to be transmitted, the source and destination MAC addresses in
each frame and whether they are incrementing, decrementing or fixed. When configuring the
protocol related parameters such as MAC, IP or IPX addresses, the protocol configuration is not be
written to hardware until a stream set command is used. In addition, the User Defined Fields
(UDFs) can be configured to overlay a 1 to 4 byte custom pattern over the specified frame data.
Examples of usage for UDFs include setting up filters on the receive ports for a particular UDF
pattern, allowing an incrementing IP address or IPX socket, and adding a sequence ID to the frame.

The following code shows stream configurations:

stream config -numFrames 10000
stream config -name "MyStream"
stream config -dma stopStream

Calculate the inter-frame gap using the utility command, calculateGap
stream config -ifg [calculateGap $rate $framesize $preambleSize $speed]

get the transmit chassis, card, port combination from the Tcl
array created by the map command by using [array names <mapArray>].
For example, the txChassis,txCard,txPort combination for the first
set in the one2oneArray can be obtained as follows:
set txMap [lindex [array names one2oneArray] 0]
scan $txMap "%d %d %d" txChassis txCard txPort
port get $txChassis $txCard $txPort
set txPortMacAddress [port cget -MacAddress]

The source MAC address of the port is set in the stream
stream config -sa $txPortMacAddress

The destination MAC address of this transmit port can be obtained
from the receive port by using:

Chapter 4 Programming

– 63 –

set rxMap $<mapArray> ($txChassis $txCard $txPort)
scan rxMap "%d %d %d" rxChassis rxCard rxPort
port get $rxChassis $rxCard $rxPort
stream config -da [port cget -MacAddress]

overwrite 4 bytes of the frame data at offset 42 with magic
pattern "BE EF" using UDF 4
udf config -offset 42
udf config -enable true
udf config -countertype c8x8
udf config -initval "BE EF"
udf set 4

set the current stream configuration in IxHAL as the first stream
on this port
stream set $txChassis $txCard $txPort 1

7. Configure the filters parameters on receive ports

The filters are used to count or capture desired format of frames. To capture the frames, the
capture trigger and capture filter parameters have to be enabled. Two counters, User Defined
Statistics Counter 1 and User Defined Statistics Counter 2, can be enabled to count frames that
match the defined constraints. The UDF values that are set using the stream command can be
filtered upon and counted using these counters. To define the constraints on these counters, the
filterPallette command can be used to specify up to two Destination MAC addresses, two Source
MAC addresses and up to two patterns.

Enable the User Defined Statistics Counter 1, Capture
trigger and capture filter counters
filter config -userDefinedStat1Enable true
filter config -captureFilterEnable true
filter config -captureTriggerEnable true

set the User Defined Statistics Counter 1 to count frames
that have destination MAC address "00 01 02 03 04 05"
filter config -userDefinedStat1DA "00 01 02 03 04 05"

set the capture filter counter to capture frames
that have pattern "BE EF"
filter config - captureFilterPattern "BE EF"

set up the filter pallette
filterPallette config -DA1 "00 01 02 03 04 05"
filterPallette config -pattern1 "BE EF"
filterPallette config -patternOffset1 42

obtain the receive chassis, card, port combination and set the
filter and filter pallette on the receive port
filter set $rxChassis $rxCard $rxPort
filterPallette set $rxChassis $rxCard $rxPort

Chapter 4 Programming

– 64 –

8. Write the configuration into hardware

After the stream and filter configurations are set in IxHAL, a message must be sent to IxServer to
commit these configurations to hardware. Every command has a write sub-command that writes
that command related information into the hardware. However, it is inefficient to commit to
hardware after updating every parameter as it might effect the performance of system. A more
efficient method of writing to hardware is to update all the IxHAL objects first and send out one
message to IxServer. For example, after all the chassis, ports, filters and stream information is set
up in IxHAL, a message can be sent to the IxServer requesting it to write every configuration on a
chassis.

We recommend one of the following two methods of writing to hardware:

a. If a traffic map was set-up in step (3):

ixWriteConfigToHardware <map>

Here the <map> is one of one2oneArray, one2manyArray, many2oneArray or
many2manyArray.

b. If a traffic map was not set-up in step (3):

set portlist {{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
ixWriteConfigToHardware portlist

The portlist variable is a list of lists, each member containing three elements: chassis, card,
and port.

Note that ixWriteConfigToHardware does not send port configuration changes (for example, mii
settings, port speed or auto-negotiation) to the hardware. If changes have been made to these
parameters, use ixWritePortsToHardware. However, this may result in a loss of link, depending on
the changes that have been made.

9. Start the transmission

Now that the configuration is set in hardware, transmission of the streams on all the involved ports
is started. A utility command startTx is provided that starts the transmission on all the ports
simultaneously. StartTx command is called with the array created by the map command
(one2oneArray, one2manyArray, many2oneArray, ormany2manyArray) as an argument. This
command uses the portGroup command to add all the Transmit ports in the array to a group with a
given ID. This group ID is then used to send a message to the IxServer to start transmission at the
same time.

10. Validate the received frames on receive ports

Usually, only frames that were transmitted must be counted to obtain reasonable results. The DUT
may be transmitting management frames periodically, which should not be counted in the
validating scheme of the test. As discussed earlier, the UDFs and filters are used in streams to
achieve this. The statistics counters such as the User Defined Statistics Counters are used to count
the valid frames and calculations may be performed to get desired results. Frames may also be
captured that may be decoded and counted.

11. Output results

Chapter 4 Programming

– 65 –

Finally, the results may be obtained from the statistics or frames captured in the capture buffer and
stored in any desired format.

How to write efficient scripts
A script is a logical sequence of operations that are sequentially executed. However, a script is an
application program that must be designed carefully just like a normal C or C++ program. Because a Tcl
script does not need to be compiled as in a C/C++ code, it is actually more difficult to get the best
optimized code for a Tcl script.

Also, compared to a GUI application where events take place very slowly (clicking on buttons using a
mouse), a script passes through the same events very quickly. This speed of execution may cause time
synchronization problems with the IxServer application on the chassis. Therefore, it is very important to
implement the sequence of events in a very intelligent way so as to achieve the most optimized execution
of these events.

Before writing any script, it helps to first design the logic of the test using flow-charts or similar methods.
More importantly, the logic should first be implemented in the IxExplorer GUI application to test the
algorithm of the script. Therefore, it is of paramount importance that you understand the concepts of
streams, filters, UDFs, capture buffers, and so on before writing any script. These are described in the Ixia
Reference Guide.

It is important to follow the sequence of steps outlined in Sequence of Steps The following list provides
the reasons:

1. It is important to configure the Port Properties in the very beginning of the script. For example, on a
10/100 card, there is an autonegotiation parameter. If this parameter is to be turned on, then
during the auto-negotiation process, the link goes down and it takes a small amount of time to come
up again. If there are a number of ports involved, the setting of port properties can take a long time.
Therefore, we recommend that the ports be set first. This is done using the port set and port write
commands. Do not implement this step in the middle of the script since it only slows down the total
time of execution of the test.

2. To send and receive traffic on the ports, the transmit and receive port mappings must be defined
and the port numbers stored in a structured array or list. This way, when streams and filters are to
be configured, this array or list only needs to be looped through.

3. Before creating streams on the transmit ports, decide how many streams are needed to achieve the
traffic profile to be used. It is possible that only one stream is needed in most cases. If not certain,
use the IxExplorer GUI application to create the stream and transmit frames on it. Try to avoid
creating streams for every iteration of the test. Sometimes it is easier to create all the necessary
streams and simply disable the unneeded ones during the iterations.

4. To verify the filters, use the IxExplorer GUI to first mimic the situation. Use magic numbers in the
payload of the frames wherever possible so that only the frames involved in the test are received.
The magic numbers eliminate the inclusion of loopback, management frames or Spanning Tree
BPDUs, for example, forwarded by the DUT.

5. If your script is running in a small loop and requesting data very quickly from IxServer, it is possible
IxServer is not be able to keep up with the requests. If your script must request statistics or other
data in a small for or while loop, consider using delays using the Tcl after command.

Chapter 4 Programming

– 66 –

Multi-Client Usage
It is occasionally helpful to run IxExplorer at the same time as the Tcl Development environment.
IxExplorer can provide instant visual verification. When doing so, it is important to perform a Chassis
Refresh operation in IxExplorer after executing the following Tcl setup commands:

l ixSetCaptureMode
l ixSetPacketFlowMode
l ixSetPacketGroupMode
l ixSetPacketStreamMode
l ixSetPortCaptureMode
l ixSetPortPacketFlowMode
l ixSetPortPacketGroupMode
l ixSetPortPacketStreamMode
l ixWriteConfigToHardware
l ixWritePortsToHardware

Mpexpr versus Expr
Statistics and other values used in the Ixia Tcl environment are 64-bit as opposed to 32-bit values. It is
important to usempexpr, as opposed to expr, to calculate expressions and maintain 64-bit accuracy. The
64-bit values are indicated in the individual descriptive pages for the following commands:

l captureBuffer
l packetGroupStats
l portGroup
l stat

Chapter 4 Programming

– 67 –

This page intentionally left blank.

– 68 –

CHAPTER 5 IxTclHal API Description
This chapter presents an organized description of the IxTclHAL API commands based on major topics. The
main topics covered are the following:

l Chassis, Cards and Ports: Basic overhead to set up the test and the hardware.
l Data Transmission: Setting up streams and flows to be applied to ports.
l Data Capture and Statistics: Setting up conditions to capture received data and statistics.
l Interface Table: Setting up interfaces and IP addresses.
l Port CPU Control: Setting up and executing code and commands on port CPUs.

All of the commands are covered within these sections, but only the most significant options and sub-
commands are discussed. Not all of the options, nor all of the sub-commands can be assumed to be
discussed in this chapter. In particular, if not otherwise noted the get, cget, config, set,
setDefault, decode and write sub-commands are assumed to exist and to perform standard
functions.

Appendix A - IxTclHAL Commands includes complete descriptions of each of the IxHal commands.

Chassis, Cards and Ports
These commands included in this section are related to the setup of tests, before any data is applied. As
discussed in the Ixia Reference Guide, Ixia equipment is organized as a chain of individual chassis
connected by Sync-In/Sync-Out wires. The chassisChain command is used to hold information about
the chain as a whole. One copy should be instantiated for the lifetime of the program. The chassis
command is used to define and add chassis to the chain. Each chassis has two very important options: id,
which is referenced elsewhere in referring to all levels of hardware, and name, which is the IP
hostname/address used to communicate with the hardware. chassisChain sub-command
broadcastTopology should be called after all the chassis have been added to the chain. Although each
individual chassis, card and port has an individual write method, ixWriteConfigToHardware is a
convenient means of writing to all chassis, in synchronization.

With the advent of the IXIA 100, the means by which geographically distributed chassis chains may be
synchronized has been expanded. This is controlled by the timeServer command.

Cards reside within chassis and the card command is provided to access several read-only version
variables for the card.

Ports are the principal focus of setup programming in the TCL API. All of the port’s characteristics are
visible and changeable through port and its associated commands.

The following commands are included in this section:

– 69 –

l session: Used to control user login and sharing.
l version: Provides version information about the running software.
l chassisChain: Controls the handling of the chassis chain that contains one or more chassis.
l timeServer: Allows the selection of the timing source for a chassis.
l chassis: Handles a card that contains one or more ports.
l card:Handles a card that contains one or more ports.
l port: Controls the basic features of a port. Subsidiary commands are used for special port features.

n MII: This set of commands controls access to the MII registers associated with some ports.
o mii: Controls basic access.
o miiae: Controls extended access.
o mmd: Controls access to MMI devices.
o mmdRegister: Controls access to MMD registers.

n xaui: 10GE XUAI configuration.
n Packet over Sonet: This set of commands controls SONET related parameters.

o sonet: Controls basic sonet parameters.
o sonetError: Allows errors to be inserted in SONET streams.
o sonetOverhead: Controls SONET overhead parameters.
o dcc: Controls placement of DCC bytes in the SONET overhead.
o RPR: Controls SRP encapsulation and SRP specific control messages.
o ppp and pppStatus: Controls and monitors point to point protocol operation.
o hdlc: Controls HDLC header formatting.
o frameRelay: Controls frame relay header formatting.
o bert and bertErrorGeneration: Controls bit error rate testing (BERT) and error
generation.

o bertUnframed: Controls unframed bit error rate testing.
n ATM: This set of commands controls ATM specific parameters.

o atmPort: Controls port general parameters
o atmHeader: Controls ATM header parameters.
o atmHeaderCounter: Controls variations of the VPI and VCI values in an ATM header.

n 10GE
o Link Fault Signaling: This set of commands controls link fault signal insertion.

o linkFaultSignaling: Controls the insertion process.
o customOrderedSet: Defines custom signal messages.

o txRxPreamble: Controls the preamble transmit and receive settings.
o Optical Digital Wrapper / FEC: Enables use of the optical digital wrapper and FEC errors.

Chapter 5 IxTclHal API Description

– 70 –

o opticalDigitalWrapper: Enables the wrapper.
o fecError: Inserts errors for FEC error detection.

o CDL Support: Use of Cisco Converged Data Layer (CDL)
o cdlPreamble: Controls the contents of the CDL preamble.

o xfp: XFP settings associated with UNIPHY-XFP ports.
o lasi: LASI settings associated with XENPAK ports.

n portGroup: A collection of ports, which allows simultaneous action across the set of ports.

session
session is an optional command used to control sharing of ports on one or more chassis. It should be
used where there is any possibility of multiple users sharing chassis. session -login is used to log-in and
portGroup -setCommand is used to take ownership of ports.

The important options and sub-commands of this command are listed in the table below.

Table:session Options

Member Usage

userName The user's name after login.

captureBuffer
SegmentSize

Sets the capture buffer request size in MB.

Table:session Sub-Commands

Member Usage

login Logs a user in for purposes of ownership.

logout Logs out the current user.

version
version provides access to assorted pieces of version information for the Tcl software. Note that on Unix
systems, a connection to the chassis must have occurred before version information is available. version
for full details and ixConnectToChassis for connection information.

chassisChain
A single instance of this command should be instantiated and not destroyed for the entirety of the test
process. It is the container that holds all of the individual chassis designations and their connections. See
the Ixia Reference Guide for a discussion of chassis chains. chassisChain for full details.

The important options and sub-commands of this command are listed in the table below.

Table:chassisChain Options

Chapter 5 IxTclHal API Description

– 71 –

Member Usage

startTime The delay time before port transmit starts.

Table:chassisChain Sub-Commands

Member Usage

broadcastTopology Must be called after the last chassis has been added with chassis.add.

timeServer
The timeServer command handles the means by which chassis chains are coordinated. See the Ixia
Reference Guide for a discussion of timing sources. Refer to timeServer for details. A chassis chain may
use any of the following time sources:

l Internal: Internally generated by the chassis.
l GPS Server: Generated by the GPS within an IXIA 100 chassis.
l SNTP Server: Generated by a network available SNTP (Simple Network Time Protocol) server.
l CDMA Server: Generated by the CDMA unit within an IXIA 100 chassis.

The important options and sub-commands of this class are listed in the table below.

Table:timeServer Command Options

Member Usage

timeSource The choice of time source.

sntpClient For the SNTP choice, the location of the SNTP server.

antennaStatus For the GPS unit, the antenna's connection status.

gpsStatus For the GPS unit, the locked/unlocked status of the GPS.

gpsTime For the GPS unit, the GPS read time, in seconds.

pllStatus For the GPS unit, the status of the phased locked loop that is driven by the GPS.

qualityStatus For the GPS unit, the quality of the received GPS signal.

state For the GPS unit, the current state of the GPS.

chassis
chassis is used in the definition of a chassis and addition of the chassis to the chassis chain. See the Ixia
Reference Guide for a discussion of chassis. chassis for full details.

The important options and sub-commands of this command are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 72 –

Table:chassis Options

Member Usage

id The identification number given to the chassis. This is used in most commands to
associate with ports.

name This is the IP hostname or IP address of the chassis, which is used to actually
communicate with the chassis. Use 'localhost' if you are running your TCL application on
the chassis itself.

sequence The sequence of a chassis in a chain.

Table:chassis Sub-Commands

Member Usage

add Adds a new chassis to the chain.

export Writes a data file with all card and port configurations to a file which may be used with the
import command.

import Reads and installs a previously written file from the export sub-command.

card
The card command retrieves several card characteristics. See the Ixia Reference Guide for a discussion of
load modules. Refer to card for full details. The important options and sub-commands of this command
are mentioned in the following table:

Table:card Options

Member Usage

fpgaVersion The FPGA version on the card.

hwVersion The card's hardware version.

portCount The number of ports on the card.

type The type of the card.

typeName The name of the type of card.

serialNumber The serial number of the card.

appsId The application ID.

Table:card Sub-Commands

Chapter 5 IxTclHal API Description

– 73 –

Member Usage

write Card specific properties are written to the card, without any stream or port properties.

port
The port command controls the basic aspects of port setup. Some port and protocol specific attributes are
included in this command, while other aspects are covered by additional commands in this section. See
the Ixia Hardware & Reference Guide for a discussion of port hardware characteristics.

Specifically, the following port types have the indicated additional commands that may be used to control
additional port features:

l 10/100 and 10GE XAUI/XGMII Mii: mii, miiae, mmd, and mmdRegister.
l 10GE Xaui: xaui, linkFaultSignaling, customOrderedSet, and txRxPreamble.
l Packet over Sonet (POS): sonet, sonetError, sonetOverhead, dcc, ppp and pppStatus, hdlc,
frameRelay.

l POS/BERT (Bit Error Rate Testing): bert and bertErrorGeneration.
l ATM: atmPort, atmHeader, and atmHeaderCounter.

Note that the elements options DestMacAddress, MacAddress and numAddresses are stored as
convenience for use by other sub-commands. Do not destroy the port instance until you are completely
done with the port. port for full details.

The important options and sub-commands of this command are mentioned in the following table:

Table:port Options

Category Member Usage

Basic name The name associated with the port.

owner The name of the owner of the port.

type (Read-only) The type of the Ixia port. Both speeds
and interface types are described.

loopback Controls whether the port is in loopback mode or
not.

flowControl Enables flow control on the port.

linkState (Read-only) The current state of the link with the
DUT.

portMode For ports that support multi-mode operation, the
current operational mode.

Transmit transmitMode Controls the following basic transmission mode of

Chapter 5 IxTclHal API Description

– 74 –

Category Member Usage

the port:
l Packet stream
l Packet flow
l TCP Round Trip
l Advanced Scheduler
l Bit Error Rate Testing (BERT)

Mix of SONET DCC and SPE traffic.

enableRepeatableLast-
RandomPattern
lastRandomSeedValue

For ports that the support repeatable random
feature, this allows streams that used random
values to repeat their values again.

transmitClockDeviation For ports that support the frequency offset
feature, a transmit frequency deviation.

preEmphasis For ports that support pre-emphasis, a
percentage pre-emphasis value.

Receive receiveMode Controls the following basic receive mode of the
port:

l Capture
l PacketGroup
l TCP Round Trips
l Data Integrity
l First Time Stamp
l Sequence Checking
l Bit Error Rate Testing (BERT)
l SONET DCC
l Wide packet group
l PRBS packets

Addressing DestMacAddress The destination MAC address. Note that port
holds this and the next two values as a
convenience only for use in other commands. Do
not destroy the port instance until you are done
using the port.

MacAddress The first source MAC address.

numAddresses The number of source addresses assigned to the
port.

Chapter 5 IxTclHal API Description

– 75 –

Category Member Usage

Flows usePacketFlowImageFile Controls whether the port is used in stream mode
or flow mode. If set to flow mode, then the
packetFlowFileNamemember should be set.

packetFlowFileName The name of the file containing the packet flow
information.

Pause
Control

directedAddress The address the port listens to for a directed
pause message.

multicastPauseAddress The address the port listens to for a multicast
pause message.

For:
10/100 Ports

autonegotiate Sets auto-negotiate mode for the port.

duplex Controls half / full duplex mode for the port.

advertise100FullDuplex
advertise100HalfDuplex
advertise10FullDuplex
advertise10HalflDuplex

These four elements control what speeds and
duplex are advertised during autonegotiation.

speed 10 or 100 Mbps.

For:
Gigabit Ports

rxTxMode Basic mode for the port are the following:
l Normal
l Loopback
l Simulate cable disconnect

aremovedvertise1000FullDuplex Controls whether gigabit full duplex is advertised
during auto negotiation.

advertiseAbilities Sets the following type elements advertised
during negotiation:

l None
l Send only
l Send and Receive
l Send and/or Receive

ignoreLink Causes the port to ignore the link.

negotiateMasterSlave Indicates whether master/slave mode should be
negotiated.

Chapter 5 IxTclHal API Description

– 76 –

Category Member Usage

masterSlave If master/slave mode is being negotiated, then
this is the indicates the ports desire (master or
slave). Otherwise this is the value associated with
the link.

timeoutEnable Enables autonegotiation timeout.

For:
POS Ports

rxCrc Indicates whether a 16 or 32 bit CRC is to be used
on the receive side of the port.

txCrc Indicates whether a 16 or 32 bit CRC is to be used
on the transmit side of the port.

Table:port Sub-Commands

Member Usage

getFeature Determines whether a specific feature is present in the featureList for the port.

isValidFeature Determines if a port feature is available for the port.

isActiveFeature Determines whether a port is currently configured correctly to use a feature.

reset Deletes all streams from a port. Current configuration is not affected. Note: In
order for port reset to take effect, stream write or
ixWriteConfigToHardware commands should be used to commit the changes
to hardware.

setDefault Sets the port to default values.

setFactoryDefaults Sets a consistent set of default values for the port type. The port mode for dual
PHY ports is reset to the default.

setModeDefaults Sets a consistent set of default values for the port type and the current mode of
the port. The mode of the port is not affected.

setParam Operates as in config, but sets a single option.

setPhyMode For dual PHY ports, which may operate over copper, fiber, or SGMII, this
command allows the mode to be selected.

Chapter 5 IxTclHal API Description

– 77 –

Note: The setDefault sub-command sets all options at default values, as indicated in port. These
values are a consistent setting for 10/100 ethernet cards and may or may not be appropriate for
other cards. In general, the sequence:

port setDefault
port set $chassis $card $port

fails.
The setFactoryDefaults sub-command, which relates to a particular port, sets all options at default
values appropriate for the type of port. The sequence:

port setFactoryDefaults $chassis $card $port
port set $chassis $card $port

always succeed. For multi-type boards, for example, OC192/10GE WAN, the board type is forced
to one particular setting and may not be appropriate.
The setModeDefaults sub-command, however, leaves the mode of multi-type boards while
performing the same operation as setFactoryDefaults.

MII

The MII commands are available for 10/100 MII and 10GE XAUI/XGMII ports only. The following
commands are included in this set:

l mii: Reads and writes values to 'old-style' MII PHYs defined in IEEE 802.3. One internal and two
external MII PHYs may be managed, mixed with MII AE PHYs.

l miiae: Defines, reads and writes to 'new-style' MII AE PHYs defined in IEEE 802.3ae. One internal
and two external MII AE PHYs may be managed, mixed with MII PHYs. Each MII AE PHY may consist
of 32 MMDs (MDIO Manageable Devices), each with up to 64k devices. The MMDs are defined and
managed with the mmd command and the registers within those devices are managed by the
mmdRegister command.

l mmd: Defines, reads and writes the devices associated with MII AE PHYs.
l mmdRegister: Sets the parameters associated with MMD registers.
l ixMiiConfig utilities: A set of high level commands used to set several common SerDes functions on
10GE XAUI/XGMII ports.

mii

mii for full details. The important options and sub-commands of this command are mentioned in the
following table:

Member Usage

enableManualAuto
Negotiate

If set, causes the port to auto-negotiate when the MII registers are written

Table:mii Options

Chapter 5 IxTclHal API Description

– 78 –

Member Usage

miiRegister The MII register number to read/write.

phyAddress Physical address of the MII register location. -1 for the default.

readWrite The read/write properties of the register are as following:
l Disabled
l Read-Only
l Read-Write

registerValue The value of the selected register.

Table:mii Sub-Commands

Member Usage

get This method should be called first, before any cget operations. The register number
indicated in miiRegister is read into readWrite and registerValue.

selectRegister After get is used, this method allows a different register (as indexed by
miiRegister) to be made available in readWrite and registerValue.

set Sets the values from readWrite and registerValue to be written to the MII
register indexed by miiRegister.

write Sends all modified MII registers to the hardware.

miiae

miiae for full details. The important options and sub-commands of this command are mentioned in the
following table:

Table:miiae Options

Member Usage

phyAddress Physical address of the MII register location.

Table:miiae Sub-Commands

Member Usage

clearAllDevices Removes all associated devices from the MII.

addDevice Adds a device defined in the mmd command to the MII.

delDevice Removes a single MMD from the MII.

Chapter 5 IxTclHal API Description

– 79 –

Member Usage

getDevice Retrieves the information about a single MMD in the MII. The data about the device
is available through the use of the mmd and mmdRegister commands.

set Sets the devices associated with one of the three supported PHYs: Internal,
External1, or External2.

get Gets the devices associated with one of the three supported PHYs: Internal,
External1, or External2.

mmd

mmd for full details. The important options and sub-commands of this command are mentioned in the
following table:

Table:mmd Options

Member Usage

address Address of the MMD device within its associated MII.

name Arbitrary name of the MMD device.

Table:mmd Sub-Commands

Member Usage

clearAllRegisters Removes all associated registers from the MMD device.

addRegister Adds a register defined in the mmdRegister command to the MMD.

delRegister Removes a single register from the MMD.

getRegister Retrieves the information about a single register in the MMD. This must have been
preceded by an miiae getRegister command. The data about the device is
available through the use of the mmdRegister command.

mmdRegister

mmdRegister for full details. The important options of this command are:

Table:mmdRegister Options

Member Usage

address Address of the register location.

name Arbitrary name of the register.

Chapter 5 IxTclHal API Description

– 80 –

Member Usage

readWrite The read/write properties of the register:
l Disabled
l Read-Only
l Read-Write

registerValue The value of the selected register.

xaui

xaui for full details.

The important options of this command are:

Table:xaui Options

Member Usage

clockType Determines whether to use an internal or external clock.

podPower Determines whether 5V power is to be applied to the at pin 4.

userPower Determines whether 5V power is to be applied to the at pin 5.

Packet over Sonet

The next set of commands allow for the setting of all PoS specific values. If the default values associated
with a task are correct, then the corresponding command need not be used. See the Ixia Reference Guide
for a discussion of SONET/POS load module characteristics.

sonet

See the Ixia Reference Guide for a general discussion. sonet for full details. The important options of this
command are:

Category Member Usage

Header header Sets the type of PoS header:
l HDLC ppp: Further settings can be made through the use of
hdlc, ppp and pppStatus commands.

l Cisco HDLC: Further settings can be made through the use
of the hdlc, ppp and pppStatus commands.

Interface interfaceType Sets the type and speed of the sonet interface:
l OC3, OC12 or OC48.

Table:sonet Options

Chapter 5 IxTclHal API Description

– 81 –

Category Member Usage

l STM1c, STM4c or STM16c.

Transmit dataScrambling Controls data scrambling in the sonet framer.

lineScrambling Controls line scrambling in the sonet framer.

CRC rxCrc Sets the receive CRC mode: 16 or 32 bit mode.

txCrc Sets the transmit CRC mode: 16 or 32 bit mode.

APS apsType Sets the Automatic Protection Switching mode to linear or ring
topology.

customK1K2 Enables or disables customer K1K2 bytes.

k1NewState Allows the K1 byte code value to be sent in the Sonet frame.

k2NewState Allows the K2 byte code value to be sent in the Sonet frame.

Path Signal C2byteExpected The received path signal label.

C2byteTransmit The path signal label to be transmitted.

Error
Handling

lineErrorHandling Enables line error handling.

pathErrorHandling Enables path error handling.

Note: The setDefault sub-command sets all options at default values, as indicated in sonet. These
values are a consistent setting for an OC12 card and may or may not be appropriate for other
cards. In general, the sequence:

sonet setDefault
sonet set $chassis $card $port

fails.
The port setFactoryDefaults command, which relates to a particular port, sets all sonet options at
default values appropriate for the type of port. The sequence:

port setFactoryDefaults $chassis $card $port
sonet set $chassis $card $port

always succeeds.

Chapter 5 IxTclHal API Description

– 82 –

sonetError

This command allows the parameters associated with a variety of simulated SONET errors to be
programmed. The errors that are programmed may be inserted once, periodically or continuously. See
the Ixia Reference Guide for a general discussion. sonetError for full details. The important options and
sub-commands of this command are mentioned in the following table:

Table:sonetError Options

Member Usage

insertionMode Controls whether an individual error is inserted periodically or continuously.

errorPeriod
errorUnits

The frequency with which periodic errors are inserted, which may be expressed
in seconds or frames.

consecutiveErrors The number of consecutive errors to be inserted at a time.

Table:sonetError Sub-Commands

Member Usage

setError Parameters associated with a particular error type are set in IxHal. A set command is
needed to get these values into the hardware.

getError Reads back the values associated with a particular error type into the options described
above.

start
stop

Starts and stops periodic/continuous error insertion as programmed.

insertError Inserts a particular error for a single instance. setError and setmust be used before this
command.

sonetOverhead

This command allows the J0/J1 values of the Sonet overhead to be programmed and read back.
sonetOverhead for full details. The important options of this command are mentioned in the following
table:

Table:sonetOverhead Options

Member Usage

enableJ0Insertion Enable the insertion of J0 trace messages.

enableJ1Insertion Enable the insertion of J1 trace messages.

traceMessageJ0 The J0 trace message, as a hex string.

Chapter 5 IxTclHal API Description

– 83 –

Member Usage

traceMessageJ1 The J1 trace message, as a hex string.

dcc

This command allows the selection of the DCC byte placement and CRC type. See the Ixia Reference
Guide for a general discussion.dcc for full details. The important options of this command are mentioned
in the following table:

Table:dcc Options

Member Usage

crc The type of CRC used in the DCC stream

overheadBytes The placement of the DCC bytes in the line or section overhead bytes.

timeFill The time fill byte to be used.

RPR

Ixia’s Resilient Packet Ring (RPR) implementation is available on selected POS load modules. RPR is a
proposed industry standard for MAC Control on Metropolitan Area Networks (MANs) and is defined in IEEE
P802.17/D2.1. RPR networks consist of two counter rotating ringlets, with nodes called stations support
MAC clients that exchange data and control information with remote peers on the ring. Up to 255 stations
can be supported by RPR networks.

RPR is enabled on a port by selecting the appropriate SONET header encapsulation in the sonet
command:

sonet config -header sonetRpr

Once enabled, RPR Fairness packets may be set up and transmitted on a regular basis using the
rprFairness command.

For all other RPR messages and encapsulated packets, the rprRingControl command should be used set
up the RPR header.

All IP and ARP packets are automatically encapsulated after the SONET header has been set to RPR. Three
commands are used to provide RPR topology discovery, protection and other maintenance:

l rprProtection: Provides information related to protection switching, which allows packets to be re-
routed or dropped in case of link or station failure.

l rprOam: Provides echo and other Operations, Administration and Maintenance (OAM) controls and
information.

l rprTopology: Provides topology and bandwidth information between nodes to support bandwidth
allocation and other functions.

All three message types are added to a stream using their respective set sub-commands. A stream set
command then makes them ready for transmission.

Chapter 5 IxTclHal API Description

– 84 –

rprRingControl

The rprRingControl command is used to set up the content of RPR header used by all RPR packets, except
the RPR Fairness Frames, which are set up in the rprFairness command. The options are divided into Base
Control and Extended Control options. rprRingControl for full details. The important options of this
command are mentioned in the following table:

Table:rprRingControl Options

Type Option Usage

Base packetType Indicates whether the RPR packet is an idle, control, fairness
or data frame.

ringIdentifier Which ringlet the packet should be transmitted on.

serviceClass The class of service that the packet belongs to.

ttl The time-to-live for the RPR packet.

enableFairnessEligible Whether the packet is eligible for throttling in the fairness
algorithm.

enableOddParity
parityBit

Controls parity for Fairness frames.

enableWrapEnable Whether the packet is eligible for wrapping in the case of a
failure.

Extended extendedFrame Indicates that the frame was sent from and to MAC addresses
that are not stations. The other fields are then provided as
part of the frame.

ttlBase The TTL of the original packet prior to encapsulation.

floodingForm Whether the frame should be flooded or not and if so to which
ringlets.

strictOrder Whether strict ordering on packets should be preserved.

passedSource Indicates that a wrapped packet has passed its source.

rprFairness

The rprFairness command is used to set up the content of RPR Fairness messages sent periodically from a
node. The RPR Fairness Algorithm (FA) is used to manage congestion on the ringlets in an RPR network.
Fairness frames are sent periodically to advertise bandwidth usage parameters to other nodes in the
network to maintain weighted fair share distribution of bandwidth. The messages are sent in the direction
opposite to the data flow; that is, on the other ringlet.rprFairness for full details. The important options of
this command are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 85 –

Table:rprFairness Options

Member Usage

<ring control> The rprFairness command maintains a separate copy of the Base options discussed
in rprRingControl. See that section for details.

enableTransmit Enables the transmission of RPR Fairness messages.

controlValue The normalized advertised fair rate value.

messageType Specifies single or multi-point choke message.

repeatInterval The frequency of fairness message transmission.

rxAgingInterval A timeout value for receipt of Fairness messages from other nodes.

rxMacAddress
txMaxAddress

The receive and transmit MAC addresses to use in Fairness messages.

rprProtection

The rprProtection command is used to build RPR protection messages. Protection messages provide
wrapping status information and indicates of a station’s desires with respect to wrapping. rprProtection
for full details. The important options of this command are mentioned in the following table:

Member Usage

wrapPreferred A station's ability and/or preference to support wrapping.

jumboPreferred A station's ability and/or preference to support jumbo frames.

protectionRequestEast
protectionRequestWest

The protection state of the East/West interface.

sequenceNumber Use to ensure proper interpretation of Protection messages.

wrappingStatusEast
wrappingStatusWest

The wrapping status for traffic received on the East/West interface.

Table:rprProtection Options

rprOam

The rprOam command is used to build RPR OAM (Operations, Administration, Management) messages.
These messages are sent between stations to determine the operational status of the connection.
Following are the types of messages:

l Echo request and response frames: To determine connectivity.
l Flush frames: To prevent mis-ordering of frames.
l Vendor specific frames: For carrying a vendor's OAM information.

Chapter 5 IxTclHal API Description

– 86 –

rprOam for full details. The important options of this command are mentioned in the following table:

Table:rprOam Options

Member Usage

typeCode Indicates the type of message: flush, echo request, echo response, or
vendor specific.

requestProtectionMode The requested protection mode for the station.

requestRinglet Controls which ringlet the receiving station should respond on.

responseProtectionMode As in requestProtectionMode, but for a response.

responseRinglet As in requestRinglet, but for a response.

vendorOui For a vendor specific message, the vendor's OUI designation. The user
data for the message should be established using stream background
data.

rprTopology

The rprTopology command is used to build RPR topology messages. RPR topology messages consist of a
set of TLV (type-length-value) settings constructed through the use of the rprTlvIndividualBandwidth and
rprTlvBandwidthPair, rprTlvWeight, rprTlvTotalBandwidth, rprTlvNeighborAddress, rprTlvStationName,
and rprTlvVendorSpecific commands, followed by a call to the addTlv command for that type.

A TLV is added to a topology message by configuring the TLV with the appropriate command from the list
above and then adding it to the topology message with rprTopology addTlv type, where type indicates
which of the TLVs to use. A TLV may be retrieved from a topology message through the use of getFirstTlv
/ getNextTlv. These commands return the name/pointer of the command that was used to configure the
TLV. This is typically used in the following sequence of commands:

set tlvCmd [rprTopology getFirstTlv]
$tlvCmd config ...

Each of the TLV commands also has a type option which uniquely identifies the type of the TLV.

The individual TLVs are set up using the commands in the following sections. rprTopology for full details.
The important sub-commands of this command are mentioned in the following table:

Table:rprTopology Sub-Commands

Member Usage

addTlv Adds a TLV to the list associated with the Topology message.

clearAllTlvs Removes all TLVs in the list.

getFirstTlv
getNextTlv

Cycles through the list of TLVs.

Chapter 5 IxTclHal API Description

– 87 –

Member Usage

delTlv Deletes the currently addressed TLV.

rprTlvIndividualBandwidth and rprTlvBandwidthPair

The rprTlvIndividualBandwidth command is used to set up the content of an RPR Individual Bandwidth
TLV for use in an RPR topology message. This TLV is added to a topology message by use of the
rprTopology addTlv rprIndividualBandwidth command.

This command’s data is constructed by adding rprTlvBandwidthPairs. Bandwidth pairs are constructed
through the use of the rprTlvBandwidthPair command and then added to this command with the
rprTlvIndividualBandwidth addBandwidthPair command. Each bandwidth pair corresponds to the
reserved bandwidth between this node and a node a number of hops away from this node. The first item
in the pair represents the reserved bandwidth on ringlet 0 and the second represents the reserved
bandwidth on ringlet 1.

Bandwidth pairs must be added in order; that is, the node one hop away, followed by the node two hops
away, etc.

rprTlvIndividualBandwidth and rprTlvBandwidthPair for full details. The important sub-commands of the
rprTlvIndividualBandwidth command are:

Table:rprTlvIndividualBandwidth Sub-Commands

Member Usage

addBandwidthPair Adds a TLV to the list associated with the Topology message.

clearAllBandwidthPairs Removes all TLVs in the list.

getFirstBandwidthPair
getNextBandwidthPair

Cycles through the list of TLVs.

delBandwidthPair Deletes the currently addressed TLV.

The important options of the rprTlvBandwidthPair command are mentioned in the following table:

Member Usage

bandwidth0
bandwidth1

The bandwidth requirements of the two ringlets.

Table:rprTlvBandwidthPair Options

rprTlvWeight

The rprTlvWeight command is used to set up the content of an RPR Weight TLV for use in an RPR topology
message. This TLV is added to a topology message by use of the rprTopology addTlv rprWeight command.
rprTlvWeight for full details. The important options of the this command are mentioned in the following
table:

Chapter 5 IxTclHal API Description

– 88 –

Table:rprTlvWeight Options

Member Usage

weightRinglet0
weightRinglet1

The weight values of the two ringlets.

rprTlvTotalBandwidth

The rprTlvTotalBandwidth command is used to set up the content of an RPR Total Bandwidth TLV for use
in an RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprTotalBandwidth command. rprTlvTotalBandwidth for full details. The important options of the this
command are:

Member Usage

bandwidthRinglet0
bandwidthRinglet1

The total reserved class A0 bandwidth value of the two ringlets.

Table:rprTlvTotalBandwidth Options

rprTlvNeighborAddress

The rprTlvNeighborAddress command is used to set up the content of an RPR Neighbor Address TLV for
use in an RPR topology message. This TLV is added to a topology message by use of the rprTopology
addTlv rprNeighborAddress command. rprTlvNeighborAddress for full details. The important options of
the this command are mentioned in the following table:

Table:rprTlvNeighborAddress Options

Member Usage

neighborMacEast
neighborMacWest

The total reserved class A0 bandwidth value of the two ringlets.

rprTlvStationName

The rprTlvStationName command is used to set up the content of an RPR Station Name TLV for use in an
RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprStationName command. rprTlvStationName for full details. The important options of the this command
are mentioned in the following table:

Member Usage

stationName The name of the station.

Table:rprTlvStationName Options

Chapter 5 IxTclHal API Description

– 89 –

rprTlvVendorSpecific

The rprTlvVendorSpecific command is used to set up the content of an RPR Vendor Specific TLV for use in
an RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprVendorSpecific command. rprTlvVendorSpecific for full details. The important options of the this
command are mentioned in the following table:

Table:rprTlvVendorSpecific Options

Member Usage

companyId The IEEE/RAC company identifier.

dependentId The company dependent part of the identifier.

vendorData The vendor specific data associated with the topology message.

GFP

The Generic Framing Protocol is only available for certain ports, this may be tested through the use of the
portisValidFeature... portFeatureGfp command. The GFP framing mode is enabled by setting the
sonetheader option to sonetGfp. The GFP header and other options are set in the gfp and gfpOverhead
commands. The filter and filterPallette commands have access to GFP HEC and CRC error conditions.
Additional GFP specific statistics are available in the stat command.

gfp

The gfp command is used to set all GFP framing parameters. The important options of the this command
are mentioned in the following table:

Table:gfp Options

Member Usage

enablePli
pli

Set the payload length indicator.

payloadType Indicates the type of payload that is encapsulated.

fcs The type of FCS to include.

channelId The channel ID for management packets.

coreHecErrors
typeHecErrors
extensionHecErrors

Controls the inclusion of HEC errors in packets.

Chapter 5 IxTclHal API Description

– 90 –

gfpOverhead

The gfpOverhead command is used to set several operation parameters. The important options of the this
command are mentioned in the following table:

Table:gfpOverhead Options

Member Usage

enablePayloadScrambling Enables payload scrambling.

enableSingleBitErrorCorrection Enables single bit error correction.

deltaSyncState Controls state machine transitions.

ppp and pppStatus

ppp allows for programming of the Point to Point protocol header, while pppStatus can be used to retrieve
the current status and values of the PPP negotiation. The options of the two objects are integrated
together in the next table. Items from pppStatus are indicated in underline mode. See the Ixia Reference
Guide for a general discussion. ppp and pppStatus for full details. The important options of this command
are mentioned in the following table:

Table:ppp/pppStatus Options

Category Member Usage

Basic enable Enables ppp negotiation.

Negotiation activeNegotiation Enables the active negotiation process.

enableAccmNegotiation Enables asynchronous control character
negotiation.

enableIp Enables IP address negotiation

enableIpV6 Enables IPV6 address negotiation

enableLqm Enables line quality monitoring negotiation.

enableOsi Enable OSI over PPP negotiation

enableMpls Enable MPLS over PPP negotiation

IP Addresses ipState The current state of IPCP negotiation

localIpAddress The local port’s IP address.

peerIpAddress The peer’s IP address.

IPv6 Interface localIpV6IdType The negotiation mode and options.

Chapter 5 IxTclHal API Description

– 91 –

Category Member Usage

ID localIpV6Negotiation
Mode

ipV6State The current state of IPV6 CP negotiation

localIpV6Iid Suggested IPV6 address to be used for the
Interface ID.

localIpV6MacBasedIid Suggested MAC address to be used for the
Interface ID.

peerIpV6IdType
peerIpV6Negotiation
Mode

The negotiation mode and options.

peerIpV6Iid Suggested IPV6 address to be used for the
Interface ID.

peerIpV6MacBasedIid Suggested MAC address to be used for the
Interface ID.

Retries configurationRetries The number of configuration requests to try.

terminationRetries The number of termination requests to try.

Magic Number useMagicNumber Enables the use of a magic number in the
negotiation to discover looped back connections.

magicNumberNegotiated The magic number negotiated between the peers.

useMagicNumberRx/Tx Enable negotiation and use of the magic number
in the receive direction/transmit direction.

rx/txMagicNumberStatus The status and value of transmit and receive
magic number negotiation.

Maximum
Receive Unit

rxMaxReceiveUnit Maximum frame size in the receive direction.

txMaxReceiveUnit Maximum frame size in the transmit direction.

LQM lqmReportInterval The desired LQM interval to be used during LQM
negotiation

lqmQualityState The current state of the LQM negotiation

lqmReportIntervalRx/Tx The negotiation LQM receive/transmit port
interval

Chapter 5 IxTclHal API Description

– 92 –

Category Member Usage

lqmReportPacketCounterRx/Tx The number of LQM packets received/transmitted

OSI rxAlignment
txAlignment

The desired byte alignment for
reception/transmission used during negotiation

osiState The current state of OSI negotiation

rxAlignment
txAlignment

The negotiated byte alignment for
reception/transmission

MPLS mplsState The current state of MPLS negotiation

hdlc

hdlc sets the three values associated with the HDLC header. See the Ixia Reference Guide for a general
discussion."hdlc" for full details. The options and sub-commands of this command are mentioned in the
following table:

Table:hdlc Options

Member Usage

address
control
protocol

The one-byte address field, one-byte control field and two-byte protocol field.

Table:hdlc Sub-Commands

Member Usage

setCisco Sets the header variables to the Cisco defaults in IxHal.

setppp Sets the header variables to the ppp defaults in IxHal.

frameRelay

frameRelay controls Frame Relay specific parameters. sonet config -header must be configured for
the correct Frame Relay headers first. See the Ixia Reference Guide for a general discussion.“frameRelay”
for full details. The values set here are within the Frame Relay header. Note that streamgetmust be called
before this command’s get sub-command. The important options of this command are mentioned in the
following table:

Table:frameRelay Options

Member Usage

addressSize The address length in the header.

Chapter 5 IxTclHal API Description

– 93 –

Member Usage

becn Sets the backward congestion notification bit.

commandResponse Sets the command or response bit.

control Sets the control information bit.

discardEligibleBit Sets the discard eligible bit.

dlci DLCI core indicator bit in the Frame Relay address field.

counterMode
repeateCount
maskSelect

Parameters used to vary the DLCI between frames.

dlciCoreValue Frame Relay address field.

etherType The ethernet type of protocol to use.

extensionAddress
0/1/2/3

Extension address bit 0/1/2/3.

fecn Sets the forward congestion notification bit.

nlpid The network layer identifier for the upper-layer protocol.

bert and bertErrorGeneration

The bert command configures a BERT capable port. The pattern which is transmitted and/or received is
programmed. bertErrorGeneration is used to insert errors into a transmitted stream. Received errors are
available through the use of the stat command. See the Ixia Reference Guide for a general discussion.

Some of the BERT capable cards support channelized BERT operation. Where available, a level parameter
indicates which channel is to be controlled. For example, an OC192 channel can be channelized into 4
OC48 channels and each OC48 channel can be channelized into 4 OC12 channels. Each channel selection
at each level is represented as a digit in a dot (‘.’) separated string notation. For example, the 2nd OC48’s
3rd OC12 channel is represented as 2.3. This is illustrated in Figure: Channelized Bert Label Usage.

Figure: Channelized Bert Label Usage

OC192 OC48

OC48

OC48

OC48

OC12
Channels

1.0

2.0

3.0

4.0

2.1
2.2
2.3
2.4

Note that the OC48 channels may be referred to and operated on using a final .0 digit, as in 3.0.

Chapter 5 IxTclHal API Description

– 94 –

The important options of the bert command are mentioned in the following table:

Table:bert Options

Member Usage

txRxPatternMode Couples the expected receive pattern with the transmitted, or leaves it
independent

txPatternIndex
txUserPattern
enableInvertTxPattern

Determines the transmitted pattern from one of a set or pre-programmed
patterns or a user supplied pattern. The pattern may be inverted or not.

rxPatternIndex
rxUserPattern
enableInvertRxPattern

If the receive pattern is independently programmed form the transmitted
pattern, determines the expected receive pattern from one of a set or pre-
programmed patterns or a user supplied pattern. The pattern may be
inverted or not.

The important options and sub-commands of the bertErrorGeneration command are mentioned in the
following table:

Table:bertErrorGeneration Options

Member Usage

errorBitRate
period

Determines the frequency, in bits, with which errors are inserted. The choice may be
from a pre-programmed set or set to an arbitrary value.

burstCount The number of errors inserted at a time.

burstWidth The number of errors to insert at a time.

burstPeriod The number of good bits between error insertions.

bitMask A 32-bit mask indicating which bits within a 32-bit word are to be errored.

Table:bertErrorGeneration Sub-Commands

Member Usage

startContinuousError Starts the continuous insertion of programmed errors.

stopContinuousError Stops the continuous insertion of errors.

insertSingleError Inserts a single instance of the programmed error.

channelize Channelizes an OC48 channel down into four OC12 channels. A port must first
have been set to channelized mode by setting the port command’s
transmitMode setting to portTxModeBertChannelized.

isChannelized Determines whether a level is channelized already.

Chapter 5 IxTclHal API Description

– 95 –

Member Usage

unChannelize Unchannelizes an OC48 channel.

bertUnframed

The bertUnframed command is used to configure line speed and other operational characteristics for an
unframed BERT port. The important options of this command are mentioned in the following table:

Table:bertUnframed Options

Member Usage

dataRate The data rate at which data is transmitted.

operation The type of operation: Normal, diagnostic loopback, or line loopback.

ATM

The next set of commands relates to ATM type cards. See the Ixia Reference Guide for a general
discussion. Note that different types of ATM encapsulation result in different length headers, as per
Table:ATM Header Length as a function of Encapsulation.

Table:ATM Header Length as a function of Encapsulation

Encapsulation Header Length

LLC Snap Routed 8

LLC Bridged Ethernet / 802.3 10

LLC Bridged Ethernet / 802.3 No FCS 10

LLC Encapsulated PPP 6

VC Muxed PPP 2

VC Muxed Routed 0

VC Muxed Bridged Ethernet / 802.3 2

VC Muxed Bridged Ethernet / 802.3 No FCS 2

The data portion of the packet normally follows the header, except in the case of the two LLC Bridged
Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type follow the header. The
offsets used in the dataIntegrity, filter, flexibleTimestamp, ip, ipV6Fragment, packetGroup,
protocolOffset, qos, tableUdfColumn, tcp, udf, and udp is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

Chapter 5 IxTclHal API Description

– 96 –

atmPort

atmPort for full details. The atmPort command is used to configure the basic operational characteristics
for an ATM port. The important options of this command are mentioned in the following table:

Member Usage

interfaceType Sets the port to UNI (user-network interface) or NNI (network-network
interface).

enableCoset Enables or disables the use of the Coset algorithm with the Header Error
Control byte.

enablePattern
Matching

Enables or disables the use of the atmFilter command to control capture and
statistics. Enabling this feature reduces the maximum number of VCCs that
may be used from 16K to 12K.

fillerCell Designates which of two types of cells is transmitted during idle periods:
l Idle Cell (VPI/VCI = 0 and CLP = 1)
l Unassigned Cell (VPI/VCI = 0 and CLP = 0)

packetDecodeMode The mode in which to decode received packets: Frame or cell.

reassemblyTimeout The period of time to wait for a cell on a channel.

sourceLocationId The source location ID.

Table:atmPort Options

atmHeader

atmHeader for full details. The atmHeader command is used to configure the 5-byte ATM header inserted
in packets within streams. Note that streamgetmust be called before this command’s get sub-command.
The important options of this command are mentioned in the following table:

Table:atmHeader Options

Member Usage

vpi/vci
enableAutoVpiVci
Selection

Sets the Virtual Path Identifier (VPI) and Virtual Circuit Identifier (VCI) for the
header. The enableAutoVpiVciSelection control sets these to 0/32.

genericFlowControl The Generic Flow Control value, used for device control signalling.

enableCL Controls the congestion loss bit of the payload type.

cellLossPriority The cell’s priority, when cells must be dropped. A value of 0 has a higher
priority than 1.

Chapter 5 IxTclHal API Description

– 97 –

Member Usage

hecErrors The number of bit errors to insert in the HEC byte.

encapsulation The type of ATM encapsulation to be used.

aal5Error Force the insertion of AAL5 errors.

enableCpcsLength
cpcsLength

Allows the CPCS PDU length to be set.

header A read-only 5-byte header value, set from the other options.

atmHeaderCounter

atmHeaderCounter for full details. The atmHeaderCounter command is used to configure the counter
parameters that allow the value of the ATM header’s VPI and VCI fields to vary. The VPI and VCI values
are separately controlled using the same command. Following are the types of counters available:

l Fixed: A single value is used throughout.
l Counter: An incrementing counter is applied.
l Random: A masked set of bits are randomly set.
l Table: A table of values is repetitively used.

The important options and sub-commands of this command are mentioned in the following table:

Table:atmHeaderCounter Options

Member Usage

type The type of counter used: Fixed, counter, random, or table.

mode
repeatCount
step

If a counter type is used, then this indicates whether the counter counts up or down
continuously or for a particular count. The step size is also specified.

maskselect
maskvalue

If the random type is used, this indicates which bits of the value are fixed and to what
values.

dataItemList If the table type is used, then this is the table of values to be used round-robin.

Table:atmHeaderCounter Sub-Commands

Member Usage

set Sets the options for either the VPI or VCI value.

get Gets the options for either the VPI or VCI value.

Chapter 5 IxTclHal API Description

– 98 –

atmOam

The atmOam command is used to configure multiple ATM OAM messages to be transmitted on an ATM
port. The basic parameters for all OAM messages are configured in the options of this command.
Additional parameters that are particular to a specific OAM message are taken from the following
additional commands:atmOamActDeact, atmOamAis, atmOamFaultManagementCC,
atmOamFaultManagementLB or atmOamRdi.

Once configured, the OAM message for a VPI/VCI pair is added to the list associated with this command
with the add sub-command. Transmission of the OAM messages is initiated with the start sub-command
and stopped with the stop sub-command.

Trace information, if enabled with the enableTrace option is retrieved using the atmOamTrace command.

Refer to atmOam for full details. The important options and sub-commands of this command are
mentioned in the following table:

Table:atmOam Options

Member Usage

enableTx Enable the use of this list element.

enableCC Enable continuous checking.

enableLB Enable loopback.

enableTrace Enable collection of trace messages for the VPI/VCI.

functionType The type of the OAM message.

endPointsType The type of endpoints: Segment or end-to-end.

cellFlowType The cell flow type: F4 or F5.

Table:atmOam Sub-Commands

Member Usage

select Select the particular port to operate on.

add Add an OAM message to the list for a particular VPI/VCI pair.

removeAll
del

Delete all or a particular list entry.

getFirstPair
getNextPair

Iterate through the list entries.

start
stop

Start and stop the transmission and reception of OAM messages.

Chapter 5 IxTclHal API Description

– 99 –

atmOamActDeact

The atmOamActDeact command holds command specific options for the activation/deactivation message.
Refer to “atmOamActDeact” for full details. The important options of this command are mentioned in the
following table:

Table:atmOamActDeact Options

Member Usage

enableTxContinuous
txCount

Controls continuous or counted message transmission.

action The direction of the action: One way or bi-directional.

correlationTag The correlation tag.

defectLocation The defect location.

messageId The particular message: Activate/Deactivate Confirmed/Denied.

atmOamAis

The atmOamAis command holds command specific options for the AIS message. Refer to atmOamAis for
full details. The important options of this command are mentioned in the following table:

Member Usage

enableTxContinuous
txCount

Controls continuous or counted message transmission.

Table:atmOamAis Options

atmOamFaultManagementCC

The atmOamFaultManagementCC command holds command specific options for the Fault Management
Continuous Checking message. Refer to atmOamFaultManagementCC for full details. The important
options of this command are mentioned in the following table:

Table:atmOamFaultManagementCC Options

Member Usage

enableTxContinuous
txCount

Controls continuous or counted message transmission.

atmOamFaultManagementLB

The atmOamFaultManagementLB command holds command specific options for the Fault Management
Loopback message. Refer to atmOamFaultManagementLB for full details. The important options of this
command are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 100 –

Table:atmOamFaultManagementLB Options

Member Usage

enableTxContinuous
txCount

Controls continuous or counted message transmission.

correlationTag The correlation tag.

loopbackIndication The loopback indication: Reply or request.

loopbackIndicationId The loopback indication ID.

sourceLocationId The source location ID.

atmOamRdi

The atmOamRDI command holds command specific options for the RDI message. Refer to atmOamRdi for
full details. The important options of this command are mentioned in the following table:

Table:atmOamRdi Options

Member l Usage

enableTxContinuous
txCount

Controls continuous or counted message transmission.

defectLocation The defect location.

atmOamTrace

The atmOamTrace command is used to retrieve ATM OAM messages. These are collected for any OAM
message in which the enableTrace option was set to true when atmOam add was called.

Messages are collected into a circular buffer ofmaxNumTracemessages in size. Newest entries replace
oldest entries as necessary. The get chassis card port sub-command is used to retrieve all of the
message. The other get commands are used to look at particular entries.

Refer to atmOamTrace for full details. The important options and sub-commands of this command are
mentioned in the following table:

Table:atmOamTrace Options

Member Usage

maxNumTrace The maximum number of traces to hold in the buffer.

numTrace The number of traces in the buffer.

traceString The entire trace message as a single string.

Chapter 5 IxTclHal API Description

– 101 –

Member Usage

functionType
timeStamp
txRxType
vci
vpi

The components of the message.

Table:atmOamTrace Sub-Commands

Member Usage

get ch card port Get the trace messages.

get index Get a particular trace message.

clear Clear the message buffer.

getFirst
getNext

Iterate through the messages.

Circuit
The following commands support the Virtual Concatenation feature for 2.5G and 10G MSM cards.

sonetCircuit

The sonetCircuit command holds all the circuits. Refer to sonetCircuit for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table:sonetCircuit Options

Member Usage

txActiveTimeslot
List

Configure the active tx members. (default= "")

rxActiveTimeslot
List

Configure the active rx members. (default= "")

txIdleTimeslotList Configure the idle tx members. (default= "")

rxIdleTimeslotList

name Configure the circuit name. (default = "")

direction Configure the direction.
(default = circuitBidirectionSymmetrical)

txType Configure the tx payload speed. (default = circuitPayloadRateSTS1mv)

Chapter 5 IxTclHal API Description

– 102 –

Member Usage

rxType Configure the rx payload speed. (default = circuitPayloadRateSTS1mv)

enableTxLcas Enable the Lcas on transmit side. (default = FALSE)

enableRxLcas Enable the Lcas on receive side. (default = FALSE)

index Read only.This parameter is used to view the circuit index assigned by hardware.
(default = 0)

Table:sonetCircuit Sub-Commands

Member Usage

cget option Returns the current value of the configuration option given by option.

config
option value

Modify the configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

setDefault Sets to IxTclHal default values for all configuration options.

sonetCircuitList

The sonetCircuitList command holds all the circuits. Refer to sonetCircuitList for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table:sonetCircuitList Options

Member Usage

numCircuits Read only. This parameter is used to display the number of existing circuits in the
circuit list.

Table:sonetCircuitList Sub-Commands

Member Usage

add Adds a new circuit and verifies that the circuit can be added.

cget option Returns the current value of the configuration option given by option.

clearAllCircuits Remove all the circuits from the Sonet circuit list.

config option
value

Modify the configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

del circuitID Deletes the circuit with the given ID.

get circuitID Gets the existing circuit with the given circuit ID.

Chapter 5 IxTclHal API Description

– 103 –

Member Usage

getFirst Gets the first circuit from the Sonet circuit list.

getNext Gets the next circuit from the Sonet circuit list.

select chasID
cardID portID

Select the port where the IxTclHal configurations is set to local IxHal.

set circuitID Modify the existing circuit with the given circuit ID.

setDefault Sets to IxTclHal default values for all configuration options.

sonetCircuitProperties

The sonetCircuitProperties command is used to configure circuit properties after the circuit is added. The
Sonet properties for the circuit is configured here.

Refer to sonetCircuitProperties for full details. The important options of this command are mentioned in
the following table:

Table:sonetCircuitProperties Options

Member Usage

transmitMode This parameter is used to configure the transmit mode. (default =
circuitTxModePacketStreams)

payloadType This parameter is used to configure the Sonet header payload type.
(default = sonetHdlcPppIp)

dataScrambling This parameter is used to configure the Sonet dataScrambling payload type.
(default = false)

C2byteTransmit This parameter is used to configure the Sonet C2byteTransmit .
(default = 22)

C2byteExpected This parameter is used to configure the Sonet C2byteExpected.
(default = 22)

rxCrc Used to configure Rx CRC.

txCrc Used to configure Rx CRC.

index Read only. This parameter is used identify the circuit with associated ID.

Table:sonetCircuitProperties Sub-Commands

Member Usage

cget option Returns the current value of the configuration option given by option.

Chapter 5 IxTclHal API Description

– 104 –

Member Usage

config option value Modify the configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

get chassis ID
cardID portID
circuitID

Gets the existing circuit properties with the given circuit ID.

set chassis ID
cardID portID
circuitID

Modify the existing circuit properties with the given circuit ID.

setDefault Sets to IxTclHal default values for all configuration options.

lcas

The lcas command sets up LCAS configuration for receive and transmit. This enables configuring the LCAS
debug/trace messages. Refer to lcas for full details. The important options and sub-commands of this
command are mentioned in the following table:

Table:lcas Options

Member Usage

rsAck Configure the timeout value for Rs_Ack(s) for Rx Lcas. (default = 10)

holdOff Configure the hold off timeout for Rx Lcas. (default = 10)

waitToRestore Configure the wait to restore timeout for the Rx Lcas. (default = 10)

Table:lcas Sub-Commands

Member Usage

cget option Returns the current value of the configuration option given by option.

config option value Modify the configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

get chassis ID
cardID portID
circuitID

Gets Lcas information for the existing circuit with the given circuit ID.

set chassis ID
cardID portID
circuitID

Modify Lcas information for the existing circuit with the given circuit ID, if Lcas is
enabled in sonetCircuit.

setDefault Sets to IxTclHal default values for all configuration options..

Chapter 5 IxTclHal API Description

– 105 –

10GE

Link Fault Signaling

Link fault signalling is implemented on several of the 10GE cards. In addition to several additional
statistics which track local and remote faults, the link fault signalling implementation allows local and
remote faults to be inserted into transmissions. The following commands are used to control link fault
signalling:

l linkFaultSignaling: Control over fault insertion
l customOrderedSet: Definition of custom fault insertion signals

linkFaultSignaling

The linkFaultSignaling command is used to a series or continuous stream of link fault signals. The
series/stream consists of good and bad period, where the bad periods may send local, remote or custom
errors. Errors are called ordered sets; two, named A and B, are available for insertion. The important
options and sub-commands of this command are mentioned in the following table:

Table:linkFaultSignaling Options

Member Usage

enableLoopContinuously
loopCount

Enables continuous looping or sets a count for a series.

sendSetsMode Specifies whether ordered set A and/or B is used in the error insertion.

orderedSetTypeA
orderedSetTypeB

For each of the two ordered set types, indicates whether the type should
insert a local error, a remote error or a custom ordered set. Custom
ordered sets are defined through the use of the customOrderedSet
command.

contiguousErrorBlocks The number of contiguous 66-bit blocks with errors to insert.

contiguousGoodBlocks The number of contiguous 66-bit blocks without errors to insert between
bad blocks.

Table:linkFaultSignaling Sub-Commands

Member Usage

startErrorInsertion Starts the error insertion process.

stopErrorInsertion Stops the error insertion process.

customOrderedSet

The customOrderedSet command is used to define the byte-by-byte contents of a link fault signaling error
message. Two sets are maintained: set type A and B. The important options of this command are

Chapter 5 IxTclHal API Description

– 106 –

mentioned in the following table:

Table:customOrderedSet Options

Member Usage

blockType The type of the error block.

syncBits The value of the sync bits.

byte1–byte7 The contents of the remaining bytes in the 66-bit block.

txRxPreamble

The txRxPreamble command is used to set the options related to preamble transmit and receive operation
on 10GE LAN ports. The important options of this command are mentioned in the following table:

Table: txRxPreamble Options

Member Usage

rxMode The receive mode for the port: SFD detect, by byte count, or the same as
txMode.

txMode The transmit mode for the port: SFD detect or by byte count.

enableCiscoCDL Enables the use of Cisco CDL headers instead of the Ethernet header.

enableCDLStats Enables the collection of CDL statistics and capture.

enablePreambleView Enables the inclusion of preamble data in the stream packetview.

Optical Digital Wrapper / FEC

The optical digital wrapper provides for generic framing as specified in ITU-T G.709. At the present time,
only FEC error insertion is enabled.

opticalDigitalWrapper

This command enables the use of the wrapper. The important options of this command are mentioned in
the following table:

Table:opticalDigitalWrapper Options

Member Usage

enableFec Enables the use of the wrapper and FEC.

enableStuffing Enables the use of stuffing.

payloadType The emulated payload type.

Chapter 5 IxTclHal API Description

– 107 –

fecError

Forward Error Correction (FEC) is a method of communicating data that corrects errors in transmission on
the receiving end. Prior to transmission, the data is put through a predetermined algorithm that adds
extra bits specifically for error correction to any character or code block. If the transmission is received in
error, the correction bits are used to check and repair the data. This feature is only available for certain
port types; this may be tested through the use of the portisValidFeature... portFeatureFec command. FEC
insertion must be enabled through the use of the Optical Digital Wrapper / FEC command.

fecError command allows you to inject FEC errors into transmitted data. The following modes are
controlled by the injectionMode option:

l Single: A single instance of an error is inserted.
l Rate: Errors are inserted at one of a set of pre-determined rates as controlled by the errorRate
option.

l Burst: Continuous bursts of errors is inserted as determined by the subrow, burstSize, offset,
errorBits and numberOfRowsToSkip options.

Single errors are inserted with the injectError sub-command and the start and stop commands are used
to start and stop rate and burst error insertion. The important options and sub-commands of this
command are mentioned in the following table:

Table: fecError Options

Member Usage

injectionMode Indicates whether a single error, error rate or burst is to be inserted.

errorRate Indicates the continuous error rate when rate error insertion is used.

burstSize
errorBits
numberOfRowsToSkip
offset
subrow

Options which control the insertion of error bursts.

Table: fecError Sub-Commands

Member Usage

start Starts the error insertion process for rate and burst insertion modes.

stop Stop the error insertion process for rate and burst insertion modes.

injectError Injects a single error, when the injection mode is set to single error.

CDL Support

Cisco Converged Data Layer (CDL) support is enabled through the use of the
txRxPreambleenableCiscoCDL option. When this option is set the cdlPreamble command is used to set up

Chapter 5 IxTclHal API Description

– 108 –

the CDL preamble. The txRxPreambleenableCDLStats option controls the collection of CDL statistics and
preamble capture. The txRxPreambleenablePreambleView option controls the format of the stream
packetView. When CDL mode is active, the filter command is able to filter on CDL header errors.

cdlPreamble

The cdlPreamble command configures the CDL Preamble that is enabled through the use of the
txRxPreambleenableCiscoCDL option. The important options and sub-commands of this command are
mentioned in the following table:

Table: cdlPreamble Options

Member Usage

oam Packet type and OAM information

messageChannel The in-band message channel

applicationSpecific Application specific data

enableHeaderCrcOverwrite
headerCrc

Allows the precalculated header to be overridden.

startOfFrame
cdlHeader

Read-only reflections of the start of frame byte and the entire CDL
preamble.

Table: cdlPreamble Sub-Commands

Member Usage

decode Decodes a captured frame.

xfp

UNIPHY-XFP cards have two additional options that control monitoring of LOS (Loss of Signal) and module
ready status. xfp for full details. The important options of this command are mentioned in the following
table:

Table:xfp Options

Member Usage

enableMonitorLos Enables the port to monitor Loss of Signal. In this case, the Loss
of Signal status is used to determine Link State.

enableMonitorModuleReadySignal Enables the port to monitor whether the module is ready. In this
case, no transmit, received or statistics operations are
performed until the module is ready.

Chapter 5 IxTclHal API Description

– 109 –

lasi

10GE XENPAK cards have an additional link alarm status interrupt (LASI) set of registers which control
the interrupt operation. lasi for full details. The important options of this command are mentioned in the
following table:

Table: lasi Options

Member Usage

enableMonitoring Enables the monitoring of the LASI status registers so as to clear the
interrupt signal.

enableAutoDetected
OUIDeviceAddress

Enables the automatic detection of a devices OUI address.

ouiDeviceAddress The OUI device address of the LASI status registers.

controlRegister
rxAlarmControlRegister
txAlarmControlRegister

The values of the registers which control LASI operation.

Power Over Ethernet

The Power over Ethernet (PoE) ports are controlled by the following commands:

l poePoweredDevice- sets up and applies voltage and current to emulate a PoE powered device.
l poeAutoCalibration- sets up and controls port calibration.
l poeSignalAcquisition- sets up and controls the ability to measure time and amplitude values on the
PoE signal.

poePoweredDevice

The poePoweredDevice command is used to setup the parameters by which a PoE Powered Device (PD) is
emulated on a port. The port can emulate a device that uses either Alternative A and/or Alternative B.
This is controlled by the relayControl option. The emulated class is controlled by the enableClassSignature
and signatureValue options; the classType indicates the calculated class based on the signature value.
The emulated detection signature is controlled by the enableDetectionSignature, rsig, csig and
enableCsig10uF options. The emulated Alternating Current Maintain Power Signature (ACMPS) is
controlled by the enableAcMpsSignature, rpd, cpd and enable CpdAdd10uF options.

Once the PSE (Power Sourcing Equipment) has classified the emulated PD, it should provide power to the
port. The power requirements of the emulated port are controlled by the steadyStateLoadControl,
controlledCurrent, controlledPower and idleCurrent options. Transient load variations may be inserted
through the use of the enableTransientLoadControl, transientLoadControl, pulseWidth, duty,
pulsedCurrent and slewRate options. Pulses are applied through the use of the portGroupsetCommand
sub-command, with an loadPoEPulse value or through the high-level ixLoadPoePulse and
ixLoadPortPoePulse commands; if enableTransientLoadControl is true and transientLoadControl is set to
poeLoadControlSinglePusle, then a pulsed current as indicated by pulsedCurrent and slewRate is injected
for the period indicated by pulseWidth.

Chapter 5 IxTclHal API Description

– 110 –

The voltage thresholds that are used by the PD to detect state transitions may be set by the vOperate,
vOff, vClassify, vDetect and vNoop options. The important options and sub-commands of this command
are mentioned in the following table:

Table: poePoweredDevice Options

Member Usage

relayControl Indicates which device Alternatives should be emulated.

enableClassSignature
signatureValue
classType

Control the setting of the class signature.

enableDetectionSignature
rsig
csig
enableCsigAdd10uF

Controls the setting of the detection signature.

enableAcMpsSignature
rpd
rpdRangeControl
cpd
enableCpdAdd10uF

Controls the setting of the ACMPS signature.

steadyStateLoadControl
controlledCurrent
controlledPower
idleCurrent

Controls the steady state power requirements.

enablePulseOnStart
enableTransientLoadControl
transientLoadControl
pulseWidth
duty
pulsedCurrent
slewRate

Controls the application of transient loads.

vOperate
vOff
vClassify
vDetect
vNoop

Controls the state transition voltage thresholds.

Table: poePoweredDevice Sub-Commands

Member Usage

setNominal Sets nominal values for all types.

Chapter 5 IxTclHal API Description

– 111 –

poeAutoCalibration

The poePoweredDevice command is used to initiate a PoE port calibration and/or determine the status of
a calibration. Calibration of all PoE ports is performed at chassis power-up time.

A calibration is initiated by calling the initiateCalibrate sub-command. The calibration may take up to 20
seconds. The results of a calibration, either while it is preceding or after it has completed, can be
determined by first calling requestStatus, waiting a second and then calling get. The status of the
calibration is then available through the options in this command. Refer to poeAutoCalibration for
complete details. The important options and sub-commands of this command are mentioned in the
following table:

Table: poeAutoCalibration Options

Member Usage

currentReadbackStatus
voltageReadbackStatus
iClassRangeStatus
iLoadRangeStatus
iPulseRangeStatus

The current status of the auto-calibration for each item: One of testing,
pass or fail.

Table: poeAutoCalibration Sub-Commands

Member Usage

initiateCalibrate Starts the calibration process.

requestStatus Requests the status of the calibration.

get Reads back the status of the calibration so that it may be read with cget’s.

poeSignalAcquisition

The poeSignalAcquisition command is used to set up and capture the time between two signal transition
events. The amplitude of the a signal may also be measured a fixed time after the first signal transition.

The startTriggerSource, startTriggerSlope and startTriggerValue are used to indicate the signal to be used
for the first event, the slope that it should transition (positive or negative) and the value that should be
matched. Similarly, the stopTriggerSource, stopTriggerSlope and stopTriggerValue are used to indicate
the signal to be used for the second event. The enableTime, enableAmplitude and
amplitudeMeasurementDelay options are used to condition the measurements made.

Arming of the signal acquisition is accomplished through the use of the portGroup command with the
armPoeTrigger value, or the ixArmPoeTrigger and ixArmPortPoeTrigger high-level commands. The
arming may be aborted through the use of the portGroup command with the abortPoeTrigger value, or
the ixAbortPoeArm and ixAbortPortPoeArm high-level commands.

A number of statistics available through the stat, statGroup, statList and statWatch commands support
operation of this command. The status of the arming may be read from the statPoeTimeArmStatus and

Chapter 5 IxTclHal API Description

– 112 –

statPoeAmplitudeArmStatus options. The status of the triggering may be read from the
statPoeTimeDoneStatus and statPoEAmplitudeDoneStatus options. The time and amplitude values are
visible in the statPoeMonitorTime and statPoeMonitorAmplitudeDCVolts and
statPoeMonitorAmplitudeDCAmps options after a trigger has completed.

portGroup

Port groups provide a means of creating a group of ports on which an action may be performed or
command may be sent. A single instance of portGroup may be used to maintain a number of groups.
portGroup for full details. The important options and sub-commands of this command are mentioned in
the following table:

Table: portGroup Options

Member Usage

lastTimestamp The timestamp, a 64-bit number of nanoseconds, of when the last command was
sent to the hardware as a result of a setCommandmethod execution.

Table: portGroup Sub-Commands

Member Usage

create Creates a new port group, identified by a unique number.

destroy Destroys a port group.

add Adds a port to a port group.

del Deletes a port from a port group.

canUse Tests to see whether the current user can use the ports in a group. That is, whether
you own the ports or ports are being used by someone else.

setCommand Performs an action or sends a command to all of the ports in a group.

Transmit commands:
l Start / stop
l Staggered start
l Pause
l Step
l Clear time stamp

Receive:
l Start / stop capture
l Reset statistics
l Start / stop latency

Chapter 5 IxTclHal API Description

– 113 –

Member Usage

l Clear latency

Protocols:
l Start/stop each of the protocols
l Others:
l Take / clear ownership
l Force take / clear ownership

clear/set
Scheduled
TransmitTime

Clears or sets the maximum amount of time that a group of ports transmits. This is
only valid for ports that support the portFeatureScheduledTxDuration feature, which
may be tested with theport isValidFeature command.

write Sends port properties such as speed, duplex mode and autonegotiation to the
hardware. All other values may be sent with writeConfig.

writeConfig Sends streams, filter and capture parameters to the hardware.

Data Transmission

Streams and Flows
Streams and flows are the means by which data is applied to the DUT. Streams are generated ‘on the fly’
by the Ixia hardware. Flows are data arrays located on disk and associated with a port. Multiple streams
are defined and associated with a port through the use of the stream command. stream provides for the
transitions between streams, gaps, addressing and basic frame control. See the Ixia Reference Manual for
a general discussion. The following additional commands are required for further packet header and data
contents:

l stream: Construct streams.
l streamRegion: Controls common stream properties.
l weightedRandomFramesize: Advanced weighted random distributions of frame sizes
l flexibleTimestamp: Place the time stamp at different locations.
l udf: User Defined Fields, algorithmically or manually generated.
l tableUdf: Table driven UDF.
l tcpRoundTripFlows:Generate packets for round trip flow analysis.
l packetGroup: Generate data for packet group latency measurements.
l dataIntegrity: Generate additional data integrity values.
l Sequence Checking: Generate data for additional sequence checking.
l forcedCollisions: Generate deliberate collisions.
l protocol: Establish basic protocol parameters.
l protocolOffset: Change the location of protocol headers in a packet.

Chapter 5 IxTclHal API Description

– 114 –

l isl: Set up header parameters for Cisco ISL.
l vlan: Set up header parameters for VLANs.
l stackedVlan: Set up stacked VLANs (Q-in-Q).
l mpls and mplsLabel: Generate MPLS headers and control messages.
l The ipx command provides for the setting of IPX header elements. See ipx on page A-375 for full
details. Note that stream get must be called before this command’s get sub-command. The
important options of this command are mentioned in the following table:: Set up IPX header
parameters.

l The name of the associated protocol object must be set to ‘ip’ and the appName must be set to ‘arp’
to successfully use this command.The arp command allows ARP packets to be constructed.arpfor full
details. Generate ARP messages.

l IP: Set up IPv4 header parameters.
l ipV6: Set up IPv6 header parameters.
l tcp: Set up TCP/IP header parameters.
l udp: Set up UDP/IP header parameters.
l igmp: Generate IGMP messages.
l icmp: Generate ICMP messages.
l rip and ripRoute: Generate RIP messages.
l dhcp: Generate DHCP messages.
l pauseControl: Generate pause control packet.
l srpArp: Generate an SRP ARP packet.
l srpIps: Generate an SRP IPS (Intelligent Protection Switch) packet.
l srpDiscovery: Generate an SRP Discovery packet.
l srpMacBindin: Configure MAC bindings for Discovery packets.
l srpUsage: Set up periodic SRP Usage packet generation.
l streamQueueList: Manages the stream queues associated with ATM ports.
l streamQueue: For ATM ports, manages the streams in a stream queue.
l streamQueue: For ATM ports, manages the streams in a stream queue.
l npiv: To configure an unconnected NPIV interface.

stream

stream controls the basic structure of streams: stream to stream transition, inter-stream/frame/burst
gaps, and addressing. It also controls the common frame contents: size, base data pattern, checksum,
and identity record. The other commands in this section may be used for specific protocols and header
data. Multiple streams may be created and connected to each other through the use of their IDs. See the
Ixia Reference Guide for a general discussion. stream for full details.

Some ports support the scheduled transmit duration feature, which may be tested with the
portisValidFeature command. This feature allows a group of ports to run for a fixed number of seconds, or

Chapter 5 IxTclHal API Description

– 115 –

for the period indicated by its streams, which ever comes first. This feature is controlled with the
portGroupsetScheduledTransmitTime and clearScheduledTransmitTime commands.

The setQueue and getQueue sub-commands are used to set up streams within ATM ports. Queues are
discussed in streamQueueList and streamQueue. ATM streams may have incrementing and/or random
frame sizes, but only 16 of either type. All other streams are forced to fixed size.

Note: To modify the options of any command that contributes to the configuration of streams, it is
always necessary to perform a stream get chassis card port stream command.

The important options and sub-commands of this command are mentioned in the following table:

Table: stream Options

Category Member Usage

Stream
Control

enable This stream is enabled or not. Disabled streams are
skipped during transmission.

dma The type of stream and relationship to another stream:
l Continuous packet
l Continuous burst
l Stop after stream
l Advance to next stream
l Return to stream ID (labeled as gotoFirst for
historical reasons)

l Loop to stream ID (labeled as firstLoopCount
for historical reasons)

l Fixed Count Burst

returnToId The stream ID to return to for the return to and loop to
stream ID dma types.

loopCount This is the repeat count for the dma choice ‘loop to
stream ID’.

numBursts The number of bursts, ignored for dma choices
continuous packet and continuous burst.

numFrames The number of maximum frames in a stream, ignored
for dma choice continuous packet.

priorityGroup Specifies the priority group of the stream.

Inter-Frame
Gap

gapUnit The choice of units for ifg, isg and ibg. The choices
are mentioned as follows:

l Nano-seconds

Chapter 5 IxTclHal API Description

– 116 –

Category Member Usage

l Micro-seconds
l Milli-seconds
l Seconds
l Clock ticks that vary with the port type

ifgType Indicates whether the inter-frame gap is a fixed value
or random between a minimum (ifgMIN) and
maximum value (ifgMAX).

ifg The inter-frame gap expressed in gapUnit units.

ifgMIN The minimum gap generated for ifgType of random.

ifgMAX The maximum gap generated for ifgType of random.

rateMode Indicates whether to use the ifg value, percentage of
the maximum transmission rate, frames per second or
bits per second.

percentPacket
Rate

If rateMode indicates, then ifg is calculated based on a
desired percentage of maximum transmission rate.

fpsRate If indicated by rateMode, the desired frames per
second.

bpsRate If indicated by rateMode, the desired bits per second.

framerate (Read-only) The actual rate, in frames per second that
the stream transmits at.

Inter-Burst
Gap

enableIbg Enables the use of inter-burst gaps.

ibg The inter-burst gap expressed in gapUnit units.

Inter-Stream
Gap

enableIsg Enables the use of inter-stream gaps.

isg The inter-stream gap expressed in gapUnit units.

Addressing da First destination MAC address assigned to the stream.

daMaskValue/daMaskSelect Indicates which bits of the destination MAC address are
to be manipulated and their initial values.

numDA The number of destination MAC addresses that is used.

Chapter 5 IxTclHal API Description

– 117 –

Category Member Usage

daRepeatCounter Indicates how the destination MAC address is to be
incremented or decremented from packet to packet.

sa First source MAC address assigned to the stream.

saMaskValue/saMaskSelect Indicates which bits of the source MAC address are to
be manipulated and their initial values.

numSA The number of source MAC addresses that is used.

saRepeatCounter Indicates how the source MAC address is to be
incremented or decremented from packet to packet.

enableSourceInterface Enables the use of the MAC and IP addresses from the
interface table in lieu of the sa value.

sourceInteraceDescription The name of the interface on the port to use.

Frame
Control

frameSizeType The type of frame size calculation:
l Fixed size as indicated in framesize.
l Random size between frameSizeMin and
frameSizeMax. Some modules support more
advanced random frame sizes,
weightedRandomFramesize.

l Incrementing packet to packet.
l Automatically calculated, depending on protocol
dependent contents.

framesize The size of all frames if frameSizeType is fixed.

frameSizeMin The minimum frame size if frameSizeType is random.

frameSizeMax The maximum frame size if frameSizeType is random.

frameType The type field of the Ethernet frame.

preambleSize Number of bytes in the frame preamble.

patternType Dictates the type of data pattern manipulation:
l increment/decrement bytes or words
l random data
l fixed repeating pattern chosen from
dataPattern

l fixed non-repeating pattern chosen from
dataPattern

Chapter 5 IxTclHal API Description

– 118 –

Category Member Usage

dataPattern One of a number of fixed patterns of data, including all
1’s and all 0’s, plus a choice for a user specified
pattern.

pattern If dataPattern indicates a user specified pattern, this
string specifies the contents.

fcs The type of FCS error to be inserted into the frame (or
none).

enableTimestamp Whether to insert a Frame Identity Record into the last
6 bytes of the packet.

Misc asyncIntEnable Allow asynchronous interrupts required by the protocol
server.

packetView (Read-only) Shows the packets that are about to be
transmitted. If the port’s port.transmitMode is set to
portTxPacketFlows, then this displays all of the
packets to be transmitted. This data may be saved and
used to specify a port.packetFlowFileName.

Table:stream Sub-Commands

Member Usage

setQueue For use with ATM ports only. Sets the parameters for a stream within a stream queue.
atmPort, atmHeader, streamQueueList, and streamQueue.

getQueue For use with ATM ports only. Gets the parameters associated with a stream in a
queue.

export
import

Write stream data to files and read it at a later time.

exportQueue
importQueue

As in export/import but for a particular queue on ATM ports.

remove Remove a stream from the port. stream remove chasID cardID portID streamID.

All of the stream sub-commands include an additional, optional argument named sequenceType. For POS
cards that support DCC, this controls whether the stream is used by the DCC or normal data (SPE)
channel.

Chapter 5 IxTclHal API Description

– 119 –

streamRegion

The streamRegion command is used to manage several properties that apply to all streams. Refer to
streamRegion for a full description of this command. The important options of this class are mentioned in
the following table:

Table: streamRegion Options

Member Usage

gapControl For ports that have the portFeatureGapControlMode capability, this controls the
manner in which minimum inter-packet gaps are enforced.

weightedRandomFramesize

TheweightedRandomFramesize command is used to configure possible different modes of generating
random frame sizes for a particular stream. The following command is used for ports which support this
feature and where the port has been programmed for random stream generation with:

stream config -frameSizeType sizeRandom

The following basic types of random streams are available:

l Uniform: Identical to previous implementations of the random framesize feature. A uniform set of
random values between a minimum and maximum value are generated. The min/max values are
set in the stream command’s frameSizeMIN and frameSizeMAX options.

l Pre-programmed: A number of pre-programmed distributions are available, corresponding to
standard traffic models found in various applications. See the randomType option description below.

l Custom: A distribution may be custom programmed for a stream. Pairs of frame size-weights are
added to a list. Frame sizes may be any value valid for the port. Weights may be any value, such
that the total of all of the weights is less than 2048. Pairs are added to the list using the addPair sub-
command.

l Gaussian: Up to four gaussian curves may be summed up to generate a random distribution. Each
curve is specified in the center, and widthAtHalf options and set by the updateQuadGaussianCurve
sub-command. The weight option controls the distribution of values among the four curves.

For the pre-programmed and custom choices, the weights for all of the frame sizes are added up. Each
frame size is then given a proportion of the total number of frames as dictated by its weight value. For
example, one of the pre-programmed distributions is 64:7, 594:4, 1518:1. In this case, the total of the
weights is 12 (7+4+1). Frames are randomly generated such that 64-byte frames are 7/12 of the total,
594-byte frames are 4/12 of the total and 1518-byte frames are 1/12 of the total.

Note that streamgetmust be called before this command’s get sub-command. Refer to
weightedRandomFramesize for a full description of this command. The important options and sub-
commands of this class are mentioned in the following table:

Table:weightedRandomFramesize Options

Chapter 5 IxTclHal API Description

– 120 –

Member Usage

randomType The type of random distribution: uniform, pre-programmed, or custom.

pairList Read-only list of framesize-weight pairs that are being used.

center
widthAtHalf
weight

The values associated with one of the four Gaussian curves.

Table: weightedRandomFramesize Sub-Commands

Member Usage

addPair Add a framesize-weight pair to the list.

delPair Delete a pair from the list

updateQuadGaussianCurve Sets the value for one of the four Gaussian curves.

retreiveQuadGaussianCurve Retrieves the values associated with one of the four Gaussian curves.

flexibleTimestamp

The flexibleTimestamp command is used to configure the placement of the time stamp. It normally is
placed just at the end of the packet, just before the CRC. Time stamp insertion is controlled by the
enableTimestamp option of the stream command.

The following basic types of time stamp placement are available:

l Before CRC: Just before the CRC at the end of the packet.
l At Offset: At a particular offset within the packet.

The important options of this class are mentioned in the following table:

Table: flexibleTimestamp Options

Member Usage

type The basic type of time stamp placement.

offset If ‘at offset’ is used, then this is the offset to place the time stamp at.

Frame Data

udf

Up to five User Defined Fields may be defined, which allow arbitrary data to be algorithmically constructed
within the data portion of the frames. The getstream sub-command must be called before getudf sub-
command and setstream sub-command must be called after set udf sub-command. See the Ixia

Chapter 5 IxTclHal API Description

– 121 –

Reference Guide for a general discussion.udf for full details. The important options of this command are
mentioned in the following table:

Table: udf Options

Member Usage

enable Enable or disable this UDF definition.

counterMode Indicates the type of counter:
l up-down
l random
l value list
l nested
l range list
l IPv4.

offset The offset within the packet to place the UDF data. Also known as Byte Offset.

countertype The size and shape of the UDF counter. One to four 32 to 8 bit counters. Also
known as Type.

Note: On boards and modes that support udfSize, countertype is deprecated
in favor of udfSize.

random If set, all counters have random data.

continuousCount If set, all counters operate continuously.

repeat If continuousCount is not set, this is the repeat count for all counters.

updown A four-bit mask indicating whether each counter counts up or down.

initval The initial value of the counter.

maskselect/maskval Together these indicate which initial value bits to use and
increment/decrement.

enableCascade For PoS ports, enables a counter to continue with a count from stream to
stream.

cascadeType Indicates whether to cascade from the previous stream or the previous value
on this stream.

step The increment step for Up or Down increment mode can be specified. (Default
= 1).

innerLoop
innerRepeat

Controls the inner loop for a nested counterMode.

Chapter 5 IxTclHal API Description

– 122 –

Member Usage

innerStep

enableSkipZeros
AndOnes
skipMaskBits

Controls skipping over broadcast addresses for an IPv4 counterMode.

valueList A list which holds the values to be used in value list mode.

chainFrom Allows you to select what UDF the current UDF should chain from. When this
option is employed, the UDF stays in its initial value until the UDF it is chained
from reaches its terminating value.

bitOffset Origins from bit 0 (LSB) in the byte specified in offset (Byte Offset). The range
is 0 to 7 bits.

udfSize Sets the UDF field size (in bits). This must be a value from 1-32 and is only
supported on certain cards in certain modes.

tableUdf

The tableUdf command is used to define tables of data that is applied at the same time as other UDFs. The
tableUdf feature is only available for selected ports; the availability of the feature may be tested with the
portisValidFeature... portFeatureTableUDF command.

The feature is enabled with the enable option. Tables consist of rows and columns. Columns define the
locations within a packet that are to be modified, while rows hold the data that is simultaneously applied
at the locations indicated by the columns. Columns are defined with tableUdfColumn; column attributes
include the following:

l Column name
l Offset and size
l Data format; for example, IPv4 address.

Columns are then added to the table using the addColumn sub-command of this command. Once columns
have been defined, data is added to the table, row by row, using the addRow sub-command.

Table UDF configurations, including row data, may be saved to disk using the export sub-command; a
comma separated values (csv) file format is used. Table UDF configurations may be retrieved using the
import sub-command.

The important options and sub-commands of this command are mentioned in the following table:

Table: tableUdf Options

Member Usage

enable Enables the use of the table UDF.

Chapter 5 IxTclHal API Description

– 123 –

Member Usage

numColumns
numRows

Read-only indicates of the current table size.

Table: tableUdf Sub-Commands

Member Usage

addColumn Add a new column to the table from the data in the tableUdfColumn command.

addRow Add a new row of data to the table.

clearColumns
getFirstColumn
getNextColumn

Clear all columns and row data, access columns in the table.

clearRows
getFirstRow
getNextRow

Clear all row data, access rows in the table.

export
import

Save and retrieve table UDF data to the file system.

tableUdfColumn

The tableUdfColumn command is used columns used in table UDFs. Columns define the locations within a
packet that are to be modified. Columns are defined with the options of this command and then added to
a table using the addColumn sub-command of the tableUdf command. Column attributes include the
following:

l Column name
l Offset and size: Data for multiple columns may not overlap
l Data format; for example, IPv4 address.

Column data for existing tables is retrieved with the getFirstColumn and getNextColumn sub-commands
of the tableUdf; the values retrieved are available in this command. The important options of this
command are mentioned in the following table:

Table: tableUdfColumn Options

Member Usage

name Name of the column

offset Offset in the packet to the start of the data.

size Size of the data within the packet. Columns in a table UDF may not overlap.

formatType The format of the data expected for the column. This is applied by the addRow sub-

Chapter 5 IxTclHal API Description

– 124 –

Member Usage

customFormat command of tableUdf.

tcpRoundTripFlows

The tcpRoundTripFlows command sets up values to be used in measuring round-trip times. See the Ixia
Reference Guide for a general discussion.tcpRoundTripFlow for full details.

The important options of this command are listed in the Table: tcpRoundTripFlows options below.

Table: tcpRoundTripFlows options

Category Member Usage

Data patternType Dictates the type of data pattern manipulation:
l increment/decrement bytes or words
l random data
l fixed repeating pattern chosen from dataPattern

l fixed non-repeating pattern chosen from dataPattern

dataPattern One of a number of fixed patterns of data, including all 1’s and all
0’s, plus a choice for a user specified pattern.

pattern If dataPattern indicates a user specified pattern, this string
specifies the contents.

framesize The number of bytes in each package.

Addresses macSA The source MAC address used for outbound packets.

macDA The destination MAC address used for outbound packets. This may
be overridden through the use of useArpTable.

useArpTable If set, the ARP table is used instead to set the MAC address based on
the destination IP address. gatewayIpAddr is used for the ARP
query.

gatewayIpAddr If useArpTable is set, this is the address of the gateway that
responds to ARP requests.

forceIpSA If set, IpSA is used to set the outbound IP address.

IpSA Outbound IP source address.

packetGroup

The packetGroup command sets up values to be used in measuring latency, classed by tagged groups of
packets. See the Ixia Reference Guide for a description of this feature. packetGroup for full details. To

Chapter 5 IxTclHal API Description

– 125 –

calculate latency values the fir object in the stream command should be set to true and the value of the
port’s receiveMode option should be set to portPacketGroup.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. No configuration is necessary on the transmit port;
only the receive port must be configured to receive latency bin operation. This feature is enabled on the
receive port with the enableLatencyBins option.

The latency measurements for each packet group may be collected in a set up to 16 continuous latency
buckets. The first bucket always starts at 0 and the last bucket always ends at the maximum latency. The
packetGroup interface allows for the specification of up to 15 time dividers between latency bins. For
example, to specify five latency buckets for the following:

l 0 - 0.70ms
l 0.70ms - 0.72ms
l 0.72ms - 0.74ms
l 0.74ms - 0.76ms
l 0.76ms - max

one programs four dividing times:

l 0.70ms
l 0.72ms
l 0.74ms
l 0.76ms

This is done through the latencyBins option. No other setup is required for the receive side port. The
latency statistics per latency bin are obtained through the use of the packetGroupStats command.

An additional feature available on some port types is the ability to measure latency as it varies over time.
The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. No configuration is necessary on the transmit port;
only the receive port must be configured to receive time bin operation. This feature is enabled on the
receive port with the enableTimeBins option.

The latency over time for each packet group may be collected for a number of evenly spaced time periods,
as indicated by the numTimeBins and timeBinDuration options. The number of packet groups used per
time bin must also be specified in the numPgidPerTimeBin option.

The product of numPgidPerTimeBin (which must be a power of 2) and the next higher power of 2 of the
numTimeBinsmust be less than the total number of packet group IDs available for the port when not in
time bin mode.

Chapter 5 IxTclHal API Description

– 126 –

The latency statistics per time bin are obtained through the use of the packetGroupStats command. Time
bins and latency bins may be used at the same time. The important options and sub-commands of this
class are mentioned in the following table:

Table: packetGroup Options

Category Member Usage

Signature signatureOffset Where to place the signature in each transmitted packet.

signatureMask Masks specific bits for signature matching.

signature The signature to be inserted at the signature offset.

insertSignature Whether to insert the signature or not.

Packet ID groupIdMode Allows the group ID offset to be placed at one of several
common locations, or set to a custom location indicated in
groupIdOffset and groupIdMask.

groupIdOffset Where to place the group ID in each transmitted packet.

enableGroupIdMask
groupIdMask

Masks specific bits for group ID identification.

groupId The value to use as the packet group ID.

maxRxGroupId Displays the maximum number of PGIDs based on the port
receive configuration.

Receive
mode

preambleSize The expected size of the received preamble.

latencyControl The type of latency measurement are as follows:
l cutThrough: First data bit in to first data bit out
l storeAndForward: Last data bit in to first data bit out
l storeAndForwardPreamble: Last data bit in to first
preamble out

l interArrivalJitter: The jitter between packet arrivals

enableLatencyBins
latencyBinList

Enables and sets the latency bins dividers.

enableTimeBins
enable128kBinMode
numPgidPerTimeBin
numTimeBins
timeBinDuration

Enables and sets up the time bin parameters:
l Number of packet group IDs per time bin
l Number of time bins
l The size of each time bin

Chapter 5 IxTclHal API Description

– 127 –

Category Member Usage

enableFilterMask
headerFilterMask

Controls filtering of incoming packets to a specific pattern. Only
filtered packets are used for packet group matching.

Sequence
checking

sequenceChecking-
Mode

The mode of sequence checking:
l Based on out-of-sequence checking.
l Based on multi-switched path loss and duplication
checking.

sequenceNumber-
Offset

For out-of-sequence checking, where the sequence number is
located.

sequenceError-
Threshold

For out-of-sequence checking, the threshold that is called an
error.

multiSwitchedPath-
Mode

Controls the use of time stamps in multi-switched path mode.

Header headerFilter A value to be matched in the packet before signature matching
occurs.

headerFilter
Mask

A value used to mask the headerFilter.

Table: packetGroup Sub-Commands

Member Usage

setTx Sets the packet group transmit characteristics for the port.

getTx Gets the packet group transmit characteristics for the port.

setRx Sets the packet group receive characteristics for the port.

getRx Gets the packet group receive characteristics for the port.

dataIntegrity

The dataIntegrity class sets up values to be used to check data validity. Seethe Ixia Reference Guide
for a description of this feature. In order for data integrity to operate, port -
receiveModeportRxDataIntegrity must be performed (and committed to the hardware). dataIntegrity
for full details. The important options and sub-commands of this command are mentioned in the following
table:

Table: dataIntegrity Options

Chapter 5 IxTclHal API Description

– 128 –

Category Member Usage

Signature signatureOffset Where to place the signature in each transmitted packet.

signature The signature to be inserted at the signature offset.

insertSignature Whether to insert the signature or not.

Receive
mode

enableTimeStamp Enables the placement of a 48-bit timestamp just before the FCS
value with a 20ns accuracy.

Table: dataIntegrity Sub-Commands

Member Usage

setTx Sets the data integrity transmit characteristics for the port.

getTx Gets the data integrity transmit characteristics for the port.

setRx Sets the data integrity receive characteristics for the port.

getRx Gets the data integrity receive characteristics for the port.

Sequence Checking

See the Ixia Reference Guide for a general discussion. There is no specific command that controls the
operation of sequence checking. Instead, the following steps should be used to enable sequence
checking:

1. Set the value of the port’s receiveMode option to portRxSequenceChecking.

2. Set the location of the signature in the packet through the signatureOffset and signature
members of the packetGroup command.

3. Set the location of the sequence check value through the groupIdOffsetmember of the
packetGroup class.

4. Set the values to the hardware through the setTx sub-command of the TclPacketGroup command.

5. The statistics values signatureErrors and signatureValues relate to signature checking. Refer to
stat.

forcedCollisions

Collisions may be forced on the data transmission from any port. Refer to the Ixia Reference Guide for the
full discussion of this feature and to forcedCollisions for command details. The important options and sub-
commands of this class are mentioned in the following table:

Table: forcedCollisions options

Chapter 5 IxTclHal API Description

– 129 –

Member Usage

enable Enables forced collisions.

packetOffset The offset from the beginning of packet to the start of the collision.

collisionDuration The duration of each collision

consecutiveCollisions The number of consecutive collisions to generate.

consecutiveNonColliding
Packets

After each time that collisions have occurred, this is the number of
packets that is not be modified.

continuous Indicates that collisions are to occur continuously.

repeatCount For non-continuous operation, the number of times to repeat the cycle of
collisions and non-collisions.

Protocols

The following commands relate to protocol selection, header options and, in some cases, message
formatting.

protocol

Basic protocol parameters are set with the protocol command. protocol for full details. The important
options of this command are mentioned in the following table:

Table: protocol Options

Category Member Usage

Protocol appName The protocol running on top of IP are the following: UDP, ARP,
RIP, DHCP, DHCPv6, SRP, or PTP.

name Protocol selected: MAC, IP, IPv4, IPv6, IPX, pauseControl, and
FCoE.

Data Link
Layer

enable802dot1qTag Enables 802.1q single or stacked VLAN tagged frames.

enableISLtag Enables Cisco ISL tagged frames.

enableMPLS Enables MPLS tagged frames.

enableMacSec Enable MacSec frame insertion in streams.

enableOam Enable OAM frame insertion in streams.

ethernetType Type of ethernet frame: EthernetII, IEEE802.3, IEEE802.3
Snap, or IEEE802.2

Chapter 5 IxTclHal API Description

– 130 –

protocolOffset

The protocolOffset command allows the IP and other headers to be relocated from their default location to
further into the packet. This allows additional headers to be inserted ahead of the protocol header, for
example PPP headers. protocolOffset for full details. The important options of this command are
mentioned in the following table:

Table: protocolOffset Options

Member Usage

offset The new offset of the protocol header

userDefinedTag The contents of the space where the protocol header was previously located.

fibreChannel

The fibreChannel command supports FCoE header and trailer in streams. See fibreChannel for details.

fcoe

The fcoe command is used to configure Fibre Channel over Ethernet (FCoE) header and trailer packet.
FCoE is a method of communicating data for streams and protocols.fcoe for details. Associated commands
include fcoeDiscoveredInfo, fcoeProperties, “fibreChannel”, and npivProperties.

Data Link Layer

isl

The isl command sets up the header for Cisco ISL messages. The enableISLtag option of the protocol
command must be set. The data portion of the message, including the tunneled SA and DA may be
created using stream. isl for full details.

The important options of this command are mentioned in the following table:

Table: isl Options

Member Usage

islDA The multicast address indicating to the receiver that this is an ISL formatted packet.

frameType The type of frame being encapsulated are as follows:
l Ethernet
l Token Ring
l FDDI
l ATM

userPriority Two bits of packet priority.

islSA (Read-only) The source MAC address. The upper three bytes are reflected in the hsa

Chapter 5 IxTclHal API Description

– 131 –

Member Usage

field.

vlanID The virtual LAN identifier.

bpdu Set for all Bridge Protocol Data Units that are encapsulated by the ISL packet.

index For diagnostic purposes, the port index of the packet as it exits the switch.

reserved The ‘reserved’ field of the packet.

vlan

The vlan command sets up the header for VLAN specific messages. The enable802dot1qtag option of the
protocol command must be set. The data portion of the message may be created using stream. vlan for
full details. The important options of this command are mentioned in the following table:

Table: vlan Options

Member Usage

userPriority User priority level.

cfi Canonical format indicator bit.

vlanID The VLAN identifier.

mode Indicates whether the VLAN tag is incremented/decremented or random between
packets.

repeat For each new value of the VLAN ID, this is the number of times it is repeated before the
next change.

step The step size between incremented/decremented values.

maskval This masks the values of the VLAN ID that may be changed.

stackedVlan

The stackedVlan command is used to configure an ordered stack of VLAN entries. This command is only
used when the enable802dot1qTag in the protocol command is set to true. Elements of the stack are
constructed in the vlan command. The top two elements of the stack are always present and may be
modified by using the setVlan sub-command. Other elements are added to the bottom of the stack using
addVlan; they may later be modified with the setVlan sub-command.

The top two VLANs in a stack may be configured to increment or decrement their VLAN ID. They may
either increment/decrement independently or operate in a special nested mode. To use nested mode, the
top (outer) VLAN should be set to one of the non-nested increment/decrements modes and the second

Chapter 5 IxTclHal API Description

– 132 –

(inner) VLAN should be set to the nested increment or decrement mode. In this mode the inner VLAN’s ID
changes most rapidly.

stackedVlan for full details. The important sub-commands and options of this command are mentioned in
the following table:

Table: stackedVlan Sub-Commands

Member Usage

addVlan Adds a VLAN specification to the bottom of the stack.

delVlan Deletes a specify VLAN from the list

setVlan Changes the values of a VLAN stack element in place.

getFirst/getNext Cycles through the stack of VLAN elements.

Table: stackedVlan Options

Member Usage

numVlans The read-only count of the number of defined VLANs.

mpls

The enableMPLSmember of the associated protocol command must be set to successfully use this
command. Thempls command sets up the base information for MPLS specific messages. The data portion
of the message may be created using mplsLabel.mpls for full details. Note that streamgetmust be called
before this command’s get sub-command. The important options of this command are mentioned in the
following table:

Table: mpls Options

Member Usage

type The MPLS type: Unicast or multicast.

forceBottomOfStack Automatically set bottom of stack bit.

mplsLabel

The enableMPLSmember of the associated protocol object must be set to successfully use this command.
ThemplsLabel command is used to generate MPLS labels.mplsLabel for full details. The important
options of this command are mentioned in the following table:

Table: mpls Options

Member Usage

label The value of the label is one of the following:

Chapter 5 IxTclHal API Description

– 133 –

Member Usage

l IPV4 Explicit Null
l Router Alert
l IPV6 Explicit Null
l Implicit Null
l Reserved

experimentalUse Sets the experimental use field.

bottomOfStack Sets the bottom of stack bit.

IPX

The ipx command provides for the setting of IPX header elements. ipx for full details. Note that streamget
must be called before this command’s get sub-command. The important options of this command are
mentioned in the following table:

Table: ipx options

Category Member Usage

Source sourceNetwork The network number of the source node.

sourceNetworkCounterMode Indicates whether the network number increments,
decrements or receives a random setting.

sourceNetworkRepeatCounter The number of times that the network number
changes.

sourceNetworkMaskValue
sourceNetworkMaskSelect

Together these set the mask of network number bits
that changes.

sourceNode
sourceNodeCounterMode
sourceNodeRepeatCounter
sourceNodeMaskValue
sourceNodeMaskSelect

As in sourceNetwork... for the sourceNode.

sourceSocket
sourceSocketCounterMode
sourceSocketRepeatCounter
sourceSocketMaskValue
sourceSocketMaskSelect

As in sourceNetwork... for the sourceSocket.

Destination destNetwork
destNetworkCounterMode
destNetworkRepeatCounter

As in sourceNetwork... for the destNetwork.

Chapter 5 IxTclHal API Description

– 134 –

Category Member Usage

destNetworkMaskValue
destNetworkMaskSelect

destNode
destNodeCounterMode
destNodeRepeatCounter
destNodeMaskValue
destNodeMaskSelect

As in sourceNetwork... for the destNetwork.

destSocket
destSocketCounterMode
destSocketRepeatCounter
destSocketMaskValue
destSocketMaskSelect

As in sourceNetwork... for the destNetwork.

Misc length The total length of the IPX packet, including header.
May be set if lengthOverride is set.

lengthOverride Allows the length value to be changed.

packetType The type of IPX packet.

transportControl The number of routers that the packet has passed
through.

ARP

The name of the associated protocol object must be set to ‘ip’ and the appNamemust be set to ‘arp’ to
successfully use this command.The arp command allows ARP packets to be constructed. arp for full
details.

The important options of this command are mentioned in the following table:

Table: arp options

Category Member Usage

Basic operation The type of ARP operation is one of the following:
l ARP Request
l ARP Reply
l Reverse ARP Request
l Reverse ARP Reply

Physical hardwareAddrLength (Read-only) The length of the hardware address.

hardwareType (Read-only) The hardware type of the physical layer.

Chapter 5 IxTclHal API Description

– 135 –

Category Member Usage

protocolAddrLength (Read-only) The length of the protocol addresses.

protocolType (Read-only) The type of network protocol address.

Source sourceHardwareAddr The MAC address of the sender.

sourceProtocolAddr The protocol address of the sender.

Destination destHardwareAddr The MAC address of the receiver.

destProtocolAddr The protocol address of the receiver.

IP

The ip command allows IPv4 header values to be constructed. The name of the associated protocol
object must be set to ‘ip’ to successfully use this command.

The source and destination addresses may be set from the result of a PPP negotiation through the use of
the enableDestSyncFromPpp and enableSourceSyncFromPpp options. Note that it is necessary to wait
until the PPP session has been negotiated before doing the following:

l performing a chassis refresh command
l performing a stream get command
l performing an ip get command
l reading the destAddr and sourceAddr values using ip cget

ip for full details. The important options of this command are mentioned in the following table:

Category Member Usage

Header precedence
delay
throughput
reliability
cost
reserved

The parts of the Type of Service (TOS) byte.

qosMode
dscpMode
dscpValue
classSelector
assuredForwardingClass
assuredFowardingPrecedence

Allows the specification of the TOS byte using DSCP
(DiffSrv).

totalLength The total length of the IP packet, including header.
This may be overridden from the automatically

Table: ip Options

Chapter 5 IxTclHal API Description

– 136 –

Category Member Usage

calculated setting if lengthOverride is set.

lengthOverride Allows the totalLength of the packet to be
overridden from the calculated setting.

identifier An identifier used to re-assemble fragments.

fragment Indicates whether this is a fragmented datagram.

fragmentOffset For fragmented packets, the offset in the re-
assembled datagram where this packet’s data
belongs.

lastFragment Indicates that this is the last fragment of the
datagram.

ttl Time to live for packet, in seconds.

ipProtocol The next level protocol contained in the data portion
of the packet.

useValidChecksum Indicates whether a valid or invalid checksum should
be included in the header.

checksum (Read-only) The value of the header checksum. Only
valid after stream.set is performed.

Source sourceIpAddr The source IP address.

sourceIpAddrMode Indicates how the IP address changes from packet to
packet: Remains the same, increments/decrements
host, network, or random values.

sourceIpAddrRepeatCount The number of different source addresses
generated.

sourceIpMask The source IP subnet mask.

sourceCommand The command type for the source address: A, B, C,
D, or no command.

enableSourceSyncFromPpp Sets the sourceIpAddr from the result of a PPP
negotiation.

Destination destIpAddr The destination IP address.

destIpAddrMode Indicates how the IP address changes from packet to
packet: Remains the same, increments/decrements

Chapter 5 IxTclHal API Description

– 137 –

Category Member Usage

host, network, or random values.

destIpAddrRepeatCount The number of different destination addresses
generated.

destIpMask The destination IP subnet mask.

destClass The class type for the destination address: A, B, C,
D, or no class.

enableDestSyncFromPpp Sets the destIpAddr from the result of a PPP
negotiation.

Misc options Variable length options field.

destDutIpAddr The address of the device under test.

destMacAddr The MAC address of the device under test. Received
ARP frames modifies this value.

ipV6

The ipV6 command allows IPv6 header values to be constructed. The name of the associated protocol
object must be set to ‘ipV6’ to successfully use this command. ipV6Address is a convenience command
which can be used to encode/decode and IPv6 address. ipV6 for full details.

The ipV6 command also includes list of extension headers. Extension headers are built-in with the
following specific objects:

l ipV6Authentication
l ipV6Destination
l ipV6Fragment
l ipV6HopByHop
l ipV6Routing

An extension header is added to a ipV6 object by configuring the extension header with the appropriate
command from the list above and then adding it to the group with ipV6 addExtensionHeader type, where
type indicates which of the extensions to use. An extension may be retrieved from an ipV6 object through
the use of getFirstExtensionHeader / getNextExtensionHeader. These commands return the name of the
command that was used to configure the header extension. The type of the extension header can be
determined from the nextHeader value from the ipV6 command (for the first extension header) or from
the previous extension header otherwise. This is typically used in the following sequence of commands:

set eHeader [ipV6 getFirstExtensionHeader]

set nextType [$eHeader cget -nextHeader]

Chapter 5 IxTclHal API Description

– 138 –

In addition, if this is to be the header to a TCP, UDP or ICMP packet, then a separate call to ipV6
addExtensionHeadermust be made with tcp, udp or icmpV6must be made. For example:

ipV6 addExtensionHeader tcp

Although it is the default, ipV6 addExtensionHeader ipV6NoNextHeadermay be used to indicate that
there is no header following this one.

Note that streamgetmust be called before this command’s get sub-command.

The source and destination addresses may be set from the result of a PPP negotiation through the use of
the enableDestSyncFromPpp and enableSourceSyncFromPpp options. Note that it is necessary to wait
until the PPP session has been negotiated before doing the following:

l performing a chassis refresh command
l performing a stream get command
l performing an ipv6 get command
l reading the destAddr and sourceAddr values using ipv6 cget

The important options and sub-commands of this command are mentioned in the following table:

Category Member Usage

Header trafficClass The traffic class of the ipV6 header.

flowLabel The flow label of the ipV6 header.

hopLimit The hop limit of the ipV6 header.

Source sourceAddr The source ipV6 address.

sourceMask The mask associated with the source address.

Note: If the ipV6 address is user-defined, then
the range of values for sourceMask is 1 to 128.

sourceAddrMode The manner in which to modify the source address
between iterations: idle or increment/decrement
network/host as well as address prefix dependent sub-
components of the address.

sourceAddrRepeatCount The number of times to modify the address before
restoring it to sourceAddr.

sourceAddrStepSize The size of the increment for increment/decrement
modes.

enableSourceSyncFromPpp Sets the sourceAddr from the result of a PPP
negotiation.

Table: ipV6 Options

Chapter 5 IxTclHal API Description

– 139 –

Category Member Usage

Destination destAddr The destination ipV6 address.

destMask The mask associated with the destination address.

Note: If the ipV6 address is user-defined, then
the range of values for destMask is 1 to 128.

destAddrMode The manner in which to modify the destination address
between iterations: idle or increment/decrement
network/host.

destAddrRepeatCount The number of times to modify the address before
restoring it to destAddr.

destAddrStepSize The size of the increment for increment/decrement
modes.

enableDestSyncFromPpp Sets the destAddr from the result of a PPP negotiation.

Misc payloadLength (Read-only) The calculated length of the packet
payload

nextHeader (Read-only) The type of the next payload header

Table: ipV6 Sub-Commands

Member Usage

clearAllExtensionHeaders Removes all extension headers.

addExtensionHeader Adds a new extension header.

getFirstExtensionHeader
getNextExtensionHeader

Iterates through the extension headers.

ipV6Authentication

The ipV6Authentication command is used to build an IPv6 authentication header to be added to an ipV6
header using ipV6 addExtensionHeader. ipV6Authentication for full details. The important options of this
command are mentioned in the following table:

Table: ipV6Authentication options

Member Usage

nextHeader (Read-only) The type of the next header in the IPv6 header.

authentication A variable length string containing the packets integrity check value (ICV).

Chapter 5 IxTclHal API Description

– 140 –

Member Usage

payloadLength The length of the authentication data, expressed in 32-bit words.

securityParamIndex The security parameter index (SPI) associated with the authentication
header.

sequenceNumberField A sequence counter for the authentication header.

ipV6Destination

The ipV6Destination command is used to build an IPv6 destination header to be added to an ipV6 header
using ipV6addExtensionHeader. ipV6Destination for full details. The important options of this command
are mentioned in the following table:

Table: ipV6Destination options

Member Usage

nextHeader (Read-only) The type of the next header in the IPv6 header.

ipV6Fragment

The ipV6Fragment command is used to build an IPv6 fragment header to be added to an ipV6 header
using ipV6addExtensionHeader. ipV6Fragment for full details. The important options of this command are
mentioned in the following table:

Table: ipV6Fragment options

Member Usage

nextHeader (Read-only) The type of the next header in the IPv6 header.

enableFlag Indicates whether there are more fragments to be received (true) or this is the last
fragment (false).

fragmentOffset A 13-bit value which is the offset for the data contained in this packet, relative to
the start of the fragmentable part of the original packet, in 8-octet units.

identification A 32-bit value that uniquely identifies the original packet which is to be
fragmented.

ipV6HopByHop

The ipV6HopByHop command is used to build an IPv6 Hop by Hop header to be added to an ipV6 header
using ipV6addExtensionHeader. ipV6HopByHop for full details.

The important options of this command are mentioned in the following table:

Table: ipV6HopByHop options

Chapter 5 IxTclHal API Description

– 141 –

Member Usage

getFirstOption Read-only. Gets the first option configured in the packet.

getNextOption Read-only. The type of the next option.

optionsList Displays a list of the Hop by Hop headers included in the packet.

It is necessary to configure the Hop by Hop options before using this command, using the following Hop
by Hop option commands:

l ipV6OptionPAD1
l ipV6OptionPADN
l ipV6OptionJumbo
l ipV6OptionRouterAlert
l ipV6OptionBindingUpdate
l ipV6OptionBindingAck
l ipV6OptionHomeAddress
l ipV6OptionBindingRequest
l ipV6OptionMIpV6UniqueIdSub
l ipV6OptionMIpV6AlternativeCoaSub
l ipV6OptionUserDefine

ipV6Routing

The ipV6Routing command is used to build an IPv6 routing header to be added to an ipV6 header using
ipV6addExtensionHeader. ipV6Routing for full details. The important options of this command are
mentioned in the following table:

Table: ipV6Routing options

Member Usage

nextHeader (Read-only) The type of the next header in the IPv6 header.

nodeList A list of 128-bit IPv6 addresses, which may be constructed with the ipV6Address
command.

tcp

The name of the associated protocol object must be ‘ip’ and the ipProtocolmember of the associated ip
object must be set to ‘tcp’ to successfully use this command. The tcp command allows TCP header values
to be constructed. tcp for full details. Note that streamgetmust be called before this command’s get sub-
command. The important options of this command are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 142 –

Category Member Usage

Header offset Offset from the beginning of the header to the packet data.

sourcePort Source port number.

destPort Destination port number.

sequenceNumber Packet sequence number.

acknowledgement
Number

Next byte that the receiver expects.

window The number of bytes the recipient may send back, starting with
the ack byte.

urgentPointer Byte offset to urgent data with the packet.

checksum Read-only checksum after a decode operation.

Flags urgentPointerValid Indicates whether the urgentPointer field is valid.

acknowledgeValid Indicates whether the acknowledementNumber is valid.

pushFunctionValid Request that the receiver push the packet to the receiving
application without buffering.

resetConnection Resets the connection.

synchronize Indicates either a connection request or acceptance.

finished Indicates that this is the last packet to be sent for the
connection.

useValidChecksum Indicates whether a valid or specified checksum is to be used.

Table: tcp options

udp

The name of the associated protocol object must be set to ‘ip’ and the appNamemember must be set to
‘udp’ to successfully use this command.The udp command is used to format UDP headers. udp for full
details. Note that streamgetmust be called before this command’s get sub-command. The important
options of this command are mentioned in the following table:

Member Usage

sourcePort Port of the sending process.

destPort Port of the destination process.

Table: udp Options

Chapter 5 IxTclHal API Description

– 143 –

Member Usage

length Length of the datagram including the header. If lengthOverride is set, this value
is used instead of the calculated value.

lengthOverride Allows the length parameter to be used to set the packet length.

enableChecksum Causes a valid or invalid checksum to be generated in the UDP header.

checksum The actual value generated. Valid only after stream.set has been used.

enableChecksum
Override

Enables the setting of a checksum from checksum.

checksumMode Indicates whether to use the correct checksum or it’s invalid one’s complement.

igmp

The name of the associated protocol object must be set to ‘ip’ and the ipProtocolmember of the
associated ip object must be set to ‘igmp’ to successfully use this command. The igmp command is used
to format IGMP messages. "igmp" for full details. Note that streamgetmust be called before this
command’s get sub-command. The options and sub-commands are mentioned in the following table:

Member Usage

version Which version of IGMP to use: 1, 2, or 3.

type The type of IGMP message to generate:
l membership Query
l membership Report: type 1, 2, or 3.
l DVMRP Message: Distance Vector Multicast Routing Protocol
l Leave Group

maxResponseTime The maximum allowed response time.

groupIpAddress The IP multicast address of the group being joined or left.

mode Describes how groupIpAddress changes from one message to the next: idle,
increment or decrement.

repeatCount The number of IGMP messages to send.

useValidChecksum Use a valid or over-written checksum.

qqic
qrv
enableS

Options used for an IGMP v.3 group membership request.

Table:igmp Options

Chapter 5 IxTclHal API Description

– 144 –

Member Usage

sourceIpAddressList

Table: igmp Sub-Commands

Member Usage

clearGroupRecords Clears the group records list.

addGroupRecord Adds a group record from the igmpGroupRecord command to the list.

getFirstGroupRecord
getNextGroupRecord
getGroupRecord

Iterates through the group records or accesses one directly.

igmpGroupRecord

The igmpGroupRecord command holds a Group Record to be included in an IGMPv.3 group membership
report. “igmpGroupRecord” for full details. The important options of this command are mentioned in the
following table:

Table: igmpGroupRecord Options

Member Usage

type The type of the group record.

multicastAddress The multicast address that this group record pertains to.

sourceIpAddressList A set of source IP addresses for the multicast group.

icmp

The name of the associated protocol object must be set to ‘ip’ and the ipProtocolmember of the
associated ip object must be set to ‘icmp’ to successfully use this command. The icmp command is used
to format ICMP messages. Any data not covered in the options below must be entered in the stream’s
data portion. “icmp” for full details. Note that stream getmust be called before this command’s get sub-
command. The important options of this command are mentioned in the following table:

Table: icmp Options

Member Usage

type The type of ICMP message to be sent.

code The code for each type of message.

checksum (Read-only) The value of the checksum to be sent in the stream. This is only valid after
stream.set is used.

Chapter 5 IxTclHal API Description

– 145 –

Member Usage

id ID for each echoRequest type message.

sequence Sequence number for each echoRequest type message.

rip

Note that the rip and ripRoute commands allow you to create RIP packets for transmission as part of a
stream. They are not associated with the RIP aspect of the Protocol Server, described in rip. The name of
the associated protocol object must be set to ‘ip’ and the appNamemember of the associated protocol
object must be set to ‘Rip’ to successfully use this command. The rip command is used to configure the
RIP header. Individual RIP route entries are associated with the ripRoute command and the use of
RouteIds. rip for full details. Note that stream getmust be called before this command’s get sub-
command. The important options of this command are mentioned in the following table:

Table: rip Options

Member Usage

command The RIP command. One of the following options:
l RIP Request
l RIP Response
l RIP Trace On/Off
l RIP Reserved

version The RIP version: 1 or 2.

ripRoute

The ripRoute command is used to format RIP route messages. Header information is contained in the
associated rip command. ripRoute for full details. The important options of this command are mentioned
in the following table:

Table: ripRoute Options

Member Usage

familyId Address family identifier.

routeTag Used to distinguish multiple sources of routing information.

ipAddress IP address of the entry.

subnetMask Subnet mask for the entry.

nextHop For version 2 records only, the IP address of the next routing hop for the entry.

Chapter 5 IxTclHal API Description

– 146 –

Member Usage

metric The cost of the route, from 1 to 16.

authenticationType The type of authentication to use.

authentication Data associated with the authentication method.

dhcp

The name of the associated protocol object must be set to ‘ip’ and the appNamemember of the associated
protocol object must be set to ‘Dhcp’ to successfully use this command. The dhcp command is used to
format DHCP messages. Multiple options are entered into the message through repeated use of the
setOptionmethod.

Both DHCPv4 and DHCPv6 are supported.

A DHCP server may also be used to obtain an address for a port. Refer to Using DHCP with Interfaces for
full details.

dhcp for full details. Note that streamgetmust be called before this command’s get sub-command. The
important options and sub-commands of this command are mentioned in the following table:

Member Usage

opCode Operation code:
l DHCP Boot Request
l DHCP Boot Reply

hwType Hardware address type.

hwLen Hardware address length.

hops Set to 0 to indicate packet origin.

transactionID Random identifier for message pairing.

seconds Elapsed time since start of request.

flags Indicates broadcast or non-broadcast handling.

clientIpAddr Client’s IP address.

yourIpAddr Your IP address.

relayAgentIpAddr Relay agent’s IP address; used if booting through a proxy.

clientHWAddr Client’s hardware address.

Table: dhcp Options

Chapter 5 IxTclHal API Description

– 147 –

Member Usage

serverHostName Optional server host name.

serverIpAddr Server’s IP address.

bootFileName Boot file name to use.

optionCode Code for optional data.

optionDataLength Length of the option data.

optionData The actual data.

Table: dhcp Sub-Commands

Member Usage

setOption Sets an option value.

getOption Gets a previously set option.

getFirstOption
getNextOption

Gets options by iterating through the list.

ptp

Precision Time Protocol (PTP) enables precise synchronization of clocks in measurement and control
systems implemented with technologies such as network communication, local computing, and
distributed objects. ptpfor details. Associated commands include ptpAnnounce, ptpDelayRequest,
ptpDelayResponse, ptpDiscoveredInfo, ptpFollowUp, ptpProperties, and ptpSync.

pauseControl

The pauseControl command is used to format pause control messages. The important options of this
command are mentioned in the following table:

Table: pauseControl Options

Member Usage

da The MAC address of the interface receiving the pause control message. 10GE
cards may set this value.

pauseTime The pause time, measured in pause quanta units. (1 Pause Quanta = 512 bit
times.) The valid range is 0 to 65535 pause quanta.

pauseControlType Configure the priority control type, ieee 8023x or ieee 8021Qbb.

pauseFrame Configure the hex byte priorities; 16 byte hex list.

Chapter 5 IxTclHal API Description

– 148 –

Member Usage

pfcEnableValueList Use to configure the priority parameters using pair list, where each pair
contains the enable/disable value and pause quanta value.

srpArp

The srpArp command is used to format SRP based ARP messages for SONET cards. The SRP header
options which are common to all of the SRP commands are mentioned in the following table:

Table: SRP Header Options

Member Usage

mode The type of packet: ATM cell, control message, usage message, or data packet.

parity The ability to insert a good or bad parity bit in the header.

priority The priority of the packet, from 0 through 7.

ringIdentifier Whether the packet is intended for the inner or outer loop.

ttl The time-to-live value.

The important additional options for the srpArp command are mentioned in the following table:

Table: srpArp Options

Member Usage

macDestAddress The destination MAC address for the ARP packet.

sourceDestAddress The source MAC address for the ARP packet.

srpIps

The srpIps command is used to format SRP Intelligent Protection Switching (IPS) messages for SONET
cards. The SRP header options which are common to all of the SRP commands are shown in Table:SRP
Header Options.

The additional options common to control messages (srpIps and srpDiscovery) are mentioned in the
following table:

Table: SRP Control Message Options

Member Usage

controlChecksum Whether to insert a good or bad checksum.

controlTtl The hop-count associated with the control message.

Chapter 5 IxTclHal API Description

– 149 –

Member Usage

controlVersion The protocol version number. Only 0 is currently supported.

The important additional options for the srpIps command are mentioned in the following table:

Table: srpIps Options

Member Usage

originatorMac
Address

The original packet author’s MAC address

pathIndicator Whether the IPS packet is sent to the adjacent node or around the entire ring.

requestType The type of IPS request.

statusCode The IPS state of the sending node.

srpDiscovery

The srpDiscovery command is used to format SRP Discovery messages for SONET cards. The SRP
header options which are common to all of the SRP commands are shown in Table:SRP Header Options.
The additional options common to control messages are shown in Table: SRP Control Message Options.

The important additional options and sub-commands for the srpDiscovery command are mentioned in
the following table:

Table: srpDiscovery Options

Member Usage

topologyLength The length of the topology data which follows.

Table: srpDiscovery Sub-Commands

Member Usage

clearAllMacBindings Clears the MAC bindings associated with the discovery packet.

addMacBinding Adds a MAC binding from the srpMacBinding command to the list.

getFirstMacBinding
getNextMacBinding
getMacBinding

Iterates through the MAC bindings or addresses one directly.

srpMacBinding

The srpMacBinding command is used to format MAC bindings that are part of an SRP Discovery packets
for SONET cards. The important additional options for the srpDiscovery command are mentioned in the

Chapter 5 IxTclHal API Description

– 150 –

following table:

Table: srpMacBinding Options

Member Usage

address The bound MAC address.

ringIdentifier The ring to which the binding applies.

wrappedNode Whether the node is currently wrapped or not.

srpUsage

The srpUsage command is used to format SRP Usage messages for SONET cards. The SRP header options
which are common to all of the SRP commands are shown in Table:SRP Header Options. The important
additional options for the srpUsage command are mentioned in the following table:

Table: srpUsage Options

Member Usage

rxMacAddress The source MAC address for the usage packet.

rxTimeout The receive timeout value.

rxTimeoutThreshold The number of timeouts to wait before declaring the neighbor node as down.

txMacAddress The destination MAC address of the usage packet.

txRepeatInterval The interval at which usage packets are transmitted.

txUsageEnabled Enables the repeated transmission of usage packets.

txValue The data value to accompany the usage packet.

streamQueueList

See the Ixia Reference Guide for a general discussion. streamQueueList for full details. ATM streams are
organized into up to 15 queues, each queue may contain a number of streams. Up to 4096 streams may
be distributed across the 15 queues. All queues are transmitted in parallel. The streamQueueList
command adds and deletes stream queues to a port. Stream queues may also be automatically created
with the stream setQueue command. The important options and sub-commands of this class are
mentioned in the following table:

Table: streamQueueList Options

Member Usage

avgDataBitRate The average bit rate across all queues (read-only).

Chapter 5 IxTclHal API Description

– 151 –

Member Usage

avgCellRate The average cell rate across all queues (read-only).

avgPercentLoad The average percentage load across all queues (read-only).

avgFramerate The average framerate across all queues (read-only).

Table: streamQueueList Sub-Commands

Member Usage

select Selects the port to operate on.

clear Removes all stream queues from a port.

add Adds a stream queue to the port.

del Deletes a stream queue from the port.

streamQueue

streamQueue for full details. The streamQueue command sets the transmission rate for all of the streams
in a queue.The important options and sub-commands of this class are mentioned in the following table:

Table: streamQueue Options

Member Usage

rateMode
percentMaxRate
aal5PduBitRate
cellBitRate

Control for and different means by which the ATM bit rate may be configured.

aal5FrameRate
aal5PayloadBitRate
aal5SduBitRate
cellRate

Read-only. The ATM bit rate expressed in alternate units.

enableInterleave Controls whether a stream queue’s cells may be interleaved with other stream
queues.

Table:streamQueue Sub-Commands

Member Usage

clear Removes all streams from a queue.

Chapter 5 IxTclHal API Description

– 152 –

npiv

The npivProperties command is used to configure an unconnected NPIV interface. (NPIV means N_
Port_ID Virtualization). npivProperties for details.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter
filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

Chapter 5 IxTclHal API Description

– 153 –

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets

Table: filter Options

Chapter 5 IxTclHal API Description

– 154 –

Member Usage

l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette
filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

Chapter 5 IxTclHal API Description

– 155 –

Member Usage

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just
one (OR’d).

capture
capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

Chapter 5 IxTclHal API Description

– 156 –

captureBuffer
captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After
setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

Chapter 5 IxTclHal API Description

– 157 –

Category Member Usage

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1

Chapter 5 IxTclHal API Description

– 158 –

set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos
qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset
patternOffsetType

The offset in the frame where a particular pattern is matched before QoS
counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly
The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the

Chapter 5 IxTclHal API Description

– 159 –

reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter
The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Chapter 5 IxTclHal API Description

– 160 –

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat
See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Chapter 5 IxTclHal API Description

– 161 –

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch
These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Chapter 5 IxTclHal API Description

– 162 –

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual
statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat Adds or deletes a statistics to a particular stat watch.

Chapter 5 IxTclHal API Description

– 163 –

Member Usage

delStat

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats
The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Chapter 5 IxTclHal API Description

– 164 –

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency
maxLatency
standardDeviation

The average/min/max latency for a group.

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived Per-PGID stats available when port is in PRBS mode

Chapter 5 IxTclHal API Description

– 165 –

Category Member Usage

prbsErroredBitgs
prbsBerRatio

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

Chapter 5 IxTclHal API Description

– 166 –

vsrStat
vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

getChannel Used to fetch the channel specific statistics for one channel.

vsrError
vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount

Controls insertion of frame delimiter errors.

Chapter 5 IxTclHal API Description

– 167 –

Member Usage

frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord
enableControlCharCodeWord

Controls insertion of 8b/10b code word errors.

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat
The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells Statistics for receive ports.

Chapter 5 IxTclHal API Description

– 168 –

Member Usage

rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx
delTx

Deletes a VPI/VCI for a particular port from the receive or transmit list.

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats
The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

Chapter 5 IxTclHal API Description

– 169 –

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

Chapter 5 IxTclHal API Description

– 170 –

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 171 –

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

Table: filter Options

Chapter 5 IxTclHal API Description

– 172 –

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

Chapter 5 IxTclHal API Description

– 173 –

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just
one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Chapter 5 IxTclHal API Description

– 174 –

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After
setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within

Chapter 5 IxTclHal API Description

– 175 –

Category Member Usage

the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

Chapter 5 IxTclHal API Description

– 176 –

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset
patternOffsetType

The offset in the frame where a particular pattern is matched before QoS
counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

Chapter 5 IxTclHal API Description

– 177 –

Member Usage

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

Chapter 5 IxTclHal API Description

– 178 –

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port

Chapter 5 IxTclHal API Description

– 179 –

Member Usage

indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Chapter 5 IxTclHal API Description

– 180 –

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual
statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

Chapter 5 IxTclHal API Description

– 181 –

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Chapter 5 IxTclHal API Description

– 182 –

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency
maxLatency
standardDeviation

The average/min/max latency for a group.

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

Chapter 5 IxTclHal API Description

– 183 –

Member Usage

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter Receive statistics available on a per-channel basis.

Chapter 5 IxTclHal API Description

– 184 –

Member Usage

rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

Chapter 5 IxTclHal API Description

– 185 –

Member Usage

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord
enableControlCharCodeWord

Controls insertion of 8b/10b code word errors.

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi The current VPI/VCI pair.

Chapter 5 IxTclHal API Description

– 186 –

Member Usage

vci

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx
delTx

Deletes a VPI/VCI for a particular port from the receive or transmit list.

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Chapter 5 IxTclHal API Description

– 187 –

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 188 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 189 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 190 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 191 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 192 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 193 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 194 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 195 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 196 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 197 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 198 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 199 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 200 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 201 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 202 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 203 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 204 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 205 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 206 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 207 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 208 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 209 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 210 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 211 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 212 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 213 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 214 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 215 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 216 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 217 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 218 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 219 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 220 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 221 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 222 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 223 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 224 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 225 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 226 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 227 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 228 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 229 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 230 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 231 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 232 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 233 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 234 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 235 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 236 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 237 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 238 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 239 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 240 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 241 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 242 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 243 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 244 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 245 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 246 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 247 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 248 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 249 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 250 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 251 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 252 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 253 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 254 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 255 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 256 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 257 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 258 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 259 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 260 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 261 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 262 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 263 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 264 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 265 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 266 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 267 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 268 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 269 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 270 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 271 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 272 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 273 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 274 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 275 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 276 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 277 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 278 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 279 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 280 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 281 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 282 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 283 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 284 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 285 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 286 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 287 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 288 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 289 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 290 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 291 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 292 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 293 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 294 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 295 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 296 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 297 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 298 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 299 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 300 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 301 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 302 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 303 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 304 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 305 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 306 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 307 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 308 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 309 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 310 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 311 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 312 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 313 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 314 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 315 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 316 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 317 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 318 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 319 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 320 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 321 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 322 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 323 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 324 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 325 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 326 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 327 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 328 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 329 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 330 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 331 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 332 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 333 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 334 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 335 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 336 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 337 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 338 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 339 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 340 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 341 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 342 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 343 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 344 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 345 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 346 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 347 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 348 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 349 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics

Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 350 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 351 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 352 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 353 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 354 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 355 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 356 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 357 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 358 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 359 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 360 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 361 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 362 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 363 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 364 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 365 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 366 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 367 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 368 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 369 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 370 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 371 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 372 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 373 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 374 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 375 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 376 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 377 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 378 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 379 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 380 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 381 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 382 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 383 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 384 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 385 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 386 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 387 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 388 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 389 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 390 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 391 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 392 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 393 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 394 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 395 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 396 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 397 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 398 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 399 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 400 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 401 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 402 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 403 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 404 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 405 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 406 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 407 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 408 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 409 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 410 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 411 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 412 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 413 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 414 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 415 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 416 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 417 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 418 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 419 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 420 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 421 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Data Capture and Statistics
Data is captured as a result of the use of the following commands:

l filter: Sets up conditions under which data capture is triggered and filtered. filter sets up the
conditions for collecting several user defined statistics.

l filterPallette: Sets up address and pattern matches used in filter.
l capture: Sets up basic sizing parameters for captured data.
l captureBuffer: Provides access to the raw data and latency/jitter measurements.
l qos: Sets up conditions under which QoS statistics are gathered.
l atmReassembly: Registers particular ATM VPI/VCIs for stream reassembly.
l atmFilter: Sets up ATM data and mask conditions and allows ATM data matches to be used for user
defined statistics or capture trigger and filter.

Raw data and statistics are collected through the use of the following commands:

Chapter 5 IxTclHal API Description

– 422 –

l stat: Provides access to all of the port statistics.
l statGroup, statList and statWatch: Provides access to average latency data and timestamps during
packet group operation.

l packetGroupStats: Provides access to statistics organized by groups of ports.
l latencyBin: Holds latency bin information.
l vsrStat: For 10Gigabit Ethernet VSR boards, provides access to global and per channel statistics.
l vsrError: For 10Gigabit Ethernet VSR boards, provides for the insertion of VSR errors.
l atmStat: For ATM boards, provides access to per VPI/VCI statistics.
l streamTransmitStats: For certain types of board, per-stream transmit statistics.

See the Ixia Reference Guide and the Ixia Reference Guide for a general discussion.

filter

filter sets up the conditions under which data capture is triggered and filtered. Conditions for the
collection of user defined statistics (UDS) 1, 2, 5 and 6 are also specified. User defined statistics 5 and 6
are also known as async trigger 1 and 2. "filter" for full details.

There are six sets of eight options for the capture trigger and filter and the four user UDFs. The following
contribute a prefix to the option name:

l captureTrigger...

l captureFilter...

l userDefinedStat1...

l userDefinedStat2...

l asyncTrigger1...

l asyncTrigger2...

The options for the suffix to these names are mentioned in the following table:

Member Usage

Enable Enables or disables the filter, trigger or statistic.

DA Two destination address matches (DA1 and DA2) are set through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l DA1
l Not DA1
l DA2
l Not DA2

Table: filter Options

Chapter 5 IxTclHal API Description

– 423 –

Member Usage

SA Two source address matches (SA1 and SA2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
addresses are required for a match:

Any address
l SA1
l Not SA1
l SA2
l Not SA2

Pattern Two pattern matches (pattern1 and pattern2) are set up through the use of
filterPallette. This member chooses which conditions relating to those
pattern matches are required for a match:

Any address
l pattern1
l Not pattern1
l pattern2
l Not pattern2
l pattern1 and pattern2

Error The error condition under which a match occurs including the following:
l Anytime, without concern over errors.
l Only for good packets
l Any of a number of other error conditions.

FrameSizeEnable Enables or disables the size constraint as specified in the two entries below.

FrameSizeFrom
FrameSizeTo

The minimum and maximum frame size for a match.

For example, at a minimum the Enable option of the captureTrigger command and the Enable option of
the captureFilter command must be set for any data to be captured.

filterPallette

filterPallete sets up address and data pattern matching criteria used in filter. “filterPallette” for full
details.

There are four sets of two options for the source and destination addresses 1 and 2. These are mentioned
in the following table:

Table: filterPallete Options - DA/SA

Chapter 5 IxTclHal API Description

– 424 –

Member Usage

DA1 Destination address 1 data.

DAMask1 Mask of valid bits for destination address 1.

DA2 / DAMask2 Same for destination address 2.

SA1 / SAMask1 Same for source address 1.

SA2 / SAMask2 Same for source address 2.

There are two sets of four options for each of the two data patterns. These are mentioned in the following
table:

Table: filterPallette Options - Pattern 1/2

Member Usage

matchType1 The basic form of match performed. This is a one of a number of pre-
programmed choices in which the packet type and data pattern are pre-
programmed and/or specially interpreted. One additional choice allows for user
specification of the data and type.

patternOffset1
patternOffsetType1

If the user choice is made in matchType1, this is the offset of pattern 1 in the
frame. For some port types, it is possible to specify where the offset is with
respect to; for example, from the start of the IP header.

pattern1 The data within the pattern to match for. For the pre-programmed choices in
matchType1, this pattern has a special interpretation.

patternMask1 The mask to apply against pattern1 to obtain a match.

patternOffset2
matchType2
pattern2
patternMask2

The same as for pattern 1, but for pattern 2.

In addition the following options control matching on GFP errors:

Table: filterPallette Options

Member Usage

enableGfpBadFcsError
enableGfpeHecError
enableGfpPayloadCrc
enableGfptHecError

Enables or disables the use of a particular GFP error condition.

gfpErrorCondition Indicates whether the above enables need to all be present (AND’d) or just

Chapter 5 IxTclHal API Description

– 425 –

Member Usage

one (OR’d).

capture

capture sets up the basic parameters associated with the capture buffer usage.

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBufferget command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

capture for full details. The important options of this command are mentioned in the following table:

Table: capture Options

Member Usage

sliceOffset The offset within the frame from which to begin capturing data.

sliceSize The maximum number of octets per frame to capture. 8192 is the largest slice size
supported.

nPackets (Read-only) The actual number of packets available in the capture buffer.

captureBuffer

captureBuffer allows the raw captured data to be obtained, or calculated latency data to be viewed.
Data is held in the hardware until the getmethod is called, which copies the captured data for a range of
frame numbers into local computer memory. Following the use of get, getframemakes an individual
frame available. Latency and deviation values may be calculated, subject to constraints through the use
of setConstraint and getStatistics. Latency is defined as the difference between the transmit and
receive times, in nanoseconds. Jitter is defined as the deviation of the latency. captureBuffer for full
details.

The important options and sub-commands of this command are mentioned in the following table:

Table: captureBuffer Options

Category Member Usage

Data frame (Read-only) The contents of the selected frame based on
sliceSize.

length (Read-only) The total length of the frame, regardless of the
slice captured.

numFrames The number of frames in the hardware’s capture buffer. After

Chapter 5 IxTclHal API Description

– 426 –

Category Member Usage

setConstraints is called, this value is updated with the
number of frames that met the constraints.

status The status of the frame: either no errors, or one of a number
of possible error conditions.

timestamp The arrival time of the captured frame in nanoseconds.

Measure-
ments

averageLatency (Read-only) The average latency of the frames in the
retrieved capture buffer (in nanoseconds).

latency (Read-only) The frame’s latency (in nanoseconds).

minLatency (Read-only) The minimum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

maxLatency (Read-only) The maximum latency (in nanoseconds) of the
frames in the retrieved capture buffer.

averageDeviation (Read-only) The average deviation of the average latencies of
the frames in the retrieved capture buffer.

standardDeviation (Read-only) The standard deviation of the average latencies
of the frames in the retrieved capture buffer.

Constraints enableEthernetType Enables jitter calculations to occur only over those frames
with the ethernet type indicated in ethernetType.

ethernetType If enableEthernetType is set, this is the ethernet type to
match on.

enableFramesize Enables jitter calculations to occur only over those frames
with the frame size indicated in framesize.

framesize If enableFramesize is set, this is the frame size to match on.

enablePattern Enables jitter calculations to occur only over those frames
with a pattern match as indicated in patternOffset and
pattern.

patternOffset If enableFramesize is set, this is the expected offset within
the frame for the pattern match.

patternOffset If enableFramesize is set, this is the expected pattern for the
pattern match.

Table: captureBuffer Sub-Commands

Chapter 5 IxTclHal API Description

– 427 –

Member Usage

get Copies the data for a range of frame numbers from the hardware capture buffer.

The high-level command, ixCheckTransmitDone, may be used to wait until all ports
have finished transmitting.

Note: For cards like 10GE LSMXM(4), LavaAP40/100GE2P, HSE40GE, and
FlexAP40GE, this sub-command stops the capture process if it is still active.

getframe Gets an individual frame’s data.

clearConstraint Clears the constraint values for jitter calculation.

setConstraint Sets a new set of jitter calculation constraints.

getConstraint Gets the current set of jitter calculation constraints.

getStatistics Gets the jitter statistics for the current set of constraints.

export Export the contents of a capture buffer for later import or usage by another
program.

import Import a previously saved and exported capture buffer for analysis.

The following example imports a previously saved capture buffer and print out the number of bytes in
each frame:

captureBuffer import d:/adrian.cap 1 1 1
set numRxPackets [captureBuffer cget -numFrames]
ixPuts "$numRxPackets packets in buffer"
for {set frame 1} {$frame <= $numRxPackets} {incr frame} {
captureBuffer getframe $frame
set capframe [captureBuffer cget -frame]
ixPuts "Frame $frame is [llength $capframe] bytes long"
}

Note: For some load modules (that is, LSM10GE), it is advisable to request capturBuffer data in
chunks. Unless both the chassis and client machines have sufficiently high available memory, they
may be overloaded by captured data.

qos

qos allows the user to set up the QoS counter filters and offsets. qos for full details. The important options
and sub-commands of this command are mentioned in the following table:

Table: qos Options

Member Usage

patternOffset The offset in the frame where a particular pattern is matched before QoS

Chapter 5 IxTclHal API Description

– 428 –

Member Usage

patternOffsetType counting occurs.

patternMatch The value to look for at the patternOffset.

patternMask The mask to be applied in the pattern match.

byteOffset The offset in the packet where the priority value is located - to be used to
increment the correct QoS counter.

Table: qos Sub-Commands

Member Usage

setup Sets the QoS counters for certain types of packets:
l Ethernet II
l 802.3 Snap
l VLAN
l ppp
l Cisco HDLC

atmReassembly

The atmReassembly command is used to configure an ATM port to reassemble received data for
particular VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in
atmFilter. Note that these commands automatically calls this command for the port, if it is not in the
reassembly list. Except for receive ports using other than default encapsulation
(atmEncapsulationLLCRoutedCLIP) in packet group mode, the add sub-command need never be called;
the del and removeAll commands proves useful when changing a list. atmReassembly for details. The
important options and sub-commands of this command are mentioned in the following table:

Table: atmReassembly Options

Member Usage

vpi
vci

The VPI and VCI to match.

encapsulation The expected ATM encapsulation.

enableIpTcpUdpChecksum
enableIpQos

If set, indicates that packets with this VPI/VCI pair are to be used in
collecting TCP/UDP Checksum or QoS statistics.

Table: atmReassembly Sub-Commands

Chapter 5 IxTclHal API Description

– 429 –

Member Usage

add
del

Add or remove a particular VPI/VCI on a particular port to the reassembly list.

removeAll Remove all items from the reassembly list.

getFirstPair
getNextPair

Cycles through the VPI/VCI pairs in the list.

atmFilter

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the command
options and then memorized through the set sub-command. atmFilter for details. The important options
and sub-commands of this command are mentioned in the following table:

Table: atmFilter Options

Member Usage

enable Enables or disables the use of a particular entry.

enableUds1
enableUds2
enableFilter
enableTrigger

Selects one or more uses for the filter setup.

comparisonData
comparisonMask

Establishes the data that is matched to satisfy the count, trigger, or filter
function.

Table: atmFilter Sub-Commands

Member Usage

set Sets the options for a particular VPI/VCI on a particular port.

get Gets the options for a particular VPI/VCI on a particular port.

stat

See the Ixia Reference Guide for a general discussion. Provides access to a wide range of statistics; the
instantaneous value or rate is retrieved. stat for full details. Statistics may be gathered in the following
ways:

l Statistics in bulk, through the use of the stat get allStats <chassis> <card> <port> followed
by calls to get the data using stat cget -statName.

Chapter 5 IxTclHal API Description

– 430 –

l Rate statistics in bulk, through the use of the stat getRate allStats <chassis> <card> <port>
followed by calls to get the data using stat cget -statName

l An individual statistic, through the use of the stat get statName <chassis> <card> <port>. The
values is returned from the call.

l An individual rate statistic, through the use of the stat getRate statName <chassis> <card>
<port>. The value is returned from the call.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values.

The important options and sub-commands of this command are mentioned in the following table:

Table: stat Options

Member Usage

mode Sets the mode of the counters:
l Normal.
l QoS: Reuses eight of the counters for QoS values.
l UDS 5,6: Reuses two of the counters for User Defined Statistics 5 and 6.
l Checksum Errors: Reuses six hardware counters for IP, TCP, and UDP checksum
errors.

l Data Integrity: Reuses two counters for data integrity errors.

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: stat Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

getCaptureState Determines whether a port’s capture buffer is active or idle.

stat getLinkState 1 1 1 Gets the link state for the chassis indexed 1, card indexed 1, and port
indexed 1. It means, this command fetches the state of port 1 for the card 1.

getTransmissionState Determines whether a port is actively transmitting or idle.

set Sets the port’s statistics mode as indicated in the modemember.

Table: getLinkState command for VM Ports

Chapter 5 IxTclHal API Description

– 431 –

State Values Explanation

Connected and Link
Up

1 Port up and running

Connected and Link
Down

0 Port link down

Disconnected 57 Port disconnected from the chassis

IxOS Version
Mismatch

73 IxOS Version Mismatch between the Virtual Chassis and the Virtual
Load Modules

Connect but No
License

66 Connected but No Licenses Available (check license server)

statGroup, statList and statWatch

These commands provide alternate means for accessing statistics across a set of ports.statGroup, statList
and statWatch for full details. These commands are more efficient means of collecting multiple statistics
or statistics from a group of ports.

A group of port may be formed using statGroup and all of the valid statistics for the ports in the group are
available through statList.

As an alternative, statWatchmay be used to set up a number of statistics watch sets. Each statistics
watch has a unique ID and holds a list of ports and statistics. Once a stat watch is started, the indicated
set of statistics is regularly retrieved for the indicated set of ports. statList is used to read the actual
statistics.

Note also that most of the statistics are 64-bit values. mpexpr should be used to perform calculations on
these values. The important options and sub-commands of statGroup are mentioned in the following
table:

Table: statGroup Options

Member Usage

numPorts The current number of ports in the group.

Table: statGroup Sub-Commands

Member Usage

setDefault Resets the list to empty.

add Adds a port to the group.

del Deletes a specific port from the group.

get Retrieves all of the valid statistics for all of the ports in the group. The individual

Chapter 5 IxTclHal API Description

– 432 –

Member Usage

statistics are available through statList.

The important options and sub-commands of statList are mentioned in the following table:

Table: statList Options

Member Usage

<statistics> The number and type of statistics is too large to mention here. stat for a description of
the stat command and the Ixia Reference Guide for description of all statistics
available.

Table: statList Sub-Commands

Member Usage

get Gets a particular statistic value or all statistics.

getRate Gets the frame rate for a particular statistic value or all statistics.

The important sub-commands of statWatch are mentioned in the following table:

Table: statWatch Sub-Commands

Member Usage

create
destroy

Creates and destroys a stat watch.

addPort
delPort

Adds or deletes a port to a particular stat watch.

addStat
delStat

Adds or deletes a statistics to a particular stat watch.

addStatRate
delStatRate

Adds or deletes a statistics rates to a particular stat watch.

start
stop

Starts and stops the stat watch process.

packetGroupStats

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to the Ixia
Reference Guide for list of which statistics are available.

Chapter 5 IxTclHal API Description

– 433 –

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: This fetches a range of statistics
for the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, all PGIDs are
retrieved, starting with PGID 0.

l packetGroupStats getGroup index: This fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: Operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats are removed.)

Latency bin dividing times must be set up with the packetGroup’s enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and thse latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup’s latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port’s receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup’s enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

packetGroupStats for full details. The important options and sub-commands are mentioned in the
following table:

Table: packetGroupStats options

Category Member Usage

Basic numGroups The number of actual groups received.

totalFrames The total number of frames used to calculate the statistics.

Latency averageLatency
minLatency

The average/min/max latency for a group.

Chapter 5 IxTclHal API Description

– 434 –

Category Member Usage

maxLatency
standardDeviation

Latency
Bins

numLatencyBins The number of latency bins active.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the packet group.

Rates bitRate
byteRate
frameRate

The bit rate.

The stats bitRate and byteRate are not available in Latency view
when delay variation is specified as with Latency Min Max
Average.

Note: To get the valid frame rate, execute the
packetGroupStats get command twice. In this case it is PG
stats::packetGroupStats get $chassId $cardId $portId 0
$ExpectedPgId . When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the
current frame count and the previous frame count. The
first time when you execute the packetGroupStats
command, it will return the base value, which is the
difference between current frame count and previous
frame count. So you get the value as 0. The second time
when you execute the command, it will calculate the frame
rate by taking the difference between the base value and
the current value.

PRBS prbsBitsReceived
prbsErroredBitgs
prbsBerRatio

Per-PGID stats available when port is in PRBS mode

Table: packetGroupStats Sub-Commands

Member Usage

get Used to get the data for a range of group IDs into local memory.

getGroup Used to retrieve the latency for a particular group.

getGroupFrameCount Used to retrieve the number of frames for a group.

getFirstLatencyBin
getNextLatencyBin
getLatencyBin

Used to retrieve latency bin values to the latencyBin command’s options.

Chapter 5 IxTclHal API Description

– 435 –

latencyBin

This command holds the result of a packetGroupStats
getFirstLatencyBin/getNextLatencyBin/getLatencyBin call. latencyBin for full details. The important
options of this command are mentioned in the following table:

Table: latencyBin options

Category Member Usage

Basic startTime
stopTime

The start and stop times of the latency bin.

numFrames The number of frames in the bin.

Latency minLatency
maxLatency

The min/max latency for a bin.

Time
Stamps

firstTimeStamp
lastTimeStamp

First and last time stamp for packets in the bin.

Rates bitRate
byteRate
frameRate

The bit rate. Note that this requires multiple calls to get before valid
values are obtained.

(Note: When the port is in PRBS mode, all latency specific stats are removed.)

vsrStat

vsrStat is used to retrieve statistics for VSR equipped 10GE cards. vsrStat for full details. The important
options and sub-commands of this command are mentioned in the following table:

Table: vsrStat options

Member Usage

tx
rx

Global transmit/receive statistics.

rxCodeWordViolationCounter
rxLossOfSychronization
rxOutOfFrame
rxCrcErrorCounter

Receive statistics available on a per-channel basis.

Table: vsrStat Sub-Commands

Member Usage

get Used to get all of the global and per channel statistics

Chapter 5 IxTclHal API Description

– 436 –

Member Usage

getChannel Used to fetch the channel specific statistics for one channel.

vsrError

vsrError is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards. vsrStat for full
details. The important options and sub-commands of this command are mentioned in the following table:

Table: vsrError options

Member Usage

enableChannelSwap
enableDelimiterInsert
enableProtectSwitch
enableErorrCorrection

Controls features related to error detection and recovery.

bipErrorMask
bipErrorFrameCount
bipInsertionMode

Controls insertion of Section BIP errors.

crcErrorBlockCount
crcInsertionMode
crcChannelSelection

Controls insertion of CRC errors.

frameDelimiterErrorMask
frameDelimiterErrorFrameCount
frameDelimiterInsertionMode
enableControlByte1
enableControlByte2Ch1To6
enableControlByte2Ch7To12
enableControlByte3
frameDelimiterControlByte1
frameDelimiterControlByte2Ch1To6
frameDelimiterControlByte2Ch7To12
frameDelimiterControlByte3
frameDelimiterChannelSelection

Controls insertion of frame delimiter errors.

channelSkewMode
channelSkewDelayTime
channelSkewInsertionMode
channelSkewChannelSelection

Controls insertion of channel skew errors.

error8b10bCodeWordCount
error8b10bCodeWordValue
error8b10bInsertionMode
error8b10bChannelSelection
enableDisparityErrorCodeWord

Controls insertion of 8b/10b code word errors.

Chapter 5 IxTclHal API Description

– 437 –

Member Usage

enableControlCharCodeWord

Table:vsrError Sub-Commands

Member Usage

insertError Momentarily inserts a single instance of a particular error type.

start Starts error insertion for all modes.

stop Stops error insertion.

atmStat

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the command’s options.atmStat for full details. The important options and sub-
commands of this command are mentioned in the following table:

Table: atmStat Options

Member Usage

rxAtmCells
rxAal5Frames
rxAal5LengthErrors
rxAal5TimeoutErrors

Statistics for receive ports.

txAtmCells
txAal5Bytes
txAal5Frames
txAal5ScheduledBytes
txAal5ScheduledFrames

Statistics for transmit ports.

vpi
vci

The current VPI/VCI pair.

Table: atmStat Sub-Commands

Member Usage

addRx
addTx

Adds a VPI/VCI for a particular port to the receive or transmit list.

delRx Deletes a VPI/VCI for a particular port from the receive or transmit list.

Chapter 5 IxTclHal API Description

– 438 –

Member Usage

delTx

removeAllRx
removeAllTx

Clears all VPI/VCI pairs from the receive or transmit list for a particular port.

getFirstRxPair
getNextRxPair
getFirstTxPair
getNextRxPair

Cycles through the receive or transmit lists.

get Gets all of the statistics for all VPI/VCI pairs for all ports. Must be followed by a call
to getStat or getRate.

getStat Gets the statistics for a particular VPI/VCI on a particular port.

getRate Gets the rate statistics for a particular VPI/VCI on a particular port.

streamTransmitStats

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This
may be checked through the use of the port isValidFeature... portFeaturePerStreamTxStats command.
Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode.

Note: The TXS8 supports 1 to 255 streams in packet stream transmit mode, and 1 to 128 streams
in advanced mode.

StreamTransmitStats on ATM cards is limited to displaying statistics for 127 streams.

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a ‘1’ based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5. The important options and sub-commands of this command are
mentioned in the following table:

Table: streamTransmitStats Options

Member Usage

numGroups The number of groups retrieved by the get command.

frameRate The command returns the rate at which the frames are sent.

Chapter 5 IxTclHal API Description

– 439 –

Member Usage

Note: To get the valid frame rate, execute the
streamTransmitStats get command twice. In this case it is
Stream stats::streamTransmitStats get $chassId $cardId
$portId $streamId. When you execute this command the first
time, it returns 0. When you execute it the second time, it
returns the valid count. This is because frame rate is
calculated as per the difference in value between the current
frame count and the previous frame count. The first time
when you execute the streamTransmitStats command, it will
return the base value, which is the difference between current
frame count and previous frame count. So you get the value
as 0. The second time when you execute the command, it will
calculate the frame rate by taking the difference between the
base value and the current value.

framesSent The command returns the number of frames sent.

theoreticalAverageFrameRate Calculates the long-term average frame rate for each stream

Table: streamTransmitStats Sub-Commands

Member Usage

get Fetches a block of data for a number of streams.

getGroup Accesses a particular stream’s statistics.

Interface Table
Several commands relate to the specification of interfaces and IP addresses.

l protocolServer: Enables various protocols.
l Interface Table: Constructs an table of interfaces, each interface contains a list of associated IPv4
and IPv6 addresses along with a MAC address.

l IP: Constructs an IP address to MAC address correspondence table.
l Interface Table versus IP Address Table: Discusses the differences and uses of the interface table
versus the IP table.

l sfpPlus: Configures the small form-factor pluggable (SFP) transceiver interface, for NGY, and other
10GE load modules.

protocolServer
The protocolServer command is used to enable various protocols. protocolServer for full details. The
important options of this command are mentioned in the following table:

Table: protocolServer Options

Chapter 5 IxTclHal API Description

– 440 –

Member Usage

enableArpResponse Enables ARP response.

enablePingResponse Enables Ping response.

Interface Table
The interface table is used to hold a number of logical interfaces that are associated with an Ixia port.
Each interface may have none or more IPv4 and IPv6 addresses associated with a MAC address and
optional VLAN ID.

Refer to the IxNetwork Users Guide for a discussion of the Ixia Protocol Server’s testing model with
respect to interfaces.

Following are the interface table related commands:

l interfaceTable: Holds a list of interfaces for a port.
l interfaceEntry: Holds a list of IPv4/IPv6 addresses associated with an interface.
l interfaceIpV4: An individual IPv4 address and related parameters.
l interfaceIpV6: An individual IPv6 address and related parameters.

In addition, the IP addresses associated with an interface as well as perceived neighbors may be accessed
with the following commands:

l discoveredList
l discoveredAddress
l discoveredNeighbor

These commands, and the data that they maintain are arranged in a hierarchy, as shown in Figure:
Interface Table Command Hierarchy.

Figure: Interface Table Command Hierarchy

interfaceTable

interfaceEntry

interfaceIpV 4 interfaceIpV 6

interfaceTable

The interfaceTable command is used to configure interfaces associated with a port. Interfaces hold
interfaceEntry elements, each of which includes multiple IPv4 and IPv6 addresses. Note that the select

Chapter 5 IxTclHal API Description

– 441 –

command must be used before any other sub-commands to indicate the chassis, card, and port in use.
Refer to "interfaceTable" for full details. The typical series of operations are mentioned in the following
table:

Table: Typical Interface Table Operations

Operation Steps

add interface
table items

1. Use the select sub-command of the interfaceTable command to select the port being
modified.

2. Set IPv4 or IPv6 address values using the interfaceIpV4 or interfaceIpV6 command.
DHCP may be configured in the dhcpV4Properties command. DHCPv6 may be
configured in the dhcpV6Properties command.

3. Use the addItem sub-command of the interfaceEntry command; which adds the
address to an individual interlace entry.

4. Repeat steps 2 and 3 to add IPv4 and/or IPv6 addresses to the interface.

5. Set the enable, description, macAddress and VLAN attributes for the interface entry.

6. Use the addInterface sub-command of the interfaceTable command to add the
interface entry to the table.

7. Repeat steps 2 through 6 to add additional interfaces to the interface table for a port.

look through
interface
table

1. Use the select sub-command of the interfaceTable command to select the port being
modified.

2. Use the getFirstInterface sub-command of the interfaceTable command to reference
the first interface entry in the list.

3. Use the getFirstItem sub-command of the interfaceEntry command to get to the first
interface entry. Note that separate lists are maintained for IPv4 and IPv6 addresses.

4. Use the options in the interfaceIpV4 or interfaceIpV6 command to look at the IPv4 or
IPv6 address data.

5. Use the getNextItem sub-command of the interfaceEntry command to position to the
next address in the interface entry.

6. Use the getNextInterface sub-command of the interfaceTable command to reference
the next interface entry in the list.

7. Repeat steps 3 and 4 to look through the IPv4/IPv6 addresses in the interface entry.

8. Repeat steps 6 to loop through all defined interfaces until an error is returned.

The important sub-commands of this command are mentioned in the following table:

Chapter 5 IxTclHal API Description

– 442 –

Table: interfaceTable Sub-Commands

Member Usage

select Sets the chassis, card and port that are operated on by the
remaining sub-commands. This sub-command must be used first.

clearAllInterfaces Clears the interface table.

addInterface Adds the interface entry described in the interfaceEntry command
to the interface table at the current table position.

delInterface Deletes the interface table item at the current position or matched
by a description.

getInterface Finds the interface table item for a particular interface description.

getFcoeDiscoveredInfo Gets the FCoE assigned address and other information which
matches the specified description.

getFirstInterface Positions to the first interface table item.

getNextInterface Moves to the next interface table item.

sendRouterSolicitation Sends a router solicitation request to the link. Routers on the link
sends back router announcement messages that is accessible in the
discovered table.

clearDiscoveredNeighborTable Clears all of the discovered neighbors.

requestDiscoveredTable
getDiscoveredList
getDhcpV4DiscoveredInfo
getDhcpV6DiscoverdInfo
getFcoeDiscoveredInfo
getPtpDiscoveredInfo

These commands are used in sequence to retrieve the discovered
neighbor and address tables. This data is accessed through the
discoveredList, dhcpV4DiscoveredInfo, dhcpV6DiscoveredInfo,
fcoeDiscoveredInfo and ptpDiscoveredInfo commands.

sendArp Sends an ARP request to one or all enabled interfaces. Results are
read back through getDiscoveredList.

sendArpClear Clears the ARP table for one or all enabled interfaces.

sendArpRefresh Re-reads the ARP data from the port CPU.

setInterface Sets an interface entry in the interface to the specified description.

interfaceEntry

Interface entries hold one or more IPv4 or IPv6 addresses; the interfaceTable takes care of keeping the
actual list of interfaces. DHCP and DHCPv6 for IPv4 may also be enabled. interfaceEntry for full details.

Chapter 5 IxTclHal API Description

– 443 –

The important options and sub-commands of this command are mentioned in the following table:

Table: interfaceEntry Options

Member Usage

enable Enables the use of the interface entry.

enableDhcp Enables the use of DHCP for IPv4 addresses on the port. DHCP parameters
are configured using the dhcpV4Properties command.

enableDhcpV6 Enables the use of DHCPv6 for IPv4 addresses on the port. DHCP parameters
are configured using the dhcpV6DiscoveredInfo command.

enableFlogi Enable Fabric login (for FCoE protocol)

description A description of the interface. This description is used for matching in the
interfaceTable’s delItem and getItem commands.

interfaceType The type of the interface: connected, routed, GRE, NPIV, or PTP.

ipv6 gateway There can be one gateway per IPv6 interface.

macAddress The MAC address associated with the interface entry.

enableVlan Enable VLAN encapsulation for the interface.

vlanId If enableVlan is set, this is the ID used for the VLAN encapsulation.

eui64Id The EUI-64 ID associated with POS boards with IPv6 support.

greSourceIpAddress
greDesIpAddress
enableGreChecksum
enableGreSequence
enableGreKey
greInKey
greOutKey

The settings for GRE headers, when interfaceType is GRE.

Table: interfaceEntry Sub-Commands

Member Usage

clearAllItems Clears all IPv4/IPv6 addresses. Two separate lists are used for each of the IPv4 and
IPv6 addresses.

addItem Adds an IPv4/IPv6 to the respective list in the entry. Two separate lists are used for
each of the IPv4 and IPv6 addresses.

delItem Deletes the currently addressed item, or one that matches a particular address.

Chapter 5 IxTclHal API Description

– 444 –

Member Usage

getFirstItem References the first item in one of the lists.

getNextItem References the next item in one of the lists.

getItem Refers to a particular item matched by a particular address.

interfaceIpV4

The interfaceIpV4 holds a single IPv4 address and related data. It is added to one of the lists in the
interfaceEntry using the interfaceEntry addItem command. Refer to interfaceIpV4 for full details. The
important options of this command are mentioned in the following table:

Table:interfaceIpV4 Options

Member Usage

ipAddress The IPv4 address.

gatewayIpAddress The gateway address for the address.

maskWidth The size of the mask for the address, counting from the high-order bit.

interfaceIpV6

The interfaceIpV6 holds a single IPv6 address and data. It is added to one of the lists in the interfaceEntry
using interfaceEntry addItem. Refer to interfaceIpV6 for full details. The important options of this
command are mentioned in the following table:

Table:interfaceIpV6 Options

Member Usage

ipAddress The IPv6 address.

maskWidth The size of the mask for the address, counting from the high-order bit.

discoveredList

The discoveredList command must be preceded with use of three commands in the Interface Table
command: sendRouterSolicitation, requestDiscoveredTable, and getDiscoveredList. The discoveredList
command is used to look through two lists associated with an interface, as follows:

l Neighbor list: Contains a list of discovered neighbors, each of which contains a MAC address and a
list of IP addresses.

l Address list: Contains the list of IP addresses associated with the interface.

The important sub-commands of this command are mentioned in the following table:

Table:discoveredList Sub-Commands

Chapter 5 IxTclHal API Description

– 445 –

Member Usage

getFirstAddress
getNextAddress

Loops through the IP addresses assigned to the interface. The IP address itself is
accessed through the use of the discoveredAddress command.

getFirstNeighbor
getNextNeighbor

Loops through the neighbors found for the interface. The neighbor’s information
itself is accessed through the use of the discoveredNeighbor command.

discoveredAddress

The discoveredAddress command holds an IPv4 or IPv6 address associated with an interface (as retrieved
in discoveredList) or the IPv4/IPv6 address associated with a neighbor (as retrieved in
discoveredNeighbor). Refer to discoveredAddress for full details. The important options of this command
are mentioned in the following table:

Table: discoveredAddress Options

Member Usage

ipAddress The IPv4 or IPv6 address.

discoveredNeighbor

The discoveredNeighbor command holds an entry for each neighbor discovered as a result of router
discovery or neighbor discovery announcements. Each neighbor entry has the following:

l MAC address: The MAC address of the discovered interface.
l Router flag: If the neighbor is a router.
l Address list: A list of IP addresses associated with the neighbor’s interface, accessed with the
discoveredAddress command.

The important options and sub-commands of this command are mentioned in the following table:

Table: discoveredNeighbor Options

Member Usage

macAddress The MAC address associated with the neighbor.

isRouter If true, indicates that the neighbor is a router.

Table: discoveredNeighbor Sub-Commands

Member Usage

getFirstAddress
getNextAddress

Loops through the IP addresses associated with the neighbor. The IP address itself
is accessed through the use of the discoveredAddress command.

Chapter 5 IxTclHal API Description

– 446 –

Using DHCP with Interfaces
A DHCP client may be enabled on intelligent ports and then used for the source addresses in stream
traffic. The steps necessary to accomplish this are as follows:

l interfaceEntry: Set the enableDhcp flag to enable the use of DHCP.
l dhcpV4Properties: Set the DHCP negotiation properties.

n dhcpV4Tlv: Can be used to set up DHCP properties beyond those exposed in
dhcpV4Properties.

l interfaceTable: Use addInterface to add the DHCP enabled interface to the port.
l ixWritePortsToHardware: Or similar command to send the configuration to the port(s).
l interfaceTable: Use the requestDiscoveredTable followed by the getDhcpV4DiscoveredInfo sub-
commands to read back the assigned DHCP address. This information is available in the following
commands:

n dhcpV4DiscoveredInfo: Allows access to the assigned address and other common parameters.
n dhcpV4Tlv: Allows access to all other parameters as TLVs.

l stream: Set the enableSourceInterface and sourceInterfaceDescription fields to specify that the
MAC and IPv4 addresses should be taken from a particular interface entry.

dhcpV4Properties

The dhcpV4Properties command allows you to set the most frequently used DHCP parameters to be used
in negotiation with a DHCP server. The values in this command are applied to an interfaceEntry being
added to the interfaceTable. Other DHCP parameters may be set with the dhcpV4Tlv command. Refer to
dhcpV4Properties for full details. The important options and sub-commands of this command are
mentioned in the following table:

Table: dhcpV4Properties Options

Member Usage

clientId The client identifier. If ““, then the MAC address of the interface is used.

serverId If specified, only the indicated DHCP server is used. Otherwise, any available DHCP
server is used.

vendorId The vendor ID for the client.

renewTimer The client’s desired renewal time. The lesser of this time and the DHCP server’s
response is used.

Table: dhcpV4Properties Sub-Commands

Member Usage

addTlv Associates the values in dhcpV4Tlv with this DHCP property set.

Chapter 5 IxTclHal API Description

– 447 –

Member Usage

getFirstTlv
getNextTlv
getTlv

Fetches a TLV value either by iterating through all the items, or by index.

delTlv
removeAllTlvs

Removes a single TLV or all TLVs.

dhcpV4DiscoveredInfo

The dhcpV4DiscoveredInfo command makes the frequently used DHCP parameters negotiated with a
DHCP server available to you. Other DHCP parameters may be read with the dhcpV4Tlv command. Refer
to dhcpV4DiscoveredInfo for full details. The important options and sub-commands of this command are
mentioned in the following table:

Table: dhcpV4DiscoveredInfo Options

Member Usage

ipAddress The DHCP server assigned IPv4 address.

gatewayIpAddress The DHCP server assigned gateway address.

prefixLength The prefix/mask length for the network associated with the ipAddress.

leaseDuration The server’s desired renewal time. The lesser of this time and the client’s
desired value is used.

Table: dhcpV4DiscoveredInfo Sub-Commands

Member Usage

getFirstTlv
getNextTlv
getTlv

Fetches a TLV value either by iterating through all the items, or by index.

dhcpV4Tlv

The dhcpV4Tlv command is used to set DHCP options used by the client in the DHCP negotiation and to
read the results from the DHCP server. The client values are set with the dhcpV4PropertiesaddTlv sub-
command. The server values are read with the dhcpV4DiscoveredInfoget*Tlv sub-commands. Refer to
dhcpV4Tlv for full details. The important options of this command are mentioned in the following table:

Table: dhcpV4Tlv Options

Member Usage

type The type number of the DHCP parameter.

Chapter 5 IxTclHal API Description

– 448 –

Member Usage

value The value of the DHCP parameter. The length is inferred from the length of this string.

Using DHCPv6 with Interfaces
A DHCPv6 client may be enabled on intelligent ports and then used for the source addresses in stream
traffic. The following steps are necessary to accomplish this:

l interfaceEntry: Set the enableDhcpV6 flag to enable the use of DHCP.
l dhcpV6DiscoveredInfo: Set the DHCPv6 negotiation properties.

n dhcpV6Tlv: Can be used to set up DHCPv6 properties beyond those exposed in
dhcpV6Properties.

l interfaceTable: Use addInterface to add the DHCPv6 enabled interface to the port.
l ixWritePortsToHardware: Or similar command to send the configuration to the port(s).
l interfaceTable: Use the requestDiscoveredTable followed by the getDhcpV6DiscoveredInfo sub-
commands to read back the assigned DHCPv6 address. This information is available in the following
commands:

n dhcpV6DiscoveredInfo: Allows access to the assigned address and other common
parameters.s

n dhcpV6Tlv: Allows access to all other parameters as TLVs.
l stream: Set the enableSourceInterface and sourceInterfaceDescription fields to specify that the
MAC and IPv4 addresses should be taken from a particular interface entry.

dhcpV6Properties

The dhcpV6Properties command allows you to set the most frequently used DHCPv6 parameters to be
used in negotiation with a DHCP server. The values in this command are applied to an interfaceEntry
being added to the interfaceTable. Other DHCP parameters may be set with the dhcpV6Tlv command.
Refer to dhcpV6Properties for full details. The important options and sub-commands of this command are
mentioned in the following table:

Table: dhcpV6Properties Options

Member Usage

iaID The client identifier, which must be unique for the subnet that the interface is
connected to

iaType The type of DHCPv6 address.

renewTimer The requested value for the renewal time, in seconds.

Table: dhcpV6Properties Sub-Commands

Chapter 5 IxTclHal API Description

– 449 –

Member Usage

addTlv Associates the values in dhcpV6Tlv with this DHCP property set.

getFirstTlv
getNextTlv
getTlv

Fetches a TLV value either by iterating through all the items, or by index.

delTlv
removeAllTlvs

Removes a single TLV or all TLVs.

dhcpV6DiscoveredInfo

The dhcpV6DiscoveredInfo command makes the frequently used DHCPv6 parameters negotiated with a
DHCP server available to you. Other DHCPv6 parameters may be read with the dhcpV6Tlv command.
Refer to dhcpV6DiscoveredInfo for full details. The important options and sub-commands of this
command are mentioned in the following table:

Table: dhcpV6DiscoveredInfo Options

Member Usage

discoveredAddressList A list of discovered IP addresses.

iaRebindTime The rebind timer value specified by the DHCPv6 Server, in seconds

iaRenewTime The renew timer value specified by the DHCPv6 Server, in seconds

Table: dhcpV6DiscoveredInfo Sub-Commands

Member Usage

getFirstTlv
getNextTlv
getTlv

Fetches a TLV value either by iterating through all the items, or by index.

dhcpV6Tlv

The dhcpV6Tlv command is used to set DHCPv6 options used by the client in the DHCPv6 negotiation and
to read the results from the DHCP server. The client values are set with the dhcpV6Properties addTlv sub-
command. The server values are read with the dhcpV6DiscoveredInfoget*Tlv sub-commands. Refer to
dhcpV6Tlv for full details. The important options of this command are mentioned in the following table:

Table: dhcpV4Tlv Options

Member Usage

type The type number of the DHCP parameter.

value The value of the DHCP parameter. The length is inferred from the length of this string.

Chapter 5 IxTclHal API Description

– 450 –

Using PTP with Interfaces
Precision Time Protocol (PTP) enables precise synchronization of clocks in measurement and control
systems implemented with technologies such as network communication, local computing, and
distributed objects. ptp for details. Associated commands include ptpAnnounce, ptpDelayRequest,
ptpDelayResponse, ptpDiscoveredInfo, ptpFollowUp, ptpProperties, and ptpSync.

Using Fibre Channel and FCoE

fibreChannel

The fibreChannel command supports FCoE header and trailer in streams. fibreChannel for details.

fcoe

The fcoe command is used to configure Fibre Channel over Ethernet (FCoE) header and trailer packet.
FCoE is a method of communicating data for streams and protocols. fcoe for details. Associated
commands include fcoeDiscoveredInfo and fcoeProperties.

To configure an unconnected NPIV interface, see also npivProperties.

IP

ipAddressTable

The address table is a list of entries, each of which is described in the item command. The address table
command is used to position within the list and elements are accessed with the list object. The typical
series of operations are mentioned in the following table:

Table: Typical Address Table Operations

Operation Steps

add address table items 1. Set values in the ipAddressTableItem command.

2. Use the set sub-command of the ipAddressTableItem command
which transfers the data into a holding area.

3. Use the addItem sub-command of the ipAddressTable command to
move the data from the holding area to the actual list.

4. Repeat steps 1, 2 and 3 for each table item to be added.

5. Use the set sub-command of the ipAddressTable command to
send the table to the hardware.

look through address
table

1. Use the get sub-command ipAddressTable command to transfer
the data from the hardware to the object.

2. Use the get sub-command of the ipAddressTableItem command to
get the data into the ipAddressTableItem options.

3. Use the getNextItem sub-command of the ipAddressTable

Chapter 5 IxTclHal API Description

– 451 –

Operation Steps

command to position to the next table item.

4. Repeat steps 2 and 3 until an error is returned from step 3.

find the address table
item for an IP address

1. Use the getItem sub-command of the ipAddressTable command to
position the list to the correct entry.

2. Use the get sub-command of the ipAddressTableItem command to
get the data into the ipAddressTableItem options.

atmOamRdi for full details. The important options and sub-commands of this command are mentioned in
the following table:

ipAddressTable Options

Member Usage

defaultGateway The IP address of where all non-overridden ARP requests are sent. This is usually
the address of the Device Under Test.

Table: ipAddressTable Sub-Commands

Member Usage

clear Clears the IP address table.

addItem Adds the address table item as set by the last call to ipAddressTableItem.set to the
address table at the current table position.

delItem Deletes the address table item at the current position.

getItem Finds the address table item for a particular IP address.

getFirstItem Positions to the first address table item.

getNextItem Moves to the next address table item.

ipAddressTableItem

This command holds an individual table item; ipAddressTable takes care of keeping the actual list of
address table items. ipAddressTableItem for full details. The important options and sub-commands of this
command are mentioned in the following table:

Table: addressTableItem Options

Member Usage

fromIpAddress
toIpAddress

The IP address range.

Chapter 5 IxTclHal API Description

– 452 –

Member Usage

fromMacAddress
toMacAddress

The MAC address range.

numAddresses The number of consecutive addresses.

enableUseNetwork
netMask

Enables and sets the network mask to be applied to the IP addresses.

overrideDefaultGateway Override the default gateway address from the protocolServer object.

gatewayIpAddress If the gateway is overridden, this is the new gateway address value.

mappingOption IP to MAC mapping: Either one IP to one MAC or many IP to one MAC.

enableVlan
vlanId

Enable VLAN encapsulation for the routing protocols, using a specified
VLAN ID. Interface Table for a list of protocols that may be VLAN
encapsulated.

Table: addressTableItem Sub-Commands

Member Usage

get Gets the current item from the ipAddressTable command.

set Saves the current item for use by ipAddressTable.

Interface Table versus IP Address Table
The interface table is a new means of associating IPv4 and IPv6 addresses with ports and eventually
replaces the IP table. Observe the following rules:

l Write new tests using the interface table.
l Do not mix interface table and IP table usage for the same test. If interface tables are available, the
software uses them exclusively. If no interface tables are present, the data in the IP table is used
automatically.

l Interface tables must be used for some of the new, advanced protocol tests. These include the
following:

n RIPng
n OSPF
n ISIS
n BGP when used with any TXS or 10GE

l Continue to use IP tables when a large number of IP addresses are used, for example in ARP testing.

Chapter 5 IxTclHal API Description

– 453 –

sfpPlus
The sfpPlus command is used to configure the small form-factor pluggable (SFP) transceiver interface
that was added to NGY and other 10GE load modules. sfpPlus for full details.

The important options and sub-commands of this command are mentioned in the following table:

Table: sfpPlus Options

Member Usage

enableMonitorLos Enable monitor SFP Loss of Signal.

enableMonitorModule
ReadySignal

Enable monitor SFP Module Ready Signal.

enableAutomaticDetect Enable automatic detection of transceiver type.

type Configure the transceiver type.

Port CPU Control
Three commands are available which relate to port CPU operation and are covered in the next three sub-
sections.

Note: When connecting to chassis via TCL Server, always import IxTclServices after running
"ixConnectToTclServer" and "ixInitialize" commands.

Port CPU Control
Each Ixia port that has a local CPU may be reset through the use of the portCPU reset command. Refer to
portCpu for a full description of this command.

The port command’s isValidFeature sub-command may be used to determine if a given port has a CPU.
Use the following sequence:

if [port isValidFeature $chas $card $port portFeatureLocalCPU] {
... port has a CPU ...
}

The important sub-commands and options of this command are mentioned in the following table:

Table: portCpu Sub-Commands

Member Usage

reset Causes the port to reboot its operating system and return to its initial state. Any optional
loaded packages are removed. The current port and stream configuration is not affected.

Table: portCpu Options

Chapter 5 IxTclHal API Description

– 454 –

Member Usage

memory The amount of memory, expressed in MB, associated with the port.

Issue Port CPU Command
Most intelligent Ixia port runs the Linux Operating system. Any Linux command may be remotely
executed by TCL programming. The port command’s isValidFeature sub-command may be used to
determine if a given port runs Linux. Use the following sequence:

if [port isValidFeature $chas $card $port portFeatureIxRouter] {
... port runs Linux ...
}

pcpuCommandService

The pcpuCommandService command allows commands to be sent to a set of ports and executed
simultaneously. Different commands may be executed on different ports.

Refer to pcpuCommandService for a full description of this command. The important sub-commands and
options of this command are mentioned in the following table:

Table: pcpuCommandService Sub-Commands

Member Usage

add Adds a command to a specific port’s list.

del Deletes a command from a specific port’s list.

execute Sends commands to all ports and executes them.

getFirst/getNext Cycles through list of ports and commands. Command results may be retrieved.

Table: pcpuCommandService Options

Member Usage

chassisID/cardID/portID The port being addressed.

command The command to be executed (add) or executed (get).

input Optional lines of text that is used as the command’s standard input
stream.

output The text from standard output from the executed command. A maximum
of 1024 bytes is saved.

error The text from standard error from the executed command. A maximum of
1024 bytes is saved.

Chapter 5 IxTclHal API Description

– 455 –

Member Usage

result The result code of a command’s execution. In general zero means no
error and a non-zero indicates an error.

A high-level command, issuePcpuCommand, is also offered.

serviceManager
Most intelligent Ixia ports run the Linux Operating system. Software may be developed for these ports
using the guidelines documented in the Ixia Linux SDK Guide. Such software must be combined in a set of
files called a package and downloaded to a set of ports. Software packages must have been previously
placed on the chassis associated with any affected port, in the following folder:

C:\Program Files\Ixia\packages\

The following files constitute a package:

l A control file: This file, with the extension ini, allows different data files to be downloaded to the
ports based on the type of port processor and operating system version. All ini files must be located
in the C:\Program Files\Ixia\packages\ folder.

l Data files: One or more data files, each specifically compiled for a specific CPU type and/or operating
system. Data files are typically organized in separate folders:

<package>/<processor>/package.tgz

For example, a package named sample which supports the PPC 405 and 750 processors would have the
following files:

C:\Program Files\Ixia\packages\sample.ini

C:\Program Files\Ixia\packages\sample\ppc405\sample.tgz

C:\Program Files\Ixia\packages\sample\ppc750\sample.tgz

Control File Format

Each package must have a control file named <package>.ini, where <package> is a unique name. The
following types of statements are allowed in a control file:

l autoload. This is a single, optional statement:

autoload=1

If present, this indicates that the associated package is to be loaded onto all port CPUs and started
as per the indicated by the packages start.sh file, discussed below. This statement should only be
used if it really necessary for a package to permanently reside on a port.

l package. A package statement is of the form:

package [name=value, [...]] path=<package path>

Chapter 5 IxTclHal API Description

– 456 –

One or more name=value pairs may be used to qualify the condition under which a particular
version of the software is used. The possible name values are:

l processor. This is matched against the type of CPU running on the port. The legal values are as
follows:

n ppc405: Power PC, model 405.
n ppc750: Power PC, model 750.
n sh4: Hitachi SH4.

l platform. This is matched against the version of IxOS software running on the port. The legal
values take the following forms:
n version: This version only.
n -version: Up to and including this version.
n version-: From this version on.

A version is of the form n.n[.n...]. That is, two or more decimal separated numbers. For example, 3.65 or
3.70.24.9.

An example ini file is shown below:

#sample.ini

package processor=ppc405, path=sample/ppc405/sample.tgz
package processor=ppc750, platform=3.65-3.70, path=sample/
ppc750/sampleOld.tgz

package processor=ppc750, platform=3.80, path=sampleNew.tgz

Data Files

The data files associated with a package are contained in a single gzipped tar file. The Linux command line
to create such a package is as follows:

tar -czf <package>.tgz <file1> <file2> ...

The files in the tar file is unpacked on each processor to the following:

/opt/<package>

folder. The following types of files are contained in the tar file:

l start.sh: This file is mandatory and describes how to install and start the package. It is
automatically run as soon as the package is downloaded to a port by /bin/sh start.sh from
/opt/<package>. For example, if a tar file contained the following files:

n start.sh
n stop.sh
n bin/sample
n lib/libsample.so

Then an appropriate start.sh would be:

#start.sh

Chapter 5 IxTclHal API Description

– 457 –

Symlink to /bin and /lib
ln -s ../opt/sample/bin/sample ../../bin
ln -s ../opt/sample/lib/libsamble.so ../../lib

/bin/sample > /dev/console 2>&1
l stop.sh: This optional file is run by the service manager prior to deleting the package’s files in
/opt/<package>. This script should kill any processes that the start.sh script spawned and remove
any files that were installed outside of /opt/<package>.

l executable files: Although the files may be organized in any manner, we suggest that the
package’s main executable be placed in a bin folder and that any library be placed in a lib folder.

serviceManager

The serviceManager command is used to download and manage packages. Refer to serviceManager for a
complete explanation of these sub-commands. Note the serviceManager command is valid in Windows
based environments.

The important sub-commands of this command are mentioned in the following table:

Table: serviceManager Sub-Commands

Member Usage

downloadPackage Downloads and starts a package to the ports associated with a port group.
The port group is built using the portGroup commands.

deletePackage Stops and deletes a package from the ports associated with a port group.

getInstalledPackages Returns a list of packages installed on a particular port.

Chapter 5 IxTclHal API Description

– 458 –

APPENDIX 1 IxTclHAL Commands

FQPN support
For details on FQPN, see Fully Qualified Port Name.

Following is the list of APIs supporting FQPN:

l arp
l autoDetectInstrumentation
l basicLinkServices
l capture
l captureBuffer
l card
l cdlPreamble
l cfpPort
l chassisChain
l conditionalStats
l dataIntegrity
l dcc
l dhcp
l extendedLinkServices
l fcEOF
l fcoe
l fcPort
l fcSOF
l fecError
l fibreChannel
l filter
l filterPallette
l fipTlv
l flexibleTimestamp

– 459 –

l forcedCollisions
l gfp
l gfpOverhead
l gre
l hdlc
l icmp
l icmpv6
l igmp
l interfaceTable
l ip
l ipAddressTable
l ipV6
l ipx
l isl
l kp4FecError
l lasi
l lcas
l linkFaultSignaling
l macSecTag
l mii
l miiae
l mpls
l networkHeader
l oamHeader
l oamPort
l oamStatus
l opticalDigitalWrapper
l packetGroup
l packetGroupStats
l pauseControl
l pcsLaneError
l pcsLaneStatistics
l pcpuCommandService
l port
l portCpu

Appendix 1 IxTclHAL Commands

– 460 –

l portGroup
l ppp
l pppStatus
l prbsCapture
l protocolOffset
l protocolServer
l protocolPad
l ptp
l qos
l resourceGroupEx
l rip
l ripRoute
l rprFairness
l rprOam
l rprTopology
l rxLaneDiag
l sequenceNumberUdf
l serviceManager
l sfpPlus
l splitPacketGroup
l srpArp
l srpDiscovery
l srpIps
l srpUsage
l stackedVlan
l stat
l statGroup
l statList
l statWatch
l stream
l streamExtractorFilter
l streamExtractorModifier
l streamRegion
l streamTransmitStats
l tableUdf

Appendix 1 IxTclHAL Commands

– 461 –

l transceiver
l tcp
l tcpRoundTripFlow
l txLane
l txRxPreamble
l udp
l vlan
l weightedRandomFramesize

arp
arp - configure the ARP parameters on a stream of a port.

SYNOPSIS

arp sub-command options

DESCRIPTION

The arp command is used to configure the ARP parameters on a stream of a port to transmit ARP frames.
Any number of varying ARP frames may be generated.

STANDARD OPTIONS

destHardwareAddr

The MAC address of the interface receiving the ARP message. (default = 00 de bb 00 00 01)

destHardware
AddrMode

Indicates how the destHardwareAddr field is to vary between consequtive frames.

Option Value Usage

arpIdle 0 (default) no change

arpIncrement 1 increment by 1 for the count in
destHardwareAddrRepeatCount.

arpDecrement 2 decrement by 1 for the count in
destHardwareAddrRepeatCount.

arpContinuousIncrement 3 increment by 1 continuously.

arpContinuousDecrement 4 decrement by 1 continuously.

Appendix 1 IxTclHAL Commands

– 462 –

destHardwareAddr
RepeatCount

Indicates the repeat count for the destHardwareAddrMode increment and decrement options. (default =
0)

destProtocolAddr

Protocol address of the station that is receiving the ARP message. (default = 127.0.0.1)

destProtocolAddrMode

Indicates how the destProtocolAddr field is to vary between consequtive frames.

Option Value Usage

arpIdle 0 (default) no change

arpIncrement 1 increment by 1 for the count in
destProtocolAddrRepeatCount.

arpDecrement 2 decrement by 1 for the count in
destProtocolAddrRepeatCount.

arpContinuousIncrement 3 increment by 1 continuously.

arpContinuousDecrement 4 decrement by 1 continuously.

destProtocolAddr
RepeatCount

Indicates the repeat count for the destProtocolAddrMode increment and decrement options. (default = 0)

hardwareAddrLength

Read-Only. Number of bytes in the hardware address. (default = 6)

hardwareType

Read-Only. Indicates the hardware type that the physical layer of the network is using. Available option
values are mentioned in the following table:

Option Value Usage

hwTypeEthernet 1 (default) Ethernet 10 Mb

hwTypeAmateur 3 Amateur radio AX.25

hwTypeProteon 4 Proteon ProNET token ring

Appendix 1 IxTclHAL Commands

– 463 –

Option Value Usage

hwTypeChaos 5 Chaos

hwTypeIEEE 6 IEEE 802 networks

hwTypeARCNET 7 ARCNET

hwTypeHyperchannel 8 Hyperchannel

hwTypeLocalTalk 11 LocalTalk

operation

The type of operation the ARP process is attempting. Available options are mentioned in the following
table:

option Value Usage

arpRequest 1 (default) ARP request

arpReply 2 ARP reply or response

rarpRequest 3 RARP request

rarpReply 4 RARP reply or response

protocolAddrLength

Read-Only. Number of bytes that each of the protocol addresses, source and target, contains in the ARP
frame. (default = 4)

protocolType

Read-Only. Indicates the type of network protocol address the local network (or subnet) is using. (default
= 0x0800)

sourceHardwareAddr

The MAC address of the sending ARP interface. (default = 00 de bb 00 00 00)

sourceHardware
AddrMode

Indicates how the sourceHardwareAddr field is to vary between consecutive frames.

Option Value Usage

arpIdle 0 (default) no change

Appendix 1 IxTclHAL Commands

– 464 –

Option Value Usage

arpIncrement 1 increment by 1 for the count in
sourceHardwareAddrRepeatCount.

arpDecrement 2 decrement by 1 for the count in
sourceHardwareAddrRepeatCount.

arpContinuousIncrement 3 increment by 1 continuously.

arpContinuousDecrement 3 decrement by 1 continuously.

sourceHardware
AddrRepeatCount

Indicates the repeat count for the sourceHardwareAddrMode increment and decrement options. (default
= 0)

sourceProtocolAddr

Protocol address of the station that is sending the ARP message. (default =127.0.0.1)

sourceProtocol
AddrMode

Indicates how the sourceProtocolAddr field is to vary between consequtive frames.

Option Value Usage

arpIdle 0 (default) no change

arpIncrement 1 increment by 1 for the count in
sourceProtocolAddrRepeatCount.

ArpDecrement 2 decrement by 1 for the count in
sourceProtocolAddrRepeatCount.

arpContinuousIncrement 3 increment by 1 continuously.

arpContinuousDecrement 3 decrement by 1 continuously.

sourceProtocolAddr
RepeatCount

Indicates the repeat count for the sourceProtocolAddrMode increment and decrement options. (default =
0)

Appendix 1 IxTclHAL Commands

– 465 –

COMMANDS

The arp command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

arp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the arp command.

arp config option value

Modify the configuration options of the arp. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for arp.

arp decode capSlice chasID cardID portID

Decodes a captured slice/frame into the arp variables. If not an arp frame, returns TCL_ERROR. May be
used to determine if the captured frame is a valid arp frame. Specific errors are as follows:

l No connection to a chassis
l The captured frame is not an ARP frame

arp get chasID cardID portID

Gets the current configuration of the arp frame for port with id portID on card cardID, chassis chasID.
from its hardware. Call this command before calling arp cget option value to get the value of the
configuration option. Specific errors are as follows:

l No connection to a chassis
l Invalid port number

arp set chasID cardID portID

Sets the configuration of the arp in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the arp config option value command. Specific errors are as
follows:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

arp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set host woodstock
set username user
In this example, ports 1 and 2 of a card are directly connected

Appendix 1 IxTclHAL Commands

– 466 –

together
ArpDecrement 2 decrement by 1 for the count in
sourceProtocolAddrRepeatCount.
arpContinuousIncrement 3 increment by 1 continuously.
arpContinuousDecrement 3 decrement by 1 continuously.
Port 1 transmits an ARP request and looks at the response packet
Port 2 uses its address table and protocol server to respond to
the arp
request
Check if we're running on UNIX - connect to the TCL Server which
must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
set chas [chassis cget -id]
set card 2
set txPort 1
set rxPort 2
Primary contents for port 2 arp table
set txPortMAC {00 00 00 01 01 01}
set rxPortMAC {00 00 00 01 01 02}
set txIP {192.168.18.1}
set rxIP {192.168.18.2}
An extra entry for Vlan demonstration
set rxPortMAC2 {00 00 00 01 02 02}
set rxIP2 {192.168.28.2}
set portList [list [list $chas $card $txPort] [list $chas $card $rxPort]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports to use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up Transmit Port
Nothing special about the port setup
port setFactoryDefaults $chas $card $txPort

Appendix 1 IxTclHAL Commands

– 467 –

protocol setDefault
protocol config -name ipV4
protocol config -appName Arp
protocol config -ethernetType ethernetII
Stream: 1 packet to broadcast address
stream setDefault
stream config -numFrames 1
A 1 packet stream can't go at 100%
stream config -percentPacketRate 1
stream config -rateMode usePercentRate
stream config -sa $txPortMAC
Broadcast arp request
stream config -da {ff ff ff ff ff ff}
stream config -dma stopStream
Now set up the ARP request packet
arp setDefault
arp config -sourceProtocolAddr $txIP
arp config -destProtocolAddr $rxIP
arp config -operation arpRequest
arp config -sourceHardwareAddr $txPortMAC
arp config -destHardwareAddr {ff ff ff ff ff ff}
if { [arp set $chas $card $txPort] } {
ixPuts "Error setting arp on port $chas $card $txPort"
return 1
}
if { [stream set $chas $card $txPort 1] } {
ixPuts "Error setting stream 1 on port $chas $card $txPort"
return 1
}
Set up Receive Port for automatic ARP response
Nothing special about the port setup
port setFactoryDefaults $chas $card $rxPort
protocol setDefault
protocol config -ethernetType ethernetII
Add an address table item for IP/MAC
ipAddressTable setDefault
ipAddressTableItem setDefault
ipAddressTableItem config -fromIpAddress $rxIP
ipAddressTableItem config -fromMacAddress $rxPortMAC
if {[ipAddressTable addItem] } {
ixPuts "Error ipAddressTable addItem on $chas $card $rxPort"
return 1
}
Add another with Vlan set
ipAddressTableItem config -fromIpAddress $rxIP2
ipAddressTableItem config -fromMacAddress $rxPortMAC2
ipAddressTableItem config -enableVlan true
ipAddressTableItem config -vlanId 2

Appendix 1 IxTclHAL Commands

– 468 –

if {[ipAddressTable addItem] } {
ixPuts "Error ipAddressTable addItem on $chas $card $rxPort"
return 1
}
if { [ipAddressTable set $chas $card $rxPort] } {
ixPuts "Error setting ipAddressTable on $chas $card $rxPort"
return 1
}
Let the port respond to arp requests
protocolServer setDefault
protocolServer config -enableArpResponse true
if { [protocolServer set $chas $card $rxPort] } {
ixPuts "Error setting protocolServer on $chas $card $rxPort"
return 1
}
Commit to hardware
if { [ixWritePortsToHardware portList] } {
ixPuts "Error ixWritePortsToHardware"
return 1
}
Make sure link is up
after 3000
ixCheckLinkState portList
ixStartPortCapture $chas $card $txPort
ixStartPortTransmit $chas $card $txPort
after 1000
ixCheckPortTransmitDone $chas $card $txPort
ixStopPortCapture $chas $card $txPort
Get the ARP response from the capture buffer
if { [captureBuffer get $chas $card $txPort] } {
ixPuts "Error getting captureBuffer on $chas $card $txPort"
return 1
}
if {[captureBuffer cget -numFrames] == 0} {
ixPuts "No packets received"
} else {
and extract just the returned address
if { [captureBuffer getframe 1] } {
ixPuts "Error getframe"
return 1
}
set data [captureBuffer cget -frame]
set data [string range $data 84 94]
ixPuts "ARP response (IP in hex): $data"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using

Appendix 1 IxTclHAL Commands

– 469 –

if { [ixDisconnectFromChassis $host] } {
ixPuts $::ixErrorInfo
return 1
}
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ip, stream

associationHeader
associationHeader-sets up Association Header over Fibre Channel.

SYNOPSIS

associationHeader sub-command options

DESCRIPTION

The Association Header is an optional header within the Data Field content. Its presence is indicated by bit
20 in the DF_CTL field, located in the Frame Header, being set to one. The Association Header is 32-bytes
in size. The Association Header is used to identify a specific process or group of Processes within a node
associated with an Exchange.

STANDARD OPTIONS

originatorProcess
Associator

It is the value used in the Association Header to identify an originator process or a group of processes
within a node.

responderProcess
Associator

It is the value used in the Association Header to identify a responder process or a group of processes
within a node.

validity

Denotes the validity of the Association Header.

EXAMPLES

See under fibreChannel

Appendix 1 IxTclHAL Commands

– 470 –

SEE ALSO

fibreChannel

atmFilter
atmFilter - set up capture filters based on ATM packet contents.

SYNOPSIS

atmFilter sub-command options

DESCRIPTION

The atmFilter command is used to set up capture/filter values for use with ATM ports. The frame data
from one or more VPI/VCIs may be used to set the User Defined Statistics 1/2 (UDS 1, UDS 2), capture
trigger or capture filter. The settings for a particular VPI/VCI on a port are set up with the STANDARD
OPTIONS and then memorized by the set sub-command.

STANDARD OPTIONS

comparisonData

The data to compare the received frame against, using the comparisonMask to mask the value. (default =
{00 00
00 00})

comparisonMask

The mask to be used in comparing received frame data. A bit value of `1' in the mask causes that
corresponding bit in comparisonData to be ignored. (default = {FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF })

enable true | false

If true, this entry is used. (default = false)

enableUds1 true | false

If true, this entry is used as the user defined statistic 1 source. (default = false)

enableUds2 true | false

If true, this entry is used as the user defined statistic 2 source. (default = false)

enableFilter true | false

If true, this entry is used as the capture filter source. (default = false)

Appendix 1 IxTclHAL Commands

– 471 –

enableTrigger
true | false

If true, this entry is used as the capture trigger source. (default = false)

COMMANDS

The atmFilter command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmFilter cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmFilter command.

atmFilter config option value

Modify the configuration options of the atmFilter. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for atmFilter.

atmFilter get chasID cardID portID vpi vci

Gets the options associated with a particular VPI/VCI on a port. Specific errors are as follows:

l No entry for the VPI/VCI - port
l Port is not available
l ATM is not supported on this port

atmFilter set chasID cardID portID vpi vci

Sets the options associated with a particular VPI/VCI on a port. The port should be in the current
reassembly list (atmReassembly) before setting the filter. Specific errors are as follows:

l No connection to the chassis
l Invalid port - not available or in use
l Invalid VPI/VCI
l Invalid filter parameters
l ATM feature is not supported on this port

atmFiltersetDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set chassis 1
set card 42
set vpi 1
set vci 17
Set port 1 to UDS1, match on Ox42 in the first 7 bits
atmFilter setDefault

Appendix 1 IxTclHAL Commands

– 472 –

atmFilter config -enable true
atmFilter config -enableUds1 true
atmFilter config -comparisonData {42}
atmFilter config -comparisonMask {01}
if [atmFilter set $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmFilter set"
}
Set port 2 to capture trigger, match on 8th bit on
atmFilter setDefault
atmFilter config -enable true
atmFilter config -enableTrigger true
atmFilter config -comparisonData {01}
atmFilter config -comparisonMask {FE}
if [atmFilter set $chassis $card 2 $vpi $vci] {
ixPuts "Error in atmFilter set"
}

SEE ALSO

atmReassembly, atmStat

atmHeader
atmHeader - configure ATM header parameters.

SYNOPSIS

atmHeader sub-command options

DESCRIPTION

The atmHeader command is used to configure the ATM header options which are used in streams
configured with the stream command. Note that stream get must be called before this command's get
sub-command.

Note that different types of ATM encapsulation result in different length headers, as discussed in the
following table.

Encapsulation Header Length

LLC Snap Routed 8

LLC Bridged Ethernet / 802.3 10

LLC Bridged Ethernet / 802.3 No FCS 10

LLC Encapsulated PPP 6

ATM Encapsulation Header Lengths

Appendix 1 IxTclHAL Commands

– 473 –

Encapsulation Header Length

VC Muxed PPP 2

VC Muxed Routed 0

VC Muxed Bridged Ethernet / 802.3 2

VC Muxed Bridged Ethernet / 802.3 No FCS 2

The data portion of the packet normally follows the header, except in the case of the two LLC Bridged
Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type follow the header. The
offsets used in the dataIntegrity, filter, flexibleTimestamp, ip, ipV6Fragment, packetGroup,
protocolOffset, qos, tableUdfColumn, tcp, udf, and udp are with respect to the beginning of the AAL5
packet and must be adjusted by hand to account for the header.

The framesize of an ATM packet is set by a combination of the enableCpcsLength and cpcsLength options
in this command and the framesize option in the stream command. If enableCpcsLength is set to true,
then the ATM frame's size is set from the cpcsLength value only. Otherwise, it is set from the stream's
framesize value and the cpcsLength value is calculated from that. Further, the stream getQueue
command resets this command's enableCpcsLength option to false. It is important to correctly set the
stream's framesize value and this command's enableCpcsLength and cpcsLength options after each
stream getQueue command and call atmHeader set before the next stream setQueue command.

STANDARD OPTIONS

aal5Error

May be used to insert a bad AAL5 CRC.

Option Value Usage

aal5NoError 0 (default) No error is inserted

al5BadCrc 1 Inserts an AAL5 CRC error.

cellLossPriority

Sets the Cell Loss Priority, also abbreviated as CLPUsed to set the discard priority level of the cell. It
indicates whether the cell should be discarded if it encounters extreme congestion as it moves through
the network. Values of 0 and 1 are allowed, with 0 having a higher priority than 1. (default = 0)

cpcsLength

If enableCpcsLength is true, then this is used as the length of the CPCS PDU. (default = 28)

enableAutoVpiVci
Selection true | false

If true, the vpi/vci values are forced to 0 and 32. (default = false)

Appendix 1 IxTclHAL Commands

– 474 –

enableCL true | false

Indicates whether congestion has been experienced. (default = false)

enableCpcsLength
true |false

If true, the value of cpcsLength is used as the length of the CPCS PDU. The value of the framesize
configured in the stream command is ignored. It is important to note that this value is always set to false
by the stream getQueue command. (default = false)

encapsulation

The type of header encapsulation.

Option Value Usage

atmEncapsulationVccMuxIPV4Routed 101

atmEncapsulationVccMuxBridgedEthernetFCS 102

atmEncapsulationVccMuxBridgedEthernetNoFCS 103

atmEncapsulationVccMuxIPV6Routed 104

atmEncapsulationVccMuxMPLSRouted 105

atmEncapsulationLLCRoutedCLIP 106 (default)

atmEncapsulationLLCBridgedEthernetFCS 107

atmEncapsulationLLCBridgedEthernetNoFCS 108

atmEncapsulationLLCPPPoA 109

atmEncapsulationVccMuxPPPoA 110

atmEncapsulationLLCNLPIDRouted 111

genericFlowControl

Generic Flow Control for use in UNI mode device control signalling. Uncontrolled equipment uses a setting
of 0000. (default = 0)

header

Read-only. The 5-byte calculated header value.

Appendix 1 IxTclHAL Commands

– 475 –

hecErrors

Indicates the number of HEC errors to insert into the HEC byte. Values of 0 (no errors) through 8 (8
errors) are allowed. (default = 0)

vci

The virtual circuit identifier. (default = 32)

vpi

The virtual path identifier. (default = 0)

COMMANDS

The atmHeader command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmHeader cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmHeader command.

atmHeader config option value

Modify the configuration options of the atmHeader. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for atmHeader.

atmHeader get chasID cardID portID

Gets the current configuration of the atmHeader for the port. Note that stream get must be called before
this command's get sub-command. Call this command before calling atmHeader cget option value to get
the value of the configuration option. Specific errors are as follows:

l No connection to a chassis
l Protocol data has not been configured for this port through a stream set or protocol set

atmHeader set chasID cardID portID

Sets the configuration of the atmHeader in IxHAL for the port by reading the configuration option values
set by the atmHeader config option value command. Specific errors are as follows:

l No connection to a chassis
l Invalid port number
l Port unavailable or in use
l Configured parameters are not valid for this setting
l ATM is not supported on this port

atmHeader setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 476 –

EXAMPLES

See examples in stream

SEE ALSO

atmPort, stream, streamQueue, streamQueueList

atmHeaderCounter
atmHeaderCounter - configure ATM counters for VPI and VCI values.

SYNOPSIS

atmHeaderCounter sub-command options

DESCRIPTION

The atmHeaderCounter command is used to configure the ATM configure a counter that can set the VPI or
VCI value to:

l Fixed: a single value is used throughout.
l Counter: an incrementing counter is applied.
l Random: a masked set of bits are randomly set.
l Table: a table of values is repetitively used.

The selection of VPI or VCI is performed in the set and get sub-commands.

STANDARD OPTIONS

dataItemList

If the type option is set to atmTableMode, then this TCL list is used for the set of values. (default = {})

maskselect

If the type option is set to atmRandom, then this 16-bit mask indicates which bits are held constant. The
constant values are indicated in the maskvalue option. (default = {00 00})

maskvalue

If the type option is set to atmRandom, then this 16-bit value indicates the values that the bits indicated
in the maskselect option should have. (default = {00 00})

mode

If the type option is set to atmCounter, then this indicates what counter mode should be used.

Appendix 1 IxTclHAL Commands

– 477 –

Option Value Usage

atmIncrement 0 (default) Increment the VPI/VCI value for the number of
times indicated in the repeatCount option by the value
indicated in the step option. After the repeatCount is
exhausted, the value from the vpi or vci option in the
atmHeader command is used.

atmContinuousIncrement 1 Continuously increment the VPI/VCI value by the value
indicated in the step option.

atmDecrement 2 Decrement the VPI/VCI value for the number of times
indicated in the repeatCount option by the value indicated in
the step option. After the repeatCount is exhausted, the
value from the vpi or vci option in the atmHeader command
is used.

atmContinuousDecrement 3 Continuously decrement the VPI/VCI value by the value
indicated in the step option.

repeatCount

If the type option is set to atmCounter and the mode option is set to atmIncrement or atmDecrement,
then this is the number of time to increment the VPI/VCI value before repeating from the start value.
(default = 1)

step

If the type option is set to atmCounter, then this is the value added/subtracted between successive
values. (default = 1)

type

The type of counter to use on the VPI/VCI.

Option Value Usage

atmIdle 0 (default) The VPI/VCI has a fixed value set in the atmHeader command's
vpi or vci option.

atmCounter 1 The VPI/VCI value increments or decrements for a fixed number of
repetitions or continuously, as dictated by the mode and repeatCount
options. The step size is in the step option. The starting value is set in the
value set in the atmHeader command's vpi or vci option.

atmRandom 2 Selected bits of VPI/VCI value varies randomly. The mask of values that
are fixed is in the maskselect option and their fixed values are in the
maskvalue option.

atmTableMode 3 The VPI/VCI values are selected round-robin from the data table in the

Appendix 1 IxTclHAL Commands

– 478 –

Option Value Usage

dataItemList option.

COMMANDS

The atmHeaderCounter command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

atmHeaderCounter cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmHeaderCounter command.

atmHeaderCounter config option value

Modify the configuration options of the atmHeaderCounter. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for atmHeaderCounter.

atmHeaderCounter get type

Gets the current configuration of the atmHeaderCounter for the VPI/VCI type indicated in the type
argument.The choices are:

Option Value Usage

atmVpi 0 (default) The VPI value.

atmVci 1 The VCI value.

Call this command before calling atmHeaderCounter cget option value to get the value of the
configuration option. Specific errors are:

l Invalid type

atmHeaderCounter set type

Sets the current configuration of the atmHeaderCounter for the VPI/VCI type indicated in the type
argument.The choices are:

Option Value Usage

atmVpi 0 (default) The VPI value.

atmVci 1 The VCI value.

Specific errors are:

l Invalid type
l Invalid parameter settings

atmHeaderCounterset Default

Appendix 1 IxTclHAL Commands

– 479 –

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples in atmHeader.

SEE ALSO

atmPort, stream, streamQueue, streamQueueList

atmOam
atmOam - configure ATM OAM messages to be transmitted

SYNOPSIS

atmOam sub-command options

DESCRIPTION

The atmOam command is used to configure multiple ATM OAM messages to be transmitted on an ATM
port. The basic parameters for all OAM messages are configured in the options of this command.
Additional parameters that are particular to a specific OAM message are taken from the following
additional commands: atmOamActDeact, atmOamAis, atmOamFaultManagementCC,
atmOamFaultManagementLB or atmOamRdi.

Once configured, the OAM message for a VPI/VCI pair is added to the list associated with this command
with the add sub-command. Transmission of the OAM messages is initiated with the start sub-command
and stopped with the stop sub-command.

Trace information, if enabled with the enableTrace option is retrieved using the atmOamTrace command.

STANDARD OPTIONS

cellFlowType

The cell flow type for the OAM message.

Option Value Usage

atmOamF4 0 F4 flow.

atmOamF5 1 (default) F5 flow.

enableCC true | false

If true, enables continuous checking. (default = false)

enableLB true | false

If true, enables loopback. (default = false)

Appendix 1 IxTclHAL Commands

– 480 –

enableTrace
true | false

If true, trace messages per registered VPI/VCI pair is enabled. (default = false)

enableTx true | false

If true, the current OAM message is enabled for transmission. (default = true)

endPointsType

The endpoint type.

Option Value Usage

atmOamEndToEnd 0 (default) End to end.

atmOamSegment 1 Segment.

functionType

The OAM function to be performed.

Option Value Usage

atmOamAis 0 (default) AIS. Additional message options are obtained from the
atmOamAis command.

atmOamRdi 1 RDI. Additional message options are obtained from the
atmOamRdi command.

atmOamFaultMgmtCC 2 Fault Management CC. Additional message options are obtained
from the atmOamFaultManagementCC command.

atmOamFaultMgmtLB 3 Fault Management LB. Additional message options are obtained
from the atmOamFaultManagementLB command.

atmOamActDeactCC 4 Activate-Deactivate. Additional message options are obtained
from the atmOamActDeact command.

vci

Read-only. The VCI for the registered OAM cell for list entries retrieved by one of the get sub-commands.
The VCI value is set in the add sub-command. (default = 0)

vpi

Read-only. The VPI for the registered OAM cell for list entries retrieved by one of the get sub-commands.
The VPI value is set in the add sub-command (default = 0)

Appendix 1 IxTclHAL Commands

– 481 –

COMMANDS

The atmOam command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmOam add vpi vci

Adds the VPI/VCI pair to the OAM list for the indicated port. Based on the OAM type specified in
functionType, additional message options are taken from one of the atmOamActDeact, atmOamAis,
atmOamFaultManagementCC, or atmOamRdi commands. Specific errors are:

l select has not been called
l The port is in use by another user
l ATM is not supported on this port
l Invalid port
l The maximum number of ATM OAM entries has been exceeded.
l The VPI/VCI is already in the list.

atmOam cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOam command.

atmOam config option value

Modify the configuration options of the atmOam. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for atmOam.

atmOam del vpi vci

Removes the VPI/VCI pair from the OAM list for the indicated port. Specific errors are:

l select has not been called
l The port is in use by another user
l ATM is not supported on this port
l The VPI/VCI pair is not in the list

atmOam get FirstPair

Accesses the first VPI/VCI pair in the list, whose values can be found in the STANDARD OPTIONS for this
command and the functionType specific commands. Specific errors are:

l select has not been called
l No connection to the chassis
l ATM is not supported on this port
l Invalid port
l No pairs in the list.

atmOam get NextPair

Appendix 1 IxTclHAL Commands

– 482 –

Accesses the next VPI/VCI pair in the list, whose values can be found in the STANDARD OPTIONS for this
command and the functionType specific commands. Specific errors are:

l select has not been called
l getFirstPair has not been called
l ATM is not supported on this port
l Invalid port
l No more pairs in the list.

atmOam removeAll

Removes all VPI/VCI pairs from the OAM list for the indicated port. Specific errors are:

l select has not been called
l ATM is not supported on this port
l The port is in use by another user
l Invalid port

atmOam select chasID cardID portID

Accesses the indicated port. All other sub-commands uses this port. Specific errors are:

l No connection to the chassis
l Invalid port specified
l Port is not available
l ATM OAM is not an available feature for the port

atmOam setDefault

Sets to IxTclHal default values for all configuration options.

atmOam start chasID cardID portID

Starts transmission of the ATM OAM messages on the indicated port. Specific errors are:

l No connection to the chassis
l ATM is not supported on this port
l The port is in use by another user
l Invalid port

atmOam stop chasID cardID portID

Stops transmission of the ATM OAM messages on the indicated port. Specific errors are:

l No connection to the chassis
l ATM is not supported on this port
l The port is in use by another user

Appendix 1 IxTclHAL Commands

– 483 –

l Invalid port
l Transmission has not been started

EXAMPLES
package req IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chassId [ixGetChassisID $host]
set cardId 26
set portId 1
set portList [list [list $chassId $cardId $portId]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if [port isValidFeature $chassId $cardId $portId $::portFeatureAtmPos] {
port setFactoryDefaults $chassId $cardId $portId
port config -portMode portAtmMode
if {[port set $chassId $cardId $portId] } {
errorMsg "Error setting port on port $chassId $cardId $portId"
return 1
}
stat config -enableAtmOamStats $::true
if {[stat set $chassId $cardId $portId] } {
errorMsg "Error setting stats on port $chassId $cardId $portId"
return 1
}
atmOamTrace config -maxNumTrace 50

Appendix 1 IxTclHAL Commands

– 484 –

if {[atmOamTrace set $chassId $cardId $portId]} {
errorMsg "Error setting oam trace for port $chassId $cardId $portId"
set retCode "FAIL"
}
} else {
errorMsg "Port $chassId:$cardId:$portId is not an ATM port"
return 1
}
ixWritePortsToHardware portList
if {[atmOam select $chassId $cardId $portId]} {
errorMsg "Error selecting atmOam on $chassId $cardId $portId."
return 1
}
atmOam removeAll
atmOam setDefault
atmOam config -functionType atmOamFaultMgmtLB
atmOam config -cellFlowType atmOamF5
atmOam config -endPointType atmOamSegment
atmOam config -enableLB true
atmOam config -enableCC true
atmOam config -enableTrace true
atmOam config -enableTx true
atmOamFaultManagementLB config -enableTxContinuous false
atmOamFaultManagementLB config -txCount 5
atmOamFaultManagementLB config -loopbackIndication atmOamReply
atmOamFaultManagementLB config -correlationTag "11 11 11 11"atmOamFaultManagementLB
config -loopbackLocationId "55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55"
if [atmOam add 31 32] {
ixPuts $::ixErrorInfo
return 1
}
atmOam setDefault
atmOam config -functionType atmOamAis
atmOam config -cellFlowType atmOamF4
atmOam config -endPointType atmOamEndToEnd
atmOam config -enableLB true
atmOam config -enableCC true
atmOam config -enableTrace true
atmOam config -enableTx true
atmOamAis config -enableTxContinuous false
atmOamAis config -txCount 6
if [atmOam add 33 4] {
ixPuts $::ixErrorInfo
return 1
}
atmOam setDefault
atmOam config -functionType atmOamRdi
atmOam config -cellFlowType atmOamF4

Appendix 1 IxTclHAL Commands

– 485 –

atmOam config -endPointType atmOamSegment
atmOam config -enableLB true
atmOam config -enableCC false
atmOam config -enableTrace true
atmOam config -enableTx true
atmOamRdi config -enableTxContinuous false
atmOamRdi config -txCount 8
if [atmOam add 14 4] {
ixPuts $::ixErrorInfo
return 1
}
atmOam setDefault
atmOam config -functionType atmOamFaultMgmtCC
atmOam config -cellFlowType atmOamF4
atmOam config -endPointType atmOamEndToEnd
atmOam config -enableLB false
atmOam config -enableCC true
atmOam config -enableTrace true
atmOam config -enableTx true
atmOamFaultManagementCC config -enableTxContinuous false
atmOamFaultManagementCC config -txCount 4
if [atmOam add 37 4] {
ixPuts $::ixErrorInfo
return 1
}
atmOam setDefault
atmOam config -functionType atmOamActDeactCC
atmOam config -cellFlowType atmOamF5
atmOam config -endPointType atmOamSegment
atmOam config -enableLB true
atmOam config -enableCC false
atmOam config -enableTrace false
atmOam config -enableTx true
atmOamActDeact config -enableTxContinuous false
atmOamActDeact config -txCount 11
atmOamActDeact config -messageId atmOamDeactivate
atmOamActDeact config -action atmOamAB
atmOamActDeact config -correlationTag 0x11
if [atmOam add 1 2] {
ixPuts $::ixErrorInfo
return 1
}
ixWriteConfigToHardware portList
set numTrace 10
set maxNumTrace 50
set numTracePerDirection [expr $numTrace/2]
set oamTxFMLB 5
set oamTxRDI 8

Appendix 1 IxTclHAL Commands

– 486 –

ixCheckLinkState portList
ixClearStats portList
after 1000
if {[atmOam start $chassId $cardId $portId]} {
errorMsg "Error starting oam transmit on port $chassId $cardId $portId"
return 1
}
after 3000
atmOamTrace setDefault
while {[atmOamTrace cget -numTrace] != $maxNumTrace } {
if {[atmOamTrace get $chassId $cardId $portId]} {
errorMsg "Error getting oam trace for port $chassId $cardId $portId"
return 1
}
after 1000
}
if {[atmOamTrace getFirst]} {
errorMsg "Error getting first trace for port $chassId $cardId $portId"
return 1
}
stat get allStats $chassId $cardId $portId
set oamTxFMLB [stat cget -atmOamTxFaultMgmtLB]
set oamTxRDI [stat cget -atmOamTxFaultMgmtRDI]
Now use the hight level APIs
if {[ixStartAtmOamTransmit portList]} {
errorMsg "Error ixStartAtmOamTransmit"
return 1
}
if {[ixStopAtmOamTransmit portList]} {
errorMsg "Error ixStopAtmOamTransmit"
return 1
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}
return 0

SEE ALSO

atmOamActDeact, atmOamAis, atmOamFaultManagementCC, atmOamRdi, atmOamTrace, atmPort.

atmOamActDeact
atmOamActDeact - configure an ATM OAM activation/deactivation message

Appendix 1 IxTclHAL Commands

– 487 –

SYNOPSIS

atmOamActDeact sub-command options

DESCRIPTION

The atmOamActDeact command holds command specific options for the activation/deactivation message.

STANDARD OPTIONS

action

The direction of the action.

Option Value Usage

atmOamNone 0 (default) None.

atmOamBA 1 B to A

atmOamAB 2 A to B

atmOamTwoWay 3 Both directions.

correlationTag

The correlation tag. (default = 00)

defectLocation

The defect location. (default = "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00")

defectType

Read-only. The defect type, currently set to 0x6A.

enableTxContinuous
true | false

If true, the message is transmitted continuously. (default = true)

messageId

The message ID.

Option Value Usage

atmOamActivate 0 Activate.

atmOamActConfirmed 1 (default) Activation Confirmed.

Appendix 1 IxTclHAL Commands

– 488 –

Option Value Usage

atmOamRequestDenied 2 Request Denied.

atmOamDeactivate 3 Deactivate.

atmOamDeactConfirmed 4 Deactivation Confirmed.

pmBlockSizeAB

Read-only. The A to B PM block size, 4 bits.

pmBlockSizeBA

Read-only. The B to A PM block size, 4 bits.

reserved

Read-only. The value of the reserved field, which may not be modified.

txCount

If enableTxContinuous is false, the count of the number of times that the message is transmitted. (default
= 0)

COMMANDS

The atmOamActDeact command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

atmOamActDeact cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOamActDeact command.

atmOamActDeact config option value

Modify the configuration options of the atmOamActDeact. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for atmOamActDeact.
atmOamActDeact setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under atmOam

SEE ALSO

atmOam, atmOamAis, atmOamFaultManagementCC, atmOamFaultManagementLB, atmOamRdi,
atmOamTrace, atmPort

Appendix 1 IxTclHAL Commands

– 489 –

atmOamAis
atmOamAis - configure an ATM OAM AIS message

SYNOPSIS

atmOamAis sub-command options

DESCRIPTION

The atmOamAis command holds command specific options for the AIS message.

STANDARD OPTIONS

enableTxContinuous
true | false

If true, the message is transmitted continuously. (default = true)

reserved

Read-only. The value of the reserved field, which may not be modified.

txCount

If enableTxContinuous is false, the count of the number of times that the message is transmitted. (default
= 0)

COMMANDS

The atmOamAis command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmOamAis cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOamAis command.

atmOamAis config option value

Modify the configuration options of the atmOamAis. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for atmOamAis.

atmOamAis setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under atmOam

Appendix 1 IxTclHAL Commands

– 490 –

SEE ALSO

atmOam, atmOamActDeact, atmOamFaultManagementCC,atmOamFaultManagementLB, atmOamRdi,
atmOamTrace, atmPort

atmOamFaultManagementCC
atmOamFaultManagementCC - configure an ATM OAM Fault Management CC message

SYNOPSIS

atmOamFaultManagementCC sub-command options

DESCRIPTION

The atmOamFaultManagementCC command holds command specific options for the Fault Management
CC message.

STANDARD OPTIONS

enableTxContinuous
true | false

If true, the message is transmitted continuously. (default = true)

reserved

Read-only. The value of the reserved field, which may not be modified.

txCount

If enableTxContinuous is false, the count of the number of times that the message is transmitted. (default
= 0)

COMMANDS

The atmOamFaultManagementCC command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

atmOamFaultManagementCC >cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOamFaultManagementCC command.

atmOamFaultManagementCC config option value

Modify the configuration options of the atmOamFaultManagementCC. If no option is specified, returns a
list describing all of the available options (see STANDARD OPTIONS) for atmOamFaultManagementCC.

atmOamFaultManagementCCsetDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 491 –

EXAMPLES

See examples under atmOam

SEE ALSO

atmOam, atmOamActDeact, atmOamAis, atmOamFaultManagementLB, atmOamRdi, atmOamTrace,
atmPort

atmOamFaultManagementLB
atmOamFaultManagementLB - configure an ATM OAM Fault Management LB message

SYNOPSIS

atmOamFaultManagementLB sub-command options

DESCRIPTION

The atmOamFaultManagementLB command holds command specific options for the Fault Management LB
message.

STANDARD OPTIONS

correlationTag

The correlation tag. (default = "00 00 00 00")

enableTxContinuous
true | false

If true, the message is transmitted continuously. (default = true)

loopbackIndication

The loopback indication.

Option Value Usage

atmOamReply 0 (default)

atmOamRequest 1

loopbackIndicationId

The loopback indication ID. (default = "FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF")

reserved

Read-only. The value of the reserved field, which may not be modified.

Appendix 1 IxTclHAL Commands

– 492 –

sourceLocationId

The source location ID. (default = "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00")

txCount

If enableTxContinuous is false, the count of the number of times that the message is transmitted. (default
= 0)

COMMANDS

The atmOamFaultManagementLB command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

atmOamFaultManagementLB cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOamFaultManagementLB command.

atmOamFaultManagementLB config option value

Modify the configuration options of the atmOamFaultManagementLB. If no option is specified, returns a
list describing all of the available options (see STANDARD OPTIONS) for atmOamFaultManagementLB.

atmOamFaultManagementLB set Default

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under atmOam

SEE ALSO

atmOam, atmOamActDeact, atmOamAis, atmOamFaultManagementCC, atmOamRdi, atmOamTrace,
atmPort

atmOamRdi
atmOamRdi - configure an ATM OAM RDI message

SYNOPSIS

atmOamRdi sub-command options

DESCRIPTION

The atmOamRdi command holds command specific options for the RDI message.

STANDARD OPTIONS

defectLocation

The defect location. (default = "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00")

Appendix 1 IxTclHAL Commands

– 493 –

defectType

Read-only. The defect type, currently set to 0x6A.

enableTxContinuous
true | false

If true, the message is transmitted continuously. (default = true)

reserved

Read-only. The value of the reserved field, which may not be modified.

txCount

If enableTxContinuous is false, the count of the number of times that the message is transmitted. (default
= 0)

EXAMPLES

See examples under atmOam

SEE ALSO

atmOam, atmOamActDeact, atmOamAis, atmOamFaultManagementCC, atmOamFaultManagementLB,
atmOamTrace, atmPort

atmOamTrace
atmOamTrace - configure ATM OAM messages to be transmitted

SYNOPSIS

atmOamTrace sub-command options

DESCRIPTION

The atmOamTrace command is used to retrieve ATM OAM messages. These are collected for any OAM
message in which the enableTrace option was set to true when atmOam add was called.

Messages are collected into a circular buffer of maxNumTrace messages in size. Newest entries replace
oldest entries as necessary. The get chassis card port sub-command is used to retrieve all of the
message. The other get commands are used to look at particular entries.

STANDARD OPTIONS

cellInformation

Read-only. Cell information for the trace cell.

functionType

Read-only. The OAM function type.

Appendix 1 IxTclHAL Commands

– 494 –

Option Value Usage

atmOamAis 0 AIS.

atmOamRdi 1 RDI.

atmOamFaultMgmtCC 2 Fault Management CC.

atmOamFaultMgmtLB 3 Fault Management LB.

atmOamActDeactCC 4 Activate - Deactivate.

maxNumTrace

The maximum number of traces to be stored in the in-memory buffer. The buffer is used in a circular
manner, with the most recent traces overwriting the oldest entries. (default = 256)

numTrace

Read-only. The number of trace messages currently in the list.

timeStamp

Read-only. The timestamp of the trace message, in the format:

YYYY/MM/DD HH: MM: SS.SSS

traceString

Read-only. The trace message as a complete string.

txRxType

Read-only. An indication of whether the trace is from a transmission or reception.

Option Value Usage

atmOamTraceTx 0 Transmit

atmOamTraceRx 1 Receive

vci

Read-only. The VCI value from the trace message.

vpi

Read-only. The VPI value from the trace message.

Appendix 1 IxTclHAL Commands

– 495 –

COMMANDS

The atmOamTrace command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

atmOamTrace cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmOamTrace command.

atmOamTrace config option value

Modify the configuration options of the atmOamTrace. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for atmOamTrace.

atmOamTrace clear

Removes all trace messages from the list.

atmOamTrace get chasID cardID portID

atmOamTrace get traceIndex

In the first form, the trace list is retrieved. The first trace message is unpacked into the options of this
command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l ATM is not a supported feature on this port
l There is no trace information to get

In the second form, the trace message at traceIndex is accessed and unpacked into the options of this
command. The first message has a traceIndex of 0. A call to getNext accesses the message following
traceIndex. Specific errors are:

l No trace message exists for the indicated traceIndex.

atmOamTrace get First

Accesses the first trace message in the list, whose values can be found in the STANDARD OPTIONS for
this command. Specific errors are:

l There are no trace messages.

atmOamTrace get Next

Accesses the next trace message in the list, whose values can be found in the STANDARD OPTIONS for
this command.Specific errors are:

l There are no more trace messages.

atmOamTrace set chasID cardID portID

Sets the configuration of the atmOamTrace in IxHAL for the port indicated. Specific errors are:

Appendix 1 IxTclHAL Commands

– 496 –

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l ATM is not a supported feature on this port

atmOamTrace set Default

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under atmOam

SEE ALSO

atmOam, atmOamActDeact, atmOamAis, atmOamFaultManagementCC, atmOamFaultManagementLB,
atmOamRdi, atmPort

atmPort
atmPort - configure ATM port parameters.

SYNOPSIS

atmPort sub-command options

DESCRIPTION

The atmPort command is used to configure the ATM port common options.

STANDARD OPTIONS

enableCoset
true | false

If true, enables the Coset algorithm to be used with the Header Error Control (HEC) byte. The code used
for the HEC is a cyclic code with generating polynomial x8 + x2 + x + 1. If Coset is turned on, the result of
the polynomial is XOR'd with 0x55 (Coset Leader). (default = true)

enablePatternMatching
true | false

If true, then the use of capture and filter based on ATM patterns is enabled in atmFilter and the maximum
number of VCCs is reduced to 12, 288. (default = true)

fillerCell

SONET frame transmission is continuous even when data or control messages are not being transmitted.
This option allows the cell type that is transmitted during these intervals.

Appendix 1 IxTclHAL Commands

– 497 –

Option Value Usage

atmIdleCell 0 (default) Idle cells are transmitted with VPI/VCI = 0/0 and CLP = 1.

atmUnassignedCell 1 Unassigned cells are transmitted with VPI/VCI = 0/0 and CLP = 0.

interfaceType

The type of interface to emulate.

Option Value Usage

atmInterfaceUni 0 (default) User to network interface.

atmInterfaceNni 1 Network to network interface.

packetDecodeMode

This setting controls the interpretation of received packets when they are decoded.

Option Value Usage

atmDecodeFrame 0 (default) Decode the packet as a frame.

atmDecodeCell 1 Decode the packet as an ATM cell.

reassemblyTimeout

Sets the value for the Reassembly Timeout, which is the period of time (expressed in seconds) that the
receive side waits for another cell on that channel - for reassembly of cells into a CPCS PDU (packet). If no
cell is received within that period, the timer expires. (default = 10)

sourceLocationId

The source location ID. This value is copied to the defectLocation option of the atmOamAis and
atmOamRdi commands when atmPort set is performed. (default = "00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00")

transmitStatMode

This setting controls statistics are collected for the ATM port.

Option Value Usage

atmPerVPIVCIStats 0 (default) Collect statistics for the whole port on a VCI/VPI basis.

atmDecodeCell 1 Collect statistics for the port on a stream basis.

Appendix 1 IxTclHAL Commands

– 498 –

COMMANDS

The atmPort command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmPort cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmPort command.

atmPort config option value

Modify the configuration options of the atmPort. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for atmPort.

atmPort get chasID cardID portID

Gets the current configuration of the atmPort for the port. Call this command before calling atmPort cget
option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l ATM is not a supported feature on this port

atmPort set chasID cardID portID

Sets the configuration of the atmPort in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the atmPort config option value command. Specific errors
are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting
l ATM is not a supported feature on this port

atmPort set Default

Sets to IxTclHal default values for all configuration options.

EXAMPLES

SEE ALSO

atmHeader, atmOam, stream, streamQueue, streamQueueList

atmReassembly
atmReassembly - configure ATM port to reassemble particular VPI/VCI streams

Appendix 1 IxTclHAL Commands

– 499 –

SYNOPSIS

atmReassembly sub-command options

DESCRIPTION

The atmReassembly command is used to configure an ATM port to reassemble received data for particular
VPI/VCIs. This is necessary if a receive port is to be used in an atmStat receive list or in atmFilter. Note
that these commands automatically calls this command for the port, if it is not in the reassembly list.
Except for receive ports using other than default encapsulation (atmEncapsulationLLCRoutedCLIP) in
packet group mode, the add sub-command need never be called; the del and removeAll commands
proves useful when changing a list.

STANDARD OPTIONS

enableIpTcpUdp
Checksum true | false

Enables the collection of TCP and UDP checksum statistics for packets that match this VCI/VPI. (default =
1)

enableIpQos
true | false

Enables the collection of QoS statistics for packets that match this VCI/VPI. (default = 1)

encapsulation

The decode encapsulation to be used on received data when the port is in packet group mode. This is the
only means by which the encapsulation may be set; calls from atmStat and atmFilter uses the default
(atmEncapsulationLLCRoutedCLIP).

Option Value Usage

atmEncapsulationVccMuxIPV4Routed 101

atmEncapsulationVccMuxBridgedEthernetFCS 102

atmEncapsulationVccMuxBridgedEthernetNoFCS 103

atmEncapsulationVccMuxIPV6Routed 104

atmEncapsulationVccMuxMPLSRouted 105

atmEncapsulationLLCRoutedCLIP 106 (default)

atmEncapsulationLLCBridgedEthernetFCS 107

atmEncapsulationLLCBridgedEthernetNoFCS 108

atmEncapsulationLLCPPPoA 109

Appendix 1 IxTclHAL Commands

– 500 –

Option Value Usage

atmEncapsulationVccMuxPPPoA 110

vci

Read-only. The current VCI.

vpi

Read-only. The current VPI.

COMMANDS

The atmReassembly command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

atmReassembly add chasID cardID portID vpi vci

Adds the vpi/vci pair to the reassembly list for the indicated port. Specific errors are:

l The port is in use by another user
l ATM is not supported on this port
l Invalid port
l Invalid vci/vpi pair
l Item already in the list

atmReassembly cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmReassembly command.

atmReassembly del chasID cardID portID vpi vci

Removes the vpi/vci pair from the reassembly list for the indicated port. Specific errors are:

l The port is in use by another user
l ATM is not supported on this port
l Item is not in the list

atmReassembly getFirstPair chasID cardID portID

Accesses the first VPI/VCI pair in the list, whose values can be found in the STANDARD OPTIONS for this
command. Specific errors are:

l No connection to the chassis
l ATM is not supported on this port
l Invalid port
l No pairs in the list.

Appendix 1 IxTclHAL Commands

– 501 –

atmReassembly getNextPair chasID cardID portID

Accesses the next VPI/VCI pair in the list, whose values can be found in the STANDARD OPTIONS for this
command. Specific errors are:

l No connection to the chassis
l ATM is not supported on this port
l Invalid port
l No more pairs in the list.

atmReassembly removeAll chasID cardID portID

Removes all vpi/vci pairs from the reassembly list for the indicated port. Specific errors are:

l No connection to the chassis
l ATM is not supported on this port
l The port is in use by another user
l Invalid port

atmReassembly setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set chassis 1
set card 42
set vpi 1
set vci 17
if [atmReassembly removeAll $chassis $card 1] {
ixPuts "Error in atmReassembly removeall"
}
if [atmReassembly removeAll $chassis $card 2] {
ixPuts "Error in atmReassembly removeall"
}
if [atmReassembly add $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmReassembly add"
}
if [atmReassembly add $chassis $card 2 $vpi $vci] {
ixPuts "Error in atmReassembly add"
}
if [atmReassembly del $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmReassembly del"
}
if [atmReassembly getFirstPair $chassis $card 1] {
ixPuts "No pairs in the list"
}
if [atmReassembly getNextPair $chassis $card 1] {
ixPuts "No more pairs in the list"

Appendix 1 IxTclHAL Commands

– 502 –

}

SEE ALSO

atmFilter, atmStat

atmStat
atmStat - access VPI/VCI specific statistics.

SYNOPSIS

atmStat sub-command options

DESCRIPTION

The atmStat command is used to access statistics for particular VPI/VCI streams. VPI/VCIs for particular
ports are added to a receive or transmit list with the addRx and addTx sub-commands. The statistics for
all ports and VPI/VCIs in the lists is retrieved from the ports with the get sub-command. Individual
statistics or rate statistics are accessed through the use of the getStat and getRate commands. The
statistics are available in the STANDARD OPTIONS.

STANDARD OPTIONS

rxAal5CrcErrors

Read-only. 64-bit value. The number/rate of received CRC errors.

rxAal5Frames

Read-only. 64-bit value. The number/rate of received CRC errors.

rxAal5LengthErrors

Read-only. 64-bit value. The number/rate of received length errors.

rxAal5TimeoutErrors

Read-only. 64-bit value. The number/rate of received timeout errors.

rxAtmCells

Read-only. 64-bit value. The number/rate of received ATM cells.

txAal5Bytes

Read-only. 64-bit value. The number/rate of transmitted AAL bytes.

txAal5Frames

Read-only. 64-bit value. The number/rate of transmitted AAL frames.

Appendix 1 IxTclHAL Commands

– 503 –

txAal5ScheduledBytes

Read-only. 64-bit value. The number/rate of transmitted AAL bytes, not including idle cells.

txAal5ScheduleFrames

Read-only. 64-bit value. The number/rate of transmitted AAL frames, not including idle cells.

txAtmCells

Read-only. 64-bit value. The number/rate of received ATM cells.

vci

Read-only. The current VCI.

vpi

Read-only. The current VPI.

COMMANDS

The atmStat command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

atmStat addRx chasID cardID portID vpi vci

Adds the VPI/VCI for the indicated port to the receive list. If the 5-tuple is not in the current reassembly
list (atmReassembly), then it is automatically added to the list with the default encapsulation
(atmLlcSnapRoutedProtocol). The encapsulation is only used for ports in packet group mode to correctly
identify the packet group ID. Receive ports with other than default encapsulation should first be added by
atmReassembly and then added with this sub-command. Specific errors include:

l Invalid port
l VPI/VCI already exists
l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l The maximum number of Rx stats has been exceeded

atmStat addTx chasID cardID portID vpi vci

Adds the VPI/VCI for the indicated port to the transmit list. Specific errors include:

l Invalid port
l VPI/VCI already exists
l The port is in use by another user
l No chassis connection

Appendix 1 IxTclHAL Commands

– 504 –

l ATM is not supported on this port
l The maximum number of Tx stats has been exceeded

atmStat cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the atmStat command.

atmStat config option value

Modify the configuration options of the atmStat. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for atmStat.

atmStat delRx chasID cardID portID vpi vci

Removes the VPI/VCI for the indicated port from the receive list. The 5-tuple is not removed from the
current reassembly list (atmReassembly). Specific errors include:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l Invalid VPI/VCI
l The item is not in the receive list

atmStat delTx chasID cardID portID vpi vci

Removes the VPI/VCI for the indicated port from the transmit list. Specific errors include:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l Invalid VPI/VCI
l The item is not in the transmit list

atmStat get

Gets the statistics for all of the VCI/VPIs added to the command using addTx and addRx. Specific errors
are:

l Invalid port
l The port is in use by another user
l No connection to a chassis
l ATM is not supported on this port

atmStat getFirstRxPair chasID cardID portID

Appendix 1 IxTclHAL Commands

– 505 –

Accesses the first VPI/VCI pair in the receive list, whose values can be found in the STANDARD OPTIONS
for this command. Specific errors are:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l No pairs in the list.

atmStat getFirstTxPair chasID cardID portID

Accesses the first VPI/VCI pair in the transmit list, whose values can be found in the STANDARD OPTIONS
for this command. Specific errors are:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l No pairs in the list.

atmStat getNextRxPair chasID cardID portID

Accesses the next VPI/VCI pair in the receive list, whose values can be found in the STANDARD OPTIONS
for this command. Specific errors are:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l No more pairs in the list.

atmStat getNextTxPair chasID cardID portID

Accesses the next VPI/VCI pair in the transmit list, whose values can be found in the STANDARD OPTIONS
for this command. Specific errors are:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port
l No more pairs in the list.

atmStat getRate chasID cardID portID vpi vci

Makes all of the rate statistics for the particular VPI/VCI on the port available through the STANDARD
OPTIONS of this command. Specific errors are:

Appendix 1 IxTclHAL Commands

– 506 –

l The port is in use by another user
l No chassis connection
l The VPI/VCI pair is not included in either the receive or transmit list
l ATM is not supported on this port

atmStat getStat chasID cardID portID vpi vci

Makes all of the statistics for the particular VPI/VCI on the port available through the STANDARD
OPTIONS of this command. Specific errors are:

l The port is in use by another user
l No chassis connection
l The VPI/VCI pair is not included in either the receive or transmit list
l ATM is not supported on this port

atmStat removeAllRx chasID cardID portID

Removes all the VPI/VCI for the indicated port from the receive list. Specific errors include:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port

atmStat removeAllTx chasID cardID portID

Removes all the VPI/VCI for the indicated port from the transmit list. Specific errors include:

l The port is in use by another user
l No chassis connection
l ATM is not supported on this port
l Invalid port

atmStat set Default

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set chassis 1
set card 42
set vpi 1
set vci 17
Remove all TX and RX ports for port
atmStat removeAllRx $chassis $card 1
atmStat removeAllTx $chassis $card 1
atmStat removeAllRx $chassis $card 2
atmStat removeAllTx $chassis $card 2

Appendix 1 IxTclHAL Commands

– 507 –

Add both ports to both lists
if [atmStat addRx $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmStat addRx"
}
if [atmStat addRx $chassis $card 2 $vpi $vci] {
ixPuts "Error in atmStat addRx"
}
if [atmStat addTx $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmStat addTx"
}
if [atmStat addTx $chassis $card 2 $vpi $vci] {
ixPuts "Error in atmStat addTx"
}
.... run some traffic ...
Get the statistics data for all the ports and VPI/VCI
if [atmStat get] {
ixPuts "Error in atmStat get"
}
after 2000

if [atmStat getStat $chassis $card 1 $vpi $vci] {
ixPuts "Error in atmStat getStat"
}
ixPuts "Port 1: [atmStat get -txAtmCells] cells transmitted, \
[atmStat get -rxAtmCells] received"
if [atmStat getRate $chassis $card 2 $vpi $vci] {
ixPuts "Error in atmStat getStat"
}
ixPuts "Port 2: [atmStat get -txAtmCells] cells transmitted/sec, \
[atmStat get -rxAtmCells] received/sec"

SEE ALSO

atmFilter, atmReassembly

autoDetectInstrumentation
autoDetectInstrumentation - configure auto-detection port parameters.

SYNOPSIS

autoDectectInstrumentation sub-command options

DESCRIPTION

The autoDectectInstrumentation command is used to configure the auto detection receive mode port
options.

Appendix 1 IxTclHAL Commands

– 508 –

STANDARD OPTIONS

enableSignatureMask
true/false

Enables a mask of for the auto detect signature (default = false).

enableTxAutomatic
Instrumentation

Transmit side only. Enables/disables the transmit options necessary to generate auto-detect
instrumentation streams.

signature

Sets the auto detect signature (default = 87 73 67 49 42 87 11 80 08 71 18 05)

signatureMask

Sets the signature mask.

startOfScan

Sets an offset for where in the packet the auto detect should start looking for the signature (in bytes).

enableMisdirected
PacketMask
true/false

Enables/disables misdirected packet detection (default = false).

enableMisdirectedAISFilterIgnore
true/false

Enables/disables ignore misdirected AIS filter (default = false).

misdirectedPacketMask

Sets the misdirected packet mask
(Default = '00 00 00 00 00 00 00 00 00 00 00 00')

enablePRBS
true/false

Enables the stream to transmit PRBS packets. (default = false)
PRBS is enabled on a per-port basis for capture of PRBS packets.
Note: This parameter is not supported by all load modules.

Appendix 1 IxTclHAL Commands

– 509 –

COMMANDS

The autoDetectInstrumentation command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

autoDetectInstrumentation cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the autoDetectInstrumentation command.

autoDetectInstrumentation getCircuitTx chasID cardID portID [circuitID] streamID

Gets the current configuration of the stream with id streamID in the circuit with circuitID on port portID,
card cardID, chassis chasID from its hardware.

autoDetectInstrumentation getQueueTx chasID cardID portID [queueID] [streamID] [sequenceType]

Gets the current transmit auto detect instrumentation configuration of the ATM port with ID portID on
card cardID, chassis chasID. This command uses the queue ID to specify the correct queue. The
sequenceType optional argument indicates whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Call this command before calling autoDetectInstrumentation cget option to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

autoDetectInstrumentation getRx chasID cardID portID

Gets the current receive auto detect instrumentation configuration of the port with ID portID on card
cardID, chassis chasID. Call this command before calling autoDetectInstrumentation cget option to get
the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

autoDetectInstrumentation getTx chasID cardID portID [streamID sequenceType]

Gets the current transmit auto detect instrumentation configuration of the port with ID portID on card
cardID, chassis chasID. This command can also use the stream ID. The sequenceType optional argument
indicates whether the settings apply to all modes or one of the modes.

Appendix 1 IxTclHAL Commands

– 510 –

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Call this command before calling autoDetectInstrumentation cget option to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

autoDetectInstrumentation setCircuitTx chasID cardID portID [circuitD] streamID

Sets the configuration of the stream with id streamID on its circuit circuitID on port portID, card cardID,
chassis chasID in IxHAL by reading the configuration option values set by the autoDetectInstrumentation
config option value command.

autoDetectInstrumentation set Defaults

Sets to IxTclHal default values for all configuration options.

autoDetectInstrumentation setQueueTx chasID cardID portID [queueID] [streamID] [sequenceType]

Sets the transmit auto detect instrumentation configuration on the ATM port with ID portID on card
cardID, chassis chasID by reading the configuration option values set by the autoDetectInstrumentation
config option command. This command uses queue ID to specify which ATM queue on the port should be
used. The sequenceType optional argument indicates whether the settings apply to all modes or one of
the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

autoDetectInstrumentation setRx chasID cardID portID

Appendix 1 IxTclHAL Commands

– 511 –

Sets the receive auto detect instrumentation configuration of the port with ID portID on card cardID,
chassis chasID by reading the configuration option values set by the autoDetectInstrumentation config
option command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

autoDetectInstrumentation setTx chasID cardID portID [streamID sequenceType]

Sets the transmit auto detect instrumentation configuration of the port with ID portID on card cardID,
chassis chasID by reading the configuration option values set by the autoDetectInstrumentation config
option command. This command can also use the stream ID. The sequenceType optional argument
indicates whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

EXAMPLES
package req IxTclHal
set hostname woodstock
if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}
set chassId [chassis cget -id]
set cardId 2
set portId 1
set portList [list [list $chassId $cardId $portId]]
if {[port get $chassId $cardId $portId]} {
errorMsg "error getting port on $chassId $cardId $portId "
}

if {[port isValidFeature $chassId $cardId $portId $::portFeatureAutoDetectRx]} {
port config -enableAutoDetectInstrumentation $::true

Appendix 1 IxTclHAL Commands

– 512 –

if {[port set $chassId $cardId $portId]} {
errorMsg "error setting port on \
$chassId $cardId $portId "
}
autoDetectInstrumentation setDefault
autoDetectInstrumentation config -startOfScan 26
autoDetectInstrumentation config -signature \
"33 44 44 44 44 44 44 44 44 44 44 66"
autoDetectInstrumentation config \
-enableSignatureMask $::true

autoDetectInstrumentation config -signatureMask \
"AA AA AA AA AA AA AA AA AA AA AA AA"
autoDetectInstrumentation setRx $chassId \
$cardId $portId
ixWritePortsToHardware portList
} else {
errorMsg " portFeatureAutoDetectRx is not supported on \
port $chassId $cardId $portId "

SEE ALSO

basicLinkServices
basicLinkServices-configure Basic Link Service protocols over fibre channel

SYNOPSIS

basicLinkServices sub-command options

DESCRIPTION

Basic Link Services are single frame, single sequence commands that are embedded in an unrelated
exchange. Basic Link Services commands consist of only a single Basic Link_Data frame and are
interspersed or are a part of a Sequence for an Exchange performing a specific protocol other than Basic
Link Service. Basic Link Service commands support low-level functions and login is not required prior to
using such commands.

STANDARD OPTIONS

blsCommandCode

The Command Code list contains the Basic Link Service commands.

The options are:

Option Usage

basicAccept Basic Accept is a single frame Link Service Reply Sequence that notifies the
transmitter of a Basic Link Service Request frame that the request has been
completed.

Appendix 1 IxTclHAL Commands

– 513 –

Option Usage

basicReject Basic Reject is a single frame Link Service Reply Sequence that notifies the
transmitter of a Basic Link Service Request frame that the request has been
rejected.

abortSequence Abort Sequence (ABTS) frame is used by the Sequence Initiator to request that the
Sequence Recipient abort one or more Sequences and by the Sequence Recipient to
request that the ABTS Recipient abort the entire Exchange.

basicAccept

The basicAccept options are:

Option Usage

transferSequenceInitiative If true, the Basic Accept Link Service Reply Sequence transfers
the Sequence Initiative by setting the Sequence Initiative bit (Bit
16) to one in F_CTL on the last Data frame of the Reply
Sequence.

abortingEntireExchange If true, aborts the transfer of Sequence Initiative.

hasInformationOnLastDeliverable
Sequence

If true, provides information about the last delivered Sequence
Initiative.

originatorExchangeId The Originator assigns each new Exchange an Originator
Exchange ID (OX_ID) unique to the Originator or Originator-
Responder pair and embeds it in all frames of the Exchange.

responderExchangeId ResponderExchangeIdExchange Identifiers are used to uniquely
identify an Exchange. The Responder assigns Responder ID (RX_
ID) that is unique to the Responder or Responder-Originator pair
and communicates it to the Originator before the end of the first
Sequence of the Exchange.

lastDeliverableSequenceId Sets the last deliverable Sequence Identifier assigned by the
Sequence Initiator.

sequenceIdValidity The value validating the Sequence Identifier.

lowSequenceCount Indicates low Sequence Count. The sequence count (SEQ_CNT)
is a two-byte field that indicates the sequential order of Data
frame transmission within a single Sequence or multiple
consecutive Sequences for the same Exchange.

highSequenceCount Indicates high Sequence Count.

Appendix 1 IxTclHAL Commands

– 514 –

basicReject

The basicReject options are:

Option Usage

reasonCode The Basic Reject reason codes are invalidCommandCode, logicalError,
logicalBusy, protocolError, and unableToPerformCommandRequest.

reasonCodeExplanation The Basic Reject reason codes explanation are noAdditionalExplanation,
invalidOxId-RxIdCombination, and sequenceAborted.

vendorSpecificCode Specification of the referenced item is determined by the SCSI device
vendor.

The default value is 0.

abortSequence

Abort Sequence (ABTS) frame is used by the Sequence Initiator to request that the Sequence Recipient
abort one or more Sequences and by the Sequence Recipient to request that the ABTS Recipient abort the
entire Exchange.

EXAMPLES

See under fibreChannel

SEE ALSO

fibreChannel

bert
bert - configure Packet over Sonet cards for Bit Error Rate Testing.

SYNOPSIS

bert sub-command options

DESCRIPTION

The bert command is used to configure the transmission and receive patterns for BERT testing. Deliberate
errors may be inserted with the bertErrorGeneration command. Refer to the Ixia Reference Guide for a
discussion on BERT testing in Ixia equipment.

bert commands operate on concatenated and channelized cards. Cards capable of channelization must be
put in that mode by setting the port command's transmitMode setting to portTxModeBertChannelized.
They can be further channelized by using the bert channelize sub-command. Channel selection in
accomplished with the optional level argument in the set and get commands. bert and
bertErrorGeneration for more details on level selection.

Appendix 1 IxTclHAL Commands

– 515 –

STANDARD OPTIONS

enableInvertRxPattern
enable / disable

If txRxPatternMode is set to independent, this indicates that the expected receive pattern is to be
inverted. (default = disable)

enableInvertTxPattern
enable / disable

If set, indicates that the transmitted pattern is to be inverted. (default = disable)

enableStats
enable / disable

Only applicable when portFeatureBertList is active. If set, enables BERT lane statistics to be collected.
(default = disable)

rxPatternIndex

If txRxPatternMode is set to independent, this indicates the expected receive pattern: one of a set of
predefined patterns:

Option Value Usage

bertPatternAllZero 8 all zeroes are expected.

bertPatternAlternatingOneZero 9 alternating ones and zeroes are expected.

bertPatternUserDefined 10 the pattern indicated in rxUserPattern is expected, but
inverted

bertPattern2_11 12 the 2^11 pattern as specified in ITU-T 0151 is expected.

bertPattern2_15 13 the 2^15 pattern as specified in ITU-T 0151 is expected.

bertPattern2_20 14 the 2^20 pattern as specified in ITU-T 0151 is expected.

bertPattern2_23 15 the 2^23 pattern as specified in ITU-T 0151 is expected.

bertPattern2_31 11 the 2^23 pattern as specified in ITU-T 0151 is expected.

bertPatternAutoDetect 32 (default) the pattern is automatically detected by the
receiver.

bertPattern2_7 24 the 2^7 pattern as specified in ITU-T 0151 is expected.

bertPattern2_9 24 the 2^9 pattern as specified in ITU-T 0151 is expected.

bertPatternLowFreq 26 a low frequency pattern

Appendix 1 IxTclHAL Commands

– 516 –

Option Value Usage

bertPatternHighFreq 27 a high frequency pattern

bertPatternContinuousRandom 28 a continuous random pattern

bertPatternContinuousJitter 29 a continuous jitter pattern

bertPatternLaneDetect 31 used to detect the lane pattern and how the lanes are
connected between ports

rxUserPattern

If the rxPatternIndex is set to user defined, then this is the expected pattern. If the pattern is shorter than
the received data, then the pattern is repeated as necessary. If the pattern is not suitable for use
(especially in unframed BERT), then a message is logged to the error file, along with a correct value.
(default = 00 00 00 00)

txPatternIndex

Indicates the pattern to be transmitted: one of a set of predefined patterns:

Option Value Usage

bertPatternAllZero 8 all zeroes are expected.

bertPatternAlternatingOneZero 9 alternating ones and zeroes are expected.

bertPatternUserDefined 10 the pattern indicated in rxUserPattern is expected, but
inverted

bertPattern2_11 12 the 2^11 pattern as specified in ITU-T 0151 is expected.

bertPattern2_15 13 the 2^15 pattern as specified in ITU-T 0151 is expected.

bertPattern2_20 14 the 2^20 pattern as specified in ITU-T 0151 is expected.

bertPattern2_23 15 the 2^23 pattern as specified in ITU-T 0151 is expected.

bertPattern2_31 11 the 2^23 pattern as specified in ITU-T 0151 is expected.

bertPattern2_7 24 the 2^7 pattern as specified in ITU-T 0151 is expected.

bertPattern2_9 24 the 2^9 pattern as specified in ITU-T 0151 is expected.

bertPatternLowFreq 26 a lowfrequency pattern

bertPatternHighFreq 27 a high frequency pattern

bertPatternContinuousRandom 28 a continuous random pattern

Appendix 1 IxTclHAL Commands

– 517 –

Option Value Usage

bertPatternContinuousJitter 29 a continuous jitter pattern

bertPatternLaneDetect

txRxPatternMode

Indicates if transmit and receive patterns are tied together or not:

Option Value Usage

bertTxRxCoupled 0 the rxPatternIndex, rxUserPattern and enabInvertRxPattern
values are set from txPatternIndex, txUserPattern and
enabInvertTxPattern.

bertTxRxIndependent 1 (default) transmit and receive patterns are set independently.

txUserPattern

If the txPatternIndex is set to user defined, then this is the transmitted pattern. If the pattern is shorter
than the packet data size, then the pattern is repeated as necessary. (default = 00 00 00 00)

COMMANDS

The bert command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

bert cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the bert command.

bert channelize chasID cardID portID [level]

Causes the level indicated by the level parameter of the indicated port to be channelized. The first level of
channelization occurs when the card is set in channelized mode using the port command's transmitMode
variable to portTxModeBertChannelized. Second and subsequent levels may be channelized with this
command. For example, in an OC192 Channelized BERT card, the first OC48 channel is known as 1.0. It
may be channelized by using:

bert channelize 1 2 1 1.0

The level parameter is expressed as a floating point number for all load modules except the 10GE XAUI
module, where it must always be an integer (for example, 1, 2, 3 or 4).

bert config option value

Modify the configuration options of the bert. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for bert.

bert get chasID cardID portID laneNo [level]

Appendix 1 IxTclHAL Commands

– 518 –

Gets the current configuration of the bert for port with id portID on card cardID, chassis chasID from its
hardware. If the card is channelized, then the optional level parameter must be used to select the
appropriate channel. If the card is 40GE LSM XMV or 100GE LSM XMV, the laneNumber option is used to
specify the BERT lane. Call this command before calling bert cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

bert isChannelized chasID cardID portID [level]

Returns 1 if the requested channel for the indicated port is channelized and 0 otherwise.

bert set chasID cardID portID laneNo [level]

Sets the configuration of the bert in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the bert config option value command. If the card is
channelized, then the optional level parameter must be used to select the appropriate channel. The level
parameter is expressed as a floating point number for all load modules except the 10GE XAUI module,
where it must always be an integer (for example, 1, 2, 3 or 4). If the card is 40GE LSM XMV or 100GE LSM
XMV, the laneNumber option is used to specify the BERT lane.

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Bert is not supported for this port type (PoS only)
l Configured parameters are not valid for this setting

bert setDefault

Sets to IxTclHal default values for all configuration options.

bert unChannelize chasID cardID portID level

Causes the level indicated by the level parameter of the indicated port to be unchannelized. The level
parameter is expressed as a floating point number for all load modules except the 10GE XAUI module,
where it must always be an integer (for example, 1, 2, 3 or 4).

EXAMPLES
package require IxTclHal
###
#
First section works with an OC48c Bert card in slot 22
#
##
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server

Appendix 1 IxTclHAL Commands

– 519 –

which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that an OC48c BERT card is in slot 22
set card 22
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Check for missing card
if {[card get $chas $card] != 0} \
{
ixPuts "Card $card does not exist"
return 1
}
Get the type of card and check if it's the correct type
set cardType [card cget -type]
if {[port isValidFeature $chas $card 1 portFeatureBert] == 0} \
{
ixPuts "Card $card does not have Bert capability"
return 1
}
Set the options to default values
bert setDefault
In this example, we'll couple the transmit and receive side
To simulate the port connected to a device which sends its data
back to the port
bert config -txRxPatternMode bertTxRxCoupled
Select inverted 2^20 pattern to transmit
bert config -txPatternIndex bertPattern2_20

Appendix 1 IxTclHAL Commands

– 520 –

bert config -enableInvertTxPattern enable
bert set $chas $card 1
ixWritePortsToHardware portList
Now we need to send a start transmit to the port to gather statistics
and then read the statistics
ixStartPortTransmit $chas $card 1
after 1000
Stop statistics gathering
ixStopPortTransmit $chas $card 1
Fetch the number of bits received
stat get statBertBitsReceived $chas $card 1
set received [stat cget -bertBitsReceived]
ixPuts "$received bits were received after 1 second"
Bert error generation example
bertErrorGeneration setDefault
Set for 10^4 errors
bertErrorGeneration config -errorBitRate bert_1e4
bertErrorGeneration set $chas $card 1
ixWritePortsToHardware portList

Enable statistics gathering
ixStartPortTransmit $chas $card 1

Send the error continously for 10 seconds
bertErrorGeneration startContinuousError $chas $card 1
after 10000
bertErrorGeneration stopContinuousError $chas $card 1
ixStopPortTransmit $chas $card 1
And get the number of errored bits
stat get statBertBitErrorsReceived $chas $card 1
set received [stat cget -bertBitErrorsReceived]
ixPuts "$received bit errors were received after 10 seconds"
##
Second section works with an OC192/10GE/BERT card in slot 51
In order to demonstrate channelized BERT operation
#
###
set card 51
set portList [list [list $chas $card 1]]
Check for missing card
if {[card get $chas $card] != 0} \
{
ixPuts "Card $card does not exist"
return 1
}
Get the type of card and check if it's the correct type
set cardType [card cget -type]
if {[port isValidFeature $chas $card 1 portFeatureBert] == 0} \

Appendix 1 IxTclHAL Commands

– 521 –

{
ixPuts "Card $card does not have Bert capability"
return 1
}
Set port to chanelized
port setFactoryDefaults $chas $card 1
port config -transmitMode portTxModeBertChannelized
port config -receiveMode portRxModeBertChannelized
if [port set $chas $card 1] {
ixPuts "Could not port set on $chas:$card:1"
return 1
}
Set the options channelize the second OC48 channel
bert setDefault
if [bert channelize $chas $card 1 2.0] {
ixPuts "Could not channelize $chas:$card:1 2.0"
return 1
}

couple the transmit and receive side
bert config -txRxPatternMode bertTxRxCoupled
Select alternating one, zero pattern
bert config -txPatternIndex bertPatternAlternatingOneZero
Set the characteristics for the third OC12 channel on the second OC48 channel
if [bert set $chas $card 1 2.3] {
ixPuts "bert set failed on $chas:$card:1 level 2.3"
return 1
}
Use isChannelized to make sure this worked
if {[bert isChannelized $chas $card 1 2.0] == 0 {
ixPuts "Channel 2.0 is not channelized"
}
ixWritePortsToHardware portList
Now we need to send a start transmit to the port to gather statistics
and then read the statistics
ixStartPortTransmit $chas $card 1
after 1000
Stop statistics gathering
ixStopPortTransmit $chas $card 1
Fetch the number of bits received on the specific channel
stat getBertChannel $chas $card 1 2.3
stat get statBertBitsReceived $chas $card 1
set received [stat cget -bertBitsReceived]
ixPuts "$received bits were received after 1 second"
Bert error generation example
bertErrorGeneration setDefault
Set for 10^4 errors
bertErrorGeneration config -errorBitRate bert_1e4

Appendix 1 IxTclHAL Commands

– 522 –

bertErrorGeneration set $chas $card 1
ixWritePortsToHardware portList
Enable statistics gathering
ixStartPortTransmit $chas $card 1
ixPuts "Starting error generation"
Send the error continously for 10 seconds
bertErrorGeneration startContinuousError $chas $card 1 2.3
after 10000
bertErrorGeneration stopContinuousError $chas $card 1 2.3
ixStopPortTransmit $chas $card 1

And get the number of errored bits
stat get statBertBitErrorsReceived $chas $card 1
set received [stat cget -bertBitErrorsReceived]
ixPuts "$received bit errors were received after 10 seconds"
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

bertErrorGeneration

bertErrorGeneration
bertErrorGeneration - configure the BERT Error Generation parameters on a Packet over Sonet port of a
card on a chassis.

SYNOPSIS

bertErrorGeneration sub-command options

DESCRIPTION

The bertErrorGeneration command is used to configure the insertion of deliberate errors on a port. The
port must previously have been setup using the bert command. Refer to the Ixia Reference Guide for a
discussion on BERT testing in Ixia equipment.

bertErrorGeneration commands operate on concatenated and channelized cards. Cards capable of
channelization must be put in that mode by setting the port command's transmitMode setting to
portTxModeBertChannelized. They can be further channelized by using the bert channelize sub-
command. Channel selection in accomplished with the optional level argument in the set and get
commands. bert and bertErrorGeneration for more details on level selection.

Appendix 1 IxTclHAL Commands

– 523 –

STANDARD OPTIONS

bitMask

For OC-48 unframed BERT: a 32-bit mask, expressed as a list of four one-byte elements, which indicates
which bit in a 32-bit word is to be errored. (default = 00000000 00000000 00000000 00000001)

For all other BERT: a 128-bit mask, expressed as a list of 16 two-byte hex elements, which indicates
which bit in a 128-bit word is to be errored. (default = 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00)

burstCount

The number of times that the error is to be inserted. (default = 1)

burstPeriod

The number of bits between error insertions. (default = 128)

burstWidth

The number of bits in the error insertion; this should be set to 32 or less. (default = 128)

continuousErrorInsert
true/false

Inserts BERT errors continuously, at the rate selectd in the errorBitRate option. (default = false)

errorBitRate

During continuous burst rate situations, this is the error rate.

Option Value Usage

bert_1e2 0 An error is inserted every 2^2 (4) bits.

bert_1e3 1 An error is inserted every 2^3 (8) bits.

bert_1e4 2 An error is inserted every 2^4 (16) bits.

bert_1e5 3 An error is inserted every 2^5 (32) bits.

bert_1e6 4 An error is inserted every 2^6 (64) bits.

bert_1e7 5 An error is inserted every 2^7 (128) bits.

bert_1e8 6 An error is inserted every 2^8 (256) bits.

bert_1e9 7 (default) An error is inserted every 2^9 (512) bits.

bert_1e10 8 An error is inserted every 2^10 (1024) bits.

bert_1e11 9 An error is inserted every 2^11 (2048) bits.

Appendix 1 IxTclHAL Commands

– 524 –

Option Value Usage

bert_UserDefined 10 An error is inserted every period bits.

period

If errorBitRate is set to bert_UserDefined, then this is the number of bits between error insertions.
(default = 4000000000)

COMMANDS

The bertErrorGeneration command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

bertErrorGeneration cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the bertErrorGeneration command.

bertErrorGeneration config option value

Modify the configuration options of the bertErrorGeneration. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for bertErrorGeneration.

bertErrorGeneration get chasID cardID portID laneNo [level]

Gets the current configuration of the bertErrorGeneration for port with id portID on card cardID, chassis
chasID from its hardware. If the card is channelized, then the optional level parameter must be used to
select the appropriate channel. The laneNo option is only applicable when portFeatureBertList is active.

Call this command before calling bertErrorGeneration cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

bertErrorGeneration insertSingleError chasID cardID portID laneNumber [level]

Inserts a single error into the BERT stream as specified by the STANDARD OPTIONS. If the card is
channelized, then the optional level parameter must be used to select the appropriate channel. The
laneNumber option is only applicable when portFeatureBertList is active, and is used to specify the BERT
lane where the error is generated. Specific errors are:

l No connection to a chassis
l Invalid port number

bertErrorGeneration set chasID cardID portID laneNo [level]

Sets the configuration of the bertErrorGeneration in IxHAL for port with id portID on card cardID, chassis
chasID by reading the configuration option values set by the bertErrorGeneration config option value
command. If the card is channelized, then the optional level parameter must be used to select the
appropriate channel. The laneNo option is only applicable when portFeatureBertList is active.

Appendix 1 IxTclHAL Commands

– 525 –

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Bert is not supported for this port type (PoS only)
l Configured parameters are not valid for this setting

bertErrorGeneration setDefault

Sets to IxTclHal default values for all configuration options.

bertErrorGeneration startContinuousError chasID cardID portID laneNumber [level]

Continuously inserts errors into the BERT stream, as dictated by the STANDARD OPTIONS. If the card is
channelized, then the optional level parameter must be used to select the appropriate channel. The
laneNumber option is only applicable when portFeatureBertList is active, and is used to specify the BERT
lane where the error is generated. Errors are inserted once every 2^errorBitRate bits. Specific errors are:

l No connection to a chassis
l Invalid port number
l Bert is not supported for this port type (PoS only)

bertErrorGeneration stopContinuousError chasID cardID portID laneNumber [level]

Stops the continuous insertion of errors into the BERT stream. If the card is channelized, then the optional
level parameter must be used to select the appropriate channel. The laneNumber option is only applicable
when portFeatureBertList is active, and is used to specify the BERT lane where the error is generated.

Specific errors are:

l No connection to a chassis
l Invalid port number
l Bert is not supported for this port type (PoS only)

EXAMPLES

See examples in bert

SEE ALSO

bert

bertUnframed
bertUnframed - configure unframed BERT specific parameters on a port

SYNOPSIS

bertUnframed sub-command options

Appendix 1 IxTclHAL Commands

– 526 –

DESCRIPTION

The bertUnframed command is used to configure line speed and other operational characteristics of an
unframed BERT port.

STANDARD OPTIONS

dataRate

The particular data rate for the port. The choices available depend on the setting of the clockSelect option
of the card command. Options include:

Option Value Usage

bertUnfrramedInvalidLine
Rate

0 (default)

bertUnframedOc3 1 155.52 Mbps (OC-3). Only valid if card - cardSelect =
cardBertUnframedClockSonet.

bertUnframedOc12 2 622.08 Mbps (OC-12). Only valid if card - cardSelect =
cardBertUnframedClockSonet.

bertUnframedOc48 3 2.488 Gbps (OC-48). Only valid if card - cardSelect =
cardBertUnframedClockSonet.

bertUnframedOc3WithFec 4 166.63 Mbps (OC-3 FEC). Only valid if card - cardSelect =
cardBertUnframedClockSonetWithFEC

bertUnframedOc12WithFec 5 666.51 Mbps (OC-12 FEC). Only valid if card - cardSelect =
cardBertUnframedClockSonetWithFEC

bertUnframedOc48WithFec 6 2.67 Gbps (OC-48 FEC). Only valid if card - cardSelect =
cardBertUnframedClockSonetWithFEC

bertUnframedGigEthernet 7 1.25Gbps (Gigabit Ethernet). Only valid if card - cardSelect
= cardBertUnframedClockGigE

bertUnframedFiberChannel1 8 1.062 Gbps (Fibre Channel). Only valid if card - cardSelect
= cardBertUnframedClockFiberChannel

bertUnframedFiberChannel2 9 2.124 Gbps (2x Fibre Channel). Only valid if card -
cardSelect = cardBertUnframedClockFiberChannel

bertUnframed1x 10 Use the external clock directly. Only valid if card -
cardSelect = cardBertUnframedClockExternal

bertUnframed4x 11 Multiply the external clock rate by a factor of 4. Only valid if
card - cardSelect = cardBertUnframedClockExternal

bertUnframed8x 12 Multiply the external clock rate by a factor of 8. Only valid if

Appendix 1 IxTclHAL Commands

– 527 –

Option Value Usage

card - cardSelect = cardBertUnframedClockExternal

bertUnframed16x 13 Multiply the external clock rate by a factor of 16. Only valid
if card - cardSelect = cardBertUnframedClockExternal

enableTransceiver
BypassPllExClock

(default = 0)

operation

The basic line operation.

Option Value Usage

bertUnframedNormal 0 (default) Operate in normal transmit, receive mode.

bertUnframedDiagnostic
Loopback

1 Operate in diagnostic loopback mode.

bertUnframedLineLoopback 2 Operate in line loopback mode.

useRecoveredClock
true | false

If true, use the clock recovered from the received data rather than the internally generated clock. (default
= 0)

COMMANDS

The bertUnframed command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

bertUnframed cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the bertUnframed command.

bertUnframed config option value

Modify the configuration options of the bertUnframed command. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for bertUnframed.

bertUnframed get chasID cardID portID

Gets the current configuration for port with id portID on card cardID, chassis chasID. from its hardware.
Call this command before calling bertUnframed cget option value to get the value of the configuration
option. Specific errors are:

Appendix 1 IxTclHAL Commands

– 528 –

l No connection to a chassis
l Invalid port number

bertUnframed set chasID cardID portID

Sets the configuration of the bertUnframed command in IxHAL for port with id portID on card cardID,
chassis chasID by reading the configuration option values set by the bertUnframed config option value
command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Bert is not supported for this port type (PoS only)
l Configured parameters are not valid for this setting

bertUnframed set Default

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that a multi-rate unframed Bert card in slot 25
set card 25
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use

Appendix 1 IxTclHAL Commands

– 529 –

if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Check for missing card
if {[card get $chas $card] != 0} \
{
ixPuts "Card $card does not exist"
return 1
}
Get the type of card and check if it's the correct type
set cardType [card cget -type]
if {[port isValidFeature $chas $card 1 portFeatureBertUnframed] == 0} \
{
ixPuts "Card $card does not have unframed Bert capability"
return 1
}
Set the card clock select to Sonet FEC
card setDefault
card config -clockSelect cardBertUnframedClockSonetWithFEC
if [card set $chas $card] {
ixPuts "Can't card set for $chas:$card"
return 1
}
Set the options to default values
bertUnframed setDefault
Set the unframed speed to OC48c FEC rates and normal operation
bertUnframed config -dataRate bertUnframedOc48WithFec
bertUnframed config -operation bertUnframedNormal
if [bertUnframed set $chas $card 1] {
ixPuts "Could not bertUnframed set on $chas:$card:1"
return 1
}
Now do the normal Bert testing things
bert setDefault
bert config -txRxPatternMode bertTxRxCoupled
bert config -txPatternIndex bertPattern2_20
bert config -enableInvertTxPattern enable
if [bert set $chas $card 1] {
ixPuts "Can't bert set on $chas:$card:1"
return 1
}
ixWritePortsToHardware portList
Now we need to send a start transmit to the port to gather statistics
and then read the statistics
ixStartPortTransmit $chas $card 1
after 1000
Stop statistics gathering

Appendix 1 IxTclHAL Commands

– 530 –

ixStopPortTransmit $chas $card 1
Fetch the number of bits received
stat get statBertBitsReceived $chas $card 1
set received [stat cget -bertBitsReceived]
ixPuts "$received bits were received after 1 second"
Bert error generation example
bertErrorGeneration setDefault
Set for 10^4 errors
bertErrorGeneration config -errorBitRate bert_1e4
bertErrorGeneration set $chas $card 1
ixWritePortsToHardware portList
Enable statistics gathering
ixStartPortTransmit $chas $card 1
Send the error continously for 10 seconds
bertErrorGeneration startContinuousError $chas $card 1
after 10000
bertErrorGeneration stopContinuousError $chas $card 1
ixStopPortTransmit $chas $card 1
And get the number of errored bits
stat get statBertBitErrorsReceived $chas $card 1
set received [stat cget -bertBitErrorsReceived]
ixPuts "$received bit errors were received after 10 seconds"
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

bert, bertErrorGeneration, card, port

capture
capture - configure the capture parameters on a port of a card on a chassis.

SYNOPSIS

capture sub-command options

DESCRIPTION

The capture command is used to configure the capture parameters and sets up the capture buffer. The
afterTriggerFilter, beforeTriggerFIlter, captureMode, continuousFilter, fullAction and triggerPosition
options are associated with the circular buffer feature which is only available on some card types. Refer to
the Ixia Hardware Guide for a list of which modules support the features.

Appendix 1 IxTclHAL Commands

– 531 –

The capture process itself is started through the use of the portGroup setCommand startCapture
command, or the ixStartCapture high-level command. The capture is stopped with the use of the
portGroup setCommand stopCapture command, or the ixStopCapture high-level command, or a
captureBuffer get command. That is, the act of reading the capture buffer stops the capture process. The
high-level command, ixCheckTransmitDone, may be used to wait until all ports have finished
transmitting.

STANDARD OPTIONS

afterTriggerFilter

Controls the capture of data after triggering when operating in triggered mode (captureMode =
captureTriggerMode). Available option values are:

Option Value Usage

captureAfterTriggerAll 0 capture all data after trigger.

captureAfterTrigger
Filter

1 (default) capture filtered data after trigger using filter settings.

captureAfterTrigger
ConditionFilter

2 capture filtered data after trigger as per the filter settings.

beforeTriggerFilter

Controls the capture of data prior to triggering when operating in triggered mode (captureMode =
captureTriggerMode). Available option values are:

Option Value Usage

captureBeforeTriggerAll 0 capture all databefore trigger.

captureBeforeTrigger
None

1 (default) capture none of the data before trigger.

captureBeforeTrigger
Filter

2 capture filtered data before trigger as per the filter settings.

captureMode

Controls whether data capture is performed in a continuous or triggered mode. Available option values
are:

Option Value Usage

captureContinuous
Mode

0 capture data in the buffer continuously, regardless of trigger
settings. Data may be filtered; see continuousFilter. When the
buffer is full, begin storing new frames at the end of the buffer
over-writing the previously stored frames.

Appendix 1 IxTclHAL Commands

– 532 –

Option Value Usage

captureTriggerMode 1 (default) capture data only after triggered. After the buffer is full,
do not capture any more frames.

continuousFilter

Controls whether data captured in continous mode (captureMode = captureContinuousMode) is filtered or
not. Available option values are:

Option Value Usage

captureContinuousAll 0 (default) capture all data, regardless of filter settings.

captureContinuousFilter 1 capture only filtered data, as per filter settings.

enableSmallPacket
Capture true/false

Applies to OC12 cards only. Capture of packets of 48 bytes or less at full wire rates can be problematic
and is usually treated as an error. This setting allows packets of 48 bytes or less in length to be captured.
The data captured, however, may be corrupt. (default = false)

fullAction

Used for LM100Tx boards only. Controls the action of the buffer when it reaches the full status. Available
option values are:

Option Value Usage

lock 0 (default) after the buffer is full, do not capture any more frames

wrap 1 when the buffer is full, start storing the new frames at the beginning of the
buffer over-writing the previously stored frames

nPackets

Read-only. Number of packets available or captured in the capture buffer.

sliceSize

The maximum number of octets of each frame that is saved in this capture buffer. For example, if a 1500
octet frame is received by the probe and this option is set to 500, then only 500 octets of the frame is
stored in the associated capture buffer. If this option is set to 0, the capture buffer saves as many octets
as is possible. If the sliceSize is set larger than the maximim hardware supported slice size, the maximum
is used. (default = 8191)

Appendix 1 IxTclHAL Commands

– 533 –

triggerPosition

Controls the dividing line within the capture buffer between before trigger data and post trigger data. This
control is only useful in triggered mode (captureMode = captureTriggerMode) and before trigger capture
enabled (beforeTriggerFilter = captureBeforeTriggerAll or captureBeforeTriggerFilter). TriggerPosition is
expressed as a percentage of the total buffer size. The beginning of the buffer with this percentage is used
in a wrap-around mode for before trigger data and the remainder is filled up with triggered data. (default
= 1.0)

DEPRECATED
STANDARD OPTIONS

COMMANDS

The capture command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

capture cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the capture command.

capture config option value

Modify the configuration options of the capture. If no option is specified, retuns a list describing all of the
available options (see STANDARD OPTIONS) for capture.

capture get chasID cardID portID

Gets the current configuration of the capture for port with id portID on card cardID, chassis chasID. from
its hardware. Call this command before calling capture cget option value to get the value of the
configuration option. In order for this command to succeed, the port must either be unowned, or you
must be logged in as the owner of the port. Specific errors are:

l No connection to a chassis
l Invalid port number

capture set chasID cardID portID

Sets the configuration of the capture in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the capture config option value command. Specific errors
are:

l No connection to chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

capture setDefault

Sets to IxTclaldefault values for all configuration options.

capturewrite chasID cardID portID

Appendix 1 IxTclHAL Commands

– 534 –

Writes or commits the changes in IxHAL to hardware for the capture related parameters on port with id
portID on card cardID, chassis chasID. Before using this command, use the capture set. Specific errors
are:

l No connection to a chassis
l Invalid port numer
l The port is being used by another user
l Network problem between the client and chassis

EXAMPLES
package require IxTclHal
set host techpubs-400
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
ixPuts "Could not connect to $host"
\\\\\\\\\\\\\\\\return 1
}

Now connect t the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume that there's a four port 10/100 TXS card in this slot
with port 1 looped to port 2
set card 1
set portlist [list [list $chas $card 1] [list $chas $card 2]]
set txPortList [list [list $chas $card 1]]
set rxPortList [list [list $chas $card 2]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1}
Reset Ports for Factory Defaults Stream Mode / Capture
port setFactoryDefaults $chas $card 1
port setFactoryDefaults $chas $card 2
port setDefault
if [port set $chas $card 1] {

Appendix 1 IxTclHAL Commands

– 535 –

ixPuts $::ixErrorInfo
return 1
}
if [port set $chas $card 2] {
ixPuts $::ixErrorInfo
return 1
}
The number of frames to get in the capture buffer at one time
It's better not to read all of the captured packets -
It might be very large and take a good deal of time and memory
set frameSlice 4000
Put the time in the outbound stream
stream setDefault
stream config -sa {00 de ad be ef 00}
stream config -da {00 ba be fa ce 00}
stream config -dma stopStream
stream config -numFrames 50000
stream config -fir true
if [stream set $chas $card 1 1] {
ixPuts $::ixErrorInfo
}
if [ixWritePortsToHardware portlist] {
ixPuts $::ixErrorInfo
return 1
}

Wait for Link
after 1000
if [ixCheckLinkState portList] {
ixPuts $::ixErrorInfo
return 1
}
if [ixClearStats rxPortList] {
ixPuts $::ixErrorInfo
return 1
}
if [ixStartCapture rxPortList] {
ixPuts $::ixErrorInfo
return 1
}
if [ixStartTransmit txPortList] {
ixPuts $::ixErrorInfo
return 1}
if [ixCheckTransmitDone txPortList] {
ixPuts $::ixErrorInfo
return 1
}
if [ixStopCapture rxPortList] {

Appendix 1 IxTclHAL Commands

– 536 –

ixPuts $::ixErrorInfo
return 1
}

Get the number of frames captured
if [capture get $chas $card 2] {
ixPuts $::ixErrorInfo
return 1
}
set numFrames [capture cget -nPackets]
ixPuts "$numFrames frames captured"
Set up jitter calculation for 64 byte packets only
captureBuffer config -enableFramesize true
captureBuffer config -framesize 64
captureBuffer setConstraint {
ixPuts "Could not set captureBuffer constraints"
}
Only look at the first $frameSlice frames
if {$numFrames > $frameSlice} {set numFrames $frameSlice}
ixPuts "Frame\tTime\t\tLatncy\tData"

Go through all of the frames $frameSlice frames at a time
for {set frameNo 1} {$frameNo <= $numFrames} \
{incr frameNo $frameSlice} {
set lastFrame [expr $frameNo + $frameSlice - 1]
if {$lastFrame > $numFrames} {$lastFrame = $numFrames}

Get the batch of frames
if [captureBuffer get $chas $card 2 $frameNo $lastFrame] {
ixPuts $::ixErrorInfo
return 1
}
set numCaptured [expr $lastFrame - $frameNo +1]
ixPuts "Average latency is [captureBuffer cget -averageLatency]"
Go through each frame in the capture buffer starting at 1
for {set i 1} {$i < $numCaptured} {incr i} {
Note that the frame number starts at 1
captureBuffer getframe $i
Get the actual frame data
set data [captureBuffer cget -frame]
We'll only look at the first bunch of bytes
set data [string range $data 0 50]
Get timestamp and latency too
set timeStamp [captureBuffer cget -timestamp]set latency [captureBuffer cget -
latency]
set status 'Bad'
ixPuts "Status is [format "%x" [captureBuffer cget -status]]"
if {[captureBuffer cget -status] & $::cap10100DpmGoodPacket} {

Appendix 1 IxTclHAL Commands

– 537 –

set status 'Good'
}
ixPuts -nonewline [expr $frameNo + $i - 1]
ixPuts -nonewline "\t$timeStamp"
ixPuts -nonewline "\t$latency"
ixPuts -nonewline "\t$status"
ixPuts "\t$data"
}
}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}
return 0

SEE ALSO

captureBuffer

captureBuffer
captureBuffer - view the capture frames in the captured buffer.

SYNOPSIS

captureBuffer sub-command options

DESCRIPTION

After the capture command is used to configure the capture buffer, the captureBuffer command is used to
get a range of frames from the capture buffer. Jitter values are calculated on those frames that meet the
constraint criteria. Three different types of constraint criteria are available; ethernet type, frame size and
pattern. For example, if jitter is to be calculated only for 64 byte frames, then the framesize option must
be set to 64 and the enableFramesize option set to true. Constraints must be set with setConstraint prior
to a get.

Note: For some load modules (that is, LSM10GE), it is advisable to request captureBuffer data
in chunks. Unless both the chassis and client machines have sufficiently high available memory,
they may be overloaded by captured data.

When using the get command to retrieve the capture buffer, the capture operation is not stopped.

Appendix 1 IxTclHAL Commands

– 538 –

STANDARD OPTIONS

averageDeviation

Read-only. 64-bit value. The average deviation of the average latencies calculated by the command
captureBuffer getStatistics.

averageLatency

Read-only. 64-bit value. The average latency (in nanoseconds) calculated by the command captureBuffer
getStatistics.

enableEthernetType true/false

Enables the constraint used to calculate jitter statistics. If enabled, jitter is calculated only for frames
whose frame type field matches the ethernet type set by the option ethernetType. Does not apply unless
the command captureBuffer setConstraint is applied. (default = false)

enableFramesize
true/false

Enables this constraint used to calculate jitter statistics. If enabled, jitter is calculated only for frames
whose size matches the framesize set by the command option framesize. Does not apply unless the
command captureBuffer setConstraint is applied. (default = false)

enablePattern
true/false

Constrain the jitter statistics calculations to frames in the capture buffer that match the ethernet pattern
set by the pattern and patternOffset options. Does not apply unless captureBuffer setConstraint is
applied. (default = false)

ethernetType

Constrain the jitter statistics calculations to frames in the capture buffer that match the ethernet type set
by this option. A value such as {08 00} would be appropriate. Does not apply unless option
enableEthernetType is set to true and captureBuffer setConstraint is applied. (default = "")

fir

Read-only. The frame identity record.

frame

Read-only. The contents of the selected frame based on the sliceSize parameter set by the capture
command.

framesize

Constrain the jitter statistics calculations to frames in the capture buffer whose frame size matches the
value set by this option. Does not apply unless the option enableFramesize is set to true and

Appendix 1 IxTclHAL Commands

– 539 –

captureBuffer setConstraint is applied. (default = 64)

latency

Read-only. 64-bit value. The frame latency, calculated as the difference between the transmit time and
receive time of the frame, in nanoseconds.

length

Read-only. The total length of the frame, regardless of the actual number of bytes in the capture buffer.

maxLatency

Read-only. 64-bit value. The maximum frame latency (in nanoseconds) calculated by the command
captureBuffer getStatistics.

minLatency

Read-only. 64-bit value. The minimum frame latency (in nanoseconds) calculated by the command
captureBuffer getStatistics.

numFrames

Read-only. The number of frames (or slices, a slice could contain a whole frame or a part of a frame) in
the capture buffer. When captureBuffer setConstraint is called this value is updated with the number of
frames for each constraint.

pattern

Enables this constraint used to calculate jitter statistics. If enabled, jitter is calculated only for frames
whose pattern matches the pattern in the frame at the offset set by the command option patternOffset. A
value of the form {11 12 02 44} would be approprite. Does not apply unless the command captureBuffer
setConstraint is applied. (default = "")

patternOffset

Used in conjunction with the pattern command. Does not apply unless the command captureBuffer
setConstraint is applied. (default = 12)

standardDeviation

Read-only. 64-bit value. The standard deviation of the average latencies calculated by the command
captureBuffer getStatistics.

status

Read-only. The status of the frame. Except where noted the following status values are used:

Option Value Usage

capNoErrors 0x00 captured frame has no error

Appendix 1 IxTclHAL Commands

– 540 –

Option Value Usage

capBadCrcGig 0x01 captured frame has a bad or missing CRC (gigabit only)

capSymbolErrorsGig 0x02 captured frame has symbol error (gigabit only)

capBadCrcAndSymbolGig 0x03 captured frame has a bad or missing CRC and symbol error
(gigabit only)

capUndersizeGig 0x04 captured frame is undersize (gigabit only)

capBadCrcAndUndersizeGig 0x05 captured frame has a bad or missing CRC and is undersize
(gigabit only)

capBadCrcAndSymbolAnd
UndersizeGig

0x07 captured frame has a bad or missing CRC and is undersize
(gigabit only)

capOversizeGig 0x08 captured frame is oversize with a valid CRC (gigabit only)

capBadCrc 0x41 captured frame has a bad or missing CRC

capBadCrcAndSymbolError 0x43 captured frame has a bad or missing CRC and symbol error

capUndersize 0x44 captured frame is undersize

capFragment 0x45 captured frame is a fragment

capOversize 0x48 captured frame is oversize with a valid CRC

capOversizeAndBadCrc 0x49 captured frame is oversize with a bad or missing CRC

capDribble 0x50 captured frame has a dribble error

capAlignmentError 0x51 captured frame has alignment error (10/100 only)

capAlignAndSymbolError 0x53 captured frame has alignment and symbol error

capGoodFrame 0xC0 captured frame is a valid frame with no errors (default)

capBadCrcAndGoodFrame 0xC1 captured frame has a bad or missing CRC but otherwise
valid frame

capErrorFrame 0xFF captured frame has a general error other than one of the
specified errors in this list

The following status values are used for OC48 cards:

Option Value Usage

capOc48Trigger 0x40000000 A status bit that indicates that the captured
packet includes the bit that caused the trigger.

Appendix 1 IxTclHAL Commands

– 541 –

Option Value Usage

capOc48GoodPacket 0x80000000 captured frame is valid with no errors (

capOc48TruncatedPacket 0x80000001 captured frame is a truncated packet

capOc48Integrity
SignatureMatch

0x80000008 captured frame's integrity signature matched

capOc48BadIntegrityCheck 0x80000010 captured frame failed data integrity validation

capOc48BadTCPUDPChecksum 0x80000020 captured frame has a bad TCP or UDP checksum

capOc48BadIPChecksum 0x80000040 captured frame is valid with no errors

capOc48BadCrc 0x80000080 captured frame is valid with no errors

The following status values are used for 10/100 TX and 10/100/1000 TXS cards:

Option Value Usage

cap10100DpmTrigger 0x40000000 A status bit that indicates that the
captured packet includes the bit that
caused the trigger.

cap10100DpmGoodPacket 0x80000000 captured frame is valid with no errors

cap10100DpmOversize 0x80000001 capture frame is oversized.

cap10100DpmUndersize 0x80000002 capture frame is undersized.

cap10100DpmIntegritySignatureMatch 0x80000008 captured frame's integrity signature
matched

cap10100DpmBadIntegrity
Check

0x80000010 captured frame failed data integrity
validation

cap10100DpmBadTCPUDP
Checksum

0x80000020 captured frame has a bad TCP or UDP
checksum

cap10100DpmBadIP
Checksum

0x80000040 captured frame is valid with no errors

cap10100DpmBadCrc 0x80000080 captured frame is valid with no errors

The following status values are used for ATM cards and ATM/POS cards operating in ATM mode:

Option Value Usage

capAtmEthernetBadCrc 0x80000080 Bad Ethernet CRC.

Appendix 1 IxTclHAL Commands

– 542 –

Option Value Usage

capAtmBadIPChecksum 0x80000040 Bad IP checksum.

capAtmBadTCPUDPChecksum 0x80000020 Bad TCP or UDP checksum.

capAtmBadIntegrityCheck 0x80000010 Bad Data Integrity.

capAtmIntegritySignatureMatch 0x80000008 Data integrity signature matched.

capAtmAal5BadCrc 0x80000004 Bad AAL5 CRC.

cap AtmTimeout 0x80000002 ATM timeout.

capAtmOversize 0x80000001 ATM oversize packet.

capAtmGoodPacket 0x80000000 Good packet received.

capAtmTrigger 0x40000000 Data capture was triggered.

The following are generic capture error codes:

Option Value Usage

capGoodPacketGeneric 0x80000000 Captured frame is valid with no errors.

capOversizeGeneric 0x80000001 Captured frame is oversize.

capUndersizeGeneric 0x80000002 Captured frame is undersize.

capIntegritySignatureMatchGeneric 0x80000008 Captured frame's integrity signature
matched.

capBadIntegrityCheckGeneric 0x80000010 Captured frames failed data integrity
validation.

capBadTcpUdpChecksumGeneric 0x80000020 Captured frame has a bad TCP or UDP
checksum.

capBadIpChecksumGeneric 0x80000040 Captured frame is valid with no errors.

capBadCrcGeneric 0x80000080 Captured frame is valid with no errors.

capSmallSequenceErrorGeneric 0x80000100 Captured frame has small error in sequence.

capBigSequenceErrorGeneric 0x80000200 Captured frame has big error in sequence.

capReverseSequenceErrorGeneric 0x80000400 Captured frame has error in reverse
sequence.

Appendix 1 IxTclHAL Commands

– 543 –

Option Value Usage

capInvalidFcoeFrame 0x80000800 Captured fram has invalid Fcoe.

capBadInnerIpChecksumGeneric 0x80001000 Captured frame is valid with no errors.

capTransmitPacket 0x80002000 Captured frame is a transmit packet. Support
for this status is enabled with
kFeatureCaptureTxPackets.

capTriggerGeneric 0x40000000 Capture stopped due to a trigger condition.

timestamp

Read-only. 64-bit value. The arrival time of the captured frame in nanoseconds.

COMMANDS

The captureBuffer command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

captureBuffer cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the captureBuffer command.

captureBuffer clear Constraint

Clears the constraints used to calculate the average, standard deviation and average deviation of the
latencies of the captured frames in the capture buffer. Statistics is calculated on the entire buffer.

captureBuffer config option value

Modify the configuration options of the captureBuffer. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for captureBuffer.

captureBuffer export fileName [encodeVersion]

Exports the current contents of the capture buffer from the last captureBuffer get command to the file
indicated in fileName; fileName may include a full or relative path. The format of the file is dictated by the
extension on the file (only the .cap and .enc file format is supported):

.txt a text file suitable for import into a database.

.cap a binary format for use with the captureBuffer import function or IxExplorer's File Import
function.

.enc a binary format for use with NAI's Sniffer program.

Note that when working with POS ports, the export function maps the POS frames to look like
Ethernet data: the POS header is stripped off (4 bytes), the MAC address is padded out to 12

File Formats (Export)

Appendix 1 IxTclHAL Commands

– 544 –

bytes with zeroes, a packet type identifier of 0x0800 (2 bytes, Ethernet) is added and the
beginning of the MAC DA is overwritten with the POS header.

Note: When a file is exported to .enc format, the CRC frame check sequence gets
stripped away and is not present when the saved file is imported.

The optional second argument is used when the fileName's extension is .enc. The choices are:

Option Value Usage

capExportSniffer4x 2 (default) Sniffer 4.x format

capExportSniffer1x 3 Sniffer 1.x format

captureBuffer get chasID cardID portID fromFrame toFrame

Gets the group of captured frames from the capture buffer for chasID cardID portID, beginning with
frame fromFrame through frame and puts it into local memory. Call this command before calling
captureBuffer getframe frameNum to get the capture buffer from hardware. The capture cget -nPackets
should be called before this command to determine how many frames are available in the capture buffer.
In order for this command to succeed, the port must either be unowned, or you must be logged in as the
owner of the port.

captureBuffer getConstraint contraintNum

Gets the constraints used to calculate the average, standard deviation and average deviation of the
latencies of the captured frames in the capture buffer retrieved by captureBuffer get. The value returned
is the constraint number. This constraint number can be used in "captureBuffer getConstraint" command
to retrieve the constraint settings.

captureBuffer getframe frameNum

Gets the capture buffer data from local memory for frameNum. Call captureBuffer get chasID cardID
portID fromFrame toFrame before calling this command.

captureBuffer getStatistics

Calculates the average, standard deviation and average deviation of the latencies of the captured frames
in the capture buffer retrieved by captureBuffer get.

captureBuffer import fileName chasID cardID portID

Imports a file into the capture buffer indicated by chasID cardID portID from the file indicated in
fileName; fileName may include a full or relative path. The format of the file is dictated by the extension
on the file:

.cap a binary format for use with the captureBuffer import function or IxExplorer's File Import
function.

.enc a binary format for use with NAI's Sniffer program.

File Extension Type

Appendix 1 IxTclHAL Commands

– 545 –

Note that when working with POS ports, the export function maps the POS frames to look like
Ethernet data: the POS header is stripped off (4 bytes), the MAC address is padded out to 12
bytes with zeroes, a packet type identifier of 0x0800 (2 bytes, Ethernet) is added and the
beginning of the MAC DA is overwritten with the POS header.

captureBuffer setConstraint

Sets the constraints used to calculate the average, standard deviation and average deviation of the
latencies of the captured frames in the capture buffer retrieved by captureBuffer get.

captureBuffer setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under capture

SEE ALSO

capture

card
card - get version and type of card.

SYNOPSIS

card sub-command options

DESCRIPTION

This command allows the user to view version and type information for the card.

FQPN support

Following is the list of commands supporting FQPN:

l resourceGroupInfoFullyQualifiedList
l resourceFullyQualifiedPortList
l activeFullyQualifiedCapturePortList
l activeFullyQualifiedPortList

STANDARD OPTIONS

activeFullyQualifiedCapturePortList

Returns the active capture port list for all the resource group.

activeFullyQualifiedPortList

Returns the port-list for the current speed mode of all the resource Group.

Appendix 1 IxTclHAL Commands

– 546 –

cardFeatures

Read-only. The card feature command options include:

Option

cardFeatureFrequencyOffset

cardFeature1GEAggregate

cardFeature10GEAggregate

cardFeatureClockMode

cardFeaturePortClusters

cardOperationMode

Read-only. Use the sub-command writeOperationMode to set this mode (ASM XMV12X card only).
Options include:

Option Value Usage

cardOperationModeNormal ASM XMV12X card, normal mode

cardOperationMode1geAggregated ASM XMV12X card, 1GbE aggregated mode

cardOperationMode10geAggregated ASM XMV12X card, 10GbE aggregated mode

writeOperationMode Mazuma 10G, writeOperationMode self mode
chasID cardID argument 3

clockRxRisingEdge

For 10/100 RMII cards, received data is to be clocked on the rising edge.
(default = 1)

clockSelect

For LSM10GXM8 cards, the currently selected clock. Options include:

Option Value

cardClockInternal 0

cardClockExternal 1

Other options include::

Appendix 1 IxTclHAL Commands

– 547 –

Option

portGroup1Speed

portGroup2Speed

portGroup3Speed

portGroup4Speed

clockTxRisingEdge

For 10/100 RMII cards, xmit data is to be clocked on the rising edge. (default=1)

fpgaVersion

Read-only. The current version of central FPGA image file on this card.

hwVersion

Read-only. The current hardware version of this card.

portCount

Read-only. Number of ports on this card; if no card present, returns 0.

resourceGroupInfoFullyQualifiedList

Returns the speed mode, active ports, active capture ports and resource ports for all the resource Groups
of the card.

resourceFullyQualifiedPortList

Returns all the port-list supported in all the resource Group.

serialNumber

Read-only. For load modules which possess a serial number, this is the serial number associated with the
load module.

txFrequencyDeviation

For 10GE LSM XM (NGY) and LM 10/1000/1000 TXS4 cards: a frequency deviation to be applied to the
transmit clock. Values are in parts per million and vary between -102 and 102. (default = 0)

type

Read-only. The type of the card selected. The following options are used, along with the name of the card
found when using IxExplorer. The Ixia part number associated with each card can be found in the Ixia
Hardware Guide.

Appendix 1 IxTclHAL Commands

– 548 –

Option
Val
ue Usage IxExplorer Name

cardNone 0 No card present

card101004port 2 4 port 10/100 card 10/100

cardGigabit2Port 3 2 port gigabit card Gigabit

card10100Mii 4 10/100 MII card 10/100 MII

card10100RMii 5 10/100 Reduced MII
card

10/100 Reduced MII

card100FxMultiMode 6 10/100 FX multi-mode
card

100Base FX MultiMode

cardGbic 7 2 port GBIC card GBIC

cardPOS2Port 8 2 port POS card -
OC12c/OC3c

OC12c/OC3c POS

cardPosOc48 9 1 port POS card OC48c POS
OC48c POS SRP/RPR/DCC

card10100Level3 10 4 port 10/100 level 3
card

10/100-3

cardGigabitLevel3 11 2 port gigabit level 3
card

Gigabit-3

cardGbicLevel3 12 2 port level GBIC card GBIC-3

cardGigCopper 13 2 port gigabit over
copper card

Gigabit

cardGigCopperLevel3 14 2 port level 3 gigabit
over copper card

Gigabit-3

cardPosOc48Level3 18 1 port POS level 3 card OC48c POS-M

cardPosOc192Plm2 22 2 port POS OC 192 Fiber
Optic Board

OC192c POS

cardPosOc192Plm1 23 1 port POS OC 192 Fiber
Optic Board

OC192c POS

card100FxSingleMode 26 4 port 100 FX single-
mode card

100Base FX SingleMode

Appendix 1 IxTclHAL Commands

– 549 –

Option
Val
ue Usage IxExplorer Name

cardPosOc48VariableClocking 27 1 port POS card,
variable clocking
support

OC48c POS VAR

cardGigCopperTripeSpeed 28 2 port
10/100/1000Copper
card

Copper 10/100/100

cardGigSingleMode 29 2port 1000 SX Single-
mode

Gigabit Single Mod

cardOc48Bert 36 1 port OC 48 card, Bit
Error Rate Testing Only

OC48c POS BERT

cardOc48PosAndBert 37 1 port OC 48 card, POS
and Bit Error Rate
Testing

OC48c POS POS/BERT

card10GEWAN2 38 2 port 10 Gigabit WAN
card

OC192c POS
OC192c POS/BERT
OC192c VSR POS
OC192c VSR POS/BERT
10GE WAN
OC192c POS/BERT/10GE WAN
SRP/
RPR/DCC
10GE BERT/WAN

card10GEWAN1 39 1 port 10 Gigabit WAN
card

As in card10GigWanPlm2

card10GEXAUI1 46 1 port 10 Gigabit LAN
XUAI card

10GE XAUI
10GE XAUI/BERT
10GE XAUI BERT

card10GigLanXenpak1 50 1 port 10 Gigabit
Xenpak card

10GE XENPAK
10GE XENPAK-M
10GE XENPAK/BERT
10GE XENPAK BERT

10GE XENPAK-MA/BERT

card10GigLanXenpak2 51 2 port 10 Gigabit
Xenpak card

As in card10GigLanXenpak1

card10100Txs8 57 8 port 10/100 card 10/100 TX8
10/100 TXS8

Appendix 1 IxTclHAL Commands

– 550 –

Option
Val
ue Usage IxExplorer Name

card10GELAN1 61 1 port 10 Gigabit LAN
XSBI card

10GE LAN
10GE LAN-M

card10100Tx2 67 2 port 10/100 card 10/100 TX2

cardGbicSp 68 1 port GBIC card GBIC-P1

card1000Sfps4 69 4 port 1000 SFP
interface card

1000 SFP4
1000 SFPS4
1000 SFPS4-L

card1000Txs4 70 4 port 10/100/1000 10/100/1000 TX4
10/100/1000 TXS4
10/100/1000 TXS4-L

cardSingleRateBertUnframed 71 8 port singe rate
unframed bert

Single-Rate Unframed BERT

cardMultiRateBertUnframed 72 8 port multiple rate
unframed bert

Multi-Rate Unframed BERT

card10GEUniphy_MA 73 10GE/OC192
programmable PHY in
manufacturing mode

10G UNIPHY-MA

card10GEUniphy 74 10GE/OC192
programmable PHY

10G UNIPHY

cardOc12Pos32M 75 Same as cardPOS2Port,
but with 32MB of
memory.

OC12c POS 32MB

card40GigBertUnframed 76 40GB Unframed Bert 40Gig Bert Unframed

cardOc12Atm 77 OC12 ATM ATM 622 Multi-Rate-256MB

card1000Txs24 79 24-port 10/100/1000
for use in Optixia

10/100/1000 TX24
10/100/1000 STXS24

cardELM1000ST2 81 Encryption Load Module
(2) port dual-phy

10/100/100 ELM ST2

cardALM1000T8 83 Auxiliary Function
Module

10/100/100 ALM T8

card10GEXenpakP 84 1 port 10GE with
Xenpak interface and

10GE XENPAK-P

Appendix 1 IxTclHAL Commands

– 551 –

Option
Val
ue Usage IxExplorer Name

enhanced processor

card1000Stxs4 85 Same as card1000Txs4,
but with dual-phy mode
(Copper, Fiber and
SGMII)

10/100/1000 STXS4

card1000Stxs2 86 Same as
card1000Stxs4, but
with 2 ports

10/100/1000 STXS2

card1000Stxs1 87 Same as
card1000Stxs4, but
with 1 port

10/100/1000 STXS1

card10GUniphyP 89 Same as 10GEUniphy,
but with enhanced
processor

10G UNIPHY-P

card10GELSM 90 10GE LSM 10GE LSM
10GE LSM L2/L3

card10GEMultiMSA 91 10GE Multi-MSA 10GE Ethernet Multi-MSA
10GE Ethernet/BERT Multi-MSA
10GE Ethernet Multi-MSA-M
10GE BERT Multi-MSA
10GE Ethernet/BERT Multi-
MSA-M

card10GUniphyXFP 92 Same as 10GEUniphy,
but with XFP interface

10G UNIPHY-XFP

cardPowerOverEthernet 93 4 port Power over
Ethernet card

Power Over Ethernet

card2.5MSM 95 2.5 MSM (POS OC48) 2.5 MSM

cardMSM10GE 96 10G MSM 10G MSM

card10GELSMXL6 98 10GE LSM 6 ports LSM 10GEXL6-01

cardAFMStreamExtractionModule 104 Auxiliary Function
Module

AFM1000SP- 01

card10GELSMXM3 105 LSM10GXM3 10 GE XM3

Appendix 1 IxTclHAL Commands

– 552 –

Option
Val
ue Usage IxExplorer Name

card1000XM12 106 LSM1000XMS12-01 10/100/1000 XMS12

cardLSMXMV16 107 LSM1000XMV16-01 10/100/1000 XMV16

cardXcellon-Ultra NP 110 Xcellon-Ultra NP-01,
Application Network
Processor Load Module,
1-10G or 12-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; for
941-0003 (XM2-02) or
941-0009 (XM12-02)
chassis; On-Board Port
Aggregation; 1GbE
Fiber Ports REQUIRE
SFP transceivers,
options include SFP-LX
or SFP-SX; and 10GbE
port requires a XFP
transceiver, options are
either 948-0003 (XFP-
850), XFP-1310, or XFP-
1550

Xcellon-Ultra NP-01 10G-
Aggregate Mode

card10GELSMMacSec 112 LSM10GMS-01
(MacSec)

10GE LSM MACSec

cardLSMXMVR16 113 16 port 256MB 10/100/1000 XMVR16

cardLSMXMV16-02 114 16 port 2GB 10/100/1000 XMV16

cardLSMXMV1 115 12 port 1GB 10/100/1000 XMV12

cardLSMXMVR12 116 12 port 256MB 10/100/1000 XMVR12

cardLSMXMV8 117 8 port 1GB 10/100/1000 XMV8

cardLSMXMVR8 118 8 port 256MB 10/100/1000 XMVR8

cardLSMXMV4 119 4 port 1GB 10/100/1000 XMV4

cardLSMXMVR 120 4 port 256MB 10/100/1000 XMVR4

card10GELSMMacSec 112 MACSec 10GE LSM MACSec

card10GELSMXM8 121 NGY 8 port 10GE LSM XM8

Appendix 1 IxTclHAL Commands

– 553 –

Option
Val
ue Usage IxExplorer Name

cardVoiceQualityResourceModule 122 VQM01XM Voice Quality Resource Module

card40GE100GELSM 123 100 GB Ethernet 100GE LSM XMV

cardHSE100GETSP1 123 HSE100GETSP1-01,
100- Gigabit Ethernet
Load Module, 1-port, 2-
slots, For
OPTIXIAXM12-02 (941-
0009) and
OPTIXIAXM2-02 (941-
0003) chassis with L2/3
data plane and
performance testing,
IEEE 802.3ba PCS test
capability, and routing
emulation support.
REQUIRES the customer
to provide Ixia a CFP
transceiver that is
capable of 100 Gb/s
operation for integration
and test by Ixia with its
100 GE,
HSE100GETSP1-01 load
module prior to
shipment

HSE100GETSP1- 01

card10GELSMXM4 124 NGY 4 port 10GE LSM XM4

card10GELSMXMR8 126 NGY 8 port reduced
features

10GE LSM XMR8

card10GELSMXMR4 127 NGY 4 port reduced
features

10GE LSM XMR4

card10GELSMXMR2 128 NGY 2 port reduced
features

10GE LSM XMR2

card10GELSMXM8XP 129 NGY 8 port extra
performance

10GE LSM XM8XP

card10GELSMXM4XP 130 NGY 4 port extra
performance

10GE LSM XM4XP

card10GELSMXM2XP 131 NGY 2 port extra 10GE LSM XM2XP

Appendix 1 IxTclHAL Commands

– 554 –

Option
Val
ue Usage IxExplorer Name

performance

card10GELSMXM8S 137 NGY 8 port with SFP
Plus

10GE LSM XM8S

card10GELSMXM4S 138 NGY 4 port with SFP
Plus

10GE LSM XM4S

card10GELSMXM2S 139 NGY 2 port with SFP
Plus

10GE LSM XM2S

cardLSM10GXMR8S 140 LSM10GXMR8S-01, 10
Gigabit Ethernet Load
Module, Reduced L2/3
support with limited L3
routing, 8-Port
LAN/WAN, SFP+
interface; For
OPTIXIAXM12-02 (941-
0009) and
OPTIXIAXM2-02 (941-
0003) chassis;
REQUIRES one or more
SFP+ transceiver
options: 948-0013
10GBASE-SR, 948-0014
SFP+10GBASE-LR, 948-
0015 SFP+10GBASE-
LRM, or 948-0016
SFP+10GSFP+Cu;
NOTE: If OPTIXIAXM12-
01 (941-0002) chassis
is used with this item,
see FRU-OPTIXIAXM12-
01 (943-0005)

LSM10GXMR8S-01

card10GELSMXMR8S 140 NGY 8 port reduced
feature with SFP Plus

10GE LSM XMR8S

card10GELSMXMR4S 141 NGY 4 port reduced
feature with SFP Plus

10GE LSM XMR4S

card10GELSMXMR2S 142 NGY 2 port reduced
feature with SFP Plus

10GE LSM XMR2S

cardNGYNP8 149 NGYNP 8 port with sfp NGY-NP8

Appendix 1 IxTclHAL Commands

– 555 –

Option
Val
ue Usage IxExplorer Name

plus transceiver

cardNGYNP4 150 NGYNP 4 port with sfp
plus transceiver

NGY-NP4

cardNGYNP2 151 NGYNP 2 port with sfp
plus transceiver

NGY-NP2

cardEthernetVM 152 For multi NIC Ethernet
VM ports

Virtual Port

cardLSM1000XMSP12 153 LSM1000XMSP12-01,
Gigabit Ethernet, Load
Module, 12-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; for
941-0003
(OPTIXIAXM2-02), and
941-0009
(OPTIXIAXM12-02),
High Performance
chassis; 256MB per port
CPU memory; 1GbE
Fiber Ports REQUIRE
SFP transceivers,
options include SFP-LX
or SFP-SX

LSM1000XMSP12

cardFCMGXM8 154 8 port FCM SFP+ card FCM GXM8

cardFCMGXM8S 154 FCMGXM8S-01, 8-Port
Fibre Channel Load
Module, with 2Gbps,
4Gbps, and 8Gbps
support, SFP+
interface; Full stateful
FCP (SCSI) support and
REQUIRES one or more
Fibre Channel SFP+
transceiver options

FCMGXM8S- 01

cardFlexAP10G16S 161 Excellon-Flex 16 port
full performance 10G
card

FlexAP10G16S

Appendix 1 IxTclHAL Commands

– 556 –

Option
Val
ue Usage IxExplorer Name

cardFlexAP1040SQ 162 Xcellon-
FlexAP10/4016SQ
10/40 Gigabit Ethernet
Accelerated
Performance Load
Module, 16-Ports of
SFP+ interfaces and 4-
ports of QSFP+ 40 GE
interfaces with full
performance L2-7
support; for XG12 (940-
0005) rackmount
chassis (6000W),
XM12-02 (941-0009)
High Performance
rackmount chassis
(4000W), and XM2-02
(941-0003) portable
desktop chassis;
REQUIRES one or more
SFP+ transceiver
options: 10GBASE-
SR/SW (948-0013), or
10GBASE-LR/LW (948-
0014); NOTE: If XM12-
01 (941-0002) chassis
is used with this load
module, the FRU-
OPTIXIAXM12-01 (943-
0005) power supply
upgrade kit must be
installed

FlexAP104016SQ

cardLSM1000XMVDC16 163 LSM1000XMVDC16-01
Gigabit Ethernet Load
Module, 16-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; The
load module is
compatible with XGS12-
SD rackmount chassis
bundle (940-0011),
XGS12-HS rackmount
chassis bundle (940-

LSM1000XMVDC16

Appendix 1 IxTclHAL Commands

– 557 –

Option
Val
ue Usage IxExplorer Name

0006), XG12 rackmount
chassis (940-0005),
XM12 HP rackmount
chassis (941-0009),
and XM2 desktop
chassis (941-0003);
1GB Port CPU memory,
full featured L2-L7 with
FCoE enabled; Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU

cardLSM1000XMVDC12 164 LSM1000XMVDC12-01
Gigabit Ethernet Load
Module, 12-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; The
load module is
compatible with XGS12-
SD rackmount chassis
bundle (940-0011),
XGS12-HS rackmount
chassis bundle (940-
0006), XG12 rackmount
chassis (940-0005),
XM12 HP rackmount
chassis (941-0009),
and XM2 desktop
chassis (941-0003);
1GB Port CPU memory,
full featured L2-L7 with
FCoE enabled; Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU

LSM1000XMVDC12

cardLSM1000XMVDC8 165 LSM1000XMVDC8-01
Gigabit Ethernet Load
Module, 8-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; The

LSM1000XMVDC8

Appendix 1 IxTclHAL Commands

– 558 –

Option
Val
ue Usage IxExplorer Name

load module is
compatible with XGS12-
SD rackmount chassis
bundle (940-0011),
XGS12-HS rackmount
chassis bundle (940-
0006), XG12 rackmount
chassis (940-0005),
XM12 HP rackmount
chassis (941-0009),
and XM2 desktop
chassis (941-0003);
1GB Port CPU memory,
full featured L2-L7 with
FCoE enabled; Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU

cardLSM1000XMVDC4 166 LSM1000XMVDC4-01
Gigabit Ethernet Load
Module, 4-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; The
load module is
compatible with XGS12-
SD rackmount chassis
bundle (940-0011),
XGS12-HS rackmount
chassis bundle (940-
0006), XG12 rackmount
chassis (940-0005),
XM12 HP rackmount
chassis (941-0009),
and XM2 desktop
chassis (941-0003);
1GB Port CPU memory,
full featured L2-L7 with
FCoE enabled; Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU

LSM1000XMVDC4

Appendix 1 IxTclHAL Commands

– 559 –

Option
Val
ue Usage IxExplorer Name

cardHSE40GEQSFP1 167 HSE40GEQSFP1-01, 40-
Gigabit Ethernet Load
Module, 1-port, 1-slot
with the QSFP pluggable
interface for multimode
fiber, 850nm, or QSFP
copper cables for the
OPTIXIAXM12-02 (941-
0009) and
OPTIXIAXM2-02 (941-
0003) chassis with L2/3
data plane and
performance testing,
IEEE 802.3ba PCS and
unframed BERT test
capability, and routing
emulation test support

HSE40GEQSFP1- 01

cardFCMGXM4 168 4 port FCM SFP+ card FCM GXM4

cardXDM10G32S 170 32 port Ethernet SFP+
card

XDM10G32S

cardXDM10G32S 170 Xdensity, XDM10G32S,
Ultra-high density, 10-
Gigabit Ethernet load
module with 32-ports of
SFP+ interfaces with
L2-3 data plane and
limited routing protocol
emulation support; for
XG12 (940-0005)
Rackmount chassis,
XM12-02 (941-0009)
High Performance
chassis and XM2-02
(941-0003) portable
chassis; REQUIRES one
or more SFP+
transceiver options:
10GBASE-SR/SW (948-
0013), or 10GBASE-
LR/LW (948-0014);
NOTE: If XM12-01
(941-0002) chassis is

XDM10G32S

Appendix 1 IxTclHAL Commands

– 560 –

Option
Val
ue Usage IxExplorer Name

used with this load
module, the FRU-
OPTIXIAXM12-01 (943-
0005) power supply
upgrade kit must be
installed

cardFlexFE10G16S 171 Excellon-Flex 16 port
reduced version 10G
card

FlexFE10G16S

cardFlexFE40QP 178 Xcellon-FlexFE40G4Q
40-Gigabit Ethernet Full
Emulation Load Module,
4-ports of QSFP+ 40GE
with L2-3 support; for
XG12 (940-0005)
rackmount chassis
(6000W), XM12-02
(941-0009) High
Performance rackmount
chassis (4000W), and
XM2-02 (941-0003)
portable desktop
chassis. NOTE: If XM12-
01 (941-0002) chassis
is used with this load
module, the FRU-
OPTIXIAXM12-01 (943-
0005) power supply
upgrade kit must be
installed. (Note: not
supported if IxOS 6.90
with 3.10 kernel is
used)

FlexFE40QP

cardXcellon-Lava AP40/100GE2P 179 Xcellon-Lava
AP40/100GE2P 40/100
Gigabit Ethernet
Accelerated
Performance, dual-
speed, load module, 2-
ports, 1-slot with CFP
MSA interfaces and full

Xcellon-Lava AP40/100GE 2P

Appendix 1 IxTclHAL Commands

– 561 –

Option
Val
ue Usage IxExplorer Name

performance L2-7
support, compatible
with the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006), XG12 (940-
0005) rack mount
chassis, XM12-02 rack
mount chassis (941-
0009), and XM2-02
desktop chassis (941-
0023). (Note: not
supported if IxOS 6.90
with 3.10 kernel is
used)

cardXcellon-LavaAP40/100GE2RP 179 Xcellon-Lava
40/100GE2RP, 40/100
Gigabit Ethernet
Reduced Performance,
dual-speed, load
module, 2-ports, 1-slot
with CFP MSA interfaces
and full featured L1-3
data plane support and
up to 100 routing
protocol emulations per
port. Compatible with
the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006), XG12 (940-
0005) rack mount
chassis, XM12-02 rack
mount chassis (941-
0009), and XM2-02
desktop chassis (941-
0023).

Xcellon-LavaAP40/100GE 2RP

cardEIM10G4S 180 EIM10G4S 10 Gigabit
Ethernet ImpairNet
Load Module, 4-Ports of

EIM10G4S

Appendix 1 IxTclHAL Commands

– 562 –

Option
Val
ue Usage IxExplorer Name

SFP+ interfaces; for
XG12 (940-0005)
rackmount chassis
(6000W), XM12-02
(941-0009) High
Performance rackmount
chassis (4000W), and
XM2-02 (941-0003)
portable desktop
chassis

cardEIM1G4S 181 EIM1G4S 1 Gigabit
Ethernet ImpairNet
Load Module, 4-Ports of
SFP interfaces; for
XG12 (940-0005)
rackmount chassis
(6000W), XM12-02
(941-0009) High
Performance rackmount
chassis (4000W), and
XM2-02 (941-0003)
portable desktop
chassis

EIM1G4S

cardEIM40G2Q 182 EIM40G2Q 40 Gigabit
Ethernet ImpairNet
Load Module, 2-Ports of
QSFP+ interfaces; for
XG12 (940-0005)
rackmount chassis
(6000W), XM12-02
(941-0009) High
Performance rackmount
chassis (4000W), and
XM2-02 (941-0003)
portable desktop
chassis

EIM40G2Q

cardXM100GE4CXP 191 Xcellon-Multis
XM100GE4CXP 100-
Gigabit Ethernet, single
rate load module, 1-slot

XM100GE4CXP

Appendix 1 IxTclHAL Commands

– 563 –

Option
Val
ue Usage IxExplorer Name

with 4-ports native CXP
multimode fiber
interfaces, L2-7
support, compatible
with the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006)XG12 rack mount
chassis (940-0005),
XM12 HP rack mount
chassis (941-0024),
and XM2 desktop
chassis (941-0023).
Requires one or more
per port of the
following: CXP 100GE
pluggable, multimode
optical transceiver
(948-0030) and MTP-
MTP 24-fiber,
multimode point-to-
point 100GE cable, 3-
meter (942-0035), or
point-to-point,
multimode CXP 100GE
Active Optical Cable
(AOC), 3-meter [942-
0052]. All are available
from Ixia

cardPerfectStorm100GE 194 The PerfectStorm
product family consists
of a new next
generation XGS12
chassis platform, an
XGS integrated system
controller for both
IxLoad and
BreakingPoint and load
modules 8x10GE,
2x40GE and
1x100GE.The
PerfectStorm10GE,

PerfectStorm 100GE 1-port
Load Module, CXP

Appendix 1 IxTclHAL Commands

– 564 –

Option
Val
ue Usage IxExplorer Name

40GE, and 100GE load
modules have two
variants, fusion (IxLoad
and BreakingPoint) and
non-fusion (IxLoad
only). The key feature
of PerfectStorm
10GE/40GE/100GE NG
cards is the fusion
between IxLoad and
BreakingPoint
applications.

cardPerfectStorm 10GE 196 The PerfectStorm
product family consists
of a new next
generation XGS12
chassis platform, an
XGS integrated system
controller for both
IxLoad and
BreakingPoint and load
modules 8x10GE,
2x40GE and
1x100GE.The
PerfectStorm10GE,
40GE, and 100GE load
modules have two
variants, fusion (IxLoad
and BreakingPoint) and
non-fusion (IxLoad
only). The key feature
of PerfectStorm
10GE/40GE/100GE NG
cards is the fusion
between IxLoad and
BreakingPoint
applications.

PerfectStorm 10GE Fusion 8-
port (PS10GE8NG)

cardXM40GE12QSFP+FAN 197 Xcellon-Multis
XM40GE12QSFP+FAN
40-Gigabit Ethernet,
load module, 1-slot with

XM40GE12QSFP+FAN

Appendix 1 IxTclHAL Commands

– 565 –

Option
Val
ue Usage IxExplorer Name

12-ports of 40GE via
multimode fan-out AOC
cables, with L2-7
support. The load
module is compatible
with the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006), XG12 rack
mount chassis (940-
0005), XM12 HP rack
mount chassis (941-
0024), and XM2 desktop
chassis (941-0023).
Requires purchase of
one or more multimode
fiber Active Optical
Cable (AOC) fan-out
cables: CXP-to-3x40GE
QSFP, 3-meter length
(942-0054) or CXP-to-
3x40GE QSFP, 5-meter
length (942-0055). All
media listed are
available from Ixia

cardPerfectStorm 40GE 201 The PerfectStorm
product family consists
of a new next
generation XGS12
chassis platform, an
XGS integrated system
controller for both
IxLoad and
BreakingPoint and load
modules 8x10GE,
2x40GE and
1x100GE.The
PerfectStorm10GE,
40GE, and 100GE load
modules have two
variants, fusion (IxLoad
and BreakingPoint) and

PerfectStorm 40GE Fusion 2-
port (PS40GE2NG)

Appendix 1 IxTclHAL Commands

– 566 –

Option
Val
ue Usage IxExplorer Name

non-fusion (IxLoad
only). The key feature
of PerfectStorm
10GE/40GE/100GE NG
cards is the fusion
between IxLoad and
BreakingPoint
applications.

cardXM100GE4CFP4 203 XM100GE4CFP4 -
Xcellon-Multis
XM100GE4CFP4 100-
Gigabit Ethernet, single
rate load module, 1-slot
with 4-ports with the
native CFP4 physical
interfaces, L2-3
support, compatible
with the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006), XG12 rack
mount chassis (940-
0005), XM12 HP rack
mount chassis (941-
0009), and XM2 desktop
chassis (941-0023)

XM100GE4CFP4

cardXM100GE4QSFP28 207 Xcellon-Multis
XM100GE4QSFP28 100-
Gigabit Ethernet, single
rate load module, 1-slot
with 4-ports with the
native QSFP28 physical
interfaces, L2-3
support, compatible
with the XGS12-SD rack
mount chassis (940-
0011), XGS12-HS rack
mount chassis (940-
0006), XG12 rack
mount chassis (940-
0005), XM12 HP rack

XM100GE4QSFP28

Appendix 1 IxTclHAL Commands

– 567 –

Option
Val
ue Usage IxExplorer Name

mount chassis (941-
0009), and XM2 desktop
chassis (941-0023)

cardXM100GE4QSFP28+ENH+
25G+50G

208 UPG-XM-4x25GE is the
4x25GE FIELD
UPGRADE option for the
Xcellon-Multis QSFP28
XM100GE4QSFP28+EN
H 100GE load module
(944-1117). This
enables 4x25GE
capability on all four
100GE QSFP28 ports on
the module. This is
ONLY supported on the
XM100GE4QSFP28+EN
H (944-1117) load
module.

This card also supports
1x50G capability.

l This option is
REQUIRED ON
FIELD UPGRADE
PURCHASES of the
4x25GE capability
for the Xcellon-
Multis
XM100GE4QSFP2
8+ENH load
module with
native QSFP28
4x100GE physical
interfaces.

l The 4x25GE
capability is per
100GE port and is
ONLY supported
over a single
100GE point-to-
point QSFP28
cable where each
channel of the

XM100GE4QSFP28+ENH+
25G+50G

Appendix 1 IxTclHAL Commands

– 568 –

Option
Val
ue Usage IxExplorer Name

cable is rated for
25Gb/s per
channel operation.

2x25GE speed is also
available for the
XM100GE4QSFP28+EN
H load modules. This
mode is a subset of
4x25GE, except that
only 2 ports of the port
group are activated.

CardNOVUS10/1GE32S 209 Novus 10/1 is a tri-
speed, high density with
up to 32 SFP+ ports per
module, multi-rate
ethernet load module

NOVUS10/1GE32S

CardNOVUS100GE8Q28+FAN+10
G+25G+40G+50G

210 Novus is a high density
8-ports, native QSFP28
100GE/50GE/40GE/25G
E/10GE load module

NOVUS100GE8Q28+FAN+10G
+25G+40G+50G

CardNOVUS10/1GE16DP 211 Novus 10/1 is a tri-
speed, high density with
up to 16 dual-PHY ports
per module, multi-rate
ethernet load module

NOVUS10/1GE16DP

cardLSM1000XMVAE16 214 LSM1000XMVAE16
Gigabit Ethernet Load
Module, 16-Port Dual-
PHY (RJ45 and SFP)
10/100/1000 Mbps; full
featured L2-L7 with
BroadRReach enabled
(requires separate
BroadRReach
transceivers); Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU. This load
module is compatible

LSM1000XMVAE16 Gigabit
Ethernet Load Module, 16-Port
Dual-PHY (RJ45 and SFP)
10/100/1000 Mbps

Appendix 1 IxTclHAL Commands

– 569 –

Option
Val
ue Usage IxExplorer Name

with the XGS12-SD rack
mount chassis (940-
0011) and XM2 desktop
chassis (941-0023)

cardLSM1000XMVAE8 215 LSM1000XMVAE8
GIGABIT ETHERNET
LOAD MODULE, 8-Port
Dual-PHY (RJ45 and
SFP) 10/100/1000
Mbps; full featured L2-
L7 with BroadRReach
enabled (requires
separate BroadRReach
transceivers); Fiber
Ports REQUIRE SFP
transceivers, options
include SFP-LX, SFP-SX,
and SFP-CU. This load
module is compatible
with the XGS12-SD rack
mount chassis (940-
0011) and XM2 desktop
chassis (941-0023)

LSM1000XMVAE8 GIGABIT
ETHERNET LOAD MODULE, 8-
Port Dual-PHY (RJ45 and SFP)
10/100/1000 Mbps

cardXMAVB10/40GE6QSFP+FAN 216 XMAVB10/40GE6QSFP+
FAN 40-GIGABIT
ETHERNET LOAD
MODULE, 1-slot with 6-
ports of 40GE and 16-
ports of 10GE via
multimode fan-out
cables, with full
featured L2-7 control
and data-plane support.
This load module is
compatible with the
XGS12-SD rack-mount
chassis (940-0011) and
XM2 desktop chassis
(941-0023). REQUIRES
purchase of one or more
QSFP+ 40GBASE-SR4
optical transceivers

XMAVB10/40GE6QSFP+FAN

Appendix 1 IxTclHAL Commands

– 570 –

Option
Val
ue Usage IxExplorer Name

(948-0031) and MT 12-
fiber MMF cable, 3-
meter length (942-
0041). All media listed
are available from Ixia.
Note: For 10GE fan-out
capability this module
requires either factory
upgrade option (905-
1000) or field upgrade
option (905-1001)

CardNOVUS10/1GE8DP 219 Novus 10/1 is a tri-
speed, high density with
up to 8 Dual-PHY ports
per module, multi-rate
Ethernet load module

NOVUS10/1GE8DP

CardNOVUS10/5/2.5/1/100M16DP 235 Novus 10/1 is a five-
speed, high density with
up to 16 dual-PHY ports
per module, multi-rate
ethernet load module

NOVUS10/5/2.5/1/100M16DP

CardNOVUS10/5/2.5/1/100M8DP 236 Novus 10/1 is a five
speed, high density with
up to 8 Dual-PHY ports
per module, multi-rate
Ethernet load module

NOVUS10/5/2.5/1/100M8DP

CardNOVUS25/10GE8SFP28+100
G+50G

264 NOVUS25/10GE8SFP28
+100G+50G is a high
density, 8-port, SFP28
10GE/25GE/50GE/100G
E load module. This load
module provides time-
sensitive networking
(TSN) capabilities, and
high-scale control and
data plane traffic to
validate switched
networks.

NOVUS25/10GE8SFP28+100G
+50G

typeName

Read-only. The name corresponding to the card type. One of the symbolic values shown under type.

Appendix 1 IxTclHAL Commands

– 571 –

DEPRECATED OPTIONS

clockType

The following options have been deprecated:

Option Value Usage

cardBertUnframedClockSonet 0 (default) 155.52 Mbps (OC-3), 622.08 Mbps (OC-
12) and 2.488 Gbps (OC-48) data rates

cardBertUnframedClockSonetWithFEC 1 166.63 Mbps (OC-3 FEC), 666.51 Mbps (OC-12
FEC) and 2.67 Gbps (OC-48 FEC) data rates

cardBertUnframedClockFiberChannel 2 1.062 Gbps (Fibre Channel) and 2.124 Gbps (2x
Fibre Channel) data rates

cardBertUnframedClockGigE 3 1.25Gbps (Gigabit Ethernet) data rates

cardBertUnframedClockExternal 4 Clock is externally supplied.

type

The following card type options have been deprecated:

Option Value Usage

cardUSB 19 4 port 10 Mbps/USB card

txClockDeviationLan

For 10GE LSM XM8 cards. LAN transmit clock deviation in units of ppm, referred to as Frequency Offset in
IxHal.

txClockDeviationWan

For 10GE LSM XM8 cards. WAN transmit clock deviation in units of ppm.

COMMANDS

The card command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

card config option value

Modify the configuration options of the card. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for card.

card cget option

Appendix 1 IxTclHAL Commands

– 572 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the card command.

card export fileName chasID cardID

Exports the current configuration of the card at slot cardID, chassis chasID into the file named fileName;
fileName may include a full or relative path. If no extension is used in fileName, a ".crd" is added to the
name. The file produced by this command may be used by the import sub-command. Specific errors are:

l No connection to a chassis
l Invalid card

card get chasID cardID

Gets the current configuration of the card at slot cardID, chassis chasID. Call this command before calling
card cget option value to get the value of the configuration option. If the card does not exist, an error is
returned.

Note: Card ID starts from 1 and ends with the last card number that is present (if we have an
XM12 with 12 slots and only card 3 and 4 are present, their IDs will be 3 and 4 respectively).

card getPortClusterCount chasID cardID

Gets the port cluster count.

card getFrontPanelMasterPort chasID cardID portClusterIndex

Gets the front panel master port.

card getCpuPortList chasID cardID portClusterIndex

Gets the CPU Port list.

card getFrontPanelPortList chasID cardID portClusterIndex

Gets the front panel port list.

card getPortClusterIndex chasID cardID portID

Gets the index of the port cluster.

card getAssociatedFrontPanelPorts chasID cardID cpuPortID

Gets the associated front panel ports.

card import fileName chasID cardID

Imports a saved card configuration found in the file fileName into the current configuration of the card at
slot cardID, chassis chasID. fileName may include a full or relative path. If no extension is used in
fileName, a ".crd" is added to the name. The file used by this command must have been produced by the
export sub-command.

Note: This command should be followed by ixWritePortsToHardware to write the stream and
protocol configurations to hardware, and card write to write the card parameters to hardware.

Specific errors are:

Appendix 1 IxTclHAL Commands

– 573 –

l No connection to a chassis
l Invalid card
l The card is owned by another user
l fileName does not exist

card isActiveFeature chasID cardID feature

Determines whether a specific feature is active for the card at cardID, chassis chasID and that the card is
properly configured/enabled to use that feature. A value of true (1) is returned if the feature is enabled
and false (0) if the feature is not enabled. Feature may be one of the values from the isValidFeatures list.

card isCpuPort chasID cardID portID

Determines whether Port CPU is active.

card isFrontPanelMasterPort chasID cardID portID

Determines whether front panel of master port is active.

card isValidFeature chasID cardID feature

Determines whether a specific feature is valid for the card at cardID, chassis chasID with the card in its
current mode. A value of true (1) is returned if the feature is valid and false (0) if the feature is invalid or
the port is invalid. Feature may be one of the following values:

Option Value Usage

cardFeatureFrequencyOffset 131 Frequency offset

cardFeature1GEAggregate 280 ASM XMV12X card, 1GbE aggregated mode

cardFeature10GEAggregate 281 ASM XMV12X card, 10GbE aggregated mode

cardFeatureClockMode 313 Clock mode

cardFeaturePortClusters 432 Port clusters feature

card set chasID cardID

Sets the current configuration of the card at slot cardID, chassis chasID by reading the configuration
option values set by the card config option value command. Specific errors are:

l No connection to a chassis
l Invalid parameters
l Network problem between the client and chassis

card set Default

Sets to IxTclHal default values for all configuration options.

card setFactoryDefaults chasID cardID

Appendix 1 IxTclHAL Commands

– 574 –

Sets factory default information. The specific card write sends only card specific information. Set "card
write chasID cardID" after setting card setFactoryDefaults to get specific information.

cardwrite chasID cardID

Writes the card properties of the card at slot cardID, chassis chasID by reading the configuration option
values set by the card config option value command. No stream or port properties are written.

cardwriteOperationModemode chasID cardID

Writes the mode for the card. See the option cardOperationMode. Note: This also writes the port
configuration for all ports on the card (ASM XMV12X card only).

card addVMPort chasID cardID portID testNic promiscuous_mode testMac linkMTU lineSpeed

Example: card addVMPort 1 1 3 eth3 1 testMac linkMTU lineSpeed

Adds IxVM port on a virtual appliance.

Options Values

kPortOK 0

kPortIdExists 10

kPortIdOutOfRange 11

kPortOverlappingNIC 12

kPortIdUnavailable 13

kPortBuildTimeout 14

kPortInvalidOnSingleNic 15

kPortRemoveTimeout 17

The return values for the command are:

The parameters for the commands are:

Option Value Usage

keepAliveTimeout any value in seconds (>= 3) keepAliveTimeout value in seconds (>=3),
indicating the Keepalive timeout between the
Virtual Chassis and the Virtual Load Module.

testNic The existing nic name of a virtual machine,
used to generate traffic (port), Example:
eth1.

promiscuous_mode 0/1 Enables promiscuous mode on port
(Promiscuous mode must be supported and

Appendix 1 IxTclHAL Commands

– 575 –

Option Value Usage

enabled in hypervisor also, for this option to
work).

testMac The MAC address of the port. This must
match the MAC address of the interface with
the name provided in testNic parram, can be
added as 00:00:00:00:00:00, and is
automatically taken from interface at add
time.

linkMTU default = 1500 A valid Ethernet MTU.

lineSpeed valid values: 100Mbps and
1000Mbps (new versions of IxOS
limits the speed to this 2 values,
using IxN and IxL user can also
set the speed up to 50000 Mbps)

The virtual line speed at which the port will
be capped, in software. Default = 1000. If an
invalid value is entered speed will be set to
1000.

card setVMPortParameter chassisId cardId portId paramId

Sets the VM port parameters.

Port parameters IDs:

portTestNic 0

portProModetestNic 1

portMac 2, //read only, changeable only with setVMPortParameters and testNic set to ""

portLinkMTU 3

portLineSpeed 4

The return values for the command are:

Options Values

kPortOK 0

kPortOverlappingNIC 12

kPortBuildTimeout 14

card setVMPortParameters chassisId cardId portId testNic promiscuousMode optionalMac linkMTU
lineSpeed

Appendix 1 IxTclHAL Commands

– 576 –

Sets the VM port parameters. To use this function all parameters must be set. This function is faster than
setting parameters one by one. If a parameter is not set, a default one is used. MAC address is always
optional. To change test interface NIC based on MAC, setVMPortParameters function must be used and
testNic set to "".

Port parameter IDs:

portTestNic 0

portProModetestNic 1

portMac 2, //read only, changeable only with setVMPortParameters and testNic set to
""

portLinkMTU 3

portLineSpeed 4

Options Values

kPortOK 0

kPortOverlappingNIC 12

kPortBuildTimeout 14

card getVMPortParameter chassisId cardId portId paramId

Gets the current configuration of the VM port.

Port parameter IDs:

portTestNic 0

portProMode 1

portMac 2, //read only

portLinkMTU 3

portLineSpeed 4

portVMStatus 5, //read only

Returns the current value of the configuration option given by paramId.

For the vmPortParameter portVMStatus (option No 5):

Example:

card getVMPortParameter chassisId cardId portId 5 returns the following values:

Appendix 1 IxTclHAL Commands

– 577 –

State Values Explanation

Uninitialized 1 Initial port state, if API returns this value, it means that the port is not
fully initialized; retry later.

Connected and
Link Up

2 Port is connected to the chassis.

Port Removed 3 Set when remove port action failed

Invalid NIC 4 Set when there is no such NIC on the Virtual Load Module.

Port Unknown
Error

5 Generic error,something failed on add, remove, update port.

Disconnected 17 Port is disconnected from the chassis.

Connected but No
License

18 Connected, but no licenses are available (check the license server).

IxOS Version
Mismatch

20 IxOS Version mismatch between the Virtual Chassis and the Virtual
Load Modules.

card createPartition chasID cardID phyPortList cpuPortList

Creates partition in port list CPU.

card queryPartition chasID cardID partitionID

Sends query for partition.

card deletePartition chasID cardID partitionID

Deletes partition in port list CPU.

card removeVMPort chasID cardID portID

Removes a Virtual Port from a Virtual Card that is attached to a Virtual Chassis.

card resetHardware chasID cardID

With this command, the chassis resets all the hardware, reboots port CPU, tests the local processor test,
and rewrites the streams. This command does not modify existing port/stream configuration.

card getMaxResourceGroups chasID cardID

With this command, gets the maximum number of supported resource groups.

card addResourceGroup chasID cardID

Adds resource groups.

card createResourceGroups chasID cardID

Creates resource groups.

Appendix 1 IxTclHAL Commands

– 578 –

card deleteResourceGroups chasID cardID

Deletes resource groups.

card getConfiguredResourceGroupList chasID cardID

Gets and configures resource group list.

card setConfiguredResourceGroupList chasID cardID

Sets and configures resource group list.

card forceHotswap chassisID cardID

Deliberately forces hotswap of the card.

Example:
package require IxTclHal
ixConnectToChassis $ChassisId
TclScripts) 2 % card forceHotswap 1 2

Switch Mode

The following commands enable the Xcellon-Multis card to switch mode:

For CXP Module:

card get 1 2
resourceGroupEx get 1 2 1(it can be 1 2 5, 1 2 6, and 1 2 7)
resourceGroupEx cget -activePortList #it displays current mode
resourceGroupEx config -activePortList {0 2 1} #for 100G mode
resourceGroupEx config -activePortList {{0 2 5}{0 2 6}{0 2 7}} #for 40/10G mode
resourceGroupEx config -mode 8 #for 40G mode
resourceGroupEx config -mode 10 #for 10G mode
resourceGroupEx set 1 2 1(it can be 1 2 5, 1 2 6, and 1 2 7)
resourceGroupEx write 1 2 1 (it will send message to and execute mode switch)

For QSFP Module:

card get 1 2
resourceGroupEx get 1 2 1
resourceGroupEx cget -activePortList #it displays current mode
resourceGroupEx config -activePortList {{0 2 1}{0 2 2}{0 2 3}} #for 40/10G mode
resourceGroupEx config -mode 8 #for 40G mode
resourceGroupEx config -mode 10 #for 10G mode
resourceGroupEx set 1 2 1
resourceGroupEx write 1 2 1 (it will send message to and execute mode switch)

For QSFP28 2x25GE mode:

card get 1 2
resourceGroupEx get 1 2 9
resourceGroupEx config -mode 20
resourceGroupEx set 1 2 9

Appendix 1 IxTclHAL Commands

– 579 –

resourceGroupEx write 1 2 9

For QSFP28 1x50G mode:

card get 1 2
resourceGroupEx get 1 2 1
resourceGroupEx config -mode 19
resourceGroupEx set 1 2 1
resourceGroupEx write 1 2 1

For Novus, Novus-R and Novus-M 10G/25G Module:

resourceGroupEx get 1 1 9
resourceGroupEx config -activePortList [list {1 1 9} {1 1 10} {1 1 11} {1 1 12}]
resourceGroupEx config -mode 25000 #For 25G
OR
resourceGroupEx config -mode 10000 #For 10G
resourceGroupEx set 1 1 9
resourceGroupEx write 1 1 9

For Novus and Novus-R 50GE module

resourceGroupEx get 1 1 41
resourceGroupEx config -activePortList [list {1 1 41} {1 1 42}]
resourceGroupEx config -mode 50000
resourceGroupEx set 1 1 41
resourceGroupEx write 1 1 41

For Novus, Novus-R and Novus-M 40G/100G Module:

resourceGroupEx get 1 1 1
resourceGroupEx config -activePortList [list {1 1 1}]
resourceGroupEx config -mode 100000 #For 100G
OR
resourceGroupEx config -mode 40000 #For 40G
resourceGroupEx set 1 1 1
resourceGroupEx write 1 1 1

For QSFP-DD, QSFP-DD-R, and UPG-QSFP-DD-R modules:

resourceGroupEx get 1 1 1
resourceGroupEx config -activePortList "{1 1 1}"
resourceGroupEx config -mode 400000 #For 400G
OR
resourceGroupEx config -mode 200000 #For 200G
OR
resourceGroupEx config -mode 100000 #For 100G
OR
resourceGroupEx config -mode 50000 #For 50G
resourceGroupEx config -attributes "{bert}" #For BERT mode
OR
resourceGroupEx config -attributes "{dce}" #For DCM mode
resourceGroupEx set 1 1 1

Appendix 1 IxTclHAL Commands

– 580 –

resourceGroupEx write 1 1 1

For CFP8, CFP8-R, and UPG-CFP8-R modules:

resourceGroupEx get 1 1 1
resourceGroupEx config -activePortList "{1 1 1}"
resourceGroupEx config -mode 400000
resourceGroupEx config -attributes "{bert}"
resourceGroupEx set 1 1 1
resourceGroupEx write 1 1 1

For all variants of T400 QDD and T400 OSFP modules:

resourceGroupEx get 1 1 1
resourceGroupEx config -mode 400000 #For 400G
OR
resourceGroupEx config -mode 200000 #For 200G
OR
resourceGroupEx config -mode 400000 #For 100G
OR
resourceGroupEx config -mode 400000 #For 50G
OR
resourceGroupEx config -mode 400000
resourceGroupEx config -attributes "{bert}" #For BERT mode
resourceGroupEx set 1 1 1
resourceGroupEx write 1 1 1

Note: BERT mode is supported only for T400 QDD and T400 OSFP 400G speed modes.

For NOVUS25/10GE8SFP28: 10G/25G:

resourceGroupEx get 1 2 1
resourceGroupEx config -activePortList [list {1 2 1}]
resourceGroupEx config -mode 25000 #For 25G
resourceGroupEx set 1 2 1
resourceGroupEx write 1 2 1

OR
resourceGroupEx config -mode 10000 #For 10G
resourceGroupEx set 1 2 1
resourceGroupEx write 1 2 1

Please refer to below example:
(TclScripts8.6) 10 % resourceGroupEx get 1 2 7
0
(TclScripts8.6) 14 % resourceGroupEx config -activePortList [list {1 2 7}]
(TclScripts8.6) 15 % resourceGroupEx config -mode 10000
(TclScripts8.6) 17 % resourceGroupEx set 1 2 7
0
(TclScripts8.6) 18 % resourceGroupEx write 1 2 7
0

Appendix 1 IxTclHAL Commands

– 581 –

For all variants of S400 modules:

card get 1 1
resourceGroupEx setDefault
resourceGroupEx config -mode 400000 #For 400G
OR
resourceGroupEx config -mode 200000 #For 200G
OR
resourceGroupEx config -mode 100000 #For 100G
OR
resourceGroupEx config -mode 50000 #For 50G
OR
resourceGroupEx config -mode 40000 #For 40G
OR
resourceGroupEx config -mode 25000 #For 25G
OR
resourceGroupEx config -mode 10000 #For 10G
resourceGroupEx config -attributes "{serdesModePam4}" #For PAM4 mode
OR
resourceGroupEx config -attributes "{serdesModePam4 halfDensity}" #For 50G-HD mode
OR
resourceGroupEx config -attributes "{bert serdesModePam4}" #For PAM4 BERT mode
OR
resourceGroupEx config -attributes "{serdesModeNrz}" #For NRZ mode
OR
resourceGroupEx config -attributes "{bert serdesModeNrz}" #For NRZ BERT mode
resourceGroupEx setAll 1 1 1
resourceGroupEx writeAll 1 1 1

Note: PAM4 BERT mode is supported only for S400 400G speed mode and NRZ BERT mode is
supported only for S400 200G speed mode.

highStream

For Novus, Novus-R & Novus-M highstream

resourceGroupEx get 1 5 1
resourceGroupEx config -mode 100000 #100G
OR
resourceGroupEx config -mode 40000 #40G
OR
resourceGroupEx config -mode 10000 #10G
OR
resourceGroupEx config -mode 50000 #50G
OR
resourceGroupEx config -mode 25000 #25G
resourceGroupEx config -attributes highStream
resourceGroupEx set 1 5 1
resourceGroupEx write 1 5 1

Appendix 1 IxTclHAL Commands

– 582 –

resourceGroupEx cget -resourceGroupConfigList

All the available reourceGroup config on the card

resourceGroupEx getAvailable 1 5
resourceGroupEx cget -resourceGroupConfigList: { { { RG0 mode 100000 ppm -1 active
ports { 1 } active capture ports { 1 } resource ports { 1 9 10 11 12 41 42 }
attributes {} }{ RG1 mode 100000 ppm -1 active ports { 2 } active capture ports { 2 }
resource ports { 2 13 14 15 16 43 44 } attributes {} }{ RG2 mode 100000 ppm -1 active
ports { 3 } active capture ports { 3 } resource ports { 3 17 18 19 20 45 46 }
attributes {} }{ RG3 mode 100000 ppm -1 active ports { 4 } active capture ports { 4 }
resource ports { 4 21 22 23 24 47 48 } attributes {} }{ RG4 mode 100000 ppm -1 active
ports { 5 } active capture ports { 5 } resource ports { 5 25 26 27 28 49 50 }
attributes {} }{ RG5 mode 100000 ppm -1 active ports { 6 } active capture ports { 6 }
resource ports { 6 29 30 31 32 51 52 } attributes {} }{ RG6 mode 100000 ppm -1 active
ports { 7 } active capture ports { 7 } resource ports { 7 33 34 35 36 53 54 }
attributes {} }{ RG7 mode 100000 ppm -1 active ports { 8 } active capture ports { 8 }
resource ports { 8 37 38 39 40 55 56 } attributes {} } }{ { RG0 mode 25000 ppm -1
active ports { 9 10 11 12 } active capture ports { 9 } resource ports { 1 9 10 11 12
41 42 } attributes {} }{ RG1 mode 25000 ppm -1 active ports { 13 14 15 16 } active
capture ports { 13 } resource ports { 2 13 14 15 16 43 44 } attributes {} }{ RG2 mode
25000 ppm -1 active ports { 17 18 19 20 } active capture ports { 17 } resource ports
{ 3 17 18 19 20 45 46 } attributes {} }{ RG3 mode 25000 ppm -1 active ports { 21 22
23 24 } active capture ports { 21 } resource ports { 4 21 22 23 24 47 48 } attributes
{} }{ RG4 mode 25000 ppm -1 active ports { 25 26 27 28 } active capture ports { 25 }
resource ports { 5 25 26 27 28 49 50 } attributes {} }{ RG5 mode 25000 ppm -1 active
ports { 29 30 31 32 } active capture ports { 29 } resource ports { 6 29 30 31 32 51
52 } attributes {} }{ RG6 mode 25000 ppm -1 active ports { 33 34 35 36 } active
capture ports { 33 } resource ports { 7 33 34 35 36 53 54 } attributes {} }{ RG7 mode
25000 ppm -1 active ports { 37 38 39 40 } active capture ports { 37 } resource ports
{ 8 37 38 39 40 55 56 } attributes {} } }{ { RG0 mode 50000 ppm -1 active ports { 41
42 } active capture ports { 41 } resource ports { 1 9 10 11 12 41 42 } attributes {}
}{ RG1 mode 50000 ppm -1 active ports { 43 44 } active capture ports { 43 } resource
ports { 2 13 14 15 16 43 44 } attributes {} }{ RG2 mode 50000 ppm -1 active ports {
45 46 } active capture ports { 45 } resource ports { 3 17 18 19 20 45 46 } attributes
{} }{ RG3 mode 50000 ppm -1 active ports { 47 48 } active capture ports { 47 }
resource ports { 4 21 22 23 24 47 48 } attributes {} }{ RG4 mode 50000 ppm -1 active
ports { 49 50 } active capture ports { 49 } resource ports { 5 25 26 27 28 49 50 }
attributes {} }{ RG5 mode 50000 ppm -1 active ports { 51 52 } active capture ports {
51 } resource ports { 6 29 30 31 32 51 52 } attributes {} }{ RG6 mode 50000 ppm -1
active ports { 53 54 } active capture ports { 53 } resource ports { 7 33 34 35 36 53
54 } attributes {} }{ RG7 mode 50000 ppm -1 active ports { 55 56 } active capture
ports { 55 } resource ports { 8 37 38 39 40 55 56 } attributes {} } }{ { RG0 mode
40000 ppm -1 active ports { 1 } active capture ports { 1 } resource ports { 1 9 10 11
12 41 42 } attributes {} }{ RG1 mode 40000 ppm -1 active ports { 2 } active capture

Appendix 1 IxTclHAL Commands

– 583 –

ports { 2 } resource ports { 2 13 14 15 16 43 44 } attributes {} }{ RG2 mode 40000
ppm -1 active ports { 3 } active capture ports { 3 } resource ports { 3 17 18 19 20
45 46 } attributes {} }{ RG3 mode 40000 ppm -1 active ports { 4 } active capture
ports { 4 } resource ports { 4 21 22 23 24 47 48 } attributes {} }{ RG4 mode 40000
ppm -1 active ports { 5 } active capture ports { 5 } resource ports { 5 25 26 27 28
49 50 } attributes {} }{ RG5 mode 40000 ppm -1 active ports { 6 } active capture
ports { 6 } resource ports { 6 29 30 31 32 51 52 } attributes {} }{ RG6 mode 40000
ppm -1 active ports { 7 } active capture ports { 7 } resource ports { 7 33 34 35 36
53 54 } attributes {} }{ RG7 mode 40000 ppm -1 active ports { 8 } active capture
ports { 8 } resource ports { 8 37 38 39 40 55 56 } attributes {} } }{ { RG0 mode
10000 ppm -1 active ports { 9 10 11 12 } active capture ports { 9 } resource ports {
1 9 10 11 12 41 42 } attributes {} }{ RG1 mode 10000 ppm -1 active ports { 13 14 15
16 } active capture ports { 13 } resource ports { 2 13 14 15 16 43 44 } attributes {}
}{ RG2 mode 10000 ppm -1 active ports { 17 18 19 20 } active capture ports { 17 }
resource ports { 3 17 18 19 20 45 46 } attributes {} }{ RG3 mode 10000 ppm -1 active
ports { 21 22 23 24 } active capture ports { 21 } resource ports { 4 21 22 23 24 47
48 } attributes {} }{ RG4 mode 10000 ppm -1 active ports { 25 26 27 28 } active
capture ports { 25 } resource ports { 5 25 26 27 28 49 50 } attributes {} }{ RG5 mode
10000 ppm -1 active ports { 29 30 31 32 } active capture ports { 29 } resource ports
{ 6 29 30 31 32 51 52 } attributes {} }{ RG6 mode 10000 ppm -1 active ports { 33 34
35 36 } active capture ports { 33 } resource ports { 7 33 34 35 36 53 54 } attributes
{} }{ RG7 mode 10000 ppm -1 active ports { 37 38 39 40 } active capture ports { 37 }
resource ports { 8 37 38 39 40 55 56 } attributes {} } }{ { RG0 mode 100000 ppm -1
active ports { 1 } active capture ports { 1 } resource ports { 1 9 10 11 12 41 42 }
attributes {highStream} }{ RG1 mode 100000 ppm -1 active ports { 2 } active capture
ports { 2 } resource ports { 2 13 14 15 16 43 44 } attributes {highStream} }{ RG2
mode 100000 ppm -1 active ports { 3 } active capture ports { 3 } resource ports { 3
17 18 19 20 45 46 } attributes {highStream} }{ RG3 mode 100000 ppm -1 active ports {
4 } active capture ports { 4 } resource ports { 4 21 22 23 24 47 48 } attributes
{highStream} }{ RG4 mode 100000 ppm -1 active ports { 5 } active capture ports { 5 }
resource ports { 5 25 26 27 28 49 50 } attributes {highStream} }{ RG5 mode 100000 ppm
-1 active ports { 6 } active capture ports { 6 } resource ports { 6 29 30 31 32 51 52
} attributes {highStream} }{ RG6 mode 100000 ppm -1 active ports { 7 } active capture
ports { 7 } resource ports { 7 33 34 35 36 53 54 } attributes {highStream} }{ RG7
mode 100000 ppm -1 active ports { 8 } active capture ports { 8 } resource ports { 8
37 38 39 40 55 56 } attributes {highStream} } }{ { RG0 mode 25000 ppm -1 active ports
{ 9 10 11 12 } active capture ports { 9 } resource ports { 1 9 10 11 12 41 42 }
attributes {highStream} }{ RG1 mode 25000 ppm -1 active ports { 13 14 15 16 } active
capture ports { 13 } resource ports { 2 13 14 15 16 43 44 } attributes {highStream} }
{ RG2 mode 25000 ppm -1 active ports { 17 18 19 20 } active capture ports { 17 }
resource ports { 3 17 18 19 20 45 46 } attributes {highStream} }{ RG3 mode 25000 ppm
-1 active ports { 21 22 23 24 } active capture ports { 21 } resource ports { 4 21 22
23 24 47 48 } attributes {highStream} }{ RG4 mode 25000 ppm -1 active ports { 25 26
27 28 } active capture ports { 25 } resource ports { 5 25 26 27 28 49 50 } attributes
{highStream} }{ RG5 mode 25000 ppm -1 active ports { 29 30 31 32 } active capture
ports { 29 } resource ports { 6 29 30 31 32 51 52 } attributes {highStream} }{ RG6

Appendix 1 IxTclHAL Commands

– 584 –

mode 25000 ppm -1 active ports { 33 34 35 36 } active capture ports { 33 } resource
ports { 7 33 34 35 36 53 54 } attributes {highStream} }{ RG7 mode 25000 ppm -1 active
ports { 37 38 39 40 } active capture ports { 37 } resource ports { 8 37 38 39 40 55
56 } attributes {highStream} } }{ { RG0 mode 50000 ppm -1 active ports { 41 42 }
active capture ports { 41 } resource ports { 1 9 10 11 12 41 42 } attributes
{highStream} }{ RG1 mode 50000 ppm -1 active ports { 43 44 } active capture ports {
43 } resource ports { 2 13 14 15 16 43 44 } attributes {highStream} }{ RG2 mode 50000
ppm -1 active ports { 45 46 } active capture ports { 45 } resource ports { 3 17 18 19
20 45 46 } attributes {highStream} }{ RG3 mode 50000 ppm -1 active ports { 47 48 }
active capture ports { 47 } resource ports { 4 21 22 23 24 47 48 } attributes
{highStream} }{ RG4 mode 50000 ppm -1 active ports { 49 50 } active capture ports {
49 } resource ports { 5 25 26 27 28 49 50 } attributes {highStream} }{ RG5 mode 50000
ppm -1 active ports { 51 52 } active capture ports { 51 } resource ports { 6 29 30 31
32 51 52 } attributes {highStream} }{ RG6 mode 50000 ppm -1 active ports { 53 54 }
active capture ports { 53 } resource ports { 7 33 34 35 36 53 54 } attributes
{highStream} }{ RG7 mode 50000 ppm -1 active ports { 55 56 } active capture ports {
55 } resource ports { 8 37 38 39 40 55 56 } attributes {highStream} } }{ { RG0 mode
40000 ppm -1 active ports { 1 } active capture ports { 1 } resource ports { 1 9 10 11
12 41 42 } attributes {highStream} }{ RG1 mode 40000 ppm -1 active ports { 2 } active
capture ports { 2 } resource ports { 2 13 14 15 16 43 44 } attributes {highStream} }{
RG2 mode 40000 ppm -1 active ports { 3 } active capture ports { 3 } resource ports {
3 17 18 19 20 45 46 } attributes {highStream} }{ RG3 mode 40000 ppm -1 active ports {
4 } active capture ports { 4 } resource ports { 4 21 22 23 24 47 48 } attributes
{highStream} }{ RG4 mode 40000 ppm -1 active ports { 5 } active capture ports { 5 }
resource ports { 5 25 26 27 28 49 50 } attributes {highStream} }{ RG5 mode 40000 ppm
-1 active ports { 6 } active capture ports { 6 } resource ports { 6 29 30 31 32 51 52
} attributes {highStream} }{ RG6 mode 40000 ppm -1 active ports { 7 } active capture
ports { 7 } resource ports { 7 33 34 35 36 53 54 } attributes {highStream} }{ RG7
mode 40000 ppm -1 active ports { 8 } active capture ports { 8 } resource ports { 8 37
38 39 40 55 56 } attributes {highStream} } }{ { RG0 mode 10000 ppm -1 active ports {
9 10 11 12 } active capture ports { 9 } resource ports { 1 9 10 11 12 41 42 }
attributes {highStream} }{ RG1 mode 10000 ppm -1 active ports { 13 14 15 16 } active
capture ports { 13 } resource ports { 2 13 14 15 16 43 44 } attributes {highStream} }
{ RG2 mode 10000 ppm -1 active ports { 17 18 19 20 } active capture ports { 17 }
resource ports { 3 17 18 19 20 45 46 } attributes {highStream} }{ RG3 mode 10000 ppm
-1 active ports { 21 22 23 24 } active capture ports { 21 } resource ports { 4 21 22
23 24 47 48 } attributes {highStream} }{ RG4 mode 10000 ppm -1 active ports { 25 26
27 28 } active capture ports { 25 } resource ports { 5 25 26 27 28 49 50 } attributes
{highStream} }{ RG5 mode 10000 ppm -1 active ports { 29 30 31 32 } active capture
ports { 29 } resource ports { 6 29 30 31 32 51 52 } attributes {highStream} }{ RG6
mode 10000 ppm -1 active ports { 33 34 35 36 } active capture ports { 33 } resource
ports { 7 33 34 35 36 53 54 } attributes {highStream} }{ RG7 mode 10000 ppm -1 active
ports { 37 38 39 40 } active capture ports { 37 } resource ports { 8 37 38 39 40 55
56 } attributes {highStream} } } }

Appendix 1 IxTclHAL Commands

– 585 –

Capture Playback

Capture Playback is a resource group mode on the Xcellon Multis load module that allows you to load a
packet capture file into port hardware. Once the capture file is successfully loaded, you will be able to
transmit all of the loaded packets.

Capture Playback supports the .pcap, .pcapng, and .enc capture file formats.

A sample workflow is provided as follows:

setup some basic variables
set chassisName "user-chassis"
set chassID 1
set cardID 1
set mode40G_CPB 12
set mode100G_CPB 11
set continuousPackets 0
set burstPackets 1
set loopPackets 5
set capFile "sample.pcap"
connect to the chassis
ixConnectToChassis $chassisName
switch ports 1 and 2 into 100 Capture Playback mode
NOTE: the mode switch process can take a substantial
amount of time so prepare to wait at least several
minutes for it to complete.
resourceGroupEx get $chassID $cardID 1
resourceGroupEx config -mode $mode100G_CPB
resourceGroupEx set $chassID $cardID 1
resourceGroupEx write $chassID $cardID 1
resourceGroupEx get $chassID $cardID 2
resourceGroupEx config -mode $mode100G_CPB
resourceGroupEx set $chassID $cardID 2
resourceGroupEx write $chassID $cardID 2
create a port group for ports 1 and 2
portGroup destroy 1
portGroup create 1
portGroup add 1 $chassID $cardID 1
portGroup add 1 $chassID $cardID 2
portGroup write 1
configure capture playback for each port and set the
transmit mode to burst mode.
NOTE: that this is the configuration step for capture
playback and it must come BEFORE the loading of the
packet file.
capturePlayback get $chassID $cardID 1
capturePlayback config -framesPerSec 30
capturePlayback config -framesToBurst 9
capturePlayback config -transmitType $burstPackets
capturePlayback config -captureFileChassis $capFile

Appendix 1 IxTclHAL Commands

– 586 –

capturePlayback set $chassID $cardID 1
capturePlayback write $chassID $cardID 1
capturePlayback get $chassID $cardID 2
capturePlayback config -framesPerSec 30
capturePlayback config -framesToBurst 9
capturePlayback config -transmitType $burstPackets
capturePlayback config -captureFileChassis $capFile
capturePlayback set $chassID $cardID 2
capturePlayback write $chassID $cardID 2
load the packet file for each port
capturePlayback load $chassID $cardID 1
capturePlayback load $chassID $cardID 2
the port group that was created prior to configuring
capture playback can now be used to send a burst
of packets.
portGroup setCommand 1 $::sendNextBurstCP
individual ports can be made to send a busrt of packets
capturePlayback sendNextBurst $chassID $cardID 1
capturePlayback sendNextBurst $chassID $cardID 2

DEPRECATED
COMMANDS

card getInterface chasID cardID

Gets the interface type of the card.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo

Appendix 1 IxTclHAL Commands

– 587 –

return 1
}
Get the chassis' number of cards
chassis getFromID $chas
set ncards [chassis cget -maxCardCount]
ixPuts "Chassis $chas, $ncards cards"
for {set i 1} {$i <= $ncards} {incr i} {
Check for missing card
if {[card get $chas $i] != 0} {
continue
}
set portList [list [list $chas $i 1]]
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Get all of the card's characteristics
set fpgaVersion [card cget -fpgaVersion]
set hwVersion [card cget -hwVersion]
set portCount [card cget -portCount]
set type [card cget -type]
set typeName [card cget -typeName]
And list them
ixPuts "Card $i: $typeName ($type), $portCount ports, \
fpga $fpgaVersion, hwVersion $hwVersion"
If the card is a 10/100 RMII, play with its settable parameters
if {$type == $::card10100RMii} {
card config -clockRxRisingEdge 0
card config -clockTxRisingEdge 1
if [card set $chas $i] {
ixPuts "Could not card set $chas $i"
}
ixWriteConfigToHardware portList
}
Just for fun, we'll export the data associated with the first card
and read it to any other cards of the same type
if {$i == 1} {
if {[card export cardfile $chas $i] != 0} {
ixPuts "Could not export"
} else {
set savedType $type
}
} elseif {$type == $savedType} {
if {[card import cardfile $chas $i] == 1} {
ixPuts "Could not import"
}
}

Appendix 1 IxTclHAL Commands

– 588 –

Let go of the ports that we reserved
ixClearOwnership $portList
}
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}
Everest 10/40G Combo (assume chassis = 1; card = 6):
Example to configure 2 resource groups in 40G mode and
1 resource group in 10G aggregation mode
Check if the card supports resource group - kFeatureResourceGroup
set validRG [card isValidFeature 1 6 454]
Check if the card is Everest 10/40G Combo - kFeatureEverest40GCombo.
set validEverestCombo [card isValidFeature 1 6 435]
Get the max number of supported resource groups
set maxRG [card getMaxResourceGroups 1 6]
Check if the card is Everest 10/40G Combo. Please note we have
5 ports in resource group for 40G combo, while we have 4 ports in
resource group for Everest 10G
card get 1 6
set numPorts [card cget -portCount] # 20 for combo; 16 for Everest 10G
set portsPerRG [expr $numPorts / $maxRG]
step1: Add ports in resource group
Set {1, 2, 3, 4, 17} and {9, 10, 11, 12, 19} to 40G mode
Set {5, 6, 7, 8, 18} to 10G aggregation mode
set rgPorts1 [list [list 1] [list 2] [list 3] [list 4] [list 17]]
set rgPorts2 [list [list 5] [list 6] [list 7] [list 8] [list 18]]
set rgPorts3 [list [list 9] [list 10] [list 11] [list 12] [list 19]]
card addResourceGroup 17 40000 $rgPorts1 # active port 17, speed 40000
card addResourceGroup 19 40000 $rgPorts3 # active port 19, speed 40000
card addResourceGroup 5 10000 $rgPorts2 # active port 5, speed 10000
step2: Create Resource group with the configured groups
This call will push down the configuration in the server
This is a blocking call and will fail if any of the groups are
configured incorrectly or all the ports are not owned etc.
card createResourceGroups 1 6
Get the configured Resource Groups list
set configuredRGList [card getConfiguredResourceGroupList 1 6]
return value: {17 40000 {1 2 3 4 17}} {5 10000 {5 6 7 8 18}} {19 40000 {9 10 11 12
19}}
Set the configured Resource Groups list
This api can be directly used to set one or more resource
groups in a card.

Note: setConfiguredResourceGroupList can be directly fed the output

from getConfiguredResourceGroupList

Appendix 1 IxTclHAL Commands

– 589 –

set configuredRGList [card getConfiguredResourceGroupList 1 6]
card setConfiguredResourceGroupList 1 6 $configuredRGList
card setConfiguredResourceGroupList $chassis $card {{17 40000 {1 2 3 4 17}} {18 40000
{5 6 7 8 18}} {19 40000 {9 10 11 12 19}} {20 40000 {13 14 15 16 20}}}
Delete Resource Groups. This will put the ports in the RG in
normal 10G mode.
set dList [list [list 17] [list 19] [list 9]]
card deleteResourceGroups 1 6 $dList
***Note: For Everest 10G only speed 10000 is supported and resource group contains 4
ports. All other steps are exactly same. Please look at the example below:
step1: Add ports in resource group
Set {1, 2, 3, 4} and {9, 10, 11, 12} to 10G aggregation mode
set rgPorts1 [list [list 1] [list 2] [list 3] [list 4]]
set rgPorts3 [list [list 9] [list 10] [list 11] [list 12]]
card addResourceGroup 1 10000 $rgPorts1 # active port 1, speed 10000
card addResourceGroup 5 10000 $rgPorts3 # active port 5, speed 10000

SEE ALSO

chassis, port

cdlPreamble
cdlPreamble - configure the transmit CDL preamble

SYNOPSIS

cdlPreamble sub-command options

DESCRIPTION

The cdlPreamble command is used to set the CDL preamble values when txRxPreamble enableCiscoCDL is
set to true. It is also used to receive the decoded value from a captured frame.

STANDARD OPTIONS

applicationSpecific

Four bytes of application specific data. For example, "0x11223344". (default = "55 55 555 55")

cdlHeader

Read-only. The resultant combined CDL header, as a hex list. For example, "55 55 55 55 55 55 D5".

enableHeaderCrc
Overwrite true | false

If true, then the value in headerCrc is used to overwrite the calculated value of the header CRC in the CDL
preamble. (default = true)

Appendix 1 IxTclHAL Commands

– 590 –

headerCrc

If enableHeaderCrcOverwrite is true, then this value is used to replace the automatically calculated CRC.

messageChannel

The in-band message channel, a one byte quantity. (default = 0x55)

oam

The packet type and OAM field, a one byte quantity. (default = 0x55)

startOfFrame

Read-only. The Start of Frame indicator, always 0xFB.

COMMANDS

The cdlPreamble command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

cdlPreamble cget option

Returns the current value of the configuration option cdlPreamble by option. Option may have any of the
values accepted by the cdlPreamble command, subject to the setting of the enableValidStats option.

cdlPreamble config option value

Modify the configuration options of the time server. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for cdlPreamble.

cdlPreamble decode capFrame chasID cardID portID

Decodes a captured frame in the capture buffer and makes the values of the decoded header available in
the options of this command. Specific errors are:

l No connection to a chassis
l The captured frame is not a valid CDL packet

cdlPreamble get chasID cardID portID

Gets the current preamble configuration of the port with id portID on card cardID, chassis chasID. Call
this command before calling cdlPreamble cget option to get the value of the configuration option.

cdlPreamble set chasID cardID portID

Sets the preamble configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the cdlPreamble config option value command.

cdlPreamble set Default

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 591 –

EXAMPLES
set chasID 1
set cardID 4
set portID 1
txRxPreamble setDefault
txRxPreamble config -txMode preambleByteCount
txRxPreamble config -rxMode preambleSameAsTransmit
if [port isValidFeature $chasID $cardID $portID /
portFeatureCiscoCDL]
{
txRxPreamble config -enableCiscoCDL true
if [txRxPreamble set $chasID $cardID $portID] {
ixPuts $::ixErrorInfo
}
cdlPreamble config -oam 55
cdlPreamble config -applicationSpecific {11 22}
if [cdlPreamble set $chasID $cardID $portID] {
ixPuts $::ixErrorInfo
}
}

SEE ALSO

stream, txRxPreamble

cfpPort
cfpPort - configure the transmit CFP port.

SYNOPSIS

cfpPort sub-command options

DESCRIPTION

The cfpPort command is used to set the CFP port values.

STANDARD OPTIONS

getIxiaCfpAdapterType

.The cfpPort getIxiaCfpAdapter command returns the type of ixia cfp adapter currently plugged in. There
are 3 different values returned:

l 0 (None) - there isn't an ixia adapter plugged in. It's a cfp from another vendor, or no cfp.
l 1 (QSFP) - there is an ixia adapter plugged in with a QSFP interface (it could be dual or single).
l 2 (CXP) - these is an ixia adapter plugged in with a CXP interface.

Appendix 1 IxTclHAL Commands

– 592 –

getModuleId

Gets module identifier.

getVendor

Gets the vendor for CFP.

isIxiaCfpAdapter

Signifies if Ixia gets CFP adapter.

enableDualPortOperation

If true, enables dual port operation.

transmitClockDeviation

For ports that support the portFeatureFrequencyOffset feature, this is the transmit clock deviation
expressed in parts per million (ppm). (default = 0). A 'cfpPort' in dual port mode has two 'ports' in single
port mode it has one. When dual mode is enabled both ports on a dual adapter will have the same
deviation. In single port mode the clock deviation is still programmed as a port property instead of a
CfpPort property.

COMMANDS

The cfpPort command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

cfpPort set chassisId, cardId, portId

Singifies the set option for cfpPortID.

cfpPort get chassisId, cardId, portId

Signifies the get option for cfpPortID.

cfpPortwrite chassisId, cardId, portId

Signifies the write option for cfpPortID.

cfpPort forceEnablePort chassisId, cardId, portId

Signifies when port is forcefully enabled.

cfpPort isDualCfpPort chassisId, cardId, portId

Signifies if CFP port is dual or not.

SEE ALSO

chassis
chassis - add a new chassis to the chain and configure it.

Appendix 1 IxTclHAL Commands

– 593 –

SYNOPSIS

chassis sub-command options

DESCRIPTION

The chassis command is used to add a new chassis to a chain of chassis, configure an existing chassis or
delete an existing one from the chain in use.

STANDARD OPTIONS

baseIpAddress

The IP address that is used to get to the port CPUs. In IxExplorer, this is "IxRemoteIp" under Chassis
Properties. (default = 10.0.0.0)

baseAddressMask

The mask address that is used to get the port CPUs.

cableLength

Specifies the length of the cable between all chassis. Options include:

Option Value Usage

cable3feet 0 default

cable6feet 1

cable9feet 2

cable12feet 3

cable15feet 4

cable18feet 5

cable21feet 6

cable24feet 7

hostname

Read-only. The hostname associated with the chassis, as specified in the last chassis add operation.

id

ID number given to the chassis. (default = 0)

Appendix 1 IxTclHAL Commands

– 594 –

ipAddress

Read-only. The IPv4 address associated with the chassis.

ip6Address

Read-only. The IPv6 address associated with the chassis.

Example:

chassis cget -ip6Address: 2620:17b:3:c000::2:9ccf

ixServerVersion

Read-only. The installed IxOS version associated with the chassis.

primary true/false

Read-only. Specifies whether this chassis is primary chassis in a chain. There can be only one primary
chassis in a chain. Note: The primary chassis is automatically assigned based on cable connections.

maxCardCount

Read-only. Number of card can be installed on the chassis.

name

The given name of the chassis. (default = defaultChassis)

operatingSystem

Read-only. The operating system loaded on the chassis.

Option Value Usage

chassisOSUnknown 0 Unknown operating system

chassisOSWin95 1 Windows 95

chassisOSWinNT 2 Windows NT

chassisOSWin2000 3 Windows 2000

chassisOSWinXP 4 Windows XP

chassisOSWin7 7 Windows 7

chassisOSLinux 7 Linux

powerConsumption

The power consumption level of the port CPU.

Appendix 1 IxTclHAL Commands

– 595 –

sequence

Specifies the sequence number of the chassis in the chain. The primary chassis must have a sequence
number of 0 and other chassis should be incrementing. (default = 1)

syncInOutCountStatus

Specifies the sync-in and sync-out count status.

type

Read-only. Specifies the type of chassis. Possible values are:

Option Value Usage

ixia1600 2 16 card chassis type

ixia200 3 2 card chassis type

ixia400 4 4 card chassis type

ixia100 5 1 card chassis type with GPS

ixia400C 6 1 card chassis with additional power and fans

ixia1600T 7 16 card chassis type with additional power and fans

ixiaDemo 9 128 card chassis type used in demo server

ixiaOptixia 10 Optixia chassis

ixiaOpixJr 11 Ixia test board

ixia400T 14 4 card chassis type

ixia250 17 2 card chassis type

ixia400Tf 18 4 card chassis type, special fan speed

ixiaOptixiaXL10 20 10 card chassis type

ixiaOptixiaXM12 22 12 card chassis type

ixiaOptixiaXV 24 virtual chassis (OptixiaXV)

ixiaOptixiaXG12 25 12-slot chassis

ixiaOptixiaXGS12 26 12-slot chassis with high-speed backplane

ixiaOptixiaXGH1 27 A unified applications and security test platform

Appendix 1 IxTclHAL Commands

– 596 –

Option Value Usage

ixiaOptixiaXGS2 28 2-slot chassis

ixiaOptixiaXV1 29 Ixia Virtual Test Appliance

typeName

Read-only. The printable chassis type name.

DEPRECATED OPTIONS

baseAddressMask

This option has been deprecated (with IxOS version 5.0).

COMMANDS

The chassis command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

chassis add sIPAddr

Adds a new chassis with sIPAddr (hostname or IP address) to the chain. Specific errors are:

l Error connecting to the chassis (timeout, invalid IP or hostname, or invalid port) (1)
l Version mismatch (2)
l The version was successfully negotiated, but a timeout occurred receiving the chassis configuration
(3)

l Hardware conflict (4)

chassis cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the chassis command.

chassis config option value

Modify the configuration options of the chassis. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for chassis.

chassis chat id message

Sends message to all the user connected to the chassis currently.

The description of the arguments:

id (By value) The chassis id. For example, 1.

message (By value) The chat message that we want to send to all connected users.

Appendix 1 IxTclHAL Commands

– 597 –

Note: The chassis chat command requires a prior ixLogin/ixLoginWithPurpose, which sets the
current user.

Example
chassis chat 1 “how is everyone?”

chassis del sIPAddr

Deletes the chassis with sIPAddr (hostname or IP address) from the chain.

chassis export fileName sIPAddr

Exports the current configuration of the chassis sIPAddr (hostname or IP address) into the file named
fileName; fileName may include a full or relative path. The file produced by this command may be used by
the import sub-command. Specific errors are:

l No connection to a chassis

chassis get sIPAddr

Gets the current configuration of the chassis with sIPAddr (hostname or IP address) from hardware. Call
this command before calling chassis cget option value to get the value of the configuration option.
Specific errors are:

l No connection to a chassis

chassis getChassisPowerConsumption i_IPAddr

Gets the chassis power consumption value.

chassis getChassisSyncInOutCount sIPAddr

Gets the sync-in and sync-out count of the chassis with sIPAddr (hostname or IP address) from the
hardware.

chassis getFromID chasID

Gets the current configuration of the chassis with chasID from hardware. Call this command before calling
chassis cget option value to get the value of the configuration option.

chassis import fileName sIPAddr

Imports a saved chassis configuration found in the file fileName into the current configuration of the
chassis sIPAddr (hostname or IP address). fileName may include a full or relative path. The file used by
this command must have been produced by the export sub-command. A chassis write is necessary to
commit these items to the hardware. You must have chassis-wide rights to use this command. Specific
errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis reboot chasID

Reboots the chassis. You must have chassis-wide rights to use this command. Specific errors are:

Appendix 1 IxTclHAL Commands

– 598 –

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis refresh sIPAddr

Ensures that the data displayed is up to date. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis

chassis resetHardware sIPAddr

Resets the hardware by initializing all the registers and statistic counters. You must have chassis-wide
rights to use this command. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis saveIxsFile sIpAddr

Saves the current IxServer configuration to an IxServer.ixs file on the server The IxServer.ixs file is saved
automatically when there is a orderly shutdown of IxServer. It may also be saved manually, by using this
command, to ensure backup of the configuration without having to shut down the system, such as in
service monitoring situations. If some unexpected shutdown occurs, the IxServer configuration is
reloaded from the saved .ixs file on power-up.

The sIpAddr should be the IP address of the current chassis.

chassis set sIPAddr

Sets the entire configuration of the chassis, including baseIpAddress, in IxHAL with sIPAddr (hostname or
IP address of the chassis) by reading the configuration option values set by the chassis config option
value command. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis setBaseIp sIPAddr

Sets only the base IP address for the chassis with sIPAddr (hostname or IP address of the chassis). In
IxExplorer Chassis Properties, this is named 'IxRemoteIp'. You must have chassis-wide rights to use this
command. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis setDefault

Appendix 1 IxTclHAL Commands

– 599 –

Sets to IxTclHal default values for all configuration options.

chassis setFactoryDefaults sIPAddr

Sets the factory default values on the chassis. You must have chassis-wide rights to use this command.
Specific errors are:

l No connection to a chassis
l User doesn't have chassis-wide rights.
l User doesn't have chassis-wide rights.

chassis shutdown sIPAddr

Shuts down the chassis. You must have chassis-wide rights to use this command. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis addVirtualCard chassisIP cardIP cardId keepAliveTimeout

Adds virtual machine card to the chassis. You must have chassis-wide rights to use this command.
Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

The return values for the command are:

Options Values Description

kCardOK 0 Virtual Card attach operation completed successfully.

kCardIdExists 5 Virtual Card ID is already present in the Virtual Chassis. Choose a
different card ID.

kCardIdOutOfRange 6 Virtual Card ID is out of the supported range of [1,32]. Choose a
valid card ID.

kCardOverlappingIP 7 Virtual Card with the same IP is already attached to the chassis.
Choose a different IP.

kCardBuildTimeout 8 Virtual Card attach operation has timedout.

kCardIdUnavailable 9 Virtual Card ID is unavailable.

The parameters for the commands are:

Appendix 1 IxTclHAL Commands

– 600 –

Option Value Usage

keepAliveTimeout any value in seconds (>= 3) keepAliveTimeout value in seconds (>= 3),
indicating the Keepalive timeout between
the Virtual Chassis and the Virtual Load
Module.

testNic The existing nic name of a virtual machine,
used to generate traffic (port), Example:
eth1.

promiscuous_mode 0/1 Enables promiscuous mode on port
(Promiscuous mode must be supported and
enabled in hypervisor also, for this option to
work).

testMac The MAC address of port. This must match
the MAC address of the interface with the
name provided in testNic parram, can be
added as 00:00:00:00:00:00, and is
automatically taken from interface at add
time.

linkMTU default = 1500 A valid Ethernet MTU.

lineSpeed valid values: 100Mbps and
1000Mbps (new versions of IxOS
limits the speed to these 2
values. Using IxN and IxL, you
can also set the speed up to
50000 Mbps).

The virtual line speed at which the port will
be capped, in software. Default = 1000. If
an invalid value is entered speed will be set
to 1000.

chassis removeVMCard chassisIP cardId

Removes virtual machine card from the chassis. You must have chassis-wide rights to use this command.
Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User doesn't have chassis-wide rights.

chassis checkVMForDuplicate chassisIP cardIP

Checks if a Virtual Load Module with the same IP is already attached to the chassis. You must have
chassis-wide rights to use this command.

Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis

Appendix 1 IxTclHAL Commands

– 601 –

l User does not possess chassis-wide rights

The return values for the command are:

Options Values

kCardIPInUse cardId value

kCardIPNotInUse 0

chassis forceHotswap chassisIPAddr cardID

Deliberately forces hotswap of the card.

Example:
package require IxTclHal
ixConnectToChassis $ChassisId
TclScripts) 1 % chassis forceHotswap 10.205.27.99 2

chassis setVMCardParameter chassisId cardId paramId paramVal

Sets the Virtual Card parameter. You must have chassis-wide rights to use this command.

Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User does not have chassis-wide rights.

Card parameter IDs:

Parameter Value

cardIp 0

cardKeepAlive 1

The return values for the command are:

Options Values Description

kCardOK 0 Virtual Card attach operation completed successfully.

kCardOverlappingIP 7 Virtual Card with the same IP is already attached to the chassis.
Choose a different IP.

kCardBuildTimeout 8 Virtual Card attach operation has timedout.

chassis setVMCardParameter chassisId managementIPAddr cardId keepAliveTimeout

Appendix 1 IxTclHAL Commands

– 602 –

Sets all the Virtual Card parameters. To use this function all parameters must be set. This function is
faster than setting parameters one by one. If a parameter is not set, a default one is used.

You must have chassis-wide rights to use this command. Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User does not have chassis-wide rights.

The return values for the command are:

Options Values Explantion

kCardOK 0 Virtual Card attach operation completed successfully.

kCardOverlappingIP 7 Virtual Card with the same IP is already attached to the chassis.
Choose a different IP.

kCardBuildTimeout 8 Virtual Card attach operation has timedout.

chassis getVMCardParameter chassisId cardId paramId

Gets the current configuration of the Virtual Card. You must have chassis-wide rights to use this
command.

Specific errors are:

l No connection to a chassis
l Network problem between the client and chassis
l User does not have chassis-wide rights.

Card parameter IDs:

Parameter Value

cardIp 0

cardKeepAlive 1

cardVMStatus 2

Returns the current value of the configuration option given by paramId.

chassis syncChassisStats chassisId

Updates local hal with instantaneous chassis stats retrieved from chassis. Returns TCL_OK on success
and TCL_ERROR on failure.

chassis getChassisStats chassisId

Appendix 1 IxTclHAL Commands

– 603 –

Returns a list with all the chassis stats names available for the chassis with chassisId. If the provided
chassisId is invalid, a list containing "invalidChassis" is returned. Depending on the type of chassis, this
API returns a list with different chassis stat names.

chassis getChassisStatValue chassisId chassisStatName

l Returns the stringified value of the chassisStatName, from chassis with id chassisId, or an error in
case chassisStatName is not found.

l chassisStatName should be one of the chassis stats in the chassis stat list retrieved through “chassis
getChassisStats chassisId”

l If chassisStatName is not a chassis stats, API returns: "N/A-invalidChassisStat:%s”, where %s is
changed with chassisStatName.

l If chassisStatName is a valid chassis stats, but is not a stat specific to the chassis with id chassisId ,
API returns "N/A-inexistentChassisStat:%s” , where %s is changed with chassisStatName

l If chassis with id chassisId is not found, API returns "N/A-inexistentChassis:%d.”, where %d is with
chassisId.

Example of API Usage/Output:
(TclScripts) 19 % package req IxTclHal
8.20
(TclScripts) 20 % ixConnectToChassis loopback
Connecting to Chassis 1: loopback ...
0
(TclScripts) 21 % chassis syncChassisStats 1
0
(TclScripts) 22 % set chassisStats [chassis getChassisStats 1]
kPowerSupplyCurrentTotal kCPs1Status kCPs1VoltageIn kCPs1CurrentIn kCPs1VoltageOut
kCPs1CurrentOut kCPs1Temperature1 kCPs1Temperature2 kCPs1Temperature3 kCPs2Status
kCPs2VoltageIn kCPs2CurrentIn kCPs2VoltageOut kCPs2CurrentOut kCPs2Temperature1
kCPs2Temperature2 kCPs2Temperature3 kCPs3Status kCPs3VoltageIn kCPs3CurrentIn
kCPs3VoltageOut kCPs3CurrentOut kCPs3Temperature1 kCPs3Temperature2 kCPs3Temperature3
(TclScripts) 23 % foreach item $chassisStats {
set value [chassis getChassisStatValue 1 $item]
puts "$item $value"
}
kPowerSupplyCurrentTotal 182.00 A
kCPs1Status PSU ON
kCPs1VoltageIn 224.25 V
kCPs1CurrentIn 1.52 A
kCPs1VoltageOut 11.98 V
kCPs1CurrentOut 24.84 A
kCPs1Temperature1 37 C
kCPs1Temperature2 28 C
kCPs1Temperature3 41 C
kCPs2Status PSU ON
kCPs2VoltageIn 224.25 V
kCPs2CurrentIn 1.25 A

Appendix 1 IxTclHAL Commands

– 604 –

kCPs2VoltageOut 11.98 V
kCPs2CurrentOut 20.38 A
kCPs2Temperature1 36 C
kCPs2Temperature2 28 C
kCPs2Temperature3 41 C
kCPs3Status N/A
kCPs3VoltageIn N/A
kCPs3CurrentIn N/A
kCPs3VoltageOut N/A
kCPs3CurrentOut N/A
kCPs3Temperature1 N/A
kCPs3Temperature2 N/A
kCPs3Temperature3 N/A
(TclScripts) 24 % chassis syncChassisStats 1
0
(TclScripts) 25 % foreach item $chassisStats {
set value [chassis getChassisStatValue 1 $item]
puts "$item $value"
}
kPowerSupplyCurrentTotal 182.00 A
kCPs1Status PSU ON
kCPs1VoltageIn 225.25 V
kCPs1CurrentIn 1.50 A
kCPs1VoltageOut 11.98 V
kCPs1CurrentOut 24.63 A
kCPs1Temperature1 37 C
kCPs1Temperature2 28 C
kCPs1Temperature3 41 C
kCPs2Status PSU ON
kCPs2VoltageIn 225.50 V
kCPs2CurrentIn 1.23 A
kCPs2VoltageOut 11.98 V
kCPs2CurrentOut 20.38 A
kCPs2Temperature1 36 C
kCPs2Temperature2 28 C
kCPs2Temperature3 41 C
kCPs3Status N/A
kCPs3VoltageIn N/A
kCPs3CurrentIn N/A
kCPs3VoltageOut N/A
kCPs3CurrentOut N/A
kCPs3Temperature1 N/A
kCPs3Temperature2 N/A
kCPs3Temperature3 N/A
(TclScripts) 26 % ixConnectToChassis 10.215.134.151
Connecting to Chassis 1: 10.215.134.151 ...
0
(TclScripts) % chassis cget id

Appendix 1 IxTclHAL Commands

– 605 –

Invalid cget option for TCLChassis. Must be :{ -this -id -name -serialNumber -
controllerSerialNumber -cableLength -sequence -master -baseIpAddress -baseAddressMask
-syncInOutCountStatus -powerConsumption -powerManagement -inactivityTimeout -primary
-maxCardCount -type -typeName -ipAddress -operatingSystem -hostName -ixServerVersion
-chassisNumber -ip6Address }
1
(TclScripts) 29 % chassis syncChassisStats 1
0
(TclScripts) 30 % set chassisStats [chassis getChassisStats 1]
kPowerSupplyCurrentTotal kPowerSupplyCurrentUsed kPs1Status kPs1Fault kPs1Current
kPs1Voltage kPs1StandbyCurrent kPs1StandbyVoltage kPs1AcRmsCurrent kPs1AcRmsVoltage
kPs1Fan1Speed kPs1Fan2Speed kPs1AmbientTemperature kPs1HeatSink1Temperature
kPs1HeatSink2Temperature kPs2Status kPs2Fault kPs2Current kPs2Voltage
kPs2StandbyCurrent kPs2StandbyVoltage kPs2AcRmsCurrent kPs2AcRmsVoltage kPs2Fan1Speed
kPs2Fan2Speed kPs2AmbientTemperature kPs2HeatSink1Temperature
kPs2HeatSink2Temperature kPs3Status kPs3Fault kPs3Current kPs3Voltage
kPs3StandbyCurrent kPs3StandbyVoltage kPs3AcRmsCurrent kPs3AcRmsVoltage kPs3Fan1Speed
kPs3Fan2Speed kPs3AmbientTemperature kPs3HeatSink1Temperature
kPs3HeatSink2Temperature
(TclScripts) 31 % foreach item $chassisStats {
set value [chassis getChassisStatValue 1 $item]
puts "$item $value"
}
kPowerSupplyCurrentTotal 446.00 A
kPowerSupplyCurrentUsed 194.33 A
kPs1Status 0x81 , AC is Faulted
kPs1Fault 0x0
kPs1Current N/A
kPs1Voltage N/A
kPs1StandbyCurrent N/A
kPs1StandbyVoltage N/A
kPs1AcRmsCurrent N/A
kPs1AcRmsVoltage N/A
kPs1Fan1Speed N/A
kPs1Fan2Speed N/A
kPs1AmbientTemperature N/A
kPs1HeatSink1Temperature N/A
kPs1HeatSink2Temperature N/A
kPs2Status OK
kPs2Fault 0x0
kPs2Current 98.19 A
kPs2Voltage 12.16 V
kPs2StandbyCurrent 1.02 A
kPs2StandbyVoltage 4.99 V
kPs2AcRmsCurrent 5.17 A
kPs2AcRmsVoltage 224.25 V
kPs2Fan1Speed 11394 rpm
kPs2Fan2Speed 11232 rpm

Appendix 1 IxTclHAL Commands

– 606 –

kPs2AmbientTemperature 24 C
kPs2HeatSink1Temperature 41 C
kPs2HeatSink2Temperature 41 C
kPs3Status OK
kPs3Fault 0x0
kPs3Current 96.14 A
kPs3Voltage 12.13 V
kPs3StandbyCurrent 1.20 A
kPs3StandbyVoltage 4.98 V
kPs3AcRmsCurrent 4.89 A
kPs3AcRmsVoltage 223.81 V
kPs3Fan1Speed 11016 rpm
kPs3Fan2Speed 10719 rpm
kPs3AmbientTemperature 23 C
kPs3HeatSink1Temperature 37 C
kPs3HeatSink2Temperature 36 C
(TclScripts) 32 % set chassisStats [chassis getChassisStats 2]
invalidChassis
(TclScripts) 33 % set chassisStats [chassis getChassisStats 1]
kPowerSupplyCurrentTotal kPowerSupplyCurrentUsed kPs1Status kPs1Fault kPs1Current
kPs1Voltage kPs1StandbyCurrent kPs1StandbyVoltage kPs1AcRmsCurrent kPs1AcRmsVoltage
kPs1Fan1Speed kPs1Fan2Speed kPs1AmbientTemperature kPs1HeatSink1Temperature
kPs1HeatSink2Temperature kPs2Status kPs2Fault kPs2Current kPs2Voltage
kPs2StandbyCurrent kPs2StandbyVoltage kPs2AcRmsCurrent kPs2AcRmsVoltage kPs2Fan1Speed
kPs2Fan2Speed kPs2AmbientTemperature kPs2HeatSink1Temperature
kPs2HeatSink2Temperature kPs3Status kPs3Fault kPs3Current kPs3Voltage
kPs3StandbyCurrent kPs3StandbyVoltage kPs3AcRmsCurrent kPs3AcRmsVoltage kPs3Fan1Speed
kPs3Fan2Speed kPs3AmbientTemperature kPs3HeatSink1Temperature
kPs3HeatSink2Temperature
(TclScripts) 34 % chassis getChassisStatValue 1 alfa
N/A-invalidChassisStat:alfa.

DEPRECATED COMMANDS

chassis write chasID cardID portID

Do not use.

chassis addVMCard chassisIP cardIP cardId cardType keepAliveTimeout ixvmVCardExtType

Do not use.

EXAMPLES
package require IxTclHal
Set up two chassis in a chain
set host1 galaxy
set host2 localhost
Remove all of the chassis in the chain
chassisChain removeAll

Appendix 1 IxTclHAL Commands

– 607 –

#---------
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis [list $host1 $host2] {
ixPuts $::ixErrorInfo
return 1
}
Check for a valid chain
if [chassisChain validChain] {
ixPuts "Chain has no primary"
}
set primarySecondary(0) secondary
set primarySecondary(1) primary
Get the type and capabilities of the chassis
chassis get $host1
set chas1 [chassis cget -id]
set type [chassis cget -type]
ixPuts -nonewline "Chassis $host1 (id $chas1) is type: "
switch $type \
$::ixia1600 {ixPuts -nonewline "IXIA 1600"} \
$::ixia200 {ixPuts -nonewline "IXIA 200"} \
$::ixia400 {ixPuts -nonewline "IXIA 400"} \
$::ixia100 {ixPuts -nonewline "IXIA 100"} \
$::ixia400C {ixPuts -nonewline "IXIA 400C"} \
$::ixia1600T {ixPuts -nonewline "IXIA 1600T"} \
$::ixiaDemo {ixPuts -nonewline "IXIA Demo"} \
$::ixiaOptIxia {ixPuts -nonewline "IXIA OptIxia"} \
$::ixiaOpixJr {ixPuts -nonewline "IXIA OpixJr"} \
default {ixPuts -nonewline "Unknown"}
set maxCards [chassis cget -maxCardCount]
ixPuts ", which can accommodate $maxCards cards"
chassisChain removeAll
Add a chassis as the primary
chassis setDefault
chassis config -id 1
chassis config -sequence 1
chassis add $host1
And give it a name after the fact
chassis config -name "test-chassis"
chassis set $host1
Make sure it's the primary

Appendix 1 IxTclHAL Commands

– 608 –

chassis getFromID 1
set primary [chassis cget -primary]
ixPuts "$host1 is $primarySecondary($primary)"
chassis setDefault
chassis config -id 2
chassis config -sequence 2
chassis config -cableLength cable6feet
chassis add $host2
Make sure it's not the primary
chassis getFromID 2
set primary [chassis cget -primary]
ixPuts "$host2 is $primarySecondary($primary)"
Release the chassis
chassis del $host1
chassis del $host2
Disconnect from the chassis we're using
ixDisconnectFromChassis [list $host1 $host2]
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

chassisChain
chassisChain - configure an entire chassis chain

SYNOPSIS

chassisChain sub-command options

DESCRIPTION

The chassisChain command is used to write configuration parameters to all chassis in the chain.

STANDARD OPTIONS

delayChassisStartTime

The number of seconds to delay test application after a start.(default = 5)

COMMANDS

The chassisChain command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

chassisChain broadcastTopology

After a chassis is added to or deleted from a chain, it must broadcast its existence to the rest of the
chassis in the chain. Note: This command doesn't return a value.

Appendix 1 IxTclHAL Commands

– 609 –

chassisChain cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the chassisChain command.

chassisChain config option value

Modify the configuration options of the chassisChain. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for chassisChain.

chassisChain get

Gets the current configuration of the chassisChain. Call this command before calling chassisChain cget
option value to get the value of the configuration option.

chassisChain set

Sets the Chassis Chain configuration by reading the configuration option values set by the chassisChain
config option value command.

chassisChain setDefault

Sets to IxTclHal default values for all configuration options.

chassisChain removeAll

Removes or disconnects from all the chassis in the chain.

chassisChain validChain

Verify whether the chain is valid. A valid chain has at least one chassis assigned as a primary chassis.
Specific errors are:

l There is no primary chassis in the chain

chassisChainwrite groupID

Writes or commits the changes in IxHAL to hardware for every chassis that is a member of groupID.
Before using this command, use the set commands for streams, capture and filter parameters on each
port. The advantage of using this command is that the entire chassis chain configuration can be written
into hardware at one time instead of writing into hardware for each stream, capture and filters on each
port. Specific errors are:

l A port group with the specified groupID has not been created
l Network problem between the client and chassis

chassisChain enableStarTopology

This command is used if star topology is required. After a chassis chain exists and is valid, the chain
topology can be specified.
By default the topology is daisy chain.

chassisChain disableStarTopology

Disables the star topology of a chassis chain that was previously enabled with enableStarTopology
command.

Appendix 1 IxTclHAL Commands

– 610 –

chassisChain isValidForStarTopology

Validates if the collection of chassis can be chained in a star topology. Retuns 1 if the start topology can
be formed.

chassisChain isValidForStarTopology

Validates if the collection of chassis can be chained in a star topology. Retuns 1 if the start topology can
be formed.

chassisChain isStarTopology

Verifies if the current chassis chain is configured as star topology. Returns 1 if the chassis is star.

EXAMPLES

See examples under chassis

SEE ALSO

chassis, portGroup

collisionBackoff
collisionBackoff - configure the collision backoff parameters for 10/100 ports

SYNOPSIS

collisionBackoff sub-command options

DESCRIPTION

The collisionBackoff command is used to configure the parameters for collision backoff operations for
10/100 ports.

STANDARD OPTIONS

collisionConstant

Each successive retry operates by selecting a time slot over a range that doubles with each retry (2, 4, 8,
... 1024). This value controls the maximum number of time slots used. The values are powers of 2 from 0
through 1024. (default = 10)

continuousRetransmit true / false

If set, when a collision occurs, continuously retransmit the packet until the maxRetryCount is exhausted.
(default = false)

maxRetryCount

The maximum number of retries for each packet. (default = 16)

Appendix 1 IxTclHAL Commands

– 611 –

random true / false

If set, when a collision occurs, wait a random amount of time before retrying the transmission. The
maxRetryCount and collisionConstant values govern how often and long retries is attempted. (default =
true)

COMMANDS

The collisionBackoff command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

collisionBackoff cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the collisionBackoff command.

collisionBackoff config option value

Modify the Collision Backup configuration options of the port. If no option is specified, returns a list
describing all of the available Collision Backoff options (see STANDARD OPTIONS) for port.

collisionBackoff get chasID cardID portID

Gets the current Collision Backoff configuration of the port with id portID on card cardID, chassis chasID.
Call this command before calling collisionBackoff cget option value to get the value of the configuration
option.

collisionBackoff setDefault

Sets to IxTclHal default values for all configuration options.

collisionBackoff set chasID cardID portID

Sets the Collision Backoff configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the collisionBackoff config option value command.

EXAMPLES

See examples under forcedCollisions

SEE ALSO

forcedCollisions

conditionalStats
conditionalStats - works together with conditionalTable to configure and retrieve the flow detective stats
from the port CPU.

SYNOPSIS

conditionalStats sub-command options

Appendix 1 IxTclHAL Commands

– 612 –

DESCRIPTION

The conditionalStats command is used to define the methods and parameters of the main configuration
and stat retrieval object.

STANDARD OPTIONS

fromPGID

First PGID in range to monitor.

toPGID

Last PGID in range to monitor.

fromStreamId

First stream ID in range to monitor.

toStreamId

Last stream ID in range to monitor.

COMMANDS

The conditionalStats command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

conditionalStats cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the conditionalStats command.

conditionalStats config option value

Modify the Conditional Stats configuration options of the port. If no option is specified, returns a list
describing all of the available Conditional Stats options (see STANDARD OPTIONS) for port.

conditionalStats get chasID cardID portID conditionID

Gets the current Conditional Stats for the port with conditionID, id portID on card cardID, chassis chasID.

Note: Note: Add a delay (4000 ms) before the conditionalStats get sub-command.

conditionalStats setDefault

Sets to IxTclHal default values for all configuration options.

conditionalStats set chasID cardID portID

Sets the Conditional Stats configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the conditionalStats config option value command.

conditionalStats getrow rowIndex

Appendix 1 IxTclHAL Commands

– 613 –

Returns list of the form {colName1 value} {colName2 value} etc, with the first colName1 pre-defined as
the index column. Error returns empty string.

conditionalStats start chasID cardID portID conditionID

Starts the collection of stats, based on the preset condition specified by conditionalTable.

Note: Note: Add a delay (4000 ms) after ixWriteConfigToHardware and before the conditionalStats
start sub-command.

conditionalStats stop chasID cardID portID conditionID

Stops the collection of stats, based on the preset condition specified by conditionalTable.

EXAMPLES
package req IxTclHal
set hostname loopback
if {[ixConnectToChassis $hostname] == $::TCL_ERROR} {
errorMsg "Error connecting to chassis"
return 1
}
skipping all the stream config stuff here...
conditionalTable setDefault
conditaionlStats setDefault
set conditionId_max 32
conditionalTable config -columnNames {"Total Frames" "MaxLatency > 100000"}
conditionalTable config -sortingExpression "minLatency < 100000"
conditionalTable config -numResults 100
if {[conditionalTable set $conditionId_max]} {
errorMsg "Error setting conditionalTable - $::ixErrorInfo"
return "FAIL"
}
set conditionId_min 42
conditionalTable config -columnNames {"Total Frames" "MinLatency < 1000"}
conditionalTable config -sortingExpression "minLatency < 1000"
conditionalTable config -numResults 100
if {[conditionalTable set $conditionId_min]} {
errorMsg "Error setting conditionalTable - $::ixErrorInfo"
return "FAIL"
}
conditionalStats config -fromPGID 0
conditionalStats config -toPGID 10000
if {[conditionalStats set $chassis $card $port]} {
errorMsg "Error configuring conditionalStats on port $chassis $card $port"
return "FAIL"
}
ixClearStats portList
ixStartTransmit portList
if {[conditionalStats start $chassis $card $port $conditionId_min]} {
errorMsg "Error starting conditionalStats on port $chassis $card $port"

Appendix 1 IxTclHAL Commands

– 614 –

return "FAIL"
}
maybe wait for a bit to let some stats accummulate..?
after 2000
when you're ready, read some stats but just for the first 5 rows, let's say...
set fromRowIndex 0
set toRowIndex 5
if {[conditionalStats get $chassis $card $port $conditionId]} {
errorMsg "Error getting conditionalStats on port $chassis $card $port, condition =
$conditionId"
break
}
row stats to be returned in the format:
{{rowIndex $rowNumber} {$colName1 $colValue1} {$colName2 $colValue2} ... {$colNameN
$colValueN}}
foreach {set row 0} {$row < [conditionalTable cget -numResults]} {incr row} {
set rowList [conditionalStats getRow $row]
if {[llength $rowList]} {
errorMsg "Hmm... no stats for $row..."
break
}
array set rowArray [join $rowList]
foreach {columnName value} [join $rowList] {
ixPuts -nownewline [format "%-30s\t" $name]
}
ixPuts
foreach columnName [array names $rowArray] {
ixPuts -nonewline [format "%-30ld\t" $rowArray(columnName)]
}
ixPuts
}
after $abit
so now you decide to look at stats from a different set of conditions...
so I assume you have to stop & start different ones...?
if {[conditionalStats stop $chassis $card $port $conditionId_min]} {
errorMsg "Error stopping conditionalStats on port $chassis $card $port"
return "FAIL"
}
if {[conditionalStats start $chassis $card $port $conditionId_max]} {
errorMsg "Error starting conditionalStats on port $chassis $card $port"
return "FAIL"
}

SEE ALSO

conditionalTable

Appendix 1 IxTclHAL Commands

– 615 –

conditionalTable
conditionalTable - works together with conditionalStats to configure and retrieve the flow detective stats
from the port CPU.

SYNOPSIS

conditionalTable sub-command options

DESCRIPTION

The conditionalTable command is used to configure and manipulate the table of conditional stats (flow
detective stats).

STANDARD OPTIONS

columnNames

List of the names of the columns to retrieve.

enableAggregation

Enables/disables aggregation mode. Default = disabled.

filterExpression

The expression used for filtering the results. PGIDs for which the filter returns 0 is not included in the
results.

firstIndex

Only applies when in aggregation mode. The first bucket index to monitor. Default = 1.

firstResult

Either the first PGID to be reported (after sorting and filtering) or, if in aggregated mode, the first bucket
to report.

lastIndex

Only applies when in aggregation mode. The last bucket index to monitor. A value of -1 means 'until the
end' or 'all of them'.

mask

PGID mask to mask the filter PGIDs down further. Default = no mask.

numResults

Total number of results, or rows, to be reported (after sorting and filtering).

Appendix 1 IxTclHAL Commands

– 616 –

sort

Sorting direction::

Option Value Usage

conditionalTableSortDescending 0 (default) descending sort order

conditionalTableSortAscending 1 ascending sort order

sortingExpression

The expression used for sorting the PGIDs.

COMMANDS

The conditionalTable command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

conditionalTable cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the conditionalTable command.

conditionalTable config option value

Modify the Collision Backup configuration options of the port. If no option is specified, returns a list
describing all of the available Conditional Table options (see STANDARD OPTIONS) for port.

conditionalTable get requestID

Gets the conditional data associated with the parameter conditionID.

conditionalTable setDefault

Sets to IxTclHal default values for all configuration options.

conditionalTable set requestID

Sets the conditional data associated with the parameter conditionID.

conditionalTable removeAll requestID

Removes all conditions.

EXAMPLES

See example under conditionalStats

SEE ALSO

conditionalStats

Appendix 1 IxTclHAL Commands

– 617 –

customOrderedSet
customOrderedSet - configure a custom message for link fault signaling

SYNOPSIS

customOrderedSet sub-command options

DESCRIPTION

The customOrderedSet used to define the contents of two types of custom ordered sets: type A or type B.
These messages are inserted into a transmitted stream with the linkFaultSignaling command.

STANDARD OPTIONS

blockType

The block type of the message. (default = 0x4B)

byte1 - byte7

The remaining bytes of the message. (default = all 0's, except byte3=1)

syncBits

The sync bits for the message. (default = 2)

COMMANDS

The customOrderedSet command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

customOrderedSet cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the customOrderedSet command.

customOrderedSet config option value

Modify the configuration options of the ordered set type. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for port.

customOrderedSet get orderedSetType

Gets the current configuration of the indicated set, which should be one of.

Option Value Usage

linkFaultOrderedSetTypeA 0 Set type A.

linkFaultOrderedSetTypeB 1 Set type B.

customOrderedSet set orderedSetType

Appendix 1 IxTclHAL Commands

– 618 –

Sets the current configuration of the indicated ordered set, one of.

Option Value Usage

linkFaultOrderedSetTypeA 0 Set type A.

linkFaultOrderedSetTypeB 1 Set type B.

customOrderedSet setDefault

Sets to IxTclHal default values for all configuration options. Note: Both the type A and type B sets are
cleared.

EXAMPLES

See examples under linkFaultSignaling

SEE ALSO

linkFaultSignaling

dataIntegrity
dataIntegrity - configure the Data Integrity parameters.

SYNOPSIS

dataIntegrity sub-command options

DESCRIPTION

The dataIntegrity command is used to configure the parameters for Data Integrity operations for Gigabit
and OC-12/OC-48 ports. Data integrity values are additional checksums taken over a subset of a packet.
In order for data integrity to operate, receiveModeportRxDataIntegrity must be performed (and
committed).

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command are with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

enableTimeStamp
true/false

For receive-mode only. Indicates that the received data integrity packets are expected to have a 48-bit
timestamp before the FCS value. (default = false)

Appendix 1 IxTclHAL Commands

– 619 –

insertSignature
true/false

For transmit-mode only. Inserts the data integrity signature into the transmitted stream. (default = false)

signature

In the transmitted packet, the signature uniquely identifies the transmitted packet as one destined for
receive port data integrity filtering .. On the receive port, the signature is used to filter only those packets
that have a matching signature. (default = '08 71 18 05')

signatureOffset

The offset, within the packet, of the data integrity signature. (default = 40)

floatingTimestampAndDataIntegrityMode

Enables adding timestamp as part of floating instrumentation header, and addresses similar issue in Data
Integrity checking. (default = dataIntegrityNumberOfBytesFromEndOfFrame)

Option Value Usage

dataIntegrityNumberOfBytesFromEndOfFrame 0 (default) See
numBytesFromEndOfFrame option,
below

dataIntegrityPayloadLength 1 See payloadLength option, below

numBytesFromEndOf
Frame

Specify the number of padding bytes needed from the end of the frame. The number of padding bytes
remains fixed with changing frame sizes. (default = 4)

payloadLength

Specify the fixed data integrity payload length. This length will not change with changing frame sizes.
(default = 0)

COMMANDS

The dataIntegrity command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

dataIntegrity cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dataIntegrity command.

dataIntegrity config option value

Appendix 1 IxTclHAL Commands

– 620 –

Modify the Data Integrity configuration options of the port. If no option is specified, returns a list
describing all of the available Data Integrity options (see STANDARD OPTIONS) for port.

dataIntegrity getCircuitTx chasID cardID portID [circuitID] streamID

Gets the current configuration of the stream with id streamID in the circuit with circuitID on port portID,
card cardID, chassis chasID from its hardware.

dataIntegrity getQueueTx chasID cardID portID [queueID] streamID

Gets the current configuration of the stream with id streamID in the queue with queueID on port portID,
card cardID, chassis chasID from its hardware.

dataIntegrity getRx chasID cardID portID

Gets the current receive Data Integrity configuration of the port with id portID on card cardID, chassis
chasID. Call this command before calling dataIntegrity cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

dataIntegrity getTx chasID cardID portID streamID [streamType]

Gets the current transmit Data Integrity configuration of the stream with id portID on card cardID, chassis
chasID, stream streamID.

In the first form, the queueID indicates the particular queue for load modules which use multiple queues,
such as ATM cards.

In the second form, the type of stream (stream or flow) is selected. One of.

Option Value Usage

streamSequenceTypeAll 0 (default) Both streams and flows. This option can be used
for ports that do not use flows.

streamSequenceTypeStreams 1 Stream only.

streamSequenceTypeFlows 1 Flow only.

Call this command before calling dataIntegrity cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The stream does not exist

dataIntegrity setCircuitTx chasID cardID portID [circuitD] streamID

Sets the configuration of the stream with id streamID on its circuit circuitID on port portID, card cardID,
chassis chasID in IxHAL by reading the configuration option values set by the dataIntegrity config option
value command.

Appendix 1 IxTclHAL Commands

– 621 –

dataIntegrity setDefault

Sets to IxTclHal default values for all configuration options.

dataIntegrity setQueueTx chasID cardID portID [queueID] streamID

Sets the configuration of the stream with id streamID on its queue queueID on port portID, card cardID,
chassis chasID in IxHAL by reading the configuration option values set by the dataIntegrity config option
value command.

dataIntegrity setRx chasID cardID portID

Sets the receive Data Integrity configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the dataIntegrity config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

dataIntegrity setTx chasID cardID portID streamID [streamType]

Sets the transmit Data Integrity configuration of the stream with id portID on card cardID, chassis
chasID, and stream streamID by reading the configuration option values set by the dataIntegrity config
option value command.

In the first form, the queueID indicates the particular queue for load modules which use multiple queues,
such as ATM cards.

In the second form, the type of stream (stream or flow) is selected. One of.

Option Value Usage

streamSequenceTypeAll 0 (default) Both streams and flows. This option can be used
for ports that do not use flows.

streamSequenceTypeStreams 1 Stream only.

streamSequenceTypeFlows 1 Flow only.

After calling this command, the Data Integrity configuration should be committed to hardware using
stream write or ixWriteConfigToHardware commands. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting
l The stream does not exist

Appendix 1 IxTclHAL Commands

– 622 –

EXAMPLES
package require IxTclHal
In this example we'll use an OC12c card with port 1 (transmit) is
directly connected to port 2 (receive)
Data integrity is transmitted with a time stamp and received and checked
by the receive port
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assumes that card 2 is a OC12c card with ports 1 and 2 directly connected
set card 2
set txPort 1
set rxPort 2
Useful port lists
set portList [list [list $chas $card $txPort] \
[list $chas $card $rxPort]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up Transmit Port
Nothing special about the port
port setFactoryDefaults $chas $card $txPort
port setDefault
port set $chas $card $txPort
One port must use recovered clock and the other not
sonet setDefault

Appendix 1 IxTclHAL Commands

– 623 –

sonet config -useRecoveredClock true
sonet set $chas $card $txPort
Stream: 100,000 packets
stream setDefault
stream config -numFrames 100000
stream config -framesize 4148
stream config -fir true
stream config -dma stopStream
stream config -percentPacketRate 100
stream config -rateMode usePercentRate
stream set $chas $card $txPort 1
dataIntegrity setDefault
dataIntegrity config -insertSignature true
dataIntegrity setTx $chas $card $txPort 1
Set up the Receive Port
Set the receive mode to data integrity
port setFactoryDefaults $chas $card $rxPort
port setDefault
port config -receiveMode portRxDataIntegrity
port set $chas $card $rxPort
This port does not use recovered clock
sonet setDefault
sonet config -useRecoveredClock false
sonet set $chas $card $rxPort
Enable receive mode DI and expect a time stamp
dataIntegrity setDefault
dataIntegrity config -enableTimeStamp true
dataIntegrity setRx $chas $card $rxPort
Commit to hardware
ixWritePortsToHardware portList
Make sure link is up
after 1000
ixCheckLinkState portList
Clear stats on receive side and start transmitting
ixClearPortStats $chas $card $rxPort
ixStartPortTransmit $chas $card $txPort
after 1000
Wait until done
ixCheckPortTransmitDone $chas $card $txPort
Get the DI frames received and errors
stat get allStats $chas $card $rxPort
set diFrames [stat cget -dataIntegrityFrames]
set diErrors [stat cget -dataIntegrityErrors]
ixPuts "$diFrames Data Integrity Frames received, $diErrors errors"
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host

Appendix 1 IxTclHAL Commands

– 624 –

If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

dcc
dcc - configure the dcc parameters on a port.

SYNOPSIS

dcc sub-command options

DESCRIPTION

The dcc command is used to configure the DCC (Data Communications Channel) parameters associated
with a SONET port. The selection of where the DCC bytes are written (SOH or LOH), the type of CRC and
the time fill byte to be used are controlled.

STANDARD OPTIONS

crc

Selects the type of CRC generated in the DCC data. Available option values are:

Option Value Usage

dccCrc16 0 (default) 16-bit CRC

dccCrc32 1 32-bit CRC

overheadBytes

Selects the placement of DCC bytes in the SONET overhead. Available option values are:

Option Value Usage

dccSoh 0 (default) Data is placed in the section overhead.

dccLoh 1 Data is placed in the line overhead.

timeFill

Selects the type of fill byte to use. Available option values are:

Option Value Usage

dccTimeFillFlag7E 0 (default) Fill blank time with 0x7E bytes.

Appendix 1 IxTclHAL Commands

– 625 –

Option Value Usage

dccTimeFillMarkIdle 1 Fill blank time with 0xFF bytes.

COMMANDS

The dcc command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

dcc cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dcc command.

dcc config option value

Modify the configuration options of the dcc. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for dcc.

dcc get chasID cardID portID

Gets the current configuration of the dcc for port with id portID on card cardID, chassis chasID. from its
hardware. Call this command before calling dcc cget option value to get the value of the configuration
option.In order for this command to succeed, the port must either be unowned, or you must be logged in
as the owner of the port. Specific errors are:

l No connection to a chassis
l Invalid port number

dcc set chasID cardID portID

Sets the configuration of the dcc in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the dcc config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

dcc setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {

Appendix 1 IxTclHAL Commands

– 626 –

ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 27
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Need to be in a DCC mode via port
port setFactoryDefaults $chas $card $port
port config -transmitMode portTxModeDccStreams
if [port set $chas $card $port] {
ixPuts "Could not port set $chas $card $port"
}
Set to 32-bit CRC and use of Line Overhead
dcc setDefault
dcc config -crc dccCrc32
dcc config -overheadBytes dccLoh
if [dcc set $chas $card $port] {
ixPuts "Could not dcc set $chas $card $port"
}
ixWriteConfigToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 1 IxTclHAL Commands

– 627 –

SEE ALSO

port, stream

dhcp
dhcp - configure the DHCP parameters on a stream of a port.

SYNOPSIS

dhcp sub-command options

DESCRIPTION

The dhcp command is used to configure the DHCP parameters. Refer to RFC 2131 and RFC 2132 for
detailed descriptions of DHCP. Note that stream get must be called before this command's get sub-
command.

STANDARD OPTIONS

bootFileName

Boot file name, null terminated string; "generic" name or null in DHCPDISCOVER, fully qualified folder-
path name in DHCPOFFER.

clientHwAddr

Client hardware address. (default = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)

clientIpAddr

Client IP address. Only filled in if client is in BOUND, RENEW or REBINDING state and can respond to ARP
requests. (default = 0.0.0.0)

flags

Available option values are:

Option Value Usage

dhcpNoBroadcast 0 (default) Do not broadcast

dhcpBroadcast 0x8000 Broadcast

hops

Set to zero by client. (default = 0)

hwLen

Hardware address length. (default = 6)

Appendix 1 IxTclHAL Commands

– 628 –

hwType

Hardware address types. Available option values are:

Option Value Usage

dhcpEthernet10Mb 1 (default) Ethernet 10 Mb

dhcpEthernet3Mb 2 Ethernet 3 Mb

dhcpAmateur 3 Amateur radio AX.25

dhcpProteon 4 Proteon ProNET token ring

dhcpChaos 5 Chaos

dhcpIEEE 6 IEEE 802 networks

dhcpARCNET 7 ARCNET

dhcpHyperchannel 8 Hyperchannel

dhcpLanstar 9 LanStar

dhcpAutonet 10 Autonet short address

dhcpLocalTalk 11 LocalTalk

dhcpLocalNet 12 LocalNet

dhcpUltraLink 13 Ethernet

dhcpSMDS 14 SMDS

dhcpFrameRelay 15 Frame Relay

dhcpATM1 16 ATM

dhcpHDLC 17 HDLC

dhcpFibreChannel 18 Fibre Channel

dhcpATM2 19 ATM

dhcpSerialLine 20 Serial Line

dhcpATM3 21 ATM

opCode

Operation code. Available option values are:

Appendix 1 IxTclHAL Commands

– 629 –

Option Value Usage

dhcpBootRequest 1 (default) BOOTP request

dhcpBootReply 2 BOOTP reply

optionCode

The code field of the options section of the DHCP frame. Available codes are:

Option Value Usage

dhcpPad 0 (default)

dhcpEnd 255

dhcpSubnetMask 1

dhcpTimeOffset 2

dhcpGateways 3

dhcpTimeServer 4

dhcpNameServer 5

dhcpDomainNameServer 6

dhcpLogServer 7

dhcpCookieServer 8

dhcpLPRServer 9

dhcpImpressServer 10

dhcpResourceLocationServer 11

dhcpHostName 12

dhcpBootFileSize 13

dhcpMeritDumpFile 14

dhcpDomainName 15

dhcpSwapServer 16

dhcpRootPath 17

dhcpExtensionPath 18

Appendix 1 IxTclHAL Commands

– 630 –

IP Layer Parameters per Host

Option Value Usage

dhcpIpForwardingEnable 19

dhcpNonLocalSrcRoutingEnable 20

dhcpPolicyFilter 21

dhcpMaxDatagramReassemblySize 22

dhcpDefaultIpTTL 23

dhcpPathMTUAgingTimeout 24

IP Layer Parameters per Interface

Option Value Usage

dhcpPathMTUPlateauTable 25

dhcpInterfaceMTU 26

dhcpAllSubnetsAreLocal 27

dhcpBroadcastAddress 28

dhcpPerformMaskDiscovery 29

dhcpMaskSupplier 30

dhcpPerformRouterDiscovery 31

dhcpRouterSolicitAddr 32

dhcpStaticRoute 33

Link Layer Parameters per Interface

Option Value Usage

dhcpTrailerEncapsulation 34

dhcpARPCacheTimeout 35

dhcpEthernetEncapsulation 36

TCP Parameters

Appendix 1 IxTclHAL Commands

– 631 –

Option Value Usage

dhcpTCPDefaultTTL 37

dhcpTCPKeepAliveInterval 38

dhcpTCPKeepGarbage 39

Application And Service Parameters

Option Value Usage

dhcpNISDomain 40

dhcpNISServer 41

dhcpNTPServer 42

dhcpVendorSpecificInfo 43

dhcpNetBIOSNameSvr 44

dhcpNetBIOSDatagramDistSvr 45

dhcpNetBIOSNodeType 46

dhcpNetBIOSScope 47

dhcpXWinSysFontSvr 48

DHCP Extensions

Option Value Usage

dhcpRequestedIPAddr 50

dhcpIPAddrLeaseTime 51

dhcpOptionOverload 52

dhcpTFTPSvrName 66

dhcpBootFileName 67

dhcpMessageType 53

dhcpSvrIdentifier 54

dhcpParamRequestList 55

Appendix 1 IxTclHAL Commands

– 632 –

Option Value Usage

dhcpMessage 56

dhcpMaxMessageSize 57

dhcpRenewalTimeValue 58

dhcpRetryCountValue 4 The configurable retry count of the DHCP Extention
server.

dhcpRebindingTimeValue 59

dhcpVendorClassId 60

dhcpClientId 61

dhcpXWinSysDisplayMgr 49

dhcpNISplusDomain 64

dhcpNISplusServer 65

dhcpMobileIPHomeAgent 68

dhcpSMTPSvr 69

dhcpPOP3Svr 70

dhcpNNTPSvr 71

dhcpWWWSvr 72

dhcpDefaultFingerSvr 73

dhcpDefaultIRCSvr 74

dhcpStreetTalkSvr 75

dhcpSTDASvr 76

dhcpAgentInformationOption 82

dhcpNetwareIpDomain 62

dhcpNetworkIpOption 63

optionData

The data in the options section of the DHCP frame. Option data may either be set as a single value (for
example, 255.255.255.0), a stream of bytes (for example, {01 03 06 0F 2C 2E 2F 39}) or as a list of

Appendix 1 IxTclHAL Commands

– 633 –

enumerated values (for example, [list dhcpSubnetMask dhcpGateways dhcpDomainNameServer])
(default = { })

optionDataLength

The length of the data in the options section of the DHCP frame. (default = 0)

relayAgentIpAddr

Relay agent IP address, used in booting by a relay agent. (default = 0.0.0.0)

seconds

Seconds elapsed since client began address acquisition or renewal process. (default = 0)

serverHostName

Optional server host name, null terminated string. (default ="")

serverIpAddr

IP address of next server to use in bootstrap; returned in DHCPOFFER, DHCPACK by server. (default =
0.0.0.0)

transactionID

Random number chosen by client and used by the client and server to associate messages and responses
between a client and a server. (default = 0)

yourIpAddr

'your' (client) IP address. (default = 0.0.0.0)

COMMANDS

The dhcp command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

dhcp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcp command.

dhcp config option value

Modify the configuration options of the dhcp. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for arp.

dhcp decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. dhcp getOption command can be
used after decoding to get the option data. Specific errors are:

Appendix 1 IxTclHAL Commands

– 634 –

l No connection to a chassis
l The captured frame is not a valid DHCP packet

dhcp get chasID cardID portID

Gets the current configuration of the dhcp frame for port with id portID on card cardID, chassis chasID.
from its hardware. Note that stream get must be called before this command's get sub-command. Call
this command before calling dhcp cget option value to get the value of the configuration option. Specific
errors are:

l No connection to a chassis
l Invalid port number

dhcp getFirstOption

The first option is retrieved. Specific errors are:

l There are no more entries in the list.

dhcp getNextOption

The next option is retrieved. Specific errors are:

l getFirstOption has not been called yet.
l There are no more entries in the list.

dhcp getOption optionCodeType

Gets the option data for optionCodeType. Specific errors are:

l There is no option data for the optionCodeType.

dhcp set chasID cardID portID

Sets the configuration of the dhcp in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the dhcp config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

dhcp setDefault

Sets to IxTclHal default values for all configuration options.

dhcp setOption optionCodeType

Sets the option data for optionCodeType. Specific errors are:

l The configured parameters are not valid for this port

EXAMPLES
package require IxTclHal

Appendix 1 IxTclHAL Commands

– 635 –

In this example we'll generate a DHCP response packet
with a number of option fields
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume card to be used is in slot 1
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Put the port in loopback mode
port setFactoryDefaults $chas $card $port
port setDefault
Stream: 1 packet at 1%, with framesize large enough to hold all options
stream setDefault
stream config -numFrames 1
stream config -dma stopStream
stream config -rateMode usePercentRate
stream config -percentPacketRate 1
stream config -framesize 512
Set up IP: udp with 494 byte packet
ip setDefault
ip config -ipProtocol udp
ip config -totalLength 494
ip set $chas $card $port

Appendix 1 IxTclHAL Commands

– 636 –

Set up protocol
protocol setDefault
protocol config -name ipV4
protocol config -appName Dhcp
Set up UDP
udp setDefault
udp config -sourcePort bootpClientPort
udp config -destPort bootpServerPort
udp set $chas $card $port
Setup DHCP with options
dhcp setDefault
dhcp config -opCode dhcpBootReply
dhcp config -hwType dhcpEthernet10Mb
dhcp config -hwLen 6
dhcp config -flags dhcpBroadcast
dhcp config -yourIpAddr 192.168.18.154
dhcp config -serverIpAddr 192.168.18.2
dhcp config -clientHwAddr {01 02 03 04 05 06}
Options
dhcp config -optionData 255.255.255.0
dhcp setOption dhcpSubnetMask
dhcp config -optionData 192.168.18.254
dhcp setOption dhcpRouter
dhcp setOption dhcpGateways
dhcp config -optionData 192.168.18.2
dhcp setOption dhcpNameServer
dhcp config -optionData widgets.com
dhcp setOption dhcpDomainName
dhcp config -optionData {cc ee 22 11 33 ff}
dhcp setOption dhcpNetBIOSScope
dhcp config -optionData [list dhcpSubnetMask \
dhcpGateways \
dhcpDomainNameServer \
dhcpDomainName \
dhcpNetBIOSNameSvr \
dhcpNetBIOSNodeType \
dhcpNetBIOSScope]
dhcp setOption dhcpParamRequestList
dhcp set $chas $card $port
stream set $chas $card $port 1
port set $chas $card $port
ixWritePortsToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {

Appendix 1 IxTclHAL Commands

– 637 –

ixDisconnectTclServer $host
}

SEE ALSO

capture, captureBuffer

dhcpV4DiscoveredInfo
dhcpV4DiscoveredInfo - view discovered DHCP information

SYNOPSIS

dhcpV4DiscoveredInfo sub-command options

DESCRIPTION

The dhcpV4DiscoveredInfo command is used retrieve the DHCP negotiated values. The IP address,
gateway address, prefix length and renewal timer are all visible in STANDARD OPTIONS; all other options
are available as TLVs obtained by using getFirstTlv, getNextTlv and getTlv.

STANDARD OPTIONS

gatewayIpAddress

Read-only. The gateway address from the DHCP server.

ipAddress

Read-only. The IP address from the DHCP server.

prefixLength

Read-only. The prefix/mask length for the network, from the DHCP server.

leaseDuration

Read-only. The lease timer set by the DHCP server.

COMMANDS

The dhcpV4DiscoveredInfo command is invoked with the following sub-commands. If no sub-command is
used, returns a list of all sub-commands available.

dhcpV4DiscoveredInfo cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV4DiscoveredInfo command.

dhcpV4DiscoveredInfo getFirstTlv

The first TLV is retrieved. The values are available in the dhcpV4Tlv command. Specific errors are:

l There are no entries in the list.

Appendix 1 IxTclHAL Commands

– 638 –

dhcpV4DiscoveredInfo getNextTlv

The next TLV is retrieved. The values are available in the dhcpV4Tlv command. Specific errors are:

l There are no more entries in the list.

dhcpV4DiscoveredInfo getTlv index

The TLV at the specified index is retrieved. The index of the first entry is 1. The values are available in the
dhcpV4Tlv command. Specific errors are:

l The index'd entry does not exist in the list.
l Invalid index.
l There are no entries in the list.

EXAMPLES

See example under interfaceTable

SEE ALSO

interfaceTable, interfaceEntry, dhcpV4Properties, dhcpV4Tlv

dhcpV4Properties
dhcpV4Properties - describe/view DHCP properties for an interface entry

SYNOPSIS

dhcpV4Properties sub-command options

DESCRIPTION

The dhcpV4Properties command is used in two contexts:

l When a new interfaceEntry is added to the interfaceTable, the values from this command are
associated with the entry.

l When an existing interface is retrieved with interfaceTable get*Interface and the enableDhcp option
in the interfaceEntry is true. The values associated with the interface entry are made available in
this command.

Four standard DHCP options are set in the STANDARD OPTIONS below, others may be set as TLVs using
dhcpV4Tlv and the addTlv sub-command.

STANDARD OPTIONS

clientId

The client identifier, which must be unique for the subnet that the interface is connected to. If this is not
set, the MAC address of the protocol interface entry is used. (default = "")

Appendix 1 IxTclHAL Commands

– 639 –

renewTimer

The requested value for the renewal time, in seconds. The actual value used in the lower of this value and
the release time set by the DHCP server. (default = 0)

relayAgentAddress

The IP address of the DHCPv4 relay agent. This is only valid for unconnected interfaces.

relayDestination
Address

The destination IP address for DHCPv4 relay messages. This is only valid for unconnected interfaces.

retryCount

The configurable retry count of the DHCP server. (default = 4)

serverId

If specified as a non-zero value, DHCP negotiation only occurs with a particular server. This entry should
be specified as an IPv4 address. (default = 0.0.0.0)

vendorId

The vendor Id associated with the client. (default = "")

COMMANDS

The dhcpV4Properties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

dhcpV4Properties addTlv

The DHCP TLV specified in dhcpV4Tlv is added to this property set. Specific errors are:

l Invalid TLV parameters.

dhcpV4Properties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV4Properties command.

dhcpV4Properties config option value

Modify the configuration options of the dhcpV4Properties. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for dhcpV4Properties.

dhcpV4Properties delTlv index

The TLV associated with this DHCP property set at the specified index is deleted. The index of the first
entry is 1. The values are available in the dhcpV4Tlv command. Specific errors are:

Appendix 1 IxTclHAL Commands

– 640 –

l The index'd entry does not exist in the list.
l Invalid index.

dhcpV4Properties getFirstTlv

The first TLV associated with this DHCP property set is retrieved. The values are available in the
dhcpV4Tlv command. Specific errors are:

l There are no entries in the list.

dhcpV4Properties getNextTlv

The next TLV associated with this DHCP property set is retrieved. The values are available in the
dhcpV4Tlv command. Specific errors are:

l There are no more entries in the list.

dhcpV4Properties getTlv index

The TLV associated with this DHCP property set at the specified index is retrieved. The index of the first
entry is 1. The values are available in the dhcpV4Tlv command. Specific errors are:

l The index'd entry does not exist in the list.

dhcpV4Properties removeAllTlvs

Deletes all of the TLVs associated with this DHCP property set.

dhcpV4Properties setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under interfaceTable

SEE ALSO

interfaceTable, interfaceEntry, dhcpV4DiscoveredInfo

dhcpV4Tlv
dhcpV4Tlv - describe/view a single DHCP option

SYNOPSIS

dhcpV4Tlv sub-command options

DESCRIPTION

The dhcpV4Tlv command is used in three contexts:

l When a new TLV (type-length-value) is added to a dhcpV4Properties set. Values are taken from the
options in this command.

Appendix 1 IxTclHAL Commands

– 641 –

l When an existing TLV is retrieved with dhcpV4Properties get*Tlv. The TLV values are visible in this
command.

l When the negotiated DHCP options are retrieved with interfaceTable getDhcpV4DiscoveredInfo and
the dhcpV4DiscoveredInfo command. The TLV values are visible in this command.

A TLV should include DHCP options defined in RFC 2132.

STANDARD OPTIONS

type

The type of the DHCP option. One of the values defined in RFC 2132. (default = 0)

value

A string consisting of hexadecimal characters. Each pair of characters defines a byte value. The length of
the TLV is set from the length of the value string, divided by 2. (default = "")

COMMANDS

The dhcpV4Tlv command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

dhcpV4Tlv cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV4Tlv command.

dhcpV4Tlv config option value

Modify the configuration options of the dhcpV4Tlv. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for dhcpV4Tlv.

dhcpV4Tlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under interfaceTable

SEE ALSO

interfaceTable, interfaceEntry, dhcpV4DiscoveredInfo, dhcpV4Properties

dhcpV6DiscoveredInfo
dhcpV6DiscoveredInfo - view discovered DHCPv6 information

SYNOPSIS

dhcpV6DiscoveredInfo sub-command options

Appendix 1 IxTclHAL Commands

– 642 –

DESCRIPTION

The dhcpV6DiscoveredInfo command is used retrieve the DHCPv6 negotiated values. Options are
available as TLVs obtained by using getFirstTlv, getNextTlv and getTlv.

STANDARD OPTIONS

discoveredAddressList

Read-only. A list of discovered IP addresses.

iaRebindTime

Read-only. The rebind timer value specified by the DHCPv6 Server, in seconds.

iaRenewTime

Read-only. The renew timer value specified by the DHCPv6 Server, in seconds.

COMMANDS

The dhcpV4DiscoveredInfo command is invoked with the following sub-commands. If no sub-command is
used, returns a list of all sub-commands available.

dhcpV6DiscoveredInfo cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV4DiscoveredInfo command.

dhcpV6DiscoveredInfo getFirstTlv

The first TLV is retrieved. The values are available in the dhcpV6Tlv command. Specific errors are:

l There are no entries in the list.

dhcpV6DiscoveredInfo getNextTlv

The next TLV is retrieved. The values are available in the dhcpV6Tlv command. Specific errors are:

l There are no more entries in the list.

dhcpV6DiscoveredInfo getTlv index

The TLV at the specified index is retrieved. The index of the first entry is 1. The values are available in the
dhcpV6Tlv command. Specific errors are:

l The index'd entry does not exist in the list.
l Invalid index.
l There are no entries in the list.

dhcpV6DiscoveredInfo setDefault index

Sets the DHCPv6 values back to their defaults.

Appendix 1 IxTclHAL Commands

– 643 –

EXAMPLES

See example under dhcpV6Tlv

SEE ALSO

interfaceTable, interfaceEntry, dhcpV6Tlv

dhcpV6Properties
dhcpV6Properties - describe/view DHCP properties for an interface entry

SYNOPSIS

dhcpV6Properties sub-command options

DESCRIPTION

The dhcpV6Properties command is used in two contexts:

l When a new interfaceEntry is added to the interfaceTable, the values from this command are
associated with the entry.

l When an existing interface is retrieved with interfaceTable get*Interface and the enableDhcp option
in the interfaceEntry is true. The values associated with the interface entry are made available in
this command.

Standard DHCPv6 options are set in the STANDARD OPTIONS below, others may be set as TLVs using
dhcpV6Tlv and the addTlv sub-command.

STANDARD OPTIONS

iaID

The client identifier, which must be unique for the subnet that the interface is connected to. If this is not
set, the MAC address of the protocol interface entry is used. (default = "")

iaType

The type of DHCPv6 address. Values are:

Option Value Usage

dhcpV6IaTypeTemporary 0 A temporary IA address.

dhcpV6IaTypePermanent 1 A permanent IA address.

dhcpV6IaTypePrefixDelegation 2 An address that carries a DHCPv6 prefix

relayLinkAddress

The IP address of the DHCPv6 relay link.

Appendix 1 IxTclHAL Commands

– 644 –

relayDestination
Address

The IP address for DHCPv6 relay messages.

renewTimer

The requested value for the renewal time, in seconds. The actual value used in the lower of this value and
the release time set by the DHCPv6 server. (default = 0)

COMMANDS

The dhcpV6Properties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

dhcpV6Properties addTlv

The DHCPv6 TLV specified in dhcpV6Tlv is added to this property set. Specific errors are:

l Invalid TLV parameters.

dhcpV6Properties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV6Properties command.

dhcpV6Properties config option value

Modify the configuration options of the dhcpV6Properties. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for dhcpV4Properties.

dhcpV6Properties delTlv index

The TLV associated with this DHCPv6 property set at the specified index is deleted. The index of the first
entry is 1. The values are available in the dhcpV6Tlv command. Specific errors are:

l The index'd entry does not exist in the list.
l Invalid index.

dhcpV6Properties getFirstTlv

The first TLV associated with this DHCPv6 property set is retrieved. The values are available in the
dhcpV6Tlv command. Specific errors are:

l There are no entries in the list.

dhcpV6Properties getNextTlv

The next TLV associated with this DHCPv6 property set is retrieved. The values are available in the
dhcpV6Tlv command. Specific errors are:

l There are no more entries in the list.

dhcpV6Properties getTlv index

Appendix 1 IxTclHAL Commands

– 645 –

The TLV associated with this DHCPv6 property set at the specified index is retrieved. The index of the first
entry is 1. The values are available in the dhcpV6Tlv command. Specific errors are:

l The index'd entry does not exist in the list.

dhcpV6Properties removeAllTlvs

Deletes all of the TLVs associated with this DHCPv6 property set.

dhcpV6Properties setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under interfaceTable

SEE ALSO

interfaceTable, interfaceEntry, dhcpV6DiscoveredInfo.

dhcpV6Tlv
dhcpV6Tlv - describe/view a single DHCPv6 option

SYNOPSIS

dhcpV6Tlv sub-command options

DESCRIPTION

The dhcpV6Tlv command is used in three contexts:

l When a new TLV (type-length-value) is added to a dhcpV6Properties set. Values are taken from the
options in this command.

l When an existing TLV is retrieved with dhcpV6Properties get*Tlv. The TLV values are visible in this
command.

l When the negotiated DHCP options are retrieved with interfaceTable getDhcpV4DiscoveredInfo and
the dhcpV6DiscoveredInfo command. The TLV values are visible in this command.

A TLV should include DHCPv6 options defined in RFC 2132.

STANDARD OPTIONS

type

The type of the DHCPv6 option. One of the values defined in RFC 2132. (default = 0)

value

A string consisting of hexadecimal characters. Each pair of characters defines a byte value. The length of
the TLV is set from the length of the value string, divided by 2. (default = "")

Appendix 1 IxTclHAL Commands

– 646 –

COMMANDS

The dhcpV6Tlv command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

dhcpV6Tlv cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the dhcpV6Tlv command.

dhcpV6Tlv config option value

Modify the configuration options of the dhcpV6Tlv. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for dhcpV6Tlv.

dhcpV6Tlv setDefault

Sets to IxTclHal efault values for all configuration options.

EXAMPLES

See example under interfaceTable

SEE ALSO

interfaceTable, interfaceEntry, dhcpV6DiscoveredInfo, dhcpV6Properties

discoveredAddress
discoveredAddress - access discovered IP addresses.

SYNOPSIS

discoveredAddress sub-command options

DESCRIPTION

The discoveredAddress command holds an IPv4 or IPv6 address associated with an interface (as retrieved
in discoveredList) or the IPv4/IPv6 address associated with a neighbor (as retrieved in
discoveredNeighbor).

STANDARD OPTIONS

ipAddress

(Read-only) The retrieved IPv4 or IPv6 address, as a character string.

COMMANDS

The discoveredList command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

discoveredAddress cget option

Appendix 1 IxTclHAL Commands

– 647 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the discoveredList command.

EXAMPLES

See examples under interfaceTable

SEE ALSO

discoveredList
discoveredList - access discovered neighbors and interface addresses.

SYNOPSIS

discoveredList sub-command options

DESCRIPTION

The discoveredList command must be preceded with use of three commands in the interfaceTable
command: sendRouterSolicitation, requestDiscoveredTable and getDiscoveredList. The discoveredList
command is used to look through two lists associated with an interface:

l Neighbor list: contains a list of discovered neighbors, each of which contains a MAC address and a
list of IP addresses.

l Address list: contains the list of IP addresses associated with the interface.

STANDARD OPTIONS

none

COMMANDS

The discoveredList command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

discoveredList getFirstAddress

Gets the first address associated with the interface, which can be accessed with the discoveredAddress
command. Specific errors are:

l Required commands have not been called.
l The list is empty.

discoveredList getFirstNeighbor

Gets the data concerning the first discovered neighbor in the list, which can be accessed with the
discoveredNeighbor command. Specific errors are:

l Required commands have not been called.
l The list is empty.

discoveredList getNextAddress

Appendix 1 IxTclHAL Commands

– 648 –

Gets the next address associated with the interface, which can be accessed with the discoveredAddress
command. Specific errors are:

l getFirstAddress has not been called.
l There are no more objects in the list.

discoveredList getNextNeighbor

Gets the data concerning the next discovered neighbor in the list, which can be accessed with the
discoveredNeighbor command. Specific errors are:

l getFirstNeighbor has not been called.

discoveredListgetNeighbor ipAddress

Gets the data concerning the discovered neighbor in the list which has an interface address that matches
ipAddress. The neighbor can be accessed with the command. Specific errors are:

l There is no object with this ID.
l Required commands have not been called.

EXAMPLES

See examples under interfaceTable

SEE ALSO

discoveredNeighbor
discoveredNeighbor - access discovered neighbors.

SYNOPSIS

discoveredNeighbor sub-command options

DESCRIPTION

The discoveredNeighbor command holds an entry for each neighbor discovered as a result of router
discovery or neighbor discovery announcements. Each neighbor entry has:

l MAC address: the MAC address of the discovered interface.
l Router flag: if the neighbor is a router.
l Address list: a list of IP addresses associated with the neighbor's interface, accessed with the
discoveredAddress command.

STANDARD OPTIONS

isRouter

(Read-only). Set to true if the neighbor is a router and false otherwise.

Appendix 1 IxTclHAL Commands

– 649 –

macAddress

(Read-only). The retrieved MAC address, as a character string in the form XX:XX:XX:XX:XX:XX.

COMMANDS

The discoveredNeighbor command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

discoveredNeighbor cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the discoveredNeighbor command.

discoveredNeighbor getFirstAddress

Gets the first address associated with the neighbor, which can be accessed with the discoveredAddress
command. Specific errors are:

l Required commands have not been called.
l The list is empty.

discoveredNeighbor getNextAddress

Gets the next address associated with the neighbor, which can be accessed with the discoveredAddress
command. Specific errors are:

l getFirstAddress has not been called.
l There are no more objects in the list.

EXAMPLES

See examples under interfaceTable

SEE ALSO

discoveredList, discoveredAddress

encHeader
encHeader-inserts Encapsulation Extended Header (ENC Header) in a fibre channel packet

SYNOPSIS

encHeader sub-command options

DESCRIPTION

The Encapsulation Extended Header (ENC Header) is used to transmit frames between Inter-Fabric
Routers when connected through an FC-SW-3 or FC-SW-4 compliant fabric. To preserve backward
compatibility, the Inter-Fabric Routers appear as N_Ports to the FC-SW-3 or FC-SW-4 compliant Fabric.

Appendix 1 IxTclHAL Commands

– 650 –

STANDARD OPTIONS

destinationId

The Destination ID (D_ID) is a three-byte field (Word 0, Bits 23-0) that contains the address identifier of
the destination Nx_Port.

routingControl

The R_CTL field is a one-byte field that contains routing bits and information bits to categorize the frame
function.

This field is set to the value 52h to identify the IFR_Header.

sourceId

The Source ID (S_ID) is a three-byte field that contains the address identifier of the source Nx_Port.

csControlOrPriority

CS_CTL field is controlled by the CS_CTL/Priority Enable bit (F_CTL, bit 17).

frameControl

The Frame Control (F_CTL) field (Word 2, Bits 23-0) is a three-byte field that contains control information
relating to the frame content. If an error in bit usage is detected, a reject frame (P_RJT) is transmitted in
response with an appropriate reason code for Class 1, Class 2, and Class 6.

type

The data structure type is a one-byte field that identifies the protocol of the frame content for Data
frames.

sequenceCount

The Sequence Count is a two-byte field that indicates the sequential order of Data frame transmission
within a single Sequence or multiple consecutive Sequences for the same Exchange. The SEQ_CNT of the
first Data frame of the first Sequence of the Exchange transmitted by either the Originator or Responder
is binary zero. The SEQ_CNT of each subsequent Data frame in the Sequence is incremented by one.

dataFieldControl

Data Field Control (DF_CTL) is a one-byte field that specifies the presence of optional headers at the
beginning of the Data_Field.

sequenceId

The Sequence ID (SEQ_ID) is a one-byte field (Word 3, Bits 31-24) assigned by the Sequence Initiator.

Appendix 1 IxTclHAL Commands

– 651 –

responderExchangeId

The Responder Exchange_ID is a two byte field assigned by the Responder that provides a unique, locally
meaningful identifier at the Responder for an Exchange established by an Originator and identified by an
OX_ID.

originatorExchangeId

The Originator Exchange_ID (OX_ID) is a two-byte field (Word 4, Bits 31-16) that identifies the
Exchange_ID assigned by the Originator of the Exchange.

parameter

The Parameter type has meanings based on frame type. For Link_Control frames, the Parameter type is
used to carry information specific to the individual Link_Control frame. For Data frames with the relative
offset present bit set to 1, the Parameter type specifies relative offset. For Data frames with the relative
offset Present bit set to zero, the Parameter type is set and interpreted in a protocol specific manner that
may depend on the type of Information Unit carried by the frame.

EXAMPLES

See under fhbreChannel

SEE ALSO

fibreChannel

espHeader
espHeader-inserts Encapsulating Security Payload (ESP) header in a fibre channel packet

SYNOPSIS

espHeader sub-command options

DESCRIPTION

Encapsulating Security Payload (ESP) is a generic mechanism to provide confidentiality, data origin
authentication, and anti-replay protection to IP packets. ESP is applied to Fibre Channel frames in
transport mode.

STANDARD OPTIONS

sequenceNumber

It is an unsigned 32-bit field that contains a counter value that increases by one for each packet sent, as
per the source address packet sequence number.

Appendix 1 IxTclHAL Commands

– 652 –

securityParameter
Index

It is a 32-bit value that is used by a receiver to identify the source address to which an incoming packet is
bound. The SPI field is mandatory in an ESP header.

EXAMPLES

See under fibreChannel

SEE ALSO

fibreChannel

extendedLinkServices
extendedLinkServices-inserts Extended Link Services (ELS) protocols in a fibre channel module

SYNOPSIS

extendedLinkServices sub-command options

DESCRIPTION

An Extended Link Service (ELS) request solicits a destination Nx_Port to perform a function. An ELS reply
is transmitted in response to an ELS request, unless otherwise specified. Each request or reply is
composed of a single Sequence with the ELS_Command code being specified in the first word of the
Payload of the first frame of the Sequence.

STANDARD OPTIONS

fcElsProtocolType

The Extended Link Services protocol types are as follows:

Option Usage

ElsFlogi Sets Fabric Login (FLOGI) ELS Service Parameters.

ElsPlogi Sets Process Login (PLOGI) ELS Service Parameters.

ElsFdisc Sets the Discover F_Port Service (FDISC) ELS Service Parameters.

ElsLsAcc Sets the Link Service Accept (LS_ACC) ELS Service Parameters.

ElsLogo Sets the Link Service Accept (LS_ACC) ELS Service Parameters.

ElsScr Sets the State Change Registration (SCR) ELS Service Parameters.

ElsLsRjt Sets the Link Service Reject (LS_RJT) ELS Service Parameters.

Appendix 1 IxTclHAL Commands

– 653 –

Option Usage

ElsRscn Sets the Registered State Change Notification (RSCN) ELS Service Parameters.

elsFlogi

The Fabric Login (FLOGI) ELS transfers Service Parameters from the initiating Nx_Port to the FC_Port
associated with the D_ID. The FLOGI frame provides the means by which an Nx_Port requests Login with
the Fabric. Login with the Fabric is required for all Nx_Ports, regardless of the class supported.
Communication with other Nx_Ports is not attempted until the Fabric Login procedure is complete.

The options are as follows:

Option Usage

bufferToBufferCredit It is the limiting value for BB_Credit_CNT in the buffer-to-buffer flow control
model.

If a Fabric is present, FLOGI initializes the buffer-to-buffer Credit.

bbScNumber The Buffer-to-buffer State Change Number (BB_SC_N) field specifies the
Buffer-to-buffer State Change Number. It indicates that the sender of the
FLOGI frame is requesting 2BB_SC_N number of frames to be sent between
two consecutive BB_SCs primitives, and 2BB_SC_N number of R_RDY
primitives to be sent between two consecutive BB_SCr primitives.

receiveDataFieldSize The field size of the data received from the FC_Port.

portWWN The eight-byte field that identifies an FC_Port.

nodeWWN The eight-byte name identifier associated with a node.

eDTOV The EDTOV value.

elsPlogi

The PLOGI ELS transfers Service Parameters from the initiating Nx_Port to the FC_Port associated with
the D_ID. The PLOGI frame provides the means by which an Nx_Port requests Login with another Nx_Port
prior to other Data frame transfers.

The options are as follows:

Option Usage

bufferToBufferCredit It is the limiting value for BB_Credit_CNT in the buffer-to-buffer flow control
model.

If a Fabric is present, FLOGI initializes the buffer-to-buffer Credit.

bbScNumbe The Buffer-to-buffer State Change Number (BB_SC_N) field specifies the
Buffer-to-buffer State Change Number. It indicates that the sender of the

Appendix 1 IxTclHAL Commands

– 654 –

Option Usage

PLOGI frame is requesting 2BB_SC_N number of frames to be sent between
two consecutive BB_SCs primitives, and 2BB_SC_N number of R_RDY
primitives to be sent between two consecutive BB_SCr primitives.

receiveDataFieldSize The field size of the data received from the FC_Port.

portWWN The eight-byte field that identifies an FC_Port.

nodeWWN The eight-byte name identifier associated with a node.

eDTOV The EDTOV value.

elsFdisc

The Discover F_Port Service Parameters (FDISC) ELS transfers Service Parameters from the initiating
Nx_Port to the Fx_Port at well-known F_Port_ID. This provides the means for the exchange of Service
Parameters and the assignment of an additional N_Port_IDs without changing service parameters.

The options are as follows:

Option Usage

bufferToBufferCredit It is the limiting value for BB_Credit_CNT in the buffer-to-buffer flow control
model.

If a Fabric is present, FLOGI initializes the buffer-to-buffer Credit.

bbScNumber The Buffer-to-buffer State Change Number (BB_SC_N) field specifies the
Buffer-to-buffer State Change Number. It indicates that the sender of the
PLOGI frame is requesting 2BB_SC_N number of frames to be sent between
two consecutive BB_SCs primitives, and 2BB_SC_N number of R_RDY
primitives to be sent between two consecutive BB_SCr primitives.

receiveDataFieldSize The field size of the data received from the FC_Port.

portWWN The eight-byte field that identifies an FC_Port.

nodeWWN The eight-byte name identifier associated with a node.

eDTOV The EDTOV value.

elsLsAcc

The Link Service Accept (LS_ACC) ELS reply Sequence notifies the originator of an ELS request that the
ELS request Sequence has been completed. The Responder terminates the Exchange by setting the Last
Sequence bit (Bit 20) in F_CTL on the last Data frame of the reply Sequence. The first byte of the Payload
contains 02h. The remainder of the Payload is unique to the ELS request.

The options are as follows:

Appendix 1 IxTclHAL Commands

– 655 –

Option Usage

bufferToBufferCredit It is the limiting value for BB_Credit_CNT in the buffer-to-buffer flow control
model.

If a Fabric is present, FLOGI initializes the buffer-to-buffer Credit.

bbScNumber The Buffer-to-buffer State Change Number (BB_SC_N) field specifies the
Buffer-to-buffer State Change Number. It indicates that the sender of the
PLOGI frame is requesting 2BB_SC_N number of frames to be sent between
two consecutive BB_SCs primitives, and 2BB_SC_N number of R_RDY
primitives to be sent between two consecutive BB_SCr primitives.

receiveDataFieldSize The field size of the data received from the FC_Port.

portWWN The eight-byte field that identifies an FC_Port.

nodeWWN The eight-byte name identifier associated with a node.

eDTOV The EDTOV value.

elsLogo

The LOGO ELS provides a method for explicitly removing service between two Nx_Port_IDs or between an
N_Port_ID and a Fabric. Logout releases resources, identifiers, and relationships associated with
maintaining service between an Nx_Port_ID and a destination Nx_Port_ID or Fabric.

The options are as follows:

Option Usage

portId The unique address identifier of the FC Port.

portName The eight-byte field that identifies the FC Port.

elsScr

The State Change Registration (SCR) ELS requests the Fabric Controller or Nx_Port to add the Nx_Port
that is sending the SCR Request to the list of Nx_Ports registered to receive the RSCN ELS.

The options are as follows:

Option Usage

registrationFunction The Registration Functions for SCR.

fcElsScrRegFunction

The Registration Functions for SCR ELS.

The options are as follows:

Appendix 1 IxTclHAL Commands

– 656 –

Option Usage

elsScrReserved The reserved format with value 0.

elsScrFabricDetectedRegistration Register to receive all RSCN Requests issued by the Fabric
Controller for events detected by the Fabric.

elsScrNxPortDetectedRegistration Register to receive all RSCN Requests issued for events detected
by the affected Nx_Port.

elsScrFullRegistration Register to receive all RSCN Requests issued. The RSCN Request
returns all affected N_Port_ID pages.

elsScrClearRegistration Removes any current RSCN registrations.

elsLsRjt

The Link Service Reject (LS_RJT) notifies the transmitter of a Link Service request that the Link Service
request Sequence has been rejected. A four-byte reason code is contained in the Data Field. Link Service
Reject is transmitted for a variety of conditions that are unique to a specific Link Service request. For
example, if the Service Parameters specified in a Login frame were logically inconsistent or in error, a P_
RJT frame would not be transmitted in response, but rather a Link Service Reject.

The options are as follows:

Option Usage

FcElsRjtReasonCode The ELS LS_RJT reason codes.

FcElsRjtReasonCode

The ELS LS_RJT reason codes.

The options are as follows:

Option Usage

elsRjtInvalidELSCommandcode The ELS_Command code in the Sequence being rejected is
invalid.

elsRjtLogicalError The request identified by the ELS_Command code and Payload
content is invalid or logically inconsistent for the conditions
present.

elsRjtLogicalbusy The Link Service is logically busy and unable to process the
request at this time.

elsRjtProtocolError This indicates that an error has been detected that violates the
rules of the ELS Protocol that are not specified by other error
codes.

Appendix 1 IxTclHAL Commands

– 657 –

Option Usage

elsRjtUnableToPerformCommand The Recipient of a Link Service command is unable to perform
the request at this time.

elsRjtCommandNotSupported The Recipient of a Link Service command does not support the
command requested.

elsRjtCommandAlreadyInProgress The command progress is tracked.

elsRjtVendorSpecificError The Vendor specific error bits may be used by Vendors to
specify additional reason codes.

elsRscn

The Registered State Change Notification (RSCN) ELS is sent to registered Nx_Ports when an event occurs
that may have affected the state of one or more Nx_Ports, or the ULP state within the Nx_Port. The term,
state, is used here to refer to any condition of an Nx_Port that is considered important enough to notify
other Nx_Ports of a change in that state. The RSCN provides an indication of the change of state that is
being reported.

The options are as follows:

Option Usage

pageLength The length in bytes of an affected Port_ID page. This value is fixed at 04h.

payLoadLength The length in bytes of the entire Payload, inclusive of the word 0. This value is a
multiple of 4 bytes. The minimum value of this field is 8 bytes. The maximum value
of this field is 1024 bytes.

COMMANDS

The extendedLinkServices command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

extendedLinkServices setDefault option

Sets to IxTclHal default values for all configuration options.

extendedLinkServices set option

Sets the current configuration of the extendedLinkServices for the indicated port. Call this command
before calling extendedLinkServices get option value to get the value of the configuration option.

extendedLinkServices get option

Gets the current configuration of the extendedLinkServices for the indicated port.

EXAMPLES

See under fibreChannel

Appendix 1 IxTclHAL Commands

– 658 –

SEE ALSO

fibreChannel

fcEOF
fcEOF-insert Fibre Channel End-of-Frame (EOF) delimiter. It is an Ordered Set that immediately follows
the CRC.

SYNOPSIS

fcEOF sub-command options

DESCRIPTION

The End-of-Frame (EOF) delimiter is an Ordered Set that immediately precedes the frame content.

STANDARD OPTIONS

fcEOFDelimiter

The multiple EOF delimiters defined for Sequence control are as follows:

Option Usage

fcEOFt The EOFt indicates that the Sequence associated with this SEQ_ID is complete. EOFt or
EOFdt is used to properly close a Sequence without error.

fcEOFdt EOFdt is used to properly close a Sequence without error.

fcEOFa The EOFa terminates a partial frame due to a malfunction in a link facility during
transmission.

fcEOFn The EOFn identifies the end of frame when one of the other EOF delimiters indicating valid
frame content is not required.

fcEOFni EOFni replaces an EOFn or EOFt, indicating that the frame content is invalid.

fcEOFdti EOFdti is used to properly close a Sequence without error.

fcEOFrt The EOFrt removes a dedicated connection through a Fabric. The connection is removed
and terminated.

fcEOFrti Remove Terminate Invalid: The EOFrti replaces a recognized EOFrt delimiter on a frame of
invalid frame content.

COMMANDS

The fcEOF command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcEOF setDefault option

Appendix 1 IxTclHAL Commands

– 659 –

Sets to IxTclHal default values for all configuration options.

fcEOF set option

Sets the current configuration of the fcEOF for the indicated port. Call this command before calling fcEOF
get option value to get the value of the configuration option.

fcEOF get option

Gets the current configuration of the fcEOF for the indicated port.

EXAMPLES

See under fibreChannel

SEE ALSO

fibreChannel

fcNameServer
fcNameServer-The FC Name Server command enables to setup the configurable parameters for the Name
Server.

SYNOPSIS

fcNameServer sub-command options

DESCRIPTION

The fcNameServer command is used to send name server queries to the Fibre Channel module.

STANDARD OPTIONS

enableRnnId
true/false

The RNN_ID Name Server request is used to associate a Node Name with a given Port Identifier (default =
true).

enableRcsId
true/false

The RCS_ID Name Server request is used to record the Classes of Service that are supported by a given
Port Identifier (default = false).

enableRftId
true/false

The RFT_ID Name Server request is used to record the FC-4 TYPEs that are supported by a given Port
Identifier (default = true).

Appendix 1 IxTclHAL Commands

– 660 –

enableRpnId
true/false

The RPN_ID Name Server request is used to record the Port Name that is supported by a given Port
Identifier (default = false).

enableRptId
true/false

The RPT_ID Name Server request is used to record the Port Type that is supported by a given Port
Identifier (default = false).

enableRspnId
true/false

The RSPN_ID Name Server request is used to associate a Symbolic Port Name with a given Port Identifier
(default = false).

enableRsnnNn
true/false

The RSNN_NN Name Server request is used to associate a Symbolic Node Name with a given Node Name
(default = false).

enableRhaId
true/false

The RHA_ID Name Server request is used to associate a Hard Address with a given Port Identifier (default
= false).

symbolicPortName

A user-defined string to identify a port, for example 'Ixia Port 1'.

symbolicNodeName

A user-defined string to identify a node, for example 'Ixia Node 1'.

COMMANDS

The fcNameServer command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

fcNameServercget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcNameServer command.

fcNameServer config option value

Appendix 1 IxTclHAL Commands

– 661 –

Modify the fcNameServer configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

fcNameServer setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under fibreChannel

SEE ALSO

fibreChannel

fcNameServerQuery
fcNameServerQuery-The FC Name Server Query sends name server queries to the Fibre Channel module.

SYNOPSIS

fcNameServerQuery sub-command options

DESCRIPTION

The fcNameServerQuery command is used to send name server queries to the Fibre Channel module.

STANDARD OPTIONS

fcNameServerQuery Command

Allows to set the name server queries for Fibre Channel. The type of commands are as follows:

Option Value Usage

commandGANxt 256 The GA_NXT is used by a requestor to obtain Name Server objects
associated with a specific Port.

commandGIDA 257 When the Name Server receives a GID_A request, it returns identifiers
for the specified scope.

commandGPNId 274 When the Name Server receives a GPN_ID request, it returns the
registered Port Name object for the specified Port Identifier.

commandGNNId 275 When the Name Server receives a GNN_ID request, it returns the
registered Node Name object for the specified Port Identifier.

commandGIDPn 299 When the Name Server receives a GID_PN request, it returns the Port
Identifier associated with the specified Port Name.

commandGIDPt 417 When the Name Server receives a GID_PT request, it returns all Port
Identifiers having registered support for the specified Port Type. If the

Appendix 1 IxTclHAL Commands

– 662 –

Option Value Usage

specified Port Type is equal to 'Nx_Port', then the Name Server returns
all Port Identifiers that have registered Port Types with an unsigned
value of less than 80h.

fcNameServerQuery
Object

Depends on the query command code. The types of name server query objects are as follows:

Option Value Usage

objectPortId 1 The Port Identifier.

objectPortName 2 Indicates the port name.

objectPortType 3 Indicates the port type.

objectNone 0

COMMANDS

The fcNameServerQuery command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

fcNameServerQuery set

Sets the current configuration of the fcNameSeverQuery for the indicated port. Call this command before
calling fcNameSeverQuery get option value to get the value of the configuration option.

fcNameServerQuery get

Gets the current configuration of the fcNameSeverQuery for the indicated port.

fcNameServerQuery setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under See fibreChannel.

SEE ALSO

fibreChannel.

fcoe
fcoe - configure Fibre Channel over Ethernet header and trailer packet.

Appendix 1 IxTclHAL Commands

– 663 –

SYNOPSIS

fcoe sub-command options

DESCRIPTION

The fcoe command is used to configure Fibre Channel over Ethernet (FCoE) header and trailer packet.
FCoE is a method of communicating data for streams and protocols.

STANDARD OPTIONS

eEofDelimiter

Configure the end of frame delimiter. (default = 65) Available options are:

Option Value Usage

fcoeEofTerminate 66 (default) End of frame terminate

fcoeEofAbort 80 EoF abort

fcoeEofNormal 65 EoF normal

fcoeEofNormalInvalid 73 EoF normal invalid

fcoeEofRemoveTerminateClass4 68 EoF remove terminate class 4

fcoeEofRemoveTerminateInvalid
Class4

79 EoF remove terminate invalid class 4

eEofReserved

Configure the end of frame reserved value. (default = '00 00 00')

enableValidateFrame
Size true/false

Enable the stream size validation. The frame size should be a multiple of 4. (default = false)

eSofReserved

Configure the start of frame reserved value. This is a 12-byte hex value.
(default = '00 .. 00')

eSofDelimiter

Configure the start of frame delimiter. (default = 54) Available option values are:

Option Value Usage

fcoeSofNormalClass1 55 Start of frame normal class 1

Appendix 1 IxTclHAL Commands

– 664 –

Option Value Usage

fcoeSofInitiateClass2 45 SoF initiate class 2

fcoeSofNormalClass2 53 SoF normal class 2

fcoeSofInitiateClass3 46 SoF initiate class 3

fcoeSofNormalClass3 54 (default) SoF normal class 3

fcoeSofActivateClass4 57 SoF activate class 4

fcoeSofInitiateClass4 41 SoF initiate class 4

fcoeSofNormalClass4 49 SoF normal class 4

fcoeSofFabric 40 SoF fabric

version

Configure the version. (default = 1)

COMMANDS

The fcoe command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

fcoe decode capFrame chasID cardID portID

Decodes the FCoE header and trailer packet and refreshes the IxTclHal object. Specific errors are:

l No connection to a chassis
l The captured frame is not a valid fcoe packet

fcoe get chasID cardID portID

Gets current FCoE header and trailer settings from IxHal and refreshes IxTclHal object. Specific errors
are:

l No connection to a chassis
l Invalid port

fcoe set chasID cardID portID

Sets current FCoE header and trailer settings from IxTclHal to local IxHal. Specific errors are:

l No connection to a chassis
l Unsupported feature
l The port is being used by another user
l The configured parameters are not valid for this port

fcoe setDefault chasID cardID portID

Appendix 1 IxTclHAL Commands

– 665 –

Sets to IxTclHal local default.

EXAMPLES
package req IxTclHal
set hostname ixia_hostname
if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}

set chassId [chassis cget -id]
set cardId 2
set portId 1
set streamId 1
set portList [list [list $chassId $cardId $portId]]

if {![port isValidFeature $chassId $cardId $portId $::portFeatureDataCenterMode]} {
errorMsg "portFeatureDataCenterMode is not valid on $chassId $cardId $portId"
return "FAIL"
}

Configure FCoE interfaces
proc configurePortAndProtocols { portList } \
{
set retCode $::TCL_OK

if {[ixSetWidePacketGroupMode portList]} {
errorMsg "Error in Setting Wide Packet Group Mode"
set retCode $::TCL_ERROR
}

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

port setFactoryDefaults $chassId $cardId $portId
port config -flowControl $::true
port config -enableAutoDetectInstrumentation $::true
port config -autoDetectInstrumentationMode $::portAutoInstrumentationModeFloating
port config -loopback $::portLoopback
port config -receiveMode [expr
$::portCapture|$::portRxSequenceChecking|$::portRxModeWidePacketGroup]
port config -transmitMode $::portTxModeAdvancedScheduler
if {[port set $chassId $cardId $portId]} {
errorMsg "Error calling port set $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

Appendix 1 IxTclHAL Commands

– 666 –

stat setDefault
stat config -mode statNormal
stat config -enableFcoeStats $::true
stat config -fcoeRxSharedStatType1 $::statFcoeValidFrames
stat config -fcoeRxSharedStatType2 $::statFcoeValidFrames
if {[stat set $chassId $cardId $portId]} {
errorMsg "Error calling stat set $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

packetGroup setDefault
packetGroup config -enableInsertPgid true
packetGroup config -latencyControl cutThrough
packetGroup config -groupIdMode packetGroupSplit
if {[packetGroup setRx $chassId $cardId $portId]} {
errorMsg "Error calling packetGroup setRx $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

splitPacketGroup setDefault
splitPacketGroup config -groupIdOffset 32
splitPacketGroup config -groupIdOffsetBaseType $::splitPgidStartOfFrame
splitPacketGroup config -groupIdWidth 4
splitPacketGroup config -groupIdMask "FF FF 00 00"
if {[splitPacketGroup set $chassId $cardId $portId 0]} {
errorMsg "Error calling splitPacketGroup set $chassId $cardId $portId 0"
set retCode $::TCL_ERROR
}

splitPacketGroup setDefault
splitPacketGroup config -groupIdOffset 52
splitPacketGroup config -groupIdOffsetBaseType $::splitPgidStartOfFrame
splitPacketGroup config -groupIdWidth 4
splitPacketGroup config -groupIdMask "FF FF FF FF"
if {[splitPacketGroup set $chassId $cardId $portId 1]} {
errorMsg "Error calling splitPacketGroup set $chassId $cardId $portId 1"
set retCode $::TCL_ERROR
}

splitPacketGroup setDefault
splitPacketGroup config -groupIdOffset 52
splitPacketGroup config -groupIdOffsetBaseType $::splitPgidStartOfFrame
splitPacketGroup config -groupIdWidth 4
splitPacketGroup config -groupIdMask "FF FF FF FF"
if {[splitPacketGroup set $chassId $cardId $portId 2]} {

Appendix 1 IxTclHAL Commands

– 667 –

errorMsg "Error calling splitPacketGroup set $chassId $cardId $portId 2"
set retCode $::TCL_ERROR
}

autoDetectInstrumentation setDefault
autoDetectInstrumentation config -startOfScan 0
autoDetectInstrumentation config -signature {87 73 67 49 42 87 11 80 08 71 18 05}
if {[autoDetectInstrumentation setRx $chassId $cardId $portId]} {
errorMsg "Error calling autoDetectInstrumentation setRx $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error calling interfaceTable select $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

interfaceTable setDefault
interfaceTable config -fcoeRequestRate 500
interfaceTable config -fcoeNumRetries 5
if {[interfaceTable set]} {
errorMsg "Error calling interfaceTable set"
set retCode $::TCL_ERROR
}

interfaceTable clearAllInterfaces

Interface entry type - interfaceTypeConnected

interfaceEntry clearAllItems addressTypeIpV6
interfaceEntry clearAllItems addressTypeIpV4
interfaceEntry setDefault

fcoeProperties setDefault
fcoeProperties config -sourcePortWWN "02 00 04 FF FE 9F 0A 5C"
fcoeProperties config -sourceNodeWWN "02 00 04 00 00 9F 0A 5C"
fcoeProperties config -destinationId "01.b6.69"
fcoeProperties config -sourceOui "0e.fc.00"
fcoeProperties config -bufferToBufferRxSize 2112
fcoeProperties config -enableNs $::false
fcoeProperties config -enablePlogi $::false

interfaceEntry config -enable true
interfaceEntry config -description "ProtocolInterface1"
interfaceEntry config -macAddress {00 00 04 9F 0A 5C}
interfaceEntry config -eui64Id {02 00 04 FF FE 9F 0A 5C}
interfaceEntry config -mtu 1500

Appendix 1 IxTclHAL Commands

– 668 –

interfaceEntry config -enableFlogi $::true
if {[interfaceTable addInterface interfaceTypeConnected]} {
errorMsg "Error calling interfaceTable addInterface interfaceTypeConnected"
set retCode $::TCL_ERROR
}

Interface entry type - interfaceTypeNpiv

interfaceEntry clearAllItems addressTypeIpV6
interfaceEntry clearAllItems addressTypeIpV4
interfaceEntry setDefault

npivProperties setDefault
npivProperties config -sourcePortWWN "02 00 04 FF FE 9F 0A 5D"
npivProperties config -sourceNodeWWN "02 00 04 00 00 9F 0A 5D"
npivProperties config -destinationId "01.b6.69"
npivProperties config -bufferToBufferRxSize 2112
npivProperties config -enableNs $::false
npivProperties config -enablePlogi $::false

interfaceEntry config -enable $::true
interfaceEntry config -description "NpivInterface2"
interfaceEntry config -connectedVia "ProtocolInterface1"
if {[interfaceTable addInterface interfaceTypeNpiv]} {
errorMsg "Error calling interfaceTable addInterface interfaceTypeNpiv"
set retCode $::TCL_ERROR
}

}

if {[ixWritePortsToHardware portList]} {
errorMsg "Error ixWritePortsToHardware"
set retCode $::TCL_ERROR
}

if {[ixCheckLinkState portList]} {
errorMsg "Error ixCheckLinkState"
set retCode $::TCL_ERROR
}

return $retCode
}

#Configure FCoE streams
proc configureFcoeStreams { portList SourceIdArray } \
{
upvar $SourceIdArray sourceIdArray

Appendix 1 IxTclHAL Commands

– 669 –

set retCode $::TCL_OK

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId
port reset $chassId $cardId $portId
for {set streamId 1 } {$streamId <= 2 } { incr streamId} {

Stream 1
protocol setDefault
protocol config -name $::fcoe
protocol config -ethernetType $::ethernetII

stream setDefault
stream config -enable $::true
stream config -numFrames 1000
stream config -gapUnit $::gapNanoSeconds
stream config -rateMode $::usePercentRate
stream config -framesize 100
stream config -frameSizeType $::sizeFixed
stream config -patternType $::incrByte
stream config -dataPattern x00010203
stream config -pattern "00 01 02 03"
stream config -frameType "89 06"
stream config -dma $::stopStream
stream config -enableStatistic $::true
stream config -enableSourceInterface $::true
stream config -priorityGroup $::priorityGroup0
stream config -patternType $::incrByte
stream config -preambleSize 8

if {$streamId == 1} {
stream config -name "FCoE stream"
stream config -sa "0E FC 00 00 00 08"
stream config -da "6D 50 00 00 01 95"
stream config -percentPacketRate 50
stream config -sourceInterfaceDescription "ProtocolInterface1"
} else {
stream config -name "NPIV stream"
stream config -sa "0E FC 00 00 00 01"
stream config -da "6D 50 00 00 01 95"
stream config -percentPacketRate 50.000014565
stream config -sourceInterfaceDescription "NpivInterface2"
}

fcoe setDefault
fcoe config -enableValidateFrameSize $::true
fcoe config -version 1
fcoe config -eSofReserved "00 00 00 00 00 00 00 00 00 00 00 00 00"

Appendix 1 IxTclHAL Commands

– 670 –

fcoe config -eSofDelimiter $::fcoeSofNormalClass3
fcoe config -eEofDelimiter $::fcoeEofTerminate
fcoe config -eEofReserved "00 00 00"
if {[fcoe set $chassId $cardId $portId]} {
errorMsg "Error calling fcoe set $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

fibreChannel setDefault
fibreChannel config -destinationId "00.00.00"
fibreChannel config -routingControlType $::fibreChannelDeviceDataFrames
fibreChannel config -routingControlInformation
$::fibreChannelUncategorizedInformation
if {$streamId == 1} {
fibreChannel config -sourceId $sourceIdArray($chassId,$cardId,$portId,fcoe)
} else {
fibreChannel config -sourceId $sourceIdArray($chassId,$cardId,$portId,npiv)
}

fibreChannel config -csControlOrPriorityValue 0x00
fibreChannel config -frameControl "00 00 00"
fibreChannel config -type 0x00
fibreChannel config -sequenceCount 5
fibreChannel config -dataFieldControl 0x00
fibreChannel config -sequenceId 0x00
fibreChannel config -responderExchangeId "00 00"
fibreChannel config -originatorExchangeId "00 00"
fibreChannel config -parameter "00 00 00 00"
fibreChannel config -originatorExchangeCounter fibreChannelIdle
fibreChannel config -enableBadFibreChannelCrc $::true
fibreChannel config -enableUseFcControlBits $::true
fibreChannel config -exchangeContext $::fibreChannelOriginator
fibreChannel config -sequenceContext $::fibreChannelInitiator
fibreChannel config -firstSequence $::fibreChannelFirstSequenceOther
fibreChannel config -lastSequence $::fibreChannelLastSequenceOther
fibreChannel config -endSequence $::fibreChannelEndSequenceOther
fibreChannel config -endConnection $::fibreChannelConnectionAlive
fibreChannel config -csControlOrPriority $::fibreChannelCsCtl
fibreChannel config -sequenceInitiative $::fibreChannelInitiativeHold
fibreChannel config -ackForm $::fibreChannelOriginal
fibreChannel config -retransmittedSequence $::fibreChannelOriginal
fibreChannel config -unidirectionalTransmit $::fibreChannelBidirectional
fibreChannel config -continueSequenceCondition $::fibreChannelNoInformation
fibreChannel config -abortSequenceCondition $::fibreChannelContinue
fibreChannel config -relativeOffsetPresent $::fibreChannelRelativeOffsetDefined
fibreChannel config -exchangeReassembly $::fibreChannelExchangeReassemblyOff
fibreChannel config -fillBytes $::fibreChannelZeroHexByteFill
if {[fibreChannel set $chassId $cardId $portId]} {

Appendix 1 IxTclHAL Commands

– 671 –

errorMsg "Error calling fibreChannel set $chassId $cardId $portId"
set retCode $::TCL_ERROR
}

if {[stream set $chassId $cardId $portId $streamId]} {
errorMsg "Error calling stream set $chassId $cardId $portId $streamId"
set retCode $::TCL_ERROR
}

packetGroup setDefault
packetGroup config -signature "08 71 18 05"
packetGroup config -insertSignature $::true
packetGroup config -groupId 1
packetGroup config -groupIdOffset 66
packetGroup config -enableInsertPgid $::true
packetGroup config -sequenceNumberOffset 68
packetGroup config -sequenceErrorThreshold 2
packetGroup config -insertSequenceSignature $::true
packetGroup config -latencyControl $::cutThrough
if {[packetGroup setTx $chassId $cardId $portId $streamId]} {
errorMsg "Error calling packetGroup setTx $chassId $cardId $portId $streamId"
set retCode $::TCL_ERROR
}

dataIntegrity setDefault
dataIntegrity config -signatureOffset 52
dataIntegrity config -signature "08 71 18 00"
dataIntegrity config -insertSignature $::true
dataIntegrity config -enableTimeStamp $::false
dataIntegrity config -floatingTimestampAndDataIntegrityMode
$::dataIntegrityNumberOfBytesFromEndOfFrame
dataIntegrity config -numBytesFromEndOfFrame 12
dataIntegrity config -payloadLength 0
if {[dataIntegrity setTx $chassId $cardId $portId $streamId]} {
errorMsg "Error calling dataIntegrity setTx $chassId $cardId $portId $streamId"
set retCode $::TCL_ERROR
}

autoDetectInstrumentation setDefault
autoDetectInstrumentation config -enableTxAutomaticInstrumentation $::true
autoDetectInstrumentation config -signature {87 73 67 49 42 87 11 80 08 71 18 05}
if {[autoDetectInstrumentation setTx $chassId $cardId $portId $streamId]} {
errorMsg "Error calling autoDetectInstrumentation setTx $chassId $cardId $portId
$streamId"
set retCode $::TCL_ERROR
}
}
}

Appendix 1 IxTclHAL Commands

– 672 –

ixWriteConfigToHardware portList
return $retCode
}

proc fcoeMainTest { portList } \
{
errorMsg "******** Testing Latency Test and Stream-Interface linkage Test on
$portList"

set retCode $::TCL_OK
if {[configurePortAndProtocols $portList]} {
errorMsg "Error configurePortAndProtocols"
set retCode $::TCL_ERROR
}

errorMsg "Starting FCoE Server..."
package require IxTclServices
set pcpuCommand "/shared/chassis/arch/bin/fcoeserver&"
if {[issuePcpuCommand portList $pcpuCommand]} {
errorMsg "Failed to start FCoE server"
set retCode $::TCL_ERROR
} else {
errorMsg "FCoE Server started..."
}

Give some time for FCoE server to start
after 4000

Verify FCoE discovered information

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error selecting interfaceTable on $chassId $cardId $portId."
set retCode $::TCL_ERROR
}

if {[interfaceTable requestDiscoveredTable]} {
errorMsg "Error interfaceTable requestDiscoveredTable on $chassId $cardId $portId."
set retCode $::TCL_ERROR
}

if {[interfaceTable getFirstInterface interfaceTypeConnected]} {
errorMsg "Error adding interfaceTypeConnected to interfaceTable on $chassId $cardId
$portId."
set retCode $::TCL_ERROR

Appendix 1 IxTclHAL Commands

– 673 –

}

set interfaceDescription [interfaceEntry cget -description]

after 2000

fcoeDiscoveredInfo setDefault
if {[interfaceTable getFcoeDiscoveredInfo $interfaceDescription]} {
errorMsg "Error getting Fcoe Discovered table for $interfaceDescription on $chassId
$cardId $portId."
set retCode $::TCL_ERROR
}
set sourceIdArray($chassId,$cardId,$portId,fcoe) [fcoeDiscoveredInfo cget -sourceId]
ixPuts ">>>>>> $interfaceDescription DiscoveredInfo [fcoeDiscoveredInfo cget -
sourceId]"

set pgidStringFcoe [fcoeDiscoveredInfo cget -sourceId]
set firstPgid [string range $pgidStringFcoe 7 8]

if {[interfaceTable getFirstInterface interfaceTypeNpiv]} {
errorMsg "Error adding interfaceTypeNpiv to interfaceTable on $chassId $cardId
$portId."
set retCode $::TCL_ERROR
}

set interfaceDescriptionNpiv [interfaceEntry cget -description]

if {[interfaceTable getFcoeDiscoveredInfo $interfaceDescriptionNpiv]} {
errorMsg "Error getting Fcoe Discovered table for $interfaceDescriptionNpiv on
$chassId $cardId $portId."
set retCode $::TCL_ERROR
}
set sourceIdArray($chassId,$cardId,$portId,npiv) [fcoeDiscoveredInfo cget -sourceId]
ixPuts ">>>>>> $interfaceDescription DiscoveredInfo [fcoeDiscoveredInfo cget -
sourceId]"

set pgidStringNpiv [fcoeDiscoveredInfo cget -sourceId]
set secondPgid [string range $pgidStringNpiv 7 8]
}

if {[configureFcoeStreams $portList sourceIdArray]} {
errorMsg "Error configureFcoeStreams"
set retCode $::TCL_ERROR
}

if {$retCode == $::TCL_OK } {

set txFrames 2000 ;# 1000 FCoE and 1000 Npiv

Appendix 1 IxTclHAL Commands

– 674 –

ixClearTimeStamp portList
ixClearStats portList
ixStartCapture portList
ixStartPacketGroups portList
ixStartTransmit portList
after 2000

ixStopTransmit portList
ixCheckTransmitDone portList
ixStopPacketGroups portList
ixStopCapture portList

ixRequestStats portList
set expectedNumGroups 1455

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

if {[statList get $chassId $cardId $portId]} {
errorMsg "Error getting stats for $chassId $cardId $portId."
set retCode $::TCL_ERROR
}
ixPuts " fcoeRxSharedStat1 [statList cget -fcoeRxSharedStat1]"
ixPuts " fcoeRxSharedStat2 [statList cget -fcoeRxSharedStat2]"

Now get the statistics back
First a get for all of the packet groups
if [packetGroupStats get $chassId $cardId $portId 0 $expectedNumGroups] {
errorMsg "Error in packetGroupStats get on $chassId $cardId $portId"
set retCode $::TCL_ERROR
}
ixPuts " numGroups [packetGroupStats cget -numGroups] "
}
}

shut down FCoE Server
set pcpuFcoeSrvStop {/bin/ps& -ef | /bin/grep 'fcoeserver' | /bin/grep -v grep |
/shared/chassis/arch/usr/bin/awk '{print $1}' | /usr/bin/xargs kill -9}
if {[issuePcpuCommand portList $pcpuFcoeSrvStop]} {
errorMsg "Failed to kill FCoE server on $chassId $cardId $portId"
set retCode $::TCL_ERROR
} else {
errorMsg "FCoE Server Stopped..."
}

package forget IxTclServices

Appendix 1 IxTclHAL Commands

– 675 –

return $retCode
}

Run the test
fcoeMainTest $portList

SEE ALSO

fcoeDiscoveredInfo, fcoeProperties, fibreChannel.

fcoeDiscoveredInfo
fcoeDiscoveredInfo - configure FCoE discovery function.

SYNOPSIS

fcoeDiscoveredInfo sub-command options

DESCRIPTION

FCoE ports discover other ports within a communication path.

STANDARD OPTIONS

destinationIdList

Read only. List of destination IDs.

discoveredVlanIds

Read only. The list of IDs discovered from the VLAN Discovery notification.

fabricAssigned MacAddress

Read only. (Only if FIP is enabled) The MAC address assigned by the Fabric. (default = '00 00 00 00 00
00')

fabricFcMap

Read only. (Only if FIP is enabled) Obtained from the Discovery Advertisement. (default = '0E.FC.00')

fabricMacAddress

Read only. MAC address of the Fabric (default = '00 00 00 00 00 00')

fabricName

Read only. (Only if FIP is enabled) The Fabric name obtained from the Discovery Advertisement. (default
= 00:00:00:00:00:00:00:00)

priority

Read only. (Only if FIP is enabled) The priority of the Fabric we are logged into. (default = 128)

Appendix 1 IxTclHAL Commands

– 676 –

sourceId

Read only. Source ID assigned by the Fabric (default = '00.00.00')

status

Read only. Textual description of the status of the interface (default = 0)

Option Value Usage

fcoeStatusUnknown 0 (default) FCoE status unknown

fcoeStatusFLogiComplete 1 FCoE status Fabric Login complete

fcoeStatusFLogiFailed 2 FCoE status Fabric Login failed

fcoeStatusPLogiComplete 3 FCoE status Port Login complete

fcoeStatusPLogiFailed 4 FCoE status Port Login failed

fcoeStatusScrComplete 5 FCoE status Scr complete

fcoeStatusScrFailed 6 FCoE status Scr failed

fcoeStatusFDiscComplete 7 FCoE status FCoE Discovered complete

fcoeStatusFDiscFailed 8 FCoE status FCoE Discovered failed

fcoeStatusNsRegistrationComplete 9 FCoE status FCoE NS registration complete

fcoeStatusNsRegistrationFailed 10 FCoE status FCoE NS registration failed

fcoeStatusDiscoverySolicitationComplete 11 FCoE status Discovery Solicitiation complete

fcoeStatusDiscoverySolicitationFailed 12 FCoE status Discovery Solicitiation failed

fcoeStatusVlanDiscoveryComplete 13 FCoE status VLAN Discovery complete

fcoeStatusVlanDiscoveryFailed 14 FCoE status VLAN Discovery failed

fcoeStatusPRLIComplete 15 PRLI status complete

fcoeStatusPRLIFailed 16 PRLI status failed

fcoeStatusNSQueryComplete 17 NS Query status complete

fcoeStatusNSQueryFailed 18 NS Query status failed

fcoeStatusPLogiSent 19 PLOGI status failed

Appendix 1 IxTclHAL Commands

– 677 –

switchName

Read only. (Only if FIP is enabled) The switch name obtained from the Discovery Advertisement. (default
= 00:00:00:00:00:00:00:00)

COMMANDS

The fcoeDiscoveredInfo command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

fcoeDiscoveredInfo cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcoeDiscoveredInfo command.

fcoeDiscoveredInfo config option value

Modify the fcoeDiscoveredInfo configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

fcoeDiscoveredInfo setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under fcoe.

SEE ALSO

fcoe, fcoeProperties, fibreChannel.

fcoeNameServer
fcoeNameServer- configure FCoE Name Server

SYNOPSIS

fcoeNameServer sub-command options

DESCRIPTION

The fcoeNameServer command is used to configure the FCoE Name Server.

STANDARD OPTIONS

enableRnnId
true/false

Register Node Name (RNN_ID) (default = true)

Appendix 1 IxTclHAL Commands

– 678 –

enableRcsId
true/false

Register Class of Service (RCS_ID) (default = false)

enableRftId
true/false

Register RC-4 Types (RFT_ID) (default = true)

enableRpnId
true/false

Register Port Name (RPN_ID) (default = false)

enableRptId
true/false

Register Port Type (RPT_ID) (default = false)

enableRspnId
true/false

Register Symbolic Port Name (RSPN_ID) (default = false)

enableRsnnNn
true/false

Register Symbolic Node Name (RSNN_NN) (default = false)

symbolicPortName

A user-defined string to identify a port, for example 'Ixia Port 1'.

symbolicNodeName

A user-defined string to identify a node, for example 'Ixia Node 1'.

COMMANDS

The fcoeNameServer command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

fcoeNameServer cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcoeNameServer command.

fcoeNameServer config option value

Modify the fcoeNameServer configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

Appendix 1 IxTclHAL Commands

– 679 –

fcoeNameServer setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under fcoe.

SEE ALSO

fcoe, fcoeDiscoveredInfo, fibreChannel.

fcPlogi
fcPlogi-configures the FC Name Server plogi designation

SYNOPSIS

fcPlogi sub-command options

DESCRIPTION

The fcPlogi command is used to configure the FC Name Server plogi designation.

STANDARD OPTIONS

enable
true/false

Enables Port login (plogi) to specified Destination ID (default = true)

destinationMode

Specifies destination mode.

Option Value

plogiDestinationId 0

plogiWwpn 1

destinationId

Destination identifier (default = '00.00.00')

wwpn

Source port Worldwide Name - a Name_identifier that is worldwide unique, represented by a 64-bit value
(default = '00 00 00 00 00 00 00 00')

Appendix 1 IxTclHAL Commands

– 680 –

COMMANDS

The fcPlogi command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcPlogi cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcPlogi command.

fcPlogi config option

Modify the fcPlogi configuration options of the port. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for port.

fcPlogi setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under fibreChannel.

SEE ALSO

fibreChannel

fcoePlogi
fcoePlogi configures the FCoE Name Server plogi designation

SYNOPSIS

fcoePlogi sub-command options

DESCRIPTION

The fcoePlogi command is used to configure the FCoE Name Server plogi designation.

STANDARD OPTIONS

enable
true/false

Enables Port login (plogi) to specified Destination ID (default = true)

destinationMode

Specifies destination mode. (default = fcoeFabricProvidedMacAddress)

Appendix 1 IxTclHAL Commands

– 681 –

Option Value

plogiDestinationId 0

plogiWwpn 1

destinationId

Destination identifier (default = '00.00.00')

wwpn

Source port Worldwide Name - a Name_identifier that is worldwide unique, represented by a 64-bit value
(default = '00 00 00 00 00 00 00 00')

COMMANDS

The fcoePlogi command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcoePlogi cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcoePlogi command.

fcoePlogi config option

Modify the fcoePlogi configuration options of the port. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for port.

fcoePlogi setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under See fcoe.

SEE ALSO

fcoe , fcoeDiscoveredInfo, fibreChannel.

fcoeProperties
fcoeProperties- configure properties for FCoE

SYNOPSIS

fcoeProperties sub-command options

DESCRIPTION

Fibre Channel over Ethernet (FCoE) is a method of communicating data for streams and protocols.

Appendix 1 IxTclHAL Commands

– 682 –

STANDARD OPTIONS

addressingMode

Specifies the FCoE addressing mode to be used by the n-port. (default = fcoeFabricProvidedMacAddress)

Option Value

fcoeFabricProvidedMacAddress 0

fcoeServerProvidedMacAddress 1

fcoeBoth 2

bufferToBufferRxSize

Maximum buffer-to-buffer Receive_Data_Field specified by the Fabric (default = 2112)

destinationId

Use to configure the Fibre Channel Frame header destination ID. (default = 01.b6.69)

enableAutoPlogi

Automatically enables PLOGI to all the ports that are advertised by the fabric, or to PLOGI to a subset of
the variable ports that belong to a specified domain. (default = false)

enableFip
true/false

Enables FIP (FCoE Initialization Protocol) If enabled, the interface uses FIP for its initialization. Otherwise,
it uses Cisco adhoc standard. (default = true)

enableNs
true/false

Enables registration to Name Server (default = false)

enableNSQuery

If true, enables Name Server Query parameters for this FCoE server.

enablePlogi
true/false

Enables Port login to specified Destination ID (default = false)

enablePRLI

If true, enables Process Login parameters. The PRLI request is used to establish the operating
environment between a group of related processes at the originating Nx_Port and a group of related

Appendix 1 IxTclHAL Commands

– 683 –

processes at the responding Nx_Port. If true, this option causes the state machine to attempt a process
login.

enableResetFip
Discovery

If true, resets FIP Discovery tag.

enableSCR
true/false

If set to true, the ENode registers for any changes with the Fabric by sending a State Change Registration
packet. (default = false)

enableVlanDiscovery
true/false

Enables VLAN Discovery (default = false)

enableUntaggedVlan
Discovery
true/false

Enables untagged VLAN Discovery (default = true)

enableVnPortKeepAlives

If true, VN port sends periodic keep alives.

enableENodeKeepAlives

If true, ENode sends periodic keep alives.

maxSize

Enter the maximum FCoE size (default = 2158)

resetFipDiscovery
Retries

If set to true, retries FIP discovery for the selected number of times.

scrOption

If enableSCR is set to true, scrOption becomes true. The registration function options for SCR are Fabric
Detected, Nx Port Detected, Full Registration.

sourceNodeWWN

Source node Worldwide Name - a Name_identifier that is worldwide unique, represented by an 8-byte hex
value. (default = '00 ... 00')

Appendix 1 IxTclHAL Commands

– 684 –

sourceOui

Use to configure the source Organization Unique Identifier. (default = 0e.fc.00)

sourcePortWWN

Source port Worldwide Name - a Name_identifier that is worldwide unique, represented by an 8-byte hex
value. (default = '00 ... 00')

vendorId

Enter a string to be used in vendor-specific messages. (default = '00 00 00 00 00 00 00 00')

COMMANDS

The fcoeProperties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

fcoeProperties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fcoeProperties command.

fcoeProperties config option value

Modify the fcoeProperties configuration options of the port. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for port.

fcoeProperties setDefault

Sets to IxTclHal default values for all configuration options.

fcoeProperties addTlv

Adds a TLV to fcoeProperties. The values are available in the fipTlv. command.

fcoeProperties delTlv tlvIndex

Deletes the TLV associated with this FCoE property set at the specified index. The index of the first entry
is 1. The values are available in the fipTlv. command. Specific errors are:

l The indexed entry does not exist in the list.
l Invalid index.

fcoeProperties getTlv tlvIndex

Retrieves the TLV associated with this FCoE property set at the specified index. The index of the first entry
is 1. The values are available in the fipTlv command. Specific errors are:

l The indexed entry does not exist in the list.

fcoeProperties getFirstTlv

Retrieves the first TLV associated with this FCoE property set. The values are available in the See fipTlv.
command. Specific errors are:

Appendix 1 IxTclHAL Commands

– 685 –

l There are no entries in the list.

fcoeProperties getNextTlv

Retrieves the next TLV associated with this FCoE property set. The values are available in the fipTlv
command. Specific errors are:

l There are no more entries in the list.

fcoeProperties removeAllTlvs

Deletes all of the TLVs associated with this FCoE property set.

fcoeProperties addPlogi

Adds a PLOGI to fcoeProperties. The values are available in the fcoePlogi command.

fcoeProperties delPlogi plogiIndex

Deletes the PLOGI associated with this FCoE property set at the specified index. The index of the first
entry is 1. The values are available in the fcoePlogi command. Specific errors are:

l The indexed entry does not exist in the list.
l Invalid index.

fcoeProperties getPlogi plogiIndex

Retrieves the PLOGI associated with this FCoE property set at the specified index. The index of the first
entry is 1. The values are available in the fcoePlogi command. Specific errors are:

l The indexed entry does not exist in the list.

fcoeProperties getFirstPlogi

Retrieves the first PLOGI associated with this FCoE property set. The values are available in the fcoePlogi
command. Specific errors are:

l There are no entries in the list.

fcoeProperties getNextPlogi

Retrieves the next PLOGI associated with this FCoE property set. The values are available in the fcoePlogi
command. Specific errors are:

l There are no more entries in the list.

fcoeProperties removeAllPlogis

Deletes all of the PLOGIs associated with this FCoE property set.

EXAMPLES
package req IxTclHal
set hostname loopback
if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"

Appendix 1 IxTclHAL Commands

– 686 –

}
set chassId [chassis cget -id]
set cardId 1
set portId 1
set streamId 1
set portList [list [list $chassId $cardId $portId]]
if {![port isValidFeature $chassId $cardId $portId $::portFeatureDataCenterMode]} {
errorMsg "portFeatureDataCenterMode is not valid on $chassId $cardId $portId"
return "FAIL"
}

port setFactoryDefaults $chassId $cardId $portId
port config -enableDataCenterMode $::true
if {[port set $chassId $cardId $portId]} {
errorMsg "Error setting port on $chassId $cardId $portId"
}
Configure FIP interfaces
if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error selecting interfaceTable on $chassId $cardId $portId."
}
fcoeProperties setDefault
fcoeProperties removeAllTlvs
fcoeProperties removeAllPlogis

fcoeProperties config -sourcePortWWN "10 00 00 00 05 F9 A9 B0"
fcoeProperties config -sourceNodeWWN "20 00 00 00 05 F9 A9 B0"
fcoeProperties config -destinationId "01.b6.69"
fcoeProperties config -sourceOui "0e.fc.00"
fcoeProperties config -bufferToBufferRxSize 2112
fcoeProperties config -enableNs false
fcoeProperties config -enablePlogi false
fcoeProperties config -enableFip true
fcoeProperties config -maxSize 2158
fcoeProperties config -addressingMode 0
fcoeProperties config -vendorId "00 00 00 00 00 00 00 00"
fcoeProperties config -enableVlanDiscovery false
fcoeNameServer setDefault
fcoeNameServer config -enableRnnId false
fcoeNameServer config -symbolicPortName Ixia1
fcoeNameServer config -symbolicNodeName Ixia2
fipTlv setDefault
fipTlv config -type 1
fipTlv config -value "11 22 33 44"
if {[fcoeProperties addTlv]} {
Trace "Error adding tlv to fcoeProperties on $chassId $cardId $portId."
set retCode "FAIL"
}
fcoePlogi setDefault

Appendix 1 IxTclHAL Commands

– 687 –

fcoePlogi config -enable 1
fcoePlogi config -destinationMode 1
fcoePlogi config -wwpn "00 11 00 11 33 11 11 11"
if {[fcoeProperties addPlogi]} {
Trace "Error adding tlv to fcoeProperties on $chassId $cardId $portId."
set retCode "FAIL"
}
fcoePlogi setDefault
fcoePlogi config -enable 1
fcoePlogi config -destinationMode 0
fcoePlogi config -destinationId "11 22 33"
if {[fcoeProperties addPlogi]} {
Trace "Error adding tlv to fcoeProperties on $chassId $cardId $portId."
set retCode "FAIL"
}
set interfaceDescription "FipInterface"
interfaceEntry setDefault
interfaceEntry config -enable true
interfaceEntry config -enableFlogi true
interfaceEntry config -description $interfaceDescription
interfaceEntry config -macAddress {00 00 2D 5C C1 3C}
if {[interfaceTable addInterface interfaceTypeConnected]} {
errorMsg "Error adding interfaceTypeConnected to interfaceTable on $chassId $cardId
$portId."
}

Interface entry type - interfaceTypeNpiv
interfaceEntry clearAllItems addressTypeIpV6
interfaceEntry clearAllItems addressTypeIpV4
interfaceEntry setDefault

npivProperties setDefault
npivProperties removeAllPlogis
npivProperties config -sourcePortWWN "10 00 1A FF FE 5E 3B 36"
npivProperties config -sourceNodeWWN "20 00 1A 00 00 5E 3B 36"
npivProperties config -destinationId "01.b6.66"
npivProperties config -bufferToBufferRxSize 2112
npivProperties config -enableNs true
npivProperties config -enablePlogi false
fcoePlogi setDefault
fcoePlogi config -enable 1
fcoePlogi config -destinationMode 1
fcoePlogi config -wwpn "11 11 00 00 88 88 88 88"
if {[npivProperties addPlogi]} {
Trace "Error adding tlv to fcoePropert"
Trace "Error adding tlv to fcoeProperties on $chassId $cardId $portId."
set retCode "FAIL"
}

Appendix 1 IxTclHAL Commands

– 688 –

fcoePlogi setDefault
fcoePlogi config -enable 1
fcoePlogi config -destinationMode 0
fcoePlogi config -destinationId "11 22 33"

if {[npivProperties addPlogi]} {
Trace "Error adding tlv to fcoePropert"
Trace "Error adding tlv to fcoeProperties on $chassId $cardId $portId."
set retCode "FAIL"
}

interfaceEntry config -enable true
interfaceEntry config -description {InterfaceNPIV}
interfaceEntry config -connectedVia { FipInterface }
if {[interfaceTable addInterface interfaceTypeNpiv]} {
errorMsg "Error calling interfaceTable addInterface interfaceTypeNpiv"
set retCode $::TCL_ERROR
}

ixWriteConfigToHardware portList

Verify FIP discovered information

if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error selecting interfaceTable on $chassId $cardId $portId."
}

interfaceEntry setDefault
fcoeProperties setDefault
if {[interfaceTable getFirstInterface interfaceTypeConnected]} {
errorMsg "Error adding interfaceTypeConnected to interfaceTable on $chassId $cardId
$portId."
}

if {[interfaceTable requestDiscoveredTable]} {
errorMsg "Error interfaceTable requestDiscoveredTable on $chassId $cardId $portId."
}
fcoeDiscoveredInfo setDefault
if {[interfaceTable getFcoeDiscoveredInfo $interfaceDescription]} {
errorMsg "Error getting Fcoe Discovered table for $interfaceDescription on $chassId
$cardId $portId."
}
ixPuts "fcoeDiscoveredInfo sourceId : [fcoeDiscoveredInfo cget -sourceId]"
ixPuts "fcoeDiscoveredInfo priority : [fcoeDiscoveredInfo cget -priority]"
ixPuts "fcoeDiscoveredInfo fabricAssgnedMacAdr[fcoeDiscoveredInfo cget -
fabricAssignedMacAddress]"
ixPuts "fcoeDiscoveredInfo switchName : [fcoeDiscoveredInfo cget -switchName]"

Appendix 1 IxTclHAL Commands

– 689 –

ixPuts "fcoeDiscoveredInfo fabricName : [fcoeDiscoveredInfo cget -fabricName]"
ixPuts "fcoeDiscoveredInfo fabricFcMap : [fcoeDiscoveredInfo cget -fabricFcMap]"
ixPuts "fcoeDiscoveredInfo discoveredVlanIds : [fcoeDiscoveredInfo cget -
discoveredVlanIds]"
ixPuts "fcoeDiscoveredInfo destinationIdList : [fcoeDiscoveredInfo cget -
destinationIdList]"

SEE ALSO

fcoe,fcoeDiscoveredInfo , fibreChannel, fcoePlogi, fipTlv

fcPort
fcPort-configures port for Fibre Channel

SYNOPSIS

fcPort sub-command options

DESCRIPTION

Fibre Channel (FC) port enables communicating data for streams and protocols.

STANDARD OPTIONS

forceErrorMode

Allows to set error messages for frames of data. The types are as follows:

Option Usage

noErrors If true, does not send error messages.

dontSendRRDY If true, does not send Receiver_Ready (R_RDY) Primitive error
signal.

dontSendRRDYEveryNFrames If true, does not send Receiver_Ready (R_RDY) Primitive error
signal for each data frame.

RRDYResponseDelay
Mode

Allows to set response delays for R_RDY. The Receiver_Ready (R_RDY) Primitive Signal is used in the
buffer-to-buffer Credit management mechanisms Validity of the frame is not implied by R_RDY.

The types are as follows:

Option Usage

noDelay If true, does not set any delay for R_RDY response.

Appendix 1 IxTclHAL Commands

– 690 –

Option Usage

fixedDelay If true, sets fixed delays in milliseconds for R_RDY response.

randomDelay If true, sets random delays for R_RDY response.

creditStarvation If true, programs a counter with delay value specified in the Hold R_RDY field. The
counter starts counting down after it receives first frame. The port holds R_RDY
for all frames received until counter reaches to 0. After counter reaches to 0, port
sends out all accumulated R_RDY.

TOVMode

Allows to set Timeout Values. The types are as follows:

Option Usage

eDTOVMode Error_Detect_Timeout Value (E_D_TOV) is a short timeout value. The E_D_TOV
is used as the timeout value for detecting an error condition.

rATOVMode Resource_Allocation_Timeout Value (R_A_TOV) is a long timeout value. The R_
A_TOV is used as the timeout value for determining when to Reinstate a
Recovery_Qualifier.

rTTOVMode The Receiver_Transmitter timeout value (R_T_TOV) is used by the receiver logic
to detect Loss-of-Synchronization. The default value for R_T_TOV is 100
milliseconds. A shorter value of 100 microseconds is also allowed.

overrideTOVMode If true, error detection overrides 10,000 milliseconds.

fromLoginMode If true, obtains response from login ID.

doNotSendRRDYAfterNFrames

If true, the transmitting port does not send R_RDY delays after n number of frames.

enableAutoNegotiate

Not used for FC.

enableTxIgnore
AvailableCredits

If true, the transmitting port does not listen to flow control. It keeps transmitting packets irrespective of
available credits.

fixedDelayValue

If true, signifies fixed R_RDY response delays in s.

Appendix 1 IxTclHAL Commands

– 691 –

bbCredit

Buffer-to-buffer Credit is the number of received buffers supported by an FC Port for receiving Class 1 and
6/SOFc1, Class 2, or Class 3 frames. The minimum or default value of BB_Credit is one.

bbSCN

The buffer-to-buffer State Change Number. It is the log2 of BB_Credit Recovery modulus.

The default value is 0.

minDelayForRandom

If true, sets the minimum delay in milliseconds.

maxDelayForRandom

If true, sets the maximum delay in milliseconds.

COMMANDS

The fcPort command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcPort setDefault

Sets to IxTclHal default values for all configuration options.

fcPort set

Sets the current configuration of the fcPort for the indicated port. Call this command before calling fcPort
get option value to get the value of the configuration option.

fcPort get

Gets the current configuration of the fcPort for the indicated port.

EXAMPLES

See under fibreChannel.

SEE ALSO

fibreChannel.

fcProperties
fcProperties-configure properties for Fibre Channel

SYNOPSIS

fcProperties sub-command options

Appendix 1 IxTclHAL Commands

– 692 –

DESCRIPTION

Fibre Channel (FC) is a method of communicating data for streams and protocols.

STANDARD OPTIONS

bufferToBufferRxSize

Maximum buffer-to-buffer Receive_Data_Field specified by the Fabric (default = 2112)

destinationId

Use to configure the Fibre Channel Frame header destination ID. (default = 01.b6.69)

enableAutoPlogi

Automatically enables PLOGI to all the ports that are advertised by the fabric, or to PLOGI to a subset of
the variable ports that belong to a specified domain. (default = false)

enableNs
true/false

Enables registration to Name Server (default = false)

enableNSQuery

If true, enables Name Server Query parameters for this FC server.

enablePlogi
true/false

Enables Port login to specified Destination ID (default = false)

enablePRLI

If true, enables Process Login parameters. The PRLI request is used to establish the operating
environment between a group of related processes at the originating Nx_Port and a group of related
processes at the responding Nx_Port. If true, this option causes the state machine to attempt a process
login.

enableSCR
true/false

If set to true, the ENode registers for any changes with the Fabric by sending a State Change Registration
packet. (default = false)

scrOption

If enableSCR is set to true, scrOption becomes true. The registration function options for SCR are Fabric
Detected, Nx Port Detected, Full Registration.

Appendix 1 IxTclHAL Commands

– 693 –

sourceNodeWWN

Source node Worldwide Name - a Name_identifier that is worldwide unique, represented by an 8-byte hex
value. (default = '00 ... 00')

sourceOui

Use to configure the source Organization Unique Identifier. (default = 0e.fc.00)

sourcePortWWN

Source port Worldwide Name - a Name_identifier that is worldwide unique, represented by an 8-byte hex
value. (default = '00 ... 00')

COMMANDS

The fcProperties command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcProperties addPlogi

Adds a PLOGI to fcProperties.

fcProperties delPlogi plogiIndex

Deletes the PLOGI associated with this FC property set at the specified index. The index of the first entry
is 1.

fcProperties getPlogi plogiIndex

Retrieves the PLOGI associated with this FC property set at the specified index. The index of the first entry
is 1.

fcProperties getFirstPlogi

Retrieves the first PLOGI associated with this FC property set. Specific errors are:

l There are no entries in the list.

fcProperties getNextPlogi

Retrieves the next PLOGI associated with this FC property set. Specific errors are:

l There are no more entries in the list.

fcProperties removeAllPlogis

Deletes all of the PLOGIs associated with this FC property set.

EXAMPLES

See under fibreChannel.

SEE ALSO

fibreChannel

Appendix 1 IxTclHAL Commands

– 694 –

fcSOF
fcSOF-inserts Fibre Channel Start-of-Frame (SOF) delimiter. It is an Ordered Set that immediately
precedes the frame content.

SYNOPSIS

fcSOF sub-command options

DESCRIPTION

The Start-of-Frame (SOF) delimiter is an Ordered Set that immediately precedes the frame content.

STANDARD OPTIONS

fcSOFDelimiter

The multiple SOF delimiters defined for Sequence control are as follows:

Option Usage

fcSOFc1 The SOFc1 is used for all frames except the first frame of a Sequence for Class 1 service or
Class 6 service.

fcSOFi1 The SOFi1 is used for all frames except the first frame of a Sequence for Class 1 service or
Class 6 service.

fcSOFn1 The SOFn1 is used for all frames except the first frame of a Sequence for Class 1 service or
Class 6 service.

fcSOFi2 The SOFi2 is used on the first frame of a Sequence for Class 2 service.

fcSOFn2 The SOFn2 is used for all frames except the first frame of a Sequence for Class 2 service.

fcSOFi3 The SOFi3 is used on the first frame of a Sequence for Class 3 service.

fcSOFn3 The SOFn3 is used for all frames except the first frame of a Sequence for Class 3 service.

fcSOFc4 The SOFc4 is used on the first frame of a Connect for Class 4 service.

fcSOFi4 The SOFi4 is used on the first frame of a Sequence for Class 4 service.

fcSOFn4 The SOFn4 is used for all frames except the first frame of a Sequence for Class 4 service.

fcSOFf If an Nx_Port or Fx_Port receives a Class F frame, indicated by an SOFf delimiter, it is
discarded by the Nx_Port or Fx_Port. The receiving Nx_Port or Fx_Port may send an R_
RDY.

Appendix 1 IxTclHAL Commands

– 695 –

COMMANDS

The fcSOF command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fcSOF setDefault option

Sets to IxTclHal default values for all configuration options.

fcSOF set option

Sets the current configuration of the fcSOF for the indicated port. Call this command before calling fcSOF
get option value to get the value of the configuration option.

fcSOF get option

Gets the current configuration of the fcSOF for the indicated port.

EXAMPLES

See under fibreChannel.

SEE ALSO

fibreChannel

fecError
fecError - insert FEC errors

SYNOPSIS

fecError sub-command options

DESCRIPTION

Forward Error Correction (FEC) is a method of communicating data that corrects errors in transmission on
the receiving end. Prior to transmission, the data is put through a predetermined algorithm that adds
extra bits specifically for error correction to any character or code block. If the transmission is received in
error, the correction bits are used to check and repair the data. This feature is only available for certain
port types; this may be tested through the use of the port isValidFeature... portFeatureFec command.
FEC insertion must be enabled through the use of the opticalDigitalWrapper command.

The fecError command allows you to inject FEC errors into transmitted data. Three distinct modes are
controlled by the injectionMode option:

l Single: a single instance of an error is inserted.
l Rate: errors are inserted at one of a set of pre-determined rates as controlled by the errorRate
option.

l Burst: continuous bursts of errors is inserted as determined by the subrow, burstSize, offset,
errorBits and numberOfRowsToSkip options.

Appendix 1 IxTclHAL Commands

– 696 –

Single errors are inserted with the injectError sub-command and the start and stop commands are used
to start and stop rate and burst error insertion.

STANDARD OPTIONS

burstSize

The number of consecutive bytes (up to 15) after the 1st corrupted byte in each 255-byte sub-row to also
be corrupted. Thus if Burst Size = 15, then 16 bytes are corrupted in each selected sub-row. Default Burst
Size = 0, meaning only 1 byte is corrupted. Values between 8 and 15 results in uncorrectable errors.
(default = 0)

errorBits

The OR'ing of a set of bits to be errored. The default value of 0x01 shows error the low order bit. The value
of 0x81 errors both the high order and low order bits. (default = 1)

errorRate

One of a set of pre-defined error rates.

Option Value Usage

fecRate_0996_e02_correctable 0 (default) 0.996 x 10-2 correctable

fecRate_1001_e03_correctable 1 1.001 x 10-3 correctable

fecRate_1001_e04_correctable 2 1.001 x 10-4 correctable

fecRate_1001_e05_correctable 3 1.001 x 10-5 correctable

fecRate_1000_e06_correctable 4 1.000 x 10-6 correctable

fecRate_1000_e07_correctable 5 1.000 x 10-7 correctable

fecRate_1000_e08_correctable 6 1.000 x 10-8 correctable

fecRate_1000_e09_correctable 7 1.000 x 10-9 correctable

fecRate_1000_e10_correctable 8 1.001 x 10-10 correctable

fecRate_1000_e11_correctable 9 1.000 x 10-11 correctable

fecRate_1000_e12_correctable 10 1.0010x 10-12 correctable

fecRate_0960_e02_uncorrectable 11 0.960 x 10-2 uncorrectable

fecRate_1000_e03_uncorrectable 12 1.000 x 10-3 uncorrectable

fecRate_1000_e04_uncorrectable 13 1.000 x 10-4 uncorrectable

Appendix 1 IxTclHAL Commands

– 697 –

Option Value Usage

fecRate_1000_e05_uncorrectable 14 1.000 x 10-5 uncorrectable

fecRate_1000_e06_uncorrectable 15 1.000 x 10-6 uncorrectable

fecRate_1000_e07_uncorrectable 16 1.000 x 10-7 uncorrectable

fecRate_1000_e08_uncorrectable 17 1.000 x 10-8 uncorrectable

fecRate_1000_e09_uncorrectable 18 1.000 x 10-9 uncorrectable

fecRate_1000_e10_uncorrectable 19 1.001 x 10-10 uncorrectable

injectionMode

The mode of error injection.

Option Value Usage

fecSingleErrorInjection 0 (default) Indicates that a single error is inserted. The error is an
argument to the insertError sub-command. This option must be
set to this value when insertError is used.

fecErrorRateInjection 1 Continuously inserts errors at one of a set of pre-determined
rate indicated in the errorRate option.

fecBurstErrorInjection 2 Inserts continuous bursts of errors as indicted by the subrow,
burstSize, offset, errorBits and numberOfRowsToSkip options.

numberOfRowsToSkip

The number of rows to skip between error insertion burst. (default = 0)

offset

The offset within the subrow to start injecting errors. Byte 0 is the OH byte. (default = 1)

subrow

An OR'ing of bit to indicate which sub-row(s) to corrupt out of the 16 interleaved sub-rows. Each bit
position represents one sub-row. Thus if subrow = 0xFFFF, then all sub-rows have errors on them. The
low-order bit represents the first sub-row. (default = 0)

COMMANDS

The fecError command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fecError cget option

Appendix 1 IxTclHAL Commands

– 698 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fecError command.

fecError config option value

Modify the configuration options of the fecError. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for fecError.

fecError get chasID cardID portID

Gets the current configuration of the fecError for the indicated port. Call this command before calling
fecError cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Unsupported feature

fecError injectError fecErrorType chasID cardID portID

Inject a single instance of the error indicated by fecError into the indicated port's stream. The valid
options for fecError are:

Option Value Usage

fecOnesError 0 (default) Causes 0 bits to be changed to 1 bits.

fecZerosError 1 Causes 1 bits to be changed to 0 bits.

fecBalancedError 2 With an equal probability, a ones or zeros errors is inserted.

fecUncorrectableError 3 Causes uncorrectable errors to be inserted.

Specific errors are:

l No connection to a chassis
l Unsupported feature
l The port is being used by another user
l The value of injectionMode is not fecSingleErrorInjection

fecError set chasID cardID portID

Sets the configuration of the fecError in IxHAL for the port indicated by reading the configuration option
values set by the fecError config option value command. Specific errors are:

l No connection to a chassis
l Unsupported feature
l The port is being used by another user
l The configured parameters are not valid for this port

fecError setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 699 –

fecError start chasID cardID portID

Starts the FEC error insertion process if injectionMode is fecErrorRateInjection or fecBurstErrorInjection.
The stop sub-command must be used to stop error insertion. Specific errors are:

l No connection to a chassis
l Invalid port
l The port is being used by another user
l Unsupported feature
l The value of injectionMode is not fecErrorRateInjection or fecBurstErrorInjection.

fecError stop chasID cardID portID

Stops the FEC error insertion process if injectionMode is fecErrorRateInjection or fecBurstErrorInjection.
Specific errors are:

l No connection to a chassis
l Invalid port
l The port is being used by another user
l Unsupported feature
l The value of injectionMode is not fecErrorRateInjection or fecBurstErrorInjection.

EXAMPLES
package req IxTclHal
set host localhost
set username test
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chassis [ixGetChassisID $host]
set card 69
set port 1

Useful port lists
set portList [list [list $chassis $card $port]]
Login before taking ownership

Appendix 1 IxTclHAL Commands

– 700 –

if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

port setFactoryDefaults $chassis $card $port

Make sure to enable the use of FEC
opticalDigitalWrapper config -enableFec true
opticalDigitalWrapper config -payloadType optDigWrapperPayloadType03
if [opticalDigitalWrapper set $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}

Inject a single balanced error
fecError setDefault
fecError config -injectionMode fecSingleErrorInjection
if [fecError set $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixWriteConfigToHardware portList
if [fecError injectError fecBalancedError $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}

Setup a continuous error rate
fecError setDefault
fecError config -injectionMode fecErrorRateInjection
fecError config -errorRate fecRate_1000_e06_correctable
if [fecError set $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixWriteConfigToHardware portList
if [fecError start $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}
after 1000
if [fecError stop $chassis $card $port] {

Appendix 1 IxTclHAL Commands

– 701 –

ixPuts $::ixErrorInfo
return 1
}

Setup a burst rate
fecError setDefault
fecError config -injectionMode fecBurstErrorInjection
fecError config -subrow 0x0020
fecError config -burstSize 4
fecError config -offset 1
fecError config -errorBits 3
fecError config -numberOfRowsToSkip 2
if [fecError set $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixWriteConfigToHardware portList
if [fecError start $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}
after 1000
if [fecError stop $chassis $card $port] {
ixPuts $::ixErrorInfo
return 1
}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

opticalDigitalWrapper

fibreChannel
fibreChannel-supports FC header and trailer in streams

SYNOPSIS

fibreChannel sub-command options

Appendix 1 IxTclHAL Commands

– 702 –

DESCRIPTION

The fibreChannel command supports FC header and trailer in streams.

STANDARD OPTIONS

abortSequenceCondi-tion

Use to configure the Fibre Channel frame control abort sequence condition. (default = 0)

When Sequence Context is Initiator (0), available options are:

Option Value Usage

fibreChannelContinue 0 (default) Continue sequence

fibreChannelPerformAbts 1 Abort sequence perform ABTS

fibreChannelStop 2 Stopsequence

fibreChannelRetransmissionRequested 3 Immediate sequence retransmission requested

When Sequence Context is Recipient (1) available options are:

Option Value Usage

fibreChannelDiscardMultiple 0 (default) Abort discard multiple
sequences

fibreChannelDiscardSingle 1 Abort discard a single sequence

fibreChannelProcessPolicy 2 Process policy with infinite buffers

fibreChannelDiscardMultipleWithRetransmission 3 Discardmultiple sequences with
immediate retransmission

ackForm

Use to configure the Fibre Channel frame control ack form bits. (default = 0) Available options are:

Option Value Usage

ibreChannelNoAssistanceProvided 0 (default) No assistance provided

fibreChannelAck1Required 1 Ack1 required

fibreChannelReserved 2 Reserved

fibreChannelAck0Required 3 Ack0required

Appendix 1 IxTclHAL Commands

– 703 –

continueSequenceCon-dition

Use to configure the Fibre Channel frame control continue sequence condition. (default = 0) Available
options are:

Option Value Usage

fibreChannelNoInformation 0 (default) No information

fibreChannelFollowImmediately 1 Sequence to follow immediately

fibreChannelFollowSoon 2 Sequence to follow soon

fibreChannelFollowDelayed 3 Sequence to follow delayed

csControlOrPriority

Use to configure the Fibre Channel frame control class specific control or priority bit. (default = 0)
Available options are:

Option Value Usage

fibreChannelCsCtl 0 (default) Cs Ctl

fibreChannelPriority 1 Priority

csControlOrPriority
Value

Use to configure the Fibre Channel CS control or priority value which depends on the control/priority bit
set in the frame control. See enableUseFcControlBits. (default = 0x00)

dataFieldControl

Use to configure the Fibre Channel Frame header data field. (default = 0x00)

destinationId

Use to configure the Fibre Channel Frame header destination ID. (default = D1.D2.D3)

enableBadFibreChannelCrc true/false

Use to enable the bad Fibre Channel checksum. (default = true)

enableUseFcControlBits true/false

Use to enable the Frame Control bit by bit configuration. (default = false)

endConnection

Use to configure the Fibre Channel frame control end connection bit. (default = 0) Available options are:

Appendix 1 IxTclHAL Commands

– 704 –

Option Value Usage

fibreChannelConnectionAlive 0 (default) Connection alive

fibreChannelConnectionPending 1 End of connection pending

endSequence

Use to configure the Fibre Channel frame control end sequence bit. (default = 0) Available options are:

Option Value Usage

fibreChannelEndSequenceOther 0 (default) End sequence other

fibreChannelEndSequenceLast 1 End sequence last

exchangeContext

Use to configure the Fibre Channel frame control exchange context bit. (default = 0) Available options
are:

Option Value Usage

fibreChannelOriginator 0 (default) Exchange context originator

fibreChannelResponder 1 Exchange context responder

exchangeReassembly

Use to configure the Fibre Channel frame control exchange reassembly. (default = 0) Available options
are:

Option Value Usage

fibreChannelExchangeReassemblyOff 0 (default) Exchange reassembly Off

fibreChannelExchangeReassemblyOn 1 Exchangereassembly On

fillBytes

Use to configure the Fibre Channel frame control fill bytes. (default = 0) Available options are:

Option Value Usage

fibreChannelZeroHexByteFill 0 (default) 0 bytes of fill

fibreChannelOneHexByteFill 1 1 byte of fill

Appendix 1 IxTclHAL Commands

– 705 –

Option Value Usage

fibreChannelTwoHexByteFill 2 2 bytes of fill

fibreChannelThreeHexByteFill 3 3 bytes of fill

firstSequence

Use to configure the Fibre Channel frame control first sequence bit. (default = 0) Available options are:

Option Value Usage

fibreChannelFirstSequenceOther 0 (default) First sequence other

fibreChannelFirstSequenceFirst 1 First sequence first

frameControl

Use to configure the Fibre Channel Frame header control bytes. If enableUseFcControlBits is set true,
then this configuration is replaced by the bit by bit configuration. (default = 00 00 00)

lastSequence

Use to configure the Fibre Channel frame control last sequence bit.(default = 0) Available options are:

Option Value Usage

fibreChannelLastSequenceOther 0 (default) Last sequence other

fibreChannelLastSequenceLast 1 Last sequence last

originatorExchange
Counter

Use to configure the Fibre Channel Frame header originator exchange ID counter. (default = 0)

Option Value Usage

fibreChannelIdle 0 (default) Idle

fibreChannelIncrement 1 Increment

fibreChannelDecrement 2 Decrement

fibreChannelContIncr 3 Continuous increment

fibreChannelContDecr 4 Continuous decrement

fibreChannelRandom 5 Random

Appendix 1 IxTclHAL Commands

– 706 –

originatorExchangeId

Use to configure the Fibre Channel Frame header originator exchange ID. (default = '00 00')

parameter

Use to configure the Fibre Channel parameter. (default = '00 00 00 00')

relativeOffsetPresent

Use to configure the Fibre Channel frame control relative offset present. (default = 0) Available options
are:

Option Value Usage

fibreChannelRelativeOffsetDefined 0 (default) Parameter field defined

fibreChannelRelativeOffsetPresent 1 Relative offset present

responderExchangeId

Use to configure the Fibre Channel Frame header responder exchange ID. (default = '00 00')

retransmittedSequence

Use to configure the Fibre Channel frame control retransmitted sequence bit. (default = 0) Available
options are:

Option Value Usage

fibreChannelOriginal 0 (default) Original

fibreChannelRetransmission 1 Retransmission

routingControlInforma-tion

Use to configure the Fibre Channel Frame header routing control information. (default = 0) Available
options are:

Option Value Usage

fibreChannelUncategorizedInformation 0 (default) Uncategorized information

fibreChannelSolicitedData 1 Solicited data

fibreChannelUnsolicitedControl 2 Unsolicited control

fibreChannelSolicitedControl 3 Solicited control

fibreChannelUnsolicitedData 4 Unsolicited data

Appendix 1 IxTclHAL Commands

– 707 –

Option Value Usage

fibreChannelDataDescriptor 5 Data descriptor

fibreChannelUnsolicitedCommand 6 Unsolicited command

fibreChannelCommandStatus 7 Command status

routingControlType

Use to configure the Fibre Channel Frame header routing control type. (default = 0) Available options are:

Option Value Usage

fibreChannelDeviceDataFrames 0 (default) Device data frame

fibreChannelExtendedLinkServices 2 Extended link services

fibreChannelFc4LinkData 3 FC4 link data

fibreChannelVideoData 4 Video data

fibreChannelExtenderHeaders 5 Extended headers

fibreChannelBasicLinkServices 8 Basic link services

fibreChannelLinkControlFrame 12 Link control frame

fibreChannelExtendedRouting 15 Extended routing

sequenceContext

Use to configure the Fibre Channel frame control sequence context bit. (default = 0) Available options
are:

Option Value Usage

fibreChannelInitiator 0 (default) Sequence context initiator

fibreChannelRecipient 1 Sequence context recipient

sequenceCount

Use to configure the Fibre Channel Frame header sequence count. (default = 0)

sequenceId

Use to configure the Fibre Channel Frame header sequence ID. (default = 0x00)

Appendix 1 IxTclHAL Commands

– 708 –

sequenceInitiative

Use to configure the Fibre Channel frame control sequence initiative bit. (default = 0) Available options
are:

Option Value Usage

fibreChannelInitiativeHold 0 (default) Sequence initiative hold

fibreChannelInitiativeTransfer 1 Sequence initiative transfer

sourceId

Use to configure the Fibre Channel Frame header source ID. (default = '8D.8E.8F')

type

Use to configure the Fibre Channel Frame header type. (default = 0x00)

unidirectionalTransmit

Use to configure the Fibre Channel frame control unidirectional transmit bit. (default = 0) Available
options are:

Option Value Usage

fibreChannelBidirectional 0 (default) Bidirectional

fibreChannelUnidirectional 1 Unidirectional

COMMANDS

The fibreChannelcommand is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fibreChannel cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fibreChannel command.

fibreChannel config option value

Modify the configuration options of the filter. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for fibreChannel.

fibreChannel decode capFrame chasID cardID portID

Decodes the FCoE packet and refreshes the IxTclHal object. Specific errors are:

l No connection to a chassis
l Invalid port

Appendix 1 IxTclHAL Commands

– 709 –

l The captured frame is not a valid fibreChannel packet

fibreChannel get chasID cardID portID

Gets the current FCoE settings from IxHal and refreshes IxTclHal object. Specific errors are:

l No connection to a chassis
l Invalid port number

fibreChannel setDefault

Sets to IxTclHal local default values for all configuration options.

fibreChannel set chasID cardID portID

Sets the current FCoE settings from IxTclHal to local IxHAL. Specific errors are:

l No connection to a chassis
l Invalid port number
l Invalid feature
l The port is being used by another user
l The configured parameters are not valid for this port

EXAMPLES
package req IxTclHal

Command Option Mode - Full (generate full configuration)

if {[isUNIX]} {
if {[ixConnectToTclServer loopback]} {
errorMsg "Error connecting to Tcl Server loopback "
return $::TCL_ERROR
}
}

######### Chassis list - {loopback} #########

ixConnectToChassis {loopback}

set portList {}

######### Chassis-loopback #########

chassis get "loopback"
set chassis [chassis cget -id]

######### Card Type : FCM GXM8 ############

Appendix 1 IxTclHAL Commands

– 710 –

set card 57
card setDefault
card config -clockSelect cardClockInternal
card config -txFrequencyDeviation 0
set retCode [card set $chassis $card]
switch $retCode \
$::TCL_OK { \

errorMsg "Error calling card write $chassis $card"; \
set retCode $::TCL_ERROR; \
} \
} \
$::ixTcl_notAvailable { \
logMsg "One or more of the ports on this card is unavailable, please check ownership.
Card settings not applied."; \
} \
default { \
errorMsg "Error calling card set $chassis $card"; \
}

######### Chassis-loopback Card-57 Port-1 #########

set port 1

port setFactoryDefaults $chassis $card $port
port config -speed 8500
port config -duplex full
port config -flowControl false
port config -directedAddress "01 80 C2 00 00 01"
port config -multicastPauseAddress "01 80 C2 00 00 01"
port config -loopback portNormal
port config -transmitMode portTxPacketStreams
port config -receiveMode [expr
$::portCapture|$::portRxDataIntegrity|$::portRxSequenceChecking|$::portRxModeWidePack
etGroup]
port config -autonegotiate false
port config -advertise100FullDuplex false
port config -advertise100HalfDuplex false
port config -advertise10FullDuplex false
port config -advertise10HalfDuplex false
port config -advertise1000FullDuplex false
port config -portMode 9
port config -enableDataCenterMode false
port config -dataCenterMode eightPriorityTrafficMapping
port config -flowControlType ieee8023x
port config -pfcEnableValueListBitMatrix ""
port config -pfcResponseDelayEnabled 0

Appendix 1 IxTclHAL Commands

– 711 –

port config -pfcResponseDelayQuanta 0
port config -rxTxMode gigNormal
port config -ignoreLink false
port config -advertiseAbilities portAdvertiseNone
port config -timeoutEnable true
port config -negotiateMasterSlave 0
port config -masterSlave portSlave
port config -pmaClock pmaClockAutoNegotiate
port config -enableSimulateCableDisconnect false
port config -enableAutoDetectInstrumentation true
port config -autoDetectInstrumentationMode portAutoInstrumentationModeFloating
port config -enableRepeatableLastRandomPattern false
port config -transmitClockDeviation 0
port config -transmitClockMode portClockInternal
port config -preEmphasis preEmphasis0
port config -transmitExtendedTimestamp 0
port config -operationModeList [list $::portOperationModeStream]
port config -MacAddress "00 de bb 00 00 01"
port config -DestMacAddress "00 de bb 00 00 02"
port config -name ""
port config -numAddresses 1
port config -enableManualAutoNegotiate false
port config -enablePhyPolling true
port config -enableTxRxSyncStatsMode false
port config -txRxSyncInterval 0
port config -enableTransparentDynamicRateChange false
port config -enableDynamicMPLSMode false
port config -enablePortCpuFlowControl false
port config -portCpuFlowControlDestAddr "01 80 C2 00 00 01"
port config -portCpuFlowControlSrcAddr "00 00 01 00 02 00"
port config -portCpuFlowControlPriority "0 0 0 0 0 0 0 0"
port config -portCpuFlowControlType 0
port config -enableWanIFSStretch false
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

fcPort config -enableAutoNegotiate false
fcPort config -bbCredit 8
fcPort config -bbSCN 0
fcPort config -forceErrorMode 0
fcPort config -doNotSendRRDYAfterNFrames 0
fcPort config -rrdyResponseDelayMode 0
fcPort config -fixedDelayValue 0
fcPort config -eDTOVMode 2
fcPort config -eDTOVOverride 2000
fcPort config -rATOVMode 2

Appendix 1 IxTclHAL Commands

– 712 –

fcPort config -rATOVOverride 10000
fcPort config -rTTOVMode 2
fcPort config -rTTOVOverride 100
if {[fcPort set $chassis $card $port]} {
errorMsg "Error calling fcPort set $chassis $card $port"
set retCode $::TCL_ERROR
}

stat setDefault
stat config -mode statNormal
stat config -enableValidStats false
stat config -enableProtocolServerStats true
stat config -enableArpStats true
stat config -enablePosExtendedStats true
stat config -enableDhcpStats false
stat config -enableDhcpV6Stats false
stat config -enableFcoeStats true
stat config -fcoeRxSharedStatType1 statFcoeValidFrames
stat config -fcoeRxSharedStatType2 statFcoeValidFrames
if {[stat set $chassis $card $port]} {
errorMsg "Error calling stat set $chassis $card $port"
set retCode $::TCL_ERROR
}
packetGroup setDefault
packetGroup config -signatureOffset 48
packetGroup config -signature "08 71 18 05"
packetGroup config -insertSignature false
packetGroup config -ignoreSignature false
packetGroup config -groupId 0
packetGroup config -groupIdOffset 52
packetGroup config -enableGroupIdMask false
packetGroup config -enableInsertPgid true
packetGroup config -groupIdMask 4293918720
packetGroup config -latencyControl cutThrough
packetGroup config -measurementMode packetGroupModeLatency
packetGroup config -delayVariationMode delayVariationWithSequenceErrors
packetGroup config -preambleSize 8
packetGroup config -sequenceNumberOffset 44
packetGroup config -sequenceErrorThreshold 2
packetGroup config -insertSequenceSignature false
packetGroup config -allocateUdf true
packetGroup config -enableSignatureMask false
packetGroup config -signatureMask "00 00 00 00"
packetGroup config -enableRxFilter false
packetGroup config -headerFilter "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00"
packetGroup config -headerFilterMask "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00"

Appendix 1 IxTclHAL Commands

– 713 –

packetGroup config -enable128kBinMode true
packetGroup config -enableTimeBins false
packetGroup config -numPgidPerTimeBin 32
packetGroup config -numTimeBins 1
packetGroup config -timeBinDuration 1000000
packetGroup config -enableLatencyBins false
packetGroup config -latencyBinList ""
packetGroup config -groupIdMode packetGroupCustom
packetGroup config -sequenceCheckingMode seqThreshold
packetGroup config -multiSwitchedPathMode seqSwitchedPathPGID
packetGroup config -enableLastBitTimeStamp false
if {[packetGroup setRx $chassis $card $port]} {
errorMsg "Error calling packetGroup setRx $chassis $card $port"
set retCode $::TCL_ERROR
}

dataIntegrity setDefault
dataIntegrity config -signatureOffset 40
dataIntegrity config -signature "08 71 18 00"
dataIntegrity config -insertSignature false
dataIntegrity config -enableTimeStamp false
dataIntegrity config -floatingTimestampAndDataIntegrityMode
dataIntegrityNumberOfBytesFromEndOfFrame
dataIntegrity config -numBytesFromEndOfFrame 4
dataIntegrity config -payloadLength 0
if {[dataIntegrity setRx $chassis $card $port]} {
errorMsg "Error calling dataIntegrity setRx $chassis $card $port"
set retCode $::TCL_ERROR
}

autoDetectInstrumentation setDefault
autoDetectInstrumentation config -startOfScan 0
autoDetectInstrumentation config -signature {87 73 67 49 42 87 11 80 08 71 18 05}
autoDetectInstrumentation config -enableSignatureMask false
autoDetectInstrumentation config -signatureMask {00 00 00 00 00 00 00 00 00 00 00 00}
if {[autoDetectInstrumentation setRx $chassis $card $port]} {
errorMsg "Error calling autoDetectInstrumentation setRx $chassis $card $port"
set retCode $::TCL_ERROR
}

linkFaultSignaling setDefault
linkFaultSignaling config -contiguousErrorBlocks 2
linkFaultSignaling config -contiguousGoodBlocks 0
linkFaultSignaling config -sendSetsMode linkFaultAlternateOrderedSets
linkFaultSignaling config -loopCount 1
linkFaultSignaling config -enableLoopContinuously true
linkFaultSignaling config -enableTxIgnoresRxLinkFault false

Appendix 1 IxTclHAL Commands

– 714 –

linkFaultSignaling config -orderedSetTypeA linkFaultLocal
linkFaultSignaling config -orderedSetTypeB linkFaultRemote
if {[linkFaultSignaling set $chassis $card $port]} {
errorMsg "Error calling linkFaultSignaling set $chassis $card $port"
set retCode $::TCL_ERROR
}

capture setDefault
capture config -fullAction lock
capture config -sliceSize 65536
capture config -sliceOffset 0
capture config -captureMode captureTriggerMode
capture config -continuousFilter 0
capture config -beforeTriggerFilter captureBeforeTriggerNone
capture config -afterTriggerFilter captureAfterTriggerFilter
capture config -triggerPosition 1.0
capture config -enableSmallPacketCapture false
if {[capture set $chassis $card $port]} {
errorMsg "Error calling capture set $chassis $card $port"
set retCode $::TCL_ERROR
}

filter setDefault
filter config -captureTriggerDA anyAddr
filter config -captureTriggerSA anyAddr
filter config -captureTriggerPattern anyPattern
filter config -captureTriggerError errAnyFrame
filter config -captureTriggerFrameSizeEnable false
filter config -captureTriggerFrameSizeFrom 36
filter config -captureTriggerFrameSizeTo 36
filter config -captureTriggerCircuit filterAnyCircuit
filter config -captureFilterDA anyAddr
filter config -captureFilterSA anyAddr
filter config -captureFilterPattern anyPattern
filter config -captureFilterError errAnyFrame
filter config -captureFilterFrameSizeEnable false
filter config -captureFilterFrameSizeFrom 36
filter config -captureFilterFrameSizeTo 36
filter config -captureFilterCircuit filterAnyCircuit
filter config -userDefinedStat1DA anyAddr
filter config -userDefinedStat1SA anyAddr
filter config -userDefinedStat1Pattern anyPattern
filter config -userDefinedStat1Error errAnyFrame
filter config -userDefinedStat1FrameSizeEnable false
filter config -userDefinedStat1FrameSizeFrom 36
filter config -userDefinedStat1FrameSizeTo 36
filter config -userDefinedStat1Circuit filterAnyCircuit

Appendix 1 IxTclHAL Commands

– 715 –

filter config -userDefinedStat2DA anyAddr
filter config -userDefinedStat2SA anyAddr
filter config -userDefinedStat2Pattern anyPattern
filter config -userDefinedStat2Error errAnyFrame
filter config -userDefinedStat2FrameSizeEnable 0
filter config -userDefinedStat2FrameSizeFrom 36
filter config -userDefinedStat2FrameSizeTo 36
filter config -userDefinedStat2Circuit filterAnyCircuit
filter config -asyncTrigger1DA anyAddr
filter config -asyncTrigger1SA anyAddr
filter config -asyncTrigger1Pattern anyPattern
filter config -asyncTrigger1Error errAnyFrame
filter config -asyncTrigger1FrameSizeEnable false
filter config -asyncTrigger1FrameSizeFrom 36
filter config -asyncTrigger1FrameSizeTo 36
filter config -asyncTrigger1Circuit filterAnyCircuit
filter config -asyncTrigger2DA anyAddr
filter config -asyncTrigger2SA anyAddr
filter config -asyncTrigger2Pattern anyPattern
filter config -asyncTrigger2Error errAnyFrame
filter config -asyncTrigger2FrameSizeEnable false
filter config -asyncTrigger2FrameSizeFrom 36
filter config -asyncTrigger2FrameSizeTo 36
filter config -asyncTrigger2Circuit filterAnyCircuit
filter config -captureTriggerEnable true
filter config -captureFilterEnable true
filter config -userDefinedStat1Enable false
filter config -userDefinedStat2Enable false
filter config -asyncTrigger1Enable false
filter config -asyncTrigger2Enable false
if {[filter set $chassis $card $port]} {
errorMsg "Error calling filter set $chassis $card $port"
set retCode $::TCL_ERROR
}

filterPallette setDefault
filterPallette config -DA1 "00 00 00 00 00 00"
filterPallette config -DAMask1 "00 00 00 00 00 00"
filterPallette config -DA2 "00 00 00 00 00 00"
filterPallette config -DAMask2 "00 00 00 00 00 00"
filterPallette config -SA1 "00 00 00 00 00 00"
filterPallette config -SAMask1 "00 00 00 00 00 00"
filterPallette config -SA2 "00 00 00 00 00 00"
filterPallette config -SAMask2 "00 00 00 00 00 00"
filterPallette config -pattern1 "DE ED EF FE AC CA"
filterPallette config -patternMask1 "00 00 00 00 00 00"
filterPallette config -pattern2 00
filterPallette config -patternMask2 00

Appendix 1 IxTclHAL Commands

– 716 –

filterPallette config -patternOffset1 12
filterPallette config -patternOffset2 12
filterPallette config -matchType1 matchUser
filterPallette config -matchType2 matchUser
filterPallette config -patternOffsetType1 filterPalletteOffsetStartOfFrame
filterPallette config -patternOffsetType2 filterPalletteOffsetStartOfFrame
filterPallette config -gfpErrorCondition gfpErrorsOr
filterPallette config -enableGfptHecError true
filterPallette config -enableGfpeHecError true
filterPallette config -enableGfpPayloadCrcError true
filterPallette config -enableGfpBadFcsError true
filterPallette config -circuitList ""
if {[filterPallette set $chassis $card $port]} {
errorMsg "Error calling filterPallette set $chassis $card $port"
set retCode $::TCL_ERROR
}

streamRegion setDefault
streamRegion config -gapControlMode streamGapControlFixed
if {[streamRegion set $chassis $card $port]} {
errorMsg "Error calling streamRegion set $chassis $card $port"
set retCode $::TCL_ERROR
}

ipAddressTable setDefault
ipAddressTable config -defaultGateway "0.0.0.0"
if {[ipAddressTable set $chassis $card $port]} {
errorMsg "Error calling ipAddressTable set $chassis $card $port"
set retCode $::TCL_ERROR
}

if {[interfaceTable select $chassis $card $port]} {
errorMsg "Error calling interfaceTable select $chassis $card $port"
set retCode $::TCL_ERROR
}

interfaceTable setDefault
interfaceTable config -dhcpV4RequestRate 0
interfaceTable config -dhcpV6RequestRate 0
interfaceTable config -dhcpV4MaximumOutstandingRequests 100
interfaceTable config -dhcpV6MaximumOutstandingRequests 100
interfaceTable config -fcoeRequestRate 500
interfaceTable config -fcoeNumRetries 5
interfaceTable config -fcoeRetryInterval 2000
interfaceTable config -fipVersion fipVersion1
interfaceTable config -enableFcfMac false

Appendix 1 IxTclHAL Commands

– 717 –

interfaceTable config -fcfMacCollectionTime 1000
interfaceTable config -enablePMacInFpma true
interfaceTable config -enableNameIdInVLANDiscovery false
interfaceTable config -enableTargetLinkLayerAddrOption false
if {[interfaceTable set]} {
errorMsg "Error calling interfaceTable set"
set retCode $::TCL_ERROR
}

interfaceTable clearAllInterfaces

Interface entry type - interfaceTypeConnected
interfaceEntry clearAllItems addressTypeIpV6
interfaceEntry clearAllItems addressTypeIpV4
interfaceEntry setDefault

fcNameServer setDefault
fcNameServer config -enableRnnId true
fcNameServer config -enableRcsId false
fcNameServer config -enableRftId true
fcNameServer config -enableRpnId false
fcNameServer config -enableRptId false
fcNameServer config -enableRspnId false
fcNameServer config -enableRsnnNn false
fcNameServer config -enableRhaId false
fcNameServer config -symbolicPortName ""
fcNameServer config -symbolicNodeName ""
fcNameServer config -rhadId ""

fcNameServerQuery setDefault
fcNameServerQuery config -fcNameServerQueryCommand commandGANxt
fcNameServerQuery config -fcNameServerQueryObject objectPortId
fcNameServerQuery config -fcNameServerQueryObjectValue " "

fcProperties removeAllPlogis
fcProperties setDefault
fcProperties config -sourcePortWWN "10 00 00 00 96 C2 1A 16"
fcProperties config -sourceNodeWWN "20 00 00 00 96 C2 1A 16"
fcProperties config -destinationId "01.b6.69"
fcProperties config -sourceOui "0e.fc.00"
fcProperties config -bufferToBufferRxSize 2112
fcProperties config -enableSCR false
fcProperties config -enableNs true
fcProperties config -enablePlogi false
fcProperties config -enableAutoPlogi true
fcProperties config -enableNSQuery true
fcProperties config -enablePRLI true
fcProperties config -scrOption 2

Appendix 1 IxTclHAL Commands

– 718 –

interfaceEntry config -enable true
interfaceEntry config -description {ProtocolInterface - 57:01 - 1}
interfaceEntry config -macAddress {00 00 96 C2 1B EB}
interfaceEntry config -eui64Id {02 00 96 FF FE C2 1B EB}
interfaceEntry config -mtu 1500
interfaceEntry config -enableDhcp false
interfaceEntry config -enableVlan false
interfaceEntry config -vlanId 0
interfaceEntry config -vlanPriority 0
interfaceEntry config -vlanTPID 0x8100
interfaceEntry config -enableDhcpV6 false
interfaceEntry config -ipV6Gateway {0:0:0:0:0:0:0:0}
interfaceEntry config -enableFlogi true
if {[interfaceTable addInterface interfaceTypeConnected]} {
errorMsg "Error calling interfaceTable addInterface interfaceTypeConnected"
set retCode $::TCL_ERROR
}

if {[interfaceTable write]} {
errorMsg "Error calling interfaceTable write"
set retCode $::TCL_ERROR
}

protocolServer setDefault
protocolServer config -enableArpResponse false
protocolServer config -enablePingResponse false
if {[protocolServer set $chassis $card $port]} {
errorMsg "Error calling protocolServer set $chassis $card $port"
set retCode $::TCL_ERROR
}

ixEnablePortIntrinsicLatencyAdjustment $chassis $card $port false
lappend portList [list $chassis $card $port]
ixWritePortsToHardware portList
ixCheckLinkState portList
###
######### Generating streams for all the ports from above #########
###

######### Chassis-loopback Card-57 Port-1 #########

chassis get "loopback"
set chassis [chassis cget -id]

Appendix 1 IxTclHAL Commands

– 719 –

set card 57
set port 1
streamRegion get $chassis $card $port
if {[streamRegion enableGenerateWarningList $chassis $card $port 0]} {
errorMsg "Error calling streamRegion enableGenerateWarningList $chassis $card $port
0"
set retCode $::TCL_ERROR
}

set streamId 1

Stream 1
stream setDefault
stream config -name ""
stream config -enable true
stream config -enableSuspend false
stream config -region 0
stream config -numBursts 1
stream config -numFrames 100
stream config -ifg 14.1176470588
stream config -ifgType gapFixed
stream config -ifgMIN 28.2352941176stream config -ifgMAX 37.6470588235
stream config -ibg 28.2352768842
stream config -enableIbg false
stream config -isg 28.2352768842
stream config -enableIsg false
stream config -gapUnit gapNanoSeconds
stream config -percentPacketRate 100.0
stream config -fpsRate 3035714.28571
stream config -bpsRate 5828571428.57
stream config -rateMode usePercentRate
stream config -preambleSize 28
stream config -preambleData "55 55 55 55 55 55 D5"
stream config -framesize 240
stream config -frameSizeType sizeAuto
stream config -frameSizeMIN 240
stream config -frameSizeMAX 240
stream config -frameSizeStep 4
stream config -enableTimestamp false
stream config -fcs good
stream config -patternType incrByte
stream config -dataPattern x00010203
stream config -pattern "00 01 02 03"
stream config -frameType "FF FF"
stream config -dma contPacket
stream config -rxTriggerEnable false
stream config -asyncIntEnable true
stream config -loopCount 1

Appendix 1 IxTclHAL Commands

– 720 –

stream config -returnToId 1
stream config -enforceMinGap 12
stream config -enableStatistic true
stream config -enableIncrFrameBurstOverride false
stream config -enableDisparityError false
stream config -enableSourceInterface false
stream config -sourceInterfaceDescription ""
stream config -startTxDelayUnit $::startTxDelayBytes 4
stream config -startTxDelay 0.0
stream config -priorityGroup priorityGroup0

protocol setDefault
protocol config -name nativeFc
protocol config -appName noType
protocol config -ethernetType noType
protocol config -enable802dot1qTag vlanNone
protocol config -enableISLtag false
protocol config -enableMPLS false
protocol config -enableMacSec false
protocol config -enableOAM false
protocol config -enableProtocolPad
fcSOF setDefault
fcSOF config -startOfFrame fcSOFn3
if {[fcSOF set $chassis $card $port]} {
errorMsg "Error calling fcSOF set $chassis $card $port"
set retCode $::TCL_ERROR
}

fibreChannel setDefault
fibreChannel config -extHeaderDetails ""
fibreChannel config -destinationId "D1.D2.D3"
fibreChannel config -routingControlType fibreChannelDeviceDataFrames
fibreChannel config -routingControlInformation fibreChannelUncategorizedInformation
fibreChannel config -sourceId "8D.8E.8F"
fibreChannel config -csControlOrPriorityValue 0x00
fibreChannel config -frameControl "00 00 00"
fibreChannel config -type 0x20
fibreChannel config -sequenceCount 0
fibreChannel config -dataFieldControl 0x70
fibreChannel config -sequenceId 0x00
fibreChannel config -responderExchangeId "00 00"
fibreChannel config -originatorExchangeId "00 00"
fibreChannel config -parameter "00 00 00 00"
fibreChannel config -originatorExchangeCounter fibreChannelIdle
fibreChannel config -enableBadFibreChannelCrc false
fibreChannel config -enableUseFcControlBits false
fibreChannel config -exchangeContext fibreChannelOriginator
fibreChannel config -sequenceContext fibreChannelInitiator

Appendix 1 IxTclHAL Commands

– 721 –

fibreChannel config -firstSequence fibreChannelFirstSequenceOther
fibreChannel config -lastSequence fibreChannelLastSequenceOther
fibreChannel config -endSequence fibreChannelEndSequenceOther
fibreChannel config -endConnection fibreChannelConnectionAlive
fibreChannel config -csControlOrPriority fibreChannelCsCtl
fibreChannel config -sequenceInitiative fibreChannelInitiativeHold
fibreChannel config -ackForm fibreChannelOriginal
fibreChannel config -retransmittedSequence fibreChannelOriginal
fibreChannel config -unidirectionalTransmit fibreChannelBidirectional
fibreChannel config -continueSequenceCondition fibreChannelNoInformation
fibreChannel config -abortSequenceCondition fibreChannelContinue
fibreChannel config -relativeOffsetPresent fibreChannelRelativeOffsetDefined
fibreChannel config -exchangeReassembly fibreChannelExchangeReassemblyOff
fibreChannel config -fillBytes fibreChannelZeroHexByteFill

if {[fibreChannel clearAllExtHeaders $chassis $card $port]} {
errorMsg "Error calling fibreChannel clearAllExtHeaders $chassis $card $port"
set retCode $::TCL_ERROR
}

vftHeader setDefault
vftHeader config -virtualFabricId 0
vftHeader config -priority vftBestEfrort
vftHeader config -type 0
vftHeader config -version 0
vftHeader config -routingControl 80
vftHeader config -hopCt 0
if {[fibreChannel addExtHeader extVFTHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel addExtHeader extVFTHeader $chassis $card $port"
set retCode $::TCL_ERROR
}

ifrHeader setDefault
ifrHeader config -expirationTime 0
ifrHeader config -destinationFabricId 0
ifrHeader config -routingControl 81
ifrHeader config -hopCount 0
ifrHeader config -sourceFabricId 0
ifrHeader config -hopCountValid 0
ifrHeader config -expirationTimeValid 0
ifrHeader config -priority 0
ifrHeader config -version 0
if {[fibreChannel addExtHeader extIFRHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel addExtHeader extIFRHeader $chassis $card $port"
set retCode $::TCL_ERROR
}

encHeader setDefault

Appendix 1 IxTclHAL Commands

– 722 –

encHeader config -destinationId 0
encHeader config -routingControl 82
encHeader config -sourceId 0
encHeader config -csControlOrPriority 0
encHeader config -frameControl 0
encHeader config -type 0
encHeader config -sequenceCount 0
encHeader config -dataFieldControl 0
encHeader config -sequenceId 0
encHeader config -responderExchangeId 0
encHeader config -originatorExchangeId 0
encHeader config -parameter 0
if {[fibreChannel addExtHeader extEncHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel addExtHeader extEncHeader $chassis $card $port"
set retCode $::TCL_ERROR
}

espHeader setDefault
espHeader config -espSequenceNumber 0
espHeader config -securityParameterIndex 0
if {[fibreChannel setOptHeader optESPHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel setOptHeader optESPHeader $chassis $card $port"
set retCode $::TCL_ERROR
}

associationHeader setDefault
associationHeader config -validity 192
associationHeader config -originatorProcessAssociator "00 00 00 00 00 00 00"
associationHeader config -responderProcessAssociator "00 00 00 00 00 00 00"
if {[fibreChannel setOptHeader optAssociationHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel setOptHeader optAssociationHeader $chassis $card
$port"
set retCode $::TCL_ERROR
}

iEEE48BitAddressDest setDefault
iEEE48BitAddressDest config -_48BitAddressNameIdentifier "00 00 00 00 00 00"

iEEE48BitAddressSrc setDefault
iEEE48BitAddressSrc config -_48BitAddressNameIdentifier "00 00 00 00 00 00"

networkHeader setDefault
networkHeader config -destinationFormat nhIEEE48BitAddress
networkHeader config -sourceFormat nhIEEE48BitAddress
if {[fibreChannel setOptHeader optNetworkHeader $chassis $card $port]} {
errorMsg "Error calling fibreChannel setOptHeader optNetworkHeader $chassis $card
$port"
set retCode $::TCL_ERROR

Appendix 1 IxTclHAL Commands

– 723 –

}

if {[fibreChannel set $chassis $card $port]} {
errorMsg "Error calling fibreChannel set $chassis $card $port"
set retCode $::TCL_ERROR
}

ctGetAllNextRequest setDefault
ctGetAllNextRequest config -portIdentifier "00 00 00"

ctPreamble setDefault
ctPreamble config -revision 0
ctPreamble config -inId "00 00 00"
ctPreamble config -gsType 252
ctPreamble config -gsSubtype 2
ctPreamble config -isPartialResponse 0
ctPreamble config -extendedPreambleStatus 4
ctPreamble config -commandOrResponseCode 256
ctPreamble config -maximumOrResidualSize 0
ctPreamble config -fragmentID 0
ctPreamble config -reasonCode ctPreambleInvalidCommandCode
ctPreamble config -reasonCodeExplanation ctPreambleNoAdditionalExplanation
ctPreamble config -vendorSpecificReasonCode ctPreambleInvalidCommandCode
ctPreamble config -authenticationSAID "00 00 00 00"
ctPreamble config -transactionId "00 00 00 00"
ctPreamble config -requestingCTnPortName "22 22 22 22 22 22 22 22"
ctPreamble config -timestamp "00 00 00 00 00 00 00 00"
ctPreamble config -authenticationHashBlock "00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00
00 00"
ctPreamble config -vendorIdentifier "00 00 00 00 00 00 00 00"
ctPreamble config -vendorSpecificInformation "00 00 00 00 00 00 00 00 00 00 00 00 00
00 00
00 00
00 00
00 00
00 00 00"
ctPreamble config -isVendorSpecificPreamblePresent 0
ctPreamble config -isAdditionalInformationPresent 0
ctPreamble config -additionalInformation ""

commonTransport setDefault
commonTransport config -ctCommand ctGetAllNextRequest
if {[commonTransport set $chassis $card $port]} {
errorMsg "Error calling commonTransport set $chassis $card $port"
set retCode $::TCL_ERROR
}

Appendix 1 IxTclHAL Commands

– 724 –

fcEOF setDefault
fcEOF config -endOfFrame fcEOFn
if {[fcEOF set $chassis $card $port]} {
errorMsg "Error calling fcEOF set $chassis $card $port"
set retCode $::TCL_ERROR
}

if {[port isValidFeature $chassis $card $port $::portFeatureTableUdf]} {
tableUdf setDefault
tableUdf clearColumns
if {[tableUdf set $chassis $card $port]} {
errorMsg "Error calling tableUdf set $chassis $card $port"
set retCode $::TCL_ERROR
}

}

if {[port isValidFeature $chassis $card $port
$::portFeatureRandomFrameSizeWeightedPair]} {
weightedRandomFramesize setDefault
if {[weightedRandomFramesize set $chassis $card $port]} {
errorMsg "Error calling weightedRandomFramesize set $chassis $card $port"
set retCode $::TCL_ERROR
}

}

if {[stream set $chassis $card $port $streamId]} {
errorMsg "Error calling stream set $chassis $card $port $streamId"
set retCode $::TCL_ERROR
}

incr streamId
streamRegion generateWarningList $chassis $card $port
ixWriteConfigToHardware portList -noProtocolServer

SEE ALSO

filter
filter - configure the filters of a port of a card on a chassis.

SYNOPSIS

filter sub-command options

Appendix 1 IxTclHAL Commands

– 725 –

DESCRIPTION

The filter command is used to configure the filters and capture triggers for receiving frames on a port of a
card. The incoming frames can be filtered on a combination of varying constraints, such as destination or
source address, pattern matching or specific error conditions.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

asyncTrigger1DA
true/false

Enables or disables User Defined Statistics counter 5 to filter on the destination MAC addresses. (default
= false)

asyncTrigger1Enable true/false

Enables or disables User Defined Statistics counter 5 that counts the number of frames filtered. To use
this counter the stat mode has to be set to statStreamTrigger. (default = false)

asyncTrigger1Error true/false

Enables or disables User Defined Statistics counter 5 filter on the errored frames. (default = false)

asyncTrigger1Frame
SizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to filter for User
Defined Statistics counter 5. (default = false)

asyncTrigger1Frame
SizeFrom

The minimum range of the size of frame to be filtered for User Defined Statistics counter 5. Applicable
only when asyncTrigger1FramesizeEnable is set to true. (default = 64)

asyncTrigger1Frame
SizeTo

The maximum range of the size of frame to be filtered for User Defined Statistics counter 5. Applicable
only when asyncTrigger1FramesizeEnable is set to true. (default = 1518)

asyncTrigger1Pattern true/false

Enables or disables User Defined Statistics counter 5 to filter on the pattern. (default = false)

Appendix 1 IxTclHAL Commands

– 726 –

asyncTrigger1SA
true/false

Enables or disables User Defined Statistics counter 5 to filter on the source MAC addresses. (default =
false)

asyncTrigger2DA
true/false

Enables or disables User Defined Statistics counter 6 to filter on the destination MAC addresses. (default
= false)

asyncTrigger2Enable true/false

Enables or disables User Defined Statistics counter 6 that counts the number of frames filtered. (default =
false) To use this counter the stat mode has to be set to statStreamTrigger.

asyncTrigger2Error

Enables or disables User Defined Statistics counter 6 filter on the errored frames. (default = false)

asyncTrigger2Frame
SizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to filter for User
Defined Statistics counter 6. (default = false)

asyncTrigger2Frame
SizeFrom

The minimum range of the size of frame to be filtered for User Defined Statistics counter 6. Applicable
only when asyncTrigger1FramesizeEnable is set to true. (default = 64)

asyncTrigger2Frame
SizeTo

The maximum range of the size of frame to be filtered for User Defined Statistics counter 6. Applicable
only when asyncTrigger1FramesizeEnable is set to true. (default = 1518)

asyncTrigger2Pattern true/false

Enables or disables User Defined Statistics counter 6 to filter on the pattern. (default = false)

asyncTrigger2SA
true/false

Enables or disables User Defined Statistics counter 6 to filter on the source MAC addresses. (default =
false)

Appendix 1 IxTclHAL Commands

– 727 –

captureFilterDA

One of two available destination MAC addresses to filter on. Applicable only when capturefilternable is set
to true. The possible values are:

Option Value Usage

anyAddr 0 (default) disables the destination address filter constraint

addr1 1 sets the destination address filter constraint to trigger on frames with a
destination MAC address that matches DA1and DA1mask as specified in the
filter palette

-notAddr1 2 sets the destination address filter constraint to trigger on all frames except
those with a destination MAC address that matches DA1 and DA1 mask as
specified in the filter palette

addr2 3 sets the destination address filter constraint to trigger on frames with a
destination MAC address that matches DA2 and DA2mask as specified in the
filter palette

notAddr2 4 sets the destination address filter constraint to trigger on all frames except
those with a destination MAC address that matches DA2 and DA2 mask as
specified in the filter palette

captureFilterEnable true/false

Enables or disables the capture filter. (default = false)

captureFilterError

Applicable only when captureFilterEnable is set to true. The possible values are:

Option Value Usage

errAnyFrame 0 (default) disables the error filter constraint

errGoodFrame 1 sets the error filter constraint to trigger when frames
with no errors are received

errBadCRC 2 sets the error filter constraint to trigger when frames
with bad CRC errors are received

errBadFrame 3 sets the error filter constraint to trigger when corrupted
frames are received

errAlign 4 sets the error filter constraint to trigger when frames
with alignment errors are received (10/100 only)

errDribble 5 sets the error filter constraint to trigger when frames

Appendix 1 IxTclHAL Commands

– 728 –

Option Value Usage

with dribble errors are received (10/100 only)

errBadCRCAlignDribble 5 sets the error filter constraint to trigger when frames
with bad CRC, alignment error or dribble errors are
received (10/100 only)

errLineError 4 sets the error filter constraint to trigger when frames
with line errors are received (gigabit only)

errLineAndBadCRC 5 sets the error filter constraint to trigger line errors and
bad CRC are received (gigabit only)

errLineAndGoodCRC 6 sets the error filter constraint to trigger when frames
with line errors and bad CRC are received (gigabit only)

errAnySequenceError 4 sets the error filter constraint to trigger when any of the
next three conditions are true

errSmallSequenceError 5 sets the error filter constraint to trigger when the
current sequence number minus the previous sequence
number is less than or equal to the error threshold and
not negative, or when the current sequence number is
equal to the previous sequence number

errBigSequenceError 6 sets the error filter constraint to trigger when the
current sequence number minus the previous sequence
number is greater than the error threshold

errReverseSequenceError 7 sets the error filter constraint to trigger when the
current sequence number is less than the previous
sequence number

errDataIntegrityError 8 sets the error filter constraint to trigger when any data
integrity error is detected

errGfpErrors 9 sets the error filter constraint to trigger when any GFP
error is detected. The particular errors that are used are
controlled by options of the filterPallette command.

errCdlErrors 10 sets the error filter constraint to trigger when any CDL
preamble error is detected

errFcoeInvalidFrame 12 sets the error filter constraint to trigger when any FCoE
invalid frame error is detected

errAnyIpTcpUdpChecksumError 13 sets the error filter to trigger and filter on any
Ip/Tcp/Udp checksum error

Appendix 1 IxTclHAL Commands

– 729 –

captureFilterFrame
SizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to filter. (default =
false)

captureFilterFrame
SizeFrom

Applicable only when captureFilterFrameSizeEnable is enabled. The minimum range of the size of frame
to be filtered. (default = 64)

captureFilterFrame
SizeTo

Applicable only when captureFilterFrameSizeEnable is enabled. The maximum range of the size of frame
to be filtered. (default = 1518)

captureFilterPattern

Applicable only when captureFilterEnable is set to true. The possible values are:

Option Value Usage

anyPattern 0 (default) disables the pattern filter constraint

pattern1 1 sets the pattern filter constraint to trigger on frames with a
pattern that matches pattern1and patternMask1 at offset
patternOffset1 as specified in the filter palette

notPattern1 2 sets the pattern filter constraint to trigger on frames except those
with a pattern that matches pattern1and patternMask1 at offset
patternOffset1 as specified in the filter palette

pattern2 3 sets the pattern filter constraint to trigger on frames with a
pattern that matches pattern2 and patternMask2 at offset
patternOffset2 as specified in the filter palette

notPattern2 4 sets the pattern filter constraint to trigger on frames except those
with a pattern that matches pattern2and patternMask2 at offset
patternOffset2 as specified in the filter palette

pattern1AndPattern2 5 sets the pattern filter constraint to trigger on frames with a
pattern that matches pattern1, pattern2 and patternMask1,
patternMask2 at offset patternOffset1 and patternOffset2 as
specified in the filter palette

Appendix 1 IxTclHAL Commands

– 730 –

captureFilterSA

One of two available destination MAC addresses to filter on. Applicable only when capturefilternable is set
to true. The possible values are:

Option Value Usage

anyAddr 0 (default) disables the destination address filter constraint

addr1 1 sets the destination address filter constraint to trigger on frames with a
destination MAC address that matches SA1and DA1mask as specified in the
filter palette

notAddr1 2 sets the destination address filter constraint to trigger on all frames except
those with a destination MAC address that matches SA1 andSA1 mask as
specified in the filter palette

addr2 3 sets the destination address filter constraint to trigger on frames with a
destination MAC address that matches SA2 and SA2mask as specified in the
filter palette

notAddr2 4 sets the destination address filter constraint to trigger on all frames except
those with a destination MAC address that matches SA2 and SA2 mask as
specified in the filter palette

captureTriggerDA

One of two available destination MAC addresses to filter on. Applicable only when captureTriggerEnable is
set to true. The possible values are as in capturefilteredA. (default = 0)

captureTriggerEnable true/false

Enables or disables the capture trigger. (default = false)

captureTriggerError

Applicable only when captureTriggerEnable is set to true. The possible values are as in capturefilterrror.
(default = 0)

captureTriggerFrame
SizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to trigger. (default =
false)

captureTriggerFrame
SizeFrom

Applicable only when captureTriggerFrameSizeEnable is enabled. The minimum range of the size of frame
to be triggered. (default = 64)

Appendix 1 IxTclHAL Commands

– 731 –

captureTriggerFrame
SizeTo

Applicable only when captureTriggerFrameSizeEnable is enabled. The maximum range of the size of
frame to be triggered. (default = 1518)

captureTriggerPattern

Applicable only when captureTriggerEnable is set to true. The possible values are as in
captureFilterPattern. (default = 0)

captureTriggerSA

One of two available source MAC addresses to filter on. Applicable only when captureTriggerEnable is set
to true. The possible values are as in captureFilterSA. (default = 0)

enableCircuitList
true/false

Use the circuit list for filtering. (default = false)

userDefinedStat1DA

One of two available destination MAC addresses to filter on. Applicable only when userDefinedStat1Enable
is set to true. The possible values are as in capturefilteredA. (default = 0)

userDefinedStat1
Enable true/false

Enables or disables the User Defined Statistics counter 1 that counts the number of frames filtered.
(default = false)

userDefinedStat1Error

Applicable only when userDefinedStat1Enable is set to true. The possible values are as in
capturefilterrror. (default = 0)

userDefinedStat1FrameSizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to count. (default =
false)

userDefinedStat1FrameSizeFrom

Applicable only when userDefinedStat1FrameSizeEnable is enabled. The minimum range of the size of
frame to be counted. (default = 64)

userDefinedStat1FrameSizeTo

Applicable only when userDefinedStat1FrameSizeEnable is enabled. The maximum range of the size of
frame to be counted. (default = 1518)

Appendix 1 IxTclHAL Commands

– 732 –

userDefinedStat1
Pattern

Applicable only when userDefinedStat1Enable is set to true. The possible values are as in
captureFilterPattern. (default = 0)

userDefinedStat1SA

One of two available source MAC addresses to filter on. Applicable only when userDefinedStat1Enable is
set to true. The possible values are as in captureFilterSA. (default = 0)

userDefinedStat2DA

One of two available destination MAC addresses to filter on. Applicable only when userDefinedStat2Enable
is set to true. The possible values are as in capturefilteredA. (default = 0)

userDefinedStat2
Enable true/false

Enables or disables User Defined Statistics counter 2 that counts the number of frames filtered. (default =
false)

userDefinedStat2Error

Applicable only when userDefinedStat2Enable is set to true. The possible values are as in
capturefilterrror. (default = 0)

userDefinedStat2FrameSizeEnable true/false

Enables or disables the frame size constraint which specifies a range of frame sizes to count. (default =
false)

userDefinedStat2FrameSizeFrom

Applicable only when userDefinedStat2FrameSizeEnable is enabled. The minimum range of the size of
frame to be counted. (default = 64)

userDefinedStat2FrameSizeTo

Applicable only when userDefinedStat2FrameSizeEnable is enabled. The maximum range of the size of
frame to be counted. (default = 1518)

userDefinedStat2
Pattern

Applicable only when userDefinedStat2Enable is set to true. The possible values are as in
captureFilterPattern. (default = 0)

Appendix 1 IxTclHAL Commands

– 733 –

userDefinedStat2SA

One of two available source MAC addresses to filter on. Applicable only when userDefinedStat2Enable is
set to true. The possible values are as in captureFilterSA. (default = 0)

DEPRECATED OPTIONS

captureFilterError

The following captureFilterError options have been deprecated:

Option Value Usage

errUndersize 7 sets the error filter constraint to trigger when undersized frames (less than
64 bytes) are received

errOversize 8 sets the error filter constraint to trigger when oversized frames (greater
than 1518 bytes) are received

errFragment 9 sets the error filter constraint to trigger when fragmented frames are
received

COMMANDS

The filter command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

filter cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the filter command.

filter config option value

Modify the configuration options of the filter. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for filter.

filter get chasID cardID portID

Gets the current configuration of the filter for port with id portID on card cardID, chassis chasID. from its
hardware. Call this command before calling filter cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number

filter set chasID cardID portID

Sets the configuration of the filter in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the filter config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number

Appendix 1 IxTclHAL Commands

– 734 –

l The port is being used by another user
l The configured parameters are not valid for this port

filter setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
In this example we will generate a range of packets with different frame sizes,
DA/SA and
#data pattern in order to demonstrate how a directly attached port can collect
specific
statistics and trigger/filter on contents
set tclserver solarsystem
set host galaxy
set username user
Check if we are running on UNIX - connect to the TCL Server
Note: it is better to run the TCL Server on a pc other than your chassis, as it
could
potentially use up resources that the chassis needs.
if [isUNIX] {
if {[ixConnectToTclServer $tclserver]} {
errorMsg "Could not connect to TCL Server $tclserver"
return 1
}
}

Now connect to the chassis
if {[ixConnectToChassis $host]} {
errorMsg $::ixErrorInfo
return $::TCL_ERROR
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume card to be used is in slot 1
set card 1
set txPort 1
set rxPort 2
set portList [list [list $chas $card $txPort] \
[list $chas $card $rxPort]]

Login before taking ownership
ixLogin $username

Take ownership of the ports to use
if {[ixTakeOwnership $portList]} {errorMsg "Error taking ownership"

Appendix 1 IxTclHAL Commands

– 735 –

return $::TCL_ERROR
}

Configure each port to factory defaults first, then configure the streams.
if {[setFactoryDefaults portList]} {
errorMsg "Error - setFactoryDefaults failed"
return $::TCL_ERROR
}

Commit the port's phy configuration to hardware, then check the link state to make
sure you
come up in the proper speed setting. This may affect the stream rate for later
#configuration options.
ixWritePortsToHardware portList
ixCheckLinkState portList

Configure the stream on the transmit port.
set streamId 1

stream setDefault
stream config -numFrames 100000
stream config -dma stopStream
stream config -frameSizeType sizeRandom
stream config -sa {00 00 00 01 01 01}
stream config -saRepeatCounter contIncrement
stream config -saMaskSelect {FF FF FF FC FC FC}
stream config -da {00 00 00 01 01 02}
stream config -daRepeatCounter contIncrement
stream config -daMaskSelect {FF FF FF FC FC FC}
if {[stream set $chas $card $txPort $streamId]} {
errorMsg "Error - stream set $chas $card $txPort $streamId failed"
return $::TCL_ERROR
}

Configure the filters on the receive port.
filter setDefault
filter config -captureTriggerDA addr1
filter config -captureTriggerSA addr1
filter config -captureTriggerEnable true
filter config -captureFilterPattern pattern1
filter config -captureFilterFrameSizeEnable true
filter config -captureFilterFrameSizeFrom 128
filter config -captureFilterFrameSizeTo 1024
filter config -captureFilterEnable true
filter config -userDefinedStat1Enable true
filter config -userDefinedStat2Enable true
filter config -userDefinedStat1DA addr1
filter config -userDefinedStat2SA addr1

Appendix 1 IxTclHAL Commands

– 736 –

if {[filter set $chas $card $rxPort]} {
errorMsg "Error - filter set $chas $card $rxPort failed"
return $::TCL_ERROR
}

filterPallette setDefault
filterPallette config -DA1 {00 00 00 01 01 02}
filterPallette config -SA1 {00 00 00 01 01 01}
filterPallette config -pattern1 {02 02}
filterPallette config -patternMask1 {02 02}
if {[filterPallette set $chas $card $rxPort]} {
errorMsg "Error - filterPallette set $chas $card $rxPort failed"
return $::TCL_ERROR
}

Here, we are committing just the stream and filter configuration. Because the PHY
has
#already been configured, link state will not be affected.
ixWriteConfigToHardware portList

ixClearStats portList
ixStartPortCapture $chas $card $rxPort
ixStartPortTransmit $chas $card $txPort
This delay is to allow the port to transmit for a little while before reading the
stats.
after 1000

This is a blocking call and will not return until transmit is complete.
ixCheckPortTransmitDone $chas $card $txPort
ixStopPortCapture $chas $card $rxPort

Here you may retrieve the stats for both tx and rx ports at the same time, then
compare.
ixRequestStats portList

Retreive the total number of transmitted frames from the tx port.
if {[statList get $chas $card $txPort]} {
errorMsg "Error - statList get $chas $card $txPort failed"
return $::TCL_ERROR
}
set framesSent [statList cget -framesSent]

Since we configured the capture filters to use the UDS stats, get them to compare
to the
transmit stats later on.
if {[statList get $chas $card $rxPort]} {
errorMsg "Error - statList get $chas $card $rxPort failed"
return $::TCL_ERROR

Appendix 1 IxTclHAL Commands

– 737 –

}

set userStat1 [statList cget -userDefinedStat1]
set userStat2 [statList cget -userDefinedStat2]
set triggered [statList cget -captureTrigger]

if {[capture get $chas $card $rxPort]} {
errorMsg "Error - capture get $chas $card $rxPort failed"
return $::TCL_ERROR
}

set captured [capture cget -nPackets]
ixPuts "frames sent: $framesSent"
ixPuts "$captured captured, $triggered triggered"
ixPuts "stat1 = $userStat1, stat2 = $userStat2"

Let go of the ports that were reserved.
ixClearOwnership $portList
Disconnect from the chassis in use.
ixDisconnectFromChassis $host

If we are running on UNIX, disconnect from the TCL Server.
if [isUNIX] {
ixDisconnectTclServer $tclserver
}
This will cleanup any remaining memory, connections, etc. and should be called at
the end
#of all scripts.
cleanUp

SEE ALSO

filterPallette

filterPallette
filterPallette - configure the filter palettes of a port on a card on a chassis.

SYNOPSIS

filterPallette sub-command options

DESCRIPTION

The filterPallette command is used to configure the information that the receiving frames are going to be
filtered on. This palette applies to all the filters (capture trigger, capture filter, user defined statistics 1
and 2) that are enabled by the filter command.

When the setting for filter captureFilterError is set to errGfpErrors, the enableGfptHecError,
enableGfpeHecError, enableGfpPayloadCrcError and enableGfpBadFcsError determine which GFP errors

Appendix 1 IxTclHAL Commands

– 738 –

are used. The setting of gfpErrorCondition is used to determine if the OR or AND of these conditions are
desired.

For ports that support the portFeaturePatternOffsetFlexible feature, it is possible to specify the pattern
offsets relative to the start of frame, start of IP frame, start of interior protocol or start of SONET frame.

STANDARD OPTIONS

circuitList

Configure the list of circuits that would apply to filters. (string)

enableGfpBadFcsError true | false

If true, then GFP bad FCS errors are used in the filter. This condition is OR'd or AND'd with the other GFP
errors based on the setting of the gfpErrorCondition option. (default = true)

enableGfpeHecError true | false

If true, then GFP extension header HEC errors are used in the filter. This condition is OR'd or AND'd with
the other GFP errors based on the setting of the gfpErrorCondition option. (default = true)

enableGfpPayloadCrc
Error true | false

If true, then GFP payload CRC errors are used in the filter. This condition is OR'd or AND'd with the other
GFP errors based on the setting of the gfpErrorCondition option. (default = true)

enableGfptHecError true | false

If true, then GFP type header HEC errors are used in the filter. This condition is OR'd or AND'd with the
other GFP errors based on the setting of the gfpErrorCondition option. (default = true)

DA1

Only frames that contain this destination MAC address are filtered, captured or counted. (default = 00 00
00 00 00 00)

DA2

Only frames that contain this destination MAC address are filtered, captured or counted. (default = 00 00
00 00 00 00)

DAMask1

A bit mask that allows to specify which bits of the DA1 should be used when filtering. If the mask bit is set
high, the pattern bit is used in the filter. (default = 00 00 00 00 00 00)

DAMask2

A bit mask that allows to specify which bits of the DA2 should be used when filtering. If the mask bit is set
high, the pattern bit is used in the filter. (default = 00 00 00 00 00 00)

Appendix 1 IxTclHAL Commands

– 739 –

gfpErrorCondition

Indicates whether the enabled error conditions associated with enableGfptHecError, enableGfpeHecError,
enableGfpPayloadCrcError and enableGfpBadFcsError must all be present (AND'd) or only one must be
present (OR).

Option Value Usage

gfpErrorsOr 0 (default) Only one of the enabled error conditions must be present.

gfpErrorsAnd 1 All of the enabled error conditions must be present.

matchType1

Match type for pattern1 set in class member pattern1. The available match types are:

Option Value Usage

matchIpEthernetII 0 anEthernet II packet.

matchIp8023Snap 1 an802.3 SNAP packet.

matchVlan 2 a VLAN tagged packet.

matchUser 3 (default) a value as specified by pattern1,
pattern Mask1 and patternOffset1.

matchIpPpp 4 a PPP format packet

matchIpCiscoHdlc 5 a Cisco HDLC format packet.

matchIpSAEthernetII 6 match the IP Source Address for an Ethernet
II packet located at offset 26.

matchIpDAEthernetII 7 match the IP Destination Address for an
Ethernet II packet located at offset 30.

matchIpSADAEthernetII 8 match the IP Source and Destination Address
for an Ethernet II packet located at offset 26.

matchIpSA8023Snap 9 match the IP Source Address for an 802.3
Snap packet located at offset 34.

matchIpDA8023Snap 10 match the IP Destination Address for an 802.3
Snap packet located at offset 38.

matchIpSADA8023Snap 11 match the IP Source and Destination Address
for an 802.3 Snap packet located at offset 34.

matchIpSAPos 12 match the IP Source Address for an POS

Appendix 1 IxTclHAL Commands

– 740 –

Option Value Usage

packet located at offset 16.

matchIpDAPos 13 match the IP Destination Address for an POS
packet located at offset 20.

matchIpSADAPos 14 match the IP Source and Destination
Addresses for an POS packet located at offset
16.

matchTcpSourcePortIPEthernetII 15 match the TCP Source Port for an Ethernet II
packet located at offset 34.

matchTcpDestPortIPEthernetII 16 match the TCP Destination Port for an
Ethernet II packet located at offset 36.

matchUdpSourcePortIPEthernetII 17 match the UDP Source Port for an Ethernet II
packet located at offset 34.

matchIpSAPos 12 match the IP Source Address for an POS
packet located at offset 16.

matchIpDAPos 13 match the IP Destination Address for an POS
packet located at offset 20.

matchIpSADAPos 14 match the IP Source and Destination
Addresses for an POS packet located at offset
16.

matchTcpSourcePortIPEthernetII 15 match the TCP Source Port for an Ethernet II
packet located at offset 34.

matchTcpDestPortIPEthernetII 16 match the TCP Destination Port for an
Ethernet II packet located at offset 36.

matchUdpSourcePortIPEthernetII 17 match the UDP Source Port for an Ethernet II
packet located at offset 34.

matchUdpDestPortIPEthernetII 18 match the UDP Destination Port for an
Ethernet II packet located at offset 36.

matchTcpSourcePortIP8023Snap 19 match the TCP Source Port for an 802.3 Snap
packet located at offset 42.

matchTcpDestPortIP8023Snap 20 match the TCP Destination Port for an 802.3
Snap packet located at offset 44.

matchUdpSourcePortIP8023Snap 21 match the UDP Source Port for an 802.3 Snap
packet located at offset 42.

Appendix 1 IxTclHAL Commands

– 741 –

Option Value Usage

matchUdpDestPortIP8023Snap (22) match the UDP Destination Port for an 802.3
Snap packet located at offset 44

matchTcpSourcePortIPPos 23 match the TCP Source Port for a POS packet
located at offset 24.

matchTcpDestPortIPPos 24 match the TCP Destination Port for a POS
packet located at offset 26.

matchUdpSourcePortIPPos 25 match the UDPSource Port for a POS packet
located at offset 24.

matchUdpDestPortIPPos 26 match the UDP Source Port for a POS packet
located at offset 26

matchSrpModeReserved000 27 match an SRP packet whose mode is reserved
000.

matchSrpModeReserved001 28 match an SRP packet whose mode is reserved
001.

matchSrpModeReserved010 29 match an SRP packet whose mode is reserved
010.

matchSrpModeAtmCell011 30 match an SRP packet whose mode is ATM cell.

matchSrpControlMessagePassToHost100 31 match an SRP packet whose mode is control
message 1.

matchSrpControlMessageBuffer
ForHost101

32 match an SRP packet whose mode is control
message 2.

matchSrpUsageMessage110 33 match an SRP packet which is an SRP usage
message.

matchSrpPacketData111 34 match an SRP packet which is a data packet.

matchSrpAllControlMessages10x 35 match SRP control messages 1 and 2.

matchSrpUsageMessageOr
PacketData11x

36 match SRP usage message or data packet.

matchSrpControlUsageOr
PacketData1xx

37 match SRP usage message, control message 1
or 2, or data packet.

matchSrpInnerRing 38 match an SRP packet whose ringIdentifier is
set to inner.

Appendix 1 IxTclHAL Commands

– 742 –

Option Value Usage

matchSrpOuterRing 39 match an SRP packet whose ringIdentifier is
set to outer.

matchSrpPriority0-7 40-47 match an SRP packet whose priority is set to 0
- 7.

matchSrpParityOdd 48 match an SRP packet with odd parity.

matchSrpParityEven 49 match an SRP packet with even parity.

matchSrpDiscoveryFrame 50 match an SRP discovery packet.

matchSrpIpsFrame 51 match an SRP IPS packet.

matchRprRingId0 52

Match any RPR packet which specifies Ringlet
0. (Originally transmitted on Ringlet 0 by the
Source)

matchRprRingId1 53

Match any RPR packet which specifies Ringlet
1. (Originally transmitted on Ringlet 1 by the
Source)

matchRprFairnessEligibility0 54 Match any RPR packet which specifies Fairness
Eligibility 0. (0 = Not eligible for Fairness
algorithm)

matchRprFairnessEligibility1 55 Match any RPR packet which specifies Fairness
Eligibility 1. (0 = Not eligible for Fairness
algorithm)

matchRprIdlePacket 56 Match any RPR Idle packet (Type = 00).

matchRprControlPacket 57 Match any RPR Control packet. (Type = 01)

matchRprFairnessPacket 58 Match any RPR Fairness packet. (Type = 10)

matchRprDataPacket 59 Match any RPR Data packet. (Type = 11)

matchRprServiceClassC 60 Match any RPR packet which specifies service
Class C.

matchRprServiceClassB 61 Match any RPR packet which specifies service
Class B.

matchRprServiceClassA1 62 Match any RPR packet which specifies service

Appendix 1 IxTclHAL Commands

– 743 –

Option Value Usage

Class A1.

matchRprServiceClassA0 63 Match any RPR packet which specifies service
Class A0.

matchRprWrapEligibility0\ 64 Match any RPR packet which specifies Wrap
Eligibility 0. (0 = Steerable only)

matchRprWrapEligibility1 65 Match any RPR packet which specifies Wrap
Eligibility 1. (1 = Wrap Eligible)

matchRprParityBit0 66 Match any RPR packet which specifies Parity
Bit 0.

matchRprParityBit1 67 Match any RPR packet which specifies Parity
Bit 1.

matchIpV6SAEthernetII 68 Match the IPv6 Source Address for an
Ethernet II packet.

matchIpV6DAEthernetII 69 Match the IPv6 Destination Address for an
Ethernet II packet.

matchIpV6SA8023Snap 70 Match the IPv6 Source Address for an 802.3
packet.

matchIpV6DA8023Snap 71 Match the IPv6 Destination Address for an
802.3 packet.

matchIpV6SAPos 72 Match the IPv6 Source Address for a POS
packet.

matchIpV6DAPos 73 Match the IPv6 Destination Address for a POS
packet.

matchIpv6TcpSourcePort
EthernetII

74 Match the IPv6 TCP source port number for an
Ethernet II packet.

matchIpv6TcpDestPortEthernetII 75 Match the IPv6 TCP destination port number
for an Ethernet II packet.

matchIpv6UdpSourcePort
EthernetII

76 Match the IPv6 UDP source port number for an
Ethernet II packet.

matchIpv6UdpDestPortEthernetII 77 Match the IPv6 UDP destination port number
for an Ethernet II packet.

matchIpv6TcpSourcePort 78 Match the IPv6 TCP source port number for an

Appendix 1 IxTclHAL Commands

– 744 –

Option Value Usage

8023Snap 802.3 SNAP packet.

matchIpv6TcpDestPort8023Snap 79 Match the IPv6 TCP destination port number
for an 802.3 Snap packet.

matchIpv6UdpSourcePort
8023Snap

80 Match the IPv6 UDP source port number for an
802.3 Snap packet.

matchIpv6UdpDestPort8023Snap 81 Match the IPv6 UDP destination port number
for an 802.3 Snap packet.

matchIpv6TcpSourcePortPos 82 Match the IPv6 TCP source port number for an
pos packet.

matchIpv6TcpDestPortPos 83 Match the IPv6 TCP destination port number
for an pos packet.

matchIpv6UdpSurcePortPos 84 Match the IPv6 UDP source port number for an
pos packet.

matchIpv6UdpDestPortPos 85 Match the IPv6 UDP destination port number
for an pos packet.

matchIpv6IpTcpSourcePort
EthernetII

86 Match the TCP source port number for an IPv4
over IPv6 or IPv6 over IPv4 frame in an
Ethernet II packet.

matchIpv6IpTcpDestPort
EthernetII

87 Match the TCP destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in an
Ethernet II packet.

matchIpv6IpUdpSourcePort
EthernetII

88 Match the UDP source port number for an IPv4
over IPv6 or IPv6 over IPv4 frame in an
Ethernet II packet.

matchIpv6IpUdpDestPort
EthernetII

89 Match the UPD destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in an
Ethernet II packet.

matchIpv6IpTcpSourcePort
8023Snap

90 Match the TCP source port number for an IPv4
over IPv6 or IPv6 over IPv4 frame in an 802.3
Snap packet.

matchIpv6IpTcpDestPort8023
Snap

91 Match the TCP destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in an
802.3 Snap packet.

matchIpv6IpUdpSourcePort 92 Match the UDP source port number for an IPv4

Appendix 1 IxTclHAL Commands

– 745 –

Option Value Usage

8023Snap over IPv6 or IPv6 over IPv4 frame in an 802.3
Snap packet.

matchIpv6IpUdpDestPort8023
Snap

93 Match the UPD destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in an
802.3 Snap packet.

matchIpv6IpTcpSourcePortPos 94 Match the TCP source port number for an IPv4
over IPv6 or IPv6 over IPv4 frame in a POS
packet.

matchIpv6IpTcpDestPortPos 95 Match the TCP destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in a
POS packet.

matchIpv6IpUdpSourcePortPos 96 Match the UDP source port number for an IPv4
over IPv6 or IPv6 over IPv4 frame in a POS
packet.

matchIpv6IpUdpDestPortPos 97 Match the UPD destination port number for an
IPv4 over IPv6 or IPv6 over IPv4 frame in a
POS packet.

matchIpOverIpv6IpSAEthernetII 98 Match the IPv4 source address in an IPv4
frame encapsulated in an IPv6 frame in an
Ethernet II packet.

matchIpOverIpv6IpDAEthernetII 99 Match the IPv4 destination address in an IPv4
frame encapsulated in an IPv6 frame in an
Ethernet II packet.

matchIpOverIpv6IpSA8023Snap 100 Match the IPv4 source address in an IPv4
frame encapsulated in an IPv6 frame in an
802.3 Snap packet.

matchIpOverIpv6IpDA8023Snap 101 Match the IPv4 destination address in an IPv4
frame encapsulated in an IPv6 frame in an
802.3 Snap packet.

matchIpOverIpv6IpSAPos 102 Match the IPv4 source address in an IPv4
frame encapsulated in an IPv6 frame in POS
packet.

matchIpOverIpv6IpDAPos 103 Match the IPv4 destination address in an IPv4
frame encapsulated in an IPv6 frame in POS
packet.

Appendix 1 IxTclHAL Commands

– 746 –

Option Value Usage

matchIpv6OverIpIpv6SA
EthernetII

104 Match the IPv6 source address in an IPv6
frame encapsulated in an IPv4 frame in an
Ethernet II packet.

matchIpv6OverIpIpv6DA
EthernetII

105 Match the IPv6 destination address in an IPv6
frame encapsulated in an IPv4 frame in an
Ethernet II packet.

matchIpv6OverIpIpv6SA8023
Snap

106 Match the IPv6 source address in an IPv6
frame encapsulated in an IPv4 frame in an
802.3 Snap packet.

matchIpv6OverIpIpv6DA8023
Snap

107 Match the IPv6 destination address in an IPv6
frame encapsulated in an IPv4 frame in an
802.3 Snap packet.

matchIpv6OverIpIpv6SAPos 108 Match the IPv6 source address in an IPv6
frame encapsulated in an IPv4 frame in POS
packet.

matchIpv6OverIpIpv6DAPos 109 Match the IPv6 destination address in an IPv6
frame encapsulated in an IPv4 frame in POS
packet.

matchIpv6Ppp 110 Match an IPv6 PPP packet.

matchIpv6CiscoHdlc 111 Match an IPv6 packet encapsulated with Cisco
HDLC.

matchGfpDataFcsNullExtEthernet 112 Match a user data GFP frame which includes
an FCS and whose payload uses a null
extension and indicates frame-mapped
ethernet data.

matchGfpDataNoFcsNullExtEthernet 113 Match a user data GFP frame which does not
includes an FCS and whose payload uses a null
extension and indicates frame-mapped
ethernet data.

matchGfpDataFcsLinearExtEthernet 114 Match a user data GFP frame which includes
an FCS and whose payload uses a linear frame
extension and indicates frame-mapped
ethernet data.

matchGfpDataNoFcsLinearExtEthernet 115 Match a user data GFP frame which does not
includes an FCS and whose payload uses a
linear frame extension and indicates frame-

Appendix 1 IxTclHAL Commands

– 747 –

Option Value Usage

mapped ethernet data.

matchGfpMgmtFcsNullExtEthernet 116 Match a management GFP frame which
includes an FCS and whose payload uses a null
extension and indicates frame-mapped
ethernet data.

matchGfpMgmtNoFcsNullExtEthernet 117 Match a management GFP frame which does
not includes an FCS and whose payload uses a
null extension and indicates frame-mapped
ethernet data.

matchGfpMgmtFcsLinearExtEthernet 118 Match a management GFP frame which
includes an FCS and whose payload uses a
linear frame extension and indicates frame-
mapped ethernet data.

matchGfpMgmtNoFcsLinearExt
Ethernet

119 Match a management GFP frame which does
not includes an FCS and whose payload uses a
linear frame extension and indicates frame-
mapped ethernet data.

matchGfpDataFcsNullExtPpp 120 Match a user data GFP frame which includes
an FCS and whose payload uses a null
extension and indicates frame-mapped PPP
data.

matchGfpDataNoFcsNullExtPpp 121 Match a user data GFP frame which does not
includes an FCS and whose payload uses a null
extension and indicates frame-mapped PPP
data.

matchGfpDataFcsLinearExtPpp 122 Match a user data GFP frame which includes
an FCS and whose payload uses a linear frame
extension and indicates frame-mapped PPP
data.

matchGfpDataNoFcsLinearExtPpp 123 Match a user data GFP frame which does not
includes an FCS and whose payload uses a
linear frame extension and indicates frame-
mapped PPP data.

matchGfpMgmtFcsNullExtPpp 124 Match a management GFP frame which
includes an FCS and whose payload uses a null
extension and indicates frame-mapped PPP
data.

Appendix 1 IxTclHAL Commands

– 748 –

Option Value Usage

matchGfpMgmtNoFcsNullExtPpp 125 Match a management GFP frame which does
not includes an FCS and whose payload uses a
null extension and indicates frame-mapped
PPP data.

matchGfpMgmtFcsLinearExtPpp 126 Match a management GFP frame which
includes an FCS and whose payload uses a
linear frame extension and indicates frame-
mapped PPP data.

matchGfpMgmtNoFcsLinearExtPpp 127 Match a management GFP frame which does
not includes an FCS and whose payload uses a
linear frame extension and indicates frame-
mapped PPP data.

matchType2

Match type for pattern2. The available match types are as in matchType1. (default = 3)

pattern1

Only frames that contain this pattern at offset patternOffset1 are filtered, captured or counted. (default =
"DE ED EF FE AC CA")

Note: Starting with IxOS 5.0, the hex string must be separated by a space between the hex bytes, for
example: '00 80'.

pattern2

Only frames that contain this pattern at offset patternOffset2 are filtered, captured or counted. (default =
00)

patternMask1

A bit mask that allows to specify which bits of pattern1 should be used when filtering. If the mask bit is set
low, the pattern bit is used in the filter. (default = 00 00 00 00 00 00)

patternMask2

A bit mask that allows to specify which bits of pattern2 should be used when filtering. If the mask bit is set
low, the pattern bit is used in the filter. (default = 00)

patternOffset1

Offset of pattern1 in the frame to be filtered, captured or counted. (default = 12)

patternOffset2

Offset of pattern2 in the frame to be filtered, captured or counted. (default = 12)

Appendix 1 IxTclHAL Commands

– 749 –

patternOffsetType1

For ports that support the portFeaturePatternOffsetFlexible feature, this option specifies the place that
patternOffset1 is relative to. This value must be one of these options:

Option Usage

filterPalletteOffsetStartOfFrame (default) Offset from the start of the frame.

filterPalletteOffsetStartOfIp Offset from the start of the IP header

filterPalletteOffsetStartOfProtocol Offset from the start of the protocol within the IP header.

filterPalletteOffsetStartOfSonet Offset from the start of the SONET frame.

patternOffsetType2

For ports that support the portFeaturePatternOffsetFlexible feature, this option specifies the place that
patternOffset1 is relative to. See patternOffset

SA1

Only frames that contain this source MAC address are filtered, captured or counted. (default = 00 00 00
00 00 00)

SA2

Only frames that contain this source MAC address are filtered, captured or counted. (default = 00 00 00
00 00 00)

SAMask1

A bit mask that allows to specify which bits of the SA1 should be used when filtering. If the mask bit is set
high, the pattern bit is used in the filter. (default = 00 00 00 00 00 00)

SAMask2

A bit mask that allows to specify which bits of the SA2 should be used when filtering. If the mask bit is set
high, the pattern bit is used in the filter. (default = 00 00 00 00 00 00)

COMMANDS

The filterPallette command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

filterPallette cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the filterPallette command.

filterPallette config option value

Appendix 1 IxTclHAL Commands

– 750 –

Modify the configuration options of the filterPallette. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for filterPallette.
Note: Must be a valid Tcl list (values must be separated by spaces).

filterPallette get chasID cardID portID

Gets the current config of the filterPallette on port portID on card cardID, chassis chasID. from its
hardware. Call this command before calling filterPallette cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

filterPallette set chasID cardID portID

Sets the configuration of the filterPallette in IxHAL on port with id portID on card cardID, chassis chasID
by reading the configuration option values set by the filterPallette config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

filterPallette set chasID cardID portID

Sets the configuration of the local port filterPallette object in IxHAL for port with id portID on card cardID,
chassis chasID. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

filterPallette setDefault

Sets to IxTclHal default values for all configuration options.

filterPallette write chasID cardID portID

Writes or commits the changes in IxHAL to hardware for the filter palette on port with id portID on card
cardID, chassis chasID. Before using this command, use the filterPallette set command to configure the
filterPallette related parameters in IxHAL. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Network problem between the client and chassis

Appendix 1 IxTclHAL Commands

– 751 –

EXAMPLES

See examples under filter.

SEE ALSO

filter.

fipTlv
fipTlv - describe/view a single FIP Tlv

SYNOPSIS

fipTlv sub-command options

DESCRIPTION

The fipTlv command is used in two contexts:

l When a new TLV (type-length-value) is added to a fcoeProperties set. Values are taken from the
options in this command.

l When an existing TLV is retrieved with fcoeProperties get*Tlv. The TLV values are visible in this
command.

STANDARD OPTIONS

type

The type of the FIP Tlv option. (default = 0)

value

A string consisting of hexadecimal characters. Each pair of characters defines a byte value. The length of
the TLV is set from the length of the value string, divided by 2. (default = "")

COMMANDS

The fipTlv command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

fipTlv cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the fipTlv command.

fipTlv config option value

Modify the configuration options of the fipTlv. If no option is specified, returns a list describing all of the
available options for fipTlv (see STANDARD OPTIONS).

fipTlv setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 752 –

EXAMPLES

See example underfcoeProperties

SEE ALSO

interfaceTable, interfaceEntry, fcoeProperties.

flexibleTimestamp
flexibleTimestamp - configure the location of the time stamp in a packet

SYNOPSIS

flexibleTimestamp sub-command options

DESCRIPTION

The flexibleTimestamp command allows the placement of the packet time stamp value to be moved from
its default place before the CRC to an offset within the packet. The availability of this feature for a
particular port may be tested by use of the port isValidFeature... portFeatureFlexibleTimestamp
command. Time stamps are inserted in transmitted packets by virtue of the enableTimestamps option in
the stream command.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeade . The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

offset

If type is timestampAtOffset, then this is the offset within the packet to place the time stamp at. (default
= 23)

type

The basic placement options.

Option Value Usage

timestampBeforeCrc 0 (default) Place the time stamp just before the CRC at the end of
the packet.

timestampAtOffset 1 Place the time stamp at the offset indicated in offset.

Appendix 1 IxTclHAL Commands

– 753 –

COMMANDS

The flexibleTimestamp command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

flexibleTimestamp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the flexibleTimestamp command.

flexibleTimestamp config option value

Modify the configuration options of the flexibleTimestamp. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for flexibleTimestamp.

flexibleTimestamp get chasID cardID portID

Gets the current configuration of the flexibleTimestamp header for port with id portID on card cardID,
chassis chasID from its hardware. Call this command before calling flexibleTimestamp cget option value
to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port does not support flexible time stamps

flexibleTimestamp set chasID cardID portID

Sets the flexibleTimestamp configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the flexibleTimestamp config option value command.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is owned by another user
l Configured parameters are not valid for this setting
l The port does not support flexible time stamps

flexibleTimestamp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {

Appendix 1 IxTclHAL Commands

– 754 –

ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 18
set port 1
set portList [list [list $chas $card $port]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

See if the port supports flexible time stamps
if [port isValidFeature $chas $card $port portFeatureFlexibleTimestamp] {
flexibleTimestamp config -type timestampAtOffset
flexibleTimestamp config -offset 42
if [flexibleTimestamp set $chas $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixPuts "$chas:$card:$port flexible time stamps set"
} else {
ixPuts "$chas:$card:$port does not support flexible time stamps"
}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {

Appendix 1 IxTclHAL Commands

– 755 –

ixDisconnectTclServer $host
}

SEE ALSO

port, stream

forcedCollisions
forcedCollisions - configure the forced collision parameters for 10/100 ports

SYNOPSIS

forcedCollisions sub-command options

DESCRIPTION

The forcedCollisions command is used to configure the forced collision parameters for 10/100Mbit ports.
Forced collisions cause deliberate collisions for specified duty cycles.

STANDARD OPTIONS

collisionDuration

The duration of each collision, measured in nibbles. (default = 10)

consecutiveCollisions

The number of consecutive collisions to generate at a time. Collisions take place on the first received
packet after enabled. (default = 4)

consecutive
Non-CollidingPackets

After each time that the number of programmed consecutive collisions have occurred this is the number
of packets that is not modified. (default = 4)

continuous
true / false

If true, the pattern of collisions and non-collisions is repeated indefinitely. (default = true)

enable true / false

Enables the generation of forced collisions. (default = false)

packetOffset

The offset from the beginning of packet active carrier sense (the beginning of the preamble) to the start
of the collision, measured in nibbles. (default = 64)

Appendix 1 IxTclHAL Commands

– 756 –

repeatCount

If continuous operation is not selected, this value is the number of times that the pattern of
collisions/non-collisions is repeated. (default = 2)

COMMANDS

The forcedCollisions command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

forcedCollisions cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the forcedCollisions command.

forcedCollisions config option value

Modify the configuration options of the forcedCollisions. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for forcedCollisions.

forcedCollisions get chasID cardID portID

Gets the current configuration of the forcedCollisions header for port with id portID on card cardID,
chassis chasID from its hardware. Call this command before calling forcedCollisions cget option value to
get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port does not support forced collisions

forcedCollisions set chasID cardID portID

Sets the forcedCollisions configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the forcedCollisions config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is owned by another user
l Configured parameters are not valid for this setting
l The port does not support forced collisions

forcedCollisions setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server

Appendix 1 IxTclHAL Commands

– 757 –

which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume that card 1 is a 10/100 card
set card 1
set portA 1
set portB 2
Set up mapping
map new -type one2one
map config -type one2one
map add $chas $card $portA $chas $card $portB
map add $chas $card $portB $chas $card $portA
set portList [list [list $chas $card $portA] [list $chas $card $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up both ports to 10Mbps and half duplex
port setDefault
port config -autonegotiate false
port config -duplex half
port config -speed 10
port set $chas $card $portA
port set $chas $card $portB

Configure forced collisions
forcedCollisions setDefault
forcedCollisions config -enable 1
forcedCollisions config -consecutiveNonCollidingPackets 9
forcedCollisions set $chas $card $portA
forcedCollisions set $chas $card $portB

Appendix 1 IxTclHAL Commands

– 758 –

Make the collision backoff algorithm try harder
collisionBackoff setDefault
collisionBackoff config -maxRetryCount 32
collisionBackoff set $chas $card $portA
collisionBackoff set $chas $card $portB

Configure the streams to transmit at 50%
stream setDefault
stream config -percentPacketRate 50
stream config -rateMode usePercentRate
stream config -dma stopStream
stream config -numFrames 10000
stream set $chas $card $portA 1
stream set $chas $card $portB 1

Write config to hardware, check the link state and clear statistics
Error checking omitted for brevity
ixWritePortsToHardware one2oneArray
after 1000
ixCheckLinkState one2oneArray
ixClearStats one2oneArray

Start collisions
ixStartCollisions one2oneArray
Make sure that ports don't attempt to transmit at the same instant
ixStartStaggeredTransmit one2oneArray

ixCheckTransmitDone one2oneArray

ixCollectStats $portList collisions rxStats totals
ixPuts "$totals total collisions, port 1 = $rxStats(1,1,1), port 2 = $rxStats(1,1,2)"

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

portGroup

frameRelay
frameRelay - configure the Frame Relay header for a Packet over Sonet frame

Appendix 1 IxTclHAL Commands

– 759 –

SYNOPSIS

frameRelay sub-command options

DESCRIPTION

The frameRelay command is used to configure the Frame Relay parameters.

Note: To configure the frameRelay parameters, sonet config -header needs to be configured for the right
Frame Relay headers first. Note that stream get must be called before this command's get sub-command.

STANDARD OPTIONS

addressSize

Address length in the Frame Relay frame header. (default = 2)

becn

Backward congestion notification bit in the Frame Relay address field. (default = 0)

commandResponse

Command or Response bit in the Frame Relay address field. (default = 0)

control

Control information. (default = 3)

counterMode

For multiple DLCIs where supported, this is the DLCI incrementing mode. Options include:

Option Value Usage

frameRelayIncrement 0 Increment for the number of values set in repeatCount.

frameRelayContIncrement 1 Increment continuously.

frameRelayDecrement 2 Decrement for the number of values set in repeatCount.

frameRelayContDecrement 3 Decrement continuously.

frameRelayIdle 4 (default) Don't change the DLCI.

frameRelayRandom 5 Set the DLCI to random values.

discardEligibleBit

Discard eligible bit in the Frame Relay address field. (default = 0)

Appendix 1 IxTclHAL Commands

– 760 –

dlci

DLCI core indicator bit in the Frame Relay address field. (default = 0)

dlciCoreValue

Frame Relay address field. (default = 0)

etherType

Ethertype of protocol in use. (default = 65535)

extentionAddress0

Extention address 0 bit in theFrame Relay address field. (default = 0)

extentionAddress1

Extention address 1 bit in theFrame Relay address field. (default = 1)

extentionAddress2

Extention address 2 bit in theFrame Relay address field. (default = 0)

extentionAddress3

Extention address 3 bit in theFrame Relay address field. (default = 0)

fecn

Forward congestion notification bit in the Frame Relay address field.(default = 0)

maskSelect

For multiple DLCIs where supported. The mask is applied to the DLCI value (as expressed in hexadecimal
format). The mask length is defined by the number of bytes in the address - 2, 3, or 4 bytes of 2 nibbles
each. X's, 1's, and 0's may be entered. An `X' allows the defined DLCI hex character to be visible, and
active. A `1' or a `0' masks the DLCI character with that value, so only the entered `1' or `0' is visible
and active. (default = {00 00 00 00 00 00})

maskValue

For multiple DLCIs where supported. The dlci option masked with the maskSelect value.

Note: frameRelay on MSM10G and MSM2.5G port does not support DLCI maskValue, and the maskSelect
is always forced to 0.

nlpid

Network layer protocol identifier to identify the type of upper-layer protocol transmitted in the frame.
(default = 255)

Appendix 1 IxTclHAL Commands

– 761 –

repeatCount

For multiple DLCIs where supported. If counterMode is set to frameRelayIncrement or
frameRelayDecrement, the number of times to change the DLCI value. (default = 16)

COMMANDS

The frameRelay command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

frameRelay cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the frameRelay command.

frameRelay config option value

Modify the configuration options of the frameRelay. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for frameRelay.

frameRelay decode capFrame chasID cardID portID [circuitID]

Decodes a captured frame in the capture buffer and updates TclHal. Specific errors are:

l No connection to a chassis
l The captured frame is not a valid Frame Relay frame

frameRelay get chasID cardID portID [circuitID]

Gets the current configuration of the frameRelay header for port with id portID on card cardID, chassis
chasID from its hardware. Note that stream get must be called before this command's get sub-command.
Call this command before calling frameRelay cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port

frameRelay set chasID cardID portID [circuitID]

Sets the frameRelay configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the frameRelay config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.

frameRelay setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 762 –

EXAMPLES
package require IxTclHal
set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assuming that an OC48 POS card is in slot 18
set card 18
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Get the type of card and check if it's the correct type
set ifType [card getInterface $chas $card]
if {$ifType != $::interfaceOc48} {
ixPuts "Card $card is not an OC48c POS card ($ifType)"
return 1
}

port setFactoryDefaults $chas $card $port

Appendix 1 IxTclHAL Commands

– 763 –

Need to set header type to Frame Relay
sonet setDefault
sonet config -interfaceType oc48
sonet config -header sonetFrameRelay2427
if [sonet set $chas $card 1] {
ixPuts "Can't sonet set $chas:$card:1"
return 1
}

stream setDefault
stream config -percentPacketRate 100.0
stream config -rateMode usePercentRate

Set DLCI and BECN bit
frameRelay setDefault
frameRelay config -becn 1

Set the DLCI address to 42 and enable incrementing DLCI's
with a mask of FO XX

frameRelay config -dlci 42
frameRelay config -repeatCount 16
frameRelay config -counterMode frameRelayIncrement
frameRelay config -maskSelect {FF 00}
frameRelay config -maskValue {F0 FF}

if [frameRelay set $chas $card $port] {
ixPuts "Can't frameRelay set $chas:$card:$port"
return 1
}

if [stream set $chas $card $port 1] {
ixPuts "Stream set failed"
return 1
}

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 1 IxTclHAL Commands

– 764 –

SEE ALSO

gfp
gfp - configure GFP framing parameters

SYNOPSIS

gfp sub-command options

DESCRIPTION

The gfp command is used to set all GFP framing parameters. The enablePli and pli options control the
payload length indicator. The payloadType option control the specification of the payload type. The
inclusion and type of FCS is controlled by the fcs option. The channel ID is specified in the channelId
option. HEC error insertion is controlled by the coreHecErrors, typeHecErrors and extensionHecErrors
options.

STANDARD OPTIONS

channelId

The channel ID associated with management GFP frames. (default = 0)

coreHecErrors

Allows for insertion of core header errors.

Option Value Usage

gfpHecNone 0 (default) No errors.

gfpHec1Bit 1 One bit error.

gfpHecMultipleBits 2 Multiple bit errors.

enablePli true | false

If true, enables the inclusion of the payload length indicator in the core header. The value of the PLI is in
the pli option. (default = false)

extensionHecErrors

Allows for the configuration of extension header error correction.

Option Value Usage

gfpHecErrorsNone 0 (default) No errors.

Appendix 1 IxTclHAL Commands

– 765 –

Option Value Usage

gfpHecErrors1Bit 1 1 bit error.

gfpHecErrors2Bits 2 2 bit errors.

gfpHecErrors3Bits 3 3 bit errors.

gfpHecErrors4Bits 4 4 bit errors.

gfpHecErrors5Bits 5 5 bit errors.

gfpHecErrors6Bits 6 6 bit errors.

gfpHecErrors7Bits 7 7 bit errors.

gfpHecErrors8Bits 8 8 bit errors.

gfpHecErrors9Bits 9 9 bit errors.

gfpHecErrors10Bits 10 10 bit errors.

gfpHecErrors11Bits 11 11 bit errors.

gfpHecErrors12Bits 12 12 bit errors.

gfpHecErrors13Bits 13 13 bit errors.

gfpHecErrors14Bits 14 14 bit errors.

gfpHecErrors15Bits 15 15 bit errors.

gfpHecErrors16Bits 16 16 bit errors.

fcs

The frame check sequence (FCS) configuration.

Option Value Usage

gfpNoFcs 0 Do not include an FCS.

gfpGoodFcs 1 (default) Include a good FCS.

gfpBadFcs 2 Include a bad FCS.

payloadType

The type of data that is included in the payload.

Appendix 1 IxTclHAL Commands

– 766 –

Option Value Usage

gfpDataFcsNullExtensionEthernet 0x1001 (default) Ethernet data packet with FCS and
no extension header.

gfpDataNoFcsNullExtensionEthernet 0x0001 Ethernet data packet with no FCS and no
extension header.

gfpDataFcsLinearExtensionEthernet 0x1101 Ethernet data packet with FCS and linear
extension header.

gfpDataNoFcsLinearExtensionEthernet 0x0101 Ethernet data packet with no FCS and linear
extension header.

gfpMgmtFcsNullExtensionEthernet 0x3001 Ethernet management packet with FCS and no
extension header.

gfpMgmtNoFcsNullExtensionEthernet 0x2001 Ethernet management packet with no FCS and
no extension header.

gfpMgmtFcsLinearExtensionEthernet 0x3101 Ethernet management packet with FCS and
linear extension header.

gfpMgmtNoFcsLinearExtensionEthernet 0x2101 Ethernet management packet with no FCS and
linear extension header.

gfpDataFcsNullExtensionPpp 0x1002 PPP Data packet with FCS and no extension
header.

gfpDataNoFcsNullExtensionPpp 0x0002 PPP Data packet with no FCS and no extension
header.

gfpDataFcsLinearExtensionPpp 0x1102 PPP Data packet with FCS and linear extension
header.

gfpDataNoFcsLinearExtensionPpp 0x0102 PPP Data packet with no FCS and linear
extension header.

gfpMgmtFcsNullExtensionPpp 0x3002 PPP Management packet with FCS and no
extension header.

gfpMgmtNoFcsNullExtensionPpp 0x2002 PPP Management packet with no FCS and no
extension header.

gfpMgmtFcsLinearExtensionPpp 0x3102 PPP Management packet with FCS and linear
extension header.

gfpMgmtNoFcsLinearExtensionPpp 0x2102 PPP Management packet with no FCS and
linear extension header.

Appendix 1 IxTclHAL Commands

– 767 –

pli

If the value of enablePli is true, this is the value of the PLI. (default = 0)

typeHecErrors

Allows for the configuration of type header error correction.

Option Value Usage

gfpHecErrorsNone 0 (default) No errors.

gfpHecErrors1Bit 1 1 bit error.

gfpHecErrors2Bits 2 2 bit errors.

gfpHecErrors3Bits 3 3 bit errors.

gfpHecErrors4Bits 4 4 bit errors.

gfpHecErrors5Bits 5 5 bit errors.

gfpHecErrors6Bits 6 6 bit errors.

gfpHecErrors7Bits 7 7 bit errors.

gfpHecErrors8Bits 8 8 bit errors.

gfpHecErrors9Bits 9 9 bit errors.

gfpHecErrors10Bits 10 10 bit errors.

gfpHecErrors11Bits 11 11 biterrors.

gfpHecErrors12Bits 12 12 bit errors.

gfpHecErrors13Bits 13 13 bit errors.

gfpHecErrors14Bits 14 14 bit errors.

gfpHecErrors15Bits 15 15 bit errors.

gfpHecErrors16Bits 16 16 bit errors.

typeIdentifier

If the value of enablePli is true, this is the value of the PLI. (default = 0)

Appendix 1 IxTclHAL Commands

– 768 –

COMMANDS

The gfp command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

gfp cget option

Returns the current value of the configuration option gfp by option. Option may have any of the values
accepted by the gfp command, subject to the setting of the enableValidStats option.

gfp config option value

Modify the configuration options of the time server. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for gfp.

gfp decode capFrame chasID cardID portID [circuitID]

Decodes a captured frame in the capture buffer and makes the data available in the STANDARD OPTIONS
through gfp cget. The capFrame parameter must be obtained through a call to stream packetview.

If circuitID = 0, gets information for the port; if circuitID not 0, gets information for the circuit. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid gfp frame

gfp get chasID cardID portID [circuitID]

Gets the current preamble configuration of the port with circuit circuitID, id portID on card cardID, chassis
chasID. Call this command before calling gfp cget option to get the value of the configuration option. If
circuitID = 0, gets information for the port; if circuitID not 0, gets information for the circuit.

gfp set chasID cardID portID [circuitID]

Sets the preamble configuration of the port with circuit circuitID, id portID on card cardID, chassis chasID
by reading the configuration option values set by the gfp config option value command. If circuitID = 0,
gets information for the port; if circuitID not 0, gets information for the circuit.

gfp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {

Appendix 1 IxTclHAL Commands

– 769 –

ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chassId [ixGetChassisID $host]

set cardId 37
set portId 1
set portList [list]

if { [port isValidFeature $chassId $cardId $portId $::portFeatureGfp] } {
lappend portList [list $chassId $cardId $portId]
} else {
errorMsg "Port doesn't support portFeatureGfp"
return "FAIL"
}

sonet setDefault
sonet config -header $::sonetGfp
sonet config -interfaceType $::oc48

if {[sonet set $chassId $cardId $portId]} {
ixPuts $::ixErrorInfo
return "FAIL"
}

filterPallette config -gfpErrorCondition $::gfpErrorsOr
if {[filterPallette set $chassId $cardId $portId]} {
ixPuts $::ixErrorInfo
return "FAIL"
}

gfpOverhead setDefault
gfpOverhead config -deltaSyncState $::gfpSyncStateK8
gfpOverhead config -enableSingleBitErrorCorrection $::true
gfpOverhead config -enablePayloadScrambling $::true

if {[gfpOverhead set $chassId $cardId $portId]} {
ixPuts $::ixErrorInfo
return "FAIL"

Appendix 1 IxTclHAL Commands

– 770 –

}

set streamId 1
stream setDefault
stream config -name "gfp_stream"

gfp setDefault
gfp config -enablePli $::true
gfp config -pli 12
gfp config -payloadType $::gfpMgmtFcsNullExtensionEthernet
gfp config -fcs $::gfpGoodFcs
gfp config -channelId 11
gfp config -coreHecErrors $::gfpCHecMultipleBits
gfp config -typeHecErrors $::gfpHecErrors2Bits
gfp config -extensionHecErrors $::gfpHecErrors10Bits

if {[gfp set $chassId $cardId $portId]} {
ixPuts $::ixErrorInfo
return "FAIL"
}

if {[stream set $chassId $cardId $portId $streamId]} {
ixPuts $::ixErrorInfo
return "FAIL"
}

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

sonet, gfpOverhead

gfpOverhead
gfpOverhead - configure additional GFP parameters

SYNOPSIS

gfpOverhead sub-command options

Appendix 1 IxTclHAL Commands

– 771 –

DESCRIPTION

The gfpOverhead command is used to set several operation parameters.

STANDARD OPTIONS

enablePayload
Scrambling true | false

Enables the use of payload scrambling. The payload is scrambled using the x43 + 1 algorithm. (default =
true)

enableSingleBitError
Correction true | false

Enables the use of single bit error correction. (default = true)

deltaSyncState

The number of cHEC matches (+1) needed to move the state machine from the hunt state to the sync
state.

Option Value Usage

gfpSyncStateK1 0 (default) 1

gfpSyncStateK2 1 2

gfpSyncStateK3 2 3

gfpSyncStateK4 3 4

gfpSyncStateK5 4 5

gfpSyncStateK6 5 6

gfpSyncStateK7 6 7

gfpSyncStateK8 7 8

gfpCrc

Read-only. The calculated GFP CRC value.

COMMANDS

The gfpOverhead command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

gfpOverhead cget option

Appendix 1 IxTclHAL Commands

– 772 –

Returns the current value of the configuration option gfpOverhead by option. Option may have any of the
values accepted by the gfpOverhead command, subject to the setting of the enableValidStats option.

gfpOverhead config option value

Modify the configuration options of the time server. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for gfpOverhead.

gfpOverhead get chasID cardID portID [circuitID]

Gets the current preamble configuration of the circuit circuitID on port portID, on card cardID, on chassis
chasID. Call this command before calling gfpOverhead cget option to get the value of the configuration
option. If circuitID = 0, gets information for the port; if circuitID not 0, gets information for the circuit.

gfpOverhead set chasID cardID portID circuitID

Sets the preamble configuration of the circuit circuitID on port portID, on card cardID, on chassis chasID
by reading the configuration option values set by the gfpOverhead config option value command. If
circuitID = 0, gets information for the port; if circuitID not 0, gets information for the circuit.

gfpOverhead setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under gfp.

SEE ALSO

sonet, gfp.

gre
gre - configure GRE parameters

SYNOPSIS

gre sub-command options

DESCRIPTION

The gre command is used to set GRE operation parameters.

STANDARD OPTIONS

enableChecksum true | false

Enables the GRE checksum when set to true . (default = true)

Appendix 1 IxTclHAL Commands

– 773 –

enableKeytrue | false

Enables the GRE authentication key when set to true, (default = true)

enableSequence
Number true | false

Enables the GRE sequence number option when set to true. (default = true)

EnableValidChecksum true | false

Setting this value to True ensures the GRE checksum value is a valid value, and returns a "Good" packet
evaluation. (default = true)

key

The GRE key is an authentication key used by the receiving router to validate the GRE packets. This check
box allows to edit the GRE key.

protocolType IpV4 / IpV6

Sets the protocol type.

reserved0

Sets the Reserved 0 bits in the GRE header.

reserved1

Sets the Reserve 1 bits in the GRE header

sequenceNumber

The Sequence Number is used by the receiving router to establish the order in which packets have been
transmitted. This option allows to set the sequence number bits.

version

Sets the version of GRE used. GRE headers are organized differently and contain varying information,
depending on the version number. (default =)

COMMANDS

The gre command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

gre cget option

Returns the current value of the configuration option gre by option. Option may have any of the values
accepted by the gre command.

gre config option value

Appendix 1 IxTclHAL Commands

– 774 –

Modify the configuration options of GRE. If no option is specified, returns a list describing all of the
available options for GRE.

gre get chasID cardID portID

Gets the current GRE configuration of the port with id portID on card cardID, chassis chasID. Call this
command before calling gre cget option to get the value of the configuration option.

gre set chasID cardID portID

Sets the GRE configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the gre config option value command.

gre setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal

set hostname loopback

if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}

set chassId [chassis cget -id]
set cardId 2
set portId 1
set portList [list [list $chassId $cardId $portId]]

set streamId 1

stream setDefault
stream config -name "ipv6 gre ipv4"
stream config -framesize 200

protocol setDefault
protocol config -name ipV6
protocol config -ethernetType ethernetII

ip setDefault
ip config -ipProtocol ipV4ProtocolTcp
ip config -sourceIpAddr "112.1.1.1"
ip config -sourceIpMask "255.0.0.0"
if {[ip set $chassId $cardId $portId]} {
errorMsg "Error setting ip on $chassId $cardId $portId."
}

Appendix 1 IxTclHAL Commands

– 775 –

tcp setDefault
tcp config -offset 5
tcp config -sourcePort 10
if {[tcp set $chassId $cardId $portId]} {
errorMsg "Error setting tcp on $chassId $cardId $portId."
}

gre setDefault
gre config -enableKey true
gre config -enableSequenceNumber true
gre config -enableChecksum true
gre config -enableValidChecksum false
gre config -key "aa 22 33 45"
gre config -sequenceNumber "ab c1 ab c1"
gre config -version 1
gre config -reserved0 "01 ee"
gre config -reserved1 "ab c3"
this will configure gre encapsulation ip protocol
gre config -protocolType "08 00"
if {[gre set $chassId $cardId $portId]} {
errorMsg "Error setting gre on $chassId $cardId $portId."
}

ipV6 setDefault
ipV6 config -sourceAddr "4444:4444:4444:4444:4444:444:0:0"
ipV6 config -nextHeader ipV6Routing

ipV6 clearAllExtensionHeaders

ipV6Routing setDefault
ipV6Routing config -reserved "00 00 00 00"
ipV6Routing config -nodeList "0:0:0:0:0:0:0:0"
ipV6 addExtensionHeader ipV6Routing
ipV6 addExtensionHeader ipV4ProtocolGre

if {[ipV6 set $chassId $cardId $portId]} {
errorMsg "Error setting ipV6 on $chassId $cardId $portId."
}

if [stream set $chassId $cardId $portId $streamId] {
errorMsg "Error setting stream on port $chassId $cardId $portId $streamId"
}

ixWriteConfigToHardware portList

if [stream get $chassId $cardId $portId $streamId] {

Appendix 1 IxTclHAL Commands

– 776 –

errorMsg "Error getting stream on port $chassId $cardId $portId $streamId"
}

This will get the outer IP configurations
if {[ipV6 get $chassId $cardId $portId]} {
errorMsg "Error getting ipV6 on $chassId $cardId $portId."
}
ixPuts "sourceAddr: [ipV6 cget -sourceAddr]

This will get the outer IP configurations
if {[gre get $chassId $cardId $portId]} {
errorMsg "Error getting gre on $chassId $cardId $portId."
}
ixPuts "key: [gre cget -key]

if {[ip get $chassId $cardId $portId]} {
errorMsg "Error getting ip on $chassId $cardId $portId."
}
ixPuts "ip: [ip cget -sourceIpAddr]

SEE ALSO

N/A

hdlc
hdlc - configure the HDLC header for a Packet over Sonet frame

SYNOPSIS

hdlc sub-command options

DESCRIPTION

The hdlc command is used to configure the HDLC parameters.

STANDARD OPTIONS

address

The one-byte address field of the HDLC header used in conjunction with Packet over Sonet. Defined
values include:

Option Value Usage

pppAddress 0xff (default)

ciscoAddress 0x0f

Appendix 1 IxTclHAL Commands

– 777 –

control

The one-byte control field of the HDLC header used in conjunction with Packet over Sonet. Defined values
include:

Option Value Usage

pppControl 0x03 (default)

ciscoControl 0x00

protocol

The two-byte protocol field of the HDLC header used in conjunction with Packet over Sonet. Defined
values include:

Option Value Usage

pppIp 0x0021 (default)

ciscoIp 0x0800

ciscoIpV6 0x86dd

pppPaddingProtocol 0x0001

pppOSI 0x0023

pppXeroxIDP 0x0025

pppDECnet 0x0027

pppAppletalk 0x0029

pppIPX 0x002b

pppCompressedTCPIP 0x002d

pppUncompressedTCPIP 0x002f

pppBPDU 0x0031

pppSTII 0x0033

pppBanyanVines 0x0035

pppAppleTalkEDDP 0x0039

pppAppleTalkSmartBuffered 0x003b

pppMultiLink 0x003d

Appendix 1 IxTclHAL Commands

– 778 –

Option Value Usage

pppFirstChoiceCompression 0x00fd

pppHelloPackets 0x0201

pppIBMSourceRoutingBPDU 0x0203

pppLuxcom 0x0231

pppSigmaNetworkSystems 0x0233

pppIPControlProtocol 0x8021

pppOSIControlProtocol 0x8023

pppXeroxIDPControlProtocol 0x8025

pppDECnetControlProtocol 0x8027

pppAppletalkControlProtocol 0x8029

pppIPXControlProtocol 0x802b

pppBridgingNCP 0x8031

pppMultiLinkControlProtocol 0x803d

pppComprControlProtocol 0x80fd

pppLinkControlProtocol 0xc021

pppPasswordAuthProtocol 0xc023

pppLinkQualityReport 0xc025

COMMANDS

The hdlc command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

hdlc cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the hdlc command.

hdlc config option value

Modify the configuration options of the hdlc. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for hdlc.

hdlc decode capFrame chasID cardID portID [circuitID]

Appendix 1 IxTclHAL Commands

– 779 –

Decodes a captured frame in the capture buffer and makes the data available in the STANDARD OPTIONS
through hdlc cget. The capFrame parameter must be obtained through a call to stream packetview.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Hdlc frame
l The port is not a Packet over Sonet port.

hdlc get chasID cardID portID [circuitID]

Gets the current configuration of the hdlc header for port with id portID on card cardID, chassis chasID
from its hardware. Call this command before calling hdlc cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port.

hdlc set chasID cardID portID [circuitID]

Sets the hdlc configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the hdlc config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.

hdlc setCisco protocolType chasID cardID portID

Sets the configuration of the hdlc header to ciscoAddress and ciscoControl in IxHAL for port with id portID
on card cardID, chassis chasID. Specific errors are:

l No connection to a chassis
l Invalid port number
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.
l The protocolType is not one of ciscoIp or ciscoIpV6.

hdlc setDefault

Sets to IxTclHal default values for all configuration options.

hdlc setPpp protocolType chasID cardID portID

Sets the configuration of the hdlc header to pppAddress and pppControl in IxHAL for port with id portID on
card cardID, chassis chasID. Specific errors are:

Appendix 1 IxTclHAL Commands

– 780 –

l No connection to a chassis
l Invalid port number
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.
l The protocolType is not pppIp.

EXAMPLES
package require IxTclHal

set addressByte($::pppAddress) "pppAddress"
set addressByte($::ciscoAddress) "ciscoAddress"

set controlByte($::pppControl) "pppControl"
set controlByte($::ciscoControl) "ciscoControl"

set protocolByte($::pppIp) "pppIp"
set protocolByte($::ciscoIp) "cisco"
set protocolByte($::pppPaddingProtocol) "pppPaddingProtocol"
set protocolByte($::pppOSI) "pppOSI"
set protocolByte($::pppXeroxIDP) "pppXeroxIDP"
set protocolByte($::pppDECnet) "pppDECnet"
set protocolByte($::pppAppletalk) "pppAppletalk"
set protocolByte($::pppIPX) "pppIPX"
set protocolByte($::pppCompressedTCPIP) "pppCompressedTCPIP"
set protocolByte($::pppUncompressedTCPIP) "pppUncompressedTCPIP"
set protocolByte($::pppBPDU) "pppBPDU"
set protocolByte($::pppSTII) "pppSTII"
set protocolByte($::pppBanyanVines) "pppBanyanVines"
set protocolByte($::pppAppleTalkEDDP) "pppAppletalkEDDP"
set protocolByte($::pppMultiLink) "pppMultiLink"
set protocolByte($::pppFirstChoiceCompression) "pppFirstChoiceCompression"
set protocolByte($::pppHelloPackets) "pppHelloPackets"
set protocolByte($::pppIBMSourceRoutingBPDU) "pppIBMSourceRoutingBPDU"
set protocolByte($::pppLuxcom) "pppLuxcom"
set protocolByte($::pppSigmaNetworkSystems) "pppSigmaNetworkSystems"
set protocolByte($::pppIPControlProtocol) "pppIPControlProtocol"
set protocolByte($::pppOSIControlProtocol) "pppOSIControlProtocol"
set protocolByte($::pppXeroxIDPControlProtocol) "pppXeroxIDPControlProtocol"
set protocolByte($::pppDECnetControlProtocol) "pppDECnetControlProtocol"
set protocolByte($::pppAppletalkControlProtocol) "pppAppletalkControlProtocol"
set protocolByte($::pppIPXControlProtocol) "pppIPXControlProtocol"
set protocolByte($::pppBridgingNCP) "pppBridgingNCP"
set protocolByte($::pppMultiLinkControlProtocol) "pppMultiLinkControlProtocol"
set protocolByte($::pppComprControlProtocol) "pppComprControlProtocol"
set protocolByte($::pppLinkControlProtocol) "pppLinkControlProtocol"
set protocolByte($::pppPasswordAuthProtocol) "pppPasswordAuthProtocol"
set protocolByte($::pppLinkQualityReport) "pppPasswordAuthProtocol"

Appendix 1 IxTclHAL Commands

– 781 –

proc printOptions {} \
{
set addr [hdlc cget -address]
set cntrl [hdlc cget -control]
set protocol [hdlc cget -protocol]
ixPuts "address $addressByte($addr), control $controlByte($cntrl), \
protocol $protocolByte($protocol)"
ixPuts "address $addr, control $cntrl, protocol $protocol"
}

Connect to chassis and get chassis ID
set host galaxy
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assuming that a POS card is in slot 2
set card 2

set portList [list [list $chas $card 1] [list $chas $card 2]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 1 IxTclHAL Commands

– 782 –

Check for missing card
if {[card get $chas $card] != 0} \
{
ixPuts "Card $card does not exist"
break
}

Get the type of card and check if it's the correct type
set cardType [card cget -type]
if {$cardType != $::cardPOS2Port} \
{
ixPuts "Card $card is not an 2 port POS card"
exit
}

Set the options to default values
hdlc setDefault
ixWriteConfigToHardware portList

Get the current hdlc state from the cards
hdlc get $chas $card 1
printOptions

Set to Cisco values
hdlc setCisco ciscoIp $chas $card 1
ixWritePortsToHardware portList
set x [hdlc cget -address]
if {"0x$x" == $::ciscoAddress} {
ixPuts "OK"
} else {
ixPuts "NG"
}
ixStartPortCapture $chas $card 1
ixStartPortTransmit $chas $card 2
after 2000
capture get $chas $card 1
captureBuffer get $chas $card 1 1 1
captureBuffer getframe 1
set frameData [captureBuffer cget -frame]

Now have hdlc decode the header
hdlc decode $frameData $chas $card 1
printOptions

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host

Appendix 1 IxTclHAL Commands

– 783 –

If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ppp

icmp
icmp - configure the ICMP parameters for a port on a card on a chassis

SYNOPSIS

icmp sub-command options

DESCRIPTION

The icmp command is used to configure the ICMP-specific information used when building ICMP-type
packets. Note that stream get must be called before this command's get sub-command.

STANDARD OPTIONS

checksum

Read-only Value of the checksum in the valid icmp stream. Valid only if the stream set is performed.

code

Code for each type of message. (default = 0)

id

ID for each ping command; that is, for the echoRequest. (default = 0)

sequence

Sequence number for each ping command (sequence number for the echoRequest) (default = 0)

type

Read-only The type of ICMP message to be sent. Options are:

Option Value Usage

echoReply 0 (default) when echo message is received (when IP address is valid
and receiving side supports the requested functions)

destUnreachable 3 when a datagram cannot reach its destination

Appendix 1 IxTclHAL Commands

– 784 –

Option Value Usage

sourceQuench 4 when gateway does not have the buffer space needed to queue the
datagrams

redirect 5 when the gateway and the host identified by the internet source
address of the datagram are on the same network

echoRequest 8 when network connection is to be tested (by ping command test the
validity of IP address)

timeExceeded 11 when time to live field is 0

parameterProblem 12 when there is a problem with the header parameters

timeStampRequest 13 to request the timestamp of the receipt at the other end

timeStampReply 14 to get the timestamp when the datagram began its return

infoRequest 15 when host needs to find out the number of the network it is on.

infoReply 16 when infoRequest is received

maskRequest 17 to get the subnet address mask from the router

maskReply 18 when maskRequest is received

COMMANDS

The icmp command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

icmp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the icmp command.

icmp config option value

Modify the ICMP configuration options of the port. If no option is specified, returns a list describing all of
the available ICMP options (see STANDARD OPTIONS) for port.

icmp decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. icmp cget option command can be
used after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Icmp frame

icmp get chasID cardID portID

Appendix 1 IxTclHAL Commands

– 785 –

Gets the current ICMP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling
icmp cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

icmp set chasID cardID portID

Sets the ICMP configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the icmp config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

icmp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
In this example we'll send an echo response message from a port
back to itself and decode the received packet

set host 400-031561
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assume card to be used is in slot 1
set card 1

Appendix 1 IxTclHAL Commands

– 786 –

set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Some defines for IP setup
set portMAC {00 00 00 01 01 01}
set portIP {192.168.18.1}
set portMask {255.255.255.0}

set destMAC {00 00 00 01 01 02}
set destIP {192.168.18.2}
set destMask {255.255.255.0}

Put the port in loopback mode
port setFactoryDefaults $chas $card $port
port setDefault
port config -loopback true

Stream: 1 packet at 1%
stream setDefault
stream config -numFrames 1
stream config -dma stopStream
stream config -rateMode usePercentRate
stream config -percentPacketRate 1

set protocol to IP
protocol setDefault
protocol config -name ip
protocol config -ethernetType ethernetII

Set up IP: icmp with 46 byte packet
ip setDefault
ip config -ipProtocol icmp
ip config -totalLength 46
ip config -sourceIpAddr $portIP
ip config -sourceIpMask $portMask
ip config -sourceClass classC
ip config -destIpAddr $destIP

Appendix 1 IxTclHAL Commands

– 787 –

ip config -destIpMask $destMask
ip config -destClass classC
ip set $chas $card $port

Send an echo reply with some data in id and sequence
icmp setDefault
icmp config -type echoReply
icmp config -code 0
icmp config -id 3
icmp config -sequence 42
icmp set $chas $card $port

stream set $chas $card $port 1
port set $chas $card $port

Set up the port
ixWritePortsToHardware portList

Start capture and send the packet
after 1000
ixStartPortCapture $chas $card $port
ixStartPortTransmit $chas $card $port

Stop port capture
after 1000
ixStopPortCapture $chas $card $port

Get the capture buffer
captureBuffer get $chas $card $port
if {[captureBuffer cget -numFrames] == 0} {
ixPuts "No packets received"
} else {
Get the frame
captureBuffer getframe 1
set data [captureBuffer cget -frame]

And decode the data
icmp decode $data $chas $card $port
ixPuts -nonewline "Received packet: code = "
ixPuts -nonewline [icmp cget -code]
ixPuts -nonewline ", id = "
ixPuts -nonewline [icmp cget -id]
ixPuts -nonewline ", sequence = "
ixPuts [icmp cget -sequence]
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using

Appendix 1 IxTclHAL Commands

– 788 –

ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, ip, udp

icmpV6
icmpV6 - configure the ICMPv6 parameters for a port on a card on a chassis

SYNOPSIS

icmpV6 sub-command options

DESCRIPTION

The icmpV6 command is used to define the ICMPv6 header type. ICMPv6 is used by IPv6 nodes to report
errors encountered in processing packets, and to perform other internet-layer functions, such as
diagnostics (ICMPv6 "ping"). ICMPv6 is an integral part of IPv6 and MUST be fully implemented by every
IPv6 node.

IcmpV6 messages are groupted into classes:

l error messages: icmpV6Error.
l nformational messages: icmpV6Informational.
l multicast listener discovery messages: icmpV6MulticastListener
l neighbor discovery messages:icmpV6NeighborDiscovery.

STANDARD OPTIONS

type

Read-only. The type of ICMPv6 message to be sent. Options are:

Option Value Usage

icmpV6DestUnreach-
ableMessage

1 (default) when a destination is unreachable

icmpV6PacketTooBig
Message

2 when a packet is too big

icmpV6TimeExceededMessage 3 when hop limit is exceeded in transit

icmpV6Parameter
ProblemMessage

4 when erroneous header field is encountered

Appendix 1 IxTclHAL Commands

– 789 –

Option Value Usage

icmpV6EchoRequest Message 128 when network connection is to be tested (by ping
command test the validity of IP address)

icmpV6EchoReply Message 129 when echoRequest is received

icmpV6MulticastListen-
erQueryMessage

130 multicast listener query

icmpV6MulticastListen-
erReportMessage

131 multicast listener report

icmpV6MulticastListen-
erDoneMessage

132 multicast listener done

icmpV6RouterSolicita-
tionMessage

133 router solicitation

icmpV6RouterAdver-
tisementMessage

134 router advertisement

icmpV6NeighborSolici-
tationMessage

135 neighbor solicitation

icmpV6NeighborAdver-
tisementMessage

136 neighbor advertisement

icmpV6RedirectMes-sage 137 when the gateway and the host identified by the internet
source address of the datagram are on the same network

COMMANDS

The icmpV6 command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

icmpV6 cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the icmpV6 command.

icmpV6 config option value

Modify the ICMPv6 configuration options of the port. If no option is specified, returns a list describing all of
the available ICMPv6 options for port (see STANDARD OPTIONS).

icmpV6 decode capFrame [chasID cardID portID circuitID]

Decodes a captured frame in the capture buffer and updates TclHal. icmpV6 cget option command can be
used after decoding to get the option data. Specific errors are:

Appendix 1 IxTclHAL Commands

– 790 –

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Icmpv6 frame

icmpV6 get chasID cardID portID

Gets the current ICMPv6 configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling
icmpV6 cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l Protocol data for this port is not yet set

icmpV6 set chasID cardID portID

Sets the ICMPv6 configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the icmpV6 config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

icmpV6 setDefault

Sets to IxTclHal default values for all configuration options.

icmpV6 setType messageType

Sets the message type. See the standard option type on page A- for a complete list.

EXAMPLES
package req IxTclHal

chassis add loopback

set chasId [chassis cget -id]
set cardId 2
set portId 3
set streamId 1

stream setDefault
stream config -framesize 200

Configure protocol
protocol setDefault
protocol config -name ipV6
protocol config -ethernetType ethernetII

Appendix 1 IxTclHAL Commands

– 791 –

icmpV6 setDefault
icmpV6 setType icmpV6RouterAdvertisementMessage

icmpV6NeighborDiscovery setDefault
icmpV6NeighborDiscovery config -currentHopLimit 3
icmpV6NeighborDiscovery config -enableManagedAddressConfig $::true
icmpV6NeighborDiscovery config -enableOtherStatefulConfig $::true
icmpV6NeighborDiscovery config -routerLifetime 10
icmpV6NeighborDiscovery config -reachableTime 100
icmpV6NeighborDiscovery config -retransTimer 1000

icmpV6OptionPrefixInformation setDefault
icmpV6OptionPrefixInformation config -length 100
icmpV6OptionPrefixInformation config -prefixLength 200
icmpV6OptionPrefixInformation config -enableLinkFlag $::true
icmpV6OptionPrefixInformation config -enableAutonomousAddressConfig $::true
icmpV6OptionPrefixInformation config -enableRouterAddress $::true
icmpV6OptionPrefixInformation config -enableSitePrefix $::true
icmpV6OptionPrefixInformation config -preferredLifetime 2
icmpV6OptionPrefixInformation config -prefix "1111:1111:11:0:0:0:0:2"

if {[icmpV6NeighborDiscovery addOption icmpV6OptionPrefixInformation]} {
ixPuts "Error addOption icmpV6OptionPrefixInformation (icmpV6OptionPrefixInformation)
on port $chasId.$cardId.$portId"
}

if {[icmpV6 set $chasId $cardId $portId]} {
ixPuts "Error setting icmpV6 on port $chasId.$cardId.$portId"
}

Configure ipV6
ipV6 setDefault
ipV6 config -trafficClass 3
ipV6 config -sourceAddr {1:2:3:0:0:0:0:0}
ipV6 config -sourceMask 64
ipV6 config -sourceAddrMode ipV6Idle
ipV6 config -sourceStepSize 1
ipV6 config -sourceAddrRepeatCount 10
ipV6 config -destAddr {4:5:6:0:0:0:0:0}

Clear all the extension headers
ipV6 clearAllExtensionHeaders

Add ipV4ProtocolIpv6Icmp
if {[ipV6 addExtensionHeader ipV4ProtocolIpv6Icmp]} {
ixPuts "Error adding ipV4ProtocolIpv6Icmp"

Appendix 1 IxTclHAL Commands

– 792 –

}

if {[ipV6 set $chasId $cardId $portId]} {
ixPuts "Error setting ipV6 on port $chasId.$cardId.$portId"
}

Set and write the stream
if {[stream set $chasId $cardId $portId $streamId]} {
ixPuts "Error setting stream $streamId on port $chasId.$cardId.$portId"
}

if {[stream write $chasId $cardId $portId $streamId]} {
ixPuts "Error writing stream $streamId on port $chasId.$cardId.$portId"
}

SEE ALSO

icmpV6Error, icmpV6Informational, icmpV6MulticastListener,
icmpV6NeighborDiscovery,icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource,
icmpV6OptionMaxTransmissionUnit, icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader,
icmpV6OptionUserDefine, icmpV6UserDefine.

icmpV6Error
icmpV6error - configures the type and code (sub-type) of error message

SYNOPSIS

icmpV6error sub-command options

DESCRIPTION

The icmpV6error command is used to configure the type and code (sub-type) of error message to send.

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType.

code

This parameter configures the code.

For icmpV6DestinationUnreachable code, options are:

Appendix 1 IxTclHAL Commands

– 793 –

Option Value Usage

icmpV6NoRouteToDestination 0 (default) there is no route to a destination

icmpV6CommunicationProhibted 1 communication prohibited

icmpV6NotAssigned 2 (not assigned)

icmpV6Addressnreachable 3 address is unreachable

icmpV6PortUnreachable 4 port is unreachable

icmpV6SourceAddressFailed 5 address has failed

icmpV6RejectRuteDestination 6 route destination is rejected

For icmpV6PacketTooBigCodeType, this is always set to 0.

For icmpV6TimeExceeded code, options are:

Option Value Usage

icmpV6HopLimitExceeded 0 (default) hop limit was exceeded in transit

icmpV6FragmentReassemblyTimeExceeded 1 fragment reassembly time was exceeded

For icmpV6ParameterProblemCodeType; options are:

Option Value Usage

icmpV6ErroneousHeaderField Detected 0 (default) erroneous header field encountered

icmpV6UnrecognizedNextheader Type 1 unrecognized Next Header type encountered

icmpV6UnrecognizedIpV6Option 2 unrecognized ipV6 option encountered

checkSum

Read-only. The 16-bit ICMPv6 checksum. This is the ones complement of the ones complement sum of
the whole ICMPv6 message, which starts at the message type field. The 'whole' message includes the
IPv6 header and extension header fields.

mtu

Maximum Transmission Unit. Applies to icmpV6PacketTooBigMessage type only. The maximum size of the
message that can be sent on this link to the next hop. (default = 0)

Appendix 1 IxTclHAL Commands

– 794 –

pointer

Applies to icmpV6ParameterProblemMessage type only. It identifies the offset (octet) where the error was
detected in the packet.

COMMANDS

The icmpV6error command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

icmpV6error setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Informational, icmpV6MulticastListener,
icmpV6NeighborDiscovery,icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource,
icmpV6OptionMaxTransmissionUnit, icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader,
icmpV6OptionUserDefine, icmpV6UserDefine.

icmpV6Informational
icmpV6Informational - configures icmpV6 informational messages

SYNOPSIS

icmpV6Informational sub-command options

DESCRIPTION

The icmpV6Informational command is used to configure icmpV6 informational messages

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType.

code

Read-only. Always 0.

identifier

Identifier for matching Echo Replies and the Echo Request. (default = 0)

Appendix 1 IxTclHAL Commands

– 795 –

sequenceNumber

Sequence number for matching Echo Replies and the Echo Request. (default = 0)

checksum

Read-only. The 16-bit ICMPv6 checksum. This is the ones complement of the ones complement sum of
the whole ICMPv6 message, which starts at the message type field. The 'whole' message includes the
IPv6 header and extension header fields.

COMMANDS

The icmpV6Informational command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

icmpV6Informational setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine,
icmpV6UserDefine.

icmpV6MulticastListener
icmpV6MulticastListener - configure icmpV6 multicast listener messages

SYNOPSIS

icmpV6MulticastListener sub-command options

DESCRIPTION

The icmpV6MulticastListener command is used to configure icmpV6 multicast listener messages

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType.

Appendix 1 IxTclHAL Commands

– 796 –

code

Read-only. Always 0.

maximumResponse Delay

(In milliseconds) The maximum delay allowed before a responding Multicast Listener Report message
must be sent. (Set by the sender.) If set to '0' it is ignored by receiver. (default = 0)

multicastAddress

For general query type-set to '0'. (default = 0:0:0:0:0:0:0:0)

For Multicast-Address-Specific Query-specify an IPv6 multicast address.

COMMANDS

The icmpV6MulticastListener command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

icmpV6MulticastListener setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine,
icmpV6UserDefine.

icmpV6NeighborDiscovery
icmpV6neighborDiscovery - configure icmpV6 neighbor discovery messages

SYNOPSIS

icmpV6neighborDiscovery sub-command options

DESCRIPTION

The icmpV6neighborDiscovery command is used to configure icmpV6 neighbor discovery messages

Appendix 1 IxTclHAL Commands

– 797 –

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType. (default = 133)

code

Read-only. Always 0.

checksum

Read-only. The 16-bit ICMPv6 checksum. This is the ones complement of the ones complement sum of
the whole ICMPv6 message, which starts at the message type field. The 'whole' message includes the
IPv6 header and extension header fields.

currentHopLimit

(for RouterAdvertisementMessage) Default value for the IP Header Hop Count field for outbound IP
packets.

destAddress

(for Redirect Message) This is the IPv6 address of the destination. If the destination is a neighbor, this
address is also used as the Target address.

enableManagedAddressConfig
true/false

(for RouterAdvertisementMessage) If true, hosts use the stateful (administered) protocol for auto-
configuration of addresses.

enableOtherStateful Config
true/false

(for RouterAdvertisementMessage) If true, hosts use the stateful (administered) protocol for auto-
configuration of non-addressing (other) information.

enableRouter
true/false

(for NeighborAdvertisementMessage) If true, this sender is a router (not a host). (default = false)

enableSolicited
true/false

(for NeighborAdvertisementMessage) If true, this neighbor advertisement is sent in response to a
neighbor solicitation message. (default = false)

Appendix 1 IxTclHAL Commands

– 798 –

enableOverride
true/false

(for NeighborAdvertisementMessage) If true, the information in this advertisement should override the
existing entry and update the link layer address. Not for use with anycast addresses. (default = false)

reachableTime

(for RouterAdvertisementMessage) (In milliseconds) Amount of time that a neighbor is assumed to be
reachable, following a confirmation of reachable.

retransTimer

(for RouterAdvertisementMessage) (In milliseconds) Time interval between Neighbor Solicitation
messages.

routerLifetime

(for RouterAdvertisementMessage) Default router lifetime, in seconds. If Router Lifetime = 0, this is NOT
a default router.

targetAddress

(for NeighborAdvertisement, NeighborSolicitation, or Redirect Message) The IPv6 address of the neighbor
(target) to which the solicitation was sent. (MUST NOT be multicast IPv6 address.)

For NeighborAdvertisement message:

l For solicited advertisements: It is the target address in the Neighbor Solicitation Message.
l For unsolicited advertisements: It is the address with a link-layer address which has changed.

For Redirect message:

l This is the same address as the Destination address, if the destination is a neighbor.
l If the target is not a neighbor, this is the address of a router which is a better first-hop node.

COMMANDS

The icmpV6neighborDiscovery command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

icmpV6NeighborDiscovery setDefault

Sets to IxTclHal default values for all configuration options.

icmpV6NeighborDiscovery addOption optionType

Adds specified optionType to the option list. Specific errors are:

l Invalid option.

icmpV6NeighborDiscovery delOption

Deletes the current option. Specific errors are:

Appendix 1 IxTclHAL Commands

– 799 –

l No option found.

icmpV6NeighborDiscovery getFirstOption

Gets the first option from the option list. Specific errors are:

l No option found.

icmpV6NeighborDiscovery getNextOption

Gets the next option from the option list. Specific errors are:

l No option found.

icmpV6NeighborDiscovery clearAllOptions

Clears all the options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine,
icmpV6UserDefine.

icmpV6OptionLinkLayerDestination
icmpV6OptionLinkLayerDestination - configures the icmpV6 Link Layer Destination option.

SYNOPSIS

icmpV6OptionLinkLayerDestination sub-command options

DESCRIPTION

The icmpV6OptionLinkLayerDestination command is used to configure the icmpV6 Link Layer Destination
option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage
l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

Appendix 1 IxTclHAL Commands

– 800 –

type

Read-only. The value for this option = 2.

length

Read-only. It is the length of the option, and includes type, length, and address fields. One unit of length
= 8 octets. The default value = 1.

A length value = 0 is invalid, and the node MUST silently discard an Neighbor Discovery packet where
length = 0.

address

(variable length) The target/destination link-layer address. (default = 00 00 00 00 00 00)

COMMANDS

The icmpV6OptionLinkLayerDestination command is invoked with the following sub-commands. If no
sub-command is specified, returns a list of all sub-commands available.

icmpV6OptionLinkLayerDestination setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit, icmpV6OptionPrefixInformation,
icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine, icmpV6UserDefine.

icmpV6OptionLinkLayerSource
icmpV6OptionLinkLayerSource - configures the icmpV6 Link Layer Source option.

SYNOPSIS

icmpV6OptionLinkLayerSource sub-command options

DESCRIPTION

The icmpV6OptionLinkLayerSource command is used to configure the icmpV6 Link Layer Source option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage

Appendix 1 IxTclHAL Commands

– 801 –

l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

type

Read-only. The value for this option = 1.

length

Read-only. It is the length of the option, and includes type, length, and address fields. One unit of length
= 8 octets. The default value = 1.

A length value = 0 is invalid, and the node MUST silently discard a Neighbor Discovery packet where
length = 0.

address

(variable length) The link layer address of the node which sent the packet. (default = 00 00 00 00 00 00)

COMMANDS

The icmpV6OptionLinkLayerSource command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

icmpV6OptionLinkLayerSource setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine,
icmpV6UserDefine.

icmpV6OptionMaxTransmissionUnit
icmpV6OptionMaxTransmissionUnit - configures the icmpV6 Max Transmission Unit option.

SYNOPSIS

icmpV6OptionMaxTransmissionUnit sub-command options

Appendix 1 IxTclHAL Commands

– 802 –

DESCRIPTION

The icmpV6OptionMaxTransmissionUnit command is used to configure the icmpV6 Max Transmission Unit
option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage
l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

type

Read-only. The value for this option = 5.

length

The length of the option. One unit of length = 8 octets. (default = 1)

A length value = 0 is invalid, and the node MUST silently discard a Neighbor Discovery packet where
length = 0.

mtu

(32-bit integer) The recommended value of the Maximum Transmission Unit (MTU) on this link. (default =
0)

COMMANDS

The icmpV6OptionMaxTransmissionUnit command is invoked with the following sub-commands. If no
sub-command is specified, returns a list of all sub-commands available.

icmpV6OptionMaxTransmissionUnit setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionPrefixInformation,
icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine, icmpV6UserDefine.

Appendix 1 IxTclHAL Commands

– 803 –

icmpV6OptionPrefixInformation
icmpV6OptionPrefixInformation - configures the icmpV6 Prefix Information option.

SYNOPSIS

icmpV6OptionPrefixInformation sub-command options

DESCRIPTION

The icmpV6OptionPrefixInformation command is used to configure the icmpV6 Prefix Information option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage
l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

type

Read-only. The value for this option = 3.

length

The length of the option. One unit of length = 8 octets. (default = 1)

A length value = 0 is invalid, and the node MUST silently discard a Neighbor Discovery packet where
length = 0.

prefixLength

Configures the prefix length. The number of valid bits in the prefix. (default = 0)

enableLinkFlag
true/false

If enabled, this prefix can be used for determining if the prefix is on-link. (default = false)

enableAutonomous AddressConfig
true/false

If enabled, this prefix can be used for autonomous address configuration. (default = false)

Appendix 1 IxTclHAL Commands

– 804 –

enableRouterAddress
true/false

If enabled, indicates a router. The prefix option should not be sent by a router for a link-local prefix.
(default = false)

enableSitePrefix
true/false

If enabled, indicates a host/site. The prefix option should be ignored by a host, for a link-local prefix.
(default = false)

validLifetime

(32-bit integer) The time, starting from packet transmission, that the prefix is valid-in seconds. (0xffffffff
= infinity.) (default = 0)

preferredLifetime

(32-bit integer) The time, starting from packet transmission, that the addresses generated from the
prefix are "preferred"-in seconds. (0xffffffff = infinity.) (default = 0)

prefix

Can be an IPv6 address or an IPv6 address prefix. The valid leading bits are specified by the setting in the
"prefixLength" field. All following bits MUST be set to zero by the sending node and are ignored upon
receipt.
(default = '0:0:0:0:0:0:0:0')

COMMANDS

The icmpV6OptionPrefixInformation command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

icmpV6OptionPrefixInformation setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine, icmpV6UserDefine.

icmpV6OptionRedirectedHeader
icmpV6OptionRedirectedHeader - configures the icmpV6 Redirected Header option.

Appendix 1 IxTclHAL Commands

– 805 –

SYNOPSIS

icmpV6OptionRedirectedHeader sub-command options

DESCRIPTION

The icmpV6OptionRedirectedHeader command is used to configure the icmpV6 Redirected Header option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage
l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

type

Read-only. The value for this option = 4.

length

The length of the option. One unit of length = 8 octets. (default = 1)

A length value = 0 is invalid, and the node MUST silently discard a Neighbor Discovery packet where
length = 0.

ipHeaderAndData

Some of all of the contents of the original IP packet. It consists of as much of the original packet as can be
carried in the Redirect message without going over the maximum allowed 1280 octets (bytes).

COMMANDS

The icmpV6OptionRedirectedHeader command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

icmpV6OptionRedirectedHeader setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6

Appendix 1 IxTclHAL Commands

– 806 –

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionUserDefine, icmpV6UserDefine.

icmpV6OptionUserDefine
icmpV6OptionUserDefine - configures the icmpV6 User Define option.

SYNOPSIS

icmpV6OptionUserDefine sub-command options

DESCRIPTION

The icmpV6OptionUserDefine command is used to configure the icmpV6 User Define option.

This option can be used in all Neighbor Discovery messages:

l icmpV6RouterSolicitationMessage
l icmpV6RouterAdvertisementMessage
l icmpV6NeighborSolicitationMessage
l icmpV6NeighborAdvertisementMessage
l icmpV6RedirectMessage

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType. (default = 133)

length

The length of the option. One unit of length = 1 octet. (default = 1)

A length value = 0 is invalid, and the node MUST silently discard a Neighbor Discovery packet where
length = 0.

data

User-defined data field. (default = '00 00 00 00 00 00')

COMMANDS

The icmpV6UserDefine command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 807 –

icmpV6OptionUserDefine setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6UserDefine.

icmpV6UserDefine
icmpV6UserDefine - configure a user-defined ipV6 header.

SYNOPSIS

icmpV6UserDefine sub-command options

DESCRIPTION

The icmpV6UserDefine command is used to configure a user-defined ipV6 header.

STANDARD OPTIONS

type

Read-only The type of ICMPv6 message to be sent. The messageType must first be set in the icmpV6
command by calling setType.

code

This parameter configures the code. See icmpV6Informational for appropriate codes.

checksum

Read-only. The 16-bit ICMPv6 checksum. This is the ones complement of the ones complement sum of
the whole ICMPv6 message, which starts at the message type field. The 'whole' message includes the
IPv6 header and extension header fields.

COMMANDS

The icmpV6UserDefine command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

icmpV6UserDefine setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 808 –

EXAMPLES

See example under icmpV6.

SEE ALSO

icmpV6, icmpV6Error, icmpV6Informational, icmpV6MulticastListener, icmpV6NeighborDiscovery,
icmpV6OptionLinkLayerDestination, icmpV6OptionLinkLayerSource, icmpV6OptionMaxTransmissionUnit,
icmpV6OptionPrefixInformation, icmpV6OptionRedirectedHeader, icmpV6OptionUserDefine.

IFRHeader
IFRHeader-sets up IFR Header over Fibre Channel.

SYNOPSIS

IFRHeader sub-command options

DESCRIPTION

The Inter-Fabric Routing Extended Header (IFR_Header) provides the necessary information to support
fabric-to-fabric routing.

STANDARD OPTIONS

expirationTime

If the Expiration Time Valid (ETV) bit is set to one, the Expiration Time (Exp_Time) field is used by Inter-
Fabric Routers to enforce frame lifetime requirements across the Inter-Fabric.

destinationFabricId

The Destination Fabric Identifier (DF_ID) field is set as specified in FC-IFR.

routingControl

The R_CTL field is a one-byte field that contains routing bits and information bits to categorize the frame
function.

This field is set to the value 51h to identify the IFR_Header.

hopCount

The count by which the VFT header packet is forwarded in the stream.

If the Hop Count Valid (HCV) bit is set to one, the Hop Count (Hop_Cnt) field specifies the number of hops
remaining before the frame is discarded.

sourceFabricId

The Source Fabric Identifier (SF_ID) field is set as specified in FC-IFR.

Appendix 1 IxTclHAL Commands

– 809 –

hopCountValid

If Hop Count field is valid, Hop Count Valid bit is set to one.

If Hop Count field is invalid, Hop Count Valid bit is set to zero.

expirationTimeValid

If EXP_Time field is valid, Expiry Time Valid bit is set to one.

If EXP_Time field is invalid, Expiry Time Valid bit is set to zero.

priority

Specifies the Quality of Service (QoS) value for the frame.

When set to zero, is interpreted to contain management information for the class of service.

version

Specifies the version of the IFR_Header.

This field is set to a default value of 00b.

COMMANDS

The IFRHeader command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

IFRHeader setDefault

Returns the default settings.

EXAMPLES

See under fibreChannel

SEE ALSO

fibreChannel.

igmp
igmp - configure the IGMP parameters for a port on a card on a chassis

SYNOPSIS

igmp sub-command options

DESCRIPTION

The igmp command is used to configure the IGMP-specific information used when building IGMP-type
packets. Note that stream get must be called before this command's get sub-command.

Appendix 1 IxTclHAL Commands

– 810 –

In the case of an IGMP v.3 membership report, the use of an additional command, igmpGroupRecord, is
needed to hold the group record component of the message. Group records are built in the
igmpGroupRecord command and added to this command with the addGroupRecord sub-command.

STANDARD OPTIONS

enableS true | false

This option is only used for an IGMP v.3 group membership request (that is, type = membershipQuery
and version = igmpVersion3). It is the suppress router-side processing flag. If set, receiving multicast
routers will not send timer updates in the normal manner when a query is received. (default = false).

groupIpAddress

IP Multicast group address of the group being joined or left. (default = 0.0.0.0)

maxResponseTime

The maximum allowed time before sending a responding report in units of 1/10 second. Values from 0 to
127 are represented exactly, values from 128 to 255 are encoded into a floating point number with three
bits of exponent and 4 bits of mantissa. A value higher than 255 is silently forced to 255. (default = 100)

mode

Describes how to vary the groupIpAddress when repeatCount is greater than 1.

Option Value Usage

igmpIdle 0 (default)

igmpIncrement 1

igmpDecrement 2

igmpContIncrement 3

igmpContDecrement 4

qqic

This option is only used for an IGMP v.3 group membership request (that is, type = membershipQuery
and version = igmpVersion3). The querier's query interval code, expressed in second. Values from 0 to
127 are represented exactly, values from 128 to 255 are encoded into a floating point number with three
bits of exponent and 4 bits of mantissa. A value higher than 255 is silently forced to 255. (default = 127)

qrv

This option is only used for an IGMP v.3 group membership request (that is, type = membershipQuery
and version = igmpVersion3). The querier's robustness value, as a value from 0 to 7. (default = 0)

Appendix 1 IxTclHAL Commands

– 811 –

repeatCount

Number of times of IGMP messages to be sent. (default = 1)

sourceIpAddressList

This option is only used for an IGMP v.3 group membership request (that is, type = membershipQuery
and version = igmpVersion3). The list of source addresses for the query. (default = {})

type

The type of IGMP message to be sent. Options are:

Option Value Usage

membershipQuery 17 General or group specific query messages sent by the DUT

membershipReport1 18 (default) An IGMP version 1 message sent by client to inform the
DUT of its interest to join a group

dvmrpMessage 19 Distance-Vector Multicast Routing Protocol message

membershipReport2 22 An IGMP version 2 message sent by client to inform the DUT of its
interest to join a group

leaveGroup 23 An IGMP version21message sent by client to inform the DUT of its
interest to leave a group

membershipReport3 34 An IGMP version 3 message sent by a client to inform the DUT of its
interest in joining a group.

validChecksum

If set, this causes a valid header checksum to be generated. If unchecked, then the one's complement of
the correct checksum is generated. (default = true)

version

The version number of IGMP. Options are:

Option Value Usage

igmpVersion1 1 version 1

igmpVersion2 2 (default)version 2

igmpVersion3 3 version 3

Appendix 1 IxTclHAL Commands

– 812 –

COMMANDS

The igmp command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

igmp addGroupRecord

This sub-command is only used for an IGMP v.3 group membership report (that is, type =
membershipReport3 and version = igmpVersion3). The group record described in igmpGroupRecord is
added to the list in this command. Specific errors are:

l Invalid parameters in the igmpGroupRecord command.

igmp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the igmp command.

igmp clearGroupRecords

All of the group records in this command are removed.

igmp config option value

Modify the IGMP configuration options of the port. If no option is specified, returns a list describing all of
the available IGMP options (see STANDARD OPTIONS) for port.

igmp decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. igmp cget option command can be
used after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Igmp frame

igmp clearGroupRecords index

This sub-command is only used for an IGMP v.3 group membership report (that is, type =
membershipReport3 and version = igmpVersion3). The group record at the position in the list indicated
by index is deleted; the first member in the list has an index of 1.

igmp get chasID cardID portID

Gets the current IGMP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling
igmp cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l stream get has not been called yet

igmp getFirstGroupRecord

Appendix 1 IxTclHAL Commands

– 813 –

This sub-command is only used for an IGMP v.3 group membership report (that is, type =
membershipReport3 and version = igmpVersion3). The first group record in the list is accessed; the first
member in the list has an index of 1. The values are available through the igmpGroupRecord command.
Specific errors are:

l There are no members in the group record list.

igmp getGroupRecord index

This sub-command is only used for an IGMP v.3 group membership report (that is, type =
membershipReport3 and version = igmpVersion3). The group record at the position in the list indicated
by index is accessed; the first member in the list has an index of 1. The values are available through the
igmpGroupRecord command. Specific errors are:

l The index does not correspond to an entry in the list.

igmp getNextGroupRecord

This sub-command is only used for an IGMP v.3 group membership report (that is, type =
membershipReport3 and version = igmpVersion3). The next group record in the list is accessed; the
values are available through the igmpGroupRecord command. Specific errors are:

l There are no more members in the group record list.

igmp set chasID cardID portID

Sets the IGMP configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the igmp config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

igmp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host 400-031561
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 814 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 1
set port 1

set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

set portMAC {00 00 00 01 01 01}
set portIP {192.168.18.1}
set portMask {255.255.255.0}

set destMAC {00 00 00 01 01 02}
set destIP {192.168.18.2}
set destMask {255.255.255.0}

port setFactoryDefaults $chas $card $port
port setDefault

Stream: 256 packets
stream setDefault
stream config -numFrames 256
stream config -sa $portMAC
stream config -da $destMAC
stream config -dma stopStream

Set up IP
ip setDefault
ip config -ipProtocol igmp
ip config -sourceIpAddr $portIP
ip config -sourceIpMask $portMask

Appendix 1 IxTclHAL Commands

– 815 –

ip config -sourceClass classC
ip config -destIpAddr $destIP
ip config -destIpMask $destMask
ip config -destClass classC
ip set $chas $card $port

protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII

igmp setDefault
igmp config -groupIpAddress {224.0.0.1}
igmp config -type membershipQuery
igmp set $chas $card $port

stream set $chas $card $port 1
port set $chas $card $port

ixWritePortsToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, ip, udp.

igmpGroupRecord
igmpGroupRecord - specify a IGMP group record used in an IGMP3 Membership Report

SYNOPSIS

igmpGroupRecord sub-command options

DESCRIPTION

The igmpGroupRecord command is used to configure a group record element of an IGMP v.3 group
membership report. The remainder of the report's fields are configured in the igmp command.

STANDARD OPTIONS

multicastAddress

A multicast address for a group that the sender interface belongs to. (default = 0.0.0.0)

Appendix 1 IxTclHAL Commands

– 816 –

sourceIpAddressList

A list of IPv4 source addresses for the group. (default = {})

type

The type of the record.

Option Value Usage

igmpModeIsInclude 1 A current-state-record which indicates that the interface
has a filter mode of INCLUDE for the specified multicast
address.The Source Address fields in this Group Record
contain the interface's source list for the multicast address.

igmpModeIsExclude 2 As in igmpModelIsInclude, except that the filter mode is
EXCLUDE.

igmpChangeToIncludeMode 3 A filter-mode-change record that indicates that the
interface has changed to INCLUDE filter mode for the
specified multicast address. The Source Address fields in
this Group Record contain the interface's new source list for
the multicast address.

igmpChangeToExcludeMode 4 As in igmpChangeToExcludeModel, except that the filter
mode is EXCLUDE.

igmpAllowNewSources 5 A source-list-change that indicates that the Source Address
fields in this Group Record contain a list of the additional
sources that the system wishes to hear from, for packets
sent to the multicast address. If the change was to an
INCLUDE source list, these are the addresses that were
added to the list; otherwise these are the addresses that
were deleted from the list.

igmpBlockOldSources 6 A source-list-change that indicates that the Source Address
fields in this Group Record contain a list of the sources that
the system no longer wishes to hear from, for packets sent
to the multicast address. If the change was to an INCLUDE
source list, these are the addresses that were deleted from
the list; otherwise these are the addresses that were added
to the list.

COMMANDS

The igmpGroupRecord command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

igmpGroupRecord cget option

Appendix 1 IxTclHAL Commands

– 817 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the igmpGroupRecord command.

igmpGroupRecord config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available igmpGroupRecord options (see STANDARD OPTIONS) for port.

igmpGroupRecord setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under igmp.

SEE ALSO

igmp.

interfaceEntry
interfaceEntry - configure an interface associated with a port

SYNOPSIS

interfaceEntry sub-command options

DESCRIPTION

The interfaceEntry command is used to configure a single interface associated with a port. Interface
entries hold one or more IPv4 or IPv6 addresses. Data from this command must be added to the interface
table using the interfaceTable command.

STANDARD OPTIONS

atmEncapsulation

For ATM type load modules, this is the type of ATM encapsulation that is used on the interface.

Option Value Usage

atmEncapsulationVccMuxIPV4Routed 101

atmEncapsulationVccMuxBridgedEthernetFCS 102

atmEncapsulationVccMuxBridgedEthernetNoFCS 103

atmEncapsulationVccMuxIPV6Routed 104

atmEncapsulationVccMuxMPLSRouted 105

Appendix 1 IxTclHAL Commands

– 818 –

Option Value Usage

atmEncapsulationLLCRoutedCLIP 106

atmEncapsulationLLCBridgedEthernetFCS 107 (default)

atmEncapsulationLLCBridgedEthernetNoFCS 108

atmEncapsulationLLCPPPoA 109

atmEncapsulationVccMuxPPPoA 110

atmVci

For ATM type cards, the VCI associated with the interface. (default = 0)

atmVpi

For ATM type cards, the VPI associated with the interface. (default = 0)

connectedVia

If interfaceType is set to interfaceTypeRouted, then this is the description of the interface that this
internal interface is made available through. (default = "")

description

An optional description for the interface. This may be used to later access a particular interface by name
in the interfaceTable command. (default = "")

enable true | false

Enables the use of this interface entry. (default = false)

enableDcbx true | false

Enables the use of DCBX negotiation on this interface entry. (default = false)

See enableLldp, below.

enableDhcp true | false

Enables the use of DHCP negotiation on this interface entry. If this option is true, then no address items
may be added to this interface entry. Any existing IPv4 addresses are deleted. (default = false)

enableDhcpV6 true | false

Enables the use of DHCPv6 negotiation on this interface entry. If this option is true, then no address items
may be added to this interface entry. Any existing IPv4 addresses are deleted. (default = false)

Appendix 1 IxTclHAL Commands

– 819 –

enableFlogi true | false

Enable Fabric login (for FCoE protocol). (default = false)

enableGreChecksum true | false

If interfaceType is interfaceTypeGre, this enables the presence of the optional Checksum and Reserved1
fields of the GRE header. The Checksum is set to a correct value and theReserved1 field is set to 0.
(default = 0.0.0.0)

enableGreKey
true | false

If true, the Key field is included in outgoing packets using the value in the greOutKey field. (default =
false)

enableGreSequence true | false

If true, the Sequence Number field is included in outgoing packets. (default = false)

enableLldp true | false

Enables the use of LLDP Tx and Rx negotiation on this interface entry. (default = false)

Note: Since DCBX is an acknowledged protocol which uses LLDP, for the protocol to operate correctly,
both LLDP Rx and Tx are enabled on the interface on which DCBX runs.

enablePtp true | false

Enables the use of PTP on this interface. When set to true, the PTP configuration is stored in the
ptpProperties command. (default = false)

enableVlan true | false

Enables the use of the VLAN on this interface. (default = false)

eui64Id

The EUI-64 ID associated with POS boards with IPv6 support. (default = {00 00 00 FF FE 00 00 00})

greDestIpAddress

If interfaceType is interfaceTypeGre, this is the destination IP address to be set in the GRE header.
(default = 0.0.0.0)

greInKey

If interfaceType is interfaceTypeGre, this is the key used to match incoming packets. (default = 0)

Appendix 1 IxTclHAL Commands

– 820 –

greOutKey

If interfaceType is interfaceTypeGreand enableGreKey is set to true, this is the key inserted in outgoing
packets. (default = 0)

greSourceIpAddress

If interfaceType is interfaceTypeGre, this is the source IP address to be set in the GRE header. (default =
0.0.0.0)

interfaceType

The type of interface being defined.

Option Value Usage

interfaceTypeConnected 0 (default) A standard, connected interface

interfaceTypeGre 4 A GRE internal interface. The connected-Via option must be set
to the name of an interface of type interfaceTypeConnected.

interfaceTypeRouted 5 An internal, unconnected interface. The connectedVia option
must have the name of a connected interface that this interface
is routed through.

interfaceTypeNpiv 6 An NPIV type interface.

interfaceTypePtp 7 A PTP type interface. (Note: When enablePTP is set 'true' in the
interfaceEntry command, the PTP configuration is stored in the
ptpProperties command.)

ipv6Gateway

There can be one gateway per IPv6 interface (default = '0:0:0:0:0:0:0:0'

macAddress

The MAC address of the interface. (default = "00 00 00 00 00 00")

mtu

Sets the Maximum Transmission Unit size, in kilobytes. The range possible depends on the port type.
(default =1500)

vcatCircuit

Sets the circuit ID for an IxRouter interface. (default = "")

Appendix 1 IxTclHAL Commands

– 821 –

vlanId

If enableVlan is true, the routing protocols are VLAN encapsulated with this ID. Although a value of `0' is
allowed, VLAN IDs normally start at 1. (default = 0)

vlanPriority

If enableVlan is true, the user priority of the VLAN ID tag (from 0 to 7). (default = 0)

vlanTPID

If enableVlan is true, the VLAN Tag Protocol ID. EtherTypes identify the protocol that follows the VLAN
header. (default = 0x8100)

DEPRECATED OPTIONS

atmMode

The encapsulation associated with the atmHeader is used instead.

COMMANDS

The interfaceEntry command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

interfaceEntry addItem ipType

Adds an IPv4 or IPv6 address, depending on the value of ipType, which is one of these:

Option Value Usage

addressTypeIpV4 17 An IPv4 address is added from the options associated with the
interfaceIpV4 command.

addressTypeIpV6 18 An IPv6 address is added from the options associated with the
interfaceIpV6 command.

Only one IPv4 address can be associated with an interface at this time.

Specific errors are:

l Invalid address configuration.

interfaceEntry clearAllItems ipType

Clears all IPv4 and IPv6 addresses of the interface, depending on the value of ipType, which is one of
these:

Option Value Usage

addressTypeIpV4 17 An IPv4 address is added from the options associated with the
interfaceIpV4 command.

Appendix 1 IxTclHAL Commands

– 822 –

Option Value Usage

addressTypeIpV6 18 An IPv6 address is added from the options associated with the
interfaceIpV6 command.

interfaceEntry delItem ipType [ipAddr]

Removes an address of type ipType (see the addItem sub-command above for a description of the items).
The address may either be specified with the ipAddr of the entry or the current interface as accessed with
getFirstItem, getNextItem and getItem. Separate current list pointers are kept for IPv4 and IPv6 items.
Specific errors are:

l There is no object with this ID.

interfaceEntry getFirstItem ipType

Gets the first address of type ipType (see the addItem sub-command above for a description of the items)
from the interface entry. Separate current list pointers are kept for IPv4 and IPv6 items. The data may be
accessed with the interfaceIpV4 or interfaceIpV6 command. Specific errors are:

l Required commands have not been called.
l The list is empty.

interfaceEntry getItem ipAddress

Gets the IPv4 or IPv6 item from the interface entry which matches the specified ipAddress. The type of
entry is figured out from the format of the ipAddress. The data may be accessed with the interfaceIpV4 or
interfaceIpV6 command. Specific errors are:

l Required commands have not been called.
l There is no object with this ID.

interfaceEntry getNextItem ipType

Gets the next interface entry from the interface table. The data may be accessed with the interfaceEntry
command. Specific errors are:

l Required commands have not been called.
l There are no more objects in the list.

interfaceEntry setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under interfaceTable.

SEE ALSO

interfaceTable, dhcpV4DiscoveredInfo, dhcpV4Properties, dhcpV4Tlv

Appendix 1 IxTclHAL Commands

– 823 –

interfaceIpV4
interfaceIpV4 - configure an IPv4 address for inclusion in an interface entry

SYNOPSIS

interfaceIpV4 sub-command options

DESCRIPTION

The interfaceIpV4 command is used to configure the IPv4 address specific information used when building
an interface table. An interfaceIpV4 is added to an interface entry using the interfaceEntry command.

STANDARD OPTIONS

gatewayIpAddress

The gateway IP address. (default = 0.0.0.0)

ipAddress

The IPv4 address. (default = 0.0.0.0)

maskWidth

The network mask associated with the address. Valid values: 1-30.(default = 24)

COMMANDS

The interfaceIpV4 command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

interfaceIpV4 cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the interfaceIpV4 command.

interfaceIpV4 config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available interfaceIpV4 options (see STANDARD OPTIONS) for port.

interfaceIpV4 setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under interfaceTable.

Appendix 1 IxTclHAL Commands

– 824 –

SEE ALSO

interfaceIpV6
interfaceIpV6 - configure an IPv6 address for inclusion in an interface entry

SYNOPSIS

interfaceIpV6 sub-command options

DESCRIPTION

The interfaceIpV6 command is used to configure the IPv6 address specific information used when building
an interface table. An interfaceIpV6 is added to an interface entry using the interfaceEntry command.

STANDARD OPTIONS

ipAddress

The IPv6 address. (default = "0:0:0:0:0:0:0:0")

maskWidth

The network mask associated with the address. (default = 64)

COMMANDS

The interfaceIpV6 command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

interfaceIpV6 cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the interfaceIpV6 command.

interfaceIpV6 config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available interfaceIpV6 options (see STANDARD OPTIONS) for port.

interfaceIpV6 setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under interfaceTable.

SEE ALSO

interfaceTable
interfaceTable - configure the interfaces associated with a port

Appendix 1 IxTclHAL Commands

– 825 –

SYNOPSIS

interfaceTable sub-command options

DESCRIPTION

The interfaceTable command is used to configure interfaces associated with a port. Interfaces hold
interfaceEntry elements, each of which includes multiple IPv4 and IPv6 addresses. Note that the select
command must be used before any other sub-commands to indicate the chassis, card and port in use.

For IPv4, DHCPv4 or DHCPv6 may be enabled on an interface by interface basis in interfaceEntry DHCP
parameters are set dhcpV4Properties and dhcpV6Properties commands at the time that interfaceTable
addInterface is called. They are retrieved when the get*Interface sub-commands are called. The address
and other parameters assigned from the DHCP server may be retrieved from the port by using
requestDiscoveredTable followed by getDhcpV4DiscoveredInfo.

Similarly, when using IPv6, addresses for the interfaces and neighbor addresses are automatically
discovered and are available by calling sendRouterSoliciation, requestDiscoveredTable and
getDiscoveredList.

Note: If more than a few DHCP interfaces are being defined, it is important that you wait until they are
fully defined by monitoring the dhcpV4EnabledInterfaces and dhcpV6EnabledInterfaces statistic in the
stat command. Likewise, the DHCP server may require some amount of time to answer all DHCP server
requests. You can test for its completion by calling interfaceTable requestDiscoveredTable and then
monitoring the dhcpV4AddressesLearned and dhcpV6AddressesLearned statistic in the stat command.
This requires that enableDhcpStats be true in the stat command.

STANDARD OPTIONS

dhcpV4RequestRate

The user-specified maximum number of Request messages that can be sent per second from the client to
the server, requesting an IPv4 address. A value of zero (0) indicates that there is no rate control, that is,
requests are sent as fast as possible.

dhcpV6RequestRate

The user-specified maximum number of Request messages that can be sent per second from the client to
the server, requesting an IPv6 address. A value of zero (0) indicates that there is no rate control, that is,
requests are sent as fast as possible.

dhcpV4Maximum
Out-standingRequests

The maximum number of DHCP V4 requests that can be pending, waiting replies from the server. If this
number is reached, no further requests can be sent until an acknowledgment is received for a pending
request.

Appendix 1 IxTclHAL Commands

– 826 –

dhcpV6Maximum
Out-standingRequests

The maximum number of DHCP V6 requests that can be pending, waiting replies from the server. If this
number is reached, no further requests can be sent until an acknowledgment is received for a pending
request.

enableFcfMac

Enables FCF MAC address.

enablePMacInFpma

Enables PMAC.

enableNameIdInVLAN
Discovery

Enables Name ID parameter in Discovery VLAN.

enableTargetLinkLayerAddrOption

Enables Target Link Layer Address option.

enableAutoNeighbor
Discovery

Enables Auto Neighbor Discovery parameter. If true and then MAC interface is enabled, the Discovered
Neighbors parameters are automatically available.

enableAutoArp

Enables Auto ARP option. If true and then MAC interface is enabled, the Learned IP Addresses and
Learned MAC Addresses are automatically available.

fcfMacCollectionTime

The FCF MAC collection time.

fcoeNumRetries

FCoE number of retries before being marked as Failure. (default = 5)

fcoeRetryInterval

FCoE interval between retries. (default = 2000)

fcoeRequestRate

FCoE maximum rate (packets/second). (default = 500)

Appendix 1 IxTclHAL Commands

– 827 –

fipVersion

FIP version. (default = 1)

Option Value Usage

fipVersion0 0 The version in incoming packets should have the same value as the one
configured in IxExplorer, otherwise packets is dropped.

fipVersion1 1 (default) See Usage for fipVersion0, above.

fipVersionAuto 8888 The protocol sends packets matching the fipversion of incoming packets.
If incoming packets are version 0, then FIP sends version 0 packets; if
incoming packets are version 1 then FIP sends version 1 packets.

COMMANDS

The interfaceTable command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

interfaceTable addInterface [type]

Adds the interface specified in the interfaceEntry command. The type options should be one of these:

Option Value Usage

interfaceTypeConnected 0 (default) A standard, connected interface

interfaceTypeGre 4 A GRE internal interface. The connected-Via option must be set
to the name of an interface of type interfaceTypeConnected.

interfaceTypeRouted 5 An internal, unconnected interface. The connectedVia option
must have the name of a connected interface that this interface
is routed through.

interfaceTypeNpiv 6 An NPIV type interface.

interfaceTypePtp 7 A PTP type interface. (Note: When enablePTP is set 'true' in the
interfaceEntry command, the PTP configuration is stored in the
ptpProperties command.)

Specific errors are:

l The select sub-command has not been called successfully before

interfaceTable clearAllInterfaces [type]

Clears all of the interfaces associated with the port selected in interfaceTable select. If specified, only the
interfaces defined with the interfaceEntry's interfaceType equal to type are cleared. Specific errors are:

l The select sub-command has not been called successfully before

interfaceTable clearDiscoveredNeighborTable

Appendix 1 IxTclHAL Commands

– 828 –

Clears all of the discovered neighbors associated with the port selected in interfaceTable select:

l The select sub-command has not been called successfully before

interfaceTable clearPtpHistogramData description

Clears all of the accumulated PTP histogram data associated with the selected interface. This command
also stops the collection process. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.

interfaceTable config option value

Modify the interfaceTable configuration options of the port. If no option is specified, returns a list
describing all of the available interfaceTable options (see STANDARD OPTIONS).

interfaceTable cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the interfaceTable command.

interfaceTable delInterface [description]

Removes an interface. The interface may either be specified with the description given when the interface
was added with addInterface or the current interface as accessed with getFirstInterface, getNextInterface
and getInterface. Specific errors are:

l The select sub-command has not been called successfully before

interfaceTable getDcbxDiscoveredInfo description

Gets the DCBX interface description and other information from the interface table which matches the
specified description. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.
l There is no discovered information for the interface.

interfaceTable getDhcpV4DiscoveredInfo description

Gets the DHCP assigned address and other information from the interface table which matches the
specified description. The data may be accessed with the dhcpV4DiscoveredInfo command. Specific
errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.

Appendix 1 IxTclHAL Commands

– 829 –

l There is no interface with this description.
l There is no discovered information for the interface.

interfaceTable getDhcpV6DiscoveredInfo description

Gets the DHCPv6 assigned address and other information from the interface table which matches the
specified description. The data may be accessed with the dhcpV6DiscoveredInfo command. Specific
errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.
l There is no discovered information for the interface.

interfaceTable getDiscoveredList [description]

Obtains the discovered neighbor and address list corresponding to an interface. The interface may either
be specified with the description given when the interface was added with addInterface or the current
interface as accessed with getFirstInterface, getNextInterface and getInterface. This command should be
called until it returns TCL_OK (0), at which time the list has been retrieved. An additional delay may be
necessary if there are more than a few entries expected. The data may be accessed with the
discoveredList command.

interfaceTable getFcoeDiscoveredInfo [description]

Gets the FCoE assigned address and other information from the interface table which matches the
specified description. The data may be accessed with the fcoeDiscoveredInfo command. Specific errors
are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.
l There is no discovered information for the interface.

interfaceTable getFirstInterface [type]

Gets the first interface entry from the interface table. The data may be accessed with the interfaceEntry
command. If specified, only the interfaces defined with the interfaceEntry's interfaceType equal to type
are accessed. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l The list is empty.
l No entry of the type specified exists.

interfaceTable getInterface description

Appendix 1 IxTclHAL Commands

– 830 –

Gets the interface entry from the interface table which matches the specified description. The data may
be accessed with the interfaceEntry command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l There is no object with this ID.

interfaceTable getNextInterface [type]

Gets the next interface entry from the interface table. The data may be accessed with the interfaceEntry
command. If specified, only the interfaces defined with the interfaceEntry's interfaceType equal to type
are accessed. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l There are no more objects in the list.
l No more entries of the type specified exists.

interfaceTable getPtpDiscoveredInfo [description]

Gets the PTP assigned address and other information from the interface table which matches the specified
description. The data may be accessed with the ptpDiscoveredInfo command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.
l There is no discovered information for the interface.

interfaceTable ping [description][ipType][ipAddress]

Sends a ping to the specified IPv4 and/or IPv6 destination.Must be enabled in protocolServer to work. The
available ipType are addressTypeIpV4 and addressTypeIpV6.

Specific errors are:

l The interface is not enabled for the port.
l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.
l Ping not enabled in protocolServer.
l Invalid IP type.
l Invalid IP address.
l Invalid interface description.

interfaceTable requestDiscoveredTable

Requests that the IPv6 discovered neighbors and both IPv6 and IPv4-DHCP interfaces addresses be sent
back from the hardware. This should be followed by use of the getDiscoveredList command when used
with IPv6 discovered neighbors. Specific errors are:

Appendix 1 IxTclHAL Commands

– 831 –

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable savePtpHistogramData description filePath

Saves to disk all the accumulated PTP histogram data associated with the selected interface. The save file
is of the type comma-separated-values (.csv). Note that for the savePtpHistogramData method there is
no enforcement of the file name. You may specify it as desired. IxExplorer suggests the following filename
format as a convenience:

PTPHistogram-<PTPClockId>_<PTPPortId>.csv

Specific errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.
l Invalid filePath

interfaceTable select chasID cardID portID

Accesses the interface table for the indicated port. Specific errors are:

l No connection to the chassis
l Invalid port specified

interfaceTable sendArp [description]

Sends an ARP request corresponding to an interface or all enabled interfaces. The interface may either be
specified with the description given when the interface was added with addInterface or, if omitted, all
enabled interfaces are ARP'd. You must use the requestDiscoveredTable command before using this
command. This should be followed by a call to the requestDiscoveredList command after which point the
data may be accessed with the getDiscoveredList command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendArpClear

Clears the ARP table for all enabled interfaces. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendArpRefresh [description]

Rereads the ARP table corresponding to an interface or all enabled interfaces from the port's CPU. The
interface may either be specified with the description given when the interface was added with
addInterface or, if omitted, all enabled interfaces are queried. This should be followed by a call to the

Appendix 1 IxTclHAL Commands

– 832 –

requestDiscoveredList command after which point the data may be accessed with the getDiscoveredList
command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendNeighborClear

Sends a neighbor clear message that clears the neighbor cache for all the enabled interfaces for the port.
Specific errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendNeighborRefresh

Sends a refresh message that allows a device to refresh a neighbor that exists and is reachable. Specific
errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendNeighborSolicitation

Allows a device to check that a neighbor exists and is reachable, and to initiate address resolution. The
Neighbor Advertisement message confirms the existence of a host or router, and also provides Layer 2
address information when needed. This request corresponds to all multicast enabled interfaces. The
interface may either be specified with the description that was given when the interface was added with
addInterface, or, if omitted, all enabled interfaces are sent Neighbor Solicitation /message. Specific errors
are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable sendRouterSolicitation [description]

Sends a router solicitation packet (IPv6) corresponding to an interface. The interface may either be
specified with the description given when the interface was added with addInterface or the current
interface as accessed with getFirstInterface, getNextInterface and getInterface. This should be followed
by a call to the requestDiscoveredList command after which point the data may be accessed with the
getDiscoveredList command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

interfaceTable setInterface [description]

Sets an interface entry in the interface to the specified description. The data may be accessed with the
interfaceEntry command. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l There is no interface with that description.

Appendix 1 IxTclHAL Commands

– 833 –

interfaceTable startPtpHistogramData description

Starts (or resumes) collecting the PTP histogram data associated with the selected interface. Specific
errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.

interfaceTable stopPtpHistogramData description

Stops collecting the PTP histogram data associated with the selected interface. Stopping the collection of
data does not cause any accumulated data to be lost. Specific errors are:

l A port has not been selected by the interfaceTable select command.
l Invalid port.
l Invalid description.
l There is no interface with this description.

interfaceTablewrite

Sends any changes made to the interface table to the protocol server. If more than a few interfaces are
being defined, it is important that you wait until they are fully defined by monitoring the
dhcpV4EnabledInterfaces and dhcpV6EnabledInterfaces statistic in the stat command. This requires that
enableDhcpStats be true in the stat command. Possible errors include:

l A port has not been selected by the interfaceTable select command.
l A network problem has occurred.

EXAMPLES
Example 1

package req IxTclHal
ixConnectToChassis loopback

set chassID [chassis cget -id]
set cardID 1
set portID 3
set pingAddress 1.1.1.2

set portList [list [list $chassID $cardID $portID]]

protocolServer get $chassID $cardID $portID
protocolServer config -enablePingResponse $::true
protocolServer set $chassID $cardID $portID
protocolServer write $chassID $cardID $portID

Appendix 1 IxTclHAL Commands

– 834 –

interfaceTable select $chassID $cardID $portID

Get the interface description from the first interface that happens to be our port
interfaceTable getFirstInterface
set desc [interfaceEntry cget -description]

Available ipType are addressTypeIpV4 and addressTypeIpV6
interfaceTable $description ipType $ipAddress

Clear the stats in order to see if you received pig correctly
ixClearStats portList

Send ping request
interfaceTable ping $desc addressTypeIpV4 $pingAddress

Wait for ping reply to come back
after 2000

ixRequestStats portList
statList get $chassID $cardID $portID

puts "\n *** Ping request sent on $chassID $cardID $portID: [statList cget -
txPingRequest]"
puts "***Ping reply received on $chassID $cardID $portID: [statList cget -
rxPingReply]"

Example 2
package req IxTclHal

Define parameters used by OSPF router
set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 1 IxTclHAL Commands

– 835 –

Get the chassis ID to use in port lists
set ch [ixGetChassisID $host]

Port is: card 4, port 1
set ca 4
set po 1
set portList [list [list $ch $ca $po]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

set myMac {00 0a de 01 01 01}
set myMac2 {00 0a de 01 01 02}
set router 101.101.9.2
set router2 101.101.10.2
set neighbor 101.101.9.1
set interfaceIpMask 255.255.255.0

Set up the interface table for IPv4 and IPv6 interfaces
on the port
interfaceTable select $ch $ca $po
interfaceTable clearAllInterfaces

interfaceIpV6 setDefault
interfaceIpV6 config -ipAddress {0:0:0:0:0:0:0:1}
interfaceIpV6 config -maskWidth 64
interfaceEntry addItem addressTypeIpV6

interfaceIpV4 setDefault
interfaceIpV4 config -ipAddress $router
interfaceIpV4 config -gatewayIpAddress $neighbor
interfaceIpV4 config -maskWidth 24
interfaceEntry addItem addressTypeIpV4

interfaceEntry setDefault
interfaceEntry config -enable true
interfaceEntry config -description {Port 04:01 Interface-1}
interfaceEntry config -macAddress $myMac
interfaceEntry config -ipV6Gateway (1:1:1:1:1:0:0:55)

Appendix 1 IxTclHAL Commands

– 836 –

interfaceTable addInterface

interfaceEntry clearAllItems addressTypeIpV4
interfaceEntry clearAllItems addressTypeIpV6

interfaceIpV6 setDefault
interfaceIpV6 config -ipAddress {0:0:0:0:0:0:0:2}
interfaceIpV6 config -maskWidth 64
interfaceEntry addItem addressTypeIpV6

interfaceIpV4 setDefault
interfaceIpV4 config -ipAddress $router2
interfaceIpV4 config -gatewayIpAddress $neighbor
interfaceIpV4 config -maskWidth 24
interfaceEntry addItem addressTypeIpV4

interfaceEntry setDefault
interfaceEntry config -enable true
interfaceEntry config -description {Port 04:01 Interface-2}
interfaceEntry config -macAddress $myMac2
interfaceTable addInterface
interfaceTable write

Now go through the table and print all interfaces and addresses
interfaceTable select $ch $ca $po

Loop through all interfaces
for {set bRes [interfaceTable getFirstInterface]} \
{$bRes == 0} {set bRes [interfaceTable getNextInterface]} {

ixPuts "Interface: " [interfaceEntry cget -description] \
", MAC: " \
[interfaceEntry cget -macAddress]

Get the one optional IpV4 entry
if {[interfaceEntry getFirstItem addressTypeIpV4] == 0} {
ixPuts "\tIPv4 Address:"
ixPuts "\t\t" [interfaceIpV4 cget -ipAddress] "/" \
[interfaceIpV4 cget -maskWidth] ", GW: " \
[interfaceIpV4 cget -gatewayIpAddress]
}

Loop through all IPv6 addresses
for {set bRes [interfaceEntry getFirstItem addressTypeIpV6]}\
{$bRes == 0} \
{set bRes [interfaceEntry getNextItem addressTypeIpV6]} {
ixPuts "\tIPv6 Addresses:"

Appendix 1 IxTclHAL Commands

– 837 –

ixPuts "\t\t" [interfaceIpV6 cget -ipAddress] "/" \
[interfaceIpV6 cget -maskWidth]
}
}

Now request and get the discovered neighbor and address list
for all interfaces

interfaceTable clearDiscoveredNeighborTable

Loop through all interfaces
for {set bRes [interfaceTable getFirstInterface]} \
{$bRes == 0} {set bRes [interfaceTable getNextInterface]} {

ixPuts "Interface: " [interfaceEntry cget -description]

Send a request command on the network
if [interfaceTable sendRouterSolicitation] {
ixPuts "Can't send router solicitation"
} else {

Wait for responses
after 5000
Ask for the discovered table
if [interfaceTable requestDiscoveredTable] {
ixPuts "Can't request discovered table"
} else {

Now wait until it finishes reading back
ixPuts -nonewline "Waiting."
for {set count 0} \
{[interfaceTable getDiscoveredList] != 0 && \
$count < 10} {incr count} {
ixPuts -nonewline "."
after 1000
}
ixPuts ""
if {$count == 10} {
ixPuts "Can't get discovered list"
} else {

Wait for a bit to ensure that all of the entries
have been retreived.
after 5000
Get the discovered addresses
for {set bRes [discoveredList getFirstAddress]} \
{$bRes == 0} \
{set bRes [discoveredList getNextAddress]} {

Appendix 1 IxTclHAL Commands

– 838 –

ixPuts "\tDiscovered address: " \
[discoveredAddress cget -ipAddress]
}
Get the discovered neighbors
for {set bRes [discoveredList getFirstNeighbor]} \
{$bRes == 0} \
{set bRes \
[discoveredList getNextNeighbor]} {
for {set bRes \
[discoveredNeighbor getFirstAddress]} \
{$bRes == 0} \
{set bRes \
[discoveredNeighbor getNextAddress]} {
ixPuts -nonewline \
"\tDiscovered neighbor: address: " \
[discoveredNeighbor cget -ipRouter]
ixPuts ", mac address: " \
[discoveredNeighbor cget -macAddress]
}
}
}
}
}
}

Send ARP to each interface one at a time
if {[interfaceTable select $ch $ca $po]} {
logMsg "Error selecting port"
set retCode "FAIL"
}

for {set i 1} {$i < 2} {incr i} {
if {[interfaceTable sendArp "Port 04:01 Interface-$i"]} {
logMsg "Error sending Arp for interface $i"
set retCode "FAIL"
}
}

if {[interfaceTable requestDiscoveredTable]} {
logMsg "Error in requesting discoveredTable"
set retCode "FAIL"
}
after 10000

for {set i 1} {$i < 2} {incr i} {
if {![interfaceTable getDiscoveredList \
"Port 04:01 Interface-$i"]} {

Appendix 1 IxTclHAL Commands

– 839 –

Use discoveredList as above
} else {
set retCode "FAIL"
}
}

##
#
DHCP example
#
##

Init the interface table
if [interfaceTable select $ch $ca $po] {
logMsg "Error selecting $ch $ca $po"
set retCode "FAIL"
}
interfaceTable clearAllInterfaces

Initialize and set DHCP properties for interface
dhcpV4Properties setDefault
dhcpV4Properties removeAllTlvs
dhcpV4Properties config -clientId Client1
dhcpV4Properties config -serverId 1.1.1.2
dhcpV4Properties config -vendorId Ixia1
V4Properties config -renewTimer 600

Define a type 2 TLV
dhcpV4Tlv setDefault
dhcpV4Tlv config -type 2
dhcpV4Tlv config -value {AA AB 22}
if [dhcpV4Properties addTlv] {
logMsg "Error in dhcpV4Properties addTlv"
set retCode "FAIL"
}

Define a type 12 TLV
dhcpV4Tlv config -type 12
dhcpV4Tlv config -value {A1 A2 B1 B2}
if [dhcpV4Properties addTlv] {
logMsg "Error in dhcpV4Properties addTlv"
set retCode "FAIL"
}

Define an interface entry that uses DHCP
interfaceEntry setDefault
interfaceEntry config -enable true
interfaceEntry config -enableDhcp true

Appendix 1 IxTclHAL Commands

– 840 –

interfaceEntry config -description "Port 04:01 Interface-1"

Now add the interface entry to the table
if [interfaceTable addInterface interfaceTypeConnected] {
logMsg "Error in interfaceEntry addInterface"
set retCode "FAIL"
}

Tell the stream to use an interface and the particular interface
stream config -enableSourceInterface true
stream config -sourceInterfaceDescription "Port 04:01 Interface-1"
if [stream set $ch $ca $po 1] {
logMsg "Error in interfaceEntry addInterface"
set retCode "FAIL"
}

Enable DHCP statistics
stat config -enableDhcpStats true
stat set $ch $ca $po
stat write $ch $ca $po

Send the interface table to the chassis
if [interfaceTable write] {
logMsg "Error in interfaceTable write"
set retCode "FAIL"
}

Need to wait until the interface has been defined and
while {1} {
sleep 200
stat get allStats $ch $ca $po
if {1 == [stat cget -dhcpV4EnabledInterfaces]} {
break
}
}

Need to wait until the DHCP server has assigned an address
interfaceTable requestDiscoveredTable
while {1} {
sleep 200
stat get allStats $ch $ca $po
if {1 == [stat cget -dhcpV4AddressesLearned]} {
break
}
}

if [interfaceTable select $ch $ca $po] {
logMsg "Error selecting $ch $ca $po"

Appendix 1 IxTclHAL Commands

– 841 –

set retCode "FAIL"
}

Get the first interface
if [interfaceTable getFirstInterface interfaceTypeConnected] {
logMsg "Error getFirstInterface $ch $ca $po"
set retCode "FAIL"
}

Ask for the discovered DHCP information
if [interfaceTable requestDiscoveredTable] {
logMsg "Error requestDiscoveredTable $ch $ca $po"
set retCode "FAIL"
}

And fetch it - attempts will timeout after 10s
set time_elapsed_ms 0
while {[interfaceTable getDhcpV4DiscoveredInfo "Port 04:01 Interface-
1"]} {
if {$time_elapsed_ms > 10000} {
logMsg "Error getDhcpV4DiscoveredInfo $ch $ca $po"
set retCode "FAIL"
}
incr time_elapsed_ms 100
after 100
}
Pull out the assigned IP address, mask, gateway and timer
set ipAddress [dhcpV4DiscoveredInfo cget -ipAddress]
set prefixLength [dhcpV4DiscoveredInfo cget -prefixLength]
set gatewayIpAddress [dhcpV4DiscoveredInfo cget -gatewayIpAddress]
set renewTimer [dhcpV4DiscoveredInfo cget -renewTimer]

Look at the first TLV
if [dhcpV4DiscoveredInfo getFirstTlv] {
logMsg "Error getFirstTlv $ch $ca $po"
set retCode "FAIL"
}
set type [dhcpV4Tlv cget -type]
set value [dhcpV4Tlv cget -value]

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host

Appendix 1 IxTclHAL Commands

– 842 –

}

SEE ALSO

discoveredAddress, discoveredList, discoveredNeighbor, interfaceEntry, interfaceIpV4, interfaceIpV6,
dhcpV4DiscoveredInfo, dhcpV4Properties, dhcpV4Tlv.

ip
ip - configure the IP parameters for a port on a card on a chassis

SYNOPSIS

ip sub-command options

DESCRIPTION

The ip command is used to configure the IP-specific information used when building IP-type packets if the
protocol config-name has been set to ip. See RFC 791 for a complete definition of IP header fields. Note
that stream get must be called before this command's get sub-command.

The TOS byte in the IP header may be interpreted as TOS or DSCP. The options controlling this choice and
DSCP settings are qosMode, dscpMode, dscpValue, classSelector, assuredForwardingClass and
assuredForwardingPrecedence.

The source and destination addresses may be set from the result of a PPP negotiation through the use of
the enableDestSyncFromPpp and enableSourceSyncFromPpp options. Note that it is necessary to wait
until the PPP session has been negotiated before:

l performing a chassis refresh command
l performing a stream get command
l performing an ip get command
l reading the destAddr and sourceAddr values using ip cget

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

assuredForwarding
Class

If qosMode is set to ipv4ConfigDscp and dscpMode is set to ipV4DscpAssuredForwarding, then this is the
assured forwarding class.

Appendix 1 IxTclHAL Commands

– 843 –

Option Value Usage

ipV4DscpClass1 0 (default) Class 1

ipV4DscpClass2 1 Class 2

ipV4DscpClass3 2 Class 3

ipV4DscpClass4 3 Class 4

ipV4DscpClass5 4 Class 5

ipV4DscpClass6 5 Class 6

ipV4DscpClass7 6 Class 7

assuredForwarding
Precedence

If qosMode is set to ipv4ConfigDscp and dscpMode is set to ipV4DscpAssuredForwarding, then this is the
assured forwarding precedence.

Option Value Usage

ipV4DscpPrecedenceLowDrop 0 (default) Low drop rate.

ipV4DscpPrecedenceMediumDrop 1 Medium drop rate.

ipV4DscpPrecedenceHighDrop 2 High drop rate.

checksum

Read-only. Value of the checksum in the valid ip stream. Valid only if the stream set is performed.

classSelector

If qosMode is set to ipv4ConfigDscp and dscpMode is set to ipV4DscpClassSelector, then this holds the
class selector value.

Option Value Usage

ipV4DscpClass1 0 (default) Class 1

ipV4DscpClass2 1 Class 2

ipV4DscpClass3 2 Class 3

ipV4DscpClass4 3 Class 4

ipV4DscpClass5 4 Class 5

Appendix 1 IxTclHAL Commands

– 844 –

Option Value Usage

ipV4DscpClass6 5 Class 6

ipV4DscpClass7 6 Class 7

cost

Part of the Type of Service byte of the IP header datagram (bit 6). Options include:

Option Value Usage

normalCost 0 (default)

lowCost 1

delay

Part of the Type of Service byte of the IP header datagram (bit 3). Options include:

Option Value Usage

normalDelay 0 (default)

lowDelay 1

destClass

Class type associated with the destination IP address of the Ixia port. Options include:

Option Value Usage

classA 0

classB 1

classC 2 (default)

classD 3

noClass 4

destDutIpAddr

IP address of the DUT (device under test) port. This value is stored at the TclHal level. (default =
127.0.0.1)

destIpAddr

Destination IP address of the Ixia port. (default = 127.0.0.1)

Appendix 1 IxTclHAL Commands

– 845 –

destIpAddrMode

Specifies how the destination IP address is incremented or decremented. If destIpAddrRepeatCount is set
to 1, this variable has no effect. Possible values include:

Option Value Usage

ipIdle 0 (default) no change to IP address regardless of
destIpAddrRepeatCount

ipIncrHost 1 increment the host portion of the IP address for as many
destIpAddrRepeatCount specified

ipDecrHost 2 decrement the host portion of the IP address for as many
destIpAddrRepeatCount specified

ipContIncrHost 3 Continuously increment the host portion of the IP address for each
packet

ipContDecrHost 4 Continuously decrement the host portion of the IP address for each
packet

ipIncrNetwork 5 increment the network portion of the IP address for as many
destIpAddrRepeatCount specified

ipDecrNetwork 6 increment the network portion of the IP address for as many
destIpAddrRepeatCount specified

ipContIncrNetwork 7 Continuously increment the network portion of the IP address for
each packet

ipContDecrNetwork 8 Continuously decrement the network portion of the IP address for
each packet.

ipRandom 9 Generate random IP addresses

destIpAddrRepeat
Count

Number of destination IP addresses. If set to 1, destIpAddrMode has no effect (default = 1)

destIpMask

Destination IP subnet mask. (default = 255.0.0.0)

destMacAddr

Destination MAC address, generally the MAC address of the DUT port; this field is modified on receipt of
ARP frames. This value is stored at the TclHal level. (default = 00 00 00 00 00 00)

Appendix 1 IxTclHAL Commands

– 846 –

dscpMode

If qosMode is set to ipv4ConfigDscp, then this indicates the particular DSCP mode to be used.

Option Value Usage

ipV4DscpDefault 0 (default) The default mode of best efforts. No other
options apply

ipV4DscpClassSelector 1 Class selector mode. The particular class is set in the
classSelector option.

ipV4DscpAssuredForwarding 2 Assured forwarding. The class is set in the
assuredForwardingClass option and the assured
forwarding precedence is set in the
assuredForwardingPrecedence option.

ipV4DscpExpeditedForwarding 3 Expedited forwarding. No other options apply.

ipV4DscpCustom 4 An arbitrary value may be set in the TOS byte, held in
dscpValue.

dscpValue

If qosMode is set to ipv4ConfigDscp and dscpMode is set to ipV4DscpCustom, then this holds the value of
the TOS/DSCP byte.

enableDestSyncFrom
Ppp true | false

If true, then the destIpAddr is set from negotiated PPP session. See the note at the head of this command
about interaction with the PPP negotiation process. (default = false)

enableHeaderLength Override true | false

If false, then the headerLength field is automatically set, based on the Frame Size set in the Frame
Control tab. If true, then the value may be overridden. (default = false)

enableSourceSyncFrom
Ppp true | false

If true, then the sourceIpAddr is set from negotiated PPP session. See the note at the head of this
command about interaction with the PPP negotiation process. (default = false)

fragment

If set to true, this field indicates this is a fragmented datagram. Used in conjuction with identifier,
fragmentoffset and lastFragment. Options include:

Appendix 1 IxTclHAL Commands

– 847 –

Option Value Usage

may 0 (default)

dont 1

fragmentOffset

This field indicates where in the datagram this fragment belongs. The fragment offset is measured in units
of 8 octets (64 bits). This differs from the display in IxExplorer, where the fragment offiset is displayed in
terms of bytes. The first fragment has offset zero. (default = 0)

headerLength

Automatically calculated to include the minimum of five 32-bit words plus optional data and padding.
(default = 20)

identifier

An identifying value assigned by the sender to aid in assembling the fragments of a datagram. (default =
0)

ipProtocol

The next level protocol used in the data portion of the internet datagram. Possible values include:

Option Value Usage

ipV6HopToHop
ipV4ProtocolIpV6HopByHop

0

icmp
ipV4ProtocolIcmp

1

igmp
ipV4ProtocolIgmp

2

ggp
ipV4ProtocolGgp

3

ipv4ProtocolIpV4 4

st
ipV4ProtocolSt

5

tcp
ipV4ProtocolTcp

6

ucl
ipV4ProtocolUcl

7

Appendix 1 IxTclHAL Commands

– 848 –

Option Value Usage

egp
ipV4ProtocolEgp

8

igp
ipV4ProtocolIgp

9

bbn_rcc_mon
ipV4ProtocolBbnRccMon

10

nvp_ii
ipV4ProtocolNvpIi

11

pup
ipV4ProtocolPup

12

argus
ipV4ProtocolArgus

13

emcon
ipV4ProtocolEmcon

14

xnet
ipV4ProtocolXnet

15

chaos
ipV4ProtocolChaos

16

udp
ipV4ProtocolUdp

17 (default)

mux
ipV4ProtocolMux

18

dcn_meas
ipV4ProtocolDcnMeas

19

hmp
ipV4ProtocolHmp

20

prm
ipV4ProtocolPrm

21

xns_idp
ipV4ProtocolXnsIdp

22

trunk_1
ipV4ProtocolTrunk1

23

Appendix 1 IxTclHAL Commands

– 849 –

Option Value Usage

trunk_2
ipV4ProtocolTrunk2

24

leaf_1
ipV4ProtocolLeaf1

25

leaf_2
ipV4ProtocolLeaf2

26

rdp
ipV4ProtocolRdp

27

irtp
ipV4ProtocolIrtp

28

iso_tp4
ipV4ProtocolIsoTp4

29

netblt
ipV4ProtocolNetblt

30

mfe_nsp
ipV4ProtocolMfeNsp

31

merit_inp
ipV4ProtocolMeritInp

32

sep
ipV4ProtocolSep

33

ipV4Protocol3pc 34

ipV4ProtocolIdpr 35

ipV4ProtocolXtp 36

ipV4ProtocolDdr 37

ipV4ProtocolIdprCmtp 38

ipV4ProtocolTpPlusPlus 39

ipV4ProtocolIlTransportProtocol 40

ipV4ProtocolIpv6 41

ipV4ProtocolSdrp 42

Appendix 1 IxTclHAL Commands

– 850 –

Option Value Usage

ipV4ProtocolSipSr 43

ipV4ProtocolSipFrag 44

ipV4ProtocolIdrp 45

ipV4ProtocolRsvp 46

ipV4ProtocolGre 47

ipV4ProtocolMhrp 48

ipV4ProtocolBna 49

ipV4ProtocolSippEsp 50

ipV4ProtocolSippAh 51

ipV4ProtocolNlsp 52

ipV4ProtocolSwipe 53

ipV4ProtocolNarp 54

ipV4ProtocolMobile 55

ipV4ProtocolTlsp 56

ipV4ProtocolSkip 57

ipV4ProtocolIpv6Icmp 58

ipV4ProtocolIpv6NoNext 59

ipV4ProtocolIpv6Opts 60

ipV4ProtocolHostInternalProtocol 61

cftp
ipV4ProtocolCftp

62

ipV4ProtocolAnyLocalNetwork 63

sat_expak
ipV4ProtocolSatExpak

64

mit_subnet
ipV4ProtocolKriptolan

65

Appendix 1 IxTclHAL Commands

– 851 –

Option Value Usage

rvd
ipV4ProtocolRvd

66

ippc
ipV4ProtocolIppc

67

ipV4ProtocolAnyDistFileSystem 68

ipV4ProtocolSatMon 69

ipV4ProtocolVisa 70

ipcv
ipV4ProtocolIpvc

71

ipV4ProtocolCpnx 72

ipV4ProtocolCphb 73

ipV4ProtocolWsn 74

ipV4ProtocolPvp 75

br_sat_mon
ipV4ProtocolBrSatMon

76

ipV4ProtocolSunNd 77

wb_mon
ipV4ProtocolWbMon

78

wb_expak
ipV4ProtocolWbExpak

79

ipV4ProtocolIsoIp 80

ipV4ProtocolVmtp 81

ipV4ProtocolSequreVmtp 82

ipV4ProtocolVines 83

ipV4ProtocolTtp 84

ipV4ProtocolNsfnet 85

ipV4ProtocolDgp 86

Appendix 1 IxTclHAL Commands

– 852 –

Option Value Usage

ipV4ProtocolTcf 87

ipV4ProtocolEigrp 88

ipV4ProtocolOspf 89

ipV4ProtocolSpriteRpc 90

ipV4ProtocolLarp 91

ipV4ProtocolMtp 92

ipV4ProtocolAx25 93

ipV4ProtocolIpip 94

ipV4ProtocolMicp 95

ipV4ProtocolSccSp 96

ipV4ProtocolEtherip 97

ipV4ProtocolEncap 98

ipV4ProtocolAnyPrivateEncrScheme 99

ipV4ProtocolGmtp 100

ipV4ProtocolIfmp 101

ipV4ProtocolPnni 102

ipV4ProtocolPim 103

ipV4ProtocolAris 104

ipV4ProtocolScps 105

ipV4ProtocolQnx 106

ipV4ProtocolActiveNetwork 107

ipV4ProtocolIpComp 108

ipV4ProtocolSnp 109

ipV4ProtocolCompaqPeer 110

ipV4ProtocolIpxInIp 111

Appendix 1 IxTclHAL Commands

– 853 –

Option Value Usage

ipV4ProtocolVrrp 112

ipV4ProtocolAnyZeroHop 113

ipV4ProtocolL2tp 115

ipV4ProtocolDdx 116

ipV4ProtocolIatp 117

ipV4ProtocolStp 118

ipV4ProtocolSrp 119

ipV4ProtocolUti 120

ipV4ProtocolSmp 121

ipV4ProtocolSm 122

ipV4ProtocolPtp 123

ipV4ProtocolIsis 124

ipV4ProtocolFire 125

ipV4ProtocolCrtp 126

ipV4ProtocolCrudp 127

ipV4ProtocolSscopmce 128

ipV4ProtocolIplt 129

ipV4ProtocolSps 130

ipV4ProtocolPipe 131

ipV4ProtocolSctp 132

ipV4ProtocolFiberChannel 133

ipV4ProtocolRsvpE2eIgnore 134

ipV4ProtocolMobilityHeader 135

ipV4ProtocolUdpLite 136

ipV4ProtocolMplsInIp 137

Appendix 1 IxTclHAL Commands

– 854 –

lastFragment

Controls whether there are additional fragments used to assemble this datagram. Options include:

Option Value Usage

last 0 (default)

more 1

lengthOverride
true / false

If true, enables changing the total length in the ip header. (default = false)

options

Variable length option field in the IP header datagram. (default = { })

precedence

Part of the Type of Service byte of the IP header datagram. Establishes precedence of delivery. Possible
values are:

Option Value Usage

routine 0x0 (default)

priority 0x1

immediate 0x2

flash 0x3

flashOverride 0x4

criticEcp 0x5

internetControl 0x6

networkControl 0x7

qosMode

The manner in which the TOS byte is to be interpreted.

Option Value Usage

ipV4ConfigTos 0 (default) TOS - type of service.

Appendix 1 IxTclHAL Commands

– 855 –

Option Value Usage

ipV4ConfigDscp 1 DSCP - DiffSrv.

reliability

Part of the Type of Service byte of the IP header datagram (bit 5). Options include:

Option Value Usage

normalReliability 0 (default)

highReliability 1

reserved

Part of the Type of Service byte of the IP header datagram (bit 7 - 0/1). (default = 0)

sourceClass

Class type associated with the source IP address. Options include:

Option Value Usage

classA 0

classB 1

classC 2 (default)

classD 3

noClass 4

sourceIpAddr

Source IP address. (default = 127.0.0.1)

Note: If the source address equals a DHCP Protocol Interface entry, then the command - chassis refresh
<chassis name> - must be issued before subsequently issuing the get and cget commands in the local Tcl
client to ensure an accurate reading.

sourceIpAddrMode

Specifies how the source IP address is incremented or decremented. If sourceIpAddrRepeatCount is set to
1, this variable has no effect. Possible values include:

Option Value Usage

ipIdle 0 (default) no change to IP address regardless of

Appendix 1 IxTclHAL Commands

– 856 –

Option Value Usage

sourceIpAddrRepeatCount

ipIncrHost 1 increment the network portion of the IP address for as many
sourceIpAddrRepeatCount specified

ipDecrHost 2 decrement the network portion of the IP address for as many
sourceIpAddrRepeatCount specified

ipContIncrHost 3 Continuously increment the network portion of the IP address for
each packet

ipContDecrHost 4 Continuously decrement the network portion of the IP address for
each packet

ipIncrNetwork 5 increment the network portion of the IP address for as many
sourceIpAddrRepeatCount specified

ipDecrNetwork 6 increment the network portion of the IP address for as many
sourceIpAddrRepeatCount specified

ipContIncrNetwork 7 Continuously increment the network portion of the IP address for
each packet

ipContDecrNetwork 8 Continuously decrement the network portion of the IP address for
each packet.

ipRandom 9 Generate random IP addresses

sourceIpAddrRepeat
Count

Number of source IP addresses. If set to 1, sourceAddrMode has no effect. (default = 1)

sourceIpMask

Source IP subnet mask. (default = 255.0.0.0)

throughput

Part of the Type of Service byte of the IP header datagram (bit 4). Options include:

Option Value Usage

normalThruput 0 (default)

highThruput 1

Appendix 1 IxTclHAL Commands

– 857 –

totalLength

Total Length is the length of the datagram, measured in octets, including internet header and data.
(default = 46)

ttl

Time-to-Live, measured in units of seconds. (default = 64)

useValidChecksum valid/invalid/override

If portFeatureTcpIPv4ChecksumOverride = true, then:

Valid: (default) The calculated header checksum is automatically calculated.

Invalid: The calculated header checksum is automatically calculated (with error).

Override: The header checksum can be set to a user-defined, 2-octet value.

COMMANDS

The ip command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

ip cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ip command.

ip config option value

Modify the IP configuration options of the port. If no option is specified, returns a list describing all of the
available IP options (see STANDARD OPTIONS) for port.

ip decode capFrame chasID cardID portID

Decodes a captured frame in the capture buffer and updates TclHal. ip cget option command can be used
after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid IP frame

ip get chasID cardID portID

Gets the current IP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling ip
cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

ip set chasID cardID portID

Appendix 1 IxTclHAL Commands

– 858 –

Sets the IP configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the ip config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

ip setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under tcp

SEE ALSO

stream, protocol, ipx, udp, tcp.

ipAddressTable
ipAddressTable - configure the IP address table parameters for a port on a card on a chassis

SYNOPSIS

ipAddressTable sub-command options

DESCRIPTION

The ipAddressTable command is used to configure the IP address table-specific information used when
building IP address table.

STANDARD OPTIONS

defaultGateway

Default gateway IP address. (default = 0.0.0.0)

COMMANDS

The ipAddressTable command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipAddressTable addItem

Creates IP and MAC address ranges. Specific errors are:

l The configured parameters are not valid for this port

ipAddressTable cget option

Appendix 1 IxTclHAL Commands

– 859 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipAddressTable command.

ipAddressTable clear

Clears the IP address table.

ipAddressTable config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available ipAddressTable options (see STANDARD OPTIONS) for port.

ipAddressTable delItem

Deletes IP and MAC address ranges.

ipAddressTable get chasID cardID portID

Gets the current IP address table configuration of the port with id portID on card cardID, chassis chasID.
Call this command before calling ipAddressTable cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number

ipAddressTable get chasID cardID portID

Gets the IP address table configuration of the port with id portID on card cardID, chassis chasID.

ipAddressTable getFirstItem

Gets the first IP and MAC address range out of the IP address table. Specific errors are:

l There is no IP address table in the IP server
l There are no more entries in the IP table

ipAddressTable getItem ipAddress

Gets the address table item corresponding to ipAddress. The values may be retrieved by using the
ipAddressTableItem command. Specific errors are:

l There is no IP address table in the IP server
l There are no more entries in the IP table

ipAddressTable getNextItem

Gets the next IP and MAC address range out of the IP address table. Specific errors are:

l There is no IP address table in the IP server
l There are no more entries in the IP table

ipAddressTable set chasID cardID portID

Sets the IP address table configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the ipAddressTableItem config option value command.

Appendix 1 IxTclHAL Commands

– 860 –

ipAddressTable setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under arp.

SEE ALSO

ip.

ipAddressTableItem
ipAddressTableItem - configure the IP address table parameters for a port on a card on a chassis

SYNOPSIS

ipAddressTableItem sub-command options

DESCRIPTION

The ipAddressTableItem command is used to configure the IP address table-specific information used
when building IP address table.

STANDARD OPTIONS

atmEncapsulation

For ATM type load modules, this is the type of ATM encapsulation that is used on the interface.

Option Value Usage

atmEncapsulationVccMuxIPV4Routed 101

atmEncapsulationVccMuxBridgedEthernetFCS 102

atmEncapsulationVccMuxBridgedEthernetNoFCS 103

atmEncapsulationVccMuxIPV6Routed 104

atmEncapsulationVccMuxMPLSRouted 105

atmEncapsulationLLCRoutedCLIP 106

atmEncapsulationLLCBridgedEthernetFCS 107 (default)

atmEncapsulationLLCBridgedEthernetNoFCS 108

atmEncapsulationLLCPPPoA 109

atmEncapsulationVccMuxPPPoA 110

Appendix 1 IxTclHAL Commands

– 861 –

atmVci

The ATM VCI number, if this is an ATM port. (default = 0)

atmVpi

The ATM VPI number, if this is an ATM port. (default = 0)

enableExpandInterface
Table true | false

If true, then the range of IP addresses from fromIpAddress to toIpAddress are expanded to individual IP
addresses on the port. This only operates on ports with individual CPUs and is for internal use only.
(default = false)

enableUseNetwork
true / false

If set, the netMask field is used to set the network mask; otherwise, the network mask is 0.0.0.0. (default
= false)

enableVlan
true / false

Enables VLAN encapsulation of routing protocols. The VLAN ID is in the vlanId option. (default = false)

fromIpAddress

The first IP address for the IP address range. (default = 0.0.0.0)

fromMacAddress

The first MAC address for the MAC address range. (default = {00 00 00 00 00 00})

gatewayIpAddress

Default gateway IP address. (default = 0.0.0.0)

mappingOption

Specifies the mapping option.

Option Value Usage

oneIpToOneMAC 0 (default)

manyIpToOneMAC 1

netMask

If enableUseNetwork is set, this value is used to set the network mask. (default = 24).

Appendix 1 IxTclHAL Commands

– 862 –

numAddresses

Number of consecutive addresses. (default = 1)

overrideDefault
Gateway true/false

Enable default gateway IP address. (default =false)

toIpAddress

Read-Only. Last IP address in the IP address range. (default = 0.0.0.0)

toMacAddress

Read-Only. Last MAC address in the MAC address range. (default = 00 00 00 00 00 00)

vlanId

If enableVlan is true, the routing protocols are VLAN encapsulated with this ID. Although a value of `0' is
allowed, VLAN IDs normally start at 1. (default = 0)

COMMANDS

The ipAddressTableItem command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipAddressTableItem cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipAddressTableItem command.

ipAddressTableItem config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available ipAddressTableItem options (see STANDARD OPTIONS) for port.

ipAddressTableItem get

Gets the current IP address table item configuration. Call this command before calling
ipAddressTableItem cget option value to get the value of the configuration option.

ipAddressTableItem set

Sets the IP address table item configuration, by reading the configuration option values set by the
ipAddressTableItem config option value command.

ipAddressTableItem setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under arp.

Appendix 1 IxTclHAL Commands

– 863 –

SEE ALSO

ipAddressTable

ipV6
ipV6 - configure the ipV6 options for a stream

SYNOPSIS

ipV6 sub-command options

DESCRIPTION

The ipV6 command is used to configure the IPv6 options associated with a stream a stream set and
stream write must follow an ipV6 set command. The ipV6 object also includes list of extension headers.
Extension headers are built-in with type specific objects:

l ipV6Authentication
l ipV6Destination
l ipV6Fragment
l ipV6Routing
l ipV6HopByHop

An extension header is added to a ipV6 object by configuring the extension header with the appropriate
command from the list above and then adding it to the group with ipV6 addExtensionHeader type, where
type indicates which of the extensions to use. An extension may be retrieved from an ipV6 object through
the use of getFirstExtensionHeader / getNextExtensionHeader. These commands return the name of the
command that was used to configure the header extension. The type of the extension header can be
determined from the nextHeader value from the ipV6 command (for the first extension header) or from
the previous extension header otherwise. This is typically used in the following sequence of commands:

set eHeader [ipV6 getFirstExtensionHeader]
set nextType [$eHeader cget -nextHeader]

In addition, if this is to be the header to a TCP, UDP or ICMP packet, then a separate call to ipV6
addExtensionHeader must be made with tcp, udp or icmpV6 must be made. For example:

ipV6 addExtensionHeader tcp

Although it is the default, ipV6 addExtensionHeader ipV6NoNextHeader may be used to indicate that
there is no header following this one.

Note that stream get must be called before this command's get sub-command.

The source and destination addresses may be set from the result of a PPP negotiation through the use of
the enableDestSyncFromPpp and enableSourceSyncFromPpp options. Note that it is necessary to wait
until the PPP session has been negotiated before:

l performing a chassis refresh command
l performing a stream get command

Appendix 1 IxTclHAL Commands

– 864 –

l performing an ipV6 get command
l reading the destAddr and sourceAddr values using ipV6 cget

STANDARD OPTIONS

destAddr

The destination address, expressed as any valid IPv6 format address. (default = {0:0:0:0:0:0:0:0})

destAddrMode

The manner in which the destination address is modified per packet. For all but the default case, one of
the UDFs is reserved for this use.

Option Value Usage

Valid with
Address
Prefix:

ipV6Idle 0 (default) No change to
address.

All

ipV6IncrHost 1 Increment the host part
of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6DecrHost 2 Decrement the host part
of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6IncrNetwork 3 Increment the network
part of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

Appendix 1 IxTclHAL Commands

– 865 –

Option Value Usage

Valid with
Address
Prefix:

ipV6DecrNetwork 4 Increment the network
part of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6IncrInterfaceId 5 For use when the
address is Link Local
Unicast, Site Local
Unicast or Global
Unicast. Increments the
interface ID part of the
address.

Global
Unicast,
Link Local
Unicast,
Site Local
Unicast

ipV6DecrInterfaceId 6 For use when the
address is Link Local
Unicast, Site Local
Unicast or Global
Unicast. Decrements the
interface ID part of the
address.

Global
Unicast,
Link Local
Unicast,
Site Local
Unicast

ipV6IncrGlobalUnicastTopLevelAggrId 7 For use when the
address is Global
Unicast. Increments the
top level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastTopLevelAggrId 8 For use when the
address is Global
Unicast. Decrements the
top level aggregation ID
part of the address.

Global
Unicast

ipV6IncrGlobalUnicastNextLevelAggrId 9 For use when the
address is Global
Unicast. Increments the
next level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastNextLevelAggrId 10 For use when the Global

Appendix 1 IxTclHAL Commands

– 866 –

Option Value Usage

Valid with
Address
Prefix:

address is Global
Unicast. Decrements the
next level aggregation ID
part of the address.

Unicast

ipV6IncrGlobalUnicastSiteLevelAggrId 11 For use when the
address is Global
Unicast. Increments the
site level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastSiteLevelAggrId 12 For use when the
address is Global
Unicast. Decrements the
site level aggregation ID
part of the address.

Global
Unicast

ipV6IncrSiteLocalUnicastSubnetId 13 For use when the
address is Site Local
Unicast. Increments the
Subnet ID part of the
address.

Site Local
Unicast

ipV6DecrSiteLocalUnicastSubnetId 14 For use when the
address is Site Local
Unicast. Decrements the
Subnet ID part of the
address.

Site Local
Unicast

ipV6IncrMulticastGroupId 15 For use when the
address is Multicast.
Increments the multicast
group part of the
address.

Multicast

ipV6DecrMulticastGroupId 16 For use when the
address is Multicast.
Decrements the
multicast group part of
the address.

Multicast

ipV6IncrementGlobalUnicastGlobalRoutingPrefixId 17 Increments the
corresponding field of
the new Global Unicast

Global
Unicast
3587

Appendix 1 IxTclHAL Commands

– 867 –

Option Value Usage

Valid with
Address
Prefix:

3587 address mode

ipV6DecrementGlobalUnicastGlobalRoutingPrefixI
d

18 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

ipV6IncrementSubnetId 19 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

ipV6DecrementSubnetId 20 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

destAddrRepeat
Count

The number of times to repeat the function indicated in destAddrMode (except ipV6Idle) before restarting
the address at destAddr. (default = 10)

destMask

The number of bits in the network mask part of the address, counting from the high-order bits. For use
with destAddrMode set to all but ipV6Idle mode.

This command's valid range is dependent on what options is selected in
destAddrMode above:

Option Range

decrMulticastGroupId fixed at 96

incrMulticastGroupId fixed at 96

decrGlobalUnicastTopLevelAggregationId fixed at 4

incrGlobalUnicastTopLevelAggregationId fixed at 4

decrGlobalUnicastNextLevelAggregationId fixed at 24

incrGlobalUnicastNextLevelAggregationId fixed at 24

Appendix 1 IxTclHAL Commands

– 868 –

Option Range

decrGlobalUnicastSiteLevelAggregationId fixed at 48

incrGlobalUnicastSiteLevelAggregationId fixed at 48

decrSiteLocalUnicastSubnetId fixed at 48

incrSiteLocalUnicastSubnetId fixed at 48

incrHost 96 to 128

decrHost 96 to 128

decrNetwork 96 to 128

incrMetwork 96 to 128

decrInterfaceId 96 to 128

incrInterfaceId 96 to 128

ipIncrementGlobalUnicastGlobalRoutingPrefixId 16 to 48

ipDecrementGlobalUnicastGlobalRoutingPrefixId 16 to 48

ipIncrementSubnetId Range- fixed at 48

ipDecrementSubnetId Range- fixed at 48

destStepSize

The amount to increment the address by between iterations. For use with destAddrMode set to all but
ipV6Idle mode. (default = 1)

enableDestSyncFrom
Ppp true | false

If true, then the destAddr is set from negotiated PPP session. See the note at the head of this command
about interaction with the PPP negotiation process. (default = false)

enableSourceSyncFrom
Ppp true | false

If true, then the sourceAddr is set from negotiated PPP session. See the note at the head of this command
about interaction with the PPP negotiation process. (default = false)

flowLabel

The flow label for the IPv6 address. (default = 0)

Appendix 1 IxTclHAL Commands

– 869 –

hopLimit

The hop limit for the IPv6 address. (default = 255)

nextHeader

The type of the next packet header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

ipV6Fragment 44 Payload is a fragment.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

tcp 6 Next header is TCP.

udp 17 Next header is UDP.

icmpV6 58 Next header is ICMP V6.

payloadLength

Read-only. The calculated payload length.

sourceAddr

The source address, expressed as any valid IPv6 format address. (default = {0:0:0:0:0:0:0:0})

sourceAddrMode

The manner in which the source address is modified per packet. For all but the default case, one of the
UDFs is reserved for this use.

Option Value Usage

Valid with
Address
Prefix:

ipV6Idle 0 (default) No change to
address.

All

ipV6IncrHost 1 Increment the host part Reserved,

Appendix 1 IxTclHAL Commands

– 870 –

Option Value Usage

Valid with
Address
Prefix:

of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6DecrHost 2 Decrement the host part
of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6IncrNetwork 3 Increment the network
part of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6DecrNetwork 4 Increment the network
part of the address (as
indicated by
sourceMask) by
sourceStepSize for
sourceAddrRepeatCount
before restarting at the
sourceAddr value.

Reserved,
NSAP
Allocation,
IPX
Allocation,
User
Defined

ipV6IncrInterfaceId 5 For use when the
address is Link Local
Unicast, Site Local
Unicast or Global
Unicast. Increments the
interface ID part of the
address.

Global
Unicast,
Link Local
Unicast,
Site Local
Unicast

ipV6DecrInterfaceId 6 For use when the Global

Appendix 1 IxTclHAL Commands

– 871 –

Option Value Usage

Valid with
Address
Prefix:

address is Link Local
Unicast, Site Local
Unicast or Global
Unicast. Decrements the
interface ID part of the
address.

Unicast,
Link Local
Unicast,
Site Local
Unicast

ipV6IncrGlobalUnicastTopLevelAggrId 7 For use when the
address is Global
Unicast. Increments the
top level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastTopLevelAggrId 8 For use when the
address is Global
Unicast. Decrements the
top level aggregation ID
part of the address.

Global
Unicast

ipV6IncrGlobalUnicastNextLevelAggrId 9 For use when the
address is Global
Unicast. Increments the
next level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastNextLevelAggrId 10 For use when the
address is Global
Unicast. Decrements the
next level aggregation ID
part of the address.

Global
Unicast

ipV6IncrGlobalUnicastSiteLevelAggrId 11 For use when the
address is Global
Unicast. Increments the
site level aggregation ID
part of the address.

Global
Unicast

ipV6DecrGlobalUnicastSiteLevelAggrId 12 For use when the
address is Global
Unicast. Decrements the
site level aggregation ID
part of the address.

Global
Unicast

ipV6IncrSiteLocalUnicastSubnetId 13 For use when the Site Local
Unicast

Appendix 1 IxTclHAL Commands

– 872 –

Option Value Usage

Valid with
Address
Prefix:

address is Site Local
Unicast. Increments the
Subnet ID part of the
address.

ipV6DecrSiteLocalUnicastSubnetId 14 For use when the
address is Site Local
Unicast. Decrements the
Subnet ID part of the
address.

Site Local
Unicast

ipV6IncrMulticastGroupId 15 For use when the
address is Multicast.
Increments the multicast
group part of the
address.

Multicast

ipV6DecrMulticastGroupId 16 For use when the
address is Multicast.
Decrements the
multicast group part of
the address.

Multicast

ipV6IncrementGlobalUnicastGlobalRoutingPrefixId 17 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

ipV6DecrementGlobalUnicastGlobalRoutingPrefixI
d

18 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

ipV6IncrementSubnetId 19 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

ipV6DecrementSubnetId 20 Increments the
corresponding field of
the new Global Unicast
3587 address mode

Global
Unicast
3587

Appendix 1 IxTclHAL Commands

– 873 –

sourceAddrRepeat
Count

The number of times to repeat the function indicated in sourceAddrMode (except ipV6Idle) before
restarting the address at sourceAddr. (default = 10)

sourceMask

The number of bits in the network mask part of the address, counting from the high-order bits. For use
with sourceAddrMode set to all but ipV6Idle mode.

This command's valid range is dependent on what options is selected in
destAddrMode above:

Option Range

decrMulticastGroupId fixed at 96

incrMulticastGroupId fixed at 96

decrGlobalUnicastTopLevelAggregationId fixed at 4

incrGlobalUnicastTopLevelAggregationId fixed at 4

decrGlobalUnicastNextLevelAggregationId fixed at 24

incrGlobalUnicastNextLevelAggregationId fixed at 24

decrGlobalUnicastSiteLevelAggregationId fixed at 48

incrGlobalUnicastSiteLevelAggregationId fixed at 48

decrSiteLocalUnicastSubnetId fixed at 48

incrSiteLocalUnicastSubnetId fixed at 48

incrHost 96 to 128

decrHost 96 to 128

decrNetwork 96 to 128

incrMetwork 96 to 128

decrInterfaceId 96 to 128

incrInterfaceId 96 to 128

ipIncrementGlobalUnicastGlobalRoutingPrefixId 16 to 48

ipDecrementGlobalUnicastGlobalRoutingPrefixId 16 to 48

Appendix 1 IxTclHAL Commands

– 874 –

Option Range

ipIncrementSubnetId Range- fixed at 48

ipDecrementSubnetId Range- fixed at 48

sourceStepSize

The amount to increment the address by between iterations. For use with sourceAddrMode set to all but
ipV6Idle mode. (default = 1)

trafficClass

The traffic class for the ipV6 address. (default = 3)

COMMANDS

The ipV6 command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

ipV6 addExtensionHeader type

Adds an extension header of the type indicated in the type argument. The data for the extension is read
from the object that corresponds to the type.

Option Value Usage

ipV6HopByHopOptions 0 Data is read from ipV6HopByHop

ipV6Routing 43 Data is read from ipV6Routing

ipV6Fragment 44 Data is read from ipV6Fragment

ipV6EncapsulatingSecurityPayload 50 Not supported in the current release.

ipV6Authentication 51 Data is read from ipV6Authentication

ipV6DestinationOptions 60 Data is read from ipV6Destination

ipV6NoNextHeader 59 (default) There is no next header.

tcp 6 Next header is TCP.

udp 17 Next header is UDP.

icmpV6 58 Next header is ICMP V6.

ipV6 cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6 command.

Appendix 1 IxTclHAL Commands

– 875 –

ipV6 clearAllExtensionHeaders

Removes all of the extension headers from the list.

ipV6 config option value

Modify the ipV6 options. If no option is specified, returns a list describing all of the available ipV6 options
(see STANDARD OPTIONS) for port.

ipV6 decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. ipV6 cget option command can be
used after decoding to get the option data.

ipV6 delExtensionHeader

Deletes the currently referenced extension header accessed through the use of getFirstExtensionHeader /
getNextExtensionHeader. Specific errors include:

l No current header has been accessed.

ipV6 get chasID cardID portID

Gets the current ipV6 options for the indicated port. Note that stream get must be called before this
command's get sub-command. Call this command before calling ipV6 cget option value to get the value of
the configuration option.

ipV6 getFirstExtensionHeader

Access the first extension header in the list. The results of the command is the name of the command
used to make the extension header. This command may be symbolically used to view/modify the
extension header contents. The type of the extension header is determined from the nextHeader value
from the ipV6 command (for the first extension header) or from the previous extension header otherwise.
Note that the use of the addExtensionHeader sub-command for the tcp, udp, icmpV6 and
ipV6NoNextHeader options does not result in a list element. In the current release, the IxExplorer tool
allows extension headers of the type ipv6HopBHopOptions to be placed in the list. An attempt to retrieve
such a header results is no element retrieval and the remainder of the list is inaccessible. Specific errors
are:

l There are no extension headers in the list

ipV6 getNextExtensionHeader

Access the next header extension in the list. See the notes and errors in the getFirstExtensionHeader sub-
command.

ipV6 set chasID cardID portID

Sets the ipV6 options by reading the configuration option values set by the ipV6 config option value
command. This command should be followed by a stream set and stream write commands.

ipV6 setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 876 –

EXAMPLES
package req IxTclHal

chassis add thebrain

set chasId [chassis cget -id]
set cardId 2
set portId 3
set streamId 1

stream setDefault
stream config -framesize 200

Configure protocol
protocol setDefault
protocol config -name ipV6protocol config -ethernetType ethernetII

Configure ipV6
ipV6 setDefault
ipV6 config -trafficClass 3
ipV6 config -sourceAddr {1:2:3:0:0:0:0:0}
ipV6 config -sourceMask 64
ipV6 config -sourceAddrMode ipV6Idle
ipV6 config -sourceStepSize 1
ipV6 config -sourceAddrRepeatCount 10
ipV6 config -destAddr {4:5:6:0:0:0:0:0}

Clear all the extension headers
ipV6 clearAllExtensionHeaders

Configure and add ipV6Routing extension header
ipV6Routing setDefault
ipV6Routing config -reserved {88 88 88 88}
ipV6Routing config -nodeList {7777:7777:7777:7777:7777:7777:7777:7777,
8888:8888:8888:8888:8888:8888:8888:8888}
if {[ipV6 addExtensionHeader ipV6Routing]} {
ixPuts "Error adding ipV6Routing "
}

Configure and add ipV6DestinationOptions extension header
ipV6Destination setDefault
if {[ipV6 addExtensionHeader ipV6DestinationOptions]} {
ixPuts "Error adding ipV6DestinationOptions "
}

Configure and add ipV6Fragment extension header
ipV6Fragment setDefault

Appendix 1 IxTclHAL Commands

– 877 –

ipV6Fragment config -enableFlag false
ipV6Fragment config -fragmentOffset 345
ipV6Fragment config -identification 345
ipV6Fragment config -res 1
ipV6Fragment config -reserved 170
if {[ipV6 addExtensionHeader ipV6Fragment]} {
ixPuts "Error adding ipV6Fragment"
}

Configure and add ipV6Authentication extension header
ipV6Authentication setDefault
ipV6Authentication config -payloadLength 8
ipV6Authentication config -securityParamIndex 1212
ipV6Authentication config -sequenceNumberField 3434
ipV6Authentication config -authentication {44 44 44 44 44 44 44 44 44 44 44 44 44 44
44 44 44 44 44 44 44 44 44 44 44 44 44 44}
if {[ipV6 addExtensionHeader ipV6Authentication]} {
ixPuts "Error adding ipV6Authentication"
}

ipV6HopByHop clearAllOptions
ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4
ipV6OptionPADN config -value "11 11 11 11"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionJumbo setDefault
ipV6OptionJumbo config -length 4
ipV6OptionJumbo config -payload 5
ipV6HopByHop addOption ipV6OptionJumbo

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 6
ipV6OptionPADN config -value "22 22 22 22 22 22"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 2
ipV6OptionPADN config -value "00 00"
ipV6HopByHop addOption ipV6OptionPADN

ipV6HopByHop addOption ipV6OptionPAD1

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 5
ipV6OptionPADN config -value "33 33 33 33 33"
ipV6HopByHop addOption ipV6OptionPADN

Appendix 1 IxTclHAL Commands

– 878 –

ipV6OptionRouterAlert setDefault
ipV6OptionRouterAlert config -length 2
ipV6OptionRouterAlert config -routerAlert ipV6RouterAlertRSVP
ipV6HopByHop addOption ipV6OptionRouterAlert

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 5
ipV6OptionPADN config -value "44 44 44 44 44"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 2
ipV6OptionPADN config -value "88 88"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 1
ipV6OptionPADN config -value 00
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionBindingUpdate setDefault
ipV6OptionBindingUpdate config -length 10
ipV6OptionBindingUpdate config -acknowledge 1
ipV6OptionBindingUpdate config -home 1
ipV6OptionBindingUpdate config -router 1
ipV6OptionBindingUpdate config -duplicate 1
ipV6OptionBindingUpdate config -MAP 1
ipV6OptionBindingUpdate config -bicasting 1
ipV6OptionBindingUpdate config -prefixLength 5
ipV6OptionBindingUpdate config -sequenceNumber 5
ipV6OptionBindingUpdate config -lifeTime 5
ipV6HopByHop addOption ipV6OptionBindingUpdate

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4
ipV6OptionPADN config -value "30 45 45 45"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionBindingAck setDefault
ipV6OptionBindingAck config -length 13
ipV6OptionBindingAck config -status 4
ipV6OptionBindingAck config -sequenceNumber 40
ipV6OptionBindingAck config -lifeTime 4
ipV6OptionBindingAck config -refresh 4
ipV6HopByHop addOption rprVendorSpecific

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4

Appendix 1 IxTclHAL Commands

– 879 –

ipV6OptionPADN config -value "44 44 44 44"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 3
ipV6OptionPADN config -value "00 00 00"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionHomeAddress setDefault
ipV6OptionHomeAddress config -length 14
ipV6OptionHomeAddress config -address "1111:1111:1111:1111:1111:1111:1111:3"
ipV6HopByHop addOption ipV6OptionHomeAddress

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4
ipV6OptionPADN config -value "22 22 22 16"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionBindingRequest setDefault
ipV6OptionBindingRequest config -length 9
ipV6HopByHop addOption ipV6OptionBindingRequest

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4
ipV6OptionPADN config -value "00 00 00 00"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionMIpV6UniqueIdSub setDefault
ipV6OptionMIpV6UniqueIdSub config -length 24
ipV6OptionMIpV6UniqueIdSub config -subUniqueId 89
ipV6HopByHop addOption ipV6OptionMIpV6UniqueIdSub

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 2
ipV6OptionPADN config -value "10 13"
ipV6HopByHop addOption ipV6OptionPADN

ipV6OptionMIpV6AlternativeCoaSub setDefault
ipV6OptionMIpV6AlternativeCoaSub config -length 20
ipV6OptionMIpV6AlternativeCoaSub config -address "1414:1414:1414:1414:1414:1414:0:5"
ipV6HopByHop addOption ipV6OptionMIpV6AlternativeCoaSub

ipV6OptionPADN setDefault
ipV6OptionPADN config -length 4
ipV6OptionPADN config -value "00 00 00 00"
ipV6HopByHop addOption ipV6OptionPADN

if {[ipV6 addExtensionHeader ipV6HopByHopOptions]} {

Appendix 1 IxTclHAL Commands

– 880 –

ixPuts "Error adding ipV6Authentication"
}

Add tcp
if {[ipV6 addExtensionHeader ipV4ProtocolTcp]} {
ixPuts "Error adding tcp"
}

if {[ipV6 set $chasId $cardId $portId]} {
ixPuts "Error setting ipV6 on port $chasId.$cardId.$portId"
}

Configure tcp
tcp setDefault
tcp config -offset 5
tcp config -sourcePort 16
tcp config -destPort 26
tcp config -useValidChecksum true

if {[tcp set $chasId $cardId $portId]} {
ixPuts "Error setting tcp on port $chasId.$cardId.$portId"
}

Set and write the stream
if {[stream set $chasId $cardId $portId $streamId]} {
ixPuts "Error setting stream $streamId on port $chasId.$cardId.$portId"
}

if {[stream write $chasId $cardId $portId $streamId]} {
ixPuts "Error writing stream $streamId on port $chasId.$cardId.$portId"

SEE ALSO

stream, ipV6Authentication, ipV6Destination, ipV6Fragment, ipV6Routing.

ipV6Address
ipV6Address - decode or encode an IPv6 address

SYNOPSIS

ipV6Address sub-command options

DESCRIPTION

The ipV6Address command is used to create an IPv6 address from component parameters or decode an
existing address into its parameters. The prefixType of the address dictates which other options are
read/written. The following table indicates the options used for each prefixType value.

Appendix 1 IxTclHAL Commands

– 881 –

prefixType Values

Option
Reserv
ed (0)

NSAP
Allocat
on (1)

IPX
Allocati
on (2)

Global
Unica
st (3)

Link
Local
Unica
st (4)

Site
Local
Unica
st (5)

Multica
st (6)

User
Define
d (7)

reservedAddressTy
pe

X

reservedIpV4Addre
ss

X

allocation X X

topLevelAggregatio
nId

X

reserved X

nextLevelAggregati
onId

X

siteLevelAggregati
onId

X

interfaceId X X X

subnetId X

nonPermanentlyAs
signed

X

scope X

groupId X

userDefinedAddres
s

X

STANDARD OPTIONS

allocation

(default = 0)

groupId

(default = 0)

Appendix 1 IxTclHAL Commands

– 882 –

interfaceId

(default = 0)

nextLevelAggregation
Id

(default = 0)

nonPermanently
Assigned

(default = 0)

STANDARD OPTIONS for Ipv6 global Unicast 3587

subnetId

(default = 0)

interfaceId

(default = 0)

globalRoutingPrefix

(default = 0)

prefixType

One of

Option Value Usage

ipV6Reserved 0 (default) Reserved.

ipV6NSAPAllocation 1 NSAP Allocation.

ipV6IPXAllocation 2 IPX Allocation.

ipV6GlobalUnicast 3 Global Unicast.

ipV6LinkLocalUnicast 4 Link Local Unicast.

ipV6SiteLocalUnicast 5 Site Local Unicast.

Appendix 1 IxTclHAL Commands

– 883 –

Option Value Usage

ipV6Multicast 6 Multicast.

ipV6UserDefined 7 User Defined.

ipV6GlobalUnicast3587 8 New global unicast RFC

reserved

(default = 0)

reservedAddressType

One of

Option Value Usage

ipV6ReservedCompatible 0 (default) IPv4 compatible address.

ipV6ReservedCompatible 1 IPv4 mapped IPv6 address.

reservedIpV4Address

(default = 0)

scope

One of

Option Value Usage

ipV6MulticastScopeReserved1 0 (default)

ipV6MulticastScopeNodeLocalScope 1 Node local scope

ipV6MulticastScoeNodeLinkipV6LocalScope 2 Link local scope

ipV6MulticastScopeUnassigned 3

ipV6MulticastScopeSiteLocalScope 5 Site local scope

ipV6MulticastScopeOrganizationLocalScope 8 Organization local scope

ipV6MulticastScopeGlobalScope 14 Global scope

ipV6MulticastScopeReserved2 15

siteLevelAggregationId

(default = 0)

Appendix 1 IxTclHAL Commands

– 884 –

subnetId

(default = 0)

topLevelAggregationId

(default = 0)

userDefinedAddress

(default = 0)

COMMANDS

The ipV6Address command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

ipV6Address cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Address command.

ipV6Address config option value

Modify the ipV6Address configuration options. If no option is specified, returns a list describing all of the
available ipV6Address options (see STANDARD OPTIONS).

ipV6Address decode ipV6Address

Decodes the colon encoded IPv6 address present in ipv6Address into the STANDARD OPTIONS.

ipV6Address encode

Encodes the IPv6 address present in the STANDARD OPTIONS and returns that value as a ":" encoded
character string.

EXAMPLES
package require IxTclHal

ipV6Address setDefault

ipV6Address config -prefixType ipV6GlobalUnicast
ipV6Address config -topLevelAggregationId 10
ipV6Address config -nextLevelAggregationId 42
ipV6Address config -siteLevelAggregationId 14
ipV6Address config -interfaceId 1
set addr [ipV6Address encode]
ixPuts $addr

ipV6Address decode $addr
ixPuts -nonewline [ipV6Address cget -prefixType]
ixPuts -nonewline ", "

Appendix 1 IxTclHAL Commands

– 885 –

ixPuts -nonewline [ipV6Address cget -topLevelAggregationId]
ixPuts -nonewline ", "
ixPuts -nonewline [ipV6Address cget -nextLevelAggregationId]
ixPuts -nonewline ", "
ixPuts -nonewline [ipV6Address cget -siteLevelAggregationId]
ixPuts -nonewline ", "
ixPuts [ipV6Address cget -interfaceId]

#Use the exposed members for the new RFC 3587 for configuring ipV6Addr

package require IxTclHal
ipV6Address setDefault
ipV6Address config -prefixType ipV6GlobalUnicast3587
ipV6Address config -globalRoutingPrefix 42
ipV6Address config -subnetId 14
ipV6Address config -interfaceId 1
set addr [ipV6Address encode]
ixPuts $addr

ipV6Address decode $addr 1
ixPuts -nonewline [ipV6Address cget -prefixType]
ixPuts -nonewline ", "
ixPuts -nonewline [ipV6Address cget -globalRoutingPrefix]
ixPuts -nonewline ", "
ixPuts -nonewline [ipV6Address cget -subnetId]
ixPuts -nonewline ", "
ixPuts [ipV6Address cget -interfaceId]

#Set sourceAddrMode to ipV6IncrementGlobalUnicastGlobalRoutingPrefixId(17)

sourceAddrModeipV6 setDefault
ipV6 config -trafficClass 3
ipV6 config -flowLabel 0
ipV6 config -hopLimit 255
ipV6 config -sourceAddr "2444:4444:4444:5555:6666:6666:6666:6666"
ipV6 config -sourceMask 32
ipV6 config -sourceAddrMode 17
ipV6 config -sourceStepSize 1
ipV6 config -enableSourceSyncFromPpp false
ipV6 config -sourceAddrRepeatCount 10
ipV6 config -destAddr "3555:5555:6666:6666:7777:7777:8888:8888"
ipV6 config -destMask 64
ipV6 config -destAddrMode ipV6Idle
ipV6 config -destStepSize 1
ipV6 config -nextHeader ipV6NoNextHeader
ipV6 config -enableDestSyncFromPpp false
ipV6 config -destAddrRepeatCount 10

Appendix 1 IxTclHAL Commands

– 886 –

ipV6 config -destGlobalUnicastMode 0
ipV6 config -sourceGlobalUnicastMode 1

//increment/decrement subnetid
-dest mask is fixed to 48 in this case; anything else will fail
package req IxTclHal
ixInitialize loopback
set chassis 1
set card 3
set port 1
set stream 1
stream get $chassis $card $port $stream
protocol setDefault
protocol config -ethernetType ethernetII
protocol config -name ipV6
ipV6Address config -prefixType ipV6GlobalUnicast3587
ipV6Address config -globalRoutingPrefix 42
ipV6Address config -subnetId 14
ipV6Address config -interfaceId 55
set addr [ipV6Address encode]
ipV6 config -destGlobalUnicastMode 1
ipV6 config -destMask 48
ipV6 config -destAddrMode 19
ipV6 config -destStepSize 1
ipV6 config -destAddr $addr
ipV6 set $chassis $card $port
stream set $chassis $card $port $stream
port write $chassis $card $port

Second script for incr/decr subnet id:

package req IxTclHal
ixInitialize loopback
set chassis 1
set card 3
set port 1
set stream 1
stream get $chassis $card $port $stream
protocol setDefault
protocol config -ethernetType ethernetII
protocol config -name ipV6
ipV6Address config -prefixType ipV6GlobalUnicast3587
ipV6Address config -globalRoutingPrefix 42
ipV6Address config -subnetId 14
ipV6Address config -interfaceId 55
set addr [ipV6Address encode]
ipV6 config -destGlobalUnicastMode 1

Appendix 1 IxTclHAL Commands

– 887 –

ipV6 config -destMask 48
ipV6 config -destAddrMode ipV6IncrementSubnetId
ipV6 config -destStepSize 1
ipV6 config -destAddr $addr

ipV6 set $chassis $card $port
stream set $chassis $card $port $stream
port write $chassis $card $port

package req IxTclHal
ixInitialize loopback
set chassis 1
set card 3
set port 1
set stream 1
stream get $chassis $card $port $stream
protocol setDefault
protocol config -ethernetType ethernetII
protocol config -name ipV6
ipV6Address config -prefixType ipV6GlobalUnicast3587
ipV6Address config -globalRoutingPrefix 42
ipV6Address config -subnetId 14
ipV6Address config -interfaceId 55
set addr [ipV6Address encode]
ipV6 config -destGlobalUnicastMode 1
ipV6 config -destMask 48
ipV6 config -destAddrMode ipV6DecrementSubnetId
ipV6 config -destStepSize 1
ipV6 config -destAddr $addr
ipV6 set $chassis $card $port
stream set $chassis $card $port $stream
port write $chassis $card $port

SEE ALSO

ipV6Authentication
ipV6Authentication - configure an IPv6 Authentication extension header

SYNOPSIS

ipV6Authentication sub-command options

DESCRIPTION

The ipV6Authentication command creates an authentication extension header to be used in an ipV6
header. This type of extension header is added to the ipV6 header using ipV6 addExtensionHeader.

Appendix 1 IxTclHAL Commands

– 888 –

STANDARD OPTIONS

authentication

A variable length string containing the packets integrity check value (ICV). (default = {00 00 00 00})

nextHeader

Read-only. The type of the next extension header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

ipV6Fragment 44 Payload is a fragment.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 (default) There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

ipV4ProtocolTcp 6 Next header is TCP.

ipV4ProtocolUdp 17 Next header is UDP.

icmpV6 58 Next header is ICMP V6.

ipV4ProtocolIpv4 Next header is IPv4

ipV4ProtocolTcp Next header is IPv4 with TCP

ipV4ProtocolGre Next header is IPv4 with GRE

ipV4ProtocolUdp Next header is IPv4 with UDP

ipV4ProtocolIpv6Icmp Next header is IPv4 with ICMP

payloadLength

The length of the authentication data, expressed in 32-bit words. (default = 2)

reserved

Read-only. Not currently used.

Appendix 1 IxTclHAL Commands

– 889 –

securityParam
Index

The security parameter index (SPI) associated with the authentication header. (default = 0)

sequenceNumberField

A sequence counter for the authentication header. (default = 0)

COMMANDS

The ipV6Authentication command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipV6Authentication cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Authentication command.

ipV6Authentication config option value

Modify the IPv6 Authentication address table configuration options of the port. If no option is specified,
returns a list describing all of the available ipV6Authentication options (see STANDARD OPTIONS).

ipV6Authentication setDefault

Sets default values for all IPv6 Authentication configuration options.

EXAMPLES

See examples under ipV6

SEE ALSO

ipV6, ipV6Destination, ipV6Fragment , ipV6Routing , ipV6HopByHop

ipV6Destination
ipV6Destination - configures an IPv6 destination extension header

SYNOPSIS

ipV6Destination sub-command options

DESCRIPTION

The ipV6Destination command creates a destination extension header to be used in an ipV6 header. This
type of extension header is added to the ipV6 header using ipV6 addExtensionHeader.

The destination extension header options must be configured separately, using the following commands:

Appendix 1 IxTclHAL Commands

– 890 –

Hop by Hop commands Value Description

ipV6OptionPAD1 0 The IPv6 PAD1 destination option.

ipV6OptionPADN 1 The IPv6 PADN destination option.

ipV6OptionHomeAddress 2 The IPv6 Home Address destination option.

STANDARD OPTIONS

headerExtLength

Read-only. The length of the header extension.

nextHeader

Read-only. The type of the next extension header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

ipV6Fragment 44 Payload is a fragment.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

tcp 6 Next header is TCP.

udp 17 Next header is UDP.

icmpV6 58 Next header is ICMP V6.

ipV4ProtocolIpv4 Next header is IPv4

ipV4ProtocolTcp Next header is IPv4 with TCP

ipV4ProtocolGre Next header is IPv4 with GRE

ipV4ProtocolUdp Next header is IPv4 with UDP

ipV4ProtocolIpv6Icmp Next header is IPv4 with ICMP

Appendix 1 IxTclHAL Commands

– 891 –

COMMANDS

The ipV6Destination command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipV6Destination addOption value

Adds the specified option header to the packet.

ipV6Destination cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Destination command.

ipV6Destination clearAllOptions

Clears all options from the packet, with the exception of PADN.

ipV6Destination config option value

Modify the IPv6 destination address table configuration options of the port. If no option is specified,
returns a list describing all of the available ipV6Destination options (see STANDARD OPTIONS).

ipV6Destination delOption option

Deletes the specified IPv6 destination option from the packet.

ipV6Destination getFirstOption option

Read-only. Gets the first IPv6 destination option configured in the packet.

ipV6Destination getNextOption option

Read-only. The type of the next IPv6 destination option.

ipV6Destination setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Authentication, ipV6Fragment, ipV6Routing, ipV6HopByHop.

ipV6Fragment
ipV6Fragment - configure an IPv6 fragment extension header

SYNOPSIS

ipV6Fragment sub-command options

Appendix 1 IxTclHAL Commands

– 892 –

DESCRIPTION

The ipV6Fragment command creates a fragment extension header to be used in an ipV6 header. This type
of extension header is added to the ipV6 header using ipV6 addExtensionHeader.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

enableFlag true | false

Indicates whether there are more fragments to be received (true) or this is the last fragment (false).
(default = true)

fragmentOffset

A 13-bit value which is the offset for the data contained in this packet, relative to the start of the
fragmentable part of the original packet, in 8-octet units. (default = 100)

identification

A 32-bit value that uniquely identifies the original packet which is to be fragmented. (default =
0x11112222)

nextHeader

Read-only. The type of the next extension header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

ipV6Fragment 44 Payload is a fragment.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 (default) There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

tcp 6 Next header is TCP.

ipV4ProtocolTcp 6 Next header is IPv4 with TCP

Appendix 1 IxTclHAL Commands

– 893 –

Option Value Usage

udp 17 Next header is UDP.

ipV4ProtocolUdp 17 Next header is IPv4 with UDP

icmpV6 58 Next header is ICMP V6.

ipV4ProtocolIpv6Icmp 58 Next header is IPv4 with ICMP

ipV4ProtocolGre 47 Next header is IPv4 with GRE

res

2-bit reserved field. (default = 3)

reserved

8-bit reserved field. (default = 30)

COMMANDS

The ipV6Fragment command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipV6Fragment cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Fragment command.

ipV6Fragment config option value

Modify the IP address table configuration options of the port. If no option is specified, returns a list
describing all of the available ipV6Fragment options (see STANDARD OPTIONS).

ipV6Fragment setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Authentication , ipV6Destination, ipV6Routing, ipV6HopByHop

ipV6HopByHop
ipV6HopByHop - configure an IPv6 hop by hop extension header

Appendix 1 IxTclHAL Commands

– 894 –

SYNOPSIS

ipV6HopByHop sub-command options

DESCRIPTION

The ipV6HopByHop command creates a hop by hop extension header to be used in an ipV6 header. This
type of extension header is added to the ipV6 header using ipV6 addExtensionHeader.

The hop by hop extension header options must be configured separately, using the following commands:

Hop by Hop commands Value Description

ipV6OptionPAD1 0 The IPv6 PAD1 Hop by Hop option.

ipV6OptionPADN 1 The IPv6 PADN Hop by Hop option.

ipV6OptionJumbo 194 The IPv6 Jumbo Hop by Hop option.

ipV6OptionRouterAlert 5 The IPv6 Router Alert Hop by Hop option.

ipV6OptionBindingUpdate 198 The IPv6 Binding Update Hop by Hop option.

ipV6OptionBindingAck 7 The IPv6 Binding ACK Hop by Hop option.

ipV6OptionBindingRequest 8 The IPv6 Binding Request Hop by Hop option.

ipV6OptionMIpV6UniqueIdSub 2 The IPv6 Unique ID Sub Hop by Hop option.

ipV6OptionMIpV6AlternativeCoaSub 4 The IPv6 Alternative COA Sub Hop by Hop option.

ipV6OptionUserDefine 112 The IPv6 PAD1 Hop by Hop option.

STANDARD OPTIONS

headerExtLength

Read-only. The length of this header, in bytes.

nextHeader

Read-only. The type of the next extension header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

Appendix 1 IxTclHAL Commands

– 895 –

Option Value Usage

ipV6Fragment 44 Payload is a fragment.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 (default) There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

tcp 6 Next header is TCP.

ipV4ProtocolTcp 6 Next header is IPv4 with TCP

udp 17 Next header is UDP.

ipV4ProtocolUdp 17 Next header is IPv4 with UDP

icmpV6 58 Next header is ICMP V6.

ipV4ProtocolIpv6Icmp 58 Next header is IPv4 with ICMP

ipV4ProtocolGre 47 Next header is IPv4 with GRE

COMMANDS

The ipV6HopByHop command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ipV6HopByHop addoption option

Adds the specified hop by hop option header to the packet.

Hop by Hop commands Value Description

ipV6OptionPAD1 0 The IPv6 PAD1 Hop by Hop option.

ipV6OptionPADN 1 The IPv6 PADN Hop by Hop option.

ipV6OptionJumbo 194 The IPv6 Jumbo Hop by Hop option.

ipV6OptionRouterAlert 5 The IPv6 Router Alert Hop by Hop option.

ipV6OptionBindingUpdate 198 The IPv6 Binding Update Hop by Hop option.

ipV6OptionBindingAck 7 The IPv6 Binding ACK Hop by Hop option.

ipV6OptionBindingRequest 8 The IPv6 Binding Request Hop by Hop option.

Appendix 1 IxTclHAL Commands

– 896 –

Hop by Hop commands Value Description

ipV6OptionMIpV6UniqueIdSub 2 The IPv6 Unique ID Sub Hop by Hop option.

ipV6OptionMIpV6AlternativeCoaSub 4 The IPv6 Alternative COA Sub Hop by Hop option.

ipV6OptionUserDefine 112 The IPv6 PAD1 Hop by Hop option.

ipV6HopByHop cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Routing command.

ipV6HopByHop config option

Modify the ipV6HopByHop configuration options of the port. If no option is specified, returns a list
describing all of the available ipV6HopByHop options (see STANDARD OPTIONS) for port.

pV6HopByHop clearAllOptions

Clears all options from the packet, with the exception of PAD1.

ipV6HopByHop delOption option

Deletes the specified hop by hop option from the packet.

ipV6HopByHop getFirstOption option

Read-only. Gets the first hop by hop option configured in the packet.

ipV6HopByHop getNextOption option

Read-only. The type of the next hop by hop option.

ipV6HopByHop setDefault

Sets default values for all hop by hop configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Authentication, ipV6Destination, ipV6Fragment, ipV6Routing.

ipV6OptionPAD1
ipV6OptionPAD1 - configure an IPv6 PAD1 destination extension header to IPv6

SYNOPSIS

ipV6OptionPAD1sub-command options

Appendix 1 IxTclHAL Commands

– 897 –

DESCRIPTION

The ipV6OptionPAD1 command adds a PAD1 header packet.

STANDARD OPTIONS

optionType

Read only. Returns the value for the option.

COMMANDS

ipV6OptionPAD1 config option value

Configures the value of the specified PAD1 option.

ipV6OptionPAD1 cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionPAD1 command.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Destination, ipV6HopByHop.

ipV6OptionPADN
ipV6OptionPADN - configure an IPv6 PADN header

SYNOPSIS

ipV6OptionPADN sub-command options

DESCRIPTION

The ipV6OptionPADN command adds a PADN to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

Appendix 1 IxTclHAL Commands

– 898 –

optionType

Read only. Returns the value for the option.

value

The value of the header data

COMMANDS

ipV6OptionPadN config option value

Configures the value of the specified option.

ipV6OptionPadN cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionPADN command.

ipV6OptionPadN setDefault

Sets default values for all PADN configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Destination, ipV6HopByHop.

ipV6OptionJumbo
ipV6OptionJumbo - configure an IPv6 Jumbo hop by hop header

SYNOPSIS

ipV6OptionJumbo sub-command options

DESCRIPTION

The ipV6OptionJumbo command adds a Jumbo hop by hop header to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

Appendix 1 IxTclHAL Commands

– 899 –

payload

The payload for the header (that is, 11 11 11).

optionType

Read only. Returns the value for the option.

COMMANDS

ipV6OptionJumbo config option value

Configures the value of the specified option.

ipV6OptionJumbo cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionJumbo command.

ipV6OptionJumbo setDefault

Sets default values for all Jumbo configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionRouterAlert
ipV6OptionRouterAlert - configure an IPv6 Router Alert hop by hop header

SYNOPSIS

ipV6OptionRouterAlert sub-command options

DESCRIPTION

The ipV6OptionRouterAlert command adds a Router Alert hop by hop header to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

Appendix 1 IxTclHAL Commands

– 900 –

optionType

Read only. Returns the value for the option.

routerAlert type

Specifies the type of router alert to include with the packet. Choices are:

Option Usage

ipV6RouterAlertMLD MLD router alerts.

ipV6RouterAlertRSVP RSVP router alerts

ipV6RouterAlertActiveNet Active network router alerts.

COMMANDS

ipV6OptionRouterAlert config option value

Configures the value of the specified IPv6 Router Alert option.

ipV6OptionRouterAlert cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionRouterAlert command.

ipV6OptionRouterAlert setDefault

Sets default values for all IPv6 Router Alert configuration options.

EXAMPLES

See examples under ipV6

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionBindingUpdate
ipV6OptionBindingUpdate - configure an IPv6 BindingUpdate hop by hop header

SYNOPSIS

ipV6OptionBindingUpdate sub-command options

DESCRIPTION

The ipV6OptionBindingUpdate command adds a BindingUpdate hop by hop header to the IPv6 packet.

Appendix 1 IxTclHAL Commands

– 901 –

STANDARD OPTIONS

enableAcknowledge true / false

This flag sets the Acknowledge (A) bit to indicate that the sending mobile node is requesting that a
Binding Acknowledgement be sent by the receiving node when it gets the Binding Update. (default =
false)

enableBicasting true / false

Enables the bi-casting flag for the Binding Update header. (default = false)

enableDuplicate true / false

This flag sets the Duplicate Address Detection (D) bit, to indicate that the sending node wants the
receiving node to perform Duplicate Address Detection for the mobile node's home address in this
binding. The H and A bits MUST also be set for this action to be performed. (default = false)

enableHome true / false

This flag sets the Home Registration (H) bit to indicate that the sending node wants the receiving node to
act as its home agent. (default = false)

enableMap true / false

Enables the map flag for the Binding Update header. (default = false)

enableRouter true / false

This flag indicates if the binding cache entry is for a mobile node advertised as a router by this node, on
the behalf of the mobile node, in proxy Neighbor Advertisements. (default = false)

length

The length of the header in bytes.

lifeTime integer

(32-bit integer) The number of seconds remaining for the Binding Cache entry. When the value reaches
zero, the binding MUST be considered expired and the Binding Cache entry MUST be deleted for the
mobile node.

optionType

Read only. Returns the value for the option.

prefixLength integer

If the H-bit is set, this is the length of the routing prefix for the home address

Appendix 1 IxTclHAL Commands

– 902 –

sequenceNumber integer

(16-bit number) The mobile node uses this number in the Binding Update. The receiving node uses the
same number in its Binding Acknowledgement, for matching. The Sequence number in each Binding
Update to one destination address must be greater than the last.

COMMANDS

ipV6OptionBindingUpdate config option value

Configures the value of the specified IPv6 BindingUpdate option.

ipV6OptionBindingUpdate cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionBindingUpdate command.

ipV6OptionBindingUpdate setDefault

Sets default values for all IPv6 BindingUpdate configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionBindingAck
ipV6BindingAck - configure an IPv6 BindingAck hop by hop header

SYNOPSIS

ipV6OptionBindingAck sub-command options

DESCRIPTION

The ipV6OptionBindingAck command adds a BindingACK hop by hop header to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

Appendix 1 IxTclHAL Commands

– 903 –

lifeTime

(in seconds) The length of time that the receiving node retains the binding update entry for this mobile
node in its binding cache.

optionType

Read only. Returns the value for the option.

refresh

(in seconds) The mobile node SHOULD send a new Binding Update at this interval, to refresh the binding.
The receiving node (the node which sends the Binding ACK) determines the refresh interval.

sequenceNumber

T his integer is copied from the received Binding Update into the corresponding Binding ACK message

status

(8 bit integer) This value indicates the disposition of the Binding Update: 0-127 = Binding Update was
accepted. >/= 128 = Binding Update was rejected.

COMMANDS

ipV6OptionBindingAck config option value

Configures the value of the specified IPv6 BindingAck option.

ipV6OptionBindingAck cget option

Returns the current value of the IPv6 BindingAck configuration option given by option. Option may have
any of the values accepted by the ipV6OptionBindingAck command.

ipV6OptionBindingAck setDefault

Sets default values for all IPv6 BindingAck configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionHomeAddress
ipV6OptionHomeAddress - configure an IPv6 HomeAdress header

Appendix 1 IxTclHAL Commands

– 904 –

SYNOPSIS

ipV6OptionHomeAddress sub-command options

DESCRIPTION

The ipV6OptionHomeAddress command adds a HomeAddress to the IPv6 packet.

STANDARD OPTIONS

address

The home address for the mobile node that is sending the packet. (default = 0:0:0:0:0:0:0:0)

length

The length of the header in bytes.

optionType

Read only. Returns the value for the option.

COMMANDS

ipV6OptionHomeAddress config option value

Configures the value of the specified IPv6 HomeAdress option.

ipV6OptionHomeAddress cget option

Returns the current value of the IPv6 HomeAdress configuration option given by option. Option may have
any of the values accepted by the ipV6OptionHomeAddress command.

ipV6OptionHomeAddress setDefault

Sets default values for all IPv6 HomeAdress configuration options.

EXAMPLES

See examples under ipV6

SEE ALSO

ipV6, ipV6Destination, ipV6HopByHop.

ipV6OptionBindingRequest
ipV6OptionBindingRequest - configure an IPv6 BindingRequest hop by hop header

Appendix 1 IxTclHAL Commands

– 905 –

SYNOPSIS

ipV6OptionBindingRequest sub-command options

DESCRIPTION

The ipV6OptionBindingRequest command adds a BindingRequest hop by hop header to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

optionType

Read only. Returns the value for the option.

COMMANDS

ipV6OptionBindingRequest config option value

Configures the value of the specified IPv6 BindingRequest option.

ipV6OptionBindingRequest cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionBindingRequest command.

ipV6OptionBindingRequest setDefault

Sets default values for all IPv6 BindingRequest configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionMIpV6UniqueIdSub
ipV6OptionMIpV6UniqueIdSub - configure an IPv6 MIpV6UniqueIdSub hop by hop header

SYNOPSIS

ipV6OptionMIpV6UniqueIdSub sub-command options

Appendix 1 IxTclHAL Commands

– 906 –

DESCRIPTION

The ipV6OptionMIpV6UniqueIdSub command adds a MIpV6UniqueIdSub hop by hop header to the IPv6
packet.

STANDARD OPTIONS

length

The length of the header in bytes.

optionType

Read only. Returns the value for the option.

subUniqueId

A unique ID for the binding request. (default = 0)

COMMANDS

ipV6OptionMIpV6UniqueIdSub config option value

Configures the value of the specified Pv6 MIpV6UniqueIdSub option.

ipV6OptionMIpV6UniqueIdSub cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionMIpV6UniqueIdSub command.

ipV6OptionMIpV6UniqueIdSub setDefault

Sets default values for all Pv6 MIpV6UniqueIdSub configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionMIpV6AlternativeCoaSub
ipV6OptionMIpV6AlternativeCoaSub - configure an IPv6 MIpV6AlternativeCoaSub hop by hop header

SYNOPSIS

ipV6OptionMIpV6AlternativeCoaSub sub-command options

Appendix 1 IxTclHAL Commands

– 907 –

DESCRIPTION

The ipV6OptionMIpV6AlternativeCoaSub command adds a MIpV6AlternativeCoaSub hop by hop header to
the IPv6 packet.

STANDARD OPTIONS

address

The IPv6 address. (default = 0:0:0:0:0:0:0:0)

length

The length of the header in bytes.

optionType

Read only. Returns the value for the option.

COMMANDS

ipV6OptionMIpV6AlternativeCoaSub config option value

Configures the value of the specified IPv6 MIpV6AlternativeCoaSub option.

ipV6OptionMIpV6AlternativeCoaSub cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionIpV6AlternativeCoaSub command.

ipV6OptionMIpV6AlternativeCoaSub setDefault

Sets default values for all IPv6 MIpV6AlternativeCoaSub configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6OptionUserDefine
ipV6OptionUserDefine - configure an IPv6 User Defined hop by hop header

SYNOPSIS

ipV6OptionUserDefine sub-command options

Appendix 1 IxTclHAL Commands

– 908 –

DESCRIPTION

The ipV6OptionUserDefine command adds a user defined hop by hop header to the IPv6 packet.

STANDARD OPTIONS

length

The length of the header in bytes.

optionType

Read only. Returns the value for the option.

value

A user-defined data value, in byte pairs (that is, 00 00 00 00).

COMMANDS

ipV6OptionUserDefine config option value

Configures the value of the specified IPv6 User Defined option.

ipV6OptionUserDefine cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6OptionUserDefine command.

ipV6OptionUserDefine setDefault

Sets default values for all IPv6 User Defined configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6HopByHop.

ipV6Routing
ipV6Routing - configure an IPv6 routing extension header

SYNOPSIS

ipV6Routing sub-command options

Appendix 1 IxTclHAL Commands

– 909 –

DESCRIPTION

The ipV6Routing command creates a routing extension header to be used in an ipV6 header. This type of
extension header is added to the ipV6 header using ipV6 addExtensionHeader.

STANDARD OPTIONS

headerExtLength

Read-only. The length of this header, in bytes.

nextHeader

Read-only. The type of the next extension header.

Option Value Usage

ipV6HopByHopOptions 0 Next header is hop-by-hop options.

ipV6Routing 43 Next header has routing options.

ipV6Routing 44 Payload is a routing.

ipV6EncapsulatingSecurityPayload 50 Next header is an IPSEC ESP.

ipV6Authentiication 51 Next header is an IPSEC AH.

ipV6NoNextHeader 59 There is no next header.

ipV6DestinationOptions 60 Next header has destination options.

tcp 6 Next header is TCP.

udp 17 Next header is UDP.

icmpV6 58 Next header is ICMP V6.

ipV4ProtocolIpv4 Next header is IPv4

ipV4ProtocolTcp Next header is IPv4 with TCP

ipV4ProtocolGre Next header is IPv4 with GRE

ipV4ProtocolUdp Next header is IPv4 with UDP

ipV4ProtocolIpv6Icmp Next header is IPv4 with ICMP

Appendix 1 IxTclHAL Commands

– 910 –

nodeList

A list of 128-bit IPv6 addresses, which may be constructed with the ipV6Address command. (default =
{})

reserved

32-bit reserved field. (default = {00 00 00 00})

routingType

Read-only. The routing type, always 0.

segmentsLeft

Read-only. Only used if the routing Type is not recognized by this node. Always 0 in this release.

COMMANDS

The ipV6Routing command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

ipV6Routing cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipV6Routing command.

ipV6Routing config option value

Modify the IPv6 routing extension address table configuration options of the port. If no option is specified,
returns a list describing all of the available ipV6Routing options (see STANDARD OPTIONS).

ipV6Routing setDefault

Sets default values for all IPv6 routing extension configuration options.

EXAMPLES

See examples under ipV6.

SEE ALSO

ipV6, ipV6Authentication, ipV6Destination, ipV6Fragment, ipV6HopByHop.

ipx
ipx - configure the IPX parameters for a port on a card on a chassis

SYNOPSIS

ipx sub-command options

Appendix 1 IxTclHAL Commands

– 911 –

DESCRIPTION

The ipx command is used to configure the IPX-specific information used when building IPX-type packets if
the protocol config-name has been set to ipx. Note that stream get must be called before this command's
get sub-command.

STANDARD OPTIONS

destNetwork

The network number of the network to which the destination node belongs. (default = {00 00 00 00})

destNetworkCounter
Mode

Specifies how the destination network address is incremented or decremented. Possible values include:

Option Value Usage

ipxIdle 0 (default) no change to network address regardless of
destNetworkRepeatCounter

ipxIncrement 1 increment the network address for as many
destNetworkRepeatCounter specified

ipxDecrement 2 decrement the network address for as many
destNetworkRepeatCounter specified

ipxContIncrement 3 Continuously increment the network address for each frame

ipxContDecrement 4 Continuously decrement the network address for each frame

ipxCtrRandom 5 Generate random destination network address for each frame

destNetworkMask
Select

Selects the bits in the 32-bit destination network address that are to be masked by the value set by
destNetworkMaskValue. (default = 00 00 00 00)

destNetworkMaskValue

Value of the masked bits selected by destNetworkMaskSelect in the destination network address. (default
= FF FF FF FF)

destNetworkRepeat
Counter

Number of destination network addresses the stream is going to be transmitted to. (default = 1)

Appendix 1 IxTclHAL Commands

– 912 –

destNode

The physical address of the destination node. (default = 00 00 00 00 00 00)

destNodeCounterMode

Specifies how the destination node is incremented or decremented. Note: Setting the
destNodeCounterMode other then ipxIdle takes over one of the available UDFs. Possible values include:

Option Value Usage

ipxIdle 0 (default) no change to node regardless of destNodeRepeatCounter

ipxIncrement 1 increment the node for as many destNodeRepeatCounter specified

ipxDecrement 2 decrement the node for as many destNodeRepeatCounter specified

ipxContIncrement 3 Continuously increment the node for each frame

ipxContDecrement 4 Continuously decrement the node for each frame

ipxCtrRandom 5 Generate random destination node for each frame

destNodeMaskSelect

Selects the bits in the 48-bit destination node address that are to be masked by the value set by
destNodeMaskValue. (default = 00 00 00 00 00 00)

destNodeMaskValue

Value of the masked bits selected by destNodeMaskSelect in the destination node. (default = FF FF FF FF
FF FF)

destNodeRepeat
Counter

Number of destination nodes the stream is going to be transmitted to. (default = 1)

destSocket

The socket address of the packet's destination process. (default = 0x4000) Well defined addresses
include:

Option Value Usage

socketNcp 1105-0x0451

socketSap 1106-0x0452

socketRipx 1107-0x0453

Appendix 1 IxTclHAL Commands

– 913 –

Option Value Usage

socketNetBios 1109-0x0455

socketDiagnostics 1110-0x0456

socketSerialization 1111-0x0457

destSocketCounter
Mode

Specifies how the destination socket is incremented or decremented. Note: Setting the
destSocketCounterMode other then ipxIdle takes over one of the available UDFs. Possible values include:

Option Value Usage

ipxIdle 0 (default) no change to socket regardless of
destSocketRepeatCounter

ipxIncrement 1 increment the socket for as many destSocketRepeatCounter
specified

ipxDecrement 2 decrement the socket for as many destSocketRepeatCounter
specified

ipxContIncrement 3 Continuously increment the socket for each frame

ipxContDecrement 4 Continuously decrement the socket for each frame

ipxCtrRandom 5 Generate random destination socket for each frame

destSocketMaskSelect

Selects the bits in destination socket address that are to be masked by the value set by
destSocketMaskValue. (default = 00 00)

destSocketMaskValue

Value of the masked bits selected by destSocketMaskSelect in the destination socket. (default = FF FF)

destSocketRepeat
Counter

Number of destination sockets the stream is going to be transmitted to. (default = 1)

length

The length of the IPX header plus the length of the data. (default = 0)

Appendix 1 IxTclHAL Commands

– 914 –

lengthOverride
true/false

Allows to change the length in ipx header. (default = false)

packetType

This field indicates the type of service offered or required by the packet. Possible values include:

typeUnknown 0-0x00 Used for all packets not classified by any other type.

typeRoutingInfo 1-0x01 Routing Information Packet.

typeEcho 2-0x02 Echo

typeError 3-0x03 Error

typeIpx 4-0x04 (default) Service Advertising Packet.

typeSpx 5-0x05 Used for sequenced packets.

typeNcp 17-0x11 Used for NetWare Core Protocol Packets.

typeNetBios 20-0x14 Used for Novell netBIOS.

typeNdsNcp 104-0x68 Used for NetWare Core Protocol Packets.

sourceNetwork

The network number of the network to which the source node belongs. (default = 00 00 00 00)

sourceNetwork
CounterMode

Specifies how the source network address is incremented or decremented. Note: Setting the
sourceNetworkCounterMode other then ipxIdle takes over one of the available UDFs. Possible values
include:

Option Value Usage

ipxIdle 0 (default) no change to network address regardless of
sourceNetworkRepeatCounter

ipxIncrement 1 increment the network address for as many
sourceNetworkRepeatCounter specified

ipxDecrement 2 decrement the network address for as many
sourceNetworkRepeatCounter specified

Appendix 1 IxTclHAL Commands

– 915 –

Option Value Usage

ipxContIncrement 3 Continuously increment the network address for each frame

ipxContDecrement 4 Continuously decrement the network address for each frame

ipxCtrRandom 5 Generate random source network address for each frame

sourceNetworkMask
Select

Selects the bits in the 32-bit source network address that are to be masked by the value set by
sourceNetworkMaskValue. (default = 00 00 00 00)

sourceNetwork
MaskValue

Value of the masked bits selected by sourceNetworkMaskSelect in the source network address. (default =
FF FF FF FF)

sourceNetworkRepeat
Counter

Number of source network addresses the stream is going to be transmitted to. (default = 1)

sourceNode

The physical address of the source node. (default = 00 00 00 00 00 00)

sourceNodeCounter
Mode

Specifies how the source node is incremented or decremented. Note: Setting the
sourceNodeCounterMode other then ipxIdle takes over one of the available UDFs. Possible values include:

Option Value Usage

ipxIdle 0 (default) no change to node regardless of sourceNodeRepeatCounter

ipxIncrement 1 increment the node for as many sourceNodeRepeatCounter specified

ipxDecrement 2 decrement the node for as many sourceNodeRepeatCounter
specified

ipxContIncrement 3 Continuously increment the node for each frame

ipxContDecrement 4 Continuously decrement the node for each frame

ipxCtrRandom 5 Generate random source node for each frame

Appendix 1 IxTclHAL Commands

– 916 –

sourceNodeMaskSelect

Selects the bits in the 48-bit source node address that are to be masked by the value set by
sourceNodeMaskValue. (default = 00 00 00 00 00 00)

sourceNodeMaskValue

Value of the masked bits selected by sourceNodeMaskSelect in the source node. (default = FF FF FF FF FF
FF)

sourceNodeRepeat
Counter

Number of source nodes the stream is going to be transmitted to. (default = 1)

sourceSocket

The socket address of the packet's source process. (default = 0x4000) Well known addresses include:

Option Value Usage

socketNcp 1105-0x0451

socketSap 1106-0x0452

socketRipx 1107-0x0453

socketNetBios 1109-0x0455

socketDiagnostics 1110-0x0456

socketSerialization 1111-0x0457

sourceSocketCounter
Mode

Specifies how the source socket is incremented or decremented. Note: Setting the
sourceSocketCounterMode other then ipxIdle takes over one of the available UDFs. Possible values
include:

Option Value Usage

ipxIdle 0 (default) no change to socket regardless of
sourceSocketRepeatCounter

ipxIncrement 1 increment the socket for as many sourceSocketRepeatCounter
specified

ipxDecrement 2 decrement the socket for as many

Appendix 1 IxTclHAL Commands

– 917 –

Option Value Usage

ipxContIncrement 3 Continuously increment the socket for each frame
sourceSocketRepeatCounter specified

ipxContDecrement 4 Continuously decrement the socket for each frame

ipxCtrRandom 5 Generate random source socket for each frame

sourceSocketMask
Select

Selects the bits in source socket address that are to be masked by the value set by
sourceSocketMaskValue. (default = 00 00)

sourceSocket
MaskValue

Value of the masked bits selected by sourceSocketMaskSelect in the source socket. (default = FF FF)

sourceSocketRepeat
Counter

Number of source sockets the stream is going to be transmitted to. (default = 1)

svrClientType

This allows the port to act either as a NetWare server or client. If set to server, then the port may send out
SAP broadcasts to announce itself. Possible values include:

Option Value Usage

server 1

client 2 (default)

transportControl

The number of routers that the packet has passed through. (default = 0)

COMMANDS

The ipx command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

ipx cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ipx command.

ipx config option value

Appendix 1 IxTclHAL Commands

– 918 –

Modify the IPX configuration options of the port. If no option is specified, returns a list describing all of the
available IPX options (see STANDARD OPTIONS) for port.

ipx decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. ipx cget option command can be used
after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid IPX frame

ipx get chasID cardID portID

Gets the current configuration of the ipx object for port with id portID on card cardID, chassis chasID from
its hardware and sets the ipx class members with the current data. Note that stream get must be called
before this command's get sub-command. Specific errors are:

l No connection to a chassis
l Invalid port number

ipx set chasID cardID portID

Sets the IPX configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the ipx config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

ipx setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 919 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

stream setDefault

protocol setDefault
protocol config -name ipx
protocol config -ethernetType ethernetII

ipx setDefault

ipx config -destNetwork {00 00 00 02}
ipx config -destNetworkCounterMode ipxIdle
ipx config -sourceNetwork {00 00 00 01}
ipx config -sourceNetworkCounterMode ipxIdle

ipx config -destNode {00 00 00 01 00 00}
ipx config -destNodeRepeatCounter 16
ipx config -destNodeCounterMode ipxDecrement
ipx config -sourceNode {00 00 00 00 00 00}
ipx config -sourceNodeRepeatCounter 16
ipx config -sourceNodeCounterMode ipxIncrement

ipx config -destSocket 5
ipx config -sourceSocket 4
ipx set $chas $card $port

stream set $chas $card $port 1

Appendix 1 IxTclHAL Commands

– 920 –

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, protocol, ip, udp.

isl
isl - configure the Cisco Inter-Switch Link (ISL) parameters for a port on a card on a chassis

SYNOPSIS

isl sub-command options

DESCRIPTION

The isl command is used to configure the ISL-specific information used when building ISL-type packets.
This is enabled using protocol config -enableISLtag true. The encapsulated frame's Source and
Destination MAC addresses are configured through the stream config -da and -sa commands. See stream.
The previously documented options to the isl command encapDA and encapSA, should not be used to set
the MAC addresses but may be used to view the values.

STANDARD OPTIONS

bpdu

Set for all Bridge Protocol Data Units that are encapsulated by the ISL packet. (default = 0)

encapDA

Read-only. This value is set through the use of stream config -da.

encapSA

Read-only. This value is set through the use of stream config -sa.

frameType

The type field indicates the type of frame that is encapsulated. Options include:

Appendix 1 IxTclHAL Commands

– 921 –

Option Value Usage

islFrameEthernet 0 (default)

islFrameTokenRing 1

islFrameFDDI 2

islFrameATM 3

index

Value of the selected register. (default = 0)

islDA

The address is a multicast address whose value in the first 40 bits of the DA indicate to the receiver that
the packet is in ISL format. (default = {01 00 0C 00 00})

islSA

The source MAC address. The upper 3 bytes of this field are reflected in the hsa field. (default = {00 00 0C
00 00 00})

length

Read-Only. The calculated length of the ISL header.

reserved

The reserved field of the ISL header. (default = {00 00})

userPriority

The low order two bits of this field indicate the priority of the packet as it passes through the switch.
Priorities 0 to 7 are valid. (default = 0)

vlanID

The Virtual LAN Identifier. (default = 1)

COMMANDS

The isl command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

isl cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the isl command.

isl config option value

Appendix 1 IxTclHAL Commands

– 922 –

Modify the ISL configuration options of the port. If no option is specified, returns a list describing all of the
available ISL options (see STANDARD OPTIONS) for port.

isl decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. isl cget option command can be used
after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid ISL frame

isl get chasID cardID portID

Gets the current ISL configuration of the port with id portID on card cardID, chassis chasID. Call this
command before calling isl cget option to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

isl set chasID cardID portID

Sets the ISL configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the isl config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

isl setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis

Appendix 1 IxTclHAL Commands

– 923 –

if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

stream setDefault
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII
protocol config -enableISLtag true

isl setDefault
isl config -vlanID 42
isl set $chas $card $port

stream config -sa {01 02 03 04 05 06}
stream config -da {02 03 04 05 06 07}
stream set $chas $card $port 1

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 1 IxTclHAL Commands

– 924 –

SEE ALSO

protocol, stream.

kp4FecError
kp4FecError - configure kp4 fec errors.

SYNOPSIS

kp4FecError sub-command options

DESCRIPTION

The kp4FecError command is used to insert errors into codewords and PCS lane markers.

STANDARD OPTIONS

berCoefficient

Coefficient of the BER. The desired BER can be achieved by changing the coefficient and exponent of the
BER.

Permissible range for this option is 0 to 9.99. (default = 1.0)

berDistribution

The distribution of errored FEC symbols across codewords can be done by varying the Distribution
parameter. Permissible range for this option is any positive integer between 0-100. (default = 50)

berExponent

Exponent of the BER. The desired BER can be achieved by changing the coefficient and exponent of the
BER.

Permissible range for this option is 5 to 15. (default = 8)

errorBits

Error Bits specifies how many errors will be inserted on each of the two symbol errors of the codeword
that carries the Lane Marker. There is a minimum Error Bits required (2) before corrupting the symbol
that maps to the Lane Marker.

Permissible range for this option is any positive integer between 1-10. (default = 10)

laneNumber

Lane Number will specify which PCS lane will be affected by the Lane Marker error insertion. (default = 1)

Speed Lane Number

400G For 400G we have 16 PCS lanes. Lane Number ranges from 0-15

Appendix 1 IxTclHAL Commands

– 925 –

Speed Lane Number

200G For 200G we have 8 PCS lanes. Lane Number ranges from 0-7

100G For 100G we have 4 PCS lanes. Lane Number ranges from 0-3

50G For 50G we have 2 PCS lanes. Lane Number ranges from 0-1

loopcount

The sequence of correct and incorrect codewords or symbol errors inserted will be repeated by the
number specified by this option. (default = 1)

repeat true / false

If set to false, error insertion will be continuous until stopped. If true, sequence of errors will be repeated
as per the count specified in loopcount. (default = False, when error type is random) (default = True,
when error type is other than random).

symbolCorrectCount

The number of consecutive code words without errors. (default = 0)

symbolErrorCount

The number of consecutive code words with errors. (default = 1)

l In burst mode, this specifies:
n number of sequential FEC codewords with one or more symbols with errors, followed by the
number of FEC codewords without symbol errors.

n number of sequential Lane Markers (Alignment Markers) with symbol errors, followed by a
number of Lane Markers without errors.

l In continuous mode, this specifies:
n the number of sequential FEC codewords with one or more symbols with errors, followed by the
number of FEC codewords without symbol errors. This sequence will be repeated until stopped.

n the number of sequential Lane Markers (Alignment Markers) with symbol errors, followed by a
number of Lane Markers without errors. This sequence will be repeated until stopped.

l In 400G and 200G modes, the total number of FEC symbol errors sent will be doubled due to the
presence of two FEC engines. In 100G and 50G modes, there is only a single FEC engine present.

l The symbol errors are not evenly distributed across the PCS lanes (use Random error insertion
mode for that case)

l Per 802.3bs and 802.3cd, reception of 3 or more consecutive uncorrectable codewords will result in
Loss of Link.

l Per 802.3bs and 802.3cd, reception of 5 or more Alignment Marker errors will result in Loss of Link.

Appendix 1 IxTclHAL Commands

– 926 –

symbolErrorPerCodeword

This specifies the number of symbol errors per codeword to insert. KP4 FEC can correct up to 15 symbols,
and detect up to 30 symbols. If the user specifies 16, an Uncorrectable Codeword will be issued.

Permissible range for this option is any positive integer between 1-16. (default = 1)

type

Configures the type of error injected and corrected by FEC. (default = 0)

Option Value Description

Random 0 Random FEC symbol error insertion will introduce a deterministic
number of errors, evenly spread across all PCS lanes, on top the
intrinsic BER (Bit Error Rate) of the interconnect.

Lane Markers 1 Inserts errors only in the Lane Marker or Alignment Marker.

Code Words 2 Inserts errors in codewords. This is the fundamental unit of data that
the FEC engine operates on sequentially.

Max Consecutive
Uncorrectable
without Loss of Link

3 Inserts 2 consecutive error codewords followed by 1 or more
consecutive correct codewords.

Min Consecutive
Uncorrectable with
Loss of Link

4 Inserts 3 consecutive error codewords followed by 1 or more
consecutive correct codewords.

COMMANDS

The kp4FecError command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

kp4FecError get chasID cardID portID

Gets the current configuration of the kp4FecError for the indicated port with id portID on card cardID,
chassis chasID. Call this command before calling kp4FecError cget option to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

kp4FecError set chasID cardID portID

Sets the configuration of the kp4FecError in IxHAL for the port indicated by portID on card cardID, chassis
chasID reading the configuration option values set by the kp4FecError config option value command.
Specific errors are:

Appendix 1 IxTclHAL Commands

– 927 –

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

kp4FecError start chasID cardID portID

Starts the FEC error insertion process for port with id portID on card cardID, chassis chasID. The stop
sub-command must be used to stop error insertion. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

kp4FecError stop chasID cardID portID

Stops the FEC error insertion process for port with id portID on card cardID, chassis chasID. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

kp4FecError setDefault

Sets to IxTclHal default values for all kp4FecError configuration options.

kp4FecError cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the kp4FecError command.

kp4FecError config option value

Modify the configuration options of kp4FecError. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for kp4FecError.

CAUTION: 'kp4FecError get' should be called before 'kp4FecError config' in order to maintain consistency
between Tcl Client kp4FecError object and Server kp4FecError object.

kp4FecError clear chasID cardID portID

Clears the port-level KP4 FEC statistics.

EXAMPLES

Burst Codeword Error Insertion
Clear FEC stats
kp4FecError clear $chasId1 $cardId1 $portId1

Set-up burst mode insertion type
kp4FecError get $chasId1 $cardId1 $portId1

Appendix 1 IxTclHAL Commands

– 928 –

kp4FecError config -type kp4FecCodeWords
kp4FecError config -repeat 1
kp4FecError config -loopcount $loopCount
kp4FecError config -symbolErrorCount $seqErrors
kp4FecError config -symbolCorrectCount $seqCorrect
kp4FecError config -symbolErrorPerCodeword $errorsPerCodeword
kp4FecError set $chasId1 $cardId1 $portId1

Start insertion on Tx side
kp4FecError start $chasId1 $cardId1 $portId1

Wait a small amount of time for the burst to finish
after 500

Stop error insertion
kp4FecError stop $chasId1 $cardId1 $portId1

Continuous Codeword Error Insertion
Clear FEC stats
kp4FecError clear $chasId1 $cardId1 $portId1

Set-up continuous mode insertion type
kp4FecError get $chasId1 $cardId1 $portId1
kp4FecError config -type kp4FecCodeWords
kp4FecError config -repeat 0
kp4FecError config -loopcount 1
kp4FecError config -symbolErrorCount $seqErrors
kp4FecError config -symbolCorrectCount $seqCorrect
kp4FecError config -symbolErrorPerCodeword $errorsPerCodeword
kp4FecError set $chasId1 $cardId1 $portId1

Start insertion on Tx side
kp4FecError start $chasId1 $cardId1 $portId1

Wait for desired number of ms
after $testTime

Stop error insertion
kp4FecError stop $chasId1 $cardId1 $portId1

Burst Mode Lane Marker Error Insertion
Clear FEC stats
kp4FecError clear $chasId1 $cardId1 $portId1

Set-up burst mode insertion type
kp4FecError get $chasId1 $cardId1 $portId1
kp4FecError config -type kp4FecLaneMarkers
kp4FecError config -repeat 1

Appendix 1 IxTclHAL Commands

– 929 –

kp4FecError config -loopcount $loopCount
kp4FecError config -symbolErrorCount $seqErrors
kp4FecError config -symbolCorrectCount $seqCorrect
kp4FecError config -laneNumber $lane
kp4FecError config -errorBits $errorBits
kp4FecError set $chasId1 $cardId1 $portId1

Start insertion on Tx side
kp4FecError start $chasId1 $cardId1 $portId1

Wait a small amount of time for the burst to finish
after 500

Stop error insertion
kp4FecError stop $chasId1 $cardId1 $portId1

Continuous Lane Marker Error Insertion
Clear FEC stats
kp4FecError clear $chasId1 $cardId1 $portId1

Set-up continuous mode insertion type
kp4FecError get $chasId1 $cardId1 $portId1
kp4FecError config -type kp4FecLaneMarkers
kp4FecError config -repeat 0
kp4FecError config -loopcount 1
kp4FecError config -symbolErrorCount $seqErrors
kp4FecError config -symbolCorrectCount $seqCorrect
kp4FecError config -laneNumber $lane
kp4FecError config -errorBits $errorBits
kp4FecError set $chasId1 $cardId1 $portId1

Start insertion on Tx side
kp4FecError start $chasId1 $cardId1 $portId1

Wait for desired number of ms
after $testTime

Stop error insertion
kp4FecError stop $chasId1 $cardId1 $portId1

Random BER Error Insertion
Clear FEC stats
kp4FecError clear $chasId1 $cardId1 $portId1

Set-up continuous mode insertion type
kp4FecError get $chasId1 $cardId1 $portId1
kp4FecError config -type kp4FecRandom
kp4FecError config -berCoefficient $berCoefficient

Appendix 1 IxTclHAL Commands

– 930 –

kp4FecError config -berExponent $berExponent
kp4FecError config -berDistribution $berDistribution
kp4FecError set $chasId1 $cardId1 $portId1

Start insertion on Tx side
kp4FecError start $chasId1 $cardId1 $portId1

Wait for desired number of ms
after $testTime

Stop error insertion
kp4FecError stop $chasId1 $cardId1 $portId1

SEE ALSO

txLane.

lasi
lasi - configure the link alarm status interrupt settings for XENPAK modules

SYNOPSIS

lasi sub-command options

DESCRIPTION

The lasi command is used to configure the OUI address and interrupt settings associated with XENPAK
modules. The OUI (Organizationally Unique Identifier) device address ouiDeviceAddress allows
communications with the XENPAK device registers that control the conditions under which an alarm
interrupt occurs. The particular conditions are controlled by the rxAlarmControlRegister,
txAlarmControlRegister and controlRegister. The particular values in these control registers is covered in
the XENPAK 10 GIgabit Ethernet MSA, Issue 3.0.

STANDARD OPTIONS

controlRegister

The value for the control register. (default = "00 00")

enableAutoDetected
OUIDeviceAddress
enable / disable

Enables the ability of the port to automatically detect the OUI device address. (default = disable)

enableMonitoring
true | false

Enables active monitoring of the LASI status registers so as to clear the interrupt signal. (default = false)

Appendix 1 IxTclHAL Commands

– 931 –

ouiDeviceAddress

The OUI device address for the LASI registers. (default = 3)

rxAlarmControlRegister

The receive alarm register contents. (default = "00 00")

txAlarmControlRegister

The transmit alarm register contents. (default = "00 00")

COMMANDS

The lasi command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

lasi cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the lasi command.

lasi config option value

Modify the lasi configuration options of the port. If no option is specified, returns a list describing all of the
available lasi options (see STANDARD OPTIONS) for port.

lasi get chasID cardID portID

Gets the current lasi configuration of the port with id portID on card cardID, chassis chasID. Call this
command before calling lasi cget option to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

lasi set chasID cardID portID

Sets the lasi configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the lasi config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

lasi setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost

Appendix 1 IxTclHAL Commands

– 932 –

set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chId [ixGetChassisID $host]

set cardId 60
set portId 1
set portList [list [list $chId $cardId $portId]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

set retCode "PASS"

lasi setDefault

lasi config -ouiDeviceAddress 1
lasi config -rxAlarmControlRegister {ff ff}
lasi config -txAlarmControlRegister 0x55
lasi config -controlRegister 0xffff

if {[lasi set $chId $cardId $portId]} {
ixPuts $::ixErrorInfo
set retCode "FAIL"
break

Appendix 1 IxTclHAL Commands

– 933 –

}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

return $retCode

SEE ALSO

mii.

latencyBin
latencyBin - retrieve statistics associated with a latency bin of a packet group.

SYNOPSIS

latencyBin sub-command options

DESCRIPTION

The latencyBin command is used to retrieve the statistics associated with a particular latency bin in a
packet groups, such as minimum latency, maximum latency and average latency.

The latency bin information must be retrieved through calls to packetGroupStats. getFirstLatencyBin,
getNextLatencyBin and getLatencyBin.

STANDARD OPTIONS

bitRate

Read-only. 64-bit value. The bit rate for the frames.

byteRate

Read-only. 64-bit value. The byte rate for the frames.

firstTimeStamp

Read-only. 64-bit value. The time stamp of the first packet received.

Appendix 1 IxTclHAL Commands

– 934 –

frameRate

Read-only. 64-bit value. The frame rate for the frames.

lastTimeStamp

Read-only. 64-bit value. The time stamp of the last packet received.

maxLatency

Read-only. 64-bit value. Maximum latency of all frames of this packet group.

minLatency

Read-only. 64-bit value. Minimum latency of all frames of this packet group.

numFrames

Read-only. 64-bit value. Total number of frames in this latency bin.

startTime

Read-only. Floating point value. The start time of the latency bin, expressed in microseconds.

stopTime

Read-only. Floating point value. The stop time of the latency bin, expressed in microseconds.

COMMANDS

The latencyBin command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

latencyBin cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the latencyBin command.

EXAMPLES

See examples under packetGroup.

SEE ALSO

packetGroup, packetGroupStats, stream.

lcas
lcas - sets up LCAS configuration for a circuit to receive and/or transmit.

SYNOPSIS

lcas sub-command options

Appendix 1 IxTclHAL Commands

– 935 –

DESCRIPTION

The lcas command is used to set up LCAS configuration for receive and/or transmit. This enables
configuring the LCAS debug/trace messages.

STANDARD OPTIONS

rsAck

Configure the timeout value for Rs_Ack(s) for Rx Lcas. (default = 10)

holdOff

Configure the hold off timeout for Rx Lcas. (default = 10)

waitToRestore

Configure the wait to restore timeout for the Rx Lcas. (default = 10)

COMMANDS

The lcas command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

lcas cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the lcas command.

lcas config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

lcas get chassisID cardID portID circuitID

Gets the existing LCAS configuration for the circuit with the given circuit ID. Return values:

l 0-OK
l 1-Tcl error
l 100-Port unavailable
l 101-Unsupported feature

lcas set chassisID cardID portID circuitID

Modify the existing LCAS configuration for the circuit with the given circuit ID. Return values:

l 0-OK
l 1-Tcl error
l 100-Port unavailable
l 101-Unsupported feature

lcas setDefault

Appendix 1 IxTclHAL Commands

– 936 –

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example on page A EXAMPLES.

SEE ALSO

sonetCircuit, sonetCircuitList, sonetCircuitProperties.

linkFaultSignaling
linkFaultSignaling - configure and start/stop link fault signalling

SYNOPSIS

linkFaultSignaling sub-command options

DESCRIPTION

The linkFaultSignaling command is used to define a series or continuous stream of link fault signals. The
series/stream consists of good and bad period, where the bad periods may send local, remote or custom
errors. Errors are called ordered sets; two, named A and B, are available for insertion.

STANDARD OPTIONS

contiguousErrorBlocks

The number of contiguous errored blocks to insert at a time. This must be an even number between 2 and
30. The type of error block inserted is determined by the setting of the sendSetsMode option. (default =
2)

contiguousGoodBlocks

The number of contiguous non-errored blocks to insert at a time. This must be an even number between 2
and 512. (default = 2)

enableLoop
Continuously
true | false

If true, the cycle of errored and non-errorored blocks is applied continuously. Errors are inserted when
the startErrorInsertion sub-command is called and stopped when the stopErrorInsertion sub-command is
called. (default = true)

enableTxIgnoresRx
LinkFault true | false

If true, then the port continues to transmit even when the port has received a remote link fault. (default =
false)

Appendix 1 IxTclHAL Commands

– 937 –

loopCount

If enableLoopContinuously is false, then this is the number of times that good-bad cycles is applied. The
setting of the sendSetsMode option determines whether there are one or two good-bad cycles per loop.
(default = 0)

orderedSetTypeA

Determines the type of ordered set to be used for type A errors.

Option Value Usage

linkFaultLocal 0 (default) A local fault.

linkFaultRemote 1 A remote fault.

linkFaultCustom 2 A custom fault, specified through the use of the customOrderedSet
command.

orderedSetTypeB

Determines the type of ordered set to be used for type B errors.

Option Value Usage

linkFaultLocal 0 A local fault.

linkFaultRemote 1 (default) A remote fault.

linkFaultCustom 2 A custom fault, specified through the use of the customOrderedSet
command.

sendSetsMode

Indicates whether to transmit alternating good-bad blocks using only Type A blocks, only Type B blocks or
alternating between them. The choices are:

Option Value Usage

linkFaultSendTypeA 0 Use type A ordered sets only.

linkFaultSendTypeB 1 Use type B ordered sets only.

linkFaultCustom 2 (default) Use type A ordered sets, then good blocks, type B ordered
sets and then good blocks. Each cycle forms one loop count as used
in loopCount.

Appendix 1 IxTclHAL Commands

– 938 –

COMMANDS

The linkFaultSignaling command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

linkFaultSignaling cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the linkFaultSignaling command.

linkFaultSignaling config option value

Modify the linkFaultSignaling configuration options of the port. If no option is specified, returns a list
describing all of the available linkFaultSignaling options (see STANDARD OPTIONS) for port.

linkFaultSignaling get chasID cardID portID

Gets the current linkFaultSignaling configuration of the port with id portID on card cardID, chassis
chasID. Call this command before calling linkFaultSignaling cget option to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

linkFaultSignaling set chasID cardID portID

Sets the linkFaultSignaling configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the linkFaultSignaling config option value command.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

linkFaultSignaling startErrorInsertion chasID cardID portID

Starts the process of error insertion on the indicated port. Specific errors are:

l

linkFaultSignaling setDefault

Sets to IxTclHal default values for all configuration options.

linkFaultSignaling stopErrorInsertion chasID cardID portID

Stops the process of error insertion on the indicated port. This can be used to stop error insertion when
enableLoopContinuously is true, or to prematurely stop error insertion when loopCount is used. Specific
errors are:

EXAMPLES
package require IxTclHal

Appendix 1 IxTclHAL Commands

– 939 –

set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 55
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Get current link fault signaling data
if [linkFaultSignaling get $chas $card $port] {
ixPuts "Error in linkFaultSignaling"
}

Define a custom ordered set A
This is actually equivalent to a local fault
customOrderedSet config -blockType 0x4B
customOrderedSet config -syncBits 0x02
customOrderedSet config -byte1 0x00
customOrderedSet config -byte2 0x00
customOrderedSet config -byte3 0x01
customOrderedSet config -byte4 0x00

Appendix 1 IxTclHAL Commands

– 940 –

customOrderedSet config -byte5 0x00
customOrderedSet config -byte6 0x00
customOrderedSet config -byte7 0x00
if [customOrderedSet set linkFaultOrderedSetTypeA] {
ixPuts "Error in customOrderedSet set"
}

Set up link fault signalling, continuous insertion
of 14 errors, 200 good
linkFaultSignaling config -sendSetsMode linkFaultAlternateOrderedSets
linkFaultSignaling config -contiguousErrorBlocks 14
linkFaultSignaling config -contiguousGoodBlocks 200
linkFaultSignaling config -enableLoopContinuously true
linkFaultSignaling config -orderedSetTypeA linkFaultCustom
linkFaultSignaling config -orderedSetTypeB linkFaultRemote

if [linkFaultSignaling set $chas $card $port] {
ixPuts "Error in linkFaultSignaling set"
}

ixWriteConfigToHardware portList

if [linkFaultSignaling startErrorInsertion $chas $card $port] {
ixPuts "Error in linkFaultSignaling startErrorInsertion"
}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

customOrderedSet.

macSecChannel
macSecChannel - configure and hold MacSec channel information

SYNOPSIS

macSecChannel sub-command options

Appendix 1 IxTclHAL Commands

– 941 –

DESCRIPTION

The macSecChannel command is used to hold and configure the MacSec channel information for each
direction.

STANDARD OPTIONS

channelName

Allows configuration of the MacSec channel name.

macAddress

Allows configuration of the MacSec channel MAC address.
(default = '00 00 00 00 00 00')

portIdentifier

Read only. Displays the port identifer information. (default = 0)

enableAssociation

Enables/disables the secure association number. (default = false)

associationKey

Used to configure the key for secure association number. (default = '00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00')

associationNumber

Read only. Displays the current secure association number. (default = 0 = secureAN0)

direction

Read only. Displays the current channel direction if it is a macSecTx or
macSecRx. (default = macSecTransmit)

COMMANDS

The macSecChannel command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

macSecChannel getAssociation secureAssociationNumber

Gets all the configurations for the given secure association with the given secureAssociationNumber.

The supported options for secureAssociationNumber are:

Option

secureAN0

Appendix 1 IxTclHAL Commands

– 942 –

Option

secureAN1

secureAN2

secureAN3

macSecChannel setAssociation secureAssociationNumber

Sets all the configurations for the given secure association with the given secureAssociationNumber.

The supported options for secureAssociationNumber are:

Option

secureAN0

secureAN1

secureAN2

secureAN3

macSecChannel setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See Examples under macSecTag

SEE ALSO

macSecTx, macSecRx, macSecTag

macSecRx
macSecRx - configures the basic MacSec receive parameters of the port.

SYNOPSIS

macSecRx sub-command options

DESCRIPTION

The macSecRx command is used to configure the basic MacSec receive parameters of the port.

Appendix 1 IxTclHAL Commands

– 943 –

STANDARD OPTIONS

numChannels

Read only. Displays the number of secure Rx channels. (default = 0)

confidentialityOffset

Used to configure the MacSec port confidentiality offset. (default = 0)

Valid choices are: 0, 4, 30, 50.

COMMANDS

The macSecRx command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

macSecRx setDefault

Sets to IxTclHal default values for all configuration options.

macSecRx select chasID cardID portID

Selects the port to set or retrieve data from. By default, it fills in the objcct with the receive configuration
details.

macSecRx set

Sets the MacSecRx configuraton from IxTclHal to local IxHal object.

macSecRx get

Gets the MacSecRx configuraton from local IxHal to IxTclHal.

macSecRx addChannel

Adds the configured Connectivity Association channel configuration data for this port into the IxHal.

macSecRx getChannel secureChannelId

Retrieves the configured Connectivity Association Rx channel configuration data for the specified ID on
this port from the IxHal.

macSecRx setChannel secureChannelId

Sets the corresponding configured Connectivity Association Rx channel configuration data for the
specified ID on this port to the IxHal.

macSecRx delChannel secureChannelId

Deletes the specified configured Connectivity Association Rx channel configuration data for the specified
ID on this port from the IxHal.

macSecRx clearAllChannels

Deletes all the configured Connectivity Association channels for the selected port from the IxHal.

macSecRx getFirstChannel

Appendix 1 IxTclHAL Commands

– 944 –

Retrieves the first configured Connectivity Association channel configuration data for the selected port
from the IxHal.

macSecRx getNextChannel

Retrieves the next configured Connectivity Association channel configuration data for the selected port
from the IxHal.

EXAMPLES

See Examples under macSecTag.

SEE ALSO

macSecChannel, macSecTx, macSecTag.

macSecTag
macSecTag - contains the MacSec header.

SYNOPSIS

macSecTag sub-command options

DESCRIPTION

The macSecTag command is used to contain the MacSec header. This is the per-stream configuration.
Note that macSecTag needs to be configured before stream is set.

STANDARD OPTIONS

tciVersion

Allows the configuration of version. (default = 0)

enableTciVersionOverride

Allows the enabling of version override. (default = false)

enableForceByteCorruption

Allows the enabling of forced byte corruption. (default = false)

enableOverrideFlagRestriction

Allows the enabling of tag control information override. (default = false)

enableTciEndStation

Allows the enabling of tag control information end station override. (default = false)

Appendix 1 IxTclHAL Commands

– 945 –

If this parameter is set to true along with enableTciIncludeSci when enableOverrideFlagRestriction is not
enabled, then it is an invalid configuration and the set command fails with the error message posted in
the TclEvents.log. Only one can be enabled at a time, either enableTciEndStation or enableTciIncludeSci.

enableTciIncludeSci

Allows the enabling of tag control information include Sci. (default = false)

If this parameter is set to true along with enableTciEndStation when enableOverrideFlagRestriction is not
enabled, then it is an invalid configuration and the set command fails with the error message posted in
the TclEvents.log. Only one can be enabled at a time, either enableTciEndStation or enableTciIncludeSci.

enableTciSingleCopyBroadcast

Allows the enabling of tag control information single copy broadcast. This parameter cannot be enabled if
enableTciIncludeSci is enabled. (default = false)

enableTciEncryption

Allows the enabling of tag control information encryption. (default = false)

enableTciChangedText

Allows the enabling of tag control information changed text. (default = false)

associationNumber

Allows the configuration of association number. (default = 0)

macAddress

Allows the configuration of MAC address when enableTciIncludeSci = true. (default = '00 00 00 00 00 00')

portIdentifier

Allows the configuration of the port identifier value when enableTciIncludeSci = true. (default = 0)

enableShortLengthOverride

Allows the enabling of short length override. (default = false)

shortLength

Allows the configuration of short length. (default = 0)

packetNumber

Allows the configuration of packet number. (default = '00 00 00 00')

COMMANDS

The macSecTag command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 946 –

macSecTag setDefault

Sets to IxTclHal default values for all configuration options.

macSecTag set chasID cardID portID

Commits to IxHAL the macSecTag header for a particular portID.

macSecTag get chasID cardID portID

Retrieves from IxHAL the macSecTag header for a particular portID.

macSecTag decode capFrame chasID cardID portID

Decodes the MacSec Tag Frame and populates the TCLMacSecTag object if the feature is supported and
decoding was successful.

EXAMPLES
package req IxTclHal
set hostname loopback
ixConnectToChassis $astro
set retCode "PASS"

if {[ixConnectToChassis $hostName] } {
errorMsg "Error connecting to $hostName"
set retCode "FAIL"
}
set chassId [chassis cget -id]
set portList [list]

for { set cardId 1 } {$cardId <= [chassis cget -maxCardCount]} {incr cardId} {
if {[card get $chassId $cardId] == $::TCL_OK} {
set portId 1
if {[port isValidFeature $chassId $cardId $portId $::portFeatureMACSec]} {
port setModeDefaults $chassId $cardId $portId
lappend portList [list $chassId $cardId $portId]
}
}
}
if {[llength $portList] == 0} {
errorMsg "No ports in port list that support MACSec"
set retCode "FAIL"
return $retCode
}

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

if {[macSecTx select $chassId $cardId $portId $streamId]} {
errorMsg "Error setTx macSec: "
set retCode "FAIL"

Appendix 1 IxTclHAL Commands

– 947 –

break
}
if {[macSecRx select $chassId $cardId $portId $streamId]} {
errorMsg "Error setTx macSec: "
set retCode "FAIL"
break
}

macSecChannel setDefault
macSecChannel config -enable true
macSecChannel config -key "aa de bb 11 42"
if {[macSecChannel setAssociation $::secureAN0]} {
errorMsg "Error setting macSecChannel on secureAN0"
set retCode "FAIL"
break
}

macSecChannel config -key "00 ig ll 00 20"
if {[macSecChannel setAssociation $::secureAN1]} {
errorMsg "Error setting macSecChannel on secureAN1"
set retCode "FAIL"
break
}

Add the first secure channel
if {[macSecTx addChannel} {
errorMsg "Error adding Tx macSec connectivity association "
set retCode "FAIL"
break
}

Add the second secure channel
if {[macSecRx addChannel} {
errorMsg "Error adding Rx macSec connectivity association "
set retCode "FAIL"
break
}
set macSecChannelId 1
if {[macSecTx get $macSecChannelId} {
errorMsg "Error getting macSecTx: "
set retCode "FAIL"
break
}

ixPuts "Number of Tx secure channels:[macSecTx cget -numChannels]"

if {[macSecRx getChannel $macSecChannelId} {
errorMsg "Error getting macSecRx: "

Appendix 1 IxTclHAL Commands

– 948 –

set retCode "FAIL"
break
}

ixPuts "Number of Rx secure channels:[macSecRx cget -numChannels]"

if {[macSecTx getFirstChannel } {
errorMsg "Error adding macSec: "
set retCode "FAIL"
break
}
if {[macSecChannel getAssociation $::secureAN1]} {
errorMsg "Error setting macSecChannel on secureAN1"
set retCode "FAIL"
break
}
ixPuts "association number [macSecChannel cget -associationNumber]
ixPuts "association key [macSecChannel cget -associationKey]

if {[macSecRx getNextChannel } {
errorMsg "Error adding macSec: "
set retCode "FAIL"
break
}
ixPuts "Number of Rx secure channels:[macSecRx cget -numChannels]"
}

ixWritePortsToHardware portList
ixCheckLinkState portList

stream setDefault
protocol setDefault
protocol config -enableMacSec $::true

foreach port $portList {
set streamed 1
stream setDefault
stream config -name "my MACSec stream"
if [stream set $chassId $cardId $portId $streamId] {
errorMsg "Error setting stream on port $chassId.$cardId.$portId $streamId"
set retCode "FAIL"
break
}
macSecTag setDefault
macSecTag config - enableOverrideFlagRestriction true
macSecTag config -enableTciEndStation true
macSecTag config -enableTciIncludeSci true
macSecTag config -macAddress "00 11 22 33 44 56"

Appendix 1 IxTclHAL Commands

– 949 –

macSecTag config -portIdentifier 42
macSecTag config -associationNumber secureAN1
if {[macSecTag set $chassId $cardId $portId $streamId] {
errorMsg "Error setting macSecTag header on $chassId.$cardId.$portId $streamId"
set retCode "FAIL"
break
}

}

ixWriteConfigToHardware portList

SEE ALSO

macSecChannel, macSecTx, macSecRx.

macSecTx
macSecTx - configures the basic MacSec transmit parameters of the port.

SYNOPSIS

macSecTx sub-command options

DESCRIPTION

The macSecTx command is used to configure the basic MacSec transmit parameters of the port.

STANDARD OPTIONS

numChannels

Read only. Displays the number of secure Tx channels. (default = 0)

confidentialityOffset

Used to configure the MacSec port confidentiality offset. (default = 0)

negativeTestingOffset

Used to configure the Tx MacSec port negative testing offset. (default = 0)

negativeTestingMask

Used to configure the Tx MacSec port negative testing mask.
(default = '00000000')

COMMANDS

The macSecTx command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 950 –

macSecTx setDefault

Sets to IxTclHal default values for all configuration options.

macSecTx select chasID cardID portID

Selects the port to set or retrieve data from. By default, it fills in the objcct with the transmit configuration
details.

macSecTx set

Sets the MacSecTx configuraton from IxTclHal to local IxHal object.

macSecTx get

Gets the MacSecTx configuraton from local IxHal to IxTclHal.

macSecTx addChannel

Adds the configured Connectivity Association channel configuration data for this port into the IxHal.

macSecTx getChannel secureChannelId

Retrieves the configured Connectivity Association Tx channel configuration data for the specified ID on
this port from the IxHal.

macSecTx setChannel secureChannelId

Sets the configured Connectivity Association Tx channel configuration data for the specified ID on this
port from the IxHal.

macSecTx delChannel secureChannelId

Deletes the specified configured Connectivity Association Tx channel configuration data for the specified
ID on this port from the IxHal.

macSecTx clearAllChannels

Deletes all the configured Connectivity Association channels for this port from the IxHal.

macSecTx getFirstChannel

Retrieves the first configured Connectivity Association channel configuration data for the selected port
from the IxHal.

macSecTx getNextChannel

Retrieves the next configured Connectivity Association channel configuration data for the selected port
from the IxHal.

EXAMPLES

See Examples under macSecTag.

SEE ALSO

macSecChannel, macSecRx, macSecTag

Appendix 1 IxTclHAL Commands

– 951 –

mii
mii - configure the MII parameters for a MII ports

SYNOPSIS

mii sub-command options

DESCRIPTION

The mii command is used to configure the MII-specific information on old-style IEEE 802.3 devices. New
style MII AE devices defined in IEEE 802.3ae are managed by the miiae, mmd, and mmdRegister
commands.

STANDARD OPTIONS

enableManualAuto
Negotiate true / false

If set to true, then as the MII register is written to hardware auto negotiation begins. (default = false)

miiRegister

MII Source register. Defined register values include:

Option Value Usage

miiControl 0 (default)

miiStatus 1

miiPHYId1 2

miiPHYId2 3

miiAutoNegAdvertisement 4

miiAutoNegLinkPartnerAbility 5

miiAutoNegExpansion 6

miiRegister7 7

miiRegister8 8

miiRegister9 9

miiRegister10 10

miiRegister11 11

Appendix 1 IxTclHAL Commands

– 952 –

Option Value Usage

miiRegister12 12

miiRegister13 13

miiRegister14 14

miiRegister15 15

miiMirror 16

miiInterruptEnable 17

miiInterruptStatus 18

miiConfiguration 19

miiChipStatus 20

miiRegister21 21

miiRegister22 22

miiRegister23 23

miiRegister24 24

miiRegister25 25

miiRegister26 26

miiRegister27 27

miiRegister28 28

miiRegister29 29

miiRegister30 30

miiRegister31 31

phyAddress

Physical address of the MII register location. If set to -1, the default location is used. (default = -1)

readWrite

Sets the properties of the selected register. Possible properties include:

Appendix 1 IxTclHAL Commands

– 953 –

Option Value Usage

miiDisabled 0 (default)

miiReadOnly 1

miiReadWrite 2

miiSynchToCurrentState 3 The register is read and written during operation. In addition,
the read values are placed into the editable fields at the same
time.

registerValue

Value of the selected register. (default = 0000)

COMMANDS

The mii command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

mii cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the mii command.

mii config option value

Modify the MII configuration options of the port. If no option is specified, returns a list describing all of the
available MII options (see STANDARD OPTIONS) for port.

mii get chasID cardID portID [index = $::mdioInternal]

Gets the current MII configuration of the port with id portID on card cardID, chassis chasID. Any of the
three supported PHYs may be selected through the use of the index. The supported PHYs are:

Option Value Usage

mdioInternal 0 (default) The internal PHY located on the Ixia card.

mdioExternal1 1 The first defined external PHY.

mdioExternal2 2 The second defined external PHY.

Call this command before calling mii cget option value to get the value of the configuration option.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Network error between the client and the chassis

Appendix 1 IxTclHAL Commands

– 954 –

mii selectRegister select

After mii get chasID cardID portID has completed selects which register to fill the TCL parameters with.
Specific errors are:

l No port has previously been selected with the mii.get method
l The port is not an Mii port, or a port with Mii capability

mii set chasID cardID portID [index = $::mdioInternal]

Sets the MII configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the mii config option value command. Any of the three supported PHYs
may be set through the use of the index. The supported PHYs are:

Option Value Usage

mdioInternal 0 (default) The internal PHY located on the Ixia card.

mdioExternal1 1 The first defined external PHY.

mdioExternal2 2 The second defined external PHY.

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not an Mii port, or a port with Mii capability

mii setDefault

Sets to IxTclHal default values for all configuration options.

miiwrite chasID cardID portID

Writes the MII configuration of the port with id portID on card cardID, chassis chasID to the hardware.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Network error between the client and the chassis
l The port is not an Mii port, or a port with Mii capability

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID

Appendix 1 IxTclHAL Commands

– 955 –

set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assuming that MII card is in slot 3
set card 3
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Check for missing card
if {[card get $chas $card] != 0} \
{
ixPuts "Card $card does not exist"
exit
}

Get the type of card and check if it's the correct type
set cardType [card cget -type]
if {$cardType != $::card10100Mii} \
{
ixPuts "Card $card is not a 10/100 MII card"
exit
}

Appendix 1 IxTclHAL Commands

– 956 –

Set the options to default values
mii setDefault

Get the current mii state from the card
mii get $chas $card 1

Get the value of the control register (0)
mii selectRegister miiControl
set controlReg [mii cget -registerValue]
set msg [format "Register 00 value is %04x" $controlReg]
ixPuts $msg

Set the mode on register 00 to Read/Write/Sync
mii config -readWrite miiSynchToCurrentState
With bit 14 (loopback) on
set controlReg [expr $controlReg | 0x0400]
mii config -registerValue $controlReg

set to ixTclHal
mii set $chas $card 1

and write to hardware
set portList [list [list $chas $card 1]]
ixWritePortsToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

port, miiae, mmd, mmdRegister.

miiae
miiae - configure an MII AE.

SYNOPSIS

miiae sub-command options

Appendix 1 IxTclHAL Commands

– 957 –

DESCRIPTION

The miiae command is used to configure an MII AE PHY to be associated with a port. miiae manages new-
style IEEE 802.3ae PHYs. After configuration, miiae set should be used to associate it with a port; port
write or miiae write should be used to write the values to the hardware.

STANDARD OPTIONS

phyAddress

The address of the MII AE PHY. (default = 31)

COMMANDS

The miiae command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

miiae addDevice

Adds the device defined through the use of the mmd command.

miiae clearAllDevices

Deletes all devices associated with this MII AE PHY.

miiae config option value

Modify the configuration options of the PHY. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

miiae delDevice deviceAddress

Deletes the device whose address is deviceAddress.

miiae get chasID cardID portID index

Gets the current MII configuration of the port with id portID on card cardID, chassis chasID. Any of the
three supported PHYs may be selected through the use of the index. The supported PHYs are:

Option Value Usage

mdioInternal 0 (default) The internal PHY located on the Ixia card.

mdioExternal1 1 The first defined external PHY.

mdioExternal2 2 The second defined external PHY.

Call this command before calling mmd to look at the PHY. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Network error between the client and the chassis

Appendix 1 IxTclHAL Commands

– 958 –

miiae getDevice deviceAddress

Gets the device whose address is deviceAddress. The values associated with the device may be viewed
and modified through the use of the mmd command.

miiae set chasID cardID portID index

Sets the MII configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the mmd command. Any of the three supported PHYs may be set
through the use of the index. The supported PHYs are:

Option Value Usage

mdioInternal 0 (default) The internal PHY located on the Ixia card.

mdioExternal1 1 The first defined external PHY.

mdioExternal2 2 The second defined external PHY.

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not an Mii port, or a port with Mii capability

miiae setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts 'Could not connect to $host'
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1

Appendix 1 IxTclHAL Commands

– 959 –

}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assuming that a 10GB XAUI card is in slot 35
set card 35
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
set deviceNo 1

Configure register 1
mmdRegister setDefault
mmdRegister config -address 1
mmdRegister config -name reg1
mmdRegister config -registerValue 1234
And add it to the MMD
mmd addRegister

Configure register 2
mmdRegister config -address 2
mmdRegister config -name reg2
mmdRegister config -registerValue 3405
mmd addRegister

Now configure the MMD and add it to the miiae
mmd config -address $deviceNo
mmd config -name dev1
Add it to the miiae
miiae addDevice

miiae config -phyAddress 24

Set and write the miiaeif [miiae set $chas $card $port mdioExternal1] {
ixPuts "Error in miiae set"
}
if [miiae write $chas $card $port] {
ixPuts "Error in miiae write"

Appendix 1 IxTclHAL Commands

– 960 –

}
Now get the object back
if [miiae get $chas $card $port mdioExternal1] {
ixPuts "Error in miiae get"}
if [miiae getDevice $deviceNo] {
ixPuts "Error in miiae getDevice"
}
Now get the register contentsmmd getRegister 1
set name [mmdRegister cget -name]
set val [mmdRegister cget -registerValue]
ixPuts "Register 1 ($name) is $val"

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're usingixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {ixDisconnectTclServer $host
}

SEE ALSO

mii, mmd, mmdRegister.

mmd
mmd - configure an MII AE PHY.

SYNOPSIS

mmd sub-command options

DESCRIPTION

The mmd command is used to configure an individual MII AE PHY device. After configuration, miiae
addDevice should be used to add the device to the MII AE. The current contents of the device may be
obtained by miiae getDevice. The value of a device may only be changed by a sequence of miiae
getDevice, miiae delDevice and miiae addDevice.

STANDARD OPTIONS

address

The address of the device in the MMD device. (default = 0)

name

The name of the device. (default = {})

Appendix 1 IxTclHAL Commands

– 961 –

COMMANDS

The mmd command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

mmd addRegister

Adds the register defined through the use of the mmdRegister command to the MMD device.

mmd clearAllRegisters

Deletes all the registers associated with the MMD device.

mmd config option value

Modify the configuration options of the MMD device. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS).

mmd delRegister registerAddress

Deletes the register whose address is registerAddress.

mmd getRegister registerAddress

Gets the register whose address is registerAddress. The values associated with the register may be
viewed and modified through the use of the mmdRegister command.

mmd setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples in miiae.

SEE ALSO

mii, miiae, mmdRegister.

mmdRegister
mmdRegister - configure an MII AE MMD Register.

SYNOPSIS

mmdRegister sub-command options

DESCRIPTION

The mmdRegister command is used to configure an individual MII AE MMD register. After configuration,
mmd addRegister should be used to add the register to the PHY device. The current contents of the
register may be obtained by mmd getRegister. The value of a register may only be changed by a
sequence of mmd getRegister, mmd delRegister and mmd addRegister.

Appendix 1 IxTclHAL Commands

– 962 –

STANDARD OPTIONS

address

The address of the register in the register. (default = 0)

name

The name of the register. (default = {})

readWrite

Sets the properties of the selected register. Possible properties include:

Option Value Usage

miiDisabled 0

miiReadOnly 1

miiReadWrite 2 (default)

miiSynchToCurrentState 3 The register is read and written during operation. In addition,
the read values are placed into the editable fields at the same
time.

registerValue

Value of the selected register. (default = 0000)

COMMANDS

The mmdRegister command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

mmdRegister cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the mmdRegister command. The value returned for the registerValue option is a hex

mmdRegister config option value

Modify the configuration options of the register. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

mmdRegister setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples in miiae

Appendix 1 IxTclHAL Commands

– 963 –

SEE ALSO

mii, miiae, mmd.

mpls
mpls - configure the MPLS parameters for a port on a card on a chassis

SYNOPSIS

mpls sub-command options

DESCRIPTION

The mpls command is used to configure the MPLS information when building MPLS labeled packets. See
draft-ietf-mpls-arch-06.txt "work in progress" for a complete definition of MPLS label fields. Note that
stream get must be called before this command's get sub-command.

STANDARD OPTIONS

enableAutomaticallySetLabel true/false

Sets MPLS to automatically set the label values. (default = true)

forceBottomOfStack true/false

Automatically sets bottom of the stack bit. (default = true)

type

Sets the MPLS type. Options include:

Option Value Usage

mplsUnicast 0 (default)

mplsMulticast 1

COMMANDS

The mpls command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

mpls cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the mpls command.

mpls config option value

Modify the MPLS configuration options of the port. If no option is specified, returns a list describing all of
the available MPLS options (see STANDARD OPTIONS) for port.

Appendix 1 IxTclHAL Commands

– 964 –

mpls decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. mpls cget option command can be
used after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Mpls frame

mpls get chasID cardID portID

Gets the current MPLS configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling
mpls cget option to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

mpls set chasID cardID portID

Sets the MPLS configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the mpls config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

mpls setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo

Appendix 1 IxTclHAL Commands

– 965 –

return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 1
set txPort 1
set rxPort 2

Useful port lists
set portList [list [list $chas $card $txPort] \
[list $chas $card $rxPort]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up Transmit Port

Nothing special about the ports
port setFactoryDefaults $chas $card $txPort
port setDefault
port set $chas $card $txPort
port set $chas $card $rxPort

Stream: 10 packets
stream setDefault
stream config -numFrames 10
stream config -dma stopStream
#stream config -percentPacketRate 100
#stream config -rateMode usePercentRate

protocol setDefault
protocol config -ethernetType ethernetII
protocol config -enableMPLS true

Setup up two mpls labels
mpls setDefault
mpls config -type mplsUnicast

mplsLabel setDefault

Appendix 1 IxTclHAL Commands

– 966 –

mplsLabel config -label 128
mplsLabel config -bottomOfStack false
mplsLabel set 1

mplsLabel config -label 256
mplsLabel config -bottomOfStack true
mplsLabel set 2

mpls set $chas $card $txPort

stream set $chas $card $txPort 1

Commit to hardware
ixWritePortsToHardware portList

Make sure link is up
after 1000
ixCheckLinkState portList
ixStartPortCapture $chas $card $rxPort

Clear stats and transmit MPLS labeled frames
ixClearStats portList
ixStartPortTransmit $chas $card $txPort

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, protocol, mplsLabel.

mplsLabel
mplsLabel - configure the MPLS label parameters for a port on a card on a chassis.

SYNOPSIS

mplsLabel sub-command options

Appendix 1 IxTclHAL Commands

– 967 –

DESCRIPTION

The mplsLabel command is used to configure the MPLS label information when building MPLS labeled
packets. See draft-ietf-mpls-arch-06.txt "work in progress" for a complete definition of MPLS label fields.

STANDARD OPTIONS

bottomOfStack
true/false

Enables the bottom of the stack bit. This bit is set to true for the last entry in the label stack (for the
bottom of the stack) and false for all other label stack entries. (default = true)

experimentalUse

Sets the experimental use bit. (default=0)

label

Sets the actual value of the label. Any 20-bit value is valid; predefined options include:

Option Value Usage

mplsIPv4ExplicitNULL 0 (default)

mplsRouterAlert 1

mplsIPv6ExplicitNULL 2

mplsImplicitNULL 3

mplsReserved 4

timeToLive

Sets the time-to-live value. (default=64)

COMMANDS

The mplsLabel command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

mplsLabel cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the mplsLabel command.

mplsLabel config option value

Modify the MPLS label configuration options of the port. If no option is specified, returns a list describing
all of the available MPLS label options (see STANDARD OPTIONS) for port.

mplsLabel get labelID

Appendix 1 IxTclHAL Commands

– 968 –

Gets the current label configuration of the selected labelID. Call this command before calling mplsLabel
cget option to get the value of the configuration option. Specific errors are:

l There are no MPLS labels
l The specified labelID does not exist

mplsLabel set labelID

Sets the label configuration for label labelID reading the configuration option values set by the mplsLabel
config option value command. Specific errors are:

l The configured parameters are not valid for this port
l Insufficient memory to add a new label

mplsLabel setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under the mpls command.

SEE ALSO

stream, protocol, mpls.

networkHeader
networkHeader-configures a network header within the data field of an FC port.

SYNOPSIS

networkHeader sub-command options

DESCRIPTION

The networkHeader command holds information for a single network header data. NetworkHeader
command contains two parts, Destination Address and Source Address, each of which is of six different
types and different parameters. The types that represent the Name Identifier Format are as follows:

Destination Address Format Types Source Address Format Types

IEEE48BitAddressDest IEEE48BitAddressSrc

IEEEExtendedDest IEEEExtendedSrc

LocallyAssignedDest LocallyAssignedSrc

IEEERegisteredDest IEEERegisteredSrc

IEEERegisteredExtendedDest IEEERegisteredExtendedSrc

Appendix 1 IxTclHAL Commands

– 969 –

Destination Address Format Types Source Address Format Types

EUI64MappedDest EUI64MappedSrc

STANDARD OPTIONS

destinationFormat

The format of the name identifier used for the network destination address.

ieee48BitAddressDest

When the Name_Identifier format is IEEE 48-bit Address, the name value contains a 48-bit IEEE Standard
802.1A Universal LAN MAC Address (ULA). The ULA is represented as an ordered string of six bytes
numbered from 0 to 5. ULA Bytes 0, 1, and 2 are generated using the IEEE Company_ID.

The name identifier for IEEE 48 Bit Destination Address format is as follows:

Option Usage

48BitAddressName
Identifier

The 48 bit address name identifier when the destination address format is IEEE
48 Bit Address.

ieeeExtendedDest

When the Name_Identifier format is IEEE Extended, the name value contains the 48-bit IEEE address
preceded by a 12 bit value. The 12 bit value is an extension to the company assigned address portion of
the 48-bit address that forms a unique 60-bit value. The 48-bit IEEE address is defined same as for the
IEEE 48-bit Address Name_Identifier format.

The name identifier for IEEE Extended Destination Address format is as follows:

Option Usage

48BitAddressName
Identifier

The 48 bit address name identifier when the destination address format is IEEE
48 Bit Address.

vendorSpecific The vendor specific identifier that is mapped with the address format. It is true
only when destination address format is IEEE Extended.

locallyAssignedDest

When the Name_Identifier format is locally assigned, the name value field is assigned in a manner
determined by the administration of the Fabric in which it is assigned. A locally assigned Name_Identifier
is unique within the Fibre Channel interaction space wherein it is assigned.

The name identifier for Locally Assigned Destination Address format is as follows:

Appendix 1 IxTclHAL Commands

– 970 –

Option Usage

locallyAdministered
Value

The locally administered value that is present only when destination address
format is Locally Assigned.

ieeeRegisteredDest

When the Name_Identifier format is IEEE Registered, the name value field contains the 24-bit IEEE
Company_ID in canonical form, as specified by IEEE, followed by a 36-bit unique Vendor Specified
Identifier (VSID).

The name identifier for IEEE Registered Destination Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

ieeeRegistered
ExtendedDest

When the Name_Identifier format is IEEE Registered Extended, the name value contains the 24-bit IEEE
Company_ID in canonical form, as specified by IEEE, followed by a 36-bit unique vendor specified id
(VSID). Name_Identifiers that identify Fibre Channel Nodes or FC_Ports are limited to 64 bits and
therefore will not use the IEEE Registered Extended format.

The name identifier for IEEE Registered Extended Destination Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

vendorSpecificId
Extension

The vendor specific identifier extension that is present only when destination
address format is IEEE Registered Extended.

eui64MappedDest

When the Name_Identifier format is EUI64 Mapped, The NAA field contains either 0Ch, 0Dh, 0Eh, or 0Fh.
The name value field contains a modified 22-bit IEEE Company_ID, followed by a 40-bit unique VSID.

The name identifier for EUI64 Mapped Destination Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

Appendix 1 IxTclHAL Commands

– 971 –

sourceFormat

The format of the name identifier used for the network source address.

ieee48BitAddressSrc

When the Name_Identifier format is IEEE 48-bit Address, the name value contains a 48-bit IEEE Standard
802.1A Universal LAN MAC Address (ULA). The ULA is represented as an ordered string of six bytes
numbered from 0 to 5. ULA Bytes 0, 1, and 2 are generated using the IEEE Company_ID.

The name identifier for IEEE 48 Bit Source Address format is as follows:

Option Usage

48BitAddressName
Identifier

The 48 bit address name identifier when the source address format is IEEE 48
Bit Address.

ieeeExtendedSrc

When the Name_Identifier format is IEEE Extended, the name value contains the 48-bit IEEE address
preceded by a 12 bit value. The 12 bit value is an extension to the company assigned address portion of
the 48-bit address that forms a unique 60-bit value. The 48-bit IEEE address is defined same as for the
IEEE 48-bit Address Name_Identifier format.

The name identifier for IEEE Extended Source Address format is as follows:

Option Usage

48BitAddressName
Identifier

The 48 bit address name identifier when the source address format is IEEE 48
Bit Address.

vendorSpecific The vendor specific identifier that is mapped with the address format. It is true
only when source address format is IEEE Extended.

locallyAssignedSrc

When the Name_Identifier format is locally assigned, the name value field is assigned in a manner
determined by the administration of the Fabric in which it is assigned. A locally assigned Name_Identifier
is unique within the Fibre Channel interaction space wherein it is assigned.

The name identifier for Locally Assigned Source Address format is as follows:

Option Usage

locallyAdministered
Value

The locally administered value that is present only when source address format
is Locally Assigned.

Appendix 1 IxTclHAL Commands

– 972 –

ieeeRegisteredSrc

When the Name_Identifier format is IEEE Registered, the name value field contains the 24-bit IEEE
Company_ID in canonical form, as specified by IEEE, followed by a 36-bit unique Vendor Specified
Identifier (VSID).

The name identifier for IEEE Registered Source Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

ieeeRegistered
ExtendedSrc

When the Name_Identifier format is IEEE Registered Extended, the name value contains the 24-bit IEEE
Company_ID in canonical form, as specified by IEEE, followed by a 36-bit unique vendor specified id
(VSID). Name_Identifiers that identify Fibre Channel Nodes or FC_Ports are limited to 64 bits and
therefore will not use the IEEE Registered Extended format.

The name identifier for IEEE Registered Extended Source Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

vendorSpecificId
Extension

The vendor specific identifier extension that is present only when source address
format is IEEE Registered Extended.

eui64MappedSrc

When the Name_Identifier format is EUI64 Mapped, The NAA field contains either 0Ch, 0Dh, 0Eh, or 0Fh.
The name value field contains a modified 22-bit IEEE Company_ID, followed by a 40-bit unique VSID.

The name identifier for EUI64 Mapped Source Address format is as follows:

Option Usage

ieeeCompanyId The IEEE Company Identifier.

vendorSpecificId The vendor specific identifier that is mapped with the address format.

COMMANDS

The networkHeader command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 973 –

networkHeader setDefault option

Sets to default values for all configuration options.

networkHeader setDestination option

Sets the destination address format of the network header.

networkHeader setSource

Sets the source address format of the network header.

networkHeader getDestination

Gets the destination address format of the network header.

networkHeader getSource

Gets the source address format of the network header.

networkHeader decodeDestination

Decodes the destination address format configuration options for the network header.

networkHeader decodeSource

Decodes the source address format configuration options for the network header.

EXAMPLES

See examples under the fibreChannel command.

SEE ALSO

fibreChannel.

npivProperties
npivProperties - configure unconnected NPIV interface.

SYNOPSIS

npivProperties sub-command options

DESCRIPTION

The npivProperties command is used to configure an unconnected NPIV interface. (NPIV means N_Port_
ID Virtualization).

STANDARD OPTIONS

destinationId

Destination Identifier (default = 01.b6.69)

Appendix 1 IxTclHAL Commands

– 974 –

bufferToBufferRxSize

Maximum buffer-to-buffer Receive_Data_Field specified by the Fabric (default = 2112)

enableAutoPlogi

Automatically enables PLOGI to all the ports that are advertised by the fabric, or to PLOGI to a subset of
the variable ports that belong to a specified domain. (default = false)

enableNs
true/false

Enables registration to Name Server (default = false)

enableNSQuery

If true, enables Name Server Query parameters for this FCoE server.

enablePlogi
true/false

Enables Port login to specified Destination ID (default = false)

enablePRLI

If true, enables Process Login parameters. The PRLI request is used to establish the operating
environment between a group of related processes at the originating Nx_Port and a group of related
processes at the responding Nx_Port. If true, this option causes the state machine to attempt a process
login.

enableSCR
true/false

If set to true, the ENode registers for any changes with the Fabric by sending a State Change Registration
packet. (default = false)

enableVnPortKeep
Alives

If true, VN port sends periodic keep alives.

scrOption

The State Change Registration (SCR) function options.

The options are as follows:

Option Usage

fabricDetectedRegistration Register to receive all RSCN Requests issued by the Fabric Controller
for events detected by the Fabric.

Appendix 1 IxTclHAL Commands

– 975 –

Option Usage

nxPortDetectedRegistration Register to receive all RSCN Requests issued for events detected by
the affected Nx_Port.

fullRegistration Register to receive all RSCN Requests issued. The RSCN Request
returns all affected N_Port_IDs.

sourceNodeWWN

Source node Worldwide Name - a Name_identifier that is worldwide unique, represented by a 64-bit
value. (default = '00 ... 00')

sourcePortWWN

Source port Worldwide Name - a Name_identifier that is worldwide unique, represented by a 64-bit value.
(default = '00 ... 00')

COMMANDS

The npivProperties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

npivProperties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the npivProperties command.

npivProperties config option value

Modify the NPIV properties configuration options of the port. If no option is specified, returns a list
describing all of the available NPIV properties options (see STANDARD OPTIONS) for port.

npivProperties setDefault

Sets to IxTclHal default values for all configuration options.

npivProperties addPlogi

Adds a PLOGI to npivProperties. The values are available in the fcoePlogi command.

npivProperties delPlogi plogiIndex

Deletes the PLOGI associated with this NPIV property set at the specified index. The index of the first
entry is 1. The values are available in the fcoePlogi command. Specific errors are:

l The indexed entry does not exist in the list.
l Invalid index.

npivProperties getPlogi plogiIndex

Retrieves the PLOGI associated with this NPIV property set at the specified index. The index of the first
entry is 1. The values are available in the fcoePlogi command. Specific errors are:

Appendix 1 IxTclHAL Commands

– 976 –

l The indexed entry does not exist in the list.

npivProperties getFirstPlogi

Retrieves the first PLOGI associated with this NPIV property set. The values are available in the fcoePlogi
command. Specific errors are:

l There are no entries in the list.

npivProperties getNextPlogi

Retrieves the next PLOGI associated with this NPIV property set. The values are available in the fcoePlogi
command. Specific errors are:

l There are no more entries in the list.

npivProperties removeAllPlogis

Deletes all of the PLOGIs associated with this NPIV property set.

EXAMPLES

See example under fcoe.

SEE ALSO

fcoe, fcoeDiscoveredInfo, fcoeProperties, fibreChannel, fcoePlogi.

oamEventNotification
oamEventNotification - the OAM PDU type Event Notification.

SYNOPSIS

oamEventNotification sub-command options

DESCRIPTION

The oamEventNotification command implements the OAM PDU type Event Notification.

The TLVs connected to this command include: Errored Symbol Period, Errored Frame, Errored Frame
Period, Errored Frame Seconds Summary, and Organization Specific.

STANDARD OPTIONS

currentTlvType

Read only. (default = oamEventNotificationEndOfTlv)

Predefined options include:

Option Value Usage

oamEventNotificationEndOfTlv 0x00 (default) End of TLV Marker

Appendix 1 IxTclHAL Commands

– 977 –

Option Value Usage

oamEventNotificationSymbol 0x01 Errored Symbol Period Event

oamEventNotificationFrame 0x02 Errored Frame Event

oamEventNotificationFramePeriod 0x03 Errored Frame Period Event

oamEventNotificationSummary 0x04 Errored Frame Seconds Summary Event

oamEventNotificationOrgSpecific 0xFE Organization Specific Event

sequenceNumber

The OAM client increments the Sequence Number for each unique Event Notification OAMPDU formed by
the OAM client. A particular Event Notification OAMPDU may be sent multiple times with the same
sequence number. Upon receiving an Event Notification OAMPDU, the OAM client compares the Sequence
Number with the last received Sequence Number. If equal, the current event is a duplicate and is ignored
by the OAM client. (default = 0)

COMMANDS

The oamEventNotification command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamEventNotification addTlv tlvType

Adds a TLV to OAM Event Notification PDU with TLV type (see currentTlvType, above).

oamEventNotification delTlv tlvIndex

Deletes a TLV from OAM Event Notification with specific Index.

oamEventNotification setTlv tlvIndex

Sets the configuration of the TLV with the specified Index.

oamEventNotification getTlv tlvIndex

Gets the configuration of the TLV with the specified Index.

oamEventNotification getFirstTlv

Gets the first TLV from the list of OAM Event Notification PDUs.

oamEventNotification getNextTlv

Gets the next TLV from the list.

oamEventNotification clearAllTlvs

Clears all TLVs for the Event Notification PDU.

Appendix 1 IxTclHAL Commands

– 978 –

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamSymbolPeriodTlv, oamFrameTlv, oamFramePeriodTlv, oamSummaryTlv,
oamOrganizationSpecificTlv, oamEventOrgTlv.

oamEventOrgTlv
oamEventOrgTlv - implements one type of OAM Event Notification PDU.

SYNOPSIS

oamEventOrgTlv sub-command options

DESCRIPTION

The oamEventOrgTlv command implements one type of OAM Event Notification PDU. The Organization
Specific Event TLV is used for vendor extensions. The 32-bit vendor specific information is not defined and
is used to encode the model or version of the platform.

STANDARD OPTIONS

type

Read only. Set to 254 (0xFE) to indicate Organization Specific Event.

length

Read only. Set to 16 (0x10). The length (in octets) of this TLV-tuple.

oui

Organization unique identifier. (default = '00 00 00')

organizationSpecific
Value

The value of the Organization Specific Information TLV (typically, the model or version of the platform).

COMMANDS

The oamEventOrgTlv command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamEventOrgTlv setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 979 –

EXAMPLES

See example code under oamHeader

SEE ALSO

oamHeader, oamEventNotification, oamSymbolPeriodTlv, oamFrameTlv, oamFramePeriodTlv,
oamSummaryTlv, oamOrganizationSpecificTlv.

oamFrameTlv
oamFrameTlv - implements one type of OAM Event Notification PDU.

SYNOPSIS

oamFrameTlv sub-command options

DESCRIPTION

The oamFrameTlv command implements one type of OAM Event Notification PDU.

The Errored Frame Event TLV counts the number of errored frames detected during the specified period.
The period is specified by a time interval. This event is generated if the errored frame count is equal to or
greater than the specified threshold for that period. This event is generated at the end of the event
window rather than when the threshold is crossed.

STANDARD OPTIONS

length

Read only. This one-octet field set to 26 (0x1A). Indicates the length (in octets) of this TLV_tuple.

timestamp

This two-octet field indicates the time reference when the event was generated, in terms of 100 ms
intervals, encoded as a 16-bit unsigned integer. (default = 0)

frames

This four-octet field indicates the number of detected errored frames in the period, encoded as a 32-bit
unsigned integer. (default = 0)

window

This two-octet field indicates the duration of the period, in terms of 100 ms intervals, encoded as a 16-bit
unsigned integer. (default = 0)

Lower bound: one second.

Upper bound: one minute.

Appendix 1 IxTclHAL Commands

– 980 –

threshold

This four-octet field indicates the number of detected errored frames in the period is required to be equal
to or greater than in order for the event to be generated, encoded as a 32-bit unsigned integer. (default =
0)

Lower bound: zero symbol errors.

Upper bound: unspecified.

eventRunningTotal

This four-octet field indicates the number of Errored Frame Event TLVs that have been generated since
the OAM sublayer was reset, encoded as a 32-bit unsigned integer. (default = 0)

errorRunningTotal

This eight-octet field indicates the sum of errored frames that have been detected since the OAM sublayer
was reset. (default = 0)

COMMANDS

The oamFrameTlv command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamFrameTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamEventNotification, oamSymbolPeriodTlv, oamEventOrgTlv, oamFramePeriodTlv,
oamSummaryTlv, oamOrganizationSpecificTlv.

oamFramePeriodTlv
oamFramePeriodTlv - implements one type of OAM Event Notification PDU.

SYNOPSIS

oamFramePeriodTlv sub-command options

DESCRIPTION

The oamFramePeriodTlv command implements one type of OAM Event Notification PDU.

The Errored Frame Period Event TLV counts the number of errored frames detected during the specified
period. The period is specified by a number of received frames. This event is generated if the errored

Appendix 1 IxTclHAL Commands

– 981 –

frame count is greater than or equal to the specified threshold for that period (for example, if the errored
frame count is greater than or equal to 10 for the last 1,000,000 frames received). This event is
generated at the end of the event window rather than when the threshold is crossed.

STANDARD OPTIONS

length

Read only. This one-octet field set to 286 (0x1C). Indicates the length (in octets) of this TLV_tuple.

timestamp

This two-octet field indicates the time reference when the event was generated, in terms of 100 ms
intervals, encoded as a 16-bit unsigned integer. (default = 0)

window

This four-octet field indicates the duration of the period, in terms of frames, encoded as a 32-bit unsigned
integer. (default = 0)

Lower bound: the number of minFrameSize frames that can be received in 100 ms on the underlying
physical layer.

Upper bound: the number of minFrameSize frames that can be received in one minute on the underlying
physical layer.

frames

This four-octet field indicates the number of detected errored frames in the period, encoded as a 32-bit
unsigned integer. (default = 0)

threshold

This four-octet field indicates the number of detected errored frames in the period is required to be equal
to or greater than in order for the event to be generated, encoded as a 32-bit unsigned integer. (default =
0)

Lower bound: zero symbol errors.

Upper bound: unspecified.

errorRunningTotal

This eight-octet field indicates the sum of errored frames that have been detected since the OAM sublayer
was reset. (default = 0)

eventRunningTotal

This four-octet field indicates the number of Errored Frame Event TLVs that have been generated since
the OAM sublayer was reset, encoded as a 32-bit unsigned integer. (default = 0)

Appendix 1 IxTclHAL Commands

– 982 –

COMMANDS

The oamFramePeriodTlv command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamFramePeriodTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamEventNotification, oamSymbolPeriodTlv, oamEventOrgTlv, oamFrameTlv,
oamSummaryTlv, oamOrganizationSpecificTlv.

oamHeader
oamHeader - configure the OAM header for streams.

SYNOPSIS

oamHeader sub-command options

DESCRIPTION

The oamHeader command is used to for the stream configuration for the OAM header. Port configuration
for OAM is implemented by oamPort.

The remaining OAM objects are tightly coupled to this object. This object lives on the protocolStack,
consistent with all other stream protocol configuration objects.

STANDARD OPTIONS

type

Read only. Set to 34825 = Slow Protocols.

subType

Read only. Set to 3 (0x03 = OAM).

flags

Byte, or'd value with enums. 2-byte flag field contains the discovery status of local and remote OAM
entities, as well as fault indications. (default = 0)

Example: oamHeader config -flags [expr $::oamFlagCriticalEvent|$::oamFlagLocalEvaluating

Predefined options include:

Appendix 1 IxTclHAL Commands

– 983 –

Option Value Usage

oamFlagNone 0x0000 (default)

oamFlagLinkFault 0x0001 Link Fault

oamFlagDyingGasp 0x0002 Dying Gasp

oamFlagCriticalEvent 0x0004 Critical Event

oamFlagLocalEvaluating 0x0008 Local Evaluating

oamFlagLocalStable 0x0010 Local Stable

oamFlagRemoteEvaluating 0x0020 Remote Evaluating

oamFlagRemoteStable 0x0040 Remote Stable

code

PDU types. (default = oamCodeInformation)

Predefined options include:

Option Value Usage

oamCodeInformation 0x00 Information

oamCodeEventNotification 0x01 Event Notification

oamCodeVariableRequest 0x02 Variable Request

oamCodeVariableResponse 0x03 Variable Response

oamCodeLoopbackControl 0x04 Loopback Control

oamCodeOrgSpecific 0xFE Organization Specific

COMMANDS

The oamHeader command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

oamHeader setDefault

Sets to IxTclHal default values for all configuration options.

oamHeader set chasID cardID portID

Sets the OAM header and family of OAM objects into IxHal.

oamHeader get chasID cardID portID

Appendix 1 IxTclHAL Commands

– 984 –

Retrieves the OAM header and family of OAM objects from IxHal.

oamHeader decode capFrame chasID cardID portID

Decodes the OAM stream.

EXAMPLES
package req IxTclHal
set hostname astro
ixConnectToChassis $hostName
set retCode "PASS"

if {[ixConnectToChassis $hostName] } {
errorMsg "Error connecting to $hostName"
set retCode "FAIL"
}
set chassId [chassis cget -id]
set portList [list]

for { set cardId 1 } {$cardId <= [chassis cget -maxCardCount]} {incr cardId} {
if {[card get $chassId $cardId] == $::TCL_OK} {
set portId 1
if {[port isValidFeature $chassId $cardId $portId portFeatureMACSec]} {
port setModeDefaults $chassId $cardId $portId
lappend portList [list $chassId $cardId $portId]
}
}
}
if {[llength $portList] == 0} {
errorMsg "No ports in port list that support MACSec"
set retCode "FAIL"
return $retCode
}

foreach port $portList {
scan $port "%d %d %d" chassis card port

set streamId 1

oamPort setDefault
oamPort config -enable true
oamPort config -macAddress "00 00 AB BA DE AD"
oamPort config -enableLoopback true
oamPort config -enableLinkEvents true
oamPort config -maxOamPduSize 1518
oamPort config -oui "00 00 00"
oamPort config -vendorSpecificInformation "00 00 00 00"
oamPort config -idleTimer 5

Appendix 1 IxTclHAL Commands

– 985 –

oamPort config -enableOptionalTlv true
oamPort config -optionalTlvType 254
oamPort config -optionalTlvValue "11 11 11 11 11"
oamPort set $chassis $card $port
lappend portList [list $chassis $card $port]
ixWritePortsToHardware portList
ixCheckLinkState portList

Stream 1
stream setDefault
stream config -name "OamStream"
stream config -enable true
stream config -framesize 200

protocol setDefault
protocol config -enableOAM true

oamHeader setDefault
oamHeader config -flags [expr
$::oamFlagCriticalEvent|$::oamFlagLocalEvaluating|$::oamFlagLocalStable|$::oamFlagRem
oteEvaluation]
oamHeader config -code oamCodeLoopbackControl

oamInformation clearAllTlvs

oamLocalInformationTlv setDefault
oamLocalInformationTlv config -revision 0
oamLocalInformationTlv config -parserAction
oamParserActionForwardoamLocalInformationTlv config -multiplexerAction
oamMultiplexerActionForward
oamLocalInformationTlv config -enableOamPassiveMode false
oamLocalInformationTlv config -enableUnidirectional false
oamLocalInformationTlv config -enableLinkEvents false
oamLocalInformationTlv config -enableRemoteLoopback false
oamLocalInformationTlv config -enableVariableRetrieval false
oamLocalInformationTlv config -maxPduSize 0
oamLocalInformationTlv config -oui "00 00 00"
oamLocalInformationTlv config -vendorSpecificInformation "00 00 00 00"

if {[oamInformation addTlv oamInformationLocalInfo} {
errorMsg "Error adding oamEventNotification oamInformationLocalInfo TLV "
}

oamRemoteInformationTlv setDefault
oamRemoteInformationTlv config -revision 0

Appendix 1 IxTclHAL Commands

– 986 –

oamRemoteInformationTlv config -parserAction oamParserActionForward
oamRemoteInformationTlv config -multiplexerAction oamMultiplexerActionForward
oamRemoteInformationTlv config -enableOamPassiveMode false
oamRemoteInformationTlv config -enableUnidirectional false
oamRemoteInformationTlv config -enableLinkEvents false
oamRemoteInformationTlv config -enableRemoteLoopback false
oamRemoteInformationTlv config -enableVariableRetrieval false
oamRemoteInformationTlv config -maxPduSize 0
oamRemoteInformationTlv config -oui "00 00 00"
oamRemoteInformationTlv config -vendorSpecificInformation "00 00 00 00"

if {[oamInformation addTlv oamInformationRemoteInfo} {
errorMsg "Error adding oamEventNotification oamInformationRemoteInfo TLV "
}

oamEventNotification setDefault
oamEventNotification clearAllTlvs
oamEventNotification config -sequenceNumber 0

oamSymbolPeriodTlv setDefault
oamSymbolPeriodTlv config -symbols 10
oamSymbolPeriodTlv config -timestamp 10
oamSymbolPeriodTlv config -window 10
oamSymbolPeriodTlv config -threshold 10
oamSymbolPeriodTlv config -errorRunningTotal 10
oamSymbolPeriodTlv config -eventRunningTotal 10

if {[oamEventNotification addTlv oamEventNotificationSymbol} {
errorMsg "Error adding oamEventNotification oamEventNotificationSymbol TLV "
}

oamSummaryTlv setDefault
oamSummaryTlv config -frameSeconds 10
oamSummaryTlv config -timestamp 10
oamSummaryTlv config -window 110
oamSummaryTlv config -threshold 110
oamSummaryTlv config -errorRunningTotal 110
oamSummaryTlv config -eventRunningTotal 110

if {[oamEventNotification addTlv oamEventNotificationSummary} {
errorMsg "Error adding oamEventNotification oamEventNotificationSummary TLV "
}

oamEventOrgTlv setDefault
oamEventOrgTlv config -oui "00 00 00"oamEventOrgTlv config -length 16
oamEventOrgTlv config -organizationSpecificValue "00 00 00 00 00 00 00 00 00 00 00"

if {[oamEventNotification addTlv oamEventNotificationOrgSpecific]} {

Appendix 1 IxTclHAL Commands

– 987 –

errorMsg "Error adding oamEventNotification oamEventNotificationOrgSpecific TLV "
}

oamVariableRequest clearAllTlvs

oamVariableResponse clearAllTlvs

oamLoopbackControl setDefault
oamLoopbackControl config -enableLoopback true

oamOrganizationSpecific setDefault
oamOrganizationSpecific config -oui "00 00 00"
oamOrganizationSpecific config -organizationSpecificValue "00 00 00 00 00 00 00 00 00
00 00
00 00"

if {[oamHeader set $chassis $card $port]} {
errorMsg "Error setting oam header on $chassis $card $port"
}

if {[stream set $chassis $card $port $streamId]} {
errorMsg "Error setting oam header on $chassis $card $port"
}

}

ixWriteConfigToHardware portList -noProtocolServer

SEE ALSO

oamInformation, oamEventNotification, oamVariableRequest, oamVariableResponse,
oamLoopbackControl, oamOrganizationSpecific.

oamInformation
oamInformation - the OAM PDU type Information.

SYNOPSIS

oamInformation sub-command options

DESCRIPTION

The oamInformation command implements the OAM PDU type Information.

The TLVs connected to this command include: Local Information, Remote Information, and
oamOrganizationSpecificTlv.

Appendix 1 IxTclHAL Commands

– 988 –

STANDARD OPTIONS

currentTlvType

Read only. (default = oamInformationEndOfTlv)

Predefined options include:

Option Value Usage

oamInformationEndOfTlv 0x00 (default) End of TLV Marker

oamInformationLocalInfo 0x01 Local Information TLV

oamInformationRemoteInfo 0x02 Remote Information TLV

oamInformationOrgInfo 0xFE Organization Specific TLV

COMMANDS

The oamInformation command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamInformation addTlv tlvType

Adds a TLV to OAM Information PDU with TLV type (listed above in currentTlvType).

oamInformation delTlv tlvIndex

Deletes a TLV from OAM Information with specific Index.

oamInformation setTlv tlvIndex

Sets the configuration of the TLV with the specified Index.

oamInformation getTlv tlvIndex

Gets the configuration of the TLV with the specified Index.

oamInformation getFirstTlv

Gets the first TLV from the list of OAM Information PDUs.

oamInformation getNextTlv

Gets the next TLV from the list.

oamInformation clearAllTlvs

Clears all TLVs for the Information PDU.

EXAMPLES

See example code under oamHeader

Appendix 1 IxTclHAL Commands

– 989 –

SEE ALSO

oamHeader, oamLocalInformationTlv, oamRemoteInformationTlv, oamOrganizationSpecificTlv.

oamLocalInformationTlv
oamLocalInformationTlv - implements one type of OAM Information TLV.

SYNOPSIS

oamLocalInformationTlv sub-command options

DESCRIPTION

The oamLocalInformationTlv command implements one type of OAM Information PDU. Local and remote
information is used in the discovery process.

STANDARD OPTIONS

length

Read only. Set to 0. Indicates the length (in octets) of this TLV_tuple.

enableLinkEvents
true/false

Enable to interpret link events. (default = false)

enableOamPassive
Mode true/false

DTE configured in active (true) or passive mode. (default = false)

enableRemote
Loopback true/false

Enable OAM remote loopback mode. (default = false)

enableUnidirectional
true/false

OAM provides an OAM PDU-based mechanism to notify the remote DTE when one direction of a link is
non-operational and therefore data transmission is disabled. The ability to operate a link in a
unidirectional mode for diagnostic purposes supports failure detection and notification. (default = false)

enableVariable
Retrieval true/false

Enable variable retrieval (oamVariableRequest). (default = false)

Appendix 1 IxTclHAL Commands

– 990 –

maxPduSize

11-bit field which represents the largest OAM PDU, in octets, supported by the DTE. This value is
compared to the remote's Maximum PDU Size and the smaller of the two is used. (default = 0)

multiplexerAction

Multiplexer function is responsible for passing frames received from the superior sublayer (for example,
MAC client sublayer), OAMPDUs from the Control function and loopback frames from the Parser, to the
subordinate sublayer (for example, MAC sublayer). (default = oamMultiplexerActionForward))

Option Value Usage

oamMultiplexerActionForward 0x00 (default) sends on the request over the wire

oamMultiplexerActionDiscard 0x01 discards the request

parserAction

Parser distinguishes among OAMPDUs, MAC client frames and loopback frames and passes each to the
appropriate entity (Control, superior sublayer and Multiplexer, respectively). (default =
oamParserActionForward))

Option Value Usage

oamParserActionForward 0x00 (default) lower layer forwards request to upper layer

oamParserActionLoopback 0x01 lower layer sends back request

oamParserActionDiscard 0x02 lower layer discards request

oamParserActionInvalid 0x03 parser action is invalid

revision

The current revision of the Information TLV. The value of this field shall start at zero and be incremented
each time something in the Information TLV changes. (default = 0)

oamVersion

Read only. Set to 1.

oui

Organization unique identifier. 3 hex bytes. (default = '00 00 00')

Appendix 1 IxTclHAL Commands

– 991 –

vendorSpecific
Information

An unspecified list of hex bytes. May be used to differentiate a vendor's product models/versions. (default
= '00 00 00 00')

COMMANDS

The oamLocalInformationTlv command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

oamLocalInformationTlv setDefault

Sets to IxTclHal default values for all configuration options for this command.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamInformation, oamRemoteInformationTlv, oamOrganizationSpecificTlv.

oamLoopbackControl
oamLoopbackControl - the OAM PDU type Loopback Control.

SYNOPSIS

oamLoopbackControl sub-command options

DESCRIPTION

The oamLoopbackControl command implements the OAM PDU type Loopback Control.

STANDARD OPTIONS

enableLoopback
true/false

Enable/disable Loopback control. (default = false)

COMMANDS

The oamLoopbackControl command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamLoopbackControl setDefault

Sets to IxTclHal default values for all configuration options for this command.

Appendix 1 IxTclHAL Commands

– 992 –

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader.

oamOrganizationSpecific
oamOrganizationSpecific - the OAM PDU type Organization Specific.

SYNOPSIS

oamOrganizationSpecific sub-command options

DESCRIPTION

The oamOrganizationSpecific command implements the OAM PDU type Organization Specific, which is
used for vendor extensions.

STANDARD OPTIONS

oui

Organization unique identifier. 3 hex bytes. (default = '00 00 00')

organizationSpecific
Value

39-byte hex value of all zeroes ('00 ... 00')

COMMANDS

The oamOrganizationSpecific command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

oamOrganizationSpecific setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamLocalInformationTlv, oamRemoteInformationTlv, oamOrganizationSpecificTlv.

oamOrganizationSpecificTlv
oamOrganizationSpecificTlv - implements one type of OAM Information PDU.

Appendix 1 IxTclHAL Commands

– 993 –

SYNOPSIS

oamOrganizationSpecificTlv sub-command options

DESCRIPTION

The oamOrganizationSpecificTlv command implements one type of OAM Information PDU. It is used for
vendor extensions. The 32-bit vendor specific information is not defined and is used to encode the model
or version of the platform.

STANDARD OPTIONS

type

Read only. Set to 254 (0xFE) to indicate Organization Specific Information.

length

Read only. The length (in octets) of an Organization Specific Information TLV is set to 16.

oui

Organization unique identifier. 3 hex bytes. (default = '00 00 00')

organizationSpecificValue

11-bytes hex list. The value of the Organization Specific Information TLV. (default is all zeroes)

COMMANDS

The oamOrganizationSpecificTlv command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

oamOrganizationSpecificTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamInformation, oamRemoteInformationTlv, oamLocalInformationTlv.

oamPort
oamPort - configure the OAM port propterties.

SYNOPSIS

oamPort sub-command options

Appendix 1 IxTclHAL Commands

– 994 –

DESCRIPTION

The oamPort command is used to configure the OAM port properties. Stream configuration for OAM is
implemented by oamHeader.

STANDARD OPTIONS

enable true/false

Enables/disables the OAM on the port. (default = false)

macAddress

Allows configuration of the OAM Mac address on the port.
(default = '00 00 00 00 00 00')

enableLoopback
true/false

Enables/disables the OAM loopback capabilities. (default = false)

enableLinkEvents
true/false

Enables/disables the OAM link events capabilities. (default = false)

maxOamPduSize

Allows configuration of the maximum OAM PDU size. (default = 1518)

oui

Allows configuration of the organization unique identifier. (default = '00 00 00')

vendorSpecificInformation

Allows configuration of the vendor specific information.
(default = '00 00 00 00')

idleTimer

Allows configuration of the idle timer (in seconds). (default = 5)

enableOptionalTlv

Enable/disable optional TLV. (default = false)

optionalTlvType

Applies only when enableOptionalTlv is set to true. (default = 254, which is oamInformationOrgInfo):

Appendix 1 IxTclHAL Commands

– 995 –

Option Value Usage

oamInformationEndOfTlv 0x00 (default) End of TLV Marker

oamInformationLocalInfo 0x01 Local Information TLV

oamInformationRemoteInfo 0x02 Remote Information TLV

oamInformationOrgInfo 0xFE Organization Specific TLV

optionalTlvValue

Applies only when enableOptionalTlv is set to true.

COMMANDS

The oamPort command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

oamPort setDefault

Sets to IxTclHal default values for all configuration options.

oamPort set chasID cardID portID

Sets the OAM configuration into the port.

oamPort get chasID cardID portID

Retrieves the configured OAM from the port.

EXAMPLES
package req IxTclHal

set hostname astro
ixConnectToChassis $hostname

if {[ixConnectToChassis $hostName] } {
errorMsg "Error connecting to $hostName"
set retCode "FAIL"
}
set chassId [chassis cget -id]
set portList [list]

for { set cardId 1 } {$cardId <= [chassis cget -maxCardCount]} {incr cardId} {
if {[card get $chassId $cardId] == $::TCL_OK} {
set portId 1
if {[port isValidFeature $chassId $cardId $portId portFeatureEthernetOAM]} {
port setModeDefaults $chassId $cardId $portId
lappend portList [list $chassId $cardId $portId]
}

Appendix 1 IxTclHAL Commands

– 996 –

}
}
if {[llength $portList] == 0} {
errorMsg "No ports in port list that support portFeatureEthernetOAM"
set retCode "FAIL"
return $retCode
}

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

oamPort config -enable $::true
oamPort config -macAddress "01 02 03 aa bb cc"
oamPort config -enableLoopback $::true
if {[oamPort set $chassId $cardId $portId]} {
errorMsg "Error setting oamPort on $chassId $cardId $portId"
}
}

ixWriteConfigToHardware portList

foreach port $portList {
scan $port "%d %d %d" chassId cardId portId

if {[oamStatus get $chassId $cardId $portId]} {
errorMsg "Error getting oamStatus on $chassId $cardId $portId"
}
if {[oamStatus getLocalStatus]} {
errorMsg "Error getting oamStatus on $chassId $cardId $portId"
}
ixPuts "Local oamVersion:[oamStatus cget -oamVersion]"
ixputs "Local discoveryStatus:[oamStatus cget
-discoveryStatus]"

if {[oamStatus getRemoteStatus} {
errorMsg "Error getting oamStatus on $chassId $cardId $portId"
}
ixPuts "Remote oamVersion:[oamStatus cget -oamVersion]"
ixputs "Remote discoveryStatus:[oamStatus cget
-discoveryStatus]"
}

SEE ALSO

oamStatus.

Appendix 1 IxTclHAL Commands

– 997 –

oamRemoteInformationTlv
oamRemoteInformationTlv - implements one type of OAM Information TLV.

SYNOPSIS

oamRemoteInformationTlv sub-command options

DESCRIPTION

The oamRemoteInformationTlv command implements one type of OAM Information PDU. Local and
remote information is used in the discovery process.

STANDARD OPTIONS

length

Read only. Set to 0. Indicates the length (in octets) of this TLV_tuple.

enableLinkEvents
true/false

Enable to interpret link events. (default = false)

enableOamPassive
Mode true/false

DTE configured in active (true) or passive mode. (default = false)

enableRemote
Loopback true/false

Enable OAM remote loopback mode. (default = false)

enableUnidirectional
true/false

OAM provides an OAM PDU-based mechanism to notify the remote DTE when one direction of a link is
non-operational and therefore data transmission is disabled. The ability to operate a link in a
unidirectional mode for diagnostic purposes supports failure detection and notification. (default = false)

enableVariable
Retrieval true/false

Enable variable retrieval (oamVariableRequest). (default = false)

maxPduSize

11-bit field which represents the largest OAM PDU, in octets, supported by the DTE. This value is
compared to the remote's Maximum PDU Size and the smaller of the two is used. (default = 0)

Appendix 1 IxTclHAL Commands

– 998 –

multiplexerAction

(default = oamMultiplexerActionForward))

Option Value Usage

oamMultiplexerActionForward 0 sends on the request over the wire

oamMultiplexerActionDiscard 1 discards the request

parserAction

(default = oamParserActionForward))

Option Value Usage

oamParserActionForward 0 lower layer forwards request to upper layer

oamParserActionLoopback 1 lower layer sends back request

oamParserActionDiscard 2 lower layer discards request

oamParserActionInvalid 3 parser action is invalid

revision

The current revision of the Information TLV. The value of this field shall start at zero and be incremented
each time something in the Information TLV changes. (default = 0)

oamVersion

Read only. Set to 1.

oui

Organization unique identifier. 3 hex bytes. (default = '00 00 00')

vendorSpecific
Information

An unspecified list of hex bytes. May be used to differentiate a vendor's product models/versions. (default
= '00 00 00 00')

COMMANDS

The oamRemoteInformationTlv command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

oamRemoteInformationTlv setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 999 –

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamInformation, oamLocalInformationTlv, oamOrganizationSpecificTlv

oamStatus
oamStatus - allows polling the OAM status information.

SYNOPSIS

oamStatus sub-command options

DESCRIPTION

The oamStatus command is used to poll the OAM status information for both local and remote clients. The
OAM must first be enabled on the port using oamPort.

STANDARD OPTIONS

discoveryStatus

Read only. Displays the OAM discovery status. (default = unsatisfied)

version

Read only. Displays the OAM version status. (default = 0)

informationRevision

Read only. Displays the OAM information revision status. (default = 0)

multiplexerAction

Read only. Displays the OAM multiplexer action status. (default = forward)

parserAction

Read only. Displays the OAM parser action status. (default = invalid)

mode

Read only. Displays the OAM mode status. (default = passive)

unidirectionalSupport

Read only. Displays the OAM unidirectionalSupport status. (default = not supported)

Appendix 1 IxTclHAL Commands

– 1000 –

loopback

Read only. Displays the OAM loopback status. (default = not supported)

linkEvents

Read only. Displays the OAM link events status. (default = not supported)

mibVars

Read only. Displays the OAM variable retrieval status. (default = not supported)

pduSize

Read only. Displays the OAM PDU size. (default = 0)

oui

Read only. Displays the OAM organization unique identifier status. (default = '00 00 00')

vendorSpecificInformation

Read only. Displays the OAM vendor specific information. (default = '00 00 00 00')

sourceMacAddress

Read only. Displays the OAM source MAC address.

COMMANDS

The oamStatus command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

oamStatus setDefault

Sets to IxTclHal default values for all configuration options.

oamStatus get chasID cardID portID

Retrieves the OAM status for both local and remote client from the port.

oamStatus getLocalStatus

Retrieves the OAM local status.

oamStatus getRemoteStatus

Retrieves the OAM remote status.

EXAMPLES

See examples under the oamPort command.

Appendix 1 IxTclHAL Commands

– 1001 –

SEE ALSO

oamPort.

oamSummaryTlv
oamSummaryTlv - implements one type of OAM Event Notification PDU.

SYNOPSIS

oamSummaryTlv sub-command options

DESCRIPTION

The oamSummaryTlv command implements one type of OAM Event Notification PDU.

The Errored Frame Seconds Summary Event TLV counts the number of errored frame seconds that
occurred during the specified period. The period is specified by a time interval. This event is generated if
the number of errored frame seconds is equal to or greater than the specified threshold for that period. An
errored frame second is a one second interval wherein at least one frame error was detected.

This event is generated at the end of the event window rather than when the threshold is crossed.

STANDARD OPTIONS

length

Read only. Set to 18 (0x12). This one-octet field indicates the length (in octets) of this TLV_tuple.

frameSeconds

This two-octet field indicates the number of errored frame seconds in the period, encoded as a 16-bit
unsigned integer. (default = 0)

timestamp

This two-octet field indicates the time reference when the event was generated, in terms of 100 ms
intervals, encoded as a 16-bit unsigned integer. (default = 0)

window

This two-octet field indicates the duration of the period in terms of 100 ms intervals, encoded as a 16-bit
unsigned integer. (default = 0)

Lower bound: 10 seconds

Upper bound: 900 seconds

threshold

This two-octet field indicates the number of errored frame seconds in the period is required to be equal to
or greater than in order for the event to be generated, encoded as a 16-bit unsigned integer. (default = 0)

Appendix 1 IxTclHAL Commands

– 1002 –

Lower bound: zero errored seconds

Upper bound: unspecified

errorRunningTotal

This four-octet field indicates the sum of errored frame seconds that have been detected since the OAM
sublayer was reset. (default = 0)

eventRunningTotal

This four-octet field indicates the number of Errored Frame Seconds Summary Event TLVs that have been
generated since the OAM sublayer was reset, encoded as a 32-bit unsigned integer. (default = 0)

COMMANDS

The oamSummaryTlv command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamSummaryTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamEventNotification, oamOrganizationSpecificTlv, oamLocalInformationTlv,
oamRemoteInformationTlv, oamSymbolPeriodTlv, oamFrameTlv, oamFramePeriodTlv.

oamSymbolPeriodTlv
oamSymbolPeriodTlv - implements one type of OAM Event Notification PDU.

SYNOPSIS

oamSymbolPeriodTlv sub-command options

DESCRIPTION

The oamSymbolPeriodTlv command implements one type of OAM Event Notification PDU. It counts the
number of symbol errors that occurred during the specified period. The period is specified by the number
of symbols that can be received in a time interval on the underlying physical layer. This event is
generated if the symbol error count is equal to or greater than the specified threshold for that period

STANDARD OPTIONS

length

Read only. This one-octet field set to 40 (0x28) Indicates the length (in octets) of this TLV_tuple.

Appendix 1 IxTclHAL Commands

– 1003 –

symbols

This eight-octet field indicates the number of symbol errors in the period, , encoded as a 64-bit unsigned
integer. (default = 0)

timestamp

This two-octet field indicates the time reference when the event was generated, in terms of 100 ms
intervals, encoded as a 16-bit unsigned integer. (default = 0)

window

This eight-octet field indicates the number of symbols in the period, encoded as a 64-bit unsigned integer.
(default = 0)

Lower bound: the number of symbols in one second for the underlying physical layer.

Upper bound: the number of symbols in one minute for the underlying physical layer.

threshold

This eight-octet field indicates the number of errored symbols in the period is required to be equal to or
greater than in order for the event to be generated, encoded as a 64-bit unsigned integer. (default = 0)

Lower bound: zero symbol errors.

Upper bound: unspecified.

errorRunningTotal

This eight-octet field indicates the sum of symbol errors since the OAM sublayer was reset. (default = 0)

eventRunningTotal

This four-octet field indicates the number of Errored Symbol Period Event TLVs that have been generated
since the OAM sublayer was reset, encoded as a 32-bit unsigned integer. (default = 0)

COMMANDS

The oamSymbolPeriodTlv command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamSymbolPeriodTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

Appendix 1 IxTclHAL Commands

– 1004 –

SEE ALSO

oamHeader, oamEventNotification, oamOrganizationSpecificTlv, oamLocalInformationTlv,
oamRemoteInformationTlv, oamFrameTlv, oamFramePeriodTlv.

oamVariableRequest
oamVariableRequest - the OAM PDU type Variable Request allows querying MIB variables.

SYNOPSIS

oamVariableRequest sub-command options

DESCRIPTION

The oamVariableRequest command implements the OAM PDU type Variable Request.

It is used to query MIB variables, using data structures called Variable Descriptors. An OAM client may
request one or more variables in each Variable Request OAM PDU.

The TLV connected to this command is oamVariableRequestTlv.

STANDARD OPTIONS

currentTlvType

Read only. (default = oamVariableRequestEndOfTlv)

Predefined options include:

Option Value Usage

oamVariableRequestEndOfTlv 0x00 (default) End of TLV Marker

oamVariableRequest 0x01 Variable Request

COMMANDS

The oamVariableRequest command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamVariableRequest setDefault

Sets to IxTclHal default values for all configuration options.

oamVariableRequest addTlv tlvType

Adds a TLV to OAM Variable Request PDU with TLV type (see currentTlvType, above).

oamVariableRequest delTlv tlvIndex

Deletes a TLV from OAM Variable Request with specific Index.

oamVariableRequest setTlv tlvIndex

Appendix 1 IxTclHAL Commands

– 1005 –

Sets the configuration of the TLV with the specified Index.

oamVariableRequest getTlv tlvIndex

Gets the configuration of the TLV with the specified Index.

oamVariableRequest getFirstTlv

Gets the first TLV from the list of OAM Variable Request PDUs.

oamVariableRequest getNextTlv

Gets the next TLV from the list.

oamVariableRequest clearAllTlvs

Clears all TLVs for the Variable Request PDU.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamVariableRequestTlv, oamVariableResponse.

oamVariableRequestTlv
oamVariableRequestTlv - implements one type of OAM Variable Request PDU.

SYNOPSIS

oamVariableRequestTlv sub-command options

DESCRIPTION

The oamVariableRequestTlv command implements one type of OAM Variable Request PDU.

STANDARD OPTIONS

branch

One-byte hex number. (default - 0x07)

Branch of data within the Management Information Base (MIB)

Variable Branches may reference attributes, objects or packages. If an object or package is referenced,
only the attributes within the object or package shall be found within the Variable Container.

leaf

Two-byte hex number. (default - '00 02')

Sub-branch of data within the Management Information Base (MIB)

Appendix 1 IxTclHAL Commands

– 1006 –

COMMANDS

The oamVariableRequestTlv command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

oamVariableRequestTlv setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamVariableRequest.

oamVariableResponse
oamVariableResponse - the OAM PDU type Variable Response allows returning the results of querying MIB
variables.

SYNOPSIS

oamVariableResponse sub-command options

DESCRIPTION

The oamVariableResponse command implements the OAM PDU type Variable Response. It is used to
return the results of queries of MIB variables, using data structures called Variable Containers. Each
returned Variable Container resides within a single Variable Response OAM PDU. If a Variable Container
does not fit within a Variable Response OAM PDU, an error code is returned.

In returning requested variables, an OAM client generates at least one and perhaps additional Variable
Response OAM PDUs per received Variable Request OAM PDU.

The TLV connected to this command is oamVariableResponseTlv.

STANDARD OPTIONS

currentTlvType

Read only. (default = oamVariableResponseEndOfTlv)

Predefined options include:

Option Value Usage

oamVariableResponseEndOfTlv 0x00 (default) End of TLV Marker

oamVariableResponse 0x01 Variable Response

Appendix 1 IxTclHAL Commands

– 1007 –

COMMANDS

The oamVariableResponse command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

oamVariableResponse addTlv tlvType

Adds a TLV to OAM Variable Response PDU with TLV type (see currentTlvType, above).

oamVariableResponse delTlv tlvIndex

Deletes a TLV from OAM Variable Response with specific Index.

oamVariableResponse setTlv tlvIndex

Sets the configuration of the TLV with the specified Index.

oamVariableResponse getTlv tlvIndex

Gets the configuration of the TLV with the specified Index.

oamVariableResponse getFirstTlv

Gets the first TLV from the list of OAM Variable Response PDUs.

oamVariableResponse getNextTlv

Gets the next TLV from the list.

oamVariableResponse clearAllTlvs

Clears all TLVs for the Variable Response PDU.

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamVariableResponseTlv, oamVariableRequest.

oamVariableResponseTlv
oamVariableResponseTlv - implements one type of OAM Variable Response PDU.

SYNOPSIS

oamVariableResponseTlv sub-command options

DESCRIPTION

The oamVariableResponseTlv command implements one type of OAM Variable Response PDU.

STANDARD OPTIONS

Appendix 1 IxTclHAL Commands

– 1008 –

branch

The one-octet branch field for the specific attribute, package or object being returned. (default = 0x07)

Note: Only attributes are supported in the current implementation.

If an object or package is referenced, only the attributes within the object or package shall be found
within the Variable Container.

leaf

The two-octet leaf field for the specific attribute, package or object being returned. (default = '00 02')

enableIndication
true/false

When true, the variable indicationValue is present and there is no value field.

When false, the variable width represents the length of the value field in octets. (default = false)

indicationValue

Variable indication. (default = 0x04) See width, below.

width

The width of the value. If enableIndication is true, then width can be from 0 to 128. (default = 4)

This field either contains the actual width of the attribute or an indicationValue providing information as to
the reason this particular attribute could not be returned.

When bit 7 = 1, bits 6:0 represent an indicationValue. There is no value field when bit 7 = 1.

When bit 7 = 0, bits 6:0 represent the length of the value field in octets. An encoding of 0x00 equals 128
octets. All other encodings represent actual lengths.

value

If enableIndication is true, then this can be the value of width size hex number.
(default = '00 00 00 00')

If the width field contains a width value, the fourth field is the value field, which contains the attribute.
This field may be up to 128 octets in length. Octets of the attribute are ordered most significant first,
followed by each successive octet.

If the width field contains an indicationValue, the value field does not exist.

COMMANDS

The oamVariableResponseTlv command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

oamVariableResponseTlv setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1009 –

EXAMPLES

See example code under oamHeader.

SEE ALSO

oamHeader, oamVariableResponse.

opticalDigitalWrapper
opticalDigitalWrapper - enable the use of optical digital wrapper.

SYNOPSIS

opticalDigitalWrapper sub-command options

DESCRIPTION

The opticalDigitalWrapper command is used to enable the presence of the optical digital wrapper. This
feature is only available for certain port types; this may be tested through the use of the port
isValidFeature... portFeatureFec command. None of the overhead bytes may be modified at this point,
only the Forward Error Correction (FEC) feature may be changed.

STANDARD OPTIONS

enableFec true/false

Enables the use of the optical digital wrapper and the inclusion of FEC. (default = false)

enableStuffing
true | false

Enables the use of fixed stuffing in 10G LAN mode. Additional overhead bytes are added into the overhead
and the clock rate is higher to carry the same date. With Fixed stuffing, the line rate is 11.09573 Gb/s, as
opposed to 11.04911 Gb/s. (default = false)

payloadType

The data type that is being simulated in the payload area of the SONET frame.

Option Value Usage

optDigWrapperPayloadType02 0x02 ASY STM-N

optDigWrapperPayloadType03 0x03 (default) BIT SYN STM-N

optDigWrapperPayloadType04 0x04 ATM

optDigWrapperPayloadType05 0x05 GFP

optDigWrapperPayloadType10 0x10 10-bit STR with O.T.

Appendix 1 IxTclHAL Commands

– 1010 –

Option Value Usage

optDigWrapperPayloadType11 0x11 11-bit STR with O.T.

optDigWrapperPayloadTypeFE 0xFE FE-PRBS

COMMANDS

The opticalDigitalWrapper command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands.

opticalDigitalWrapper cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the opticalDigitalWrapper command.

opticalDigitalWrapper config option value

Modify the configuration options. If no option is specified, returns a list describing all of the available MPLS
label options (see STANDARD OPTIONS) for port.

opticalDigitalWrapper get chasID cardID portID

Gets the current configuration of the specified port. Call this command before calling
opticalDigitalWrapper cget option to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

opticalDigitalWrapper set chasID cardID portID

Sets the configuration for the indicated port, reading the configuration option values set by the
opticalDigitalWrapper config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

opticalDigitalWrapper setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under the fecError command.

SEE ALSO

fecError.

packetGroup
packetGroup - configure the Packet Group parameters.

Appendix 1 IxTclHAL Commands

– 1011 –

SYNOPSIS

packetGroup sub-command options

DESCRIPTION

The packetGroup command is used to configure the parameters for Packet Groups. Packet groups are
given unique IDs within which metrics such as minimum, maximum and average latency for every
incoming frame is calculated by the hardware in real-time.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port's receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. No configuration is necessary on the transmit port;
only the receive port must be configured to receive latency bin operation. This feature is enabled on the
receive port with the enableLatencyBins option.

The latency measurements for each packet group may be collected in a set up to 16 continuous latency
buckets. The first bucket always starts at 0 and the last bucket always ends at the maximum latency. The
packetGroup interface allows for the specification of up to 15 time dividers between latency bins. For
example, to specify five latency buckets for:

l 0 - 0.70ms
l 0.70ms - 0.72ms
l 0.72ms - 0.74ms
l 0.74ms - 0.76ms
l 0.76ms - max

one programs four dividing times:

l 0.70ms
l 0.72ms
l 0.74ms
l 0.76ms

This is done through the latencyBins option. No other setup is required for the receive side port. The
latency statistics per latency bin are obtained through the use of the packetGroupStats command.

An additional feature available on some port types is the ability to measure latency as it varies over time.
The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port's receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. No configuration is necessary on the transmit port;
only the receive port must be configured to receive time bin operation. This feature is enabled on the
receive port with the enableTimeBins option.

Appendix 1 IxTclHAL Commands

– 1012 –

The latency over time for each packet group may be collected for a number of evenly spaced time periods,
as indicated by the numTimeBins and timeBinDuration options. The number of packet groups used per
time bin must also be specified in the numPgidPerTimeBin option.

The product of numPgidPerTimeBin (which must be a power of 2) and the next higher power of 2 of the
numTimeBins must be less than the total number of packet group IDs available for the port when not in
time bin mode.

The latency statistics per time bin are obtained through the use of the packetGroupStats command.

Time bins and latency bins may be used at the same time.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

allocateUdf true | false

Assigns one of the User-Defined Fields for use with the Sequence Number. (default = true)

delayVariationMode

Selects Delay Variation measurement mode (under Latency/Jitter Measurement). This only is available
when measurementMode is set to packetGroupModeDelayVariation.

Note: When Delay Variation mode is selected, then under Sequence Checking the only available option is
Threshold Sequence Checking.

Delay Variation options include:

Option Value Usage

delayVariationWith
SequenceErrors

0 (default) delay variation with sequence errors

delayVariationWith
LatencyMinMax

1 delay variation with latency min/max

delayVariationWith
LatencyAvg

2 delay variation with latency average

enable128kBinMode
true | false

If true, then the length of the packet group ID field is increased to 17 bits. (default = false)

Appendix 1 IxTclHAL Commands

– 1013 –

enableGroupIdMask
true | false

Enables the use of the groupId mask. (default = false)

enableInsertPgid
true | false

Enables inserting the PGID into the packet. (default = false)

enableLastBitTime
Stamp true/false

If true, enables selection of last bit time stamp. If false, the first bit time stamp is used. (default = false)

enableLatencyBins
true | false

Enables the use of latency bins on receive. (default = false)

enableReArmFirstTimeStamp

Enables the use of RE Arm first time stamp.

enableRxFilter
true | false

Enables the use of the headerFilterMask mask. (default = false)

enableSignatureMask
true | false

Enables the use of the signatureMask mask. (default = false)

enableTimeBins
true | false

Enables the use of time bins on receive. (default = false)

groupId

Unique value used to identify one packet group for another. Up to 57344 different packet groups may be
defined. (default = 0)

groupIdMask

A two-byte mask applied to the group ID. Bits which are `1' in the mask are set to `0' in the received
group ID. (default = 0)

groupIdMode

This option provides a convenience mechanism for setting the groupIdOffset and groupIdMask.

Appendix 1 IxTclHAL Commands

– 1014 –

Option Value Usage

packetGroupCustom 0 (default) The offset and mask are set in groupIdOffset and
groupIdMask.

packetGroupDscp 1 The offset and mask are set to the DSCP location; that is,
groupIdOffset=14 and groupIdMask=FF03.

packetGroupIpV6TrafficClass 2 The offset and mask are set to the destination IPv6
address' traffic class; that is, groupIdOffset=14 and
groupIdMask=FD3F.

packetGroupMplsExp 3 The offset and mask are set to the MPLS label's
Experimental field; that is, groupIdOffset=16 and
groupIdMask=F1FF.

packetGroupSplit 4 The offset and mask are set in to split PGIDs.

groupIdOffset

The offset, within the packet, of the group id value. (default = 52)

headerFilter

A set of 16 bytes used to match the header of packets to be considered for signature masking. (default =
{00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00})

headerFilterMask

A mask to be applied to the headerFilter. Bits which are `1' are ignored in the match. (default = {00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00})

ignoreSignature
true / false

In receive mode, the signature field is not matched and all packets are counted. (default = false)

insertSequence
Signature true / false

Inserts a sequence signature into the packet as indicated by signatureOffset, signatureValue,
groupIdOffset, signatureNumberOffset and allocateUdf. (default = false)

insertSignature true|false

Inserts the packet group signature into the transmitted stream. (default = false) Note: For calculating
latency values need to configure stream config -fir true.

Appendix 1 IxTclHAL Commands

– 1015 –

latencyBinList

If enableLatencyBins is true, this TCL array of floating point numbers, each of which is expressed in
milliseconds, indicates the dividing line between latency bins. As per the discussion at the head of this
command, there is one fewer dividing times than latency bins. The first bin always starts at 0 and the last
bin always ends at the maximum possible latency. The list is sorted before use. There must not be any
duplicate values. (default = "")

latencyControl

Defines the mechanism used to calculate latency. Possible values include:

Option Value Usage

cutThrough 0x01 (default) first data bit in to first data bit out

storeAndForward 0x03 last data bit in to first data bit out

storeAndForwardPreamble 0x05 last data bit in to first preamble out

interArrivalJitter 0x07 inter-arrival jitter

This selection automatically activates measurementMode
inter-arrival time mode.

firstInLastOut 0x08 first in last out

lastInLastOut 0x09 last in last out

maxRxGroupId

Read only. Displays the maximum number of PGIDs available for the port based on the receive side
configuration.

measurementMode

Defines the measurement mode used to calculate latency. Possible values include:

Option Value Usage

packetGroupModeLatency 0 (default) latency mode

packetGroupModeInter
ArrivalTime

1 inter-arrival time mode

Note: Requires latencyControl to be set to interArrivalJitter.

On the other hand, simply setting latencyControl to
interArrivalJitter automatically selects this value for
measurementMode.

packetGroupModeDelay
Variation

2 delay variation mode

Selecting this mode automatically enables

Appendix 1 IxTclHAL Commands

– 1016 –

Option Value Usage

delayVariationMode option.

multiSwitchedPath
Mode

Two alternatives exist for the manner in which time stamps are used when sequenceCheckingMode is set
to seqMultiSwitchedPath:

Option Value Usage

seqSwitchedPathPGID 0 (default) Time stamps are used to hold the time stamp of
the first packet received for each packet group ID.

seqSwitchedPathDuplication 1 Time stamps are used to hold the first detected packet
duplication.

Note: Not available when in Delay Variation mode.

numPgidPerTimeBin

If enableTimeBins is true, this is used as the number of packet group IDs to be received for each time bin
defined by timeBinDuration. Note that this value must be a power of 2; for example, 1, 2, 4, 8, 16, .. Note
that the product of this number and the next higher power of 2 of the numTimeBins option must not
exceed the total number of packet group IDs available for the port if enableTimeBins were false. (default
= 32)

numTimeBins

If enableTimeBins is true, this is used as the number of distinct time bins to collect latency over, per
packet group ID. The range of legal values is from 1 to 2048. The length of all time bins is dictated by
timeBinDuration. Note that the product of the next higher power of 2 of this number and
numPgidPerTimeBin option must not exceed the total number of packet group IDs available for the port if
enableTimeBins were false. (default = 10)

preambleSize

Length of preamble, in bytes, of received frame. (default = 8)

seqAdvTracking

If true, allows to track a frame by following five new statistics:

statistics

In Order

Reorder

Appendix 1 IxTclHAL Commands

– 1017 –

statistics

Duplicate

Late

Lost

seqAdvTrackingLate
Threshold

A fixed value that sets a threshold to track the expected sequence value. The Late Threshold value is
subtracted from the expected sequence number when the received sequence numbers are less than the
late threshold value.

sequenceError
Threshold

The threshold value used to determine whether a sequence error has occurred. (default = 2)

sequenceChecking
Mode

The manner in which sequence checking is performed.

Option Value Usage

seqThreshold 0 (default) Sequence errors are determined by checking sequence
numbers against sequenceErrorThreshold.

seqMultiSwitchedPath 1 Sequence checking is performed looking for skipped and
duplicate sequence numbers. Check the
portFeatureMultiSwitchPacketDetection feature for availability of
this choice.

seqAdvTracking 2 Advanced sequence tracking is enabled.

sequenceNumberOffset

The offset within the packet of the sequnce number. This is valid only when sequence checking is enabled.
(default = 44)

signature

In the transmitted packet, the signature uniquely signs the transmitted packet as one destined for packet
group filtering on the receive port. On the receive port, the signature is used to filter only those packets
that have a matching signature and the minimum, maximum and average latencies are obtained for those
packets. (default = {08 71 18 05})

Appendix 1 IxTclHAL Commands

– 1018 –

signatureMask

A four-byte mask applied to the signature. Bits which are `1' in the mask are ignored. (default = {00 00
00 00})

signatureOffset

The offset, within the packet, of the packet group signature. (default = 48)

timeBinDuration

If enableTimeBins is true, this is the length of each time bin. This value is expressed in nanoseconds.
(default = 1000000)

COMMANDS

The packetGroup command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

packetGroup cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the packetGroup command.

packetGroup config option value

Modify the Packet Group configuration options of the port. If no option is specified, returns a list
describing all of the available Packet Group options (see STANDARD OPTIONS) for port.

packetGroup getCircuitTx chasID cardID portID [circuitID] streamID

Gets the current configuration of the stream with id streamID in the circuit with circuitID on port portID,
card cardID, chassis chasID from its hardware.

packetGroup getQueueTx chasID cardID portID [queueID] streamID

Gets the current configuration of the stream with id streamID in the queue with queueID on port portID,
card cardID, chassis chasID from its hardware.

packetGroup getRx chasID cardID portID

Gets the current receive Packet Group configuration of the port with id portID on card cardID, chassis
chasID. Call this command before calling packetGroup cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

packetGroup getTx chasID cardID portID streamID [type]

Gets the current transmit Packet Group configuration of the stream with id portID on card cardID, chassis
chasID, stream streamID.

Appendix 1 IxTclHAL Commands

– 1019 –

Disable Sequence Checking checkbox per stream that is also visible in IxExplorer GUI inside the
Instrumentation Offsets window.

packetGroup config -insertSequenceSignature 0

packetGroup setTx portList

In the first form, the queueID indicates the particular queue for load modules which use multiple queues,
such as ATM cards.

In the second form, the type of stream (stream or flow) is selected. One of.

Option Value Usage

streamSequenceTypeAll 0 (default) Both streams and flows. This option can be used
for ports that do not use flows.

streamSequenceTypeStreams 1 Stream only.

streamSequenceTypeFlows 2 Flow only.

Call this command before calling packetGroup cget option value to get the value of the configuration
option. specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l No stream has been configured for the streamID

packetGroup setCircuitTx chasID cardID portID [circuitD] streamID

Sets the configuration of the stream with id streamID on its circuit circuitID on port portID, card cardID,
chassis chasID in IxHAL by reading the configuration option values set by the packetGroup config option
value command.

packetGroup setDefault

Sets to IxTclHal default values for all configuration options.

packetGroup setQueueTx chasID cardID portID [queueID] streamID

Sets the configuration of the stream with id streamID on its queue queueID on port portID, card cardID,
chassis chasID in IxHAL by reading the configuration option values set by the packetGroup config option
value command.

packetGroup setRx chasID cardID portID

Sets the receive Packet Group configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the packetGroup config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number

Appendix 1 IxTclHAL Commands

– 1020 –

l The port is being used by another user

packetGroup setTx chasID cardID portID streamID [type]

Sets the transmit Packet Group configuration of the stream with id portID on card cardID, chassis chasID,
stream streamID by reading the configuration option values set by the packetGroup config option value
command.

In the first form, the queueID indicates the particular queue for load modules which use multiple queues,
such as ATM cards.

In the second form, the type of stream (stream or flow) is selected. One of.

Option Value Usage

streamSequenceTypeAll 0 (default) Both streams and flows. This option can be used
for ports that do not use flows.

streamSequenceTypeStreams 1 Stream only.

streamSequenceTypeFlows 2 Flow only.

After calling this command, the Packet Group configuration should be committed to hardware using
stream write or ixWriteConfigToHardware commands. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l No stream has been configured for the streamID

EXAMPLES
package require IxTclHal

In this example, we'll measure the latency for different frame
sizes through a simple switch using packet groups.
Latency bins will also be retreived
Port 1 is used to transmit three streams, each with a packet
group signature and packet group ID equal to the stream ID.
100,000 packets are transmitted by each stream
Port 2 is used to received the data using Packet Group Mode.
A short stream is transmitted from this port to the switch in
order to get the switch to 'learn' its MAC address
Separate sections are included for latency bins and time bins

Connect to chassis and get chassis ID
set host techpubs-400
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis

Appendix 1 IxTclHAL Commands

– 1021 –

if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assumes that card 1 is a 10/100 card with both ports connected
to a simple L2 switch
set card 1
set txPort 1
set rxPort 2

Useful port lists
set portList [list [list $chas $card $txPort] \
[list $chas $card $rxPort]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

set p1MAC [list 00 00 00 01 01 01]
set p2MAC [list 00 00 00 01 01 02]

set numFrames 4
set numBursts 240
set minSize 64
set maxSize 1024
set stepSize 64

set lb [list 0.70 0.72 0.74 0.76]

Need to clear time stamps

Appendix 1 IxTclHAL Commands

– 1022 –

if [ixClearTimeStamp portList] {
ixPuts $::ixErrorInfo
}

ixPuts "Testing $chas:$card:$txPort -> $chas:$card:$rxPort"

Set up Transmit Port
port setFactoryDefaults $chas $card $txPort
port config -autonegotiate true

stream: from port 1 MAC to port 2 MAC, stream size as per array
Make sure to insert time stamp (fir)
set streamID 1

stream setDefault
stream config -numFrames $numFrames
stream config -numBursts $numBursts
stream config -sa $p1MAC
stream config -da $p2MAC
stream config -fir true
stream config -dma stopStream
stream config -frameSizeType sizeIncr
stream config -frameSizeMIN $minSize
stream config -frameSizeMAX $maxSize
stream config -frameSizeStep $stepSize
stream config -enableIbg false
stream config -enableIsg false
stream config -rateMode usePercentRate
stream config -percentPacketRate 0.04512

udf setDefault
udf config -enable true
udf config -counterMode udfCounterMode
udf config -continuousCount false
udf config -initval 0
udf config -repeat 4
udf config -udfSize c16
udf config -offset 52

if [udf set 1] {
errorMsg "Error in udf set"
return "FAIL"
}
if [stream set $chas $card $txPort $streamID] {
errorMsg "Error in stream set"
return "FAIL"
}

Appendix 1 IxTclHAL Commands

– 1023 –

Example of shared values list between UDF 1 and UDF 5:
udf setDefault
udf config -enable true
udf config -offset 12
udf config -counterMode udfValueListMode
udf config -countertype -1
udf config -valueList {{11 11 11 11} {22 22 22 22}}
udf config -udfSize 32
udf config -valueRepeatCount 1
udf config -useSharedUDFValueList 0
udf config -sharedValueListStream 1
udf config -sharedValueListUDF 1
if {[udf set 1]} {
errorMsg "Error calling udf set 1"
set retCode $::TCL_ERROR
}
udf setDefault
udf config -enable true
udf config -offset 22
udf config -counterMode udfValueListMode
udf config -countertype -1
udf config -valueList {}
udf config -udfSize 32
udf config -cascadeType udfCascadeFromSelf
udf config -valueRepeatCount 1
udf config -useSharedUDFValueList 1
udf config -sharedValueListStream 1
udf config -sharedValueListUDF 1
if {[udf set 5]} {
errorMsg "Error calling udf set 5"
set retCode $::TCL_ERROR
}

Make sure to insert a PG signature and streamID = PGID
packetGroup setDefault
packetGroup config -insertSignature true
if [packetGroup setTx $chas $card $txPort $streamID] {
errorMsg "error in packetGroup setTx (1)"
return "FAIL"
}

Set up Receive Port
port setFactoryDefaults $chas $card $rxPort
port config -autonegotiate true

the port must be in packet group mode
port config -receiveMode $::portRxModeWidePacketGroup

Appendix 1 IxTclHAL Commands

– 1024 –

if [port set $chas $card $rxPort] {
errorMsg "Error in port set"
return "FAIL"
}

Set up receive packet group mode (store and forward)
packetGroup setDefault
packetGroup config -latencyControl storeAndForward

###
#
Latency Bin sample
#
###

set the latency bin list
packetGroup config -enableLatencyBins true
packetGroup config -latencyBinList $lb

if [packetGroup setRx $chas $card $rxPort] {
errorMsg "Error in packetGroup setRx"
return "FAIL"
}
###
##########
Configuring 8K stat & 32K stat through TCL for Novus 40G/100G, K400 100G,
NOVUS25/10GE8SFP28 [10GE/25GE/50GE/100GE]
###
###########
packetGroup setDefault
For 8K stat
packetGroup config -pgidStatMode 0
OR
For 32K stat
packetGroup config -pgidStatMode 1
if {[packetGroup setRx $chas $card $rxPort]} {
errorMsg "Error calling packetGroup setRx $chas $card $rxPort "
set retCode $::TCL_ERROR
}
Let the hardware know about the two ports
ixWriteConfigToHardware portList

if [packetGroup getRx $chas $card $rxPort] {
errorMsg "Error in packetGroup getRx"
return "FAIL"
}
###
Configuring 8K stat & 16K stat through TCL for Novus 50G, K400 50G

Appendix 1 IxTclHAL Commands

– 1025 –

###
packetGroup setDefault
For 8K stat
packetGroup config -pgidStatMode 0
OR
For 16K stat
packetGroup config -pgidStatMode 1
if {[packetGroup setRx $chas $card $rxPort]} {
errorMsg "Error calling packetGroup setRx $chas $card $rxPort "
set retCode $::TCL_ERROR
}
Let the hardware know about the two ports
ixWriteConfigToHardware portList

if [packetGroup getRx $chas $card $rxPort] {
errorMsg "Error in packetGroup getRx"
return "FAIL"
}
###
Configuring 4K stat & 8K stat through TCL for Novus 10G/25G, K400 100G
###
packetGroup setDefault
For 4K stat
packetGroup config -pgidStatMode 0
OR
For 8K stat
packetGroup config -pgidStatMode 1
if {[packetGroup setRx $chas $card $rxPort]} {
errorMsg "Error calling packetGroup setRx $chas $card $rxPort "
set retCode $::TCL_ERROR
}
Let the hardware know about the two ports
ixWriteConfigToHardware portList

if [packetGroup getRx $chas $card $rxPort] {
errorMsg "Error in packetGroup getRx"
return "FAIL"
}

Wait for changes to take affect and make sure links are up
after 1000
ixCheckLinkState portList

Start the packet groups on the receive port
and then the transmit from the transmit port

ixPuts "Starting packet groups"
ixStartPortPacketGroups $chas $card $rxPort

Appendix 1 IxTclHAL Commands

– 1026 –

ixPuts "Starting port transmit"
ixStartPortTransmit $chas $card $txPort

after 1000

and then wait for things to be done
ixPuts "Waiting for transmit done"
ixCheckPortTransmitDone $chas $card $txPort

ixPuts "Stopping packet groups"
ixStopPortPacketGroups $chas $card $rxPort

Now get the statistics back
First a get for all of the packet groups
if [packetGroupStats get $chas $card $rxPort 0 16384] {
errorMsg "Error in packetGroupStats get"
return "FAIL"
}
set numGroups [packetGroupStats cget -numGroups]

set numRxLatencyBins [packetGroupStats cget -numLatencyBins]
ixPuts "# received latency bins = $numRxLatencyBins"

ixPuts "PGID LBin FrameSz # MinLat MaxLat AvgLat byRate frRate stdDev "
ixPuts "------- ------- ------- ------- ------- ------- ------- ------- ------- -----
-- "

for {set i 0} {$i < $numFrames} {incr i} {

packetGroupStats getGroup $i
set totalFrames [packetGroupStats cget -totalFrames]

ixPuts -nonewline "$i\t"
ixPuts -nonewline "All\t"
ixPuts -nonewline "[expr ($i+1) * 64]\t"
ixPuts -nonewline "$totalFrames\t"
ixPuts -nonewline [packetGroupStats cget -minLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -maxLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -averageLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -byteRate]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -frameRate]
ixPuts -nonewline "\t"
ixPuts [packetGroupStats cget -standardDeviation]

Appendix 1 IxTclHAL Commands

– 1027 –

for {set latencyBin 0} {$latencyBin < $numRxLatencyBins} \
{incr latencyBin} \
{
if {$latencyBin == 0} {
if [packetGroupStats getFirstLatencyBin] {
errorMsg "Error in packetGroupStats getFirstLatencyBin"
return "FAIL"
}
} else {
if [packetGroupStats getNextLatencyBin] {
errorMsg "Error in packetGroupStats getNextLatencyBin"
return "FAIL"
}
}
set numLatencyFrames [latencyBin cget -numFrames]

if [packetGroupStats getLatencyBin $latencyBin] {
errorMsg "Error in packetGroupStats getLatencyBin"
return "FAIL"
}

ixPuts -nonewline "\t"
ixPuts -nonewline "$latencyBin\t\t"
ixPuts -nonewline "$numLatencyFrames\t"
ixPuts -nonewline [latencyBin cget -minLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [latencyBin cget -maxLatency]
ixPuts -nonewline "\t\t"
ixPuts -nonewline [latencyBin cget -byteRate]
ixPuts -nonewline "\t"
ixPuts [latencyBin cget -frameRate]
}
}

###
#
Time Bin sample
#
###

set numPgidPerTimeBin 4
set numTimeBins 2
set timeBinDuration 10000000000

set the time bin options
packetGroup config -enableLatencyBins false
packetGroup config -enableTimeBins true

Appendix 1 IxTclHAL Commands

– 1028 –

packetGroup config -numPgidPerTimeBin $numPgidPerTimeBin
packetGroup config -numTimeBins $numTimeBins
packetGroup config -timeBinDuration $timeBinDuration

if [packetGroup setRx $chas $card $rxPort] {
errorMsg "Error in packetGroup setRx"
return "FAIL"
}

Let the hardware know about the two ports
ixWriteConfigToHardware portList

if [packetGroup getRx $chas $card $rxPort] {
errorMsg "Error in packetGroup getRx"
return "FAIL"
}
###
packetGroup setDefault
For 8K stat
packetGroup config -pgidStatMode 0
OR
For 32K stat
packetGroup config -pgidStatMode 1
if {[packetGroup setRx $chassis $card $port]} {
errorMsg "Error calling packetGroup setRx $chassis $card $port"
set retCode $::TCL_ERROR
}
##
Wait for changes to take affect and make sure links are up
after 1000
ixCheckLinkState portList

Start the packet groups on the receive port
and then the transmit from the transmit port

ixPuts "Starting packet groups"
ixStartPortPacketGroups $chas $card $rxPort

ixStartPortTransmit $chas $card $txPort

after 1000

and then wait for things to be done
ixPuts "Waiting for transmit done"
ixCheckPortTransmitDone $chas $card $txPort

ixPuts "Stopping packet groups"

Appendix 1 IxTclHAL Commands

– 1029 –

ixStopPortPacketGroups $chas $card $rxPort

Now get the statistics back
First a get for all of the packet groups
if [packetGroupStats get $chas $card $rxPort 0 16384] {
errorMsg "Error in packetGroupStats get"
return "FAIL"
}
set numGroups [packetGroupStats cget -numPgidPerTimeBin]

set numRxTimeBins [packetGroupStats cget -numTimeBins]
ixPuts "# received time bins = $numRxTimeBins"
ixPuts "# PGID per time bin = $numGroups"

ixPuts "T-BIN PGID FrameSz # MinLat MaxLat AvgLat byRate frRate stdDev "
ixPuts "------- ------- ------- ------- ------- ------- ------- ------- ------- -----
-- "

for {set t 1} {$t < = $numRxTimeBins} {incr t} {
for {set i 0} {$i < $numPgidPerTimeBin} {incr i} {

packetGroupStats getGroup $i $t
set totalFrames [packetGroupStats cget -totalFrames]

ixPuts -nonewline "$t\t"
ixPuts -nonewline "$i\t"
ixPuts -nonewline "[expr ($i+1) * 64]\t"
ixPuts -nonewline "$totalFrames\t"
ixPuts -nonewline [packetGroupStats cget -minLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -maxLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -averageLatency]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -byteRate]
ixPuts -nonewline "\t"
ixPuts -nonewline [packetGroupStats cget -frameRate]
ixPuts -nonewline "\t"
ixPuts [packetGroupStats cget -standardDeviation]
}
}

SEE ALSO

packetGroupStats.

packetGroupStats
packetGroupStats - retrieve statistics associated with a packet group.

Appendix 1 IxTclHAL Commands

– 1030 –

SYNOPSIS

packetGroupStats sub-command options

DESCRIPTION

The packetGroupStats command is used to retrieve the statistics associated with packet groups, such as
minimum latency, maximum latency and average latency. Some of the statistics are only available on
specific types of ports; an attempt to read an unavailable statistic results in a error. Refer to Appendix B
of the Ixia Reference Guide for list of which statistics are available.

Three sub-commands are used to retrieve the actual statistics.

l packetGroupStats get chasID cardID portID [fromPGID toPGID]: this fetches a range of statistics for
the indicated port. The range is dictated by the fromPGID to the toPGID; if omitted, only PGID 0 is
retrieved.

l packetGroupStats getGroup index: this fetches the statistics for a PGID that is PGID = fromPGID +
index, where fromPGID is the value from the last call to packetGroupStats get. That is, index = 0
refers to the fromPGID packet group ID.

l packetGroupStats getFrameCount index: operates in the same manner as getGroup, with respect to
the index parameter.

An additional feature available on some port types is the ability to collect latency measurements per
packet group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxLatencyBin. The port must be configured for wide packet groups (the port's receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups. (Note: When the port is in PRBS mode, all latency
specific stats is removed.)

Latency bin dividing times must be set up with the packetGroup's enableLatencyBins, latencyBinList
option. Following a call to packetGroupStats getGroup, the numLatencyBins option is set and the latency
bin information is available through calls to getFirstLatencyBin, getNextLatencyBin and getLatencyBin.
The latency information is available in the options of the latencyBin command. Note that there is one
more latency bin available than the number of dividers set in packetGroup's latencyBinList, due to the
implicit creation of a latency bin from the last divider to the maximum possible latency value.

An additional feature available on some port types is the ability to measure latency over time, per packet
group. The availability of this feature for a given port can be tested using the port isValidFeature...
portFeatureRxTimeBin. The port must be configured for wide packet groups (the port's receiveMode
includes the portRxModeWidePacketGroup bit); the availability of this mode may be tested with port
isValidFeature... portFeatureRxWidePacketGroups.

Time bins must be set up with the packetGroup's enableTimeBins, numPgidPerTimeBin, numTimeBins
and timeBinDuration options. Following a call to packetGroupStats getGroup, the numTimeBins,
numPgidPerTimeBin and timeBinDuration options are set. Latency information for a particular time bin
can be obtained by using the additional timeBin argument to the getGroup and getGroupFrameCount sub-
commands.

Appendix 1 IxTclHAL Commands

– 1031 –

STANDARD OPTIONS

averageLatency

Read-only. 64-bit value. Average latency for all frames of this packet group. Updated after
packetGroupStats getGroup command is called.
Used for cut-through, store-forward, and inter-arrival statistics.

bigSequenceError

Read-only. 64-bit value. The number of times when the current sequence number minus the previous
sequence number is greater than the error threshold. (Also available in PRBS mode, depending on
sequence checking settings.)

bitRate

Read-only. 64-bit value. The bit rate for the frames. Note: this value is calculated on the difference
between two successive readings; packetGroupStats get must be called at least twice before valid values
are obtained. (Also available in PRBS mode.)

byteRate

Read-only. 64-bit value. The byte rate for the frames. Note: this value is calculated on the difference
between two successive readings; packetGroupStats get must be called at least twice before valid values
are obtained. (Also available in PRBS mode.)

duplicateFrames

Read-only. 64-bit value. The number of duplicate frames when the port is in multi-switched path mode;
that is, the sequenceCheckingMode in the packetGroup command is set to seqMultiSwitchedPath. (Also
available in PRBS mode, depending on sequence checking settings.)

duplicatePacketCount

Read-only. 64-bit value. Count of packets that were determined to be duplicates. A received test packet is
a duplicate if its value falls within the current sequence run. (A sequence run is a series of sequence
numbers from the received test packets that is equal to or less than expected. The sequence run ends
when the received sequence number is greater than expected, creating a gap in the series, and a new
sequence run is initiated). The sequence run contains all of the sequence numbers from the start of the
series up to one less than the expected value. Consequently, a received sequence number that falls within
the current series must be a duplicate. Received sequence numbers are not checked against previous
sequence runs. Therefore, undetected duplicate packets are counted as Reordered or Late.

firstTimeStamp

Read-only. 64-bit value. The time stamp of the first packet received. This is only available when the port
is in wide packet group mode; that is, the port's receiveMode includes the portRxModeWidePacketGroup
bit. (Also available in PRBS mode.)

Appendix 1 IxTclHAL Commands

– 1032 –

frameRate

Read-only. 64-bit value. The frame rate for the frames. Note: this value is calculated on the difference
between two successive readings; packetGroupStats get must be called at least twice before valid values
are obtained. (Also available in PRBS mode.)

inOrderPacketCount

Read-only. 64-bit value. Count of received packets that contain sequence numbers equal to or greater
than expected. The expected value is set to one greater than the largest sequence number received.
When packets are in order, the frames are received when expected. The In Order count is derived by
software in the following manner: In Order = Received Frames - Duplicate - Reordered – Late.

lastTimeStamp

Read-only. 64-bit value. The time stamp of the last packet received. This is only available when the port is
in wide packet group mode; that is, the port's receiveMode includes the portRxModeWidePacketGroup bit.
(Also available in PRBS mode.)

latePacketCount

Read-only. 64-bit value. Count of received packets that contain sequence numbers that are less than
expected, were not counted Duplicate, and are less than the Late Threshold value. Received sequence
numbers that are less than expected are due to packets that arrived later than the adjacent packets of the
transmitted packet sequence. The threshold may be adjusted to allow these packets to be classified as
Reordered (if they arrive before the Late Threshold) or Late (if they arrive after the Late Threshold).

lostPacketCount

Read-only. 64-bit value. Frames that were counted as Unknown, but later arrive (and counted as
Reordered or Late) are referred to as Lost. The Lost count can be derived by software in the following
manner: Lost = Unknown - Reordered – Late. It is possible that this equation results in a negative
number, which the software treats as 0.

maxDelayVariation

Read-only. 64-bit value. Maximum Delay Variation. The largest of all delay variations measured for a
specific flow from the start of statistic collection.

maxLatency

Read-only. 64-bit value. Maximum latency of all frames of this packet group. Updated after
packetGroupStats getGroup command is called.
Used for cut-through, store-forward, and inter-arrival statistics.

maxMinDelayVariation

Read-only. 64-bit value. The interval between the Maximum and Minimum Delay Variation. The
mathematical subtraction of Min DV from Max DV.

Appendix 1 IxTclHAL Commands

– 1033 –

maxminInterval

Read-only. 64-bit value. The interval between the Maximum and Minimum Latency measurement.
Updated after packetGroupStats getGroup command is called. Used for cut-through, store-forward, and
inter-arrival statistics.

minDelayVariation

Read-only. 64-bit value. Minimum Delay Variation. The smallest of all delay variations measured for a
specific flow from the start of statistic collection.

minLatency

Read-only. 64-bit value. Minimum latency of all frames of this packet group. Updated after
packetGroupStats getGroup command is called.
Used for cut-through, store-forward, and inter-arrival statistics.

numGroups

Read-only. The total number of groups that were actually received.

numLatencyBins

Read-only. The number of latency bins available for a given packet group. Updated after
packetGroupStats getGroup command is called. Note that there is one more latency bin available than the
number of dividers set in packetGroup's latencyBinList, due to the implicit creation of a latency bin from
the last divider to the maximum possible latency value.

numPgidPerTimeBin

Read-only. The number of packet group IDs that were used for each time bin, if time bins were enabled
and configured in the packetGroup command. This is the same as the same named option used in the
packetGroup command when time bins were set up for the port.

numTimeBins

Read-only. The number of time bins used, if time bins were enabled and configured in the packetGroup
command. This is the same as the same named option used in the packetGroup command when time bins
were set up for the port.

prbsBerRatio

Read-only. 64-bit value. Ratio of PRBS errored bits to bits received.

prbsBitsReceived

Read-only. 64-bit value. Number of PRBS bits received.

prbsErroredBits

Read-only. 64-bit value. Number of PRBS errored bits received.

Appendix 1 IxTclHAL Commands

– 1034 –

readTimeStamp

Read-only. Reads the timestamp from when the statistics of a packet group were obtained.

reorderedPacketCount

Read-only. 64-bit value. Count of received packets that contain sequence numbers that are less than
expected, but were not counted as Duplicate, and are greater than or equal to the Late Threshold value.

reverseSequenceError

Read-only. 64-bit value. The number of times when the current sequence number is less than the
previous sequence number. (Also available in PRBS mode, depending on sequence checking settings.)

sequenceGaps

Read-only. 64-bit value. The number of sequence gaps when the port is in multi-switched path mode;
that is, the sequenceCheckingMode in the packetGroup command is set to seqMultiSwitchedPath. (Also
available in PRBS mode, depending on sequence checking settings.)

smallSequenceError

Read-only. 64-bit value. The number of times when the current sequence number minus the previous
sequence number is less than or equal to the error threshold and not negative, or when the current
sequence number is equal to the previous sequence number. (Also available in PRBS mode, depending on
sequence checking settings.)

standardDeviation

Read-only. 64-bit value. When latency bins are used, this is the standard deviation of the latencies, using
each bin's average.

timeBinDuration

Read-only. The time bin duration expressed in nanoseconds, if time bins were enabled and configured in
the packetGroup command. This is the same as the same named option used in the packetGroup
command when time bins were set up for the port.

totalByteCount

Read-only. 64-bit value. The number of bytes used to calculate the statistics for this packet group.

totalFrames

Read-only. 64-bit value. Total number of frames used to calculate the statistics for this packet group.

totalSequenceError

Read-only. 64-bit value. The sum of the small, bug and reverse sequence errors. (Also available in PRBS
mode, depending on sequence checking settings.)

Appendix 1 IxTclHAL Commands

– 1035 –

avgDelayVariation

Read only. 64-bit value. Average Delay Variation. The average of all delay variations measured for a
specific flow from the start of statistic collection.

COMMANDS

The packetGroupStats command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

packetGroupStats cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the packetGroupStats command.

packetGroupStats clear chasID cardID portID groupIdPairList

Clears all packet group stats for the specified Group ID Pair List, where the list consists of ranges
expressed with pairs like this: {{1 100} {300 400} {500 500}}

Note: {500 500} can also be written as {500: it selects a single value, which is also understood as the
range from 500 to 500.

This command clears the PGIDStats for PGIDs in the Group ID Pair List. To clear individual rows of packet
groupstats on the port, the port must either be unowned or you must be logged in as the owner of the
port. Specific errors are:

l No connection to a chassis
l The port doesn't support the command: ixTcl_unsupportedFeature
l Invalid port number or port is used by someone else: ixTcl_notAvailable
l Invalid PGIDList
l Failed to execute the clear command
l Any group ID is outside the legal range

packetGroupStats clearTimeStamps chasID cardID portID groupIdPairList

Clears all packet group time stamps for the specified Group ID Pair List, where the list consists of ranges
expressed with pairs like this: {{1 100} {300 400} {500 500}}. Specific errors are:

l No connection to a chassis
l The port doesn't support the command: ixTcl_unsupportedFeature
l Invalid port number or port is used by someone else: ixTcl_notAvailable
l Invalid PGIDList
l Failed to execute the clear command
l Any group ID is outside the legal range

packetGroupStats reArmFirstFrameTimeStamp chasID cardID portID groupIDPairList

Gets the timestamp value of the first frame.

packetGroupStats get chasID cardID portID [fromGroupID toGroupID]

Appendix 1 IxTclHAL Commands

– 1036 –

Gets the current Packet Group statistics on the port. Call this command before calling packetGroupStats
getGroup index and packetGroupStats cget option value to get the value of the configuration option.
fromGroupID and toGroupID are optional and default to 0. In order for this command to succeed, the port
must either be unowned, or you must be logged in as the owner of the port. Specific errors are:

l No connection to a chassis
l Invalid port number
l The fromGroupID or toGroupID is invalid
l Network error between the client and the chassis
l Either group ID is outside the legal range

packetGroupStats getFirstLatencyBin

Following a call to packetGroupStats getGroup, a call to this sub-command makes the values associated
with the first latency bin available through the latencyBin command. Specific errors are:

l No latency bins are available

packetGroupStats getGroup index [timeBin]

Gets the Packet Group statistics for this index and particular timeBin. If timeBin is omitted, a value of 1 is
used. Before calling this command, packet group statistics must be retrieved using the packetGroupStats
get chasID cardID portID [fromGroupID toGroupID] command. The index is with respect to the range of
group IDs retrieved; for example, index = 0 always refers to the data associated with fromGroupID in the
last packetGroupStats get call. The last index corresponds to (toGroupID - fromGroupID). Specific errors
are:

l No packet groups are defined
l No packets were counted in packet group groupID
l Either groupID is outside the legal range

packetGroupStats getGroupFrameCount index [timeBin]

Gets the Packet Group statistics for this index and timeBin and returns the number of frames in the group
/ time bin. If timeBin is omitted, a value of 1 is used. Before calling this command, packet group statistics
must be retrieved using the packetGroupStats get chasID cardID portID [fromGroupID toGroupID]
command. The first group available is always 0 and corresponds to the fromGroupID argument to
packetGroupStats get. The last group is (toGroupID - fromGroupID).

packetGroupStats getLatencyBin lbIndex

Following a call to packetGroupStats getFirstLatencyBin, a call to this sub-command makes the values
associated with the latency bin specified by lbIndex available through the latencyBin command. Specific
errors are:

l Invalid latency bins number
l The specified latency bin number does not exist

packetGroupStats getNextLatencyBin

Appendix 1 IxTclHAL Commands

– 1037 –

Following a call to packetGroupStats getFirstLatencyBin, a call to this sub-command makes the values
associated with the next latency bin available through the latencyBin command. Specific errors are:

l No more latency bins are available

packetGroupStats setDefault

Zeros all local statistics in the packet group stat list.

EXAMPLES

See examples under packetGroup.

SEE ALSO

packetGroup, latencyBin, stream.

packetGroupThresholdList
packetGroupThresholdList - configure and contain the PGID range threshold values

SYNOPSIS

packetGroupThresholdList sub-command options

DESCRIPTION

The packetGroupThresholdList command is used to configure and contain the PGID range threshold
values.

There is one threshold for each PGID. Use this command to select a range of PGIDs that is configured with
the same threshold value.

The fromPGID value defines the start of the range and the toPGID value is the end of the range. To
configure just one PGID, use identical 'from' and 'to' values.

STANDARD OPTIONS

enableJitterFilter

true or false to specify that jitter filtering is on or off, default is false

fromPGID

the sequence number of the PGID at the start of the range

toPGID

the sequence number of the PGID at the end of the range

Appendix 1 IxTclHAL Commands

– 1038 –

threshold

if enableJitterFilter is OFF, it stands for a number (in nanoseconds) that is the threshold for the Inter-
Arrival Time (latency) of a PGID or a range of PGIDs

if enableJitterFilter is ON, its units become packets instead of ns

filterWindow

specifies the filter window

Option Value Usage

filterWindow81920ns 0 81920

filterWindow163840ns 1 81920 X 2

filterWindow327680ns 2 81920 X 4

filterWindow655360ns 3 81920 X 8

filterWindow1310720ns 4 81920 X 16

filterWindow2621440ns 5 81920 X 32

filterWindow5242880ns 6 81920 X 64

filterWindow10485760ns 7 81920 X 128

filterWindow20971520ns 8 81920 X 256

filterWindow41943040ns 9 81920 X 512

filterWindow83886080ns 10 81920 X 1024

filterWindow167772160ns 11 81920 X 2048

filterWindow335544320ns 12 81920 X 4096

filterWindow671088640ns 13 81920 X 8192

filterWindow1342177280ns 14 81920 X 16384

filterWindow2684354560ns 15 81920 X 32768

filterWindow5368709120ns 16 81920 X 65536

COMMANDS

The packetGroupThresholdList command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

packetGroupThresholdList clear option

Appendix 1 IxTclHAL Commands

– 1039 –

This clears threshold timestamps. The threshold value list is empty.

packetGroupThresholdList config option

Allows setting the values (options).
Example: packetGroupThresholdList config threshold 250000

packetGroupThresholdList getFirst

Access the first value in the list. Specific errors are:

l There are no values in the list

packetGroupThresholdList getNext

Access the next value in the list. Specific errors are:

l There are no more values in the list

packetGroupThresholdList add

Add a value (a 'from' and a 'to') to the threshold value list.

packetGroupThresholdList setDefault

Sets to IxTclHal default values for all configuration options. Does not clear the list.

EXAMPLES

Example TCL commands to turn Jitter Filter on and configure threshold and mask.

package req IxTclHal

ixConnectToChassis <chassis>

set chassId 1
set cardId 3
set portId 2

portCpu reset $chassId $cardId $portId

port setFactoryDefaults $chassId $cardId $portId

set receiveMode [expr $::portRxModeWidePacketGroup | $::portRxModeRateMonitoring]

port setReceiveMode $receiveMode $chassId $cardId $portId

packetGroup getRx $chassId $cardId $portId

packetGroupThresholdList setDefault
packetGroupThresholdList config -enableJitterFilter true
packetGroupThresholdList config -fromPGID 0
packetGroupThresholdList config -toPGID 2

Appendix 1 IxTclHAL Commands

– 1040 –

packetGroupThresholdList config -threshold 1000
packetGroupThresholdList config -filterWindow filterWindow81920ns

packetGroupThresholdList add

packetGroup setRx $chassId $cardId $portId

port write $chassId $cardId $portId

SEE ALSO

packetGroup.

packetLengthInsertion
packetLengthInsertion - used to insert packet length value. The packet length that is inserted is the hex
form of the difference between the actual packet length and the adjustment value that will be specified.

SYNOPSIS

packetLengthInsertion sub-command options

DESCRIPTION

The packetLengthInsertion command is used to insert packet length value. The packet length that is
inserted is the hex form of the difference between the actual packet length and the adjustment value that
will be specified.

STANDARD OPTIONS

enabled

enables the insertion of packet length option.

offset

the offset at which the packet length needs to be inserted in a packet.

adjustment

number of bytes that needs to be adjusted for the packet length.

COMMANDS

The packetLengthInsertion command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

packetLengthInsertion set option

sets the packet length insertion option.

packetLengthInsertion get option

Appendix 1 IxTclHAL Commands

– 1041 –

gets the packet length insertion option.

packetLengthInsertion del

deletes the packet length insertion option.

packetLengthInsertion add

adds the packet length insertion option.

packetLengthInsertion getCount

gets the count of packet length.

EXAMPLES
The following example shows how to insert the difference in the length of the packet
and adjustment value of 'abc' in the stream at offset 'xyz' bytes in the packet. This
is set to random frame size to see the change in values.

package req IxTclHal
ixConnectToChassis xm12-qa7

port get 1 11 1
port config -loopback true
port set 1 11 1
port write 1 11 1

stream get 1 11 1 1
stream config -frameSizeType sizeRandom
stream config -frameSizeMIN 64
stream config -frameSizeMAX 100
stream config -dma stopStream

stream set 1 11 1 1
stream write 1 11 1 1

stream get 1 11 1 1

packetLengthInsertion add 3
packetLengthInsertion getCount

packetLengthInsertion get 1
packetLengthInsertion config -enabled true
packetLengthInsertion config -offset 16
packetLengthInsertion config -adjustment 4
packetLengthInsertion set 1

packetLengthInsertion get 2

Appendix 1 IxTclHAL Commands

– 1042 –

packetLengthInsertion config -enabled 2
packetLengthInsertion config -offset 18
packetLengthInsertion config -adjustment 8
packetLengthInsertion set 2

packetLengthInsertion get 3
packetLengthInsertion config -enabled 3
packetLengthInsertion config -offset 20
packetLengthInsertion config -adjustment 16
packetLengthInsertion set 3

stream set 1 11 1 1
stream write 1 11 1 1

set offset1 16 ; set adjustment1 4
set offset2 20 ; set adjustment2 8
set offset3 24 ; set adjustment3 16

stream get 1 11 1 1
stream getPacketView 1
set packetView [stream cget -packetView]

after 5000
set prtList [list [list 1 11 1]]
ixClearStats prtList
ixStartCapture prtList
ixStartPortTransmit 1 11 1

after 5000
ixStopCapture prtList

after 5000
captureBuffer get 1 11 1
captureBuffer getframe 1
set captureFrame [captureBuffer cget -frame]

set totalLength1 [llength $packetView]
set totalLength2 [llength $captureFrame]

foreach offset "$offset1 $offset2 $offset3" adjustment "$adjustment1 $adjustment2
$adjustment3" {
foreach frame "[list $packetView] [list $captureFrame]" length "$totalLength1
$totalLength2" {
puts "OFFSET $offset ADJUSTMENT $adjustment LENGTH $length"

Appendix 1 IxTclHAL Commands

– 1043 –

set hexLength($offset) [join [lrange $frame $offset [expr $offset + 1]] ""]
puts "HEX $hexLength($offset)"
set decLength($offset) [expr 0x$hexLength($offset)]
puts "DEC $decLength($offset)"

if { $decLength($offset) == [expr $length - $adjustment] } {
puts "PASS for offset $offset"
} else {
puts "FAIL for offset $offset"
}
}
}

pauseControl
pauseControl - configure a pause control packet.

SYNOPSIS

pauseControl sub-command options

DESCRIPTION

The pauseControl command is used to configure the parameters on a stream to transmit pause control
frames.

STANDARD OPTIONS

da

(Read-only, except for 10GE cards) The MAC address of the interface receiving the pause control
message. (default = 01 80 C2 00 00 01)

pauseControlType

Use to configure the priority control type. (default = ieee8023x)

Option Value Usage

ieee8023x 0 (default) IEEE 802.3x values:

The Length/Type for a MAC Control frame = 88 08.

The MAC Control Opcode for the PAUSE control function = 00 01.

Pause Quanta = 255: The user-specified pause counter value, measured
in Pause Quanta units. (1 Pause Quanta = 512 bit times.) Valid range is 0
to 65535 pause quanta.

ieee8021Qbb 1 (default) IEEE 802.1Qbb values:

The Length/Type for a MAC Control frame = 88 08.

Appendix 1 IxTclHAL Commands

– 1044 –

Option Value Usage

The MAC Control Opcode for the PAUSE control function = 01 01.

Priority Enable Vector = 00 00

Pause Quanta = '00...00' (16 octets) where each pair contains the
enable/disable value and pause quanta value.

pauseFrame

Use to configure the hex byte priorities; 16 byte hex list. (default = '00....00')

pauseTime

The pause time, measured in pause quanta units. (1 Pause Quanta = 512 bit times.) The valid range is 0
to 65535 pause quanta. (default = 255)

pfcEnableValueList

Use to configure the priority parameters using pair list, where each pair contains the enable/disable value
and pause quanta value. Only used when usePfcEnableValueList = true. (default = '{0 0} {0 0} {0 0} {0
0} {0 0} {0 0} {0 0} {0 0}')

priorityEnableVector

Use to configure the priority enable vector. (default = '00 00')

usePfcEnableValueList
true/false

Use to choose between pauseFrame or pfcEnableValueList. (default = false)

COMMANDS

The pauseControl command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

pauseControl cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the pauseControl command.

pauseControl config option value

Modify the configuration options of the pauseControl. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for pauseControl.

pauseControl decode capSlice [chasID cardID portID]

Decodes a captured slice/frame into the pause control variables. If not an pause control frame, returns
TCL_ERROR. May be used to determine if the captured frame is a valid pause control frame. Specific
errors are:

Appendix 1 IxTclHAL Commands

– 1045 –

l No connection to a chassis
l The captured frame is not an pause control frame

pauseControl get chasID cardID portID

Gets the current configuration of the pauseControl frame for port with id portID on card cardID, chassis
chasID. from its hardware. Call this command before calling pauseControl cget option value to get the
value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

pauseControl set chasID cardID portID

Sets the configuration of the pause control frame in IxHAL for port with id portID on card cardID, chassis
chasID by reading the configuration option values set by the pauseControl config option value command.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

pauseControl setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal

set hostname loopback

if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}

set chassis [chassis cget -id]
set card 2
set port 1
set streamId 1
set portList [list [list $chassis $card $port]]

port setFactoryDefaults $chassis $card $port
port config -enableDataCenterMode true
port config -flowControlType ieee8021Qbb
port config -pfcEnableValueList "{1 0} {0 2} {1 1} {0 2} {1 3} {0 3} {0 3} {1 1}"

if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"

Appendix 1 IxTclHAL Commands

– 1046 –

set retCode $::TCL_ERROR
}

ixWritePortsToHardware portList
ixCheckLinkState portList

stream setDefault
stream config -name "PFC stream"
stream config -priorityGroup priorityGroup0

stream setDefault

protocol setDefault
protocol config -name pauseControl
protocol config -ethernetType ethernetII

pauseControl setDefault
pauseControl config -da {01 80 C2 00 00 01}
pauseControl config -pauseTime 128
if {[pauseControl set $chassis $card $port]} {
errorMsg "Error calling pauseControl set $chassis $card $port"
set retCode $::TCL_ERROR
}

if {[stream set $chassis $card $port $streamId]} {
errorMsg "Error calling stream set $chassis $card $port $streamId"
set retCode $::TCL_ERROR
}

second stream
incr streamId
protocol setDefault
protocol config -name pauseControl
protocol config -ethernetType ethernetII
pauseControl setDefault
pauseControl config -pauseControlType eee8021Qbb
pauseControl config -usePfcEnableValueList $::true
pauseControl config -pfcEnableValueList "{1 555} {0 0} {0 0} {0 0} {1 2} {1 6} {0 0}
{0 0}"
if {[pauseControl set $chassis $card $port]} {
errorMsg "Error calling pauseControl set $chassis $card $port"
set retCode $::TCL_ERROR
}

if {[stream set $chassis $card $port $streamId]} {
errorMsg "Error calling stream set $chassis $card $port $streamId"
set retCode $::TCL_ERROR
}

Appendix 1 IxTclHAL Commands

– 1047 –

ixWriteConfigToHardware portList -noProtocolServer

SEE ALSO

ip

pcsLaneError
pcsLaneError - configure PCS lane errors.

SYNOPSIS

pcsLaneError sub-command options

DESCRIPTION

The pcsLaneError command is used to insert errors into PCS lanes, either only the Lane Marker fields or
into both Lane Markers and Payload fields.

STANDARD OPTIONS

periodType

Use to configure the PCS Error Period Type. (default = pcsLaneErrorPeriodTypeLaneMarkers)

Option Value Usage

pcsLaneErrorPeriodTypeLaneMarkers 0 Lane Markers period type (only)

pcsLaneErrorPeriodTypeLaneMarkersAndPayload 1 both Lane Markers and Payload period
types

enableContinuous
true/false

If set to true, transmits errors continuously at the given period and count. If false, see repeat, below.
(default = false)

pcsLane

Specifies which lane to insert errors into. Valid values range 0-19 for 100G load modules; 0-3 for 40G load
modules. (default = 0)

period

Periodicity of transmitted errors. The unit of period differs based on the type of error (periodType)
selected. (default = 1)

l Type = lane markers, period = lane markers
l Type = lane markers and payload, period = 64/66 bit words

Appendix 1 IxTclHAL Commands

– 1048 –

count

Consecutive errors to transmit (default = 1)

repeat

Total number of errors to transmit. This is value ignored if enableContinuous is set to true. (default = 1)

syncBits

Hex field for entering the error bits for the sync field (default = 0x00)

laneMarkerFields

Hex field for entering the lane marker fields (default = 00 00 00 00 00 00 00 01)

configuredErrorBits

(Read-only) Resultant configuration of bits to be sent out on the pcs lane, including the two sync bits.
Result returned in string binary format similar to IxExplorer for all 8 bytes + 2 sync bits.

COMMANDS

The pcsLaneError command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

pcsLaneError get chasID cardID portID

Gets the current configuration of the PCS lane error from IxHAL for port with id portID on card cardID,
chassis chasID. Specific errors are:

l No connection to a chassis
l Invalid port number

pcsLaneError set chasID cardID portID

Sets the configuration of the PCS lane error in IxHAL for port with id portID on card cardID, chassis
chasID . Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

pcsLaneError start chasID cardID portID

Starts the transmission of PCS lane errors for port with id portID on card cardID, chassis chasID. Specific
errors are:

l No connection to a chassis
l Invalid port number

Appendix 1 IxTclHAL Commands

– 1049 –

l The port is being used by another user

pcsLaneError stop chasID cardID portID

Stops the transmission of PCS lane errors for port with id portID on card cardID, chassis chasID. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

pcsLaneError setDefault

Sets to IxTclHal default values for all configuration options.

pcsLaneError cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the pcsLaneError command.

pcsLaneError config option value

Modify the configuration options of the pcsLaneError. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for pcsLaneError.

CAUTION: 'pcsLaneError get' should be called before 'pcsLaneError config' in order to maintain
consistency between Tcl Client pcsLaneError object and Server pcsLaneError object.

EXAMPLES

See pcsLaneStatistics.

SEE ALSO

pcsLaneStatistics, txLane.

pcsLaneStatistics
pcsLaneStatistics - retrieves the rx stats per each physical lane.

SYNOPSIS

pcsLaneStatistics sub-command options

DESCRIPTION

The pcsLaneStatistics command is used to retrieve the rx stats per each physical lane.

STANDARD OPTIONS

syncHeaderLock

Indicates if the received PCS lane achieved sync-bit lock. (default = pcsLaneStateLock)

Appendix 1 IxTclHAL Commands

– 1050 –

Option Value Usage

pcsLaneStateLock 1 lane state: lock

pcsLaneStateNoLock 0 lane state: not locked

pcsLaneMarkerLock

Indicates if the received PCS lane has achieved alignment marker lock. (default = pcsLaneStateLock)

Option Value Usage

kError 0 red led, currently there is an error condition

kNa 1 green led, not used in lostPcsLaneMarkerLock

kNoError 2 grey led, no error condition since clearing stats

kLatched 3 yellow led, there was an error since the last clear but no error at present

pcsLaneMarkerMap

The PCS lane number identified by the alignment marker.

relativeLaneSkew

Shows the actual skew in nanoseconds. Skew measurements are valid only when all lanes are locked with
20 unique lane markers. The first lane markers to arrive have skew of 0. All other lane skews are relative
to them.

syncHeaderErrorCount

The number of synchronization bit errors received.

pcsLaneMarkerError
Count

The number of incorrect PCS lane markers received while in PCS lane lock state.

bip8ErrorCount

The number of BIP-8 errors for a PCS lane. BIP-8 = Bit-Interleaved Parity with eight bit errors (BIP-8).
Each bit in the BIP field is an even parity calculation over all previous selected bits of a PCS lane.

lostSyncHeaderLock

Indicates the loss of sync header lock since the last statistic was read. (default = pcsLaneStateLock)

Appendix 1 IxTclHAL Commands

– 1051 –

Option Value Usage

pcsLaneStateLock 1 lane state: lock

pcsLaneStateNoLock 0 lane state: not locked

lostPcsLaneMarkerLock

Indicates the loss of PCS lane marker lock sincethe last statistic was read. (default = pcsLaneStateLock)

Option Value Usage

kError 0 red led, currently there is an error condition

kNa 1 green led, not used in lostPcsLaneMarkerLock

kNoError 2 grey led, no error condition since clearing stats

kLatched 3 yellow led, there was an error since the last clear but no error at present

COMMAND

The pcsLaneStatistics command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

pcsLaneStatistics get chasID cardID portID

Retrieves the rx PCS lane skew statistics from ixServer for port with id portID on card cardID, chassis
chasID. Specific errors are:

l No connection to a chassis
l Invalid port number

pcsLaneStatistics getLane physicalLane

Retrieves the data from local IxHAL after the get has been issued and updates the object with one row of
the rx lane stats, indexed per physical lane id. Specific errors are:

l No connection to a chassis
l Invalid physical lane

pcsLaneStatistics setDefault

Sets to IxTclHal default values for all configuration options.

clearPcsLaneStatistics portList

This command eliminates all pcs data lane stats on all ports specified in portList.

EXAMPLES
package req IxTclHal

Appendix 1 IxTclHAL Commands

– 1052 –

set hostname loopback

if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}
set chasId [chassis cget -id]
set cardId 140
set portId 1

set portList [list [list $chasId $cardId $portId]]

set physicalLaneList [txLane getLaneList $chasId $cardId $portId]
set laneData {\
2 6.206 \
6 291.682 \
17 310.3 \
1 949.518 \
3 12.412 \
8 1681.826 \
18 633.012 \
4 316.506 \
15 2023.156 \
13 2823.73 \
16 1272.23 \
19 633.012 \
5 2147.276 \
12 1073.638 \
11 3165.06 \
7 1445.998 \
10 55.854 \
14 229.622 \
9 2699.61 \
0 0 \
}
txLane setDefault
set index 0
txLane select $chasId $cardId $portId
foreach {lane skew} $laneData {
txLane config -pcsLane $lane
txLane config -skew $skew
if {[txLane setLane [lindex $physicalLaneList $index]]} {
errorMsg "Error setting lane [lindex $physicalLaneList $index]"
set retCode $::TCL_ERROR
break
}
incr index
}

Appendix 1 IxTclHAL Commands

– 1053 –

ixWritePortsToHardware portList
clearPcsLaneStatistics portList ; #usage: used with port list.
set plist [list [list 1 1 1]]
clearPcsLaneStatistics $plist

start_test() ;# something to test this with
now get stats
pcsLaneStatistics get $chasId $cardId $portId
set title [format "%8s\t%8s\t%8s\t%8s\t%8s\t%8s\t%8s\t%8s" pcsLane skew 6466Lock
laneLock pcsError vlError lostPcs lostVl]
ixPuts $title
ixPuts [string repeat "-" [string length $title]]
foreach lane $physicalLaneArray {
if {[pcsLaneStatistics getLane $lane]} {
errorMsg "Error getting pcsLaneStats for lane $lane"
return $::TCL_ERROR
}
ixPuts [format "%8s\t%8s\t%8s\t%8s\t%8s\t%8s\t%8s\t%8s" \
[pcsLaneStatistics cget -pcsLaneMarkerMap] \
[pcsLaneStatistics cget -relativeLaneSkew] \
[pcsLaneStatistics cget -syncHeaderLock] \
[pcsLaneStatistics cget -pcsLaneMarkerLock] \
[pcsLaneStatistics cget -pcsLaneMarkerErrorCount] \
[pcsLaneStatistics cget -bip8ErrorCount] \
[pcsLaneStatistics cget -lostSyncHeaderLock] \
[pcsLaneStatistics cget -lostPcsLaneMarkerLock]]
}
ixPuts
cleanUp

SEE ALSO

pcsLaneError, txLane

pcpuCommandService
pcpuCommandService - execute Linux commands on a port's CPU

SYNOPSIS

pcpuCommandService sub-command options

DESCRIPTION

Most intelligent Ixia ports runs the Linux Operating system. Any Linux command may be remotely
executed by TCL programming. The port command's isValidFeature sub-command may be used to
determine if a given port runs Linux. Use the following sequence:

if [port isValidFeature $chas $card $port portFeatureIxRouter] {
... port runs Linux ...

Appendix 1 IxTclHAL Commands

– 1054 –

}

Refer to Issue Port CPU Command for an overview of this command. Commands may be sent to a set of
ports and executed simultaneously. Different commands may be executed on different ports. The result
of each port's command execution may be individually retrieved.

The add sub-command is used to build a list of commands for multiple ports. The execute command
causes all commands in the list to be sent to the affected ports and executed simultaneously. The result of
all command execution is available by traversing through the list using the getFirst and getNext sub-
commands. All Standard Options are read-only and only valid after a getFirst/getNext call.

STANDARD OPTIONS

cardID

Read-only. The card associated with the command.

chassisID

Read-only. The chassis associated with the command.

command

Read-only. The executed command.

error

Read-only. After command execution, the first 1024 characters that were sent to the standard error
stream.

input

Read-only. Optional text to be used as the standard input stream for the command to be executed.

output

Read-only. After command execution, the first 1024 characters that were sent to the standard output
stream.

portID

Read-only. The port associated with the command.

result

Read-only. After command execution, the return code from the command. Normally, `0' indicates a
successful command execution and non-zero indicates an error.

COMMANDS

The pcpuCommandService command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 1055 –

pcpuCommandService addchasID cardID portID command [input]

Adds a command to the indicated port. The same command may be entered multiple times; commands
are executed in the order that the add sub-command was used.

command is the text of the command to be executed, which must use an absolute path. For example,
`/bin/ls'. No filename expansion is performed on the command. For example, `/bin/ls /bin/ix*' finds no
matches. This, and the restriction on absolute path, may be avoided by executing the command through a
bash shell, as in:

pcpuCommandService add 1 1 1 "/bin/bash -c `ls -l /bin/ix*'"

The input argument is optional, and if present, is used as the standard input stream for the command. For
example, the following echos `hello world' to the commands standard output stream.

set command "/bin/cat"
set input "hello world\n"
pcpuCommandService add 1 1 1 $command $input

Specific errors are:

l No connection to a chassis
l Invalid port specification
l The port is owned by another user
l The port does not support Linux

pcpuCommandService cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the pcpuCommandService command.

pcpuCommandService del chasID cardID portID

Removes all commands for the indicated port. Specific errors are:

l No connection to a chassis
l Invalid port specification
l The port is owned by another user
l The port does not support Linux

pcpuCommandService execute

All commands for all ports are sent to the ports for execution. The results of the commands' execution is
available in the Standard Options after calls to getFirst and getNext. Specific errors are:

l Communications error with one or more ports

pcpuCommandService getFirst

+

Access the first command in the list. The command's results are available in the standard options. Specific
errors are:

Appendix 1 IxTclHAL Commands

– 1056 –

l There are no commands in the list

pcpuCommandService getNext

Access the next command in the list. The command's results are available in the standard options.
Specific errors are:

l There are no more commands in the list

pcpuCommandService setDefault

Sets default values for all configuration options and clears all commands from the list.

EXAMPLES
package require IxTclHal

set host localhost
set username user
Assume card 1 is a card that supports Linux
set card 1

Commands to execute on ports
Odd ports will echo a command from standard input
set oddCmd "/bin/cat"
set oddInput "hello there\n"

Even ports will execute a command through bash
This allows PATH lookup and filename expansion
set evenCmd "/bin/bash -c 'ls -l /bin/ix*'"

If this is a UNIX system, connect through TCL Server
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID
set chas [ixGetChassisID $host]

Make sure that this card supports Linux
if {[port isValidFeature $chas $card 1 portFeatureIxRouter] == 0} {
ixPuts "$chas:$card does not have a local CPU"

Appendix 1 IxTclHAL Commands

– 1057 –

return 1
}

Get the number of ports on the card
if [card get $chas $card] {
ixPuts $::ixErrorInfo
return 1
}
set portCount [card cget -portCount]

Delete any previous list of commands
pcpuCommandService setDefault

For all the ports
for {set i 1} {$i <= $portCount} {incr i 1} {
For the odd ports
if [expr $i & 1] {
if [pcpuCommandService add $chas $card $i $oddCmd \
$oddInput] {
ixPuts $::ixErrorInfo
return 1
}
} else {
for the even ports
if [pcpuCommandService add $chas $card $i $evenCmd] {
ixPuts $::ixErrorInfo
return 1
}
}
}

Do the commands
if [pcpuCommandService execute] {
ixPuts $::ixErrorInfo
return 1
}

Retreive and print the results
for {set next [pcpuCommandService getFirst]} \
{$next != $::TCL_ERROR} \
{set next [pcpuCommandService getNext]} {
set chassis [pcpuCommandService cget -chassisID]
set card [pcpuCommandService cget -cardID]
set port [pcpuCommandService cget -portID]
set command [pcpuCommandService cget -command]
set output [pcpuCommandService cget -output]
set result [pcpuCommandService cget -result]

Appendix 1 IxTclHAL Commands

– 1058 –

ixPuts -nonewline "$chassis:$card:$port, "
ixPuts "cmd: $command, result: $result, output: $output"
}

SEE ALSO

port

poeAutoCalibration
poeAutoCalibration - initiate and query PoE port calibration

SYNOPSIS

poePoweredDevice sub-command options

DESCRIPTION

The poePoweredDevice command is used to initiate a PoE port calibration and/or determine the status of
a calibration. Calibration of all PoE ports is performed at chassis power-up time.

A calibration is initiated by calling the initiateCalibrate sub-command. The calibration may take up to 20
seconds. The results of a calibration, either while it is proceeding or after it has completed, can be
determined by first calling requestStatus, waiting a second and then calling get. The status of the
calibration is then available through the options in this command.

STANDARD OPTIONS

currentReadbackStatus

Read-only. The status of the calibration procedure for current readback.

Option Value Usage

poeAutoCalibrationTesting 0 Calibration is still in progress.

poeAutoCalibrationPass 1 The calibration completed successfully.

poeAutoCalibrationFail 2 The calibration failed.

iClassRangeStatus

Read-only. The status of the calibration procedure for the class range. See currentReadbackStatus for the
possible values of this option.

iLoadRangeStatus

Read-only. The status of the calibration procedure for the load range. See currentReadbackStatus for the
possible values of this option.

Appendix 1 IxTclHAL Commands

– 1059 –

iPulseRangeStatus

Read-only. The status of the calibration procedure for the pulse range. See currentReadbackStatus for the
possible values of this option.

voltageReadbackStatus

Read-only. The status of the calibration procedure for voltage readback. See currentReadbackStatus for
the possible values of this option.

COMMANDS

The poePoweredDevice command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

poeAutoCalibration cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the poeAutoCalibration command.

poeAutoCalibration get chasID cardID portID

Gets the current configuration of the poeAutoCalibration parameters on the indicated port from its
hardware. Call this command before calling poeAutoCalibration cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

poeAutoCalibration initiateCalibrate chasID cardID portID

Initiates the calibration process on the indicated port. The end of the calibration process may be
determined by calling requestStatus and get or by waiting 20 seconds. Specific errors are:

l No connection to a chassis
l Invalid port number

poeAutoCalibration requestStatus chasID cardID portID

Requests that the status of the calibration be retrieved from the port indicated. The values may take up to
a second to be read back. A call to this sub-command should be followed by a call to get. Specific errors
are:

l No connection to a chassis
l Invalid port number

poeAutoCalibration setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under poePoweredDevice.

Appendix 1 IxTclHAL Commands

– 1060 –

SEE ALSO

poePoweredDevice.

poePoweredDevice
poePoweredDevice - control Power over Ethernet Powered Device (PD) emulation

SYNOPSIS

poePoweredDevice sub-command options

DESCRIPTION

The poePoweredDevice command is used to setup the parameters by which a PoE Powered Device (PD) is
emulated on a port.

The port can emulate a device that uses either Alternative A and/or Alternative B. This is controlled by the
relayControl option.

The emulated class is controlled by the enableClassSignature and signatureValue options; the classType
indicates the calculated class based on the signature value.

The emulated detection signature is controlled by the enableDetectionSignature, rsig, csig and
enableCsig10uF options.

The emulated Alternating Current Maintain Power Signature (ACMPS) is controlled by the
enableAcMpsSignature, rpd, cpd and enable CpdAdd10uF options.

Once the PSE (Power Sourcing Equipment) has classified the emulated PD, it should provide power to the
port. The power requirements of the emulated port are controlled by the steadyStateLoadControl,
controlledCurrent, controlledPower and idleCurrent options. Transient load variations may be inserted
through the use of the enableTransientLoadControl, transientLoadControl, pulseWidth, duty,
pulsedCurrent and slewRate options. Pulses are applied through the use of the portGroup setCommand
sub-command, with an loadPoEPulse value or through the high-level ixLoadPoePulse and
ixLoadPortPoePulse commands; if enableTransientLoadControl is true and transientLoadControl is set to
poeLoadControlSinglePusle, then a pulsed current as indicated by pulsedCurrent and slewRate is injected
for the period indicated by pulseWidth.

The voltage thresholds that are used by the PD to detect state transitions may be set by the vOperate,
vOff, vClassify, vDetect and vNoop options.

STANDARD OPTIONS

classType

Read-only. If enableClassSignature is true, this is the calculated classification of signatureValue.

Option Value Usage

poeClass0 0 Class 0.

Appendix 1 IxTclHAL Commands

– 1061 –

Option Value Usage

poeClass1 1 Class 1.

poeClass2 2 Class 2.

poeClass3 3 Class 3.

poeClass4 4 Class 4.

poeMaybeClass0or1 5 Either class 0 or 1.

poeMaybeClass0or1or2 6 Either class 0, 1 or 2.

poeMaybeClass0or2or3 7 Either class 0, 2 or 3.

poeMaybeClass0or3or4 8 Either class 0, 3 or 4.

poeMaybeClass0or4 9 Either class 0 or 4.

poeClassTypeUndefined 10 Unknown classification.

controlledCurrent

If steadyStateLoadControl is set to poeLoadControlConstantCurrent, then this is the amount of current
that the PD requires from the PSE, in mA. The value may be between 0 and 600mA. (default = 42. 5)

If steadyStateLoadControl is set to poeLoadControlConstantPower, then this is the amount of power that
the PD requires from the PSE, in watts. The value may be between 0 and 20W. (default = 2.0)

cpd

If enableAcMpsSignature is true, this is the capacitance signature expressed in nFarads, between 0 and
220nF. If enableCpdAdd10uF is set, then 10uF of capacitance is added to this value, effectively overriding
it. (default = 50)

csig

If enableDetectionSignature is true, this is the capacitance signature expressed in nFarads, between 0
and 220nF. If enableCsigAdd10uF is set, then 10uF of capacitance is added to this value, effectively
overriding it. (default = 50)

duty

If enableTransientLoadControl is true and transientLoadControl is set to poeLoadControlContinuousPusle,
then this is the duty cycle of the transient load. This is expressed as a percentage of total time that
transient loads is injected. (default = 30)

Appendix 1 IxTclHAL Commands

– 1062 –

enableAcMpsSignature true | false

If true, then the ACMPS signature is set from the values in rpd, cpd and enableCpdAdd10uF. (default =
true)

enableClassSignature true | false

If true, then the signatureValue option is used to set the emulated class. The computed class name is
indicated in classType. (default = true)

enableCpdAdd10uF true | false

If enableAcMpsSignature is true, then if this option is true, a value of 10uF is added to the cpd value which
sets the capacitance signature. This effectively overrides the cpd value, which is expressed in nF. (default
= false)

enableCsigAdd10uF true | false

If enableDetectionSignature is true, then if this option is true, a value of 10uF is added to the csig value
which sets the capacitance signature. This effectively overrides the csig value, which is expressed in nF.
(default = false)

enableDetection Signature true | false

Enables the use of the rsig, csig and enableCsigAdd10uF options to set the PoE detection signature.
(default = true)

enablePulseOnStart true | false

If true, then a single pluse is sent each time that the PSE starts to apply power. (default = false)

enableTransientLoad Control true | false

If true, then transient loads is injected based on the values in the transientLoadControl, pulseWidth, duty,
pulsedCurrent and slewRate options. (default = true)

idleCurrent

If steadyStateLoadControl is set to poeLoadControlIdle, then this is the amount of current that the PD
requires from the PSE, in mA. The value may be between 0 and 16mA. (default = 10)

pulseWidth

If enableTransientLoadControl is true and transientLoadControl is set to poeLoadControlSinglePusle, then
this is the width of the transient pulse that is injected. This is expressed in msec. (default = 40.25)

pulsedCurrent

If enableTransientLoadControl is true and transientLoadControl is set to poeLoadContrlContinuousPusle,
then this is the current injected. This is expressed in mA and may be less than or greater than the steady
state value. (default = 333.0)

Appendix 1 IxTclHAL Commands

– 1063 –

relayControl

This option controls the combination of power options are supported by the PD.

Option Value Usage

poeRelayControlNoMode 0 Neither mode is supported.

poeRelayControlAlternativeA 1 Use Alternative A.

poeRelayControlAlternativeB 2 Use Alternative B.

poeRelayControlBothAandB 3 (default) Use Alternative A or B.

rpd

If enableAcMpsSignature is true, this is the ACMPS resistance signature expressed as a floating point
value between 10 and 40 kOhms. (default = 23.0)

rpdRangeControl

On newer, 30watt PoE modules, it is possible to change the range associated with rpd.

Option Value Usage

poeRpdRangeZac1 0 (default) The range of rpd is from 10 - 45kOhm.

poeRpdRangeZac2 1 The range of rpd is from 200 - 1200kOhm.

rsig

If enableDetectionSignature is true, this is the resistance signature expressed as a floating point value
between 10 and 40 kOhms. (default = 17.0)

signatureValue

If enableClassSignature is true, the class signature value, expressed as a floating point number between
0mA and 60mA. (default = 18.5)

slewRate

If enableTransientLoadControl is true and transientLoadControl is set to poeLoadControlContinuousPusle,
then this is the slew rate at which the current indicated in pulsedCurrent is injected. This is expressed in
mA/msec. (default = 33.0)

steadyStateLoadControl

This option controls the type of power requirements for the emulated PD after classification has
completed.

Appendix 1 IxTclHAL Commands

– 1064 –

Option Value Usage

poeLoadControlConstantCurrent 0 (default) The PD requires constant current, as
indicated in the controlledCurrent option.

poeLoadControlControlledPower 1 The PD requires controlled power, as indicated in the
controlledPower option.

poeLoadControlIdle 2 The PD requires constant current, as indicated in the
idleCurrent option.

poeLoadControlShutdown 3 The PD is in shutdown mode.

transientLoad
Control

If enableTransientLoadControl is true, then this option indicates the type of transient load that is injected.

Option Value Usage

poeLoadControlSinglePulse 0 Inject a transient load once when the pulse sub-
command is used.

poeLoadControlContinuousPulse 1 (default) Inject transient loads continuously.

vClassify

The maximum voltage for the emulated PD classification stage. Between this setting and vDetect, the
classification currents ae presented to the PSE by the PD. (default = 20.5)

vDetect

The maximum voltage for emulated PD detection. Between this setting and vNoop, the detection
signature impedances are presented to the PSE by the PD. (default = 10.0)

vNoop

The minimum detection voltage. No signatures are presented below this threshold value. (default = 2.8)

vOff

Sets the input threshold below which the PSE load is removed.(default = 33.0)

vOperate

Sets the input threshold where the PSE load is first applied. (default = 38.0)

Appendix 1 IxTclHAL Commands

– 1065 –

COMMANDS

The poePoweredDevice command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

poePoweredDevice cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the poePoweredDevice command.

poePoweredDevice config option value

Modify the poePoweredDevice configuration options of the port. If no option is specified, returns a list
describing all of the available poePoweredDevice options (see STANDARD OPTIONS) for port.

poePoweredDevice get chasID cardID portID

Gets the current configuration of the poePoweredDevice parameters on the indicated port from its
hardware. Call this command before calling poePoweredDevice cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

poePoweredDevice set chasID cardID portID

Sets the configuration of the poePoweredDevice parameters in IxHAL on port with id portID on card
cardID, chassis chasID by reading the configuration option values set by the poePoweredDevice config
option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.

poePoweredDevice setDefault

Sets to IxTclHal default values for all configuration options.

poePoweredDevice setNominal chasID cardID portID [controlType]

Sets the option values for a particular control type to its nominal value. controlType may be one of these:

Control Type Usage

"class0" Class 0 device emulation

"class1" Class 1 device emulation

"class2" Class 2 device emulation

"class3" Class 3 device emulation

Appendix 1 IxTclHAL Commands

– 1066 –

Control Type Usage

"class4" Class 4 device emulation

"cpd" AC MPS capacitance

"csig" Detection signature capacitance

"idleCurrent" Steady state current to idle current

"rpd" AC MPS resistance

"rsig" Detection signature resistance

"vClassify" vClassify threshold voltage

"vDetect" vDetect threshold voltage

"vNoop" vNoop threshold voltage

"vOperate" vOperate threshold voltage

"vOff" vOff threshold voltage

EXAMPLES
package require IxTclHal

set host localhost
set username user

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chId [ixGetChassisID $host]

set card 27

Appendix 1 IxTclHAL Commands

– 1067 –

set portId 1
set waitForCalibration 20

Useful port lists
set portList [list [list $chas $card $portId]]

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

set retCode "PASS"

poePoweredDevice setDefault

Initiate an auto calibration
if {[poeAutoCalibration initiateCalibrate $chId $card $portId]} {
errorMsg "Error initiating autoCalibrate on port $chId $card $portId"
set retCode "FAIL"
}
Wait for the maximum possible time
after [expr $waitForCalibration*1000]

Ask for the status of the calibration
if {[poeAutoCalibration requestStatus $chId $card $portId]} {
errorMsg "Error requesting status on autoCalibrate for port $chId $card $portId"
set retCode "FAIL"
}
Wait a bit for the answers to be read back
after 1000

if {[poeAutoCalibration get $chId $card $portId]} {
errorMsg "Error getting status on autoCalibrate for port $chId $card $portId"
set retCode "FAIL"
break
}

Check to make sure that all calibrations succeeded.
foreach param {currentReadbackStatus iClassRangeStatus iLoadRangeStatus\
iPulseRangeStatus voltageReadbackStatus} {
if {[poeAutoCalibration cget -$param] != $::poeAutoCalibrationPass } {

Appendix 1 IxTclHAL Commands

– 1068 –

errorMsg "poeAutoCalibration cget $param - [poeAutoCalibration cget -$param] !=
poeAutoCalibrationPass"
set retCode "FAIL"
}
}

if {[poePoweredDevice get $chId $card $portId]} {
errorMsg "Error getting poe config for $chId $card $portId"
set retCode "FAIL"
continue
}

if {[poePoweredDevice cget -enableClassSignature]} {
switch [poePoweredDevice cget -classType] {
$::poeClass0 {
logMsg "PoE device config'd as class 0"
}
$::poeClass1 {
logMsg "PoE device config'd as class 1"
}
$::poeClass2 {
logMsg "PoE device config'd as class 2"
}
$::poeClass3 {
logMsg "PoE device config'd as class 3"
}
$::poeClass4 {
logMsg "PoE device config'd as class 4"
}
default {
logMsg "PoE device in an in-between class state"
}}
change the value if class enabled
poePoweredDevice config -signatureValue 42.0
}

poePoweredDevice config -enableDetectionSignature true
poePoweredDevice config -rsig 25
poePoweredDevice config -csig 200.3
poePoweredDevice config -enableCsigAdd10uF false

poePoweredDevice config -enableAcMpsSignature true
poePoweredDevice config -rpdRangeControl poeRpdRangeZac1
poePoweredDevice config -rpd 33
poePoweredDevice config -cpd 42
poePoweredDevice config -enableCpdAdd10uF false

config the steady state stuff

Appendix 1 IxTclHAL Commands

– 1069 –

poePoweredDevice config -steadyStateLoadControl \
poeLoadControlControlledPower
poePoweredDevice config -controlledCurrent 482.2
poePoweredDevice config -controlledPower 13.8
poePoweredDevice config -idleCurrent 12.0

config the transient load stuff
poePoweredDevice config -enableTransientLoadControl true
poePoweredDevice config -pulseWidth 10
poePoweredDevice config -enablePulseOnStart false
poePoweredDevice config -duty 33.3
poePoweredDevice config -pulsedCurrent 500
poePoweredDevice config -slewRate 20.0

config the voltage threshold stuff
poePoweredDevice config -vOperate 27.5
poePoweredDevice config -vOff 32.8
poePoweredDevice config -vClassify 17.2
poePoweredDevice config -vDetect 7.9
poePoweredDevice config -vNoop 8.2

if {[poePoweredDevice set $chId $card $portId]} {
errorMsg "Error setting poe config for \
$chId $card $portId - $::ixErrorInfo"
}

set nomimal examples
if {[poePoweredDevice setNominal $chId $card $portId class0]} {
errorMsg "Error setting nominal class0for \
$chId $card $portId - $::ixErrorInfo"
}
if {[poePoweredDevice setNominal $chId $card $portId rsig]} {
errorMsg "Error setting nominal rsig for \
$chId $card $portId - $::ixErrorInfo"
}

ixWritePortsToHardware portList
ixLoadPoePulse portList

signal acquisition
poeSignalAcquisition setDefault
poeSignalAcquisition config -enableTime true
poeSignalAcquisition config -enableAmplitude true

poeSignalAcquisition config -startTriggerSource poeTriggerSourceDCVolts
poeSignalAcquisition config -startTriggerSlope poeTriggerSlopePositive
poeSignalAcquisition config -startTriggerValue 0.167

Appendix 1 IxTclHAL Commands

– 1070 –

poeSignalAcquisition config -stopTriggerSource poeTriggerSourceDCVolts
poeSignalAcquisition config -stopTriggerSlope poeTriggerSlopePositive
poeSignalAcquisition config -stopTriggerValue 2.167

poeSignalAcquisition config -amplitudeMeasurementDelay 0.500

if [poeSignalAcquisition set $chId $card $portId] {
errorMsg "Error setting poeSignalAcquisition for \
$chId $card $portId $::ixErrorInfo"
}
if [ixArmPoeTrigger portList] {
errorMsg "Error arming the PoE ports in the portList\
$portList $::ixErrorInfo"
}

SEE ALSO

poeAutoCalibration, poeSignalAcquisition

poeSignalAcquisition
poeSignalAcquisition - measure time period between PoE events

SYNOPSIS

poeSignalAcquisition sub-command options

DESCRIPTION

The poeSignalAcquisition command is used to set up and capture the time between two signal transition
events. The amplitude of the a signal may also be measured a fixed time after the first signal transition.

The startTriggerSource, startTriggerSlope and startTriggerValue are used to indicate the signal to be used
for the first event, the slope that it should transition (positive or negative) and the value that should be
matched. Similarly, the stopTriggerSource, stopTriggerSlope and stopTriggerValue are used to indicate
the signal to be used for the second event. The enableTime, enableAmplitude and
amplitudeMeasurementDelay options are used to condition the measurements made.

Arming of the signal acquisition is accomplished through the use of the portGroup command with the
armPoeTrigger value, or the ixArmPoeTrigger and ixArmPortPoeTrigger high-level commands. The
arming may be aborted through the use of the portGroup command with the abortPoeTrigger value, or
the ixAbortPortPoeArm high-level commands.

A number of statistics available through the stat, statGroup, statList, and statWatch commands support
operation of this command. The status of the arming may be read from the statPoeTimeArmStatus and
statPoeAmplitudeArmStatus options. The status of the triggering may be read from the
statPoeTimeDoneStatus and statPoEAmplitudeDoneStatus options. The time and amplitude values are
visible in the statPoeMonitorTime and statPoeMonitorAmplitudeDCVolts and
statPoeMonitorAmplitudeDCAmps options after a trigger has completed.

Appendix 1 IxTclHAL Commands

– 1071 –

STANDARD OPTIONS

amplitudeMeasurementDelay

If enableAmplitude is true, then this value indicates the amount of time after the start trigger has been
satisfied at which the amplitude measurement of the signal indicated in startTriggerSource is measured.
Expressed in ms. (default =)

enableAmplitude true | false

If true, amplitude measurements is made. The amplitude measurement of the signal indicated in
startTriggerSource is made amplitudeMeasurementDelay ms after the start trigger has been satisfied.
(default =)

enableTime true | false

If true, then the time between the start trigger event and the stop trigger event is measured. (default =)

startTriggerSlope

Indicates which slope of the startTriggerSignal satisfies the start trigger event.

Option Value Usage

poeTriggerSlopePositive 0 (default) A positive slope.

poeTriggerSlopeNegative 1 A negative slope.

startTriggerSource

Indicates which signal characteristic is to be used to trigger the start event and to be measured if
enableAmplitude is true.

Option Value Usage

poeTriggerSourceDCVolts 0 (default) DC voltage

poeTriggerSourceDCAmps 1 DC amperage

startTriggerValue

Indicates the value to be used as a threshold for the start trigger event. Expressed in volts or amps,
depending on the setting of startTriggerSource. (default =)

stopTriggerSlope

Indicates which slope of the stopTriggerSignal satisfies the stop trigger event.

Option Value Usage

poeTriggerSlopePositive 0 (default) A positive slope.

Appendix 1 IxTclHAL Commands

– 1072 –

Option Value Usage

poeTriggerSlopeNegative 1 A negative slope.

stopTriggerSource

Indicates which signal characteristic is to be used to trigger the stop event.

Option Value Usage

poeTriggerSourceDCVolts 0 (default) DC voltage

poeTriggerSourceDCAmps 1 DC amperage

stopTriggerValue

Indicates the value to be used as a threshold for the stop trigger event. Expressed in volts or amps,
depending on the setting of stopTriggerSource. (default =)

COMMANDS

The poeSignalAcquisition command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

poeSignalAcquisition cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the poeSignalAcquisition command.

poeSignalAcquisition config option value

Modify the configuration options of the poeSignalAcquisition. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for poeSignalAcquisition.

poeSignalAcquisition get chasID cardID portID

Gets the options associated with a particular PoE port. Specific errors are:

l Port is not available

poeSignalAcquisition set chasID cardID portID

Sets the options associated with a particular PoE port. Specific errors are:

l No connection to the chassis
l Invalid port - not available or in use

poeSignalAcquisition setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under poePoweredDevice.

Appendix 1 IxTclHAL Commands

– 1073 –

SEE ALSO

poePoweredDevice.

port
port - configure a port of a card on a chassis.

SYNOPSIS

port sub-command options

DESCRIPTION

The port command is used to configure the properties of a port of a card on a chassis.

For Sonet ports which support DCC (Data Communications Channel) streams and flows, ports may be set
transmit a combination of DCC packets as streams, advanced streams or flows and SPE (Synchronous
Payload Envelope) packets as streams, advanced streams or flows. See the transmitMode option for
further details.

Note: The setDefault sub-command sets all options at default values, as indicated here. These
values are a consistent setting for 10/100 ethernet cards and may or may not be appropriate for
other cards. In general, the sequence:

port setDefault
port set $chassis $card $port

fails.

The setFactoryDefaults sub-command, which relates to a particular port, sets all options at default values
appropriate for the type of port. The sequence:

port setFactoryDefaults $chassis $card $port
port set $chassis $card $port

always succeeds. For multi-type boards, for example, OC192/10GE WAN, the board type is forced to one
particular setting and may not be appropriate.

STANDARD OPTIONS

advertise1000FullDuplex true/false

If set to true, this port advertises itself at 1000 Mbps and Full duplex mode (applicable to gigabit ports
only). (default = false)

advertise100FullDuplex true/false

If set to true, this port advertises itself at 100 Mbps and Full duplex mode (applicable to 10/100 port
only). (default = true)

Appendix 1 IxTclHAL Commands

– 1074 –

advertise100HalfDuplex true/false

If set to true, this port advertises itself at 100 Mbps and Half duplex mode (applicable to 10/100 port
only). (default = true)

advertise10FullDuplex true/false

If set to true, this port advertises itself at 10 Mbps and Full duplex mode (applicable to 10/100 port only)
or 10Gbps (applicable to Novus 10G only). (default = true)

advertise10HalfDuplex true/false

If set to true, this port advertises itself at 10 Mbps and Half duplex mode (applicable to 10/100 port only).
(default = true)

advertiseAbilities

Sets up the auto-negotiation parameters for gigabit (applicable to Gigabit only). The value of flowControl
must be true for this field to have an effect.

Option Value Usage

portAdvertiseNone 0 (default) Do not advertise flow control abilities

portAdvertiseSend 1 Send only (asymmetric to link partner)

portAdvertiseSendAndReceive 2 Send and receive (symmetric to link partner)

portAdvertiseSendAndOrReceive 3 Send and/or receive (both symmetric or asymmetric to
link partner)

am100GTwoLane

Controls the alignment marker mapping on transmit, and requires the same mapping to be used on
receive for T400 QDD and T400 OSFP 100GE speed modes.
It is a boolean that can be set to 0 (default) and 1.

Option Value Usage

100GBASE-*4 0 Switches to 100GBASE-CR4/SR4 style alignment markers.

100GBASE-*2 1 Switches to 100GBASE-CR2/SR2 style alignment markers.

autoDetectInstrumentationMode

For specified load modules, the timestamp can be inserted into the Auto Instrumentation header instead
of the usual locations such as before CRC or at user-specified offset. This is called "Floating Timestamp."
(default = portAutoInstrumentationModeEndOfFrame) Options include:

Appendix 1 IxTclHAL Commands

– 1075 –

Option Value Usage

portAutoInstrumentationModeEndOfFrame 0 (default) End of Frame timestamp and data
integrity

portAutoInstrumentationModeFloating 1 Floating timestamp and data integrity

autonegotiate true/false

Specifies the auto-negotiate mode on a 10/100 port. (default = false)

Auto-negotiate mode can be set for Xcellon-Multis CFP4 and QSFP28 load modules.
This feature is only available for 40GE and 100GE port speed. It can be tested using the
portFeatureAutoNeg command.

This feature is also supported on Novus 100GE/40GE/50GE/25GE and NOVUS25/10GE8SFP28
10GE/25GE/50GE/100GE.
A value of true (1) is returned if the feature is enabled and false (0) if the feature is not enabled.

All variants of T400 QDD and T400 OSFP support this command. Both auto negotiation and link training
can be enabled using this command.

ieeeL1Defaults true/false

If set to true, the IEEE default parameters are enabled and you will not be able to enable the L1
parameters like autonegotiation, link training and FEC manually.
(default = true)

dataCenterMode

Configure the type of priority traffic mapping on a port if portFeatureDataCenterMode = true. (default =
fourPriorityTrafficMapping)

Option Value Usage

fourPriorityTrafficMapping 1 four priority

eightPriorityTrafficMapping 2 eight priority

DestMacAddress

The MAC address of the DUT port to which the Ixia source port is connected. Used for running IP tests.
Entered in form {01 02 03 04 05 06}. (default = {00 de bb 00 00 00})

Note: This value is not written in HAL or hardware. It is merely stored in TclHal so that it can be accessed
at any time. The MAC addresses should be set with the stream command.

directedAddress

This is the address that port listens on for a directed pause message. (default = {01 80 C2 00 00 01})

Appendix 1 IxTclHAL Commands

– 1076 –

duplex half/full

Set the duplex mode to half duplex or full duplex on a 10/100 port. (applicable to 10/100 only) (default =
full)

Duplex is always full for Gigabit ports.

enableAutoDetectInstrumentation true/false

If set to true, then auto detection of instrumentation is enabled. (default = false)

enableDataCenterMode true/false

Enable/disable the Data Center Mode. (default = false)

enableManualAutoNegotiate true/false

If set to true, then as the port configuration is written to hardware auto negotiation begins. (applicable to
MII only) (default = false)

enablePhyPolling true/false

If set to true, the PHY is continuously polled during Mii setup operation. (default = true)

enableRepeatableLastRandomPattern true/false

This feature is only available for certain port types; this may be tested through the use of the port
isValidFeature... portFeatureRepeatableRandomStreams command. If true, the last random seed used to
create random stream values is reused. That value is visible in the lastRandomSeedValue option. (default
= false)

enableRsFec true/false

If set to true, the port allows Forward Error Correction. (default = false)

enableRsFecStats true/false

If set to true, the port collects Forward Error Correction stats. (default = false)

enableLinkTraining true/false

If set to true, the port allows link training. (default = false)
For Multis and Novus, this feature is available only when ieeeL1Defaults is set to false and
autonegotiate is set to true.
For all the T400 QDD and T400 OSFP variants, we can enable link training only without Auto Negotiation
using this command.

This feature is also supported on NOVUS25/10GE8SFP28 10GE/25GE/50GE/100GE.

enableSimulateCableDisconnect true | false

If set to true, the port simulates a disconnected cable to the DUT. (default = false)

Appendix 1 IxTclHAL Commands

– 1077 –

enableTransparentDynamicRateChange true | false

If set to true, the port allows dynamic rate change across counters. (default = false)

enableTxRxSyncStatsMode true | false

If set to true, the port collects Tx/Rx sync stats. (default = false)

firecodeAdvertise(true/false)

If set to true, the port advertises FC-FEC. If set to false, port does not advertise FC-FEC. (default = true)

firecodeForceOff(true/false)

If set to true, FC-FEC will be forcefully disabled. If set to false, FC-FEC will not be forcefully disabled.
(default = false)

firecodeForceOn(true/false)

If set to true, FC-FEC will be forcefully enabled. If set to false, FC-FEC will not be forcefully enabled.
(default = false)

firecodeRequest(true/false)

If set to true, port requests FC-FEC. If set to false, port does not request RS-FEC. (default = true)

flowControl true/false

Sets/unsets flow control on a port. (default = false)

flowControlType

Configure the type of flow control on a port if portFeatureDataCenterMode = true. (default = ieee8023x)

Option Value Usage

ieee8023x 0 (default) IEEE 802.3x values

For details, see pauseControlType on page A-pauseControl.

ieee8021Qbb 1 IEEE 802.1Qbb values

For details, see pauseControlType on page A-pauseControl.

gigVersion

Read-only. FPGA version of the gigabit port. (applicable to Gigabit only)

ignoreLink true/false

Transmit ignores the link status on Ethernet, POS or ATM port if set to true. (default = false)

Appendix 1 IxTclHAL Commands

– 1078 –

lastRandomSeedValue

Read-only. The seed value that was last used when enableRepeatableLastRandomPattern was false and a
start transmit operation was performed.

linkState

Read-only. The following states can be read from the port:

Option Value Usage

linkDown 0 The link on the port is down. This may be because there is no
cable connected to the port or the link on the destination port
may be down. The LED on the card is off when the link is down.

linkUp 1 the link is up indicated by green LED on the card.

linkLoopback 2 the port has been set to loopback mode. The LED on the card is
off in this mode.

miiWrite 3 the link is in this state when the configuration of 10/100 port is
being written to hardware (applicable to 10/100 only)

restartAuto 4 restarts the auto-negotiation process

autoNegotiating 5 the link is in currently executing the auto-negotiation process

miiFail 6 failed to write into memory for 10/100 ports (applicable to
10/100 only)

noTransceiver 7 No external transceiver or carrier detected.

invalidAddress 8 No PHY detected at the selected address.

readLinkPartner 9 Auto negotiation state in negotiation process. This is an
intermediate state and should be used for informational
purposes only.

noLinkPartner 10 Auto negotiation state in negotiation process. No link partner
was found. This is an intermediate state and should be used for
informational purposes only

restartAutoEnd 11 Auto negotiation state in negotiation process. This is an
intermediate state and should be used for informational
purposes only.

fpgaDownloadFail 12 Fpga download failure. Port is not usable.

noGbicModule 13 No GBIC module detected on Ixia Gbic port.

fifoReset 14 State in board initialization process. This is an intermediate

Appendix 1 IxTclHAL Commands

– 1079 –

Option Value Usage

state used for informational purposes only.

fifoResetComplete 15 State in board initialization process. This is an intermediate
state and used for informational purposes only.

pppOff 16 PPP is disabled. PPP control packets is ignored; PPP link
negotiation is not performed. Does not mean the link is
unusable; it may, for instance, be configured for Cisco/HDLC
and traffic (non-PPP) may still flow.

pppUp 17 The fully operational state when PPP is enabled. PPP link
negotiation has successfully completed and the link is available
for normal data traffic.

pppDown 18 The non-operational state when PPP is enabled. PPP link
negotiation has failed or the link has been administratively
disabled.

pppInit 19 PPP link negotiation state. This is an intermediate state and
should be used for informational purposes only. Initialization
state at the start of the negotiation process.

pppWaitForOpen 20 PPP link negotiation state: Waiting for indication from PPP
controller that auto negotiation and related PPP control packet
transfers can proceed. This is an intermediate state and should
be used for informational purposes only.

pppAutoNegotiate 21 PPP link negotiation state: In process of exchanging PPP control
packets (for example, LCP and IPCP) to negotiate link
parameters. This is an intermediate state and should be used for
informational purposes only.

pppClose 22 PPP link negotiation state: The PPP session has been terminated.
All data traffic stops.

pppConnect 23 PPP link negotiation state: Negotiation has successfully
completed; the peers are logically connected. Normal data
traffic may flow once the pppUp state is reached. This is an
intermediate state and should be used for informational
purposes only.

lossOfFrame 24 Physical link is down. (for example, loss of signal, loss of frame)

lossOfSignal 25 Physical link is down. (for example, loss of signal, loss of frame)

lossOfFramePpp
Disabled

26 PPP link negotiation state: Physical link has gone down and PPP
negotiation has been stopped.

Appendix 1 IxTclHAL Commands

– 1080 –

Option Value Usage

stateMachineFailure 27 Communication with the local processor has failed. Check
Server display and log for possible failure.

pppRestartNegotiation 28 PPP link negotiation state, following explicit request to restart
negotiation process: this state indicates response to
request.This is an intermediate state and should be used for
informational purposes only.

pppRestartInit 29 PPP link negotiation state, following explicit request to restart
negotiation process: the link has or is brought down to begin a
new negotiation cycle. This is an intermediate state and should
be used for informational purposes only.

pppRestartWaitFor
Open

30 PPP link negotiation state, following explicit request to restart
negotiation process: Waiting for indication from PPP controller
that current connection is already down or is in process of being
shut down. This is an intermediate state and should be used for
informational purposes only.

pppRestartWaitFor
Close

31 PPP link negotiation state, following explicit request to restart
negotiation process: Waiting for indication from PPP controller
that shut down of current connection has completed.This is an
intermediate state and should be used for informational
purposes only.

pppRestartFinish 32 PPP link negotiation state, following explicit request to restart
negotiation process: Preparation for restart completed; ready to
begin normal cycle again. This is an intermediate state and
should be used for informational purposes only.

localProcessorDown 33 local processor boot failure

forcedLinkUp 34 Link has been forced up.

temperatureAlarm 35 An over-temperature condition has occurred.

pppClosing 36 PPP negotiation is closing.

pppLcpNegotiate 37 PPP LCP negotiation in process.

pppAuthenticate 38 PPP authentication in process.

pppNcpNegotiate 39 PPP NCP negotiation in process.

noXenpakModule 40 No Xenpak module is installed.

sublayerUnlock 41 Sublayer unlock.

Appendix 1 IxTclHAL Commands

– 1081 –

Option Value Usage

demoMode 42 Server is in demo mode.

waitingForFpga
Download

43 Port is waiting for FPGA (Field Programmable Gate Array)
programming to be downloaded to port.

lossOfCell 44 ATM cell loss.

noXFPModule 45 No XFP module is installed.

moduleNotReady 46 The XFP interface has reported not ready.

noX2Module 48 No X2 module is installed.

lossOfPointer 49 Loss of pointer.

lossOfAligment 50 Loss of alignment.

lossOfMultiframe 51 Loss of multiframe.

gfpOutOfSync 52 GFP out of sync.

lcasSequenceMismatch 53 Lcas sequence mismatch.

ethernetOamLoopback 54 Ethernet OAM loopback

loopback

Sets/unsets loopback mode on a port. (default = portNormal) Valid choices are:

Option Value Usage

portNormal 0

portLoopback 1

portLineLoopback 2

MacAddress

Assigns a Source MAC address to the port. MAC address is entered in form {01 02 03 04 05 06}. (default
= '00 de bb 00 01 01')

Note: This value is not written in HAL or hardware. It is merely stored in TclHal so that it can be accessed
at any time. The MAC addresses should be set with the stream. command.

managerIp

Read-only. For ports with local CPUs, this is the management IP address associated with the port. For
example, the default managerIp for port 1 on card 2 would be 10.0.2.1.

Appendix 1 IxTclHAL Commands

– 1082 –

masterSlave

Only apply to GIG MII. If negotiateMsterSlave is `false', then the masterSlave is essentially read-only.
Options include:

Option Value Usage

portMaster 0

portSlave 1 (default)

multicastPauseAddress

This is the address that the port listens on for a multicast pause message. (default = {01 80 C2 00 00
01})

name

The given name of the port. (default = "")

negotiateMasterSlave true/false

Only apply to Gigabit MII. Enable negotiateMasterSlave. (default = false)

numAddresses

Number of source MAC addresses assigned to this port. (default = 1)

Note: This value is not written in HAL or hardware. It is merely stored in TclHal so that it can be accessed
at any time.

operationModeList

Use to configure port operation mode, for load modules with this option. Options include:

Option Value Usage

portOperationModeStream 0 (default) Sets port operation mode to
Stream/Capture/Latency mode.

portOperationModeRtp 1 Sets port operation mode to RTP.

portOperationMode
TsoLro

2 Sets port operation mode to TSO/LRO.

portOperationModeL7 3 Sets port operation mode to L7.

portOperationMode
HWIPsec

4 Sets port operation mode to IPsec of hardware.

Appendix 1 IxTclHAL Commands

– 1083 –

owner

Read-only. Name of the owner of this port, if any. (default = "")

packetFlowFileName

Sets the packet flow file name. To set the packet flow file name, need to enable usePacketFlowImage File
first. (default = "")

pfcEnableValueList

Valid when flowControlType is set to ieee8021Qbb.

Use to configure priority-based flow control (PFC) with pair list of enable and channel mask value. (default
= '{0 0} {0 0} {0 0} {0 0} {0 0} {0 0} {0 0} {0 0}') The first item in each pair is 'enable' and the second
item is 'channel mask value'.

pfcResponseDelayEnabled

If true, sets the delay time, in nanoseconds, of frames.

pfcResponseDelayQuanta

Allows to set the delay quanta of flow control.

pfcEnableValueListBit Matrix

Valid when flowControlType is set to ieee8021Qbb.

Use to configure priority-based flow control (PFC) with pair list of enable and channel mask value. (default
= '{0 0} {0 0} {0 0} {0 0} {0 0} {0 0} {0 0} {0 0}') The first item in each pair is 'enable' and the second
item is 'channel mask value'.

pmaClock

(default = pmaClockAutoNegotiate) Options include:

Option Value Usage

pmaClockAutoNegotiate 0 Auto Negotiate

pmaClockMaster 1 (default) Transceiver 10G Base-T Phy Master

pmaClockSlave 2 Transceiver 10G Base-T Phy Slave

preEmphasis

For ports that support the portFeaturePreEmphasis, the percentage signal pre-emphasis to be applied. If
a port does not support the exact percentage set in this option, the nearest value is used. Refer to the Ixia
Hardware Guide for the exact pre-emphasis percentages supported. (default = 0)

Appendix 1 IxTclHAL Commands

– 1084 –

phyMode

Read-only. The current PHY mode for cards which support both Copper, Fiber and SGMII PHY modes. The
current mode may be set with the setPhyMode sub-command.

Option Value Usage

portPhyModeCopper 0 (default) Copper

portPhyModeFiber 1 Fiber

portPhyModeSgmii 2 SGMII

portMode

Multimode ports may be set into one of their possible modes by setting this option. The setting of this
option has no meaning for ports that only operate in a single mode.The speed of ports which operate at
multiple speed is controlled by the autonegotiate, speed, advertisexxx and duplex options.

The choices for this option are:

Option Value Usage

portPosMode 0 (default) Packet over sonet mode.

portEthernetMode
port10GigWanMode

1 Indicates Ethernet mode or 10Gig WAN mode.

port10GigLanMode 4 Indicates 10Gig LAN mode.

portBertMode 5 Indicates BERT mode.

portAtmMode 7 Indicates ATM mode.

portPosChannelizedMode 8 Indicates Channelized POS mode

The valid choices for OC48c POS/BERT and OC48cTXS POS/BERT combinations are:

Option Value Usage

portPosMode 0 POS mode.

portBertMode 5 BEe.

The valid choices for OC192c POS/WAN/BERT are:

Option Value Usage

portPosMode 0 POS mode.

Appendix 1 IxTclHAL Commands

– 1085 –

Option Value Usage

port10GigWanMode 1 10Gig WAN mode.

portBertMode 5 BERT mode.

Earlier values of portPosFraming and posEthernetFraming are still valid and produces the same results as
the use of portPosMode and portEthernetMode, but are deprecated for future use.

The valid choices for 10GE POS/WAN/LAN/BERT are:

Option Value Usage

portPosMode 0 POS mode.

port10GigWanMode 1 10Gig WAN mode.

port10GigLanMode 4 10Gig LAN mode.

portBertMode 5 BERT mode.

Note that port setFactoryDefault will not reset the port mode associated with OC192/ 10Gig type cards.

The valid choices for ATM/ POS are:

Option Value Usage

portPosMode 0 POS mode.

portAtmMode 7 ATM mode.

portPosChannelizedMode 8 POS channelized mode.

pgidStatMode

The state dual PGID stat mode feature is configured and checked in Tcl with the help of this option.

The choices for this option are:

Option Value Usage

regularPGIDCountMode 0 This allows 8K PGIDs in K400 100G/50G mode.

highPGIDCountMode 1 This allows 32K PGIDs in 100G mode and 16K PGIDs in 50G
mode.Dual PGID support is for 8K/16K in 50G mode and
8K/32K in 100G mode.

Modes not supported on 16K and 32K statistics:

Appendix 1 IxTclHAL Commands

– 1086 –

l Inter Arrival Time or Delay Variation is not supported.
l Advanced Sequence Tracking or Switched Path/ Duplicate checking modes are not supported.

receiveMode

Sets up the type of capture/ receive mode for this port.

Note: The receive modes are and'd and or'd to determine which fpga is required for what interface.
If a port does not support receiveMode, then any of these options that are configured has no effect.

The choices of this option are:

Option Value Usage

portRxModeNone 0 The displayed value for ports that do not support
receive mode. Using this option for ports that DO
support receiveMode has no effect.

portCapture 0x0001 (default) use normal capture buffer

portPacketGroup 0x0002 get real time latency on received packets

portRxTcpSessions 0x0004 use TCP session

portRxTcpRoundTrip 0x0008 do TCP Round trip

portRxDataIntegrity 0x0010 do data integrity

portRxFirstTimeStamp 0x0020 get the first receive time

portRxSequenceChecking 0x0040 do sequence checking

portRxModeBert 0x0080 Bit Error Rate testing mode

portRxModeIsl 0x0100 Expect ISL encapsulation

portRxModeBertChannelized 0x0200 Channelized BIT Error rate testing mode

portRxModeEcho 0x0400 Gigabit echo mode

portRxModeDcc 0x0800 DCC packets are received from the SONET overhead.

portRxModeWidePacketGroup 0x1000 Latency mode using wide packet groups

portRxModePrbs 0x2000 Enable capture of PRBS packets
Note: Wide packet group must be enabled when using
PRBS.

Note: When selected, if Data Integrity was previously
selected, it is disabled and a message logs to the Tcl
event log to note the change in the receive mode.

Appendix 1 IxTclHAL Commands

– 1087 –

Option Value Usage

portRxModeRateMonitoring 0x4000 Enable capture of Rate Monitoring packets
Note: Wide packet group must be enabled when using
Rate Monitoring.

Note: When selected, if Sequence Checking was
previously selected, it is disabled and a message logs to
the Tcl event log to note the change in the receive
mode.

portRxModePerFlowErrorStats 0x8000 Enables capture of per-PGID checksum error stats.

Note: When selected, Wide Packet Groups is
automatically enabled.

reedSolomonAdvertise (true/false)

If set to true, port advertises RS-FEC. If set to false, port does not advertise RS-FEC. (default = true)

reedSolomonForceOff(true/false)

If set to true, RS-FEC will be forcefully disabled. If set to false, RS-FEC will not be forcefully disabled.
(default = false)

reedSolomonForceOn(true/false)

If set to true, RS-FEC will be forcefully enabled. If set to false, RS-FEC will not be forcefully enabled.
(default = false)

reedSolomonRequest(true/false)

If set to true, port requests RS-FEC. If set to false, port does not request RS-FEC. (default = true)

rxFpgaVersion

Read-only. FPGA version of the receive engine of the 10/100 port. (applicable to 10/100 only)

rxTxMode

Sets one of following modes on a Gigabit port

Option Value Usage

gigNormal 0 (default) The Gigabit port runs as full duplex.

gigLoopback 1 The Gigabit port transmits and receives frames in internal loopback.

gigCableDisconnect 2 simulate cable disconnect on the port

Appendix 1 IxTclHAL Commands

– 1088 –

speed 10|100|1000

Set the line speed in MBps. Note that this value does not represent an actual line rate. Some deprecated
older commands needed this value to perform various operations. New commands no longer need the
value. When using the cget command to return the value, the value return will not reflect the actual line
rate. (default =100)

timeoutEnable true / false

Enables the gigabit auto-negotiation timeout. (applicable to Gigabit only) (default = true)

transmitClockDeviation

For ports that support the portFeatureFrequencyOffset feature, this is the transmit clock deviation
expressed in parts per million (ppm). (default = 0)

transmitClockMode

Configure the type of clock mode on a port. (default = portClockInternal)

Option Value Usage

portClockInternal 0 internal clock

portClockExternal 1 external clock

transmitMode

Sets the type of stream/transmit mode for this port. Options include:

Option Value Usage

portTxPacketStreams 0 (default) set up hardware to use normal streams

portTxPacketFlows 1 set up hardware to use packet flows

portTxModeAdvancedScheduler 4 set up hardware to use the advanced scheduler

portTxModeBert 5 set up the hardware to use Bit Error Rate
patterns

portTxModeBertChannelized 6 set up the hardware to use channelized BERT

portTxModeEcho 7 sets up port to echo received packets

portTxModeDccStreams 8 sets up the port to only transmit DCC packets as
a stream

portTxModeDccAvanced
Scheduler

9 sets up the port to only transmit DCC packets as
advanced streams

Appendix 1 IxTclHAL Commands

– 1089 –

Option Value Usage

portTxModeDccFlowsSpe
Streams

10 sets up the port to transmit DCC packets as flows
and SPE packets as streams

portTxModeDccFlowsSpe
AdvancedScheduler

11 sets up the port to transmit DCC packets as flows
and SPE packets as advanced streams

portTxModeAdvancedSchedulerCoarse
(VM only)

12 set up VM to use the advanced scheduler with
less precision and cpu utilization

portTxModePacketStreamsCoarse(VM
only)

13 set up VM to use the streams with less precision
and cpu utilization

txFpgaVersion

Read-only. FPGA version of the transmit engine of the 10/100 port. (applicable to 10/100 only)

txRxSyncInterval

The interval (ms) at which to synchronously freeze TX and RX PGID stats.

type

Read-only. Specifies the type of the Ixia port. The following options are used, along with the name of the
port found when using IxExplorer. The Ixia part number associated with each port type can be found in
the Ixia Hardware Guide.

Option Value IxExplorer Port Name

port10100BaseTX 1 10/100 Base TX

port10100BaseMII 2 10/100 MII

port100BaseFXMultiMode 3 100 Base FX MultiMode

port100BaseFXSingleMode 4 100 Base FX SingleMode

portGigabitSXMultiMode 5 1000 Base SX MultiMode

portReducedMII 7 10/100 Reduced MII

portGbic 8 GBIC

portPacketOverSonet 9 OC12c/OC3c POS

port10100Level3 10 10/100 Base TX - 3

portGigabitLevel3 11 1000 Base SX MultiMode - 3

Appendix 1 IxTclHAL Commands

– 1090 –

Option Value IxExplorer Port Name

portGbicLevel3 12 GBIC-3

portGigCopper 13 GBIC

portPosOc48 14 OC48c POS

portPosOc48Level3 15 OC48c POS-M

portPosOc192 16 OC192c POS

portPosOc192Level3 17 OC192c POS-3

portPosOc48VariableClocking 27 OC48c POS VAR

portGigCopperTripleSpeed 28 Copper 10/100/1000

portGigSingleMode 29 1000 Base LX SingleMode

portOc48Bert 32 OC48c POS BERT

portOc48PosAndBert 33 OC48c POS/BERT

port10GEWAN2 36 OC192c POS

port10GEWAN1 37 OC192c POS
OC192c VSR
OC192c POS/BERT/10GE WAN
10GE BERT/WAN

port10GEXAUI1 45 10GE XAUI
10GE XAUI/BERT
10GE XAUI BERT

port10GigLanXenpak1 49 10GE XENPAK
10GE XENPAK-M
10GE XENPAK/BERT
10GE XENPAK BERT
10GE XENPAK-MA/BERT

port10GELAN_M 51

port10GELAN1 53 10GE LAN
10GE LAN-M

port10100Txs 63 10/100 Base TX

port1000Sfps4 67 1000 Base X
1000 Base X L7

Appendix 1 IxTclHAL Commands

– 1091 –

Option Value IxExplorer Port Name

port1000Txs4 68 10/100/1000 Base T
10/100/1000 Base T (L7

portSingleRateBertUnframed 69 Unframed BERT Single-Rate

portMultiRateBertUnframed 70 Unframed BERT Multi-Rate

port10GEUniphy_MA 71

port10GEUniphy 72 10GE LAN/WAN / OC192c POS/BERT

port40GigBertUnframed 73 Unframed Bert 40Gig Port

portOc12Atm 74 ATM 622 Mutli-Rate

portOc12Pos32Mb 75 OC12 POS 32MB

port1000Txs24 77 10/100/1000 Base T

portElm 78

port101001000Layer7 80

port10GEXenpakP 81

port1000Stxs4 82

port10GUniphyP 83

port10GELSM 84

port10GEMultiMSA 85

port10GUniphyXFP 86

portPowerOverEthernet 87 Power over Ethernet

port2Dot5GMSM 88 POS

port10GMSM 89 POS LAN/WAN

port101001000Inline 90 10/100/1000 Base T - Inline

port101001000Monitor 91 10/100/1000 Base T - Monitor

portASM101001000XMV12X 94 10/100/1000 ASM XMV12X

portASMXMV10GigAggre
grated

95 10G LAN XFP Aggregate

Appendix 1 IxTclHAL Commands

– 1092 –

Option Value IxExplorer Port Name

portLANXFP 97 10G LAN/WAN XFP (MACSec)

port10GLANWANXFP 98 10GE LSM XM8

portVoiceQualityResourceModule 99 Voice quality resource module

port40GE100GELSM 100 40GE LSM XMV and 100GE LSM XMV modules

portFlexAP10G16S 102 10G, 16-port Excellon-Flex port

port40GELSMQSFP 104 40 GE LSM QSFP port

portFCMSFP 105 4 and 8 port Fibre Channel with SPF+ interface

portEthernetVM 107 Ethernet VM port

typeName

Read only. The name equivalent of the type field.

usePacketFlowImageFile true/false

Enable the Packet Flow Image File. Controls whether the port is used in stream mode or flow mode. If set
to flow mode, then the packetFlowFileName option should be set. (default = false)

DEPRECATED STANDARD OPTIONS

dataScrambling

Enables port data scrambling.

lineScrambling

Enables line scrambling.

rateMode

The rate may be entered in one of the following modes. Note: This value is not written in HAL or
hardware. It is merely stored in TclHal so that it can be accessed at any time.

Option Value Usage

useGap 0 The rate is entered in clock ticks used to calculate the inter-frame gap

usePercentRate 1 the rate is entered as a percentage of maximum rate

sonetInterface

Appendix 1 IxTclHAL Commands

– 1093 –

sonetOperation

useRecoveredClock true/false

Set the sonet framer to use the recovered clock. (applicable to POS/sonet only, non-LSM modules. LSM
modules configure their recovered clock in the XAUI object.) (default =false)

portMode

The following portMode options have been deprecated:.

Option Value Usage

portUsbMode 2 Indicates USB mode for USB/Ethernet ports.

type

The following type options have been deprecated:

Option Value Usage

portUsbUsb 18 USB

portUsbEthernet 20 Ethernet

port10100UsbSh4 55

COMMANDS

The port command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

port canUse chasID cardID portID

If the port is owned by the current logged in user, canUse returns true, otherwise it returns false. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

port cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the port command.

port config option value

Appendix 1 IxTclHAL Commands

– 1094 –

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

CAUTION: 'Port get' should be called before 'port config' in order to maintain consistency between Tcl
Client port object and Server port object.

port export fileName chasID cardID portID

Exports the current configuration of the port at portID, cardID, chasID into the file named fileName;
fileName may include a full or relative path. The file produced by this command may be used by the
import sub-command. Specific errors are:

l No connection to a chassis
l Invalid port

port get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
Call this command before calling port cget option value to get the value of the configuration option.
Specific errors are:

l No connection to a chassis
l Invalid port number

Note: Port ID starts from 1 and ends with the last port number (if the card has 16 ports, the last
port ID will be 16).

port getFeature chasID cardID portID featureList

Determines whether a specific feature is present in the featureList for the port at portID, cardID, chasID .
A value list with unit is returned if the feature(s) are present; otherwise, an empty string is returned.

Feature Request String Description

Ethernet Line
Rate

ethernetLineRate Available ethernet line rates are returned as a list of
numbers. Unit of measurement is mbit. An empty
list is returned for single rate and Sonet boards.
Example: { {10 100 1000 } mbit}

Sonet
Interface
Type

sonetInterfaceType Available Sonet interfaces are returned as a list of
symbols. An empty list is returned for non-Sonet
boards.
Available symbols: oc3, oc12, oc48, stm1c, stm4c,
stm16c, oc192, oc64c, ethOverSonet, ethOverSdh.
Example: { oc3 oc12 }

Capture
Buffer Size

captureBufferSize The size of the capture buffer is given in MB as a
float. Returns empty list for boards that do not
support capture.
Example: { 256.0 MB }

Appendix 1 IxTclHAL Commands

– 1095 –

Feature Request String Description

Minimum
Captured
Packet Size

minimumCapturedPacketSize The minimum number of bytes a packet must have
to be captured. Returns empty list for boards that
do not support capture.
Example: { 12 bytes }

Maximum
Captured
Packet Size

maximumCapturedPacketSize The maximum number of bytes a packet can have
to be captured. Returns empty list for boards that
do not support capture.
Example: { 1518 bytes }

Number of
Streams

basicStreamCount The number of non-advanced streams the board
supports is returned as an integer. Returns empty
list for boards that do not support streams.
Example: { 128 }

Number of
Advanced
Streams

advancedStreamCount The number of streams the board supports is
returned as an integer. Returns empty list for
boards that do not support streams.
Example: { 16 }

Minimum
Preamble Size

minimumPreambleSize The minimum number of preamble bytes is
returned. Boards or modes that do not support this
concept return an empty list. Unit of measurement
is bytes.
Example:
{ 2 bytes }
{ }

Maximum
Preamble Size

maximumPreambleSize The maximum number of preamble bytes is
returned. Boards or modes that do not support this
concept return an empty list. Unit of measurement
is bytes.
Example: { 12 bytes }

Minimum
Frame Size

minimumFrameSize The minimum number of bytes in a frame is
returned. Unit of measurement is bytes. This
includes CRC but not preamble bytes. Example: {
64 bytes }

Maximum
Frame Size

maximumFrameSize The maximum number of bytes in a frame is
returned. Unit of measurement is bytes. This
includes CRC but not preamble bytes. Examples:
{ 1516 bytes }
{ 65520 }

Minimum
Inter-Frame

minimumInterFrameGap The minimum inter-frame gap is returned as a float.
Unit of measurement is ns.

Appendix 1 IxTclHAL Commands

– 1096 –

Feature Request String Description

Gap Example: { 36.3 ns }

Maximum
Inter-Frame
Gap

maximumInterFrameGap The maximum inter-frame gap is returned as a
float. Unit of measurement is ns.
Example: { 893621.3 ns }

Minimum
Inter-Burst
Gap

minimumInterBurstGap The minimum inter-burst gap is returned as a float.
Unit of measurement is ns.
Example: { 36.3 ns }

Maximum
Inter-Burst
Gap

maximumInterBurstGap The maximum inter-burst gap is returned as a float.
Unit of measurement is ns.
Example: { 893621.3 ns }

Minimum
Inter-Stream
Gap

minimumInterStreamGap The minimum inter-stream gap is returned as a
float. Unit of measurement is ns.
Example: { 36.3 ns }

Maximum
Inter-Stream
Gap

maximumInterStreamGap The maximum inter-stream gap is returned as a
float. Unit of measurement is ns.
Example: { 893621.3 ns }

Minimum
Frame Rate

minimumFrameRate The minimum frame rate is returned as a float. Unit
of measurement is fps.
Example: { 0.321 fps }

Latency
Resolution

latencyResolution The resolution of port to port latency
measurements using FPGA timestamps is returned
as a float. The value is given for directly connected
boards of the same type in the same chassis. Unit of
measurement is ns.
Example: { 40.0 ns }

Number of
Virtual
Circuits

virtualCircuitCount The number of virtual circuits is returned. Boards
that do not support this return an empty list.
Example: { 64 }

Phy Modes phyModes The list of available phy modes is returned as a list
of symbols. Available symbols are
portPhyModeCopper and
portPhyModeFiber. Boards that do not have phy
modes return an empty list.
Example: { portPhyModeCopper portPhyModeFiber
portPhyModeSGMII}

Total Port
CPU Memory

totalPcpuMemory The total Port CPU memory is returned.
Example: { 256 }

Appendix 1 IxTclHAL Commands

– 1097 –

Feature Request String Description

Number of
Table UDF
Entries

tableUdfEntryCount The maximum number of table UDF entries is
returned. Boards that do not support this feature
return an empty list.
Example: { 10000 }

Number of
Value List
UDF Entries

valueListUdfEntryCount The maximum number of value list UDF entries is
returned. Boards that do not support this feature
return an empty list.
Example: { 10000 }

Number of
Range List
UDF Entries

rangeListUdfEntryCount The maximum number of range list UDF entries is
returned. Boards that do not support this feature
return an empty list.
Example: { 10000 }

Number of
PGIDs

pgidCount The maximum number of PGIDs returned. Boards
that do not support this feature return an empty
list.
Example: { 10000 }

Number of
Random
Table Counts

randomTableCount Returns the result of GetRandomTableCount().
Boards that do not support this feature return an
empty list.
Example: { 4 }

Maximum
UDF Count

maximumUdfCount The maximum number of UDFs configured per port.

Background
Memory Size

backgroundMemorySize The size of the available background memory in
bytes.
Example: {backgroundMemorySize {{ 32768 }} }

EXAMPLE
package req IxTclHal
ixConnectToChassis loopback
(TclScripts) 4 % port getFeature 1 177 1 {maximumUdfCount }
{maximumUdfCount {{ 8 }} }
(TclScripts) 5 % port getFeature 1 1 1 {maximumUdfCount}
{maximumUdfCount {{ 5 }} }
(TclScripts) 6 % port get 1 177 1
0
(TclScripts) 7 % port cget -type
106
(TclScripts) 8 % port cget -typeName
10GE LAN SFP+
(TclScripts) 9 % card get 1 177
0

Appendix 1 IxTclHAL Commands

– 1098 –

(TclScripts) 10 % card cget -typeName
XDM10G32S
(TclScripts) 11 % card cget -type
170

port getFeature 1 1 1 {maximumUdfCount tableUdfEntryCount}

Returns {maximumUdfCount {{ 5 }} } {tableUdfEntryCount {98048} }

port getId chasID cardID portID

Gets the name of the port as a string of format <chassis>.<card>.<port> <portname> or
<chassis>.<card>.<port> if the port has no name. For example, 1.2.3 router1.

port getPortState chasID cardID portID

Gets the ownership state of the port as a string of format <chassis>.<card>.<port> <portname> or
<chassis>.<card>.<port> if the port has no name. For example, 1.2.3 router1.

port getStreamCount chasID cardID portID

Gets the number of streams configure on the with id <chassis>.<card>.<port> <portname> or
<chassis>.<card>.<port> if the port has no name. For example, 1.2.3 router1.

port import fileName chasID cardID portID

Imports a saved port configuration found in the file fileName into the current configuration of the port at
portID, cardID, chassis chasID. fileName may include a full or relative path. The file used by this
command must have been produced by the export sub-command. Do not call a port set command after
calling port import until a port write command is called. A port write is necessary to commit these items to
the hardware. Specific errors are:

l No connection to a chassis
l Invalid port
l The card is owned by another user
l fileName does not exist

port isActiveFeature chasID cardID portID feature

Determines whether a specific feature is active for the port at portID, cardID, chassis chasID and that the
port is properly configured/enabled to use that feature. A value of true (1) is returned if the feature is
enabled and false (0) if the feature is not enabled. Feature may be one of the values from the
isValidFeature list.

port isCapableFeature chasID cardID portID feature [param]

Determines whether a specific feature is capable for the port at portID, cardID, chassis chasID. A value of
true (1) is returned if the port is capable of the feature and false (0) if not. Feature may be one of the
values from the isValidFeature list.

port isValidFeature chasID cardID portID feature [param]

Determines whether a specific feature is valid for the port at portID, cardID, chassis chasID with the port
in its current mode (for example, BERT versus LAN mode). A value of true (1) is returned if the feature is

Appendix 1 IxTclHAL Commands

– 1099 –

valid and false (0) if the feature is invalid or the port is invalid. The param option allows further
clarification on the feature; see the table below to determine the use of param for a particular feature.
Feature may be one of the following values.

Features and their values and descriptions

Feature Value Description

0 Invalid feature

portFeatureQos 1 QoS statistics available.

portFeatureAutoNeg 1 Supports auto-negotiation.

portFeatureDualPgidStatMode 1 Supports dual PGID stat mode feature
on the port.

Note: This feature is applicable
for Novus, Novus-R, Novus-M
10GE/25GE/40GE/50GE/100GE
and K400 - 100G/50G.

portFeatureShareUDFValueList 1 Supports shared UDF value list.

portFeaturePacketFlows 2 supports packet flow mode.

portFeaturePacketStreams 2 supports packet streams.

portFeatureUdfOddOffset 3 UDFs can occur at odd byte offsets.
param can be used as a particular UDF
number to determine if the feature is
supported on a particular UDF.

portFeatureRxPacketGroups 4 supports packet group mode.

portFeatureRxSequence
Checking

5 supports receive sequence checking.

portFeatureRxDataIntegrity 6 supports received data integrity
checking.

portFeatureRxRoundTripFlows 7 supports receive round trip flow mode.

portFeatureGigGMiiAutoDisable 8 Reserved for future usage.

portFeatureMultipleDLCIs 9 supports ability to generate multiple
DLCIs per port on frame relay
connections

portFeatureForcedCollisions 10 supports forced collisions.

Appendix 1 IxTclHAL Commands

– 1100 –

Feature Value Description

portFeatureTxDataIntegrity 11 supports transmitted data integrity.

portFeaturePacketFlowImage
File

12 supports packet flow mode with image
files as described in the port command
(this one).

portFeatureSrp 13 supports the spatial reuse protocol.

portFeaturePos 14 supports packet over sonet operation

portFeatureBert 15 supports bit error rate testing.

portFeature10GigWan 16 supports 10 Gbps Wide Area Network
operation.

portFeature10GigWanAndOc192AndBert 17 supports 10 Gbps Wide Area Network,
OC192 and BERT

portFeature10GigWanAndOc192 18 supports 10 Gbps Wide Area Network
and OC192

portFeature10GigWanAndBert 19 supports 10 Gbps Wide Area Network
and Bert

portFeatureOc192AndBert 20 supports OC 192 and Bert

portFeatureOC192Bert 21 supports OC192 Bert only

portFeatureUdfOverlap 22 multiple UDFs may start adjacent to
each other, regardless of word
boundaries. param can be used as a
particular UDF number to determine if
the feature is supported on a particular
UDF.

portFeatureUdfCascade 23 supports cascading of user defined
fields. param can be used as a
particular UDF number to determine if
the feature is supported on a particular
UDF.

portFeatureRxSequence
CheckingPerPGID

24 Sequence checking of packets with
identical PGIDs is allowed

portFeatureAdvancedScheduler 26 supports advanced stream schedule
operation.

portFeatureProtocols 27 supports operation of the protocol

Appendix 1 IxTclHAL Commands

– 1101 –

Feature Value Description

server.

portFeatureProtocolARP 28 supports ARP operation.

portFeatureProtocolPING 29 supports ping operation.

portFeatureBitMask 30 a bit mask may be used on UDF values
without restriction; some boards
require that bits in the mask be
contiguous. param can be used as a
particular UDF number to determine if
the feature is supported on a particular
UDF.

portFeatureSonetErrorInsertion
List

31 supports insertion of sonet errors

portFeatureBertErrorGeneration 32 support Bert error generation

portFeatureLocalCPU 35 supports a local CPU

portFeatureIxRouter 36 can run a copy of IxRouter - used in
IxLoad and other TCP level testing

portFeatureIxWeb 37 can be used in IxWeb

portFeature10GigLan 38 supports 10 gigabit ethernet LAN
operation

portFeatureVsr 39 supports OC192 VSR operation

portFeatureSplitUdfs 40 UDFs may be split in combinations of 8,
16 and 32 bit counters. param can be
used as a particular UDF number to
determine if the feature is supported on
a particular UDF.

portFeatureTxDuration 41 supports the Transmit duration statistic

portFeatureRxFirstTimeStamp 43 supports First TIme Stamp operation

portFeatureRxStreamTrigger 44 supports stream trigger operation

portFeatureRxChecksumErrors 45 supports receive checksum operation

portFeatureOddPreamble 46 supports an odd number of bytes in the
preamble

Appendix 1 IxTclHAL Commands

– 1102 –

Feature Value Description

portFeaturePacketGapTime
Units

47 supports different units of time in the
packet gap specification (gapUnit in
stream).

portFeatureRoutingProtocols 48 supports the advanced routing
protocols

portFeatureModifiablePreamble 52 allows packet preamble contents to be
modified

portFeatureIgnorePGID
Signature

77 allows the PGID signature to be ignored
in latency measurements

portFeatureBertUnframed 82 supports unframed BERT

portFeatureXaui 84 10GigE XAUI interface

portFeatureBertChannelized 92 Channelized BERT

portFeatureLdp 96 supports LDP operation

portFeatureUdf5 104 supports 5 UDFs.

portFeatureTxDccStreams 110 supports transmission of DCC packets
as streams

portFeatureTxDccAdvanced
Scheduler

111 supports transmission of DCC packets
as advanced scheduler streams.

portFeatureTxDccFlowsSpe
Streams

112 supports transmission of a combination
of DCC packets as flows and SPE
packets as streams.

portFeatureTxDccFlowsSpe
AdvancedScheduler

113 supports transmission of a combination
of DCC packets as flows and SPE
packets as advanced scheduler
streams.

portFeatureRxDcc 114 supports reception of DCC packets.

portFeatureDccProperties 115 supports DCC features

portFeatureProtocolL2VPN 119 supports Layer 2 VPN

portFeatureProtocolL3VPN 120 supports Layer 3 VPN

portFeatureProtocolRIPng 121 supports RIPng protocol

Appendix 1 IxTclHAL Commands

– 1103 –

Feature Value Description

portFeatureSrpFullFeatured 122 supports all SRP features

portFeatureUdfExtension1 123 supports advanced UDF extensions,
including nested UDFs. param can be
used as a particular UDF number to
determine if the feature is supported on
a particular UDF.

portFeatureTxFrequency
Deviation

131 supports the ability to vary the transmit
frequency

portFeatureDaCascadeFromSelf 133 supports the ability to cascade a stream
Destination MAC address from itself

portFeatureUdfTableMode 136 supports value list mode UDFs. param
can be used as a particular UDF number
to determine if the feature is supported
on a particular UDF.

portFeatureUdfLinkedListMode 137 supports UDF linked list mode

portFeatureCapture 143 supports received data capture.

portFeaturePauseControl 147 supports automatic pause control

portFeatureCJPAT 149 support for CJPAT jitter test pattern

portFeatureCRPAT 150 support for CRPAT jitter test pattern

portFeatureProtocolIGMP 151 supports the newer IGMP protocol
implementation, which includes IGMPv3
and MLD

portFeatureAtm 152 the port is an ATM type

portFeatureRpr 153 support for RPR ring control signalling

portFeatureLinkFault 159 support for link fault signalling

portFeatureProtocolMLD 160 supports the MLD protocol

portFeatureProtocolPIMSM 163 support for the PIM/SM protocol

portFeatureProtocolOSPFv3 164 support for the OSPFv3 protocol

portFeatureIPv6Neighbor
Discovery

165 supports the IPV6 neighbor discovery
protocol

portFeatureProtocolBGPv6 166 supports BGP for IPv6

Appendix 1 IxTclHAL Commands

– 1104 –

Feature Value Description

portFeatureProtocolISISv6 167 supports ISIS for IPv6

portFeatureFlexibleTimestamp 168 support flexible time stamp placement

portFeatureProtocolOffset 169 supports flexible placement of start of
protocol in a frame

portFeatureRandomGap 171 support random gap values

portFeatureScheduledTx
Duration

173 support setting of the maximum
transmission time. See
portGroupsetScheduledTxDuration.

portFeatureLayer7Only 174 only supports Layer 7 operations. Such
ports have no capabilities that can be
used by the TCL API.

portFeatureUniphy 175 card is an OC192 type which supports
WAN/LAN features simultaneously

portFeatureUdfIPv4Mode 176 support UDF in IPv4 mode. param can
be used as a particular UDF number to
determine if the feature is supported on
a particular UDF.

portFeatureRandomFrameSizeWeightedPair 180 supports random weighted frame sizes

portFeatureRxWidePacketGroups 181 supports wide packet groups

portFeatureDualPhyMode 182 the ports on the card can operate in
copper, fiber, or SGMII mode

portFeatureAtmPos 184 supports POS over ATM.

portFeatureFec 187 supports FEC (Forward Error
Correction) operation in the optical
digital wrapper

portFeatureAtmPatternMatcher 190 supports filter pattern matching for ATM
patterns

portFeatureGfp 192 support GFP (Generic Framing Protocol)
operation.

portFeatureCiscoCDL 198 supports Cisco CDL (Converged Data
Layer) operation.

Appendix 1 IxTclHAL Commands

– 1105 –

Feature Value Description

portFeatureRxLatencyBin 200 supports latency bins in packetGroups.

portFeatureRxTimeBin 201 supports time bins in packetGroups.

portFeaturePreambleView 204 supports the ability to view a preamble
in stream packetView.

portFeaturePreambleCapture 205 supports the ability to capture a
received preamble.

portFeatureCDLErrorTrigger 207 supports the ability to trigger capture
from the presence of a CDL error.

portFeatureSimulateCable
Disconnect

209 supports the ability to simulate a cable
disconnect on the interface.

portFeatureTableUdf 211 supports table mode UDFs.

portFeatureOc192 212 supports OC192 operation.

portFeaturePerStreamTxStats 215 support per stream transmit statistics

portFeatureLasi 216 a XENPAK port that supports LASI
operation

portFeatureIPsecAcceleration 218 a port that supports IPSec operation.

portFeaturePowerOverEthernet 219 supports PoE power consumption

portFeatureGapControlMode 220 supports stream gap control

portFeaturePatternOffsetFlexible 221 supports specification of a pattern
offset based on packet component in
the filterPallette command

portFeatureSonet 227 supports SONET

portFeatureTransceiverXenpak 231 the port supports a Xenpak interface

portFeatureXFP 232 the port supports an XFP interface.

portFeatureRepeatableRandom
Streams

236 supports the ability to repeat the last
set of randomly generated stream
values

portFeatureGre 238 supports GRE

portFeatureMultiSwitchPacket
Detection

243 supports the detection of multi-path
switched packet loss and skip detection

Appendix 1 IxTclHAL Commands

– 1106 –

Feature Value Description

portFeatureProtocolDHCP 245 supports the DHCP protocol

portFeatureUseInterfaceIn
Stream

246 supports the ability to use an IP address
from an interfaceEntry in a stream.

portFeatureStackedVlan 247 supports stacked VLAN (Q in Q)

portFeatureFrequencyOffset 248 Supports the ability to alter the clock
frequency. See the
transmitClockDeviation option in this
command.

portFeaturePreEmphasis 249 supports pre-emphasis specification.
See the preEmphasis option in this
command.

portFeatureTrafficMap 250 supports a traffic map

portFeatureProtocolDHCPv6 251 supports DHCPv6

portFeatureAutoDetectRx 253 supports receive side automatic
instrumentation detection

portFeatureAutoDetectTx 254 supports transmit side automatic
instrumentation detection

portFeatureChainUdf 255 supports chained UDFs

portFeatureStreamStartTxDelay 256 supports start stream delay

portFeatureStreamExtractor 265 supports stream extraction module
features

portFeatureStreamExtractor
Monitor

266 supports the monitor function of the
stream extraction module

portFeatureStreamExtractor
Inline

267 supports the inline (receive) function of
the stream extraction module

portFeatureVcat 271 supports VCAT feature

portFeatureLaps 272 supports Link Access Procedure SDH

portFeatureSplitPgid 273 supports split PGID feature.

portFeatureIncludePreambleIn
RxCrc

274 supports including the preamble length
in the receive side CRC calculation

Appendix 1 IxTclHAL Commands

– 1107 –

Feature Value Description

portFeatureTransceiverX2 276 the port supports an X2 interface

portFeatureConditionalStats 278 supports flow detective

portFeature1GEAggregate 280 supports 1GE Aggregate mode

portFeature10GEAggregate 281 supports 10GE Aggregate mode

portFeatureAdvancedStream
ContBurst

282 supports continuous burst mode in
advanced stream scheduler mode

portFeatureDaSa2 283 supports destination address and
source address generation

portFeatureRxFilters 284 supports Rx filters

portFeatureUdfBitSize 285 supports bit-sized UDF

portFeatureSequenceNumber
Udf

286 supports sequence number UDF

portFeaturePRBS 287 specifies whether this port is capable,
valid, or active for tx/rx of PRBS
packets. Active = the port is in PRBS
mode.

portFeatureAdjustableRate 288 supports adjust rate (in streams)

portFeatureSuspendResume 289 supports the suspend/resume Tx
feature

portFeatureIntrinsicLatency 290 supports intrinsic latency adjustment

portFeatureClearSelectedPGID
Stats

293 supports clearing of selected PGID stats

portFeatureMACSec 294 supports MAC Sec Tx/Rx

portFeatureTransceiver10G
BaseT

297 supports Transceiver 10G BaseT
interface

portFeatureEthernetOAM 299 supports OAM port config/stream config

portFeatureDoNotApplyFrame
CRC

300 port feature does not support Frame
CRC application

portFeatureAdjustableFrameSize 312 supports changing frame size on the fly

portFeatureL2TP 315 adds support for checksum calculation

Appendix 1 IxTclHAL Commands

– 1108 –

Feature Value Description

for the inner L3/L4 (inner IP and
TCP/UDP) protocols carried over L2TP

portFeatureFloatingTimestampAndDataIntegrity 317 adds timestamp as part of floating
instrumentation header, and addresses
similar issue in Data Integrity checking

portFeatureDualClocks 319 supports both LAN and WAN clocking
concurrently

portFeatureDataCenterMode 322 enables Data Center Mode where FCoE
is active; supports priority flow control
(PFC) mapping

portFeatureTcpIPv4Checksum-Override 324 supports TCP IPv4 checksum override

portFeaturePtp 325 supports IEEE1588v2 (PTP - Precision
Time Protocol) 2-step only

portFeatureDataLanes 331 supports lane skew, mapping, stats

portFeature100GigEthernet 335 supports 100GE LSM XMV module

portFeature40GigEthernet 336 supports 40GE LSM XMV module

portFeatureSfpPlus 337 supports SFP+ transceiver

portFeatureDelayVariation 339 supports delay variation/jitter
measurement

portFeatureMisdirectedPacket 341 supports misdirected packet count

portFeatureRateMonitoring 342 supports monitoring convergence times
and service interruption

portFeatureIncrFrameBurst Override 343 supports packet burst override in
incrementing frame mode

portFeatureTransparentDynamic
RateChange

345 supports transparent dynamic rate
change

portFeatureLastBitTimeStamp 346 supports store and forward latency

portFeatureChecksumError StatsPerPGID 354 supports per-flow error statistics

portFeaturePcsLaneErrorGeneration 356 supports PCS lane error generation

portFeatureBertList 365 supports BERT in 40GE and 100GE

Appendix 1 IxTclHAL Commands

– 1109 –

Feature Value Description

cards

portFeatureL7Mode 370 supports L7 operation mode in NGY

portFeaturePFC 374 supports priority flow control

portFeaturePCPUFlowControl 376 supports PCPU Flow Control

portFeatureHWIPsec 377 supports HW-IPsec

portFeatureWanIFSStretch 379 supports IFS Stretch feature in WAN
mode

portFeaturePacketStreamsCoarse (VM only) 407 supports packet streams with less
precision and cpu utilization

portFeatureAdvancedSchedulerCoarse (VM only) 408 supports advance stream schedule
operation with less precision and cpu
utilization

portFeature1588TimeStamp 412 supports IEEE1588v2 (PTP - Precision
Time Protocol)

portFeaturePFCPauseResponseDelay 413 supports the ability to increase the
number of frames that is sent when a
pause frame is received

portFeatureMultinicPerOS 414 supports multiple NIC per IxOS setup

portFeatureKillBitMode 418 supports Kill Bit mode statistic featute

portFeatureDynamicBackgroundUpdate 419 supports dynamic background update

portFeatureEndOfFrameTimestampAndDI supports end of frame timestamp

portFeatureVlan0x9300 433 supports VLAN 0x9300 option

portFeatureSequenceAdv
Tracking

434 supports Advanced Sequence tracking

portFeatureTransceiverCfpQsfp 429 supports CFP-QSFP transceiver

portFeatureTransceiverHse40GQsfp 437 supports HSE 40G QSFP transceiver

portFeature40GEAggregate 455 Indicates whether the port supports
40Gig aggregate mode.

portFeaturePacketLength
Insertion

supports ability to insert the length of
the packet in the packet

Appendix 1 IxTclHAL Commands

– 1110 –

Feature Value Description

portFeatureImpairment supports feature impairement

portFeatureDataCenter1Priority supports Data Center 1 priority traffic
mapping

portFeatureDataCenter2Priority supports Data Center 2 priority traffic
mapping

portFeatureDataCenter4Priority supports Data Center 4 priority traffic
mapping

portFeatureDataCenter8Priority supports Data Center 8 priority traffic
mapping

portFeatureLinearCoefficientUdf supports linear coefficient UDF

portFeatureTripleNestedUdf supports triple nested UDF

portFeatureReArmFirstTimeStamp supports first timestamp

portFeatureRestartStream supports restart stream

portFeatureSimulateTxCable
Disconnect

supports simulation of TX cable
disconnection

portFeature400GigEthernet 508 Indicates whether the port supports
400Gig Ethernet.

portFeatureRsFec 518 Supports Reed-Solomon forward error
correction.

Note: This feature is applicable
for MultisQSFP28 100GE,
MultisCFP4 , Novus
100GE/50GE/25GE, Novus-R
100GE/50GE/25GE ports, Novus-
M 100GE/50GE/25GE, and
NOVUS25/10GE8SFP28
10GE/25GE/50GE/100GE ports.

portFeatureMlgAutoNeg 519 Supports link training when auto
negotiation is enabled.

Note: This feature is applicable
for Multis QSFP28 and Multis
CFP4 100GE.

portFeature25GigEthernet 538 Indicates whether the port supports

Appendix 1 IxTclHAL Commands

– 1111 –

Feature Value Description

25Gig Ethernet.

portFeatureLaserOff 541 Indicates whether the port supports
Laser Off.

portFeature50GigEthernet 545 Indicates whether the port supports
200Gig Ethernet.

portFeature2x25GigEthernet 549 Indicates whether the port supports
200Gig Ethernet.

portFeatureFirecodeFec 563 Supports Firecode forward error
correction.

Note: This feature is applicable
for Novus, Novus-R, Novus-M
25GE/50GE, and
NOVUS25/10GE8SFP28
10GE/25GE/50GE/100GE ports
only.

portFeatureMazuma1G 577 Indicates whether the Mazuma 10G
load modules supports 1G only.

portFeatureMazumaPentagon 585 Indicates whether the Mazuma port is
capable of 5 speeds (10G, 5G, 2.5G,
1G, 100Mbps).

portFeature200GigEthernet 588 Indicates whether the port supports
200Gig Ethernet.

portFeatureKP4Fec 592 Supports KP4 forward error correction.

Note: This feature is applicable
for T400GD-8P-QDD, QSFP-
DD400GE+200G+100G+50G,
CFP8-400GE, and
NOVUS50GEKP4.

portFeatureAdvancedStreamFixedCountBurst 617 Supports fixed burst mode in advanced
stream scheduler mode.

portFeatureIgnoreMisdirectedPacketFilter 618 Supports ignore misdirected packet
filter feature.

port reset chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1112 –

Deletes all streams from a port. Current configuration is not affected. Note: In order for port reset to take
effect, stream write or ixWriteConfigToHardware commands should be used to commit the changes to
hardware. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

port resetStreamProtocolStack chasID cardID portID

Sets the factory default values for all configuration options on a particular port's stream protocol stack.
When this command runs, all protocols on the port are reset to their factory default state.

If the protocol stack is successfully reset, TCL_OK is returned, else TCL_ERROR is returned.

A TCL_ERROR is returned when:

l The arguments provided do not resolve to a known port known.
l The arguments provided do resolve to a known port, but that port is owned by another user.

port restartAutoNegotiation chasID cardID portID

Causes auto-negotiation of duplex and speed to be restarted on the indicated port.

port set chasID cardID portID

Sets the configuration of the port in IxHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the port config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Insufficient memory to add data

port setDefault

Sets to IxTclHal default values for all configuration options.

port setFactoryDefaults chasID cardID portID

Sets the factory defaults to the port. The factory defaults vary depending on the particular port type. The
following two tables lists the factory defaults associated with all current board types. For ports which
support streams, one default stream is written. The mode of dual PHY ports is set back to its default state.
Options not mentioned in the table have a constant value as shown in the STANDARD OPTIONS section
above.

Appendix 1 IxTclHAL Commands

– 1113 –

Port Type

advertise
1000
FullDupl
ex

advertis
e100
FullDupl
ex

advertis
e100
HalfDup
lex

adverti
se10
FullDup
lex

adverti
se10
HalfDu
plex

adver
tise
Abiliti
es

autoneg
otiate

dupl
ex

All
10/100Mbps

true true true true true false true full

All 100Mbps false true false false false false false half

1000 SFPS4 false false false false false false false full

All other
Gigabit

false true true true true false true full

All
OC12c/OC3c

N/A N/A N/A N/A N/A N/A N/A N/A

OC48 POS
and
POS/BERT

N/A N/A N/A N/A N/A N/A N/A N/A

OC48 BERT N/A N/A N/A N/A N/A N/A N/A N/A

Unframed
BERT

N/A N/A N/A N/A N/A N/A N/A N/A

OC192 POS
and
POS/BERT

N/A N/A N/A N/A N/A N/A N/A N/A

OC192 BERT N/A N/A N/A N/A N/A N/A N/A N/A

OC192
POS/10GEW
AN and
POS/BERT/1
0GEWAN

false true true true true false false full

All ATM N/A N/A N/A N/A N/A N/A N/A N/A

10GE (non-
BERT)

false true true true true false false full

10GE BERT false true true true true false true full

40Gig BERT
Unframed

N/A N/A N/A N/A N/A N/A N/A N/A

Port Type

Appendix 1 IxTclHAL Commands

– 1114 –

Port Type
flowCont
rol

negotiateMaster
Slave

portMo
de

receiveMo
de

spee
d

transmitM
ode

All 10/100Mbps false true N/A capture max streams

All 100Mbps false false N/A capture 100 streams

1000 SFPS4 false false N/A capture 1000 streams

All other Gigabit false false N/A capture 1000 streams

All OC12c/OC3c N/A N/A N/A capture 622 streams

OC48 POS and
POS/BERT

N/A N/A N/A capture 2488 streams

OC48 BERT N/A N/A N/A bert 2488 bert

Unframed BERT N/A N/A N/A bert 155 bert

OC192 POS and
POS/BERT

N/A N/A N/A capture 9953 streams

OC192 BERT N/A N/A N/A bert 9953 bert

OC192
POS/10GEWAN
and
POS/BERT/10GE
WAN

true false Ethernet
Framing

capture 9953 streams

All ATM N/A N/A N/A capture 622 streams

10GE (non-
BERT)

true false N/A capture 1000
0

streams

10GE WAN (non-
BERT)

true false N/A capture 9294 streams

10GE BERT N/A N/A N/A bert 1000
0

bert

10GE BERT/WAN N/A N/A N/A bert 9294 bert

40Gig BERT
Unframed

N/A N/A N/A bert 4000
0

bert

Port Type Per Flow

Specific errors are:

Appendix 1 IxTclHAL Commands

– 1115 –

l No connection to a chassis
l Invalid port number
l The port is being used by another user

port setModeDefaults chasID cardID portID

Sets the factory default values for all configuration options on a particular port for the current setting of
portMode. The portMode option is not changed. See the tables contained in the description of the setMode
sub-command for a listing of the default values.

port setPhyMode phyMode chasID cardID portID

For cards which support both Copper, Fiber and SGMII PHY modes, this command sets the current PHY
mode.

Option Value Usage

portPhyModeCopper 0 Copper

portPhyModeFiber 1 Fiber

portPhyModeSgmii 2 SGMII

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

port setReceiveMode receiveMode chasID cardID portID

Sets the receive mode on the port. See the description for receiveMode in the STANDARD OPTIONS
section of this command for the values of receiveMode. Return codes are:

Code Usage

0 (TCL_OK) The command succeeded and a write to hardware is needed, either with port write
or ixWritePortsToHrdware.

200 (ixTcl_noWriteRequired) No write is needed to set the mode, because the port is already in
that mode.

101 (ixTcl_unsupportedFeature) This port type will not support the requested receive mode.

100 (ixTcl_notAvail) This port is owned by another user.

port setTransmitMode transmitMode chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1116 –

Sets the transmission mode on the port. See the description for transmitMode in the STANDARD OPTIONS
section of this command for the values of transmitMode. See the return codes in port setReceivedMode.

portwrite chasID cardID portID

Writes or commits the changes in IxHAL to hardware for the port. Before using this command, use the
port set command to configure the port related parameters (speed, duplex mode, autonegotiation, flow
control, loopback, rxTxMode, and ignoreLink) in IxHAL. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Network error between the client and chassis

DEPRECATED COMMANDS

port getInterface chasID cardID portID

Gets the interface type of the port.

port setparm chasID cardID portID

Modify the configuration options of the port on a specific card and chassis. It is similar to the port config
option value command but allows a single option to be set in IxTclHAL on a particular port.

portwriteReceiveMode chasID cardID portID

Sets up the hardware to capture or packet group modes for this port.

Note: OBSOLETE. This command is the same as write.

portwriteTransmitMode chasID cardID portID

Sets up the hardware to packet streams or packet flow mode for this port. Note: OBSOLETE. This
command is the same as write.

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis

Appendix 1 IxTclHAL Commands

– 1117 –

if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Define all of the features by number and name
set pfValid [list \
$::portFeatureQos "Qos" \
$::portFeaturePacketFlows "Packet Flows" \
$::portFeatureUdfOddOffset "UDF odd offset" \
$::portFeatureRxPacketGroups "Rx packet groups" \
$::portFeatureRxSequenceChecking "Rx sequence checking" \
$::portFeatureRxDataIntegrity "Rx data integrity" \
$::portFeatureRxRoundTripFlows "Rx round trip flows" \
$::portFeatureGigGMiiAutoDisable "Gig GMII auto disable" \
$::portFeatureMultipleDLCIs "Multiple DLCIs" \
$::portFeatureForcedCollisions "Forced Collisions" \
$::portFeatureTxDataIntegrity "Tx Data Integrity" \
file" \
$::portFeatureSrp "Spacial reuse protocol" \
$::portFeaturePos "POS" \
$::portFeatureBert "Bert" \
$::portFeature10GigWan "10 Gigabit WAN" \
$::portFeatureUdfOverlap "UDF Overlap" \
$::portFeatureUdfCascade "UDF Cascade" \
$::portFeatureRxSequenceCheckingPerPGID "Rx Seq Checking per PGID" \
$::portFeaturePacketStreams "Packet Streams" \
$::portFeatureAdvancedScheduler "Advanced Scheduler" \
$::portFeatureProtocols "Protocols" \
$::portFeatureProtocolARP "Protocol: ARP" \
$::portFeatureProtocolPING "Protocol: PING" \
$::portFeatureBitMask "Bit Mask" \
$::portFeatureSonetErrorInsertionList "Sonet error insertion list" \
$::portFeatureBertErrorGeneration "BERT error generation" \
$::portFeatureLocalCPU "Local CPU" \
$::portFeatureIxRouter "IxRouter" \
$::portFeatureIxWeb "IxWeb" \
$::portFeature10GigLan "10G LAN" \
$::portFeatureVsr "VSR" \
$::portFeatureSplitUdfs "Split UDF" \
$::portFeatureTxDuration "Transmit Duration" \
Sessions" \
$::portFeatureRxFirstTimeStamp "Received First Time Stamp" \
$::portFeatureRxStreamTrigger "Received Stream Trigger" \

Appendix 1 IxTclHAL Commands

– 1118 –

$::portFeatureRxChecksumErrors "Received Checksum Errors" \
$::portFeatureOddPreamble "Odd Preamble" \
$::portFeaturePacketGapTimeUnits "Packet Gap Time Units" \
$::portFeatureRoutingProtocols "Routing Protocols" \
$::portFeatureModifiablePreamble "Modifiable Preamble" \
$::portFeatureIgnorePGIDSignature "Ignore PGID Signature" \
$::portFeatureBertUnframed "Unframed BERT" \
$::portFeatureXaui "XAUI" \
$::portFeatureBertChannelized "Channelized BERT" \
$::portFeatureLdp "Protocol: LDP" \
$::portFeatureUdf5 "UDF5" \
$::portFeatureTxDccStreams "DCC Streams" \
$::portFeatureTxDccAdvancedScheduler "DCC Advanced Scheduler" \
$::portFeatureTxDccFlowsSpeStreams "DCC Flows SPE Streams" \
$::portFeatureTxDccFlowsSpeAdvancedScheduler "DCC Flows SPE Adv Scheduler" \
$::portFeatureRxDcc "DCC Receive" \
$::portFeatureDccProperties "DCC Properties" \
$::portFeatureProtocolL2VPN "Protocol: L2VPN" \
$::portFeatureProtocolL3VPN "Protocol: L3VPN" \
$::portFeatureProtocolRIPng "Protocol: RIPng" \
$::portFeatureSrpFullFeatured "SRP Full Featured" \
$::portFeatureUdfExtension1 "UDF Extension 1" \
$::portFeatureTxFrequencyDeviation "Transmit Freq Deviation" \
$::portFeatureUdfTableMode "UDF Value List Mode" \
$::portFeatureCapture "Capture" \
$::portFeaturePauseControl "Pause Control" \
$::portFeatureCJPAT "CJPAT" \
$::portFeatureCRPAT "CRPAT" \
$::portFeatureProtocolIGMP "Protocol: IGMP" \$::portFeatureAtm "ATM" \
$::portFeatureRpr "RPR" \
$::portFeatureLinkFault "Link Fault Signaling" \
$::portFeatureProtocolMLD "Protocol: MLD"
$::portFeatureProtocolPIMSM "Protocol: PIMSM" \
$::portFeatureProtocolOSPFv3 "Protocol: OSPFv3" \
$::portFeatureIPv6NeighborDiscovery "IPv6 Neighbor Discovery" \
$::portFeatureProtocolBGPv6 "Protocol: BGPv6" \
$::portFeatureProtocolISISv6 "Protocol: ISISv6" \
$::portFeatureFlexibleTimestamp "Flexible Time Stamp" \
$::portFeatureProtocolOffset "Protocol Offset" \
$::portFeatureRandomGap "Random Gap" \
$::portFeatureLayer7Only "Layer 7 Only" \
$::portFeatureUniphy "UNIPHY" \
$::portFeatureUdfIPv4Mode "UDF IPv4 Mode" \
$::portFeatureRandomFrameSizeWeightedPair "Random Frame Size Weighted Pair" \
$::portFeatureRxWidePacketGroups "Receive Wide Packet Groups" \
$::portFeatureDualPhyMode "Dual PHY Mode" \
$::portFeatureAtmPos "ATM POS" \
$::portFeatureFec "FEC" \

Appendix 1 IxTclHAL Commands

– 1119 –

$::portFeatureAtmPatternMatcher "ATM Pattern Matcher" \
$::portFeatureGfp "GFP" \
$::portFeatureCiscoCDL "Cisco CDL" \
$::portFeatureRxLatencyBin "Receive Latency Bins" \
$::portFeatureRxTimeBin "Receive Time Bins" \
$::portFeaturePreambleView "View Preamble" \
$::portFeaturePreambleCapture "Capture Preamble" \
$::portFeatureCDLErrorTrigger "CDL Error Trigger" \
$::portFeatureSimulateCableDisconnect "Simulate Cable Disconnect" \
$::portFeatureXFP "XFP" \
$::portFeatureTableUdf "Table UDF" \
$::portFeatureOc192 "OC192" \
$::portFeaturePerStreamTxStats "Per-Stream Transmit Stats" \
$::portFeatureLasi "LASI" \
$::portFeaturePowerOverEthernet "PoE" \
$::portFeatureGapControlMode "Gap Control Mode" \
$::portFeaturePatternOffsetFlexible "Flexible Pattern Offset" \
$::portFeatureSonet "SONET" \
$::portFeatureRepeatableRandomStreams "Repeatable Random Streams" \
$::portFeatureGre "GRE" \
$::portFeatureMultiSwitchPacketDetection "Multi-Path Switched Packet Detection" \
$::portFeatureProtocolDHCP "Protocol: DHCP" \
$::portFeatureUseInterfaceInStream "Use Interfaces in Streams" \
$::portFeatureStackedVlan "Stacked VLAN" \
$::portFeatureFrequencyOffset "Frequency Offset" \
$::portFeaturePreEmphasis "Pre-Emphasis" \
]

Define all of the features by number and name
set pfActive [list \
$::portFeatureRxPacketGroups "Rx packet groups" \
$::portFeatureRxDataIntegrity "Rx data integrity" \
$::portFeatureRxRoundTripFlows "Rx round trip flows" \
$::portFeaturePos "POS" \
$::portFeatureBert "Bert" \
$::portFeature10GigWan "10 Gigabit WAN" \
$::portFeatureBertErrorGeneration "BERT error generation" \
]

printOptions - get standard options for a port and print them
proc printOptions {chas card port} {
port get $chas $card $port
set portType [port cget -type]
set portName [port cget -typeName]
set name [port cget -name]
set owner [port cget -owner]
set linkState [port cget -linkState]
set rateMode [port cget -rateMode]

Appendix 1 IxTclHAL Commands

– 1120 –

set loopback [port cget -loopback]
set flowControl [port cget -flowControl]
set portMode [port cget -portMode]
ixPuts "Port: $name, type $portName ($portType)"
ixPuts "\towner $owner, linkState $linkState, rateMode $rateMode"
ixPuts "\tloopback $loopback, flowControl $flowControl, portMode $portMode"
}

Print the values of all of the 'valid' features
proc printValid {chas card port} {
global pfValid;
array set portValidFeatures $pfValid

foreach i [lsort -integer [array names portValidFeatures]] {
if {[port isValidFeature $chas $card $port $i] == 0} {
ixPuts -nonewline "No "
} else {
ixPuts -nonewline "Yes "
}
ixPuts $portValidFeatures($i)
}
}

Print the values of all of the 'active' features
proc printActive {chas card port} {
global pfActive;
array set portActiveFeatures $pfActive;

foreach i [lsort -integer [array names portActiveFeatures]] {
if {[port isActiveFeature $chas $card $port $i] == 0} {
ixPuts -nonewline "No "
} else {
ixPuts -nonewline "Yes "
}
ixPuts $portActiveFeatures($i)
}
}

Get the chassis' number of cards
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
chassis getFromID $chas
set ncards [chassis cget -maxCardCount]
ixPuts "Chassis $chas, $ncards cards"

Appendix 1 IxTclHAL Commands

– 1121 –

Go through each of the ports
for {set i 1} {$i <= $ncards} {incr i} {
Check for missing card
if {[card get $chas $i] != 0} {
continue
}
ixPuts "\n--"
set portList [list [list $chas $i 1]]
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Get the port's options
port get $chas $i 1

Get the type of the card as a number and name
set portType [port cget -type]
set portName [port cget -typeName]
set cardType [card cget -type]
ixPuts "Type $portName ($portType) -- card $i (type $cardType)"

Set the port to its defaults
port setDefault
If it's a BERT module, need to set the transmit and receive modes to BERT
if {$portType == $::portOc48Bert} {
port config -transmitMode portTxModeBert
port config -receiveMode portRxModeBert
}
Give the port a name
port config -name "$i:1"

Set the features to ixTclHal
set result [port set $chas $i 1]
Check for valid result
if {$result != 0} {
ixPuts "Set returns $result"
continue
}

Write the features to the hardware
ixWriteConfigToHardware portList

Print the standard options for the card
printOptions $chas $i 1

Print the valid features for the card

Appendix 1 IxTclHAL Commands

– 1122 –

ixPuts "\nValid Features for Port"
ixPuts "-----------------------"
printValid $chas $i 1

Set some values for the 10/100 cards:
Rx:capture, Tx:packet flows w/ image file
Autonegotiate 100 Half or 100 Full duplex
if {$portType == $::port10100BaseTX} {
port config -receiveMode portCapture
port config -transmitMode portTxPacketFlows
port config -usePacketFlowImageFile 1
port config -packetFlowFileName "flow10100.txt"
port config -autonegotiate true
port config -advertise10HalfDuplex false
port config -advertise10FullDuplex false
port config -advertise100HalfDuplex true
port config -advertise100FullDuplex true
port config -speed 100
}

Set some values for OC48c POS cards
if {$portType == $::portPacketOverSonet} {
port config -receiveMode portPacketGroup
}
Set the values
port set $chas $i 1
ixWriteConfigToHardware portList

Check on what features are active now
ixPuts "\nActive Features for Port"
ixPuts "------------------------"
printActive $chas $i 1
ixClearOwnership $portList
}

Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

#Check if the Auto Negotiation feature is available
if {![port isValidFeature $chassId $cardId $portId $:: portFeatureAutoNeg]} {
errorMsg " portFeatureAutoNeg is not supported on $chassId $cardId $portId"
return "FAIL"
}

Appendix 1 IxTclHAL Commands

– 1123 –

to force enable FC-FEC
port config -firecodeForceOn 1
port config -firecodeForceOff 0
port config -reedSolomonForceOn 0
port config -reedSolomonForceOff 0
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

to force enable RS-FEC
port config -firecodeForceOn 0
port config -firecodeForceOff 0
port config -reedSolomonForceOn 1
port config -reedSolomonForceOff 0
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

to force disable RS-FEC
port config -reedSolomonForceOn 0
port config -reedSolomonForceOff 1
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

to force disable FC-FEC
port config -firecodeForceOn 0
port config -firecodeForceOff 1
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

#The supported codes for Novus, Novus-R, and Novus-M 25G and 100G modules are as follows:

port config -enableRsFec false
port config -enableRsFecStats false
port config -enableLinkTraining false
port config -ieeeL1Defaults 0
port config -firecodeRequest 1
port config -firecodeAdvertise 1
port config -firecodeForceOn 0
port config -firecodeForceOff 0
port config -reedSolomonRequest 1
port config -reedSolomonAdvertise 1

Appendix 1 IxTclHAL Commands

– 1124 –

port config -reedSolomonForceOn 1
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

#The supported codes for all the variants of T400 QDD and T400 OSFP modules are as follows:

#To disable AutoNegotiation and LinkTraining

port config -autonegotiate false
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

#To enable AutoNegotiation and LinkTraining

port config -autonegotiate true
port config -enableLinkTraining false
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

#To enable only LinkTraining

port config -autonegotiate false
port config -enableLinkTraining true
if {[port set $chassis $card $port]} {
errorMsg "Error calling port set $chassis $card $port"
set retCode $::TCL_ERROR
}

SEE ALSO

card, filter, filterPallette, portGroup, stream, packetGroup

portCpu
portCpu - control a port's CPU.

SYNOPSIS

portCpu sub-command options

DESCRIPTION

This command allows to control the CPU associated with many Ixia load modules. The port command's
isValidFeature sub-command may be used to determine if a given port has a CPU. Use the following
sequence:

if [port isValidFeature $chas $card $port portFeatureLocalCPU] {

Appendix 1 IxTclHAL Commands

– 1125 –

... port has a CPU ...
}

The only sub-command currently available is the reset command, which causes the port to reboot its
operating system and return to its initial state. Any optional loaded packages are removed.

STANDARD OPTIONS

memory

Read-only. The amount of memory, expressed in Mbytes, associated with the CPU on the port.

COMMANDS

The portCpu command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

portCpu cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the portCpu command.

portCpu get chasID cardID portID

Gets the current configuration of the port CPU for the indicated port. Call this command before calling port
cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

portCpu reset chasID cardID portID

Resets the CPU on the indicated port. Specific errors are:

l No connection to a chassisThe port is owned by another user
l The port does not have a local CPU

EXAMPLES
package require IxTclHal

set host localhost
set username user
Assume card 1 is a card that has a CPU
set card 1
set port 1

if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 1126 –

if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

set chas [ixGetChassisID $host]

if {[port isValidFeature $chas $card 1 portFeatureLocalCPU] == 0} {
ixPuts "$chas:$card does not have a local CPU"
return 1
}

if [portCpu reset $chas $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixPuts "$chas:$card:$port has been reset"

if [portCpu get $chas $card $port] {
ixPuts $::ixErrorInfo
return 1
}
ixPuts "Port $chas:$card:$port has [portCpu cget -memory] MB of memory"

SEE ALSO

port.

portGroup
portGroup - sets up a group of ports.

SYNOPSIS

portGroup sub-command options

DESCRIPTION

This command allows to set up an autonomous group of ports on which to perform an action or command,
such as take ownership, start transmit, capture, or clearing statistics, to name a few. A port group must
be created and the desired ports (or port) added to it to execute the selected action or command. When
the port group is no longer needed, it should be destroyed.

STANDARD OPTIONS

lastTimeStamp

Read-only. 64-bit value. The relative time of transmit for all the ports in the port group.

Appendix 1 IxTclHAL Commands

– 1127 –

COMMANDS

The portGroup command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

portGroup add groupID chasID cardID portID

Adds this port to a group with ID groupID. Specific errors are:

l No connection to a chassis
l The groupID port group does not exist

portGroup canUse groupID

Verifies whether all the ports in this group can be used by the current logged in user. Specific errors are:

l No connection to a chassis
l The groupID port group does not exist

portGroup cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the portGroup command.

portGroup clearScheduledTransmitTime groupID

Clears the scheduled transmit time associated with a group of ports. See setScheduledTransmitTime.
Specific errors are:

l No connection to a chassis
l The groupID port group does not exist

portGroup config option value

Modify the configuration options of all the ports. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for portGroup. (There are currently no configurable options
for portGroup and therefore no use for this command).

portGroup create groupID

Creates a port group and assigns it the ID groupID. Specific errors are:

l The groupID port group already exists

portGroup del groupID chasID cardID portID

Deletes this port from the group with ID groupID. Specific errors are:

l No connection to a chassis
l The groupID port group does not exist

portGroup destroy groupID

Destroys the port group with ID groupID. Specific errors are:

l The groupID port group does not exist

Appendix 1 IxTclHAL Commands

– 1128 –

portGroup setCommand groupID cmd

Performs the action or command cmd specified on all ports in the group with ID groupID. Note that some
of the command values previously listed in this table have been moved to the IxRouter Tcl Development
Guide. cmd may be one of the following:

Option Value Usage

startTransmit 7 start transmission simultaneously

stopTransmit 8 stop transmission simultaneously

startCapture 9 start capturing packets that meet the specified filter criteria

stopCapture 10 stop capturing simultaneously

resetStatistics 13 clear all statistic counters

pauseTransmit 15 pause transmission

stepTransmit 16 single step the transmit one packet at a time

transmitPing 17 transmit a ping on all of the ports in the port group

asr5Transmit 18 not yet implemented

clearTimeStamp 19 clear all time stamps to synchronize the time stamps
throughout the chassis chain.

restartAutoNegotiate 22 restarts autonegotiation

downloadFPGA 27 downloads a new FPGA to the ports in the port group

collisionStart 28 start collision generation

collisionStop 29 stop collision generation

transmitArpRequest 30 sends ARP requests as configured in ipAddressTable
commands.

startLatency 31 starts real-time latency analysis and collects minimum,
maximum and average latency values for every incoming frame
in a packet group. Ensure to clear timestamps on all send and
receive ports before starting latency measurements.

stopLatency 32 stops real-time latency analysis

clearLatency 33 clears all real-time latency values

takeOwnership 40 if available, take ownership of these ports

takeOwnershipForced 41 forcefully take ownership of these ports overriding the current

Appendix 1 IxTclHAL Commands

– 1129 –

Option Value Usage

owner's rights

clearOwnership 42 clear ownership of owned ports

clearOwnershipForced 43 forcefully clear ownership of ports overriding the current
owner's rights

clearArpTable 48 clear ports' arp tables

staggeredStartTransmit 51 start transmit in sequence

resetSequenceIndex 62 resets the sequence number used in sequence number
checking operations for all ports in the portGroup

rebootLocalCPU 84 causes the CPU to reboot, if the port uses a CPU

clearPerStreamTxStats 120 clears the per stream statistics

loadPoEPulse 121 for PoE load modules, causes a power pulse

armPoeTrigger 123 arm the triggers for poeSignalAcquisition

abortPoeArm 124 abort the triggers for poeSignalAcquisition

startAtmOamTx 125 starts transmission of the ATM OAM messages

stopAtmOamTx 126 stops transmission of the ATM OAM messages

simulatePhysicalInter
faceDown

128 sets the port to simulate a downed interface

simulatePhysical
InterfaceUp

129 reenables the interface after setting the port to simulate a
downed interface.

clearPrbsCapture 139 Clears the PRBS capture buffer

startTxRxSyncStats 146 Starts collecting Tx/Rx Sync stats

stopTxRxSyncStats 147 Stops collecting Tx/Rx Sync stats

clearThresholdTime 154 Clears the threshold timestamps associated with a group of
ports.

clearPcsLaneStats 155 Clears PCS Lane stats

Specific errors are:

l No connection to a chassis
l One or more ports in the port group are being used by another user

Appendix 1 IxTclHAL Commands

– 1130 –

l One or more ports in the port group are invalid
l Network error between the client and chassis

portGroup setDefault

Sets to IxTclHal default values for all configuration options.

portGroup setScheduledTransmitTime groupID time

This feature only applies to ports which support the portFeatureScheduledTxDuration feature (see port
isValidFeature). This sub-command sets the transmit time duration associated with the group of ports.
time is expressed in seconds. When a scheduled transmit time is set, and a portGroup setCommand
<group> startTransmit is issued, the ports in the port group transmits until their streams are exhausted
or the specified time has elapsed, whichever comes first. This value may be cleared with the
clearScheduledTransmitTime sub-command to this command. Specific errors are:

l No connection to a chassis
l The groupID port group does not exist
l Invalid time value.

portGroup startPrbsCapture portlist

Starts PRBS capture on specified ports. This command also starts packetGroup stat collection.

portGroup stopPrbsCapture portlist

Stops PRBS capture on specified ports. This command also stops packetGroup stat collection

portGroupwrite groupID [writeProtocolServer]

Commits port properties information such as speed, duplex mode, and autonegotiation in hardware. If
writeProtocolServer is true, then the protocol server is stopped and all applicable objects written to it.
Otherwise, the protocol server is not affected. Specific errors are:

l No connection to a chassis
l The port group specified by groupID hasn't been created
l One or more ports in the port group are being used by another user
l Network error between the client and chassis

portGroupwriteConfig groupID [writeProtocolServer]

Configures streams, filter and capture parameters of all ports in the group except the port properties such
as speed, duplex mode, and autonegotiation. If writeProtocolServer is true, then the protocol server is
stopped and all applicable objects written to it. Otherwise, the protocol server is not affected. Specific
errors are:

l No connection to a chassis
l The port group specified by groupID hasn't been created
l One or more ports in the port group are being used by another user
l Network error between the client and chassis

Appendix 1 IxTclHAL Commands

– 1131 –

DEPRECATED
COMMANDS

portGroup get groupID objectID

Gets the type of object designated by objectID for a list of ports. The only defined value for objectID is
usbConfig (0), which must be applied to USB configured ports. Specific errors are:

l Invalid objectID
l The groupID port group does not exist

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assume that there's a four port 10/100 TX card in this slot
with port 1 looped to port 2 and 3 to 4
set card 1
set portList [list [list $chas $card 1] \
[list $chas $card 2] \
[list $chas $card 3] \
[list $chas $card 4]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {

Appendix 1 IxTclHAL Commands

– 1132 –

ixPuts $::ixErrorInfo
return 1
}
Port group to be used
set group 1234
set txGroup 13
set rxGroup 24

portGroup create $group
portGroup add $group $chas $card 1
portGroup add $group $chas $card 2
portGroup add $group $chas $card 3
portGroup add $group $chas $card 4

portGroup create $txGroup
portGroup add $txGroup $chas $card 1
portGroup add $txGroup $chas $card 3

portGroup create $rxGroup
portGroup add $rxGroup $chas $card 2
portGroup add $rxGroup $chas $card 4

if {[portGroup canUse $group] != 0} {
ixPuts "Can't use card $card ports 1-4"
break
}
portGroup setCommand $group takeOwnership

... insert port setup here. This example assumes the defaults
portGroup write $group

portGroup setCommand $rxGroup resetStatistics
portGroup setCommand $rxGroup startCapture
portGroup setCommand $txGroup startTransmit
after 5000
portGroup setCommand $txGroup stopTransmit
portGroup setCommand $rxGroup stopCapture

portGroup setCommand $group clearOwnership
portGroup destroy $group
portGroup destroy $rxGroup
portGroup destroy $txGroup

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server

Appendix 1 IxTclHAL Commands

– 1133 –

if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

port, prbsCapture.

ppp
ppp - configure Point-To-Point Protocol parameters

SYNOPSIS

ppp sub-command options

DESCRIPTION

This command is used to configure PPP parameters on OC-* interfaces for Packet over Sonet ports.

STANDARD OPTIONS

activeNegotiation
true/false

Activate Negotiation process. (default = true)

configurationRetries

Maximum number of configuration requests to send before starting termination process. (default = 9)

enable true | false

Enable PPP negotiations. (default = false)

enableAccmNegotiation true | false

Enables ACCM (Asynchronous Control Character Mask). (default = false)

enableIp true | false

Enables the IPV6 Network Control protocol. (default = true)

enableIpV6 true | false

Enables the IP Network Control protocol. The port's desired IP address is held in the localIPAddress
option. (default = false)

Appendix 1 IxTclHAL Commands

– 1134 –

enableLqm true | false

Enables the LQM (Line Quality Monitoring Protocol). The LQM reporting interval is controlled by the
lqmReportInterval option. (default = false)

enableMpls true | false

Enables the MPLS Network Control protocol. (default = true)

enableOsi true | false

Enables the OSI Network Control protocol. The port's desired transmitted and received alignments are
held in the rxAlignment and txAlignment options. (default = true)

localIPAddress

Local port's IP address. (default = 0.0.0.1)

localIpV6Iid

When the value of localIpV6IdType is pppIpV6IdTypeIpV6, this value is used to generate an Interface ID.
(default = {00 00 00 00 00 00 00 00})

localIpV6IdType

The type of Interface Identifier, which is a configuration option sent in the configuration request packet.
The choices are:

Option Value Usage

pppIpV6IdTypeLastNegotiated 4 The last Interface Identifier that was negotiated for this
link is used.

pppIpV6IdTypeMacBased 1 The Interface Identifier is derived from the MAC address
in localIpV6MacBased Iid.

pppIpV6IdTypeIpV6 2 The Interface Identifier is the 64-bit EUI-64 identifier
found in localIpV6Iid.

pppIpV6IdTypeRandom 8 (default) The Interface Identifier is randomly generated.

localIpV6MacBasedIid

When the value of localIpV6IdType is pppIpV6IdTypeMacBased, this value is used to generate a globally
unique Interface ID. (default = {00 00 00 00 00 00 00 00})

localIpV6NegotiationMode

Before the negotiation of the Interface Identifier (Iid), the node chooses a tentative Interface-Identifier.
The choices are:

Appendix 1 IxTclHAL Commands

– 1135 –

Option Value Usage

pppIpLocalNegotiationLocalMay 0 (default) The local node may use the Iid mode and the
Iid value specified in localIpV6IdType,
localIpV6MacBasedIid and localIpV6Iid.

pppIpLocalNegotiationLocalMust 1 The local node must use the Iid mode and the Iid value
specified in localIpV6IdType, localIpV6MacBasedIid
and localIpV6Iid.

pppIpLocalNegotiationPeerMust 2 The peer node must supply the local Iid.

lqmReportInterval

The desired LQM report interval, expressed in seconds. (default = 10.0)

peerIpV6Iid

When the value of peerIpV6IdType is pppIpV6IdTypeIpV6, this IPv6 address is used to generate an
Interface ID. This value must be unique on the link. (default = {00 00 00 00 00 00 00 00})

peerIpV6IdType

The type of Interface Identifier. The choices are:

Option Value Usage

pppIpV6IdTypeLastNegotiated 0 The last Interface Identifier that was negotiated for this
link is used.

pppIpV6IdTypeMacBased 1 The Interface Identifier is derived from the MAC address
in peerIpV6MacBased Iid.

pppIpV6IdTypeIpV6 2 The Interface Identifier is the 64-bit EUI-64 identifier
found in peerIpV6Iid.

pppIpV6IdTypeRandom 8 (default) The Interface Identifier is randomly generated.

peerIpV6MacBasedIid

When the value of peerIpV6IdType is pppIpV6IdTypeMacBased, this value is used to generate a globally
unique Interface ID. This value must be unique on the link. (default = {00 00 00 00 00 00 00 00})

peerIpV6NegotiationMode

The peer Interface Id negotiation mode. The choices are:

Option Value Usage

pppIpPeerNegotiationPeerMay 0 (default) The peer node may use the Iid mode and the

Appendix 1 IxTclHAL Commands

– 1136 –

Option Value Usage

Iid value specified in peerIpV6IdType,
peerIpV6MacBasedIid and peerIpV6Iid.

pppIpPeerNegotiationPeerMust 1 The peer node must use the Iid mode and the Iid value
specified in peerIpV6IdType, peerIpV6MacBasedIid and
peerIpV6Iid.

pppIpPeerNegotiationLocalMust 2 The local node must supply the peer Iid.

retryTimeout

Time, in seconds, to wait between configuration and termination retries. (default = 3)

rxAlignment

The desired OSI receive byte alignment (within a 4-byte word), expressed as a byte position from 0 to 3.
(default = 0)

rxMaxReceiveUnit

Maximum frame size in receive direction. (default = 65535)

terminationRetries

Max # of termination requests to send before bringing PPP down. (default = 3)

txAlignment

The desired OSI transmit byte alignment (within a 4-byte word), expressed as a byte position from 0 to 3.
(default = 0)

txMaxReceiveUnit

Maximum frame size in transmit direction. (default = 65535)

useMagicNumber
true/false

Enable negotiation and use of magic number; used to detect looped back connection. (default = true)

COMMANDS

The ppp command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

ppp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ppp command.

Appendix 1 IxTclHAL Commands

– 1137 –

ppp config option value

Modify the PPP configuration options of the port. If no option is specified, returns a list describing all of the
available PPP options (see STANDARD OPTIONS) for port.

ppp get chasID cardID portID [circuitID]

Gets the current configuration of the PPP parameters on circuit circuitID, port with id portID on card
cardID, chassis chasID. from its hardware. Call this command before calling ppp cget option value to get
the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port.

ppp set chasID cardID portID [circuitID]

Sets the configuration of the PPP parameters in IxHAL on circuit circuitID, port with id portID on card
cardID, chassis chasID by reading the configuration option values set by the ppp config option value
command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port.

ppp setDefault

Sets to IxTclHal default values for all configuration options.

pppwrite chasID cardID portID

Writes the ppp config to the ppp state machine and restarts ppp autonegotiation. Writes or commits the
changes in IxHAL to hardware for each port with id portID on card cardID, chassis chasID. Before using
this command, use the ppp set command to configure the port related parameters in IxHAL. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Network error between the client and chassis
l The port is not a Packet over Sonet port

Note: Not available at circuit level.

Appendix 1 IxTclHAL Commands

– 1138 –

EXAMPLES
package require IxTclHal

Procedure to get and print the status of a POS port
proc getState {chas card port} \
{
Get all of the status information
pppStatus get $chas $card $port

IP related information
set ipState [pppStatus cget -ipState]
set ipAddr [pppStatus cget -localIPAddress]
set ipPeerAddr [pppStatus cget -peerIPAddress]

LQM State information
set lqmState [pppStatus cget -lqmQualityState]
set lqmRxInterval [pppStatus cget -lqmReportIntervalRx]
set lqmTxInterval [pppStatus cget -lqmReportIntervalTx]

MPLS state
set mplsState [pppStatus cget -mplsState]

OSI information
set osiState [pppStatus cget -osiState]
set rxAlignment [pppStatus cget -rxAlignment]
set txAlignment [pppStatus cget -txAlignment]

Magic numbers
set magicRxState [pppStatus cget -useMagicNumberRx]
set magicTxState [pppStatus cget -useMagicNumberTx]

Negotiated MRUs
set rxMRU [pppStatus cget -rxMaxReceiveUnit]
set txMRU [pppStatus cget -txMaxReceiveUnit]

ixPuts "Port $chas:$card:$port"
ixPuts "\tMRU:\trxMaxReceiveUnit $rxMRU, txMaxReceiveUnit $txMRU"
ixPuts "\tMagic:\tuseMagicNumberRx $magicRxState, useMagicTxState $magicTxState"
ixPuts "\tLQM:\tlqmReportIntervalRx $lqmRxInterval, lqmReportIntervalTx
$lqmTxInterval"
ixPuts "\tIP:\tstate $ipState, localIpAddress $ipAddr, peerIpAddress $ipPeerAddr"
ixPuts "\tOSI:\tstate $osiState, rxAlignment $rxAlignment, txAlignment $txAlignment"
ixPuts "\tMPLS:\tstate $mplsState"
}

Symbolic definition of the PPP related port link states
Not all states are necessarily defined

Appendix 1 IxTclHAL Commands

– 1139 –

set pppState($::pppOff) "pppOff\t"
set pppState($::pppUp) "pppUp\t"
set pppState($::pppDown) "pppDown\t"
set pppState($::pppInit) "pppInit\t"
set pppState($::pppWaitForOpen) "pppWaitForOpen"
set pppState($::pppAutoNegotiate) "pppAutoNegotiate"
set pppState($::pppClose) "pppClose"
set pppState($::pppConnect) "pppConnect"
set pppState($::pppRestartNegotiation) "pppRestartNegotiation"
set pppState($::pppRestartInit) "pppRestartInit"
set pppState($::pppRestartWaitForOpen) "pppRestartWaitForOpen"
set pppState($::pppRestartWaitForClose) "pppRestartWaitForClose"
set pppState($::pppRestartFinish) "pppRestartFinish"
set pppState($::pppClosing) "pppClosing"
set pppState($::pppLcpNegotiate) "pppLcpNegotiate"
set pppState($::pppAuthenticate) "pppAuthenticate"
set pppState($::pppNcpNegotiate) "pppNcpNegotiate"
set pppState($::lossOfFrame) "lossOfFrame"

Connect to chassis and get chassis ID
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assuming that an OC12 card is in slot 2
And that port 1 is directly connected to port 2
set card 2
set portList [list [list $chas $card 1] [list $chas $card 2]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1

Appendix 1 IxTclHAL Commands

– 1140 –

}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Get the type of card and check if it's the correct type
set ifType [card getInterface $chas $card]
if {$ifType != $::interfacePacketOverSonet} \
{
ixPuts "Card $card is not an OC12c POS card"
return 1
}
Disable PPP negotiation and tell both ports to stop
ppp config -enable disable
ppp set $chas $card 1
ppp set $chas $card 2
ppp write $chas $card 1
ppp write $chas $card 2

Start with a default setup, enable PPP and set auto negotiation
ppp setDefault
ppp config -enable enable
ppp config -activeNegotiation true

Enable IP address negotation and set our desired IP address
ppp config -enableIp enable
ppp config -localIPAddress 192.168.5.100

Enable MPLS negotiation
ppp config -enableMpls enable

Enable magic number negotiation
ppp config -useMagicNumber true

Enable LQM and set the desired report interval to 1.2 seconds
ppp config -enableLqm enable
ppp config -lqmReportInterval 1.2

Enable OSI negotiation with alignment at byte 2
ppp config -enableOsi enable
ppp config -rxAlignment 2
ppp config -txAlignment 2

Set PPP parameters to port 1
ppp set $chas $card 1
ppp write $chas $card 1

Appendix 1 IxTclHAL Commands

– 1141 –

When two Ixia ports are connected directly, only one can use recovered clock
sonet setDefault
sonet config -useRecoveredClock false
sonet set $chas $card 1
set portList [list [list $chas $card 1]]
ixWritePortsToHardware portList

Change the requested address for the second port
ppp config -localIPAddress 192.168.6.100
ppp set $chas $card 2
ppp write $chas $card 2

Now monitor and print the port link state until both ports show up or a minute
Has gone by
ixPuts "Link state monitoring"
ixPuts "Port 1\t\t\tPort 2"
ixPuts "------\t\t\t------"
for {set i 0} {$i < 60} {incr i} \
{
after 1000
port get $chas $card 1
set portState1 [port cget -linkState]
port get $chas $card 2
set portState2 [port cget -linkState]
ixPuts "$pppState($portState1)\t\t$pppState($portState2)"
if {$portState1 == $::pppUp && $portState2 == $::pppUp} {break}
}
If both ports went to pppUp, then get and print the state for each
if {$portState1 == $::pppUp && $portState2 == $::pppUp} \
{
getState $chas $card 1
getState $chas $card 2
}

Now wait for two received LQM reports on port 1
for {set i 0} {$i < 10} {incr i} \
{
after 1000
pppStatus get $chas $card 1
set lqmRxCounter [pppStatus cget -lqmReportPacketCounterRx]
if {$lqmRxCounter >= 2} {
ixPuts "Received 2 LQM reports"
break
}
}

Let go of the ports that we reserved

Appendix 1 IxTclHAL Commands

– 1142 –

ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

pppStatus.

pppStatus
pppStatus - configure PPP parameters

SYNOPSIS

pppStatus sub-command options

DESCRIPTION

This command gets PPP status information for Packet over Sonet ports.

STANDARD OPTIONS

ipState

Read-only. The current state of the IP Network Control Protocol negotiation.

State Value Usage

pppStatusDisabled 0 The IPCP protocol has been disabled and is not negotiated during
the NCP phase.

pppStatusClose 1 The IPCP protocol is enabled but is currently closed. IPCP traffic is
dropped.

pppStatusNegotiation 2 The IPCP protocol is currently being negotiated on the link. This
state may continue indefinitely if the peer refuses to negotiate
IPCP.

pppStatusOpen 3 The IPCP protocol is currently open and IPCP traffic may flow.

ipV6State

Read-only. The current state of the IPV6 Network Control Protocol negotiation. The possible values are
discussed in ipState.

Appendix 1 IxTclHAL Commands

– 1143 –

localIPAddress

Read-only. The negotiated local IP address for the port as a result of the IP Network Control Protocol's
operation.

localIpV6Iid

Read-only. The negotiated local IPV6 Interface Id for the port as a result of the IPV6 Network Control
Protocol's operation.

lqmQualityState

Read-only. The current state of the LQM negotiation.

State Value Usage

pppStatusNotNegotiated 0 The LQM option has been locally disabled and is not
negotiated. Any subsequent Link Quality Reports (LQR)
received on the link is ignored.

pppStatusInactive 1 LQM is not running on the link and any LQRs received is
ignored.

pppStatusActive 2 LQM operation was agreed to by both peers during LCP
negotiation and LQM is running on the link. LQRs received on
the link is pre-processed and local LQRs is generated and sent.

lqmReportIntervalRx

Read-only. The negotiated LQM receive port interval, expressed in seconds.

lqmReportIntervalTx

Read-only. The negotiated LQM transmit port interval, expressed in seconds.

lqmReportPacket
CounterRx

Read-only. The number of LQM report packets received since link was last established.

lqmReportPacket
CounterTx

Read-only. The number of LQM report packets transmitted since link was last established.

magicNumber
Negotiated

Read-only. The magic number negotiated between the local and remote hosts. (default = 0)

Appendix 1 IxTclHAL Commands

– 1144 –

mplsState

Read-only. The current state of the MPLS Network Control Protocol negotiation.

State Value Usage

pppStatusDisabled 0 The MPLS NCP protocol has been disabled and is not negotiated
during the NCP phase.

pppStatusClose 1 The MPLS NCP protocol is enabled but is currently closed. MPLS
NCP traffic is dropped.

pppStatusNegotiation 2 The MPLS NCP protocol is currently being negotiated on the link.
This state may continue indefinitely if the peer refuses to
negotiate MPLS NCP.

pppStatusOpen 3 The MPLS NCP protocol is currently open and IPCP traffic may
flow.

osiState

Read-only. The current state of the OSI Network Control Protocol negotiation.

State Value Usage

pppStatusDisabled 0 The OSI NCP protocol has been disabled and is not negotiated
during the NCP phase.

pppStatusClose 1 The OSI NCP protocol is enabled but is currently closed. OSI NCP
traffic is dropped.

pppStatusNegotiation 2 The OSI NCP protocol is currently being negotiated on the link.
This state may continue indefinitely if the peer refuses to
negotiate OSI NCP.

pppStatusOpen 3 The OSI NCP protocol is currently open and IPCP traffic may flow.

peerIPAddress

Read-only. The negotiated IP address of the peer.

peerIpV6Iid

Read-only. The negotiated IPV6 Interface Id of the peer.

rxAlignment

Read-only. The negotiated OSI receive alignment.

Appendix 1 IxTclHAL Commands

– 1145 –

rxMaxReceiveUnit

Read-only. Maximum frame size in receive direction. (default = 0)

rxMagicNumberStatus

Read-only. The status of receive magic number negotiation.

Value Usage

a number If a receive magic number has been negotiated, then its value is shown.

"Not Negotiated" The receive magic number is not enabled in the ppp command.

"Disabled" The peer does not agree to negotiate a receive magic number.

"Enabled" The peer agrees to negotiate and the negotiation is in progress.

txAlignment

Read-only. The negotiated OSI receive alignment.

txMagicNumberStatus

Read-only. The status of transmit magic number negotiation.

Value Usage

a number If a transmit magic number has been negotiated, then its value is shown.

"Not Negotiated" The transmit magic number is not enabled in the ppp command.

"Disabled" The peer does not agree to negotiate a transmit magic number.

"Enabled" The peer agrees to negotiate and the negotiation is in progress.

txMaxReceiveUnit

Read-only. Maximum frame size in transmit direction. (default = 0)

useMagicNumberRx

Read-only. The current state of the receive magic number negotiation.

State Value Usage

pppStatusDisabled 0 The negotiation of received Magic Number has been disabled and
is not negotiated during the NCP phase.

pppStatusClose 1 The negotiation of received Magic Number is enabled but is
currently closed. Related traffic is dropped.

Appendix 1 IxTclHAL Commands

– 1146 –

State Value Usage

pppStatusNegotiation 2 The received Magic Number is currently being negotiated on the
link. This state may continue indefinitely if the peer refuses to
negotiate.

pppStatusOpen 3 The negotiation of received Magic Number is currently open and
related traffic may flow.

useMagicNumberTx

Read-only. The current state of the transmit magic number negotiation.

State Value Usage

pppStatusDisabled 0 The negotiation of transmitted Magic Number has been disabled
and is not negotiated during the NCP phase.

pppStatusClose 1 The negotiation of transmitted Magic Number is enabled but is
currently closed. Related traffic is dropped.

pppStatusNegotiation 2 The transmitted Magic Number is currently being negotiated on
the link. This state may continue indefinitely if the peer refuses to
negotiate.

pppStatusOpen 3 The negotiation of transmitted Magic Number is currently open
and related traffic may flow.

COMMANDS

The pppStatus command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

pppStatus cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the pppStatus command.

pppStatus config option value

Modify the configuration options. If no option is specified, returns a list describing all of the available
options (see STANDARD OPTIONS) for pppStatus.

pppStatus get chasID cardID portID [circuitID]

Gets the current PPP Status information on port with circuit circuitID, id portID on card cardID, chassis
chasID from its hardware. Call this command before calling pppStatus cget option value to get the value
of the configuration option. If circuitID = 0, gets information for the port; if circuitID not 0, gets
information for the circuit.

Appendix 1 IxTclHAL Commands

– 1147 –

EXAMPLES

See examples under ppp.

SEE ALSO

ppp.

prbsCapture
prbsCapture - captures PRBS packets on a port.

SYNOPSIS

prbsCapture sub-command options

DESCRIPTION

The prbsCapture command is enabled on a per-port basis for capture of PRBS packets. Wide packet group
must be enabled when using PRBS.

STANDARD OPTIONS

referencePacket

Hex representation of the current frameNumber's good packet data (default= 0)

receivedPacket

Hex representation of the current frameNumber's bad packet data (default= "")

numPackets

Total number of packets that are available in the PRBS capture buffer. (default= "")

timestamp

Packet arrival time. (default= 0)

COMMANDS

The prbsCapture command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

prbsCapture cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the prbsCapture command.

prbsCapture config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

Appendix 1 IxTclHAL Commands

– 1148 –

prbsCapture setDefault

Sets to IxTclHal default values for all configuration options.

prbsCapture get chasID cardID portID from to

Retrieves the captured PRBS data from the server.

prbsCapture getPacket packetNum

Brings into scope a particular frame out of all the retrieved captured PRBS data.

EXAMPLES

class TCLPrbsCapture
{
public:

TCLPrbsCapture();
virtual ~ TCLPrbsCapture();

VOID setDefault();
INT get(INT chassID, INT cardId, INT portId, INT from = 1, INT to = 1);
INT getPacket(INT packetNum);

// read-only parameters
hexstring referencePacket;
hexstring receivedPacket;
int numPackets;
__int64 timestamp;

private:
Copy(???);
};

SEE ALSO

port (receiveMode >portRxPrbs) (isValidFeature > portFeaturePRBS)

autoDetectInstrumentation (enablePrbs)

packetGroupStats (prbsBitsReceived, prbsErroredBits, and prbsBerRatio)

portGroup (clearPrbsCapture, startPrbsCapture, stopPrbsCapture)

stat (prbsFramesReceived, prbsHeaderError, prbsBitsReceived, prbsErroredBits, and prbsBerRatio)

protocol
protocol - configure the type of protocol to use for running the tests.

Appendix 1 IxTclHAL Commands

– 1149 –

SYNOPSIS

protocol sub-command options

DESCRIPTION

This command allows to select the ethernet frame type and protocol type to use when building data
packets or running a test.

Note: To set these values in IxHal and to commit them to the hardware use stream set and stream write.

STANDARD OPTIONS

appName

The application running on top of IP. These are applications may be layer 3 or 5 and others that cannot be
directly set in the IP header. To use layer 4 applications such as UDP and TCP, use ip config -ipProtocol
command. Available options are:

Option Value Usage

Udp 5 Tests UDP protocol

Arp 8 Tests ARP protocol

Rip 11 Tests RIP protocol

Dhcp 13 Tests DHCP protocol

SrpDiscovery 41 Tests SRP Discovery protocol

SrpArp 42 Tests SRP ARP protocol

SrpIps 43 Tests SRP IPS protocol

RprTopology 47 Tests RPR Topology protocol

RprProtection 48 Tests RPR Protection protocol

RprOam 49 Tests RPR OAM protocol

Ptp 72 Precision Time Protocol

enable802dot1qTag true/false

Sets the type of 802.1q Vlan tagged frame insertion.

Option Value Usage

vlanNone 0 (default) No VLANs used.

Appendix 1 IxTclHAL Commands

– 1150 –

Option Value Usage

vlanSingle 1 A single VLAN specification is used.

vlanStacked 2 Two or more VLANs in a stack are used, as set in the stackedVlan
command.

enableCMD true/false

Enable Cisco Metadata tagged frame insertion. (default = false)

enableDataCenterEncapsulation true/false

Enable Data Center Encapsulation option. (default = false)

enableISLtag true/false

Enable Cisco ISL tagged frame insertion. (default = false)

enableMacSec
true/false

Enable MacSec frame insertion in streams. (default = false)

enableMPLS true/false

Enable MPLS Tagged frame insertion. (default = false)

enableOAM
true/false

Enable OAM frame insertion in streams. (default = false)

enableProtocolPad true/false

If true, enables Protocol Pad.

ethernetType

The type of ethernet frame selected. Options include:

Option Value Usage

noType 0 (default)

ethernetII 1 Ethernet II type of ethernet frame selected

ieee8023snap 2 IEEE8023 snap type of ethernet frame selected

ieee8023 3 IEEE8023 type of ethernet frame selected

Appendix 1 IxTclHAL Commands

– 1151 –

Option Value Usage

ieee8022 15 IEEE8022 type of ethernet frame selected

protocolOffsetType 53 The protocol offset type of ethernet frame selected

name

The name of the protocol selected. Options include:

Option Value Usage

mac 0 MAC layer 2. During the learn process, simple MAC frames that contain the
MAC address of the receive ports is transmitted to allow the switch to learn
the ports (default)

ip 4 Uses an IP version 4 header in the frame, see ip command set. If name is
set to ip, during the learn process ARP frames from both the transmit and
receive ports is sent to DUT. From the ARP frames, the DUT learns the IP
address of the attached Ixia ports and the Ixia ports learns the MAC
address of the DUT port.

ipV4 4 same as ip above.

ipx 7 Uses an IPX header in the frame, see ipx command set. During the learn
process, RIPx frames both the transmit and receive ports is sent to DUT so
it may learn the network address of the attached ports and so that the
transmit ports may learn the MAC address of the attached DUT port.

pauseControl 12 Pause control protocol. See pauseControl for details on setting up a pause
control packet.

ipV6 31 Uses an IP version 6 header in the frame.

fcoe 68 Uses an FCoE header in the frame.

nativeFc 74 Uses an Fibre Channel header in the frame.

DEPRECATED
STANDARD OPTIONS

dutStripTag true/false

COMMANDS

The protocol command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

protocol cget option

Appendix 1 IxTclHAL Commands

– 1152 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the protocol command.

Note: Call command stream get chasID cardID portID streamID before calling protocol cget option value
to get the value of the configuration option.

protocol config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

protocol setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1

Appendix 1 IxTclHAL Commands

– 1153 –

}

Set to ethernet II and ipV4
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII

Protocol values are saved via the stream command
stream set $chas $card $port 1

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, ip, ipx, protocolOffset.

protocolOffset
protocolOffset - configure the offset used to generate protocol header and contents.

SYNOPSIS

protocolOffset sub-command options

DESCRIPTION

For load modules which support this feature, this allows the protocol headers and contents to be
generated at other than the standard location (byte 14) within a packet.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

offset

The new offset for protocol header location. (default = 14)

Appendix 1 IxTclHAL Commands

– 1154 –

userDefinedTag

The new contents for the old protocol header location (byte 14). If the tag is smaller than the space
between the old and new offset, then zeroes are used to fill in the remainder. If the tag is larger than the
space, it is truncated. (default = {00 00})

COMMANDS

The protocolOffset command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

protocolOffset cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the protocolOffset command.

protocolOffset config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

protocolOffset set chasID cardID portID

Sets the configuration of the protocol offset in IxHAL on port with id portID on card cardID, chassis chasID
by reading the configuration option values set by the protocolOffset config option value command.
Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

protocolOffset setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
protocolOffset setDefault
protocol config -ethernetType protocolOffsetType
protocolOffset config -offset 20
protocolOffset config -userDefinedTag {01 02 03 04 05 06}

if [protocolOffset set $chas $card $port] {
ixPuts "Error in protocolOffset set for $chas $card $port"
}

SEE ALSO

ip, ipx, protocol.

Appendix 1 IxTclHAL Commands

– 1155 –

protocolServer
protocolServer - use to enable the various protocols.

SYNOPSIS

protocolServer sub-command options

DESCRIPTION

For load modules which support this feature, this enables the protocols listed in Standard Options, below.

STANDARD OPTIONS

enableArpResponse
true/false

ARP must be enabled in protocolServer in order for ARP to work.
(default = false)

enablePingResponse
true/false

Ping must be enabled in protocolServer in order for Ping to work.
(default = false)

COMMANDS

The protocolServer command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

protocolServer cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the protocolServer command.

protocolServer config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

protocolServer get option

Retrieves the current configuration of the protocol server for option.

protocolServer set chasID cardID portID

Sets the configuration of the protocol server in IxHAL on port with id portID on card cardID, chassis
chasID by reading the configuration option values set by the protocolServer config option value
command. Specific errors are:

l No connection to a chassis
l Invalid port number

Appendix 1 IxTclHAL Commands

– 1156 –

l The port is being used by another user
l The configured parameters are not valid for this port

protocolServer setDefault option

Sets to IxTclHal default values for all configuration options.

protocolServerwritechasID cardID portID

Writes or commits the changes in IxHAL to hardware the protocol server configuration for each port with
id portID on card cardID, chassis chasID. Before using this command, use the protocolServer set
command to configure the port related parameters in IxHAL. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

DEPRECATED OPTIONS

arpServerEnable
true/false

pingServerEnable
true/false

repeatCount
true/false

rate (in pps)

MacAddress

IpAddress

count

mapType

EXAMPLES

arp.

SEE ALSO

protocolPad
protocolPad - configures data bytes.

SYNOPSIS

protocolPad sub-command options

Appendix 1 IxTclHAL Commands

– 1157 –

DESCRIPTION

This command, when true, allows to configure data bytes.

STANDARD OPTIONS

dataBytes

When protocolPad option is enabled in protocol object, it allows to configure data bytes using the "config
dataBytes" command. The value maybe as follows:

11 22 33 44 55 66

COMMANDS

The protocolPad command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

protocol set option

Sets the protocolPad option.

protocol get option

Gets the protocolPad option.

ptp
ptp- configure Precision Time Protocol to synchronize clocks.

SYNOPSIS

ptp sub-command options

DESCRIPTION

Precision Time Protocol (PTP) enables precise synchronization of clocks in measurement and control
systems implemented with technologies such as network communication, local computing, and
distributed objects. The protocol is applicable to systems communicating by local area networks
supporting multicast messaging including, but not limited to, Ethernet. The protocol enables
heterogeneous systems that include clocks of various inherent precision, resolution, and stability to
synchronize to a grandmaster clock. The protocol supports system-wide synchronization accuracy in the
sub-microsecond range with minimal network and local clock computing resources.

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

STANDARD OPTIONS

controlField

The value of controlField depends on the message type defined in the messageType field. (default = 5)

Appendix 1 IxTclHAL Commands

– 1158 –

Option Value Usage

ptpSync 0 Sync

ptpDelayRequest 1 Delay request

ptpFollowUp 2 Follow-up

ptpDelayResponse 3 Delay response

ptpManagement 4 Management

ptpOther 5 (default) Other

correctionField

Transparent clocks forward PTP timing messages through the clock in the manner of an ordinary bridge or
router but, in addition, measure the time spent by a PTP timing message within the transparent clock.
These "residence" times are accumulated in the correctionField in the PTP timing messages, which allows
the slave to correct the timestamps, effectively removing the timing fluctuations that would otherwise be
introduced by the bridges. Expressed in nanoseconds and fractions thereof. (default = 0.0)

domainNumber

A domain consists of one or more PTP devices communicating with each other as defined by the protocol.
Range 0 - 255. (default = 0)

Value Usage

0 (default)

1 Alternate domain 1

2 Alternate domain 2

3 Alternate domain 2

4-127 User-defined

128-255 Reserved

extensionId

Extension identifier. 5 byte hex list. (default = "00 00 00 00 00")

flagField

ORed values from flagField array, below. (default = 0)
Example code:

[expr $::ptpUtcOffsetValid|$::ptpFrequencyTraceable|$::ptpTwoStep|$::ptpUnicast

Appendix 1 IxTclHAL Commands

– 1159 –

Option Value Usage

ptpLeap61 1 Leap 61

ptpLeap59 2 Leap 59

ptpUtcOffsetValid 4 UTC offset valid

ptpPtpTimescale 8 PTP timescale

ptpTimeTraceable 16 Time traceable

ptpFrequencyTraceable 32 Frequency traceable

ptpAlternateMaster 256 Alternate master

ptpTwoStep 512 Two step

For a one-step clock, the value of twoStepFlag shall be FALSE.

For a two-step clock, the value of twoStepFlag shall be TRUE.

ptpUnicast 1024 Unicast

TRUE, if the transport layer protocol address to which this
message was sent is a unicast address.

FALSE, if the transport layer protocol address to which this
message was sent is a multicast address.

ptpProfile1 8192 Profile 1

ptpProfile2 16384 Profile 2

logMessageInterval

The value of the logMessageInterval field is determined by the type of the message. (default = 0))

messageLength

Read only. The total number of octets that form the PTP message. The counted octets start with the first
octet of the header and include and terminate with the last octet of any suffix or, if there are no suffix
members with the last octet of the message. (default = 44)

messageType

Configure the message type from list. (default = ptpSyncMessage)

Option Value Usage

ptpSyncMessage 0 PTP sync message

Appendix 1 IxTclHAL Commands

– 1160 –

Option Value Usage

ptpDelayRequestMessage 1 PTP delay request message

ptpFollowUpMessage 8 PTP follow-up message

ptpDelayResponseMessage 9 PTP delay response message

ptpAnnounceMessage 11 PTP announce message

organizationUniqueId

Organization Unique Identifier (OUI): the value of the OUI assigned to the vendor or standards
organization by the IEEE. The most significant 3 octets of the clockIdentity shall be an OUI. (default = "00
00 00")

portNumber

Identifies a specific Precision Time Protocol (PTP) port on a PTP node.

sequenceId

The sequenceId of the message shall be one greater than the sequenceId of the previous message of the
same message type sent to the same message destination address by the transmitting port. (default = 0)

transportSpecific

Read only. The transportSpecific field (default = 0)

Bit Name Meaning

0 hardwareCompatibility Check the length of the incoming packet before qualifying the
timestamp and require the UDP payload of the PTP event messages
to be at least 124 octets in length. Nodes using such hardware shall
set bit 0 equal to "1" in all Announce and PTP event messages
transmitted from the node.

1-3 reserved The bit shall be transmitted as zero and ignored by the receiver

version

Read only. Displays the PTP version. (default = 2)

COMMANDS

The ptp command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

ptp cget option

Appendix 1 IxTclHAL Commands

– 1161 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptp command.

ptp config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptp.

ptp decode capFrame chasID cardID portID

Decodes the ptp header and trailer packet and refreshes the IxTclHal object.

ptp get chasID cardID portID

Gets current ptp header and trailer settings from IxHal and refreshes IxTclHal object.

ptp set chasID cardID portID

Sets the current ptp header and trailer settings from IxTclHal to local IxHal. Specific errors are:

l No connection to a chassis
l Invalid port number
l Unsupported feature
l The port is being used by another user
l The configured parameters are not valid for this port

ptp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

package req IxTclHal

set hostname loopback

if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}
set chassId [chassis cget -id]
set cardId 20
set portId 1
set streamId 1

set portList [list [list $chassId $cardId $portId]]

if { [port isValidFeature $chassId $cardId $portId $::portFeaturePtp]} {

Configure Ptp streams

Appendix 1 IxTclHAL Commands

– 1162 –

protocol setDefault
protocol config -ethernetType $::ethernetII
protocol config -name $::ipV4
protocol config -appName $::Ptp
ip setDefault
ip config -sourceIpAddr "111.111.112.222"
if {[ip set $chassId $cardId $portId]} {
errorMsg "Error calling ip set $chassId $cardId $portId"
return "FAIL"
}
udp setDefault
udp config -sourcePort ptpEventPort
udp config -destPort ptpGeneralPort
if {[udp set $chassId $cardId $portId]} {
errorMsg "Error calling udp set $chassId $cardId $portId"
return "FAIL"
}
ptpAnnounce setDefault
ptpAnnounce config -seconds 1111
ptpAnnounce config -nanoseconds 9999999
ptpAnnounce config -currentUtcOffset 1236
ptpAnnounce config -stepsRemoved 55
ptpAnnounce config -timeSource $::ptpAltPtpProfile0
ptpAnnounce config -priority1 11
ptpAnnounce config -priority2 12
ptpAnnounce config -clockClass 99
ptpAnnounce config -clockAccuracy $::ptpAccuracy100us
ptpAnnounce config -clockLogVariance 0
ptpAnnounce config -extensionId "AB CD EF 12 34"
ptpAnnounce config -organizationUniqueId "10 11 12"
ptp setDefault
ptp config -controlField $::ptpDelayRequest
ptp config -logMessageInterval 33
ptp config -domainNumber 55
ptp config -correctionField 123654.0
ptp config -sequenceId 6
ptp config -flagField [expr
$::ptpUtcOffsetValid|$::ptpFrequencyTraceable|$::ptpTwoStep|$::ptpUnicast]
ptp config -messageType $::ptpAnnounceMessage
ptp config -portNumber 9999
ptp config -extensionId "AA D4 5D FE ED"
ptp config -organizationUniqueId "12 AA 45"
if {[ptp set $chassId $cardId $portId]} {
errorMsg "Error setting ptp on $chassId $cardId $portId"
return "FAIL"
}

stream setDefault

Appendix 1 IxTclHAL Commands

– 1163 –

stream config -name "Ptp Announce Stream"
if {[stream set $chassId $cardId $portId $streamId]} {
errorMsg "Error setting stream on $chassId $cardId $portId $streamId"
return "FAIL"
}

incr streamId

ptpDelayResponse setDefault
ptpDelayResponse config -seconds 999
ptpDelayResponse config -nanoseconds 11
ptpDelayResponse config -portNumber 555
ptpDelayResponse config -extensionId "00 AB CD 12 34"
ptpDelayResponse config -organizationUniqueId "55 EF DA"
ptp setDefault
ptp config -controlField $::ptpDelayResponse
ptp config -logMessageInterval 127
ptp config -domainNumber 255
ptp config -correctionField 8888888
ptp config -sequenceId 2
ptp config -flagField [expr $::ptpTwoStep | $::ptpUtcOffsetValid |
$::ptpFrequencyTraceable]
ptp config -messageType $::ptpDelayResponseMessage
ptp config -portNumber 0
ptp config -extensionId "00 34 AB 33 33"
ptp config -organizationUniqueId "B2 22 2A"
if {[ptp set $chassId $cardId $portId]} {
errorMsg "Error setting ptp on $chassId $cardId $portId"
return "FAIL"
}
stream setDefault
stream config -name "Ptp DelayResponse Stream"
if {[stream set $chassId $cardId $portId $streamId]} {
errorMsg "Error setting stream on $chassId $cardId $portId $streamId"
return "FAIL"
}

Configure PTP interfaces
if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error selecting interfaceTable on $chassId $cardId $portId."
return "FAIL"
}
ptpProperties setDefault
ptpProperties config -clockId "AA 00 00 00 00 00 00 BC"
ptpProperties config -portNumber 22
ptpProperties config -enableClockMaster $::true
ptpProperties config -timestampError 11
ptpProperties config -badCrcPercent 0

Appendix 1 IxTclHAL Commands

– 1164 –

ptpProperties config -dropFollowUpPercent 11
ptpProperties config -dropDelayResponsePercent 99
interfaceEntry config -enable false
interfaceEntry config -description {ProtocolInterface - 27:01 - 1}
interfaceEntry config -enablePtp true
if {[interfaceTable addInterface interfaceTypeConnected]} {
errorMsg "Error adding interfaceTypeConnected to interfaceTable on $chassId $cardId
$portId."
return "FAIL"
}
set interfaceDescription [interfaceEntry cget -description]
ixWriteConfigToHardware portList

Example how to retrieve PTP discovered information
if {[interfaceTable select $chassId $cardId $portId]} {
errorMsg "Error selecting interfaceTable on $chassId $cardId $portId."
return "FAIL"
}
interfaceEntry setDefault
ptpProperties setDefault
if {[interfaceTable getFirstInterface interfaceTypeConnected]} {
errorMsg "Error adding interfaceTypeConnected to interfaceTable on $chassId $cardId
$portId."
return "FAIL"
}
ixPuts "enablePtp: [interfaceEntry cget -enablePtp]"
ixPuts "announceInterval: [ptpProperties cget -announceInterval]"

Below code is just for usage example
#if {[interfaceTable requestDiscoveredTable]} {
errorMsg "Error interfaceTable requestDiscoveredTable on $chassId $cardId $portId."
return "FAIL"
#}
Some delay before the discovered information is ready, may depend on the
configuration
#after 2000
#ptpDiscoveredInfo setDefault
#if {[interfaceTable getPtpDiscoveredInfo $interfaceDescription]} {
errorMsg "Error getting PTP Discovered table for $interfaceDescription on $chassId
$cardId $portId."
return "FAIL"
#}

#ixPuts "ptpDiscoveredInfo clockId [ptpDiscoveredInfo cget -clockId]"
#ixPuts "ptpDiscoveredInfo announceMessageSent [ptpDiscoveredInfo cget -
announceMessageSent]"
#ixPuts "ptpDiscoveredInfo timeStamp [ptpDiscoveredInfo cget -timeStamp]"

Appendix 1 IxTclHAL Commands

– 1165 –

} else {

errorMsg "portFeaturePtp is not valid on $chassId $cardId $portId"
return "FAIL"
}

SEE ALSO

ptpAnnounce, ptpDelayRequest, ptpProperties, ptpFollowUp, ptpDelayResponse, ptpSync,
ptpDiscoveredInfo.

ptpAnnounce
ptpAnnounce - configure PTP Announce message.

SYNOPSIS

ptpAnnounce sub-command options

DESCRIPTION

Announce messages are periodically sent by one port and delivered to all other ports of ordinary or
boundary clocks within a communication path. The Announce message is used to establish the
synchronization hierarchy. Announce messages provide status and characterization information of the
transmitting node and its grandmaster. This information is used by the receiving node when executing the
best master clock algorithm.

If the port is in the master state and the ordinary clock is the grandmaster clock of the domain, then the
local clock is typically synchronized to an external source of time traceable to International Atomic Time
(TAI) and UTC (Coordinated Universal Time) such as the GPS system.

STANDARD OPTIONS

clockAccuracy

Defines the accuracy of a clock. (default = ptpAccuracyUnknown)

Option Value Usage

ptpAccuracy25ns 32 accuracy 25 nanoseconds

ptpAccuracy100ns 33 accuracy 100 ns

ptpAccuracy250ns 34 accuracy 250 ns

ptpAccuracy1us 35 accuracy 1 microsecond

ptpAccuracy2p5us 36 accuracy 2.5 microseconds

ptpAccuracy10us 37 accuracy 10 microseconds

Appendix 1 IxTclHAL Commands

– 1166 –

Option Value Usage

ptpAccuracy25us 38 accuracy 25 microseconds

ptpAccuracy100us 39 accuracy 100 microseconds

ptpAccuracy250us 40 accuracy 250 microseconds

ptpAccuracy1ms 41 accuracy 1 millisecond

ptpAccuracy2p5ms 42 accuracy 2.5 milliseconds

ptpAccuracy10ms 43 accuracy 10 milliseconds

ptpAccuracy25ms 44 accuracy 25 milliseconds

ptpAccuracy100ms 45 accuracy 100 milliseconds

ptpAccuracy250ms 46 accuracy 250 milliseconds

ptpAccuracy1s 47 accuracy 1 second

ptpAccuracy10s 48 accuracy 10 seconds

ptpAccuracyGreater10s 49 accuracy greater than 10 seconds

ptpAccuracyUnknown 254 (default) accuracy unknown

clockClass

Defines a clock's TAI traceability. The clockClass attribute of an ordinary or boundary clock denotes the
traceability of the time or frequency distributed by the grandmaster clock. (default = 0)

clockLogVariance

Defines the stability of a clock. (default = 0)

currentUtcOffset

Current UTC offset. The UTC time differs from the TAI time by a constant offset. This is calculated as
follows: TAI - UTC. (default = 0)

extensionId

Extension identifier. 5 byte hex list. (default = "00 00 00 00 00")

nanoseconds

The time interval, expressed in nanoseconds. (default = 0)

Appendix 1 IxTclHAL Commands

– 1167 –

organizationUniqueId

Organization Unique Identifier (OUI): the value of the OUI assigned to the vendor or standards
organization by the IEEE. The most significant 3 octets of the clockIdentity shall be an OUI.. (default =
"00 00 00")

priority1

A user configurable designation that a clock belongs to an ordered set of clocks from which a master is
selected. (default = 0)

priority2

A user configurable designation that provides finer grained ordering among otherwise equivalent clocks.
(default = 0)

stepsRemoved

In addition to this precedence order, the distance measured by the number of boundary clocks between
the local clock and the foreign master is used when two Announce messages reflect the same foreign
master. (default = 0)

timeSource

Indicates the source of time used by the grandmaster clock.

(default = ptpTimeSourceOther)

Option Value Usage

ptpAtomicClock 16 atomic clock

ptpGPS 32 GPS

ptpTerrestrialRadio 48 terrestrial radio

ptpPTP 64 PTP

ptpNTP 80 NTP

ptpHandSet 96 handset

ptpTimeSourceOther 144 (default) time source other

ptpInternalOscillator 160 internal oscillator

ptpAltPtpProfile0 240 alt ptp profile 0

ptpAltPtpProfile1 241 alt ptp profile 1

ptpAltPtpProfile2 242 alt ptp profile 2

Appendix 1 IxTclHAL Commands

– 1168 –

Option Value Usage

ptpAltPtpProfile3 243 alt ptp profile 3

ptpAltPtpProfile4 244 alt ptp profile 4

ptpAltPtpProfile5 245 alt ptp profile 5

ptpAltPtpProfile6 246 alt ptp profile 6

ptpAltPtpProfile7 247 alt ptp profile 7

ptpAltPtpProfile8 248 alt ptp profile 8

ptpAltPtpProfile9 249 alt ptp profile 9

ptpAltPtpProfile10 250 alt ptp profile 10

ptpAltPtpProfile11 251 alt ptp profile 11

ptpAltPtpProfile12 252 alt ptp profile 12

ptpAltPtpProfile13 253 alt ptp profile 13

ptpAltPtpProfile14 254 alt ptp profile 14

ptpReserved 255 reserved

COMMANDS

The ptpAnnounce command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ptpAnnounce cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpAnnounce command.

ptpAnnounce config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpAnnounce.

ptpAnnounce setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

Appendix 1 IxTclHAL Commands

– 1169 –

SEE ALSO

ptp, ptpDelayRequest, ptpProperties, ptpFollowUp, ptpDelayResponse, ptpSync, ptpDiscoveredInfo.

ptpDelayRequest
ptpDelayRequest - configure PTP Delay Request messages.

SYNOPSIS

ptpDelayRequest sub-command options

DESCRIPTION

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

STANDARD OPTIONS

nanoseconds

The time interval, expressed in nanoseconds. (default = 0)

seconds

The time interval, expressed in seconds. (default = 0)

COMMANDS

The ptpDelayRequest command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ptpDelayRequest cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpDelayRequest command.

ptpDelayRequest config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpDelayRequest.

ptpDelayRequest setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpProperties, ptpFollowUp, ptpDelayResponse, ptpSync, ptpDiscoveredInfo.

Appendix 1 IxTclHAL Commands

– 1170 –

ptpDelayResponse
ptpDelayResponse - configure PTP Delay Response messages.

SYNOPSIS

ptpDelayResponse sub-command options

DESCRIPTION

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

STANDARD OPTIONS

extensionId

Extension identifier. 5 byte hex list. (default = "00 00 00 00 00")

nanoseconds

The time interval, expressed in nanoseconds. (default = 0)

organizationUniqueId

Organization Unique Identifier (OUI): the value of the OUI assigned to the vendor or standards
organization by the IEEE. The most significant 3 octets of the clockIdentity shall be an OUI. (default = "00
00 00")

portNumber

16-bit port number associated with the clock. (default = 0)

seconds

The time interval, expressed in seconds. (default = 0)

COMMANDS

The ptpDelayResponse command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ptpDelayResponse cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpDelayResponse command.

ptpDelayResponse config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpDelayResponse.

Appendix 1 IxTclHAL Commands

– 1171 –

ptpDelayResponse setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpDelayRequest, ptpProperties, ptpFollowUp, ptpSync, ptpDiscoveredInfo.

ptpDiscoveredInfo
ptpDiscoveredInfo - configure PTP discovery function.

SYNOPSIS

ptpDiscoveredInfo sub-command options

DESCRIPTION

PTP ports discover other ports within a communication path through the receipt of multicast Announce
messages.

STANDARD OPTIONS

announceMessage
Received

Read only. Number of announce messages received by the interface. (default = 0)

announceMessageSent

Read only. Number of announce messages sent by the interface. (default = 0)

clockId

Read only. Identifies a clock. (default = '00 00 00 00 00 00 00 00')

clockOffset

Read only. The offset of the slave clock in nanoseconds with reference to its master, as calculated by the
slave per 1588 protocol. It is a measure of time transfer. (default = 0)

delayRequestMessage
Received

Read only. Number of delay request messages received by the interface. (default = 0)

Appendix 1 IxTclHAL Commands

– 1172 –

delayRequestMessage
Sent

Read only. Number of delay request messages sent by the interface. (default = 0)

delayResponseMessage
Received

Read only. Number of delay response messages received by the interface. (default = 0)

delayResponseMessage
Sent

Read only. Number of delay response messages sent by the interface. (default = 0)

followupMessage
Received

Read only. Number of follow-up messages received by the interface. (default = 0)

followupMessageSent

Read only. Number of follow-up messages sent by the interface. (default = 0)

meanPathDelay

Read only. The mean propagation time between master and slave clock as computed by the slave.
(default = 0)

syncMessageReceived

Read only. Number of sync messages received by the interface. (default = 0)

syncMessageSent

Read only. Number of sync messages sent by the interface. (default = 0)

timeSlope

Read only. The ratio of the slave clock frequency to its master clock frequency. It is a measure of
frequency transfer. (default = 0)

timeStamp

Read only. Timestamp of statistics. (default = 0)

COMMANDS

The ptpDiscoveredInfo command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ptpDiscoveredInfo cget option

Appendix 1 IxTclHAL Commands

– 1173 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpDiscoveredInfo command.

ptpDiscoveredInfo config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpDiscoveredInfo.

ptpDiscoveredInfo setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpDelayRequest, ptpDelayResponse, ptpProperties, ptpFollowUp, ptpSync.

ptpFollowUp
ptpFollowUp - configure PTP FollowUp messages.

SYNOPSIS

ptpFollowUp sub-command options

DESCRIPTION

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

STANDARD OPTIONS

nanoseconds

The time interval, expressed in nanoseconds. (default = 0)

seconds

The time interval, expressed in seconds. (default = 0)

COMMANDS

The ptpFollowUp command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

ptpFollowUp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpFollowUp command.

Appendix 1 IxTclHAL Commands

– 1174 –

ptpFollowUp config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpFollowUp.

ptpFollowUp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpDelayRequest, ptpDelayResponse, ptpDiscoveredInfo, ptpProperties.

ptpProperties
ptpProperties - configure .

SYNOPSIS

ptpProperties sub-command options

DESCRIPTION

There are five types of PTP devices, as follows:

l Ordinary clock
l Boundary clock
l End-to-end transparent clock
l Peer-to-peer transparent clock
l Management node

All PTP devices are identified by a clockIdentity attribute. In addition, ordinary and boundary clocks are
characterized by the following attributes:

l priority1
l priority2
l clockClass
l clockAccuracy (Standard Options below and ptpAnnounce)
l timeSource (ptpAnnounce)
l clockLogVariance (ptpAnnounce)
l portNumber

Appendix 1 IxTclHAL Commands

– 1175 –

STANDARD OPTIONS

announceInterval

The mean time interval between successive Announce messages. (default = 0)

announceReceipt

The number of announceInterval that has to pass without receipt of an Announce message before the
occurrence of the Announce Receipt Timeout event. (default = 0)

badCrcPercent

Percent of follow-up messages sent with bad CRC. (default = 0)

badTimeStampPercent

Percent of follow-up messages sent with bad timestamp. Bad timestamp = good tmestamp + timestamp
error. (default = 0)

clockAccuracy

Defines the accuracy of a clock. (default = ptpAccuracy25ns)

Option Value Usage

ptpAccuracy25ns 32 accuracy 25 nanoseconds

ptpAccuracy100ns 33 accuracy 100 ns

ptpAccuracy250ns 34 accuracy 250 ns

ptpAccuracy1us 35 accuracy 1 microsecond

ptpAccuracy2p5us 36 accuracy 2.5 microseconds

ptpAccuracy10us 37 accuracy 10 microseconds

ptpAccuracy25us 38 accuracy 25 microseconds

ptpAccuracy100us 39 accuracy 100 microseconds

ptpAccuracy250us 40 accuracy 250 microseconds

ptpAccuracy1ms 41 accuracy 1 millisecond

ptpAccuracy2p5ms 42 accuracy 2.5 milliseconds

ptpAccuracy10ms 43 accuracy 10 milliseconds

ptpAccuracy25ms 44 accuracy 25 milliseconds

Appendix 1 IxTclHAL Commands

– 1176 –

Option Value Usage

ptpAccuracy100ms 45 accuracy 100 milliseconds

ptpAccuracy250ms 46 accuracy 250 milliseconds

ptpAccuracy1s 47 accuracy 1 second

ptpAccuracy10s 48 accuracy 10 seconds

ptpAccuracyGreater10s 49 accuracy greater than 10 seconds

ptpAccuracyUnknown 254 accuracy unknown

clockClass

Defines a clock's TAI traceability. The clockClass attribute of an ordinary or boundary clock denotes the
traceability of the time or frequency distributed by the grandmaster clock. (default = 0)

clockId

Clock identity, identifies a clock. (default = '00 00 00 00 00 00 00 00')

delayMechanism

Configure the the delay mechanism. (default = ptpE2E)

Option Value Usage

ptpE2E 1 End-to-end

ptpDisabled 254 Disabled

delayRequest

The minimum permitted mean time interval between successive Delay_Req messages, sent by a slave to
a specific port on the master. (default = 0)

domainNumber

The domain is identified by an integer in the range of 0 to 255. (default = 0)

dropDelayResponsePercent

Defines how many delay response messages to be dropped. Drop delay response messages expressed as
percentage of received delay request messges. Normally, delay response is sent by the master
corresponding to each delay request massage received. For negative testing, you can configure Ixia port
to drop the delay response message to see how the DUT behaves. (default = 0)

Appendix 1 IxTclHAL Commands

– 1177 –

dropFollowUpPercent

Defines how many follow-up messages to be dropped. Drop follow-up messages expressed as percent of
sync messages. Normally, a follow-up message is sent out corresponding to each sync message. For
negative testing, you can configure Ixia port to drop the follow-up message to see how the DUT behaves.
(default = 0)

enableClockMaster

If true, configures Ixia port in master mode. (default = 0)

portNumber

An index identifying a specific PTP port on a PTP node. (default = 0)

priority1

A user configurable designation that a clock belongs to an ordered set of clocks from which a master is
selected. (default = 0)

priority2

A user configurable designation that provides finer grained ordering among otherwise equivalent clocks.
(default = 0)

startOffset

Defines the clock offset in nanoseconds. Master sends PTP messages with Start Offset added to the clock.
(default = 0)

syncInterval

The mean time interval between successive Sync messages. (default = 0)

timestampError

The time error between a slave and a master ordinary or boundary clock. (default = 0)

COMMANDS

The ptpProperties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

ptpProperties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpProperties command.

ptpProperties config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

ptpProperties setDefault

Appendix 1 IxTclHAL Commands

– 1178 –

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpDelayRequest, ptpDelayResponse, ptpDiscoveredInfo, ptpProperties, ptpFollowUp,
ptpSync.

ptpSync
ptpSync - configure PTP sync messages.

SYNOPSIS

ptpSync sub-command options

DESCRIPTION

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

STANDARD OPTIONS

nanoseconds

The time interval, expressed in nanoseconds. (default = 0)

seconds

The time interval, expressed in seconds. (default = 0)

COMMANDS

The ptpSync command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

ptpSync cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ptpSync command.

ptpSync config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for ptpSync.

ptpSync setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1179 –

EXAMPLES

See example under ptp command.

SEE ALSO

ptp, ptpAnnounce, ptpDelayRequest, ptpDelayResponse, ptpDiscoveredInfo, ptpProperties, ptpFollowUp.

qos
qos - configure the QoS counter parameters for a port

SYNOPSIS

qos sub-command options

DESCRIPTION

This command allows to set up the QoS counter filters and offset of the QoS priority bits.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command are with respect to the start of the AAL5 packet and
must be adjusted by hand to account for the header.

STANDARD OPTIONS

byteOffset

The offset where the priority value is checked to indicate which of the QoS counters is going to be
incremented. (default = 14)

packetType

The type of packet that the QoS counters are looking for priority bits within.

Option Value Usage

ipEthernetII 0

ip8023Snap 1

vlan 2

custom 3

ipPpp 4

ipCiscoHdlc 5

ipAtm 6

Appendix 1 IxTclHAL Commands

– 1180 –

patternMask

The mask of the pattern that is analyzed by the Receive engine to increment the QoS counter. (default =
00 00)

patternMatch

The pattern that is analyzed by the Receive engine to increment the QoS counter. (default = 81 00)

patternOffset

The offset where the pattern to be matched is located. (default = 12)

patternOffsetType

The point within a frame that patternOffset is with respect to.

Option Value Usage

qosOffsetStartOfFrame 0 (default) From the start of the frame.

qosOffsetStartOfIp 1 From the start of the IP header.

qosOffsetStartOfProtocol 2 From the start of the inner protocol header. For example, TCP
header.

qosOffsetStartOfSonet 3 From the stat of the SONET frame.

COMMANDS

The qos command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

qos cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the qos command

qos config option value

Modify the configuration options of the qos. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for qos.

qos get chasID cardID QosID

Gets the current configuration of the QoS counters denoted by qosID on card cardID, chassis chasID from
its hardware. Call this command before calling qos cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassisI
l Invalid card number

qos set chasID cardID QosID

Appendix 1 IxTclHAL Commands

– 1181 –

Sets the configuration of the QoS counters in IxHAL by qosID on card cardID, chassis chasID by reading
the configuration option values set by the qos config option value command. Specific errors are:

l No connection to a chassis
l Invalid card number
l The card is being used by another user
l The configured parameters are not valid for this card

qos setDefault

Sets to IxTclHal default values for all configuration options.

qos setuppacketType

Sets the QoS counters to look for priority bits for a certain type of packet. See the packetType standard
option description for the choices. Specific errors are:

l Invalid packetType

qoswrite chasID cardID QosID

Writes or commits the changes in IxHAL to hardware the QoS counters configuration for each card with id
QosID on card cardID, chassis chasID. Before using this command, use the qos set command to configure
the card related parameters (byteOffset, patternMatch, patternMask, patternOffset) in IxHAL. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

EXAMPLES
package require IxTclHal

In this test, we'll generate a number of packets with different
settings in the QoS field. The directly connected receiving port
will be set to receive and provide statistics for the number of
QoS packets received at each of 8 levels

Connect to chassis and get chassis ID
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 1182 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assume card to be used is in slot 1
set card 1
set txPort 1
set rxPort 2
set portList [list [list $chas $card $txPort] \
[list $chas $card $rxPort]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Setup port 1 to transmit
port setFactoryDefaults $chas $card $txPort
port setDefault

Stream: 100,000 packets
stream setDefault
stream config -numFrames 100000
stream config -dma stopStream

IP/ethernetII packets
ip setDefault
ip set $chas $card $txPort

protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII

Overlay UDF1 on top of the QoS byte with an appropriate mask
udf setDefault
udf config -enable true
udf config -offset 15
udf config -udfSize c8

Appendix 1 IxTclHAL Commands

– 1183 –

udf config -continuousCount true
udf config -maskselect {1F 00 00 00}
udf set 1

stream set $chas $card $txPort 1
port set $chas $card $txPort

Set up port 2 for QoS Statistics
port setFactoryDefaults $chas $card $rxPort
port setDefault

QoS statistics mode
stat config -mode statQos
stat set $chas $card $rxPort

Set up locations of where to find the information
qos setup ipEthernetII
qos set $chas $card $rxPort

protocol setDefault
protocol config -name mac
protocol config -ethernetType ethernetII

port set $chas $card $rxPort

Write config to hardware
ixWritePortsToHardware portList

Clear stats, run the transmission
after 1000
ixClearPortStats $chas $card $rxPort
ixStartPortTransmit $chas $card $txPort
after 1000
ixCheckPortTransmitDone $chas $card $txPort

Get the 8 QoS statistics and print them
stat get allStats $chas $card $rxPort

for {set i 0} {$i <= 7} {incr i} \
{
ixPuts -nonewline "Qos$i = "
ixPuts [stat cget -qualityOfService$i]
}

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host

Appendix 1 IxTclHAL Commands

– 1184 –

If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stat, port.

resourceGroupEx
resourceGroupEx - Configure a resource group of the card.

SYNOPSIS

Resource Group sub-command options.

DESCRIPTION

resourceGroupEx command is used to set all ports of the resource level. This command can be used to
mode switch the resource group or to change the active capture portlist of that resource group.

FQPN support

Following is the list of commands supporting FQPN:

l activeFullyQualifiedCapturePortList
l activeFullyQualifiedPortList
l resourceFullyQualifiedPortList

STANDARD OPTIONS

activeCapturePortList

The active capture portlist.

activeFullyQualifiedCapturePortList

Returns the active capture portlist.

activeFullyQualifiedPortList

Returns all the port list of the current speed mode.

activePortList

All the port list of the current speed mode.

attributes

The attributes of the speed mode.

Appendix 1 IxTclHAL Commands

– 1185 –

mode

The speed of the resource group port.

modeName

The name of the speed mode.

resourceFullyQualifiedPortList

Returns all the port list for the resource Group for all speed modes.

resourcePortList

All the port list for the resource Group for all speed modes.

COMMANDS

The resourceGroupEx command is invoked with the following sub-commands. If no sub-command is

specified, returns a list of all sub-commands available.

resourceGroupEx get $chass $card $resourceId

It gets the current configuration of the resource group port.

resourceGroupEx cget -option

It returns the values as per the option given.

resourceGroupEx configure -option value

Modify the configuration options of the resourceGroupEx. If no option is specified, returns a list describing
all of the available options (see STANDARD OPTIONS) for resourceGroupEx.

resourceGroupEx set $chass $card $resourceId

Sets the configuration of the resourceGroupEx in IxHAL for resource group with id portID on card cardID,
chassis chasID by reading the configuration option values set by the resourceGroupEx config option value
command. Specific errors are:

l No connection to a chassis.
l Invalid port number.
l The port is being used by another user.
l The configured parameters are not valid for this port.

resourceGroupExwrite $chass $card $resourceId

Write the config to the resource Group. Specific errors are:

l No connection to a chassis.
l Invalid port number.

Appendix 1 IxTclHAL Commands

– 1186 –

l The port is being used by another user.
l The configured parameters are not valid for this port.

rip
rip - configure the RIP header parameters for a port on a card on a chassis

SYNOPSIS

rip sub-command options

DESCRIPTION

The rip command is used to configure the RIP header information used when building RIP-type packets.
See RFCs 1058 and 1723 for a complete definition of RIP header fields. Note that stream get must be
called before this command's get sub-command.

STANDARD OPTIONS

command

The command field of the RIP header. Defined values include:

Option Value Usage

ripRequest 1 (default) a request for the responding system to send all or part of its
routing table

ripResponse 2 response or update information from a sender

ripTraceOn 3 an obsolete message

ripTraceOff 4 an obsolete message

ripReserved 5 reserved for use by Sun Microsystems

version

The version field of the RIP header. Defined values include:

Option Value Usage

ripVersion1 1

ripVersion2 2 (default)

COMMANDS

The rip command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 1187 –

rip cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rip command.

rip config option value

Modify the RIP configuration options of the port. If no option is specified, returns a list describing all of the
available RIP options (see STANDARD OPTIONS) for port.

rip decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. rip cget option command can be used
after decoding to get the option data. Specific errors are:

l No connection to a chassis
l Invalid port number
l The captured frame is not a valid Rip frame

rip get chasID cardID portID

Gets the current RIP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling rip
cget option to get the value of the configuration option. Specific errors are:

l No connection to a chassis

Invalid port number

rip set chasID cardID portID

Sets the RIP configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rip config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user

The configured parameters are not valid for this port

rip setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

In this example weíll generate a RIP packet with two route
specifications

Connect to chassis and get chassis ID
set host 400-031561
set username user

Appendix 1 IxTclHAL Commands

– 1188 –

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Assume card to be used is in slot 1
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Put the port in loopback mode
port setFactoryDefaults $chas $card $port
port setDefault

Stream: 1 packet at 1%
stream setDefault
stream config -numFrames 1
stream config -dma stopStream
stream config -rateMode usePercentRate
stream config -percentPacketRate 1

Set up IP: udp with 72 byte packet
ip setDefault
ip config -ipProtocol udp
ip config -totalLength 72

Appendix 1 IxTclHAL Commands

– 1189 –

ip set $chas $card $port

Set up protocol
protocol setDefault
protocol config -ethernetType ethernetII
protocol config -name ipV4
protocol config -appName Rip

Set up UDP
udp setDefault
udp config -sourcePort ripPort
udp config -destPort ripPort
udp set $chas $card $port

Set up Rip in general
rip setDefault
rip config -command ripResponse
rip config -version 2
Set up Rip Routes
ripRoute setDefault
ripRoute config -familyId 2
ripRoute config -routeTag 0
ripRoute config -metric 10
ripRoute config -ipAddress 192.168.36.1
ripRoute config -subnetMask 255.255.255.0
ripRoute config -nextHop 192.168.46.254
ripRoute set 1

ripRoute config -metric 20
ripRoute config -ipAddress 0.0.0.0
ripRoute config -nextHop 192.168.46.1
ripRoute set 2

rip set $chas $card $port

stream set $chas $card $port 1
port set $chas $card $port

ixWritePortsToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 1 IxTclHAL Commands

– 1190 –

SEE ALSO

port, protocol, ip, ripRoute.

ripRoute
ripRoute - configure the RIP routing parameters for a port on a card on a chassis

SYNOPSIS

ripRoute sub-command options

DESCRIPTION

The ripRoute command is used to configure the RIP routing parameters used when building RIP packets.
See RFCs 1058 and 1723 for a complete definition of RIP.

STANDARD OPTIONS

authentication

Authentication string, maximum 16 octets. (default = "")

authenticationType

Type of authentication. (default = 2)

familyId

Address family identifier. Valid values are 2 (IP protocol), OxFFFF (authentication entry, automatically
sets if ripRoute setAuthentication called). (default = 0)

ipAddress

IP address of the routing table entry. (default = 0.0.0.0)

metric

The routing cost metric, from 1 to 16 with 16 interpreted as unreachable. (default = 1)

nextHop

For version 2 records, the IP address of the next routing hop for the IP address and subnet mask. (default
= 0.0.0.0)

routeTag

The number used to distinguish the source of routing destination. (default = 0)

Appendix 1 IxTclHAL Commands

– 1191 –

subnetMask

Subnet mask for this route. (default = 0.0.0.0)

COMMANDS

The ripRoute command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

ripRoute cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the ripRoute command.

ripRoute config option value

Modify the ripRoute configuration options of the port. If no option is specified, returns a list describing all
of the available ripRoute options (see STANDARD OPTIONS) for port.

ripRoute get routeID

Gets the current route configuration of the selected routeID. Call this command before calling ripRoute
cget option to get the value of the configuration option. Specific errors are:

l The specified route does not exist

ripRoute remove routeID

Remove the route routeID from the routing table.Specific errors are:

l The specified route does not exist

ripRoute set routeID

Sets the route configuration for route routeID reading the configuration option values set by the ripRoute
config option value command. Specific errors are:

l The configured parameters are not valid for this port
l Insufficient memory to add the new route

ripRoute setAuthentication authentication

Sets an authentication route as the first entry of the routing table with familyID set to 0xFFFF. Specific
errors are:

l The parent rip structure does not exist
l Insufficient memory

ripRoute setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rip.

Appendix 1 IxTclHAL Commands

– 1192 –

SEE ALSO

stream, protocol, ip, rip.

rprFairness
rprFairness - set up transmission of RPR fairness packets

SYNOPSIS

rprFairness sub-command options

DESCRIPTION

The rprFairness command is used to set up the content of RPR Fairness messages sent periodically from a
node. The RPR Fairness Algorithm (FA) is used to manage congestion on the ringlets in an RPR network.
Fairness frames are sent periodically to advertise bandwidth usage parameters to other nodes in the
network to maintain weighted fair share distribution of bandwidth. The messages are sent in the direction
opposite to the data flow; that is, on the other ringlet.

The Sonet header must be set to sonetRpr using sonet config -header sonetRpr before this command can
be used.

STANDARD OPTIONS

RPR Fairness Options

controlValue

The 16-bit normalized advertised fair rate. A full rate is indicated by all 1's (0xFFFF). (default = 0)

enableTransmit
true | false

If true, the transmission of RPR Fairness Control Messages (FCMs) is enabled. They are sent at the repeat
interval specified in repeatInterval until this option is set to false. (default = false)

messageType

The type of RPR fairness control message (FCM) used for congestion control.

Option Value Usage

rprSingleChoke 0 (default) Single choke: sent once per
advertisement interval. Contains information
on the congestion level for the ringlet.

rprMultiChoke 1 Multi choke: sent once every 10 advertisement
intervals.

Appendix 1 IxTclHAL Commands

– 1193 –

repeatInterval

The time interval, expressed in microseconds, between transmissions of Fairness frames. The range is
from 10 to 65,000 microseconds. (default = 90)

rxAgingInterval

The keepalive timeout value, expressed in microseconds, indicating the amount of time that may elapse
without an RPR message being received before considering the link down. (default = 100)

rxMacAddress

The 6-byte MAC address from which the packet was sent. (default = {00 00 00 00 00 00})

txMacAddress

The 6-byte MAC Source address for the transmitting node. (default = {00 00 00 00 00 00})

RPR Ring Control Options

enableFairnessEligible
true | false

This 1-bit field indicates the eligibility of this packet for the fairness algorithm. Note that packets with
serviceClass set to rprServiceClassA0 or rprServiceClassA1 are not eligible for fairness control. (default =
true)

enableOddParity
true | false

If true, then the value of the transmitted parity is odd over the first two bytes (TTL and baseRingControl).
If false, even parity is set. (default = true)

enableWrapEligible
true | false

This 1-bit field indicates whether the packet is wrap eligible.(default = false)

packetType

This 2-bit field indicates the type of the RPR packet.

Option Value Usage

rprIdlePacket 0 Idle frame.

rprControlPacket 1 Control frame, expect for Fairness frames.

rprRingControlPacket 2 (default) Fairness frame.

rprDataPacket 3 Data frame.

Appendix 1 IxTclHAL Commands

– 1194 –

parityBit

Read only. The value of the parity associated with the ring control header. For use in RPR Fairness Frames
only. The value of this field is influenced by the value of the enableOddParity field.

ringIdentifier

This 1-bit field is the Ringlet Identifier (RI), indicating the ringlet from which the RPR frame was first
transmitted.

Option Value Usage

rprRinglet0 0 (default) Ringlet 0.

rprRinglet1 1 Ringlet 1.

serviceClass

This 2-bit field indicates the MAC service class for the frame.

Option Value Usage

rprServiceClassC 0 (default) Class C is the lowest level of traffic, transmitted on a best-
efforts basis. None of the traffic has a guaranteed data rate, and no
limits are placed on delay and jitter. ClassC traffic is eligible for use
by the fairness algorithm.

rprServiceClassB 1 Class B is the next higher service level, with an allocated and
guaranteed data rate for a portion of the traffic, plus low delay and
jitter (CIR). The additional traffic is transmitted with no guaranteed
data rate (EIR) and is eligible for use by the fairness algorithm.

rprServiceClassA1 2 Class A is the highest service level, providing an allocated and
guaranteed data rate, plus low delay and jitter (CIR). It is not eligible
for use by the fairness algorithm.

There are two sub-classes, which are not distinguished to the MAC
client: Class A1 and Class A0.

Class A1 reserved bandwidth may be used by ClassB or ClassC traffic
if not in current use.

rprServiceClassA0 3

ttl

This 8-bit field indicates the Time to Live option of the RPR header. The TTL value is the first octet of an
RPR frame header. This indicates the maximum number of hops to the destination. (default = 1)

Appendix 1 IxTclHAL Commands

– 1195 –

COMMANDS

The rprFairness command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

rprFairness cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprFairness command.

rprFairness config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprFairness get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
Call this command before calling rprFairness cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l RPR is not supported on this port

rprFairness set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rprFairness config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The port is not available
l The configured parameters are not valid for this port
l RPR is not supported on this port

rprFairness setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal

set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"

Appendix 1 IxTclHAL Commands

– 1196 –

return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chassis [ixGetChassisID $host]

set chassis [chassis cget -id]
set card 87
set port 1
set portList [list [list $chassis $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

NOTE: Sonet header needs to be configured to sonetRpr before
the user can configure any RPR streams

Make sure we have all the default with sonetRpr before
configuring anything on the port
if [port isValidFeature $chassis $card $port $::portFeatureRpr] {
port setFactoryDefaults $chassis $card $port

if [sonet get $chassis $card $port] {
ixPuts "Error getting sonet on $chassis $card $port"
return $TCL_ERROR
}
sonet config -header sonetRpr

if [sonet set $chassis $card $port] {
ixPuts "Error setting sonet on $chassis $card $port"
return $TCL_ERROR
}
} else {
ixPuts "Port $chassis.$card.$port doesn't support RPR"

Appendix 1 IxTclHAL Commands

– 1197 –

return $TCL_ERROR
}

ixWritePortsToHardware portList

stream setDefault
stream config -rateMode usePercentRate
stream config -framesize 1000
stream config -frameSizeType sizeFixed

rprFairness setDefault
rprFairness config -repeatInterval 10
rprFairness config -packetType rprFairnessPacket
rprFairness config -serviceClass rprServiceClassB
rprFairness config -enableWrapEligible true
rprFairness config -enableOddParity true

if [rprFairness set $chassis $card $port] {
ixPuts "Error setting rprFairness on $chassis $card $port"
return $TCL_ERROR
}

set sn 1

################ RPR Topology ################

NOTE: protocol need to be configured before rprRingControl or
any other RPR objects

protocol setDefault
protocol config -appName RprTopology

rprRingControl setDefault
rprRingControl config -ttl 5
rprRingControl config -extendedFrame 1

if [rprRingControl set $chassis $card $port] {
ixPuts "Error setting rprRingControl on $chassis $card $port"
return $TCL_ERROR
}

rprTopology clearAllTlvs

rprTlvIndividualBandwidth clearAllBandwidthPairs
rprTlvBandwidthPair setDefault
rprTlvBandwidthPair config -bandwidth0 11
rprTlvBandwidthPair config -bandwidth1 11

Appendix 1 IxTclHAL Commands

– 1198 –

rprTlvIndividualBandwidth addBandwidthPair

rprTlvBandwidthPair setDefault
rprTlvBandwidthPair config -bandwidth0 22
rprTlvBandwidthPair config -bandwidth1 22
rprTlvIndividualBandwidth addBandwidthPair

rprTlvIndividualBandwidth setDefault
rprTopology addTlv rprIndividualBandwidth

rprTlvWeight setDefault
rprTlvWeight config -weightRinglet0 1
rprTlvWeight config -weightRinglet1 1
rprTopology addTlv rprWeight

rprTlvTotalBandwidth setDefault
rprTlvTotalBandwidth config -bandwidthRinglet0 1
rprTlvTotalBandwidth config -bandwidthRinglet1 1
rprTopology addTlv rprTotalBandwidth

rprTlvNeighborAddress setDefault
rprTlvNeighborAddress config -neighborMacEast {00 00 00 00 00 01}
rprTlvNeighborAddress config -neighborMacWest {00 00 00 00 00 02}
rprTopology addTlv rprNeighborAddress

rprTlvStationName setDefault
rprTlvStationName config -stationName newyorkcity
rprTopology addTlv rprStationName

rprTlvVendorSpecific setDefault
rprTlvVendorSpecific config -companyId {99 AA BB}
rprTlvVendorSpecific config -dependentId {23 45 67}
rprTlvVendorSpecific config -vendorData {11 11 11 10}
rprTopology addTlv rprVendorSpecific

rprTopology setDefault
rprTopology config -enableOverrideControlVersion $::false
rprTopology config -controlVersion 0
rprTopology config -enableOverrideControlType $::false
rprTopology config -controlType 1

if [rprTopology set $chassis $card $port] {
ixPuts "Error setting rprTopology on $chassis $card $port"
return $TCL_ERROR
}

stream config -name "RPR Topology"
if [stream set $chassis $card $port $sn] {

Appendix 1 IxTclHAL Commands

– 1199 –

ixPuts "Error setting stream on $chassis $card $port $sn"
return $TCL_ERROR
}
incr sn

################ RPR Protection ################

protocol config -appName RprProtection

rprRingControl setDefault
rprRingControl config -ttl 5
rprRingControl config -ttlBase 6

if [rprRingControl set $chassis $card $port] {
ixPuts "Error setting rprRingControl on $chassis $card $port"
return $TCL_ERROR
}

rprProtection setDefault
rprProtection config -sequenceNumber 1
rprProtection config -protectionRequestEast rprWaitToRestore
rprProtection config -protectionRequestWest rprWaitToRestore
rprProtection config -enableOverrideControlType $::false
rprProtection config -controlType 2

if [rprProtection set $chassis $card $port] {
ixPuts "Error setting rprProtection on $chassis $card $port"
return $TCL_ERROR
}
stream config -name "RPR Protection"

if [stream set $chassis $card $port $sn] {
ixPuts "Error setting stream on $chassis $card $port $sn"
return $TCL_ERROR
}
incr sn

################ RPR OAM ################

protocol config -appName RprOam
rprOam setDefault
rprOam config -typeCode $::rprOamFlush
rprOam config -flushReserved 18

if [rprOam set $chassis $card $port] {
ixPuts "Error setting rprOam on $chassis $card $port"
return $TCL_ERROR
}

Appendix 1 IxTclHAL Commands

– 1200 –

stream config -name "RPR OAM"

if [stream set $chassis $card $port $sn] {
ixPuts "Error setting stream on $chassis $card $port $sn"
return $TCL_ERROR
}
incr sn

################ RPR TCP/IP ################

protocol config -name ipV4
protocol config -appName 0
protocol config -ethernetType noType

ip setDefault
ip config -ipProtocol tcp

if [ip set $chassis $card $port] {
ixPuts "Error ip stream on $chassis $card $port"
return $TCL_ERROR
}
stream config -name "RPR TCP/IP"

if [stream set $chassis $card $port $sn] {
ixPuts "Error setting stream on $chassis $card $port $sn"
return $TCL_ERROR
}
incr sn

################ RPR ARP ################

protocol setDefault
protocol config -name mac
protocol config -appName Arp
protocol config -ethernetType noType

rprRingControl setDefault
rprRingControl config -enableWrapEligible $::true
rprRingControl config -enableOddParity $::false

if {[rprRingControl set $chassis $card $port]} {
ixPuts "Error setting rprRingControl on $chassis $card $port"
return $TCL_ERROR
}

arp setDefault
arp config -sourceProtocolAddr 9.9.9.3
arp config -destProtocolAddr 8.8.8.3

Appendix 1 IxTclHAL Commands

– 1201 –

if [arp set $chassis $card $port] {
ixPuts "Error setting arp on $chassis $card $port"
return $TCL_ERROR
}
stream config -name "RPR ARP"
if [stream set $chassis $card $port $sn] {
ixPuts "Error setting stream on $chassis $card $port $sn"
return $TCL_ERROR
}

ixWriteConfigToHardware portList

stat get statAllStats $chassis $card $port
stat cget -rprFairnessFramesReceived
stat getRate statRprPayloadCrcErrors $chassis $card $port

#
Managing the Tlvs
#

set tlvObjectPointer [rprTopology getFirstTlv]
set tlvType [$tlvObjectPointer cget -type]

showCmd $tlvObjectPointer

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight,
rprTopology.

rprOam
rprOam - build RPR OAM messages

Appendix 1 IxTclHAL Commands

– 1202 –

SYNOPSIS

rprOam sub-command options

DESCRIPTION

The rprOam command is used to build RPR OAM (Operations, Administration, Management) messages.
These messages are sent between stations to determine the operational status of the connection. There
are three types of messages:

l Echo request and response frames: to determine connectivity.
l Flush frames: to prevent mis-ordering of frames.
l Vendor specific frames: for carrying a vendor's OAM information.

STANDARD OPTIONS

flushReserved

A 4-bit field reserved for future use, to be used only when typeCode is rprOamFlush. (default = 0)

requestProtectionMode

Indicates the protection mode of the request; used by the receiving station to determine which ringlet to
respond on.

Option Value Usage

rprOamProtected 0 Protected.

rprOamUnProtected 1 (default) Not protected.

requestReserved

Read-only. A 4-bit field reserved for future use.

requestRinglet

The requested response ringlet.

Option Value Usage

rprOamReplyOnDefault 0 Reply using the default calculation.

rprOamReplyOnRinglet0 1 Reply on ringlet 0.

rprOamReplyOnRinglet1 2 (default) Reply on ringlet 1.

rprOamReplyReserved 3 Reserved for future use.

Appendix 1 IxTclHAL Commands

– 1203 –

responseProtection
Mode

Holds the same value of the requestProtectionMode for a received echo request. (default =
rprOamUnProtected)

responseReserved

Read-only. A 4-bit field reserved for future use.

responseRinglet

Holds the same value of the requestRinglet for a received echo request. (default =
$::rpmOamReplyOnRinglet1)

typeCode

The OAM type code for the message.

Option Value Usage

rprOamFlush 1 Flush message.

rprOamEchoRequest 8 Echo request message.

rprOamEchoResponse 9 (default) Echo response message.

rprOamVendorSpecific 15 Vendor specific message.

typeReserved

Read-only. A 4-bit field reserved for future use.

vendorOui

This option is used only when typeCode has a value of rprOamVendorSpecific and is the 3-octet IEEE
company identifier for this vendor. The user data for this command may be set in the stream's
background data. (default = {55 55 77})

COMMANDS

The rprOam command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

rprOam cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprRingControl command.

rprOam config option value

Appendix 1 IxTclHAL Commands

– 1204 –

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprOam decode capSlice chasID cardID portID

Decodes a slice/frame into the rprOam variables. If not an rprOam frame, returns TCL_ERROR. May be
used to determine if the captured frame is a valid rprOam frame. Specific errors are:

l No connection to a chassis
l RPR is not a supported feature on this port

rprOam get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
This call must have been preceded by a call to rprOam set or stream get. Call this command before calling
rprOam cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l Data not available, do a stream get

rprOam set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rprOam config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l RPR is not a supported feature on this port

rprOam setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight,
rprTopology.

rprProtection
rprProtection - build RPR protection messages

Appendix 1 IxTclHAL Commands

– 1205 –

SYNOPSIS

rprProtection sub-command options

DESCRIPTION

The rprProtection command is used to build RPR protection messages. Protection messages provide
wrapping status information and indicates of a station's desires with respect to wrapping.

STANDARD OPTIONS

controlType

If enableOverrideControlType is set to true, then this is the new control type value to be set in the
message.

Option Value Usage

rprDiscovery 1 Discovery message.

rprProtection 2 Protection message.

rprOamControl 3 (default) OAM message.

controlVersion

If enableOverrideControlVersion is set to true, then this is the new control version value to be set in the
message. (default = 0)

enableOverrideControl
Type true | false

The message control type is normally set appropriately for the type of message being formatted. Setting
this option to true, allows that type setting to be changed as specified in controlType. (default = false)

enableOverrideControl
Version true | false

The message control version is normally set to 0. Setting this option to true, allows that version setting to
be changed as specified in controlVersion. (default = false)

headerChecksum

Read-only. The 16-bit header error (hec) checksum calculated over the control header.

jumboPreferred

Indicates a station's ability and/or preference to support jumbo frames. A false value indicates that the
station cannot support jumbo frames or prefers not to do so. A true value indicates that the station can
support jumbo frames and prefers to do so. (default = false)

Appendix 1 IxTclHAL Commands

– 1206 –

protectionRequestEast

The RPR protection message type to report the protection state on the east interface of this station.

Option Value Usage

rprNoRequest 0 (default) No requested type.

rprWaitToRestore 1 Wait to restore.

rprManualSwitch 2 Specifies that the indicated link should not be used.

rprSignalDegrade 3 A minor signal degradation condition exists.

rprSignalFair 4 A major signal degradation condition exists and the link may not be
used.

rprForcedSwitch 5 Specifies that the indicated link may not be used.

protectionRequestWest

The RPR protection message type to report the protection state on the west interface of this station. See
protectionRequestEast for a list of choices and the default value.

sequenceNumber

This 8-bit field has a valid range of 0 to 63. This field is the sequence number used with all copies of a
particular protection control message. The value is incremented only if the contents of the message
packet change, ensuring that protection control messages are processed in the correct order. (default =
0)

wrapPreferred

Indicates a station's ability and/or preference to support wrapping protection. A false value indicates that
the station cannot support wrap protection or prefers not to do so. A true value indicates that the station
can support wrap protection and prefers to do so. (default = 0)

wrappingStatusEast

The wrapping status for the traffic received on the east interface of this station. A true value indicates that
the traffic is wrapped, and a false value indicates that the traffic is not enabled. (default = false)

wrappingStatusWest

The wrapping status for the traffic received on the west interface of this station. A true value indicates
that the traffic is wrapped, and a false value indicates that the traffic is not enabled. (default = false)

COMMANDS

The rprProtection command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 1207 –

rprProtection cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprRingControl command.

rprProtection config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprProtection decode capSlice chasID cardID portID

Decodes a slice/frame into the rprProtection variables. If not an rprProtection frame, returns TCL_ERROR.
May be used to determine if the captured frame is a valid rprProtection frame. Specific errors are:

l Invalid port
l No connection to a chassis
l The captured frame is not an rprProtection frame
l RPR is not a supported feature on this port

rprProtection get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
This call must have been preceded by a call to rprProtection set or stream get. Call this command before
calling rprProtection cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l Data not available, do a stream get

rprProtection set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rprProtection config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l RPR is not a supported feature on this port

rprProtection setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

Appendix 1 IxTclHAL Commands

– 1208 –

SEE ALSO

rprFairness, rprOam, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight,
rprTopology.

rprRingControl
rprRingControl - set up Ring Control header for RPR packets

SYNOPSIS

rprRingControl sub-command options

DESCRIPTION

The rprRingControl command is used to set up the content of RPR header used by all RPR packets except
the RPR Fairness Frames, which are set up in the rprFairness command. The options are divided into Base
Control and Extended Control options.

STANDARD OPTIONS

RPR Base Control Options

enableFairnessEligible
true | false

This 1-bit field indicates the eligibility of this packet for the fairness algorithm. Note that packets with
serviceClass set to rprServiceClassA0 or rprServiceClassA1 are not eligible for fairness control. (default =
true)

enableOddParity
true | false

If true, then the value of the transmitted parity is odd over the first two bytes (TTL and baseRingControl).
If false, even parity is set. (default = true)

enableWrapEligible
true | false

This 1-bit field indicates whether the packet is wrap eligible.(default = false)

packetType

This 2-bit field indicates the type of the RPR packet.

Option Value Usage

rprControlPacket 1 Control frame, expect for Fairness frames.

Appendix 1 IxTclHAL Commands

– 1209 –

Option Value Usage

rprDataPacket 3 (default) Data frame.

parityBit

Read only. The value of the parity associated with the ring control header. For use in RPR Fairness Frames
only. The value of this field is influenced by the value of the enableOddParity field.

ringIdentifier

This 1-bit field is the Ringlet Identifier (RI), indicating the ringlet from which the RPR frame was first
transmitted.

Option Value Usage

rprRinglet0 0 (default) Ringlet 0.

rprRinglet1 1 Ringlet 1.

serviceClass

This 2-bit field indicates the MAC service class for the frame.

Option Value Usage

rprServiceClassC 0 Class C is the lowest level of traffic, transmitted on a best-efforts
basis. None of the traffic has a guaranteed data rate, and no limits
are placed on delay and jitter. ClassC traffic is eligible for use by the
fairness algorithm.

rprServiceClassB 1 (default) Class B is the next higher service level, with an allocated
and guaranteed data rate for a portion of the traffic, plus low delay
and jitter (CIR). The additional traffic is transmitted with no
guaranteed data rate (EIR) and is eligible for use by the fairness
algorithm.

rprServiceClassA1 2 Class A is the highest service level, providing an allocated and
guaranteed data rate, plus low delay and jitter (CIR). It is not eligible
for use by the fairness algorithm.

There are two sub-classes, which are not distinguished to the MAC
client: Class A1 and Class A0.

Class A1 reserved bandwidth may be used by ClassB or ClassC traffic
if not in current use.

rprServiceClassA0 3 Class A0 may not be reused if not in current use.

Appendix 1 IxTclHAL Commands

– 1210 –

ttl

This 8-bit field indicates the Time to Live option of the RPR header. The TTL value is the first octet of an
RPR frame header. This indicates the maximum number of hops to the destination. (default = 1)

RPR Extended Control Options

extendedFrame

This 1-bit field indicates that this data frame is sent from a MAC source which is not a node on the ring to a
MAC destination that is not a node on the ring. If set to true, then the entire MAC layer packet is expected
after the hec field in the RPR packet, including the destination and source MAC addresses. (default = 0)

floodingForm

This 2-bit field indicates whether the packet should be flooded and whether it should be flooded uni-
directionally or bi-directionally.

Option Value Usage

rprFfNoFlood 0 (default) No flooding.

rprFfUnidirectionalFlood 1 Flood only in the ringlet specified in ringIdentifier.

rprFfBidirectionalFlood 2 Flood to both ringlets.

rprFfReserved 3 Reserved

passedSource

This 1-bit field is used by wrapping systems to prevent frame mis-order and duplication. It is normally set
to 0 when a frame is first transmitted by a station and set to 1 when a wrapped frame passes the source
station again. (default = 0)

reserved

A 3-bit reserved field for future use. It is normally set to 0's on transmission and ignored upon receipt.
(default = 0)

strictOrder

This 1-bit field indicates whether strict ordering (1) or relaxed ordering (0) requirements should be
observed. (default = 0)

ttlBase

If the value of packetType is rprDataPacket, then this 8-bit field should be set the original TTL of the data
packet before RPR encapsulation. (default = 0)

Appendix 1 IxTclHAL Commands

– 1211 –

COMMANDS

The rprRingControl command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

rprRingControl cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprRingControl command.

rprRingControl config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprRingControl decode capSlice chasID cardID portID

Decodes a slice/frame into the rprRingControl variables. If not an rprRingControl frame, returns TCL_
ERROR. May be used to determine if the captured frame is a valid rprRingControl frame. Specific errors
are:

l No connection to a chassis
l The captured frame is not an rprRingControl frame
l RPR is not a supported feature on this port

rprRingControl get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
This call must have been preceded by a call to rprRingControl set or stream get. Call this command before
calling rprRingControl cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l Data not available, do a stream get

rprRingControl set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rprRingControl config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l RPR is not a supported feature on this port

rprRingControl setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1212 –

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight,
rprTopology.

rprTlvBandwidthPair
rprTlvBandwidthPair - defines a pair of bandwidth values for use in an RPR Individual Bandwidth TLV

SYNOPSIS

rprTlvBandwidthPair sub-command options

DESCRIPTION

The rprTlvBandwidthPair command is used to set up a pair of bandwidth values. This pair is added to a
RPR Individual Bandwidth TLV by use of the rprTlvIndividualBandwidth. addBandwidthPair command.

A bandwidth pair may be retrieved from the individual bandwidth list by calling rprTlvIndividualBandwidth
getFirstBandwidthPair/getNextBandwidthPair and then inspecting the options in this command.

STANDARD OPTIONS

bandwidth0

The bandwidth requirement associated with Ringlet 0. (default = 0)

bandwidth1

The bandwidth requirement associated with Ringlet 1. (default = 0)

COMMANDS

The rprTlvBandwidthPair command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands.

rprTlvBandwidthPair cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvBandwidthPair command.

rprTlvBandwidthPair config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvBandwidthPair setDefault

Appendix 1 IxTclHAL Commands

– 1213 –

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvIndividualBandwidth, rprTlvNeighborAddress,
rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight, rprTopology.

rprTlvIndividualBandwidth
rprTlvIndividualBandwidth - set up a TLV individual bandwidth item for use in an RPR topology message

SYNOPSIS

rprTlvIndividualBandwidth sub-command options

DESCRIPTION

The rprTlvIndividualBandwidth command is used to set up the content of an RPR Individual Bandwidth
TLV for use in an RPR topology message. This TLV is added to a topology message by use of the
rprTopology addTlv rprIndividualBandwidth command.

This command's data is constructed by adding rprTlvBandwidthPairs. Bandwidth pairs are constructed
through the use of the rprTlvBandwidthPair command and then added to this command with the
rprTlvIndividualBandwidth addBandwidthPair command. Each bandwidth pair corresponds to the
reserved bandwidth between this node and a node a number of hops away from this node. The first item
in the pair represents the reserved bandwidth on ringlet 0 and the second represents the reserved
bandwidth on ringlet 1.

Bandwidth pairs must be added in order; that is, for the node one hop away, followed by the node two
hops away, etc.

An individual bandwidth TLV may be retrieved from the topology TLV list by calling rprTopology
getFirstTlv/getNextTlv, checking for type = rprIndividualBandwidth and then inspecting the options in
this command.

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

Appendix 1 IxTclHAL Commands

– 1214 –

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprIndividualBandwidth (3).

Individual Bandwidth TLV Specific Options

none

COMMANDS

The rprTlvIndividualBandwidth command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands.

rprTlvIndividualBandwidth addBandwidthPair

Adds the bandwidth pair constructed in rprTlvBandwidthPair to the list of pairs. Specific errors include:

l Invalid parameters in rprTlvBandwidthPair.

rprTlvIndividualBandwidth cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvIndividualBandwidth command.

rprTlvIndividualBandwidth clearAllBandwidthPairs

Clears all the bandwidth pairs.

rprTlvIndividualBandwidth getFirstBandwidthPair

Access the first bandwidth pair in the list. The pair's values may be read using the rprTlvBandwidthPair
command. Specific errors are:

l There are no bandwidth pairs in the list

rprTlvIndividualBandwidth getNextBandwidthPair

Access the next bandwidth pair in the list. The pair's values may be read using the rprTlvBandwidthPair
command. Specific errors are:

l There are no more bandwidth pairs in the list

rprTlvIndividualBandwidth setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

Appendix 1 IxTclHAL Commands

– 1215 –

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvNeighborAddress,
rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific,rprTlvWeight, rprTopology.

rprTlvNeighborAddress
rprTlvNeighborAddress - set up a TLV neighbor address item for use in an RPR topology message

SYNOPSIS

rprTlvNeighborAddress sub-command options

DESCRIPTION

The rprTlvNeighborAddress command is used to set up the content of an RPR Neighbor Address TLV for
use in an RPR topology message. This TLV is added to a topology message by use of the rprTopology
addTlv rprNeighborAddress command.

A neighbor address TLV may be retrieved from the topology TLV list by calling rprTopology
getFirstTlv/getNextTlv, checking for type = rprNeighborAddress and then inspecting the options in this
command.

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprNeighborAddress (4).

Neighbor Address TLV Specific Options

neighborMacEast

The 6-byte MAC address of the neighbor station connected to this station's east interface. This value is 0
when the MAC address is unknown. (default = {00 00 00 00 00 00})

Appendix 1 IxTclHAL Commands

– 1216 –

neighborMacWest

The 6-byte MAC address of the neighbor station connected to this station's west interface. This value is 0
when the MAC address is unknown. (default = {00 00 00 00 00 00})

COMMANDS

The rprTlvNeighborAddress command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands.

rprTlvNeighborAddress cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvNeighborAddress command.

rprTlvNeighborAddress config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvNeighborAddress setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific,rprTlvWeight, rprTopology.

rprTlvStationName
rprTlvStationName - set up a TLV station name item for use in an RPR topology message

SYNOPSIS

rprTlvStationName sub-command options

DESCRIPTION

The rprTlvStationName command is used to set up the content of an RPR Station Name TLV for use in an
RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprStationName command.

A station name TLV may be retrieved from the topology TLV list by calling rprTopology
getFirstTlv/getNextTlv, checking for type = rprStationName and then inspecting the options in this
command.

Appendix 1 IxTclHAL Commands

– 1217 –

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprStationName (5).

Station Name TLV Specific Options

stationName

The name of the station, expressed as a string. (default = {})

COMMANDS

The rprTlvStationName command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

rprTlvStationName cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvStationName command.

rprTlvStationName config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvStationName setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvTotalBandwidth, rprTlvVendorSpecific,rprTlvWeight, rprTopology.

Appendix 1 IxTclHAL Commands

– 1218 –

rprTlvTotalBandwidth
rprTlvTotalBandwidth - set up a TLV total bandwidth item for use in an RPR topology message

SYNOPSIS

rprTlvTotalBandwidth sub-command options

DESCRIPTION

The rprTlvTotalBandwidth command is used to set up the content of an RPR Total Bandwidth TLV for use
in an RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprTotalBandwidth command.

A total bandwidth TLV may be retrieved from the topology TLV list by calling rprTopology
getFirstTlv/getNextTlv, checking for type = rprTotalBandwidth and then inspecting the options in this
command.

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprTotalBandwidth (2).

Total Bandwidth TLV Specific Options

bandwidthRinglet0

The total reserved classA0 bandwidth value of the Ringlet 0 node for use in fairness calculations. (default
= 0)

bandwidthRinglet1

The total reserved classA0 bandwidth value of the Ringlet 1 node for use in fairness calculations. (default
= 0)

Appendix 1 IxTclHAL Commands

– 1219 –

COMMANDS

The rprTlvTotalBandwidth command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

rprTlvTotalBandwidth cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvTotalBandwidth command.

rprTlvTotalBandwidth config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvTotalBandwidth setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvVendorSpecific, rprTlvWeight, rprTopology.

rprTlvVendorSpecific
rprTlvVendorSpecific - set up a TLV Weight item for use in an RPR topology message

SYNOPSIS

rprTlvVendorSpecific sub-command options

DESCRIPTION

The rprTlvVendorSpecific command is used to set up the content of an RPR Vendor Specific TLV for use in
an RPR topology message. This TLV is added to a topology message by use of the rprTopology addTlv
rprVendorSpecific command.

A vendor specific TLV may be retrieved from the topology TLV list by calling rprTopology
getFirstTlv/getNextTlv, checking for type = rprVendorSpecific and then inspecting the options in this
command.

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

Appendix 1 IxTclHAL Commands

– 1220 –

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprVendorSpecific (6).

Vendor Specific TLV Specific Options

companyId

A 3-byte hex value. This is the 24-bit IEEE/RAC company identifier, which is the first part of the globally
unique EUI-64 identifier. (default = {99 AA BB})

dependentId

A 3-byte hex value. This is the 24-bit identifier which is the second part of the globally unique EUI-64
identifier. This ID is supplied by the vendor and is unique to that vendor. (default = {23 45 67})

vendorData

A variable amount of data specific to the company and dependentId. (default = {})

COMMANDS

The rprTlvVendorSpecific command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

rprTlvVendorSpecific cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvVendorSpecific command.

rprTlvVendorSpecific config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvVendorSpecific setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

Appendix 1 IxTclHAL Commands

– 1221 –

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvWeight, rprTopology.

rprTlvWeight
rprTlvWeight - set up a TLV Weight item for use in an RPR topology message

SYNOPSIS

rprTlvWeight sub-command options

DESCRIPTION

The rprTlvWeight command is used to set up the content of an RPR Weight TLV for use in an RPR topology
message. This TLV is added to a topology message by use of the rprTopology addTlv rprWeight command.

A weight TLV may be retrieved from the topology TLV list by calling rprTopology getFirstTlv/getNextTlv,
checking for type = rprWeight and then inspecting the options in this command.

STANDARD OPTIONS

TLV Common Options

dataLength

Read-only. The 10-bit length of the data fields.

reserved1

Read-only. The 6-bit Reserved1 field is set to 0 and ignored by receiving nodes.

reserved2

Read-only. The 6-bit Reserved2 field is set to 0 and ignored by receiving nodes.

type

Read-only. The 10-bit TLV type field, set to rprWeight (1).

Weight TLV Specific Options

weightRinglet0

The weight values of the Ringlet 0 node, to be used in fairness calculations. (default = 0)

weightRinglet1

The weight values of the Ringlet 1 node, to be used in fairness calculations. (default = 0)

Appendix 1 IxTclHAL Commands

– 1222 –

COMMANDS

The rprTlvWeight command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands.

rprTlvWeight cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprTlvWeight command.

rprTlvWeight config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTlvWeight setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTopology.

rprTopology
rprTopology - build RPR topology messages

SYNOPSIS

rprTopology sub-command options

DESCRIPTION

The rprTopology command is used to build RPR topology messages. RPR topology messages consist of a
set of TLV (type-length-value) settings constructed through the use of the rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, and
rprTlvWeight commands, followed by a call to the addTlv command for that type.

A TLV is added to a topology message by configuring the TLV with the appropriate command from the list
above and then adding it to the topology message with rprTopology addTlv type, where type indicates
which of the TLVs to use. A TLV may be retrieved from a topology message through the use of getFirstTlv
/ getNextTlv. These commands return the name/pointer of the command that was used to configure the
TLV. This is typically used in the following sequence of commands:

set tlvCmd [rprTopology getFirstTlv]
$tlvCmd config ...

Appendix 1 IxTclHAL Commands

– 1223 –

Each of the TLV commands also has a type option which uniquely identifies the type of the TLV.

STANDARD OPTIONS

controlType

If enableOverrideControlType is set to true, then this is the new control type value to be set in the
message.

Option Value Usage

rprDiscovery 1 (default) Discovery message.

rprProtection 2 Protection message.

rprOamControl 3 OAM message.

controlVersion

If enableOverrideControlVersion is set to true, then this is the new control version value to be set in the
message. (default = 0)

enableOverrideControl
Type true | false

The message control type is normally set appropriately for the type of message being formatted. Setting
this option to true, allows that type setting to be changed as specified in controlType. (default = false)

enableOverrideControl
Version true | false

The message control version is normally set to 0. Setting this option to true, allows that version setting to
be changed as specified in controlVersion. (default = false)

headerChecksum

Read-only. The 16-bit header error (hec) checksum calculated over the control header.

COMMANDS

The rprTopology command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

rprTopology addTlv tlvType

Adds the TLV of type tlvType to the list. The choices of tlvType are:

Option Value Usage

rprWeight 1 TLV is built using the rprTlvWeight command.

rprTotalBandwidth 2 TLV is built using the rprTlvTotalBandwidth command.

Appendix 1 IxTclHAL Commands

– 1224 –

Option Value Usage

rprIndividualBandwidth 3 TLV is built using the rprTlvIndividualBandwidth command.

rprNeighborAddress 4 TLV is built using the rprTlvNeighborAddress command.

rprStationName 5 TLV is built using the rprTlvStationName command.

rprVendorSpecific 6 TLV is built using the rprTlvVendorSpecific command.

Specific errors are:

l Invalid tlvType
l Invalid parameters in TLV

rprTopology cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the rprRingControl command.

rprTopology clearAllTlvs

Clears all TLVs associated with the topology message.

rprTopology config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

rprTopology decode capSlicechasID cardID portID

Decodes a slice/frame into the rprTopology variables. If not an rprTopology frame, returns TCL_ERROR.
May be used to determine if the captured frame is a valid rprTopology frame. This call also decodes each
of the included TLVs in the slice/frame into the options associated with each of the separate TLV
commands (rprTlvIndividualBandwidth, rprTlvNeighborAddress, rprTlvStationName,
rprTlvTotalBandwidth, rprTlvVendorSpecific and rprTlvWeight). Specific errors are:

l Invalid port
l No connection to a chassis
l The captured frame is not an rprTopology frame
l RPR is not a supported feature on this port

rprTopology delTlv

Deletes the currently accessed TLV.

rprTopology get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID from its hardware.
This call must have been preceded by a call to rprTopology set or stream get. Call this command before
calling rprTopology cget option value to get the value of the configuration option. Specific errors are:

Appendix 1 IxTclHAL Commands

– 1225 –

l No connection to a chassis
l Invalid port number
l Data not available, do a stream get

rprTopology getFirstTlv

Access the first TLV in the list. The results of the command is the name of the command used to make the
TLV. This command may be symbolically used to view/modify the TLVs contents. Each TLV contains a type
option that uniquely identifies the TLV's type. Specific errors are:

l There are no TLVs in the list

rprTopology getNextTlv

Access the next TLV in the list. The results of the command is the name of the command used to make the
TLV. This command may be symbolically used to view/modify the TLVs contents. Each TLV contains a type
option that uniquely identifies the TLV's type. Specific errors are:

l There are no more TLVs in the list

rprTopology set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the rprTopology config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l RPR is not a supported feature on this port

rprTopology setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under rprFairness.

SEE ALSO

rprFairness, rprOam, rprProtection, rprRingControl, rprTlvBandwidthPair, rprTlvIndividualBandwidth,
rprTlvNeighborAddress, rprTlvStationName, rprTlvTotalBandwidth, rprTlvVendorSpecific, rprTlvWeight.

rxLaneDiag
rxLaneDiag - configures the Rx port diagnostics

SYNOPSIS

rxLaneDiag sub-command options

Appendix 1 IxTclHAL Commands

– 1226 –

DESCRIPTION

The rxLaneDiag command is used to control the acquisition and retrieval of the analytics of the T400 Rx
eye histogram feature (also referred to as RX Diagnostics). The three main diagnostics available are
PMD statistics, ADC histograms, and Slicer histograms. Note that some of the diagnostics may be
licensed.

STANDARD OPTIONS

laneMask

The hexadecimal mask of the lanes being queried (1’b1 enables the lane, 1’b0 disables the lane). In
400GE mode, the mask for all the 8 lanes would be 0xFF, in 200GE 0x0F, and so on.

lane

The electrical lane number being accessed. Lane starts counting at 1.

count

The number of acquisitions to be performed.

COMMANDS

The rxLaneDiag command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

rxLaneDiag readPmdStats chassis card port laneMask count

Requests that count RX PMD Stat reads be performed for laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag resetPmdStats chassis card port laneMask

Clears the RX PMD Stat results for the lanes in laneMask in the given port; stops reads.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag resetAdcHistograms chassis card port laneMask

Clears the ADC histogram results for the lanes in laneMask in the given port; stops ADC acquisition.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag resetSlicerHistograms chassis card port laneMask

Clears the slicer histogram results for the lanes in laneMask in the given port; stops slicer acquisition.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag clearPmdStats chassis card port laneMask

Clears the RX PMD Stat results for the lanes in laneMask in the given port; keeps reads running if they
were already running.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag clearAdcHistograms chassis card port laneMask

Appendix 1 IxTclHAL Commands

– 1227 –

Clears the ADC histogram results for the lanes in laneMask in the given port; keeps ADC acquisitions
running if they were already running.

rxLaneDiag clearSlicerHistograms chassis card port laneMask

Clears the slicer histogram results for the lanes in laneMask in the given port; keeps slicer acquisitions
running if they were already running.

rxLaneDiag stopPmdStats chassis card port laneMask

Stops RX PMD Stat reads for the lanes in laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag stopAdcHistograms chassis card port laneMask

Stops ADC acquisition for the lanes in laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag stopSlicerHistograms chassis card port laneMask

Stops slicer acquisition for the lanes in laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag acquireAdcHistograms chassis card port laneMask count

Requests that count acquisitions be performed at the ADC for the lanes in laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag acquireSlicerHistograms chassis card port laneMask count

Requests that count acquisitions be performed at the slicer for the lanes in laneMask in the given port.
This does not change the results that would be returned by the rxLaneDiag return* commands.

rxLaneDiag getPmdStats chassis card port

Loads the RX PMD status for all lanes in the given port, to be returned by calls to rxLaneDiag
returnPmdStat.

rxLaneDiag getHistograms chassis card port

Loads the RX ADC and slicer histogram results for all lanes in the given port, to be returned by calls to
rxLaneDiag return*.

rxLaneDiag returnPmdStat lane

Returns the RX PMD status information for the given lane, as retrieved by the last call to rxLaneDiag
getPmdStats.
The return value is a list, {pmdStatus vga ctle snr ffo}, which is empty to indicate a lack of results.

Value Usage

pmdStatus A string telling the current status

vga The Variable Gain Amplifier (VGA) value, or -2147483648 if not known.

Appendix 1 IxTclHAL Commands

– 1228 –

Value Usage

ctle The Continuous Time Linear Equalizer (CTLE) value, or -2147483648 if not known.

snr The Signal to Noise Ratio (SNR) value (in dB), or NAN if not known.

ffo The Fractional Frequency Offset (FFO) value (in Parts Per Million, PPM), or NAN if not
known.

rxLaneDiag returnAdcHistogramResult lane

Returns the RX ADC histogram result for the given lane, as retrieved by the last call to rxLaneDiag
getHistogramResult.
The return value is a list: {uniqueId count remainingCount values}, which is empty to indicate a lack of
results.

Value Usage

uniqueId A unique ID (scoped to the lane) for these results.

count The number of histogram acquisitions that are contained in this data.

remainingCount The number of histogram acquisitions that are still to be acquired.

values Zero or more Y values in the acquired ADC histogram.

rxLaneDiag returnAdcHistogram lane

Returns the RX ADC histogram Y values for the given lane, as retrieved by the last call to rxLaneDiag
getHistogramResult.
Returns an empty list if not present.

rxLaneDiag returnAdcHistogramString lane height

Returns a height-length list of strings, one string per line, which displays in ASCII the ADC histogram plot
for the given lane, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns an empty list if not present.

rxLaneDiag returnAdcMinMeanMaxStdDev lane

Returns a list containing the minimum, mean, maximum, and standard deviation statistics of the ADC
histogram result for the given lane, as retrieved by the last call to rxLaneDiag getHistogramResult.
The return value is a list: {min mean max stdDev }, which is empty to indicate a lack of results. Each
value is in units of the full scale of the ADC; that is, from 0 to 1.

Value Usage

min The minimum code seen.

Appendix 1 IxTclHAL Commands

– 1229 –

Value Usage

mean The mean of the codes seen.

max The maximum code seen.

stdDev The standard deviation of the codes seen.

rxLaneDiag returnSlicerHistogramResult lane

Returns the RX slicer histogram result for the given lane, as retrieved by the last call to rxLaneDiag
getHistogramResult.
The return value is a list: {uniqueId count remainingCount values}, which is empty to indicate a lack of
results.

Value Usage

uniqueId A unique ID (scoped to the lane) for these results.

count The number of histogram acquisitions that are contained in this data.

remainingCount The number of histogram acquisitions that are still to be acquired.

values Zero or more Y values in the acquired slicer histogram.

rxLaneDiag returnSlicerHistogram lane

Returns the RX slicer histogram Y values for the given lane, as retrieved by the last call to rxLaneDiag
getHistogramResult.
Returns an empty list if not present.

rxLaneDiag returnSlicerHistogramString lane height

Returns a height-length list of strings, one string per line, which displays in ASCII the slicer histogram plot
for the given lane, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnLevelMeans lane

Returns the means of the eye levels in the slicer histogram result, in units of ratio of full scale, e.g. {0.2
0.4 0.6 0.8}, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnRlm lane

Returns the projected Linearity Measurement (Rlm) for the given lane in the slicer histogram result, as
retrieved by the last call to rxLaneDiag getHistogramResult. lane starts counting at 1. Returns NAN if not
present or not valid.

rxLaneDiag returnLevelStdDevs lane

Appendix 1 IxTclHAL Commands

– 1230 –

Returns the standard deviations for the level histograms in the slicer histogram result, in units of ratio of
full scale, e.g. {0.03 0.025 0.02 0.028}, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnEyeHeightsForStdDev lane numStdDev

Returns the eye heights for a given number of standard deviations (numStdDev) for the level histograms
in the slicer histogram result, in units of ratio of full scale, e.g. {0.095 0.10 0.098}, as retrieved by the
last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnMeasuredBathtub lane

Returns the measured bathtub plot, measured with Symbol Error Rate (SER) as the Y axis, for the given
lane in the slicer histogram result, as retrieved by the last call to rxLaneDiag getHistogramResult. The X
axis is the slicer threshold, uniformly spaced across the full scale.
Returns an empty list if not present.

rxLaneDiag returnMeasuredBathtubString lane height

Returns a height-length list of strings, one string per line, which displays in ASCII the measured bathtub
plot for the given lane, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnProjectedBathtub lane

Returns the projected bathtub plot, measured with Symbol Error Rate (SER) as the Y axis, for the given
lane in the slicer histogram result, as retrieved by the last call to rxLaneDiag getHistogramResult. The X
axis is the slicer threshold, uniformly spaced across the full scale.
Returns an empty list if not present.

rxLaneDiag returnProjectedBathtubForX lane xValues

Returns the projected bathtub plot, measured with Symbol Error Rate (SER) as the Y axis, for the given
lane in the slicer histogram result, as retrieved by the last call to rxLaneDiag getHistogramResult. The X
axis is the slicer threshold, supplied by the xValues list with values from 0.0 to 1.0; the result will contain
the projections for each X value.
Returns an empty list if not present.

rxLaneDiag returnProjectedBathtubString lane height

Returns a height-length list of strings, one string per line, which displays in ASCII the projected bathtub
plot for the given lane, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnEyeHeightsForBER lane ber

Returns the projected eye heights for a given Bit Error Ratio (ber) for the level histograms in the slicer
histogram result, in units of ratio of full scale, e.g. {0.003 0.004 0.0035}, as retrieved by the last call to
rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnProjectedSERs lane

Appendix 1 IxTclHAL Commands

– 1231 –

Returns the projected Symbol Error Rates (SERs) for the eyes in the given lane in the slicer histogram
result, e.g. {2.28E-6 1.67E-6 3.18E-6}, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnProjectedBER lane

Returns the projected Bit Error Rate (BER) for the eyes in the given lane in the slicer histogram result, as
retrieved by the last call to rxLaneDiag getHistogramResult.
Returns empty results if not present.

rxLaneDiag returnVEC lane

Returns the projected Vertical Eye Closure (VEC), in decibels, for the given lane in the slicer histogram
result, as retrieved by the last call to rxLaneDiag getHistogramResult.
Returns NAN if not present or not valid.

EXAMPLE

Sample script for Rx Histogram feature
package require IxTclHal
set hostName 10.36.74.228
set userName user
set port1 [list 1 1 1]
set portList [list $port1]
scan $port1 "%d %d %d" chasId cardId portId

Connect to TCL Server if running from Unix
if {[isUNIX] && [ixConnectToTclServer $hostName]} {
 errorMsg "Could not connect to Tcl Server $hostName"
 return $::TCL_ERROR
}
Now connect to chassis
if {[ixConnectToChassis $hostName]} {
 errorMsg "Could not connect to chassis $hostName"
 return $::TCL_ERROR
}
Login and take port ownership
ixLogin $userName
if {[ixTakeOwnership $portList]} {
 errorMsg "Could not take ownership of $portList"
 return $::TCL_ERROR
}

Check to see if the basic Rx Diagnostic feature is valid
if {![port isValidFeature $chasId $cardId $portId \
 portFeatureRxLaneDiag]} {
 errorMsg "portFeatureRxLaneDiag is NOT a valid feature for $port1"
 return $::TCL_ERROR
}

PMD Statistics
-Step 1: clear acquisitions on all lanes
set laneMask 0xFF
set minLane 1

Appendix 1 IxTclHAL Commands

– 1232 –

set maxLane 8
puts "\nClearing PMD acquisitions"
rxLaneDiag resetPmdStats $chasId $cardId $portId $laneMask
after 500
-Step 2: start acquisitions, wait, then fetch results
set acq 1
set waitTime [expr $acq * 2]
rxLaneDiag readPmdStats $chasId $cardId $portId $laneMask $acq
puts "Running $acq PMD acquisitions for $waitTime s..."
update idletasks
after [expr {$waitTime * 1000}]
rxLaneDiag getPmdStats $chasId $cardId $portId
-Step 3: display PMD stats
for {set lane $minLane} {$lane <= $maxLane} {incr lane} {
 set pmdStats [rxLaneDiag returnPmdStat $lane]
 if {$pmdStats eq ""} {
 puts "PMD stats for port $portId, lane $lane: no data"
 } else {
 puts "PMD stats for port $portId, lane $lane:\

[format \
 "Status=%-6s VGA=%-2d CTLE=%-2d SNR=%-4.1f db FFO=%4.1f PPM"\

[lindex $pmdStats 2] \
[expr [lindex $pmdStats 3]] \

[expr [lindex $pmdStats 4]] \
[expr [lindex $pmdStats 5]] \
[expr [lindex $pmdStats 6]] \

]"
 }
}

ADC Histogram
-Step 1: clear acquisitions on all lanes
set laneMask 0xFF
puts "\nClearing ADC acquisitions"
rxLaneDiag resetAdcHistograms $chasId $cardId $portId $laneMask
after 500
-Step 2: start acquisitions, wait, then fetch results
set acq 5
set waitTime [expr $acq * 3]
rxLaneDiag acquireAdcHistograms $chasId $cardId $portId $laneMask $acq
puts "Running $acq ADC acquisitions for $waitTime s..."
update idletasks
after [expr {$waitTime * 1000}]
rxLaneDiag getHistograms $chasId $cardId $portId
-Step 3: display ADC stats and histogram of a single lane
set lane 1
set height 20
set histogramInfo [rxLaneDiag returnAdcHistogramResult $lane]
set minMeanMaxStDev [rxLaneDiag returnAdcMinMeanMaxStdDev $lane]
set histogramStr [rxLaneDiag returnAdcHistogramString $lane $height]
if {$histogramStr eq ""} {
 puts "ADC Histogram Lane $lane: no data"
} else {
 puts "ADC Histogram Lane $lane:\

[format \

Appendix 1 IxTclHAL Commands

– 1233 –

 "Acquisitions:%-3d Remaining:%-3d - \
 Min:%4.1f%s Mean:%4.1f%s Max:%4.1f%s StdDev:%5.2f%s"\

[lindex $histogramInfo 1] [lindex $histogramInfo 2]\
[expr [lindex $minMeanMaxStDev 0] * 100] " %FS"\
[expr [lindex $minMeanMaxStDev 1] * 100] " %FS"\
[expr [lindex $minMeanMaxStDev 2] * 100] " %FS"\
[expr [lindex $minMeanMaxStDev 3] * 100] " %FS"

]"
 puts ""
 puts [join $histogramStr "\n"]
}

Check to see if the full Rx Diagnostic feature is valid
if {![port isValidFeature $chasId $cardId $portId \
 portFeatureRxLaneFullDiag]} {
 errorMsg "portFeatureRxLaneFullDiag NOT a valid feature for $port1"
 return $::TCL_ERROR
}

Slicer Histogram
-Step 1: clear acquisitions on all lanes
set lMask 0xFF
puts "\nClearing Slicer acquisitions"
rxLaneDiag resetSlicerHistograms $chasId $cardId $portId $lMask
after 500
-Step 2: start acquisitions, wait, then fetch results
set acq 5
set waitTime [expr $acq * 3]
rxLaneDiag acquireSlicerHistograms $chasId $cardId $portId $lMask $acq
puts "Running $acq Slicer acquisitions for $waitTime s..."
update idletasks
after [expr {$waitTime * 1000}]
rxLaneDiag getHistograms $chasId $cardId $portId
-Step 3: display Slicer stats and histogram+bathtub of a single lane
set lane 1
set height 20
set histogramInfo [rxLaneDiag returnSlicerHistogramResult $lane]
set rlm [rxLaneDiag returnRlm $lane]
set vec [rxLaneDiag returnVEC $lane]
set ber [rxLaneDiag returnProjectedBER $lane]
set rxEyeHeights6StdDev [rxLaneDiag returnEyeHeightsForStdDev $lane 6]
set rxEyeHeightsToBER [rxLaneDiag returnEyeHeightsForBER $lane 1.0E-8]
set rxEyeSERs [rxLaneDiag returnProjectedSERs $lane]
set rxLevelMeans [rxLaneDiag returnLevelMeans $lane]
set rxLevelStdDevs [rxLaneDiag returnLevelStdDevs $lane]
set histogrStr [rxLaneDiag returnSlicerHistogramString $lane $height]
set measBathStr [rxLaneDiag returnMeasuredBathtubString $lane $height]
set proBathStr [rxLaneDiag returnProjectedBathtubString $lane $height]
if {$histogrStr eq ""} {
 puts "Slicer Histogram Lane $lane: no data"
} else {
 puts "Slicer Histogram Lane $lane:"
 puts [format "Acquisitions : %d" [lindex $histogramInfo 1]]
 puts [format "Remaining : %d" [lindex $histogramInfo 2]]
 puts [format "Projected Rlm: %5.3f" $rlm]

Appendix 1 IxTclHAL Commands

– 1234 –

 puts [format "Projected VEC: %.2f dB" $vec]
 puts [format "Projected BER: %.3g\n" $ber]
 foreach {eye index} [list Upper 2 Middle 1 Lower 0] {
 puts "$eye Eye:"
 puts [format "-Height @ 6sigma: %5.2f %%FS" \

[expr [lindex $rxEyeHeights6StdDev $index] * 100]]
 puts [format "-Height@BER10^-8: %5.2f %%FS" \

[expr [lindex $rxEyeHeightsToBER $index] * 100]]
 puts [format "-Projected SER : %.3g" [lindex $rxEyeSERs $index]]
 }
 puts ""
 foreach level [list 3 2 1 0] {
 puts "Level $level:"
 puts [format "-Mean : %.1f %%FS" \

[expr [lindex $rxLevelMeans $level] * 100]]
 puts [format "-Std Dev: %.2f %%FS" \

[expr [lindex $rxLevelStdDevs $level] * 100]]
 }
 puts "\nSlicer Histogram:"
 puts [join $histogrStr "\n"]
 puts "\nMeasured Bathtub:"
 puts [join $measBathStr "\n"]
 puts "\nProjected Bathtub:"
 puts [join $proBathStr "\n"]
}
ixClearOwnership

sequenceNumberUdf
sequenceNumberUdf - provides per-flow sequence numbers

SYNOPSIS

sequenceNumberUdf sub-command options

DESCRIPTION

SequenceNumberUdf is a new UDF field that provides per-flow sequence numbers. It knows what flow
number is in a packet by pulling the flow number from an existing UDF 1-5. That existing UDF is known as
the associated UDF.

The feature is enabled with the enable option.

STANDARD OPTIONS

enable
true/false

Enables/disables Sequence Number UDF function. (default = false)

Appendix 1 IxTclHAL Commands

– 1235 –

byteOffset

The byte offset where the sequenceNumberUdf is placed. (default = 0)

associatedUdfID

The UDF that serves as the source for the flow number.(Note: The flow number is an input.) (default = 1)

associatedUdfBit
Position

Bit offset of the flow number within the associated Udf. The value ranges from 0-7 for TPM cards. (default
= 0)

associatedUdfWidth

Width to use for the associated Udf. The value ranges from 1-31 for TPM cards and 1-32 for all other card
types.

associatedUdfMin

The minimum value of the associated Udf. Must be less than assocatedUdfMax. (default = 0)

associatedUdfMax

The maximum value of the associated Udf. (default = 4294967295)
Limitation: maximum - minimum < 216 (48k for LM1000 series load modules) or maximum - minimum <
219 (512k for LSM10G series load modules)

COMMANDS

The sequenceNumberUdf command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

sequenceNumberUdf cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sequenceNumberUdf command.

sequenceNumberUdf config option value

Modify the sequenceNumberUdf options. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

sequenceNumberUdf get chasID cardID portID

Gets the current configuration of the sequenceNumberUdf for port with id portID on card cardID, chassis
chasID from its hardware. Note that stream get must be called before this sub-command. Call this
command before calling sequenceNumberUdf cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis.
l stream get has not been called.

Appendix 1 IxTclHAL Commands

– 1236 –

sequenceNumberUdf set chasID cardID portID

Sets the configuration of the sequenceNumberUdf in IxHAL for a port by reading the configuration option
values set by the sequenceNumberUdf config option value command. Specific errors are:

l No connection to a chassis
l Invalid port specification
l SequenceNumber UDFs are not supported on this port.
l The port is being used by another user

sequenceNumberUdf setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
set hostName woodstock
if {[ixConnectToChassis $hostName] } {
Trace "Error connecting to $hostName"
}
set chassId [chassis cget -id]
set portList [list]
set chassis [chassis cget -id]
set card 4
set port 1
set streamId 1
set portList [list [list $chassis $card $port]]
Stream 1
stream setDefault
stream config -name "Stream $streamId"
stream config -enable $::true
stream config -framesize 100
stream config -frameSizeType $::sizeFixed
udf setDefault
udf config -enable $::true
udf config -offset 40
udf config -bitOffset 0
udf config -udfSize 8
udf config -initval 03
udf config -repeat 3
udf config -step 1
if {[udf set 1] } {
errorMsg "Error setting udf 1."
}
sequenceNumberUdf setDefault
sequenceNumberUdf config -enable $::true
sequenceNumberUdf config -byteOffset 42
sequenceNumberUdf config -associatedUdfID 1

Appendix 1 IxTclHAL Commands

– 1237 –

sequenceNumberUdf config -associatedUdfBitPosition 0
sequenceNumberUdf config -associatedUdfWidth 4
sequenceNumberUdf config -associatedUdfMin 3
sequenceNumberUdf config -associatedUdfMax 5
if {[sequenceNumberUdf set $chassis $card $port] } {
errorMsg "Error setting sequenceNumberUdf on $chassis $card $port for stream
$streamId."
}
if {[stream set $chassis $card $port $streamId] } {
errorMsg "Error setting stream on $chassis $card $port for stream $streamId."
}
ixWriteConfigToHardware portList

SEE ALSO

udf.

serviceManager
serviceManager - manage a multiuser session

SYNOPSIS

serviceManager sub-command options

DESCRIPTION

Most intelligent Ixia ports run the Linux Operating system. Software may be developed for these ports
using the guidelines documented in the Ixia Linux SDK Guide. Such software must be combined in a set of
files called a package and downloaded to a set of ports. Refer to serviceManager for an overview of this
command and details about package formats. Note this command is only valid in Windows based
environments.

The port command's isValidFeature sub-command may be used to determine if a given port runs Linux.
Use the following sequence:

if [port isValidFeature $chas $card $port portFeatureIxRouter] {
... port runs Linux ...
}

STANDARD OPTIONS

none

COMMANDS

The serviceManager command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

serviceManager deletePackage packageList portGroupId

Appendix 1 IxTclHAL Commands

– 1238 –

Causes the packages included in packageList to be deleted from the ports included in portGroupId. The
packageList is a space or comma separated list of package names. For example: `package1,package2'.
The portGroupId is the ID used in the construction of a port group in the portGroup create command.
Specific errors are:

l No connection to a chassis
l Invalid port list

serviceManager downloadPackage packageList portGroupId

Causes the packages included in packageList to be downloaded and started by the ports included in
portGroupId. The packageList is a space or comma separated list of package names. For example:
`package1,package2'. The portGroupId is the ID used in the construction of a port group in the portGroup
create command. Specific errors are:

l No connection to a chassis
l Invalid port list
l One or more packages could not be found
l One or more packages were in improper format

serviceManager getInstalledPackages chassisID cardID portID

Returns a comma separated list of packages installed on the port. Specific errors are:

l No connection to a chassis
l Invalid port

EXAMPLES
package require IxTclHal

set host localhost
set username user
Assume card 1 is a card that supports Linux
set card 1
set port 1

We'll use this port group
set portGroup 4242

Package to be downloaded
set packageList [list "sample"]

If we're on Unix, connect through Tcl Server
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 1239 –

package require IxTclServices
Connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get resulting ID
set chas [ixGetChassisID $host]

Make sure that there's nothing in the port group
Then put the single port in it
portGroup destroy $portGroup
if [portGroup create $portGroup] {
ixPuts "Could not create port group"
return 1
}
if [portGroup add $portGroup $chas $card $port] {
ixPuts "Could not add port group"
return 1
}

Make sure that this port runs Linux
if {[port isValidFeature $chas $card $port \
portFeatureIxRouter] == 0} {
ixPuts "$chas:$card does not have a local CPU"
return 1
}

Download the package to the prt
if [serviceManager downloadPackage $packageList $portGroup] {
ixPuts "Could not download package"
return 1
}

Check that it's there
ixPuts -nonewline "Installed packages are: "
ixPuts [serviceManager getInstalledPackages $chas $card $port]

And then remove it and check again
if [serviceManager deletePackage $packageList $portGroup] {
ixPuts "Could not delete package"
return 1
}

ixPuts -nonewline "Installed packages are: "
ixPuts [serviceManager getInstalledPackages $chas $card $port]

Appendix 1 IxTclHAL Commands

– 1240 –

SEE ALSO

ixLogin, ixLogout.

session
session - manage a multiuser session

SYNOPSIS

session sub-command options

DESCRIPTION

The session command is used to login and logout of this TCL session. A user is not required to login to
configure ports; however to take ownership of a group of ports in a multiuser environment, the user must
log in. Session login is valid for the entire duration of a TCL window, regardless of how many times a
package require IxTclHal or cleanUp is initiated or until the user logs out. Logging in as a different user
name is the same as logging out and logging in again with a different login name.

STANDARD OPTIONS

captureBufferSegmentSize

Sets the size of the capture buffer request, in MB. The capture buffer is delivered in a series of segments
that are no larger than this setting. (default = 16)

Note: captureBufferSegmentSize sets this client's request size, but does not affect any other client
sessions.

userName

Read-only. User name for this session. (default = "")

COMMANDS

The session command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

session config option value

Modify the configuration options of the session. If no option is specified, returns a list describing all of the
available session options (see STANDARD OPTIONS).

session cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the session command.

session get option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the session command.

Appendix 1 IxTclHAL Commands

– 1241 –

session login userName

Initiate a login to a new multiuser session. If already logged in as a different userName, log out existing
user and log in new userName. Specific errors are:

l No connection to a chassis
l UserName is null

session logout

Logs out current user.

session set option

Sets the current value of the configuration option given by option. Option may have any of the values
accepted by the session command.

EXAMPLES
package require IxTclHal

Login for george
session login george

See who's logged in
set userName [session cget -userName]
ixPuts "$userName is currently logged in"

Logout
session logout

And check again
set userName [session cget -userName]
ixPuts "$userName is currently logged in"

SEE ALSO

ixLogin, ixLogout.

sfpPlus
sfpPlus - configure the SFP+ transceiver interface.

SYNOPSIS

sfpPlus sub-command options

DESCRIPTION

The sfpPlus command is used to configure the SFP+ transceiver interface.

Appendix 1 IxTclHAL Commands

– 1242 –

The small form-factor pluggable (SFP) transceiver interface capability has been added to NGY and other
10GE load modules.

STANDARD OPTIONS

enableMonitorLos
true/false

Enable monitor SFP Loss of Signal. The interface requires the absence of a Loss of Signal for transmitting
and receiving. (default = false)

enableMonitorModule
ReadySignal
true/false

Enable monitor SFP Module Ready Signal. The interface requires the detection of a Module Ready signal
for transmitting and receiving. (default = false)

enableAutomaticDetect
true/false

Enable automatic detection of transceiver type. (default = false)

type

Use to configure the transceiver type.

Option Value Usage

sfpPlus10GBaseSrLr 0 configure the transceiver to Limiting mode

sfpPlus10GBaseLrm 1 configure the transceiver to Linear mode

sfpPlusCu 2 configure the transceiver to Twinax (copper) mode

sfpPlusCuPassive 3 configure the transceiver to Passive (copper) mode

sfpPlusNotDetected 4 configure the transceiver to Not Detected (copper) mode

txPreTapControlValue

Signifies the transmission of pre tap control value.

txMainTapControlValue

Signifies the transmission of main tap control value.

txPostTapControlValue

Signifies the transmission of post tap control value.

Appendix 1 IxTclHAL Commands

– 1243 –

rxEqualizerControlValue

Singifies the reception of equalizer control value.

COMMANDS

The sfpPlus command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

sfpPlus config option value

Modify the configuration options. If no option is specified, returns a list describing all of the available
sfpPlus options (see STANDARD OPTIONS).

sfpPlus cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sfpPlus command.

sfpPlus get chasID cardID portID

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sfpPlus command.

sfpPlus set chasID cardID portID

Sets the current value of the configuration option given by option. Option may have any of the values
accepted by the session command.

sfpPlus setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

sfpPlus setDefault
sfpPlus config -enableMonitorLos false
sfpPlus config -enableMonitorModuleReadySignal $::false
sfpPlus config -enableAutomaticDetect $::false
sfpPlus config -type $::sfpPlus10GBaseLm
if {[sfpPlus set $chassis $card $port]} {
errorMsg "Error calling sfpPlus set $chassis $card $port"
}
set pl [list [list $chassis $card $port]]
ixWritePortsToHardware portlist

 SEE ALSO

sonet
sonet - configure the sonet properties of a POS port of a card on a chassis.

Appendix 1 IxTclHAL Commands

– 1244 –

SYNOPSIS

sonet sub-command options

DESCRIPTION

The sonet command is used to configure the sonet properties of a POS port of a card on a chassis. Note:
sonet error insertion is now handled by the sonetError command; sonet commands related to error
insertion are now deprecated.

Note: the setDefault sub-command sets all options at default values, as indicated here. These values are
a consistent setting for an OC12 card and may or may not be appropriate for other cards. In general, the
sequence:

sonet setDefault
sonet set $chassis $card $port

fails.

The port setFactoryDefaults command, which relates to a particular port, sets all sonet options at default
values appropriate for the type of port. The sequence:

port setFactoryDefaults $chassis $card $port
sonet set $chassis $card $port

always succeeds. If the use of setFactoryDefaults is undesirable, it is still essential that the value of
interfaceType be set to a particular value after use of setDefault.

When the headerType is set to sonetGfp, the GFP header and overhead are set in the gfp and
gfpOverhead commands.

STANDARD OPTIONS

apsType

Sets the Automatic Protection Switching (APS) bytes. Options include:

Option Value Usage

linearAps 0 (default) The K1 and K2 Automatic Protection Switching (APS) bytes bit
definitions represent a linear topology.

ringAps 1 The K1 and K2 Automatic Protection Switching (APS) bytes bit definitions
represent a ring topology.

C2byteExpected

Received path signal label. (default = 22)

C2byteTransmit

Register-programmable path signal label. (default = 22)

Appendix 1 IxTclHAL Commands

– 1245 –

customK1K2
true/false

Enables or disables custom K1K2. (default = false)

dataScrambling
true/false

Enables or disables data scrambling in the sonet framer. (default = true)

enableCiscoSrp

Enables the use of the particular packet formats for Cisco's implementation of SRP. header must be set to
sonetSrp for this flag to have any effect. (default = false)

header

Enable sonet header type. Options include:

Option Value Usage

sonetHdlcPppIp 0 (default)

sonetCiscoHdlc 1

sonetOther 2

sonetFrameRelay1490 3

sonetFrameRelay2427 3

sonetFrameRelayCisco 4

sonetSrp 5 not supported in channelized mode

sonetCiscoHdlcIpv6 6

sonetHdlcPppIso 7

sonetRpr 8 not supported in channelized mode

sonetAtm 9

sonetGfp 10 Generic Framing Protocol.

sonetLaps 12 Link Access Procedure

interfaceType

Sets the type/speed of the sonet interface. Options include:

Appendix 1 IxTclHAL Commands

– 1246 –

Option Value Usage

oc3 0

oc12 1 (default)

oc48 2

stm1c 3

stm4c 4

stm16c 5

oc192 6

stm64c 7

ethOverSonet 8

ethOverSdh 9

k1NewState

Enables the K1 byte code value to be sent in the Sonet frame. (It is used by sonnet APS (automatic
protection switching) to implement a bit-oriented protocol for critical switching operations). (default = 0)

k2NewState

Enables the K2 byte code value as in k1NewState. (default = 0)

lineErrorHandling
true/false

Enables/disables line error handling on the sonet interface. (default = false)

lineScrambling
true/false

Enables or disables line scrambling in the sonet framer. Applies only to the POS/sonet interface ports.
(default = true)

operation

Sets up the sonet interface/operation either as normal mode or loopback mode. Options include:

Option Value Usage

sonetNormal 0 (default)

Appendix 1 IxTclHAL Commands

– 1247 –

Option Value Usage

sonetLoopback 1

sonetLineLoopback 2

sonetFramerParallelDiagnostic
Loopback

3

sonetFramerDiagnosticLoopback 4

sonetFecDiagnosticLoopback 5

sonetFecLineLoopback 6

pathErrorHandling true/false

Enables or disables path error handling on the sonet interface. (default = false)

rprHecSeed

When RPR is used, this setting is used to indicate the HEC (Hardware Error Correction) seed value.
Options include:

Option Value Usage

hecSeed)x0000 0 (default) 0 value

hecSeed0xffff 1 0xFFFF value.

rxCrc

Sets the receive CRC mode. Options include:

Option Value Usage

sonetCrc16 0 Selects reception with 16 bit CRC

sonetCrc32 1 (default) Selects reception with 32 bit CRC

trafficMap

Sets the Tcl hardware transmit mode. Options include:

Option Value Usage

sonetMapSpe 0 (default) SPE = Synchronous Payload Envelope packet streams

sonetMapDcc 1 DCC = Data Communications Channel packet flows

Appendix 1 IxTclHAL Commands

– 1248 –

txCrc

Sets the transmit CRC mode. Options include:

Option Value Usage

sonetCrc16 0 Selects transmission with 16 bit CRC

sonetCrc32 1 (default) Selects transmission with 32 bit CRC

useRecoveredClock

Set the sonet framer to use no clock, the recovered clock or an external clock. Options include:

Option Value Usage

sonetNoClock 0 No clock is used.

sonetRecoveredClock 1 (default) Use the recovered clock.

sonetExternalClock 2 Use the external clock.

DEPRECATED
STANDARD OPTIONS

B1 true/false

B2 true/false

B3 true/false

errorDuration

insertBipErrors
true/false

Appendix 1 IxTclHAL Commands

– 1249 –

lossOfFrame
true/false

lossOfSignal
true/false

periodicB1
true/false

periodicB2
true/false

periodicB3
true/false

periodicLossOfFrame true/false

periodicLossOfSignal
true/false

COMMANDS

The sonet command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

sonet cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonet command.

sonet config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port. If option is specified with no value, then the
commands returns a list of values available for this option.

sonet get chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1250 –

Gets the current configuration of the port with id portID on card cardID, chassis chasID. from its
hardware. Call this command before calling sonet cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number

sonet set chasID cardID portID

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the sonet config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port or 10Gigabit WAN.

sonet setDefault

Sets to IxTclHal default values for all configuration options.

sonetwrite chasID chardID portID

Writes or commits the changes in IxHAL to hardware for port portID, card cardID, chassis chasID. Before
using this command, use the sonet set command to configure the stream related options in IxHAL.

EXAMPLES
package require IxTclHal

Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists

Appendix 1 IxTclHAL Commands

– 1251 –

set chas [ixGetChassisID $host]

Assuming that an OC48 POS card is in slot 18
set card 18
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Get the type of card and check if it's the correct type
card get $chas $card
set type [card cget -type]
if {$type != $cardPosOc48} {
ixPuts "Card $card is not an OC48c POS card ($type)"
return 1
}

Reset to the defaults and then set several values
sonet setDefault
sonet config -interfaceType oc48
sonet config -header sonetCiscoHdlc
sonet config -lineErrorHandling enable
sonet config -rxCrc sonetCrc16
sonet config -txCrc sonetCrc16

Set the parameters
if [sonet set $chas $card 1] {
ixPuts "Sonet set failed on $chas.$card.1"
return 1
}

ixWriteConfigToHardware portList

Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 1 IxTclHAL Commands

– 1252 –

SEE ALSO

card, port, sonetError, sonetOverhead, sonetCircuit.

sonetCircuit
sonetCircuit - setup the circuits of a POS port of a card on a chassis.

SYNOPSIS

sonetCircuit sub-command options

DESCRIPTION

The sonetCircuit command is used to setup the circuits of a POS port of a card on a chassis.

STANDARD OPTIONS

txActiveTimeslotList

Configure the active tx members. (default= "")

rxActiveTimeslotList

Configure the active rx members. (default= "")

txIdleTimeslotList

Configure the idle tx members. (default= "")

rxIdleTimeslotList

Configure the idle rx members. (default= "")

name

Configure the circuit name. (default = "")

direction

Configure the circuit direction. (default = circuitBidirectionSymmetrical)
Available options:

Option Value Usage

circuitUnidirectionTx 0 Uni-direction transmit

circuitUnidirectionRx 1 Uni-direction receive

circuitBidirectionSymmetrical 2 (default) Bi-direction symmetrical

Appendix 1 IxTclHAL Commands

– 1253 –

Option Value Usage

circuitBidirectionAsymmetrical 3 Bi-direction asymmetrical

rxType

Configure the rx payload speed. (default = circuitPayloadRateSTS1mv)
Available options:

Option Value Usage

circuitPayloadRateSTS1 101 STS-1/VC-3

circuitPayloadRateSTS3c 102 STS-3c/VC-4

circuitPayloadRateSTS12c 103 STS-12c/VC-4-4c

circuitPayloadRateSTS48c 104 STS-48c/VC-4-16c

circuitPayloadRateSTS1mv 501 (default) STS-1-Xv / VC-3-Xv

circuitPayloadRateSTS3cmv 502 STS-3c-Xv / VC-4-Xv

txType

Configure the tx payload speed. (default = circuitPayloadRateSTS1mv)
Available options:

Option Value Usage

circuitPayloadRateSTS1 \101 STS-1/VC-3

circuitPayloadRateSTS3c 102 STS-3c/VC-4

circuitPayloadRateSTS12c 103 STS-12c/VC-4-4c

circuitPayloadRateSTS48c 104 STS-48c/VC-4-16c

circuitPayloadRateSTS1mv 501 (default) STS-1-Xv / VC-3-Xv

circuitPayloadRateSTS3cmv 502 STS-3c-Xv / VC-4-Xv

enableTxLcas

Enable the Lcas on transmit side. (default = FALSE)

enableRxLcas

Enable the Lcas on receive side. (default = FALSE)

Appendix 1 IxTclHAL Commands

– 1254 –

index

Read only. This parameter is used to view the circuit index assigned by hardware. (default = 0)

COMMANDS

The sonetCircuit command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

sonetCircuit cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonetCircuit command.

sonetCircuit config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

sonetCircuit setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example on page A.

SEE ALSO

sonetCircuitList, sonetCircuitProperties.

sonetCircuitList
sonetCircuitList - set up the circuits of a POS port of a card on a chassis.

SYNOPSIS

sonetCircuitList sub-command options

DESCRIPTION

The sonetCircuitList command is used to set up all the circuits of a POS port of a card on a chassis.

STANDARD OPTIONS

numCircuits

Read only. This parameter is used to display the number of existing circuits in the circuit list. (default =0)

COMMANDS

The sonetCircuitList command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 1255 –

sonetCircuitList add

Adds a new circuit and verifies that the circuit can be added. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonetCircuitList command.

sonetCircuitList clearAllCircuits

Remove all the circuits from the Sonet circuit list. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

sonetCircuitList del circuitID

Deletes the circuit with the given ID. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList get circuitID

Gets the existing circuit with the given circuit ID. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList getFirst

Gets the first circuit from the Sonet circuit list. Return values:

Appendix 1 IxTclHAL Commands

– 1256 –

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList getNext

Gets the next circuit from the Sonet circuit list. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList select chasID cardID portID

Select the port where the IxTclHal configurations is set to local IxHal. Specific errors are:

l No connection to a chassis
l Invalid port number
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList set circuitID

Modify the existing circuit with the given circuit ID. Specific errors are:

l No connection to a chassis
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitList setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
set hostname 1600T-2
if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return $::TCL_ERROR
}
set portList {}
chassis get "1600T-2"
set chassis [chassis cget -id]
set card 2

Appendix 1 IxTclHAL Commands

– 1257 –

set port 1
if {![port isValidFeature $chassis $card $port $::portFeatureVcat]} {
errorMsg " portFeatureVcat is not supported on port $chassis $card $port "
}
else {
port setFactoryDefaults $chassis $card $port
port config -portMode portPosChannelizedMode
if {[port set $chassis $card $port]} {
errorMsg "error setting port on $chassis $card $port"
}
sonet setDefault
sonet config -interfaceType oc192
sonet config -useRecoveredClock sonetNoClock
sonet config -operation sonetLoopback
if {[sonet set $chassis $card $port]} {
errorMsg "error setting sonet on $chassis $card $port"
}
if {[sonetCircuitList select $chassis $card $port]} {
errorMsg "error selecting sonetCircuitList on $chassis $card $port"
}
sonetCircuitList clearAllCircuits
sonetCircuit setDefault
sonetCircuit config -txActiveTimeslotList "1 2"
sonetCircuit config -rxActiveTimeslotList "1 2"
sonetCircuit config -txIdleTimeslotList 4
sonetCircuit config -rxIdleTimeslotList 4
sonetCircuit config -name "Circuit 1"
sonetCircuit config -direction circuitBidirectionSymmetrical
sonetCircuit config -txType circuitPayloadRateSTS1mv
sonetCircuit config -rxType circuitPayloadRateSTS1mv
sonetCircuit config -enableTxLcas false
sonetCircuit config -enableRxLcas false
if {[sonetCircuitList add]} {
errorMsg "error adding circuit 1 to sonetCircuitList on $chassis $card $port"
}
set circuitId1 [sonetCircuit cget -index]
sonetCircuitProperties setDefault
sonetCircuitProperties config -payloadType sonetGfp
sonetCircuitProperties config -dataScrambling false
sonetCircuitProperties config -C2byteTransmit 22
sonetCircuitProperties config -C2byteExpected 22
sonetCircuitProperties config -rxCrc sonetCrc32
sonetCircuitProperties config -txCrc sonetCrc32
sonetCircuitProperties config -transmitMode circuitTxModePacketStreams
if {[sonetCircuitProperties set $chassis $card $port $circuitId1]} {
errorMsg "error setting sonetCircuitProperties on $chassis $card $port for circuit
$circuitId1"
}

Appendix 1 IxTclHAL Commands

– 1258 –

gfpOverhead setDefault
gfpOverhead config -enableSingleBitErrorCorrection true
gfpOverhead config -enablePayloadScrambling true
gfpOverhead config -expectedUPI 0x12
if {[gfpOverhead set $chassis $card $port $circuitId1]} {
errorMsg "error setting gfpOverhead on $chassis $card $port for circuit $circuitId1"
}
Configuring sonet errors for port
sonetError setDefault
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 0
sonetError config -errorUnits sonetSeconds
sonetError setError sonetLofError
sonetError setDefault
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 0
sonetError config -errorUnits sonetSeconds
sonetError setError sonetLineRdi
if {[sonetError set $chassis $card $port]} {
errorMsg "error setting sonetError on $chassis $card $port"
}
Configuring sonet errors per cicuit
set timeSlot 1
sonetError setDefault
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 1
sonetError config -errorUnits sonetFrames
sonetError setError sonetBip3Error
if {[sonetError set $chassis $card $port $circuitId1 $timeSlot]} {
errorMsg "error setting sonetError on $chassis $card $port for circuit $circuitId1
for timeslot $timeSlot"
}
set timeSlot 2
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 5
sonetError config -errorPeriod 1
sonetError config -errorUnits sonetFrames
sonetError setError sonetPathRdi
if {[sonetError set $chassis $card $port $circuitId1 $timeSlot]} {
errorMsg "error setting sonetError on $chassis $card $port for circuit $circuitId1
for timeslot $timeSlot"
}
set timeSlot 4
sonetError setDefault
sonetError config -insertionMode sonetContinuous

Appendix 1 IxTclHAL Commands

– 1259 –

sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 1
sonetError config -errorUnits sonetFrames
sonetError setError sonetPathLop
if {[sonetError set $chassis $card $port $circuitId1 $timeSlot]} {
errorMsg "error setting sonetError on $chassis $card $port for circuit $circuitId1
for timeslot $timeSlot"
}
Configuring the second circuit
sonetCircuit setDefault
sonetCircuit config -txActiveTimeslotList "3 9"
sonetCircuit config -rxActiveTimeslotList 13
sonetCircuit config -txIdleTimeslotList 10
sonetCircuit config -rxIdleTimeslotList "22 67"
sonetCircuit config -name "Circuit 2"
sonetCircuit config -direction circuitBidirectionAsymmetrical
sonetCircuit config -txType circuitPayloadRateSTS1mv
sonetCircuit config -rxType circuitPayloadRateSTS3cmv
sonetCircuit config -enableTxLcas true
sonetCircuit config -enableRxLcas true
if {[sonetCircuitList add]} {
errorMsg "error adding circuit 2 to sonetCircuitList on $chassis $card $port"
}
set circuitId2 [sonetCircuit cget -index]
sonetCircuitProperties setDefault
sonetCircuitProperties config -payloadType sonetFrameRelayCisco
sonetCircuitProperties config -dataScrambling false
sonetCircuitProperties config -C2byteTransmit 22
sonetCircuitProperties config -C2byteExpected 22
sonetCircuitProperties config -rxCrc sonetCrc1
sonetCircuitProperties config -txCrc sonetCrc16
sonetCircuitProperties config -transmitMode circuitTxModePacketStreams
if {[sonetCircuitProperties set $chassis $card $port $circuitId2]} {
errorMsg "error setting sonetCircuitProperties on $chassis $card $port for circuit
$circuitId2"
}
lcas setDefault
lcas config -rsAck 15
lcas config -holdOff 25
lcas config -waitToRestore 35
if {[lcas set $chassis $card $port $circuitId2]} {
errorMsg "error setting lcas on $chassis $card $port for circuit $circuitId2"
}
Configuring sonet errors for port
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 0
sonetError config -errorUnits sonetSeconds

Appendix 1 IxTclHAL Commands

– 1260 –

sonetError setError sonetLineRei
sonetError setDefault
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 0
sonetError config -errorUnits sonetSeconds
sonetError setError sonetLineRdi
if {[sonetError set $chassis $card $port]} {
errorMsg "error setting sonetError on $chassis $card $port"
}
Configuring sonet errors per cicuit
set timeSlot 3
sonetError setDefault
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 1
sonetError config -errorPeriod 1
sonetError config -errorUnits sonetFrames
sonetError setError sonetPathRei
if {[sonetError set $chassis $card $port $circuitId2 $timeSlot]} {
errorMsg "error setting sonetError on $chassis $card $port for circuit $circuitId2
for timeslot $timeSlot"
}
filter setDefault
filter config -captureTriggerCircuit filterAnyCircuit
filter config -captureFilterCircuit filterAnyCircuit
filter config -captureTriggerEnable true
filter config -captureFilterEnable true
if {[filter set $chassis $card $port]} {
errorMsg "error setting filter on $chassis $card $port"
}
filterPallette setDefault
filterPallette config -circuitList "1 2"
if {[filterPallette set $chassis $card $port]} {
errorMsg "error setting filterPallette on $chassis $card $port"
}
lappend portList [list $chassis $card $port]
ixWritePortsToHardware portList
ixCheckLinkState portList
Circuit 1 - Stream 1
set streamId 1
stream setDefault
stream config -name "Circuit 1"
stream config -enable true
gfp setDefault
gfp config -enablePli true
gfp config -pli 65
gfp config -payloadType gfpDataFcsNullExtensionEthernet
gfp config -fcs gfpGoodFcs

Appendix 1 IxTclHAL Commands

– 1261 –

if {[gfp set $chassis $card $port $circuitId1]} {
errorMsg "error setting gfp on $chassis $card $port for circuit $circuitId1"
}
if {[stream setCircuit $chassis $card $port $circuitId1 $streamId]} {
errorMsg "error setting circuit stream on $chassis $card $port for circuit
$circuitId1"
}
Circuit 2 - Stream 1
set streamId 1
stream setDefault
stream config -name "Circuit 2"
stream config -enable true
stream config -framesize 100
protocol setDefault
protocol config -name ipV4
ip setDefault
ip config -precedence routine
ip config -ttl 70
ip config -ipProtocol ipV4ProtocolReserved255
if {[ip set $chassis $card $port]} {
errorMsg "error setting ip on $chassis $card $port for circuit $circuitId2"
}
frameRelay setDefault
frameRelay config -dlci 10
if {[frameRelay set $chassis $card $port $circuitId2]} {
errorMsg "error setting frameRelay on $chassis $card $port for circuit $circuitId2"
}
if {[stream setCircuit $chassis $card $port $circuitId2 $streamId]} {
errorMsg "error setting circuit stream on $chassis $card $port for circuit
$circuitId2"
}
ixWriteConfigToHardware portList -noProtocolServer
}

SEE ALSO

sonetCircuit, sonetCircuitProperties

sonetCircuitProperties
sonetCircuitProperties - used to configure circuit properties after the circuit is added. The Sonet
properties for the circuit is configured here.

SYNOPSIS

sonetCircuitProperties sub-command options

Appendix 1 IxTclHAL Commands

– 1262 –

DESCRIPTION

The sonetCircuitProperties command is used to configure the circuit properties of a POS port of a card on
a chassis.

STANDARD OPTIONS

transitMode

Configure the transmit mode. (default = circuitTxModePacketStreams) Available options:

l circuitTxModePacketStreams
l circuitTxModeAdvancedScheduler

payloadType

Configure the Sonet header payload type. (default = sonetHdlcPppIp) Available options:

l sonetHdlcPppIp
l sonetCiscoHdlc
l sonetOther
l sonetFrameRelay1490
l sonetFrameRelayCisco
l sonetGfp
l sonetLaps

dataScrambling
true | false

Configure the Sonet dataScrambling payload type. (default = false)

C2byteTransmit

Configure the Sonet C2byteTransmit . (default = 22)

C2byteExpected

Configure the Sonet C2byteExpected. (default = 22)

rxCrc

This parameter is used to configure Rx CRC.

txCrc

This parameter is used to configure Tx CRC.

index

This parameter is used to view the circuit index assigned by hardware. (default = 0)

Appendix 1 IxTclHAL Commands

– 1263 –

COMMANDS

The sonetCircuitProperties command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

sonetCircuitProperties cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonetCircuitProperties command.

sonetCircuitProperties config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS).

sonetCircuitProperties get chassisID cardID portID circuitID

Gets the IxTclHal configurations from local IxHal. Specific errors are:

l No connection to a chassis
l Invalid port number
l Not a supported feature on this port
l The port is being used by another user
l Configured parameters are not valid for this setting

sonetCircuitProperties set chassisID cardID portID circuitID

Sets the IxTclHal configurations to local IxHal.

sonetCircuitProperties setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See example

SEE ALSO

sonetCircuit, sonetCircuitList

sonetError
sonetError - configure the sonet error generation of a POS port of a card on a chassis.

SYNOPSIS

sonetError sub-command options

Appendix 1 IxTclHAL Commands

– 1264 –

DESCRIPTION

The sonetError command is used to configure the sonet error generation properties of a POS port of a
card on a chassis.

STANDARD OPTIONS

consecutiveErrors

The number of consecutive error frames to insert when an error is inserted either periodically,
continuously or only once. (default = 1)

errorPeriod

If insertionMode is set to sonetPeriodic, then this is the period of time or number of frames to insert errors
over, depending on the setting of errorUnits. A value of 1 is always used for OC12/OC3 ports. (default =
1)

errorUnits

If insertionMode is set to sonetPeriodic, then this determines whether errorPeriod refers to time
(expressed in seconds) or frames. OC12/OC3 cards may only use units of seconds.

Option Value Notes

sonetFrames 0 (default) errorPeriod expressed in number of frames

sonetSeconds 1 errorPeriod expressed in number of seconds

insertionMode

The periodicity of error insertion.

Option Value Notes

sonetContinuous 0 Errors are inserted continuously

sonetPeriodic 1 Errors are inserted periodically as determined by errorPeriod and
errorUnits

sonetOff 2 (default) Errors are not inserted

sonetErrorType

Read-only. When an error configuration is read back with sonetError getError, this reflects the sonet error
type. All of the errors listed here are also non-Vcat port level errors.

Option Value Usage

sonetLofError 1 Loss of Frame (Vcat port level error)

Appendix 1 IxTclHAL Commands

– 1265 –

Option Value Usage

sonetBip1Error 2 BIP 1 (Vcat port level error)

sonetBip2Error 3 BIP 2 (Vcat port level error)

sonetBip3Error 4 BIP 3 (circuit level error)

sonetLineAis 5 Line AIS (Vcat port level error)

sonetLineRei 6 Line REI (Vcat port level error)

sonetLineRdi 7 Line RDI (Vcat port level error)

sonetPathLop 8 Loss of Path (circuit level error)

sonetPathAis 9 Path AIS (circuit level error)

sonetPathRei 10 Path REI (circuit level error)

sonetPathRdi 11 Path RDI (circuit level error)

sonetLosError 12 Loss of signal

COMMANDS

The sonet command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

sonetError cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonet command.

sonetError config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

sonetError get chasID cardID portID circuitID timeslot

Gets the current sonetError configuration for all of the sonet error types for the port indicated from its
hardware. Call this command before calling sonet cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port.

sonetError getError sonetErrorType

Appendix 1 IxTclHAL Commands

– 1266 –

Retrieves the values of the attributes (insertionMode, consecutiveErrors, errorPeriod, and errorUnits)
associated with the sonetErrorType. See the description of sonetErrorType above for a list of the possible
values. The sonetError get command must be used before getError.

sonetError insertError sonetErrorType chasID cardID portID circuitID timeslot

Inserts a single instance of the error defined by sonetErrorType and in the standard options into the sonet
stream for the indicated port.

sonetError set chasID cardID portID circuitID timeslot

Sets the configuration of the port in IxTclHAL with id portID on card cardID, chassis chasID by reading the
configuration option values set by the sonet config option value command. Specific per-port errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port or 10Gigabit WAN.

These error types can be per-circuit:

l sonetBip3Error
l sonetPathLop
l sonetPathAis
l sonetPathRei
l sonetPathRdi

sonetError setDefault

Sets to IxTclHal default values for all configuration options.

sonetError setError sonetErrorType

Sets the attributes (insertionMode, consecutiveErrors, errorPeriod, and errorUnits) associated with the
sonetErrorType. See the description of sonetErrorType above for a list of the possible values. The
sonetError set command should be used after this command to write the values to the hardware.

sonetError start chasID cardID portID circuitID

Starts sonet error insertion on the selected port.Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The port is not a Packet over Sonet port or 10Gigabit WAN.

sonetError stop chasID cardID portID circuitID

Stops sonet error insertion on the selected port.Specific errors are:

Appendix 1 IxTclHAL Commands

– 1267 –

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The port is not a Packet over Sonet port or 10Gigabit WAN.

EXAMPLES
package require IxTclHal
proc printState {} \
{
for {set errType $::sonetLofError} {$errType <= $::sonetPathRei} {incr errType} {
sonetError getError $errType
ixPuts -nonewline " errType: $errType"
ixPuts -nonewline " insertionMode: "
ixPuts -nonewline [sonetError cget -insertionMode]
ixPuts -nonewline " errorPeriod: "
ixPuts -nonewline [sonetError cget -errorPeriod]
ixPuts -nonewline " errorUnits: "
ixPuts -nonewline [sonetError cget -errorUnits]
ixPuts -nonewline " consecutiveErrors: "
ixPuts [sonetError cget -consecutiveErrors]"
}
}
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that an OC48 POS card is in slot 17
set card 17
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1

Appendix 1 IxTclHAL Commands

– 1268 –

}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Get the type of card and check if it's the correct type
set ifType [card getInterface $chas $card]
if {$ifType != $::interfaceOc48} {
ixPuts "Card $card is not an OC48c POS card"
} else {
sonetError setDefault
ixPuts ""
ixPuts "Initial State:"
printState
sonetError config -insertionMode sonetContinuous
sonetError config -consecutiveErrors 5
sonetError setError sonetLofError
sonetError config -insertionMode sonetPeriodic
sonetError config -errorUnits sonetSeconds
sonetError config -errorPeriod 10
sonetError config -consecutiveErrors 20
sonetError setError sonetBip1Error
sonetError set $chas $card 1
ixWriteConfigToHardware portList
sonetError get $chas $card 1
ixPuts "After changes:"
printState
sonetError start $chas $card 1
after 1000
sonetError stop $chas $card 1
sonetError setDefault
sonetError config -consecutiveErrors 4
sonetError insertError sonetLineAis $chas $card 1
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

card, port, sonet

Appendix 1 IxTclHAL Commands

– 1269 –

sonetOverhead
sonetOverhead - insert J0/J1 overhead trace messages.

SYNOPSIS

sonetOverhead sub-command options

DESCRIPTION

The sonetOverhead command is used to configure the insertion of trace messages in the J0/J1 areas of
the sonet overhead. The sonetOverhead configurations for circuit are grouped under the
sonetCircuitProperties. command.

STANDARD OPTIONS

enableJ0Insertion
true | false

If true, the message in traceMessageJ0 is inserted in the sonet header. (default = false)

enableJ1Insertion
true | false

If true, the message in traceMessageJ1 is inserted in the sonet header. (default = false)

traceMessageJ0

The value of the trace message to insert in the J0 bytes of the sonet header, if enableJ0Insertion is set to
true. The value is expressed as a hex string. After a sonetOverhead get, this holds the value of the J0
bytes from the received sonet header. (default = {})

traceMessageJ1

The value of the trace message to insert in the J1 bytes of the sonet header, if enableJ1Insertion is set to
true. The value is expressed as a hex string. After a sonetOverhead get, this holds the value of the J1
bytes from the received sonet header. (default = {})

COMMANDS

The sonet command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

sonetOverhead cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the sonet command.

sonetOverhead config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

Appendix 1 IxTclHAL Commands

– 1270 –

sonetOverhead get chasID cardID portID [circuitID] [timeslot]

Gets the current sonetOverhead trace messages for the port indicated from its hardware. Call this
command before calling sonet cget option value to get the value of the configuration option. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port.

sonetOverhead set chasID cardID portID [circuitID] [timeslot]

Sets the configuration of the indicated port by reading the configuration option values set by the sonet
config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l The port is not a Packet over Sonet port or 10Gigabit WAN.

sonetOverhead setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
set hostname astro
set txCard 2
set rxCard 3
set port 1
set streamId 1
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chassis [ixGetChassisID $host]
set portList [list [list $chassis $txCard $port] [list $chassis $rxCard $port]]

Appendix 1 IxTclHAL Commands

– 1271 –

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
port setup
sonet setup
sonetOverhead setDefault
sonetOverhead config -enableJ0Insertion true
sonetOverhead config -enableJ1Insertion true
sonetOverhead config -traceMessageJ0 {F8 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00}
sonetOverhead config -traceMessageJ1 {E8 65 6C 6C 6F 20 74 68 65 72 65 20 00 00 00
00}
sonetOverhead set $chassis $txCard $port
ixWritePortsToHardware portList
sonetOverhead get $chassis $rxCard $port
set j0 [sonetOverhead cget -traceMessageJ0]
set j1 [sonetOverhead cget -traceMessageJ1]
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

card, port, sonet, sonetCircuitProperties

splitPacketGroup
splitPacketGroup - configures split packet group operation.

SYNOPSIS

splitPacketGroup sub-command options

DESCRIPTION

The splitPacketGroup command is used to configure split packet groups in stream generation. Up to 17
bytes can be configured in three separate chunks.

Appendix 1 IxTclHAL Commands

– 1272 –

Note: When configuring split packet groups, and all 17 bytes are being used, it is necessary to
reset the defaults for the split packet group before changing the size of each split section.

STANDARD OPTIONS

groupIdOffset

The offset, in bytes, from the starting point set in groupIdOffsetBaseType .

groupIdOffsetBaseType

Where in the packet to start the offset for the PGID split section.

Option Value Usage

splitPgidStartOfFrame 0 Start offset at the beginning of the frame

splitPgidOffsetFromSignature 1 Start offset from the end of the signature.

groupIdWidth

The number of bytes in the PGID split section. (default = 4)

groupIdMask

The bit mask for the PGID group. (default = FF FF FF FF)

COMMANDS

The splitPacketGroup command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

splitPacketGroup cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the splitPacketGroup command.

splitPacketGroup config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

splitPacketGroup get chasID cardID portID groupIdIndex

Gets the current split PGID configuration for the port indicated from its hardware. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Packet over Sonet port.

splitPacketGroup set chasID cardID portID groupIdIndex

Appendix 1 IxTclHAL Commands

– 1273 –

Sets the configuration of the indicated port by reading the configuration option values set by the config
option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port

splitPacketGroup setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
proc tdisp {val} {
if {$val >= 1} {
return "$val seconds"
}
if {$val < 1 && $val >= 0.001} {
return [format "%0.4f ms" [expr 1e003 * $val]]
}
if {$val < 0.001} {
return [format "%0.2f us" [expr 1e006 * $val]]
}
}
proc testDuration {val } {
set decimal [string range [format "%0.4f" [expr $val - /
int($val)]] 2 end]
return "[clock format [expr int($val)] -format /
"%H:%M:%S" -gmt 1]"
return "[clock format [expr int($val)] -format /
"%H:%M:%S" -gmt 1].$decimal"
}
proc scaleChange {numbits} {
global maxDurationWidget
global ticksPerSample samplePeriod sampleDuration /
testDuration splitPgidVals
set ticksPerSample [expr int(pow(2,$numbits))]
set samplePeriod [expr (20.0 * $ticksPerSample) / 1000000000]
set sampleDuration [expr $samplePeriod * 0x20000]
set testDuration [testDuration $sampleDuration]
set samplePeriod [tdisp $samplePeriod]
set val [mpexpr 131071 << $numbits]
set mask [mpformat %012x [mpexpr (0xffffffffffff ^ $val)]]
regsub "0x" $mask "" mask
set wordHi "[string range $mask 0 1] /
[string range $mask 2 3] [string range $mask 4 5] [string range $mask 6 7]"

Appendix 1 IxTclHAL Commands

– 1274 –

set wordLo "[string range $mask 8 9] [string range /
$mask 10 11]"

set splitPgidVals "$wordHi $wordLo"
puts "ticksPerSample $ticksPerSample "
puts "samplePeriod $samplePeriod "
puts "sampleDuration $sampleDuration "
puts "testDuration $testDuration "
puts "samplePriod $samplePeriod "
puts "splitPgidVals $splitPgidVals"
}

proc setSplitPacketGroup {port offset} {
global splitPgidVals
scan $port "%d %d %d" ch ca po
packetGroup getRx $ch $ca $po
packetGroup config -groupIdMode packetGroupSplit
packetGroup setRx $ch $ca $po
splitPacketGroplitPacketGroup set $ch $ca $po 1
splitPacketGroup set $ch $ca $po 2
splitPacketGroup config -groupIdOffset [expr $offset + 4]
splitPacketGroup config -groupIdMask /
[lrange $splitPgidVals 4 5]
splitPacketGroup config -groupIdWidth 2
splitPacketGroup set $ch $ca $po 0
splitPacketGroup setDefault
splitPacketGroup config -groupIdOffset $offset
splitPacketGroup config -groupIdWidth 4
splitPacketGroup config -groupIdMask /
[lrange $splitPgidVals 0 3]
splitPacketGroup set $ch $ca $po 1
splitPacketGroup setDefault
splitPacketGroup set $ch $ca $po 2
}

SEE ALSO

packetGroup

srpArp
srpArp - configure an SRP ARP packet

SYNOPSIS

srpArp sub-command options

Appendix 1 IxTclHAL Commands

– 1275 –

DESCRIPTION

The srpArp command is used to configure the contents of an SRP ARP packet to be transmitted as part of
a stream.

STANDARD OPTIONS

mode

Indicates the mode of the packet.

Option Value Usage

srpModeReserved000 0

srpModeReserved001 1

srpModeReserved010 2

srpModeATMCell 3 An ATM data cell.

srpModeControlMessage1 4 A control message to be passed to the destination host.

srpModeControlMessage2 5 A control message to be buffered for the destination host.

srpModeUsageMessage (default) An SRP usage message.

srpModePacketData 7 An SRP data packet.

parityBit

The parity over the other SRP header bits.

Option Value Usage

srpParityBitEven 0 Insert an even parity bit.

srpParityBitOdd 1 (default) Insert a correct, odd parity.

priority

Indicates the priority of the SRP packet. Eight priority levels (0 through 7) are offered. Packets on the ring
are treated as low or high priority, where a threshold variable determines which values fall into the high
priority range. This value is usually copied from the IP precedence bits. Control packets always use
priority 7. (default = 0)

ringIdentifier

Indicates whether the inner or outer ring is to receive the packet. Used by the Arp to make decisions
about ring wrap or to determine whether or not a packet is accepted on the ring.

Appendix 1 IxTclHAL Commands

– 1276 –

Option Value Usage

srpRIngIdentifierOuter 0 (default) Outer ring.

srpRIngIdentifierInner 1 Inner ring.

ttl

The hop counter decremented each time a node forwards a packet. When the counter reaches 0, the
packet is removed from the ring. This may be set from 0 through 255. (default = 1)

COMMANDS

The srpArp command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

srpArp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the srpArp command.

srpArp config option value

Modify the configuration options of the srpArp. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for srpArp.

srpArp decode capSlice chasID cardID portID

Decodes a captured slice/frame into the srpArp variables. If not an srpArp frame, returns TCL_ERROR.
May be used to determine if the captured frame is a valid srpArp frame. Specific errors are:

l No connection to a chassisThe captured frame is not an srpArp frame

srpArp get chasID cardID portID

Gets the current configuration of the srpArp frame for port with id portID on card cardID, chassis chasID.
from its hardware. Call this command before calling srpArp cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

srpArp set chasID cardID portID

Sets the configuration of the srpArp in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the srpArp config option value command. Specific errors
are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

Appendix 1 IxTclHAL Commands

– 1277 –

srpArp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 71
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
sonet get $chas $card $port
sonet config -header sonetSrp
sonet set $chas $card $port
sonet write $chas $card $port
#
IPS
srpIps setDefault
Set Srp Header
srpIps config -ttl 128
srpIps config -priority 2
srpIps config -mode srpModeControlMessage1

Appendix 1 IxTclHAL Commands

– 1278 –

srpIps config -ringIdentifier srpRingIdentifierInner
srpIps config -parityBit srpParityBitOdd
Set Control Header
srpIps config -controlVersion 0
srpIps config -controlTTL 128
Set IPS Specific Parameters
srpIps config -originatorMacAddress [stream cget -sa]
srpIps config -requestType srpIpsRequestTypeWaitToRestore
srpIps config -pathIndicator srpIpsPathIndicatorShort
srpIps config -statusCode srpIpsStatusCodeIdle
protocol setDefault
protocol config -appName SrpIps
srpIps set $chas $card $port
stream set $chas $card $port 1
#
Discovery
#
srpDiscovery setDefault
Set Srp Header
srpDiscovery config -ttl 128
srpDiscovery config -priority 2
srpDiscovery config -mode srpModeControlMessage1
srpDiscovery config -ringIdentifier srpRingIdentifierInner
srpDiscovery config -parityBit srpParityBitOdd
Set Control Header
srpDiscovery config -controlVersion 0
srpDiscovery config -controlTTL 128
Set Discovery Specific Parameters
srpDiscovery config -originatorMacAddress [stream cget -sa]
srpDiscovery config -topologyLength 25
Set MAC bindings
srpDiscovery clearAllMacBindings
srpMacBinding config -address {00 00 de b0 01 00}
srpMacBinding config -wrappedNode srpWrappedNode
srpMacBinding config -ringIdentifier srpRingIdentifierInner
srpDiscovery addMacBinding
srpMacBinding config -address {00 00 de b0 01 01}
srpMacBinding config -wrappedNode srpWrappedNode
srpMacBinding config -ringIdentifier srpRingIdentifierInner
srpDiscovery addMacBinding
srpDiscovery set $chas $card $port
protocol setDefault
protocol config -appName SrpDiscovery
stream set $chas $card $port 2
#
ARP
#
srpArp setDefault

Appendix 1 IxTclHAL Commands

– 1279 –

Set Srp Header
srpArp config -ttl 255
srpArp config -priority 7
srpArp config -mode srpModePacketData
srpArp config -ringIdentifier srpRingIdentifierOuter
srpArp config -parityBit srpParityBitEven
srpArp set $chas $card $port
protocol setDefault
protocol config -appName srpArp
stream set $chas $card $port 3
#
Usage
#
port get $chas $card $port
srpUsage setDefault
Set Srp Header
srpUsage setDefault
srpUsage config -ttl 128
srpUsage config -priority 2
srpUsage config -mode srpModeUsageMessage
srpUsage config -ringIdentifier srpRingIdentifierInner
srpUsage config -parityBit srpParityBitOdd
srpUsage config -txMacAddress [port cget -MacAddress]
srpUsage config -txUsageEnable true
srpUsage config -txRepeatInterval 100
srpUsage config -txValue 0
srpUsage config -rxMacAddress [port cget -DestMacAddress]
srpUsage config -rxTimeout 100
srpUsage config -rxTimeoutThreshhold 10
srpUsage set $chas $card $port
port set $chas $card $port
port write $chas $card $port
Post transmission.
stat get statAllStats $chas $card $port
stat cget -srpKeepAliveFramesReceived
stat getRate $chas $card $port -srpSrpHeaderParityErrors
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

srpDiscovery, srpMacBinding, srpIps, srpUsage

Appendix 1 IxTclHAL Commands

– 1280 –

srpDiscovery
srpDiscovery - configure an SRP discovery packet

SYNOPSIS

srpDiscovery sub-command options

DESCRIPTION

The srpDiscovery command is used to configure the contents of an SRP discovery packet to be
transmitted as part of a stream. The bindings are configured in the srpMacBinding command and then
added to the discovery packet using the addMacBinding sub-command.

STANDARD OPTIONS

controlCheckSumMode

The checksum mode associated with the control packet.

Option Value Usage

srpDiscoveryCheckSumBad 0 Insert a bad checksum.

srpDiscoveryCheckSumGood 1 (default) Insert a good checksum.

controlTTL

The control layer hop-count that is decremented by one each time a node forwards a control packet.
(default = 0)

controlType

An alternate setting for the control type setting in the packet; controlTypeOverride must be set to true for
this value to be used. (default = 1)

controlTypeOverride
true | false

Indicates whether the value in controlType should be used to override the default setting of
srpControlTypeDiscovery. (default = false)

controlVersion

The version number associated with the control type fields. The only supported version is version 0.
(default = 0)

Appendix 1 IxTclHAL Commands

– 1281 –

controlVersionOverride
true | false

Indicates whether the value in controlVersion should be used to override the default setting of 0. (default
= false)

mode

Indicates the mode of the packet.

Option Value Usage

srpModeReserved000 0

srpModeReserved001 1

srpModeReserved010 2

srpModeATMCell 3 An ATM data cell.

srpModeControlMessage1 4 A control message to be passed to the destination host.

srpModeControlMessage2 5 A control message to be buffered for the destination host.

srpModeUsageMessage 6 (default) An SRP usage message.

srpModePacketData 7 An SRP data packet.

originatorMacAddress

The original source MAC address. This differs from the source MAC address in that as a packet is
forwarded from node to node, the source MAC address is modified to reflect the current node, whereas
the originator MAC address always reflects the first source address. (default = {00 00 00 00 00 00})

parityBit

The parity over the other SRP header bits.

Option Value Usage

srpParityBitEven 0 Insert an even parity bit.

srpParityBitOdd 1 (default) Insert a correct, odd parity.

priority

Indicates the priority of the SRP packet. Eight priority levels (0 through 7) are offered. Packets on the ring
are treated as low or high priority, where a threshold variable determines which values fall into the high
priority range. This value is usually copied from the IP precedence bits. Control packets always use
priority 7. (default = 0)

Appendix 1 IxTclHAL Commands

– 1282 –

ringIdentifier

Indicates whether the inner or outer ring is to receive the packet. Used by the Discovery to make
decisions about ring wrap or to determine whether or not a packet is accepted on the ring.

Option Value Usage

srpRIngIdentifierOuter 0 (default) Outer ring.

srpRIngIdentifierInner 1 Inner ring.

topologyLength

The length of the topology discovery packet beginning with the MAC type/MAC binding data. This must be
a multiple of seven since each binding is seven bytes long. (default = 0)

ttl

The hop counter decremented each time a node forwards a packet. When the counter reaches 0, the
packet is removed from the ring. This may be set from 0 through 255. (default = 1)

COMMANDS

The srpDiscovery command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

srpDiscovery addMacBinding

Adds the MAC binding found in the srpMacBinding command to the list associated with the discovery
packet.

srpDiscovery cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the srpDiscovery command.

srpDiscovery clearAllMacBindings

Clears all of the MAC bindings associated with the discovery packet.

srpDiscovery config option value

Modify the configuration options of the srpDiscovery. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for srpDiscovery.

srpDiscovery decode capSlice chasID cardID portID

Decodes a captured slice/frame into the srpDiscovery variables. If not an srpDiscovery frame, returns
TCL_ERROR. May be used to determine if the captured frame is a valid srpDiscovery frame. Specific errors
are:

l No connection to a chassis
l The captured frame is not an srpDiscovery frame

Appendix 1 IxTclHAL Commands

– 1283 –

srpDiscovery delMacBindingmacBindingAddress

Deletes the MAC binding which matches macBindingAddress.

srpDiscovery get chasID cardID portID

Gets the current configuration of the srpDiscovery frame for port with id portID on card cardID, chassis
chasID. from its hardware. Call this command before calling srpDiscovery cget option value to get the
value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

srpDiscovery getFirstMacBinding

Accesses the first MAC binding in the list and moves the data to the srpMacBinding command.

srpDiscovery getMacBindingmacBindingAddress

Accesses the MAC binding in the list which uses macBindingAddress and moves the data to the
srpMacBinding command.

srpDiscovery getNextMacBinding

Accesses the next MAC binding in the list and moves the data to the srpMacBinding command.

srpDiscovery set chasID cardID portID

Sets the configuration of the srpDiscovery in IxHAL for port with id portID on card cardID, chassis chasID
by reading the configuration option values set by the srpDiscovery config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

srpDiscovery setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under srpArp

SEE ALSO

srpMacBinding, srpArp, srpIps, srpUsage

srpIps
srpIps - configure an SRP IPS protection control packet

Appendix 1 IxTclHAL Commands

– 1284 –

SYNOPSIS

srpIps sub-command options

DESCRIPTION

The srpIps command is used to configure the contents of an SRP Intelligent Protection Switching (IPS)
packet to be transmitted as part of a stream.

STANDARD OPTIONS

controlCheckSumMode

The checksum mode associated with the control packet.

Option Value Usage

srpIpsCheckSumBad 0 Insert a bad checksum.

srpIpsCheckSumGood 1 (default) Insert a good checksum.

controlTTL

The control layer hop-count that is decremented by one each time a node forwards a control packet.
(default = 0)

controlType

An alternate setting for the control type setting in the packet; controlTypeOverride must be set to true for
this value to be used. (default = 2)

controlTypeOverride
true | false

Indicates whether the value in controlType should be used to override the default setting of
srpControlTypeIps. (default = false)

controlVersion

The version number associated with the control type fields. The only supported version is version 0.
(default = 0)

controlVersionOverride
true | false

Indicates whether the value in controlVersion should be used to override the default setting of 0. (default
= false)

mode

Indicates the mode of the packet.

Appendix 1 IxTclHAL Commands

– 1285 –

Option Value Usage

srpModeReserved000 0

srpModeReserved001 1

srpModeReserved010 2

srpModeATMCell 3 An ATM data cell.

srpModeControlMessage1 4 A control message to be passed to the destination host.

srpModeControlMessage2 5 A control message to be buffered for the destination host.

srpModeUsageMessage 6 (default) An SRP usage message.

srpModePacketData 7 An SRP data packet.

originatorMacAddress

The original source MAC address. This differs from the source MAC address in that as a packet is
forwarded from node to node, the source MAC address is modified to reflect the current node, whereas
the originator MAC address always reflects the first source address. (default = {00 00 00 00 00 00})

parityBit

The parity over the other SRP header bits.

Option Value Usage

srpParityBitEven 0 Insert an even parity bit.

srpParityBitOdd 1 (default) Insert a correct, odd parity.

pathIndicator

Determines whether the control packet is sent only to an adjacent node or around the entire ring.

Option Value Usage

srpIpsPathIndicatorShort 0 Message is just send to the next node.

srpIpsPathIndicatorLong 1 (default) Message is sent around the entire ring.

priority

Indicates the priority of the SRP packet. Eight priority levels (0 through 7) are offered. Packets on the ring
are treated as low or high priority, where a threshold variable determines which values fall into the high
priority range. This value is usually copied from the IP precedence bits. Control packets always use
priority 7. (default = 0)

Appendix 1 IxTclHAL Commands

– 1286 –

requestType

The type of IPS request.

Option Value Usage

srpIpsRequestTypeNoRequest 0 (default) No request.

srpIpsRequestTypeWaitToRestore 5 Wait to restore. Instead of unwrapping immediately
after a failure condition or manual request has been
cleared, the node waits for a configured period of
time before unwrapping

srpIpsRequestTypeManualSwitch 6 Manual switch. Force a switch.

srpIpsRequestTypeSignalDegrade 8 Signal degrade. A switch initiated by detecting line
BER above a specific threshold or excessive CRC
errors.

srpIpsRequestTypeSignalFail 11 Signal fail. A switch initiated by detecting los of
signal, los of frame, line bit error rate above a specific
threshold, line AIS or excessive CRC errors.

srpIpsRequestTypeForcedSwitch 13 Forced switch. Force a switch; same as manual
switch but with higher priority.

ringIdentifier

Indicates whether the inner or outer ring is to receive the packet. Used by the IPS to make decisions
about ring wrap or to determine whether or not a packet is accepted on the ring.

Option Value Usage

srpRIngIdentifierOuter 0 (default) Outer ring.

srpRIngIdentifierInner 1 Inner ring.

statusCode

Indicates the state of a node in terms of traffic wrapping.

Option Value Usage

srpIpsStatusCodeIdle 0 (default) The node is prepared to perform protection
switching if necessary.

srpIpsStatusCodeProtection 2 Indicates that a node is currently participating in a
protection switching operation.

Appendix 1 IxTclHAL Commands

– 1287 –

ttl

The hop counter decremented each time a node forwards a packet. When the counter reaches 0, the
packet is removed from the ring. This may be set from 0 through 255. (default = 1)

COMMANDS

The srpIps command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

srpIps cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the srpIps command.

srpIps config option value

Modify the configuration options of the srpIps. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for srpIps.

srpIps decode capSlice [chasID cardID portID]

Decodes a captured slice/frame into the srpIps variables. If not an srpIps frame, returns TCL_ERROR.
May be used to determine if the captured frame is a valid srpIps frame. Specific errors are:

l No connection to a chassis
l The captured frame is not an srpIps frame

srpIps get chasID cardID portID

Gets the current configuration of the srpIps frame for port with id portID on card cardID, chassis chasID.
from its hardware. Call this command before calling srpIps cget option value to get the value of the
configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

srpIps set chasID cardID portID

Sets the configuration of the srpIps in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the srpIps config option value command. Specific errors
are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

srpIps setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1288 –

EXAMPLES

See examples under srpArp

SEE ALSO

srpArp, srpDiscovery, srpMacBinding, srpUsage

srpMacBinding
srpMacBinding - configure an SRP Mac Binding

SYNOPSIS

srpMacBinding sub-command options

DESCRIPTION

The srpMacBinding command is used to configure a MAC binding that appears in an SRP Discovery packet.
These bindings are included in a discovery packets through the use of the srpDiscovery command.

STANDARD OPTIONS

address

The MAC addressed bound. (default = {CA CA CA CA CA CA})

ringIdentifier

Which ring the binding applies to.

Option Value Usage

srpRingIdentifierInner 0 (default) The inner ring.

srpRingIdentifierInner 1 The outer ring.

wrappedNode

Whether the node is wrapped or not.

Option Value Usage

srpUnwrappedNode 0 (default) The node is not wrapped.

srpWrappedNode 1 The node is wrapped.

COMMANDS

The srpMacBinding command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

Appendix 1 IxTclHAL Commands

– 1289 –

srpMacBinding setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under srpArp

SEE ALSO

srpDiscovery, srpArp, srpIps, srpUsage

srpUsage
srpUsage - configure an SRP Usage packet

SYNOPSIS

srpUsage sub-command options

DESCRIPTION

The srpUsage command is used to configure the contents of an SRP Usage packet to be transmitted at
intervals.

STANDARD OPTIONS

mode

Indicates the mode of the packet.

Option Value Usage

srpModeReserved000 0

srpModeReserved001 1

srpModeReserved010 2

srpModeATMCell 3 An ATM data cell.

srpModeControlMessage1 4 A control message to be passed to the destination host.

srpModeControlMessage2 5 A control message to be buffered for the destination host.

srpModeUsageMessage 6 (default) An SRP usage message.

srpModePacketData 7 An SRP data packet.

parityBit

The parity over the other SRP header bits.

Appendix 1 IxTclHAL Commands

– 1290 –

Option Value Usage

srpParityBitEven 0 Insert an even parity bit.

srpParityBitOdd 1 (default) Insert a correct, odd parity.

priority

Indicates the priority of the SRP packet. Eight priority levels (0 through 7) are offered. Packets on the ring
are treated as low or high priority, where a threshold variable determines which values fall into the high
priority range. This value is usually copied from the IP precedence bits. Control packets always use
priority 7. (default = 0)

ringIdentifier

Indicates whether the inner or outer ring is to receive the packet. Used by the Usage to make decisions
about ring wrap or to determine whether or not a packet is accepted on the ring.

Option Value Usage

srpRIngIdentifierOuter 0 (default) Outer ring.

srpRIngIdentifierInner 1 Inner ring.

rxMacAddress

The source MAC address for the usage packet. (default = {00 00 00 00 00 00})

rxTimeout

The time interval, in microseconds, between SRP usage packets, which serve a keep-alive function. This
must be between 8 to 65000 and should be set to approximately 106 microseconds. (default = 106)

rxTimeoutThreshhold

The number of timeout values that can pass before the sending interface is considered down. This value
must be between 1 and 31 and should be set to 16. (default = 16)

ttl

The hop counter decremented each time a node forwards a packet. When the counter reaches 0, the
packet is removed from the ring. This may be set from 0 through 255. (default = 1)

txMacAddress

The MAC address of the destination to which usage packets are sent. (default = {00 00 00 00 00 00})

Appendix 1 IxTclHAL Commands

– 1291 –

txRepeatInterval

The interval within which usage frames are sent to upstream nodes; expressed in microseconds. This
value must be between 10 and 65000. (default = 106)

txReserved

A reserved field, that should be set to 0. (default = 0)

txUsageEnabled
true | false

If set to true, periodic SRP usage packets are transmitted. (default = false)

txValue

The value associated with the usage packet, between 0 and 65535. (default = 65535)

COMMANDS

The srpUsage command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

srpUsage cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the srpUsage command.

srpUsage config option value

Modify the configuration options of the srpUsage. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for srpUsage.

srpUsage get chasID cardID portID

Gets the current configuration of the srpUsage frame for port with id portID on card cardID, chassis
chasID. from its hardware. Call this command before calling srpUsage cget option value to get the value
of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number

srpUsage set chasID cardID portID

Sets the configuration of the srpUsage in IxHAL for port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the srpUsage config option value command. Specific errors
are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting

Appendix 1 IxTclHAL Commands

– 1292 –

srpUsage setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under srpArp

SEE ALSO

srpArp, srpDiscovery, srpIps

stackedVlan
stackedVlan - configure a stack of VLAN entries

SYNOPSIS

stackedVlan sub-command options

DESCRIPTION

The stackedVlan command is used to configure an ordered stack of VLAN entries. This command is only
used when the enable802dot1qTag in the protocol command is set to vlanStacked. Elements of the stack
are constructed in the vlan command. The top two elements of the stack are always present and may be
modified by using the setVlan sub-command. Other elements are added to the bottom of the stack using
addVlan; they may later be modified with the setVlan sub-command.

The top two VLANs in a stack may be configured to increment or decrement their VLAN ID. They may
either increment/decrement independently or operate in a special nested mode. To use nested mode, the
top (outer) VLAN should be set to one of the non-nested increment/decrements modes and the second
(inner) VLAN should be set to the nested increment or decrement mode. In this mode the inner VLAN's ID
changes most rapidly.

STANDARD OPTIONS

numVlans

Read-only. The number of VLANs in the stack.

COMMANDS

The stackedVlan command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

stackedVlan addVlan

The VLAN specification found in the vlan command is pushed onto the bottom of the stack. Any use of
increment/decrement modes is ignored. Specific errors are:

l The VLAN could not be added.

stackedVlan cget option

Appendix 1 IxTclHAL Commands

– 1293 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the stackedVlan command.

stackedVlan decode capSlice chasID cardID portID

Decodes a captured slice/frame that contains VLAN(s), populating the vlan command with the top VLAN in
the stack. Other VLANs may be accessed by using the getFirstVlan, getNextVlan and getVlan sub-
commands. Specific errors are:

l No connection to a chassis
l The captured frame does not contain any VLANs.

stackedVlan delVlan index

Deletes the VLAN from the stack at the index'd position. The top of the stack is numbered 1. The top two
stack elements may not be deleted. Specific errors include:

l The top two stack elements may not be deleted.
l There is no VLAN at the index'd position.

stackedVlan get chasID cardID portID

Gets the current configuration of the stackedVlan frame for port with id portID on card cardID, chassis
chasID. from its hardware. Call this command before calling stackedVlan cget option value to get the
value of the configuration option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not available.
l Stacked VLANs are not supported by the port.
l Stacked VLAN data is not available; a stream get may be needed.

stackedVlan getFirstVlan

Retrieves the first VLAN from the stack; the values are available in the vlan command. Specific errors
include:

l There are no VLANs in the list.

stackedVlan getNextVlan

Retrieves the next VLAN from the stack; the values are available in the vlan command. Specific errors
include:

l There are no more VLANs in the list.

stackedVlan getVlan index

Retrieves the VLAN from the stack at the index'd position; the values are available in the vlan command.
The top of the stack is numbered 1. Specific errors include:

l There is no VLAN at the index'd position.

stackedVlan set chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1294 –

Sets the configuration of the stackedVlan in IxHAL for port with id portID on card cardID, chassis chasID
by reading the configuration option values set by the stackedVlan config option value command. Specific
errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l Configured parameters are not valid for this setting
l Stacked VLANs are not supported by this port.

stackedVlan setDefault

Sets to IxTclHal default values for all configuration options.

stackedVlan setVlan index

Sets the VLAN from the stack at the index'd position using the values from the vlan command. The top of
the stack is numbered 1. This may be used to change an existing VLAN stack element in place. Specific
errors include:

l There is no VLAN at the index'd position.

EXAMPLES

See examples under vlan

SEE ALSO

protocol, vlan

stat
stat - gets the statistics on a port of a card on a chassis.

SYNOPSIS

stat sub-command options

DESCRIPTION

The stat command is used to get statistics. Statistics may be gathered in several ways. All statistics may
be obtained through the use of the stat get statAllStats <chassis> <card> <port> followed by calls to get
the data using stat cget -statName. All rate statistics may be obtained through the use of the stat getRate
statAllStats <chassis> <card> <port> followed by calls to get the data using stat cget -name.

An individual statistic may be collected through the use of the stat get statName <chassis> <card>
<port> followed by stat cget -statName. Note that the statName is formed from the standard option
name by prepending stat to the name and capitalizing the first letter of the option. (For example, for the
option framesSent, the statName is statFramesSent.)

Appendix 1 IxTclHAL Commands

– 1295 –

Values are available through the STANDARD OPTIONS following the stat cget call. When using stat cget -
statName, only those statistics valid for that type of port are returned; all others return an error (see the
enableValidStats option). Refer to the Ixia Reference Guide for a list of which statistics are available for
particular card modules and under particular circumstances.

For channelized BERT cards, it is necessary to request statistics for a specific channel at a time using the
getBertChannel and getBertChannelRate sub-commands. These commands take a level description,
which is discussed in bert and bertErrorGeneration.

STANDARD OPTIONS

Standard Options controlling statistics modes and operation

enableArpStats
true/false

Enables the collection of Arp statistics. (default = true) The following statistics are controlled by this
option:

TxArpRequest TxArpReply

RxArpRequest RxArpReply

enableAtmOamStats
true/false

Enables the collection of the ATM OAM statistics. (default = true) The following statistics are controlled by
this option:

atmOamRxActDeactCC atmOamRxBadCells

atmOamRxBytes atmOamRxFaultMgmtAIS

atmOamRxFaultMgmtCC atmOamRxFaultMgmtLB

atmOamRxFaultMgmtRDI atmOamRxGoodCells

atmOamTxActDeactCC atmOamTxBytes

atmOamTxCells atmOamTxFaultMgmtAIS

atmOamTxFaultMgmtCC atmOamTxFaultMgmtLB

atmOamTxFaultMgmtRDU

enableDhcpStats
true/false

Enables the collection of the DHCPv4 statistics. (default = false) The following statistics are controlled by
this option:

Appendix 1 IxTclHAL Commands

– 1296 –

dhcpV4AcksReceived dhcpV4AddressesLearned

dhcpV4DiscoveredMessagesSent dhcpV4EnabledInterfaces

dhcpV4NacksReceived dhcpV4OffersReceived

dhcpV4ReleasesSent dhcpV4RequestsSent

enableDhcpV6Stats
true/false

Enables the collection of the DHCPv6 statistics. (default = false) The following statistics are controlled by
this option:

dhcpV6SolicitsSent dhcpV6RepliesReceived

dhcpV6AdvertisementsReceived dhcpV6ReleasesSent

dhcpV6RequestsSent dhcpV6EnabledInterfaces

dhcpV6DeclinesSent dhcpV6AddressesLearned

enableFcoeStats
true/false

Enables the collection of the protocol FCoE statistics. (default = false) The following statistics are
controlled by this option:

fcoeFlogiSent fcoeFlogiLsAccReceived

fcoePlogiSent fcoePlogiLsAccReceived

fcoePlogiRequestsReceived fcoeFlogoSent

fcoePlogoSent fcoePlogoReceived

fcoeFdiscSent fcoeFdiscLsAccReceived

fcoeNSRegSent fcoeNSRegSuccessful

fcoeNxPortsEnabled fcoeNxPortIdsAcquired

fcoeRxSharedStat1 fcoeRxSharedStat2

fipDiscoverySolicitationsSent fipDiscoveryAdvertisementsReceived

fipKeepAlivesSent fipClearVirtualLinksReceived

Appendix 1 IxTclHAL Commands

– 1297 –

fcoeRxSharedStat
Type1

Only two counters are permitted, this one and the next one (fcoeRxSharedStatType2). Select the statistic
to be assigned to this counter from these options:

statFcoeInvalidDelimiter

statFcoeInvalidFrames

statFcoeInvalidSize

statFcoeNormalSizeBadFccRc

statFcoeNormalSizeGoodFccRc

statFcoeUndersizeBadFccRc

statFcoeUndersizeGoodFccRc

statFcoeValidFrames

fcoeRxSharedStat
Type2

Select the statistic to be assigned to this counter from these options:

statFcoeInvalidDelimiter

statFcoeInvalidFrames

statFcoeInvalidSize

statFcoeNormalSizeBadFccRc

statFcoeNormalSizeGoodFccRc

statFcoeUndersizeBadFccRc

statFcoeUndersizeGoodFccRc

statFcoeValidFrames

enableMacSecStats
true/false

Enables the collection of the protocol MACsec statistics. (default = true) The following statistics are
controlled by this option:

Appendix 1 IxTclHAL Commands

– 1298 –

macSecValidFramesSent

macSecValidBytesSent

macSecFramesWithUnknownKeySent

macSecValidFramesReceived

macSecValidBytesReceived

macSecFramesWithUnknownKeyReceived

macSecFramesWithBadHashReceived

enableNeighborSolicit
Stats
true/false

Enables the collection of the Neighbor Solicitation statistics. (default = true) The following statistics are
controlled by this option:

statTxNeighborSolicits

statTxNeighborAdvertisements

statRxNeighborSolicits

statRxNeighborAdvertisements

enablePos
ExtendedStats
true/false

Enables the collection of extended PoS extended statistics, for POS cards only. (default = true) The
following statistics are controlled by this option:

lineAis lineBip

lineRdi lineRei

pathAis pathBip

pathLossOfPointer pathPlm

pathRdi pathRei

sectionBip sectionLossOfFrame

sectionLossOfSignal

Appendix 1 IxTclHAL Commands

– 1299 –

enableProtocolServer
Stats
true/false

Enables the collection of the protocol server statistics. (default = true) The following statistics are
controlled by this option:

ProtocolServerTx

ProtocolServerRx

TxArpReply

TxArpRequest

TxPingRequest

RxArpReply

RxArpRequest

RxPingReply

RxPingRequest

enablePtpStats
true/false

Enables the collection of the IEEE 1588 PTP statistics. (default = true) The following statistics are
controlled by this option:

ptpAnnounceMessagesSent ptpAnnounceMessagesReceived

ptpSyncMessagesSent ptpSyncMessagesReceived

ptpFollowUpMessagesSent ptpFollowUpMessagesReceived

ptpDelayRequestMessagesSent ptpDelayRequestMessagesReceived

ptpDelayResponseMessagesSent ptpDelayResponseMessagesReceived

enableTemperature
SensorStats true/false

Enables the collection of statistics from temperature sensors. (default = true) The following statistics are
controlled by this option:

backgroundTemperature captureTemperature

dmaTemperature fobBoardTemperature

Appendix 1 IxTclHAL Commands

– 1300 –

fobDevice1InternalTemperature fobPort1FpgaTemperature

frontEndTemperature latencyTemperature

overlayTemperature plmDevice1InternalTemperature

plmDevice2InternalTemperature plmDevice3InternalTemperature

plmDevice4InternalTemperature schedulerTemperature

enableValidStats
true / false

If set, then stat cget -statName calls for statistics invalid for the port's type returns an error. If unset,
then all stat cget -statName returns without error, but the invalid statistics have default values. (default =
0)

enableVcatStats
true/false

Enables the collection of the VCAT per-port, per-circuit, and per-channel statistics. (default = true) The
following statistics are available automatically when the port is in VCAT mode:

sonetCircuitState (per port) sonetTimeslotLcasSourceState (per channel)

sonetCircuitType (per circuit) sonetTimeslotSequenceNumberMismatch (per
channel)

sonetTimeslotRsAcks (per channel) sonetTimeslotSequenceNumber (per channel)

sonetTimeslotSlotNumber (per channel) sonetTimeslotGfpcHecErrors (per channel)

sonetTimeslotLcasSinkState (per channel) sonetTimeslotGfpManagementFrames (per channel)

sonetTimeslotDifferentialDelay (per channel) sonetTimeslotGfpUpiMismatch (per channel)

sonetTimeslotLossOfMultiframe (per
channel)

sonetTimeslotGfpGoodFramesReceived (per channel)

sonetTimeslotLossOfAlignment (per channel)

includeRprPayloadFcs
InCrc true | false

For RPR packets (where the SONET header mode is RPR), this flag indicates that the RPR payload FCS is
to be included in the RPR CRC error checking. A CRC error is declared if either the RPR CRC or the Payload
FCS is incorrect. (default = true)

Appendix 1 IxTclHAL Commands

– 1301 –

lacpState

Notifies session state of LACP link, down or up.

lacpDown LACP link is down

lacpUp LACP link is up

mode

Sets the mode of the statistic counters. The following modes can be read:

Option Value Usage

statNormal 0 (default)

statQos 1 Reuses 8 hardware counters to count QoS packets

statStreamTrigger 2 Reuses two hardware counters: User-Defined Statistics
Counters 5 and 6.

statModeChecksumErrors 3 Reuses 6 hardware counters to count IP, TCP, UDP checksum
errors.

statModeDataIntegrity 4 Reuses 2 hardware counters.

Standard Options used to retrieve statistics

aggregatedGfpcHec
Errors

Read-only. 64-bit value. Number of aggregated GFP core HEC errors detected.

aggregatedGfpeHec
Errors

Read-only. 64-bit value. Number of aggregated GFP extension HEC errors detected.

aggregatedGfptHec
Errors

Read-only. 64-bit value. Number of aggregated GFP type HEC errors detected.

aggregatedGfpPayloadFcsErrors

Read-only. 64-bit value. Number of aggregated GFP payload FCS errors detected.

aggregatedGfp
ManagementFrames

Read-only. 64-bit value. The number of aggregated GFP management frames.

Appendix 1 IxTclHAL Commands

– 1302 –

aggregatedGfp
UpiMismatch

Read-only. 64-bit value. The number of aggregated GFP UPI mismatches.

aggregatedGfp
GoodFramesReceived

Read-only. 64-bit value. The number of aggregated GFP good frames received.

aggregatedGfpSync
State

Read-only. 64-bit value. The aggregated GFP sync state value.

alignmentErrors

Read-only. 64-bit value. Number of frames received with alignment errors on a 10/100 port.

asynchronousFrames
Sent

Read-only. 64-bit value. The number of frames sent as a part of user requests.

atmAal5BytesReceived

Read-only. 64-bit value. The number of AAL5 bytes received.

atmAal5BytesSent

Read-only. 64-bit value. The number of AAL5 bytes sent.

atmAal5CrcError
Frames

Read-only. 64-bit value. The number of AAL5 frames received with CRC errors.

atmAal5Frames
Received

Read-only. 64-bit value. The number of AAL5 frames received.

atmAal5FramesSent

Read-only. 64-bit value. The number of AAL5 frames sent.

atmAal5LengthError
Frames

Read-only. 64-bit value. The number of AAL5 frames received with length errors.

Appendix 1 IxTclHAL Commands

– 1303 –

atmAal5TimeoutError
Frames

Read-only. 64-bit value. The number of AAL5 frames received with timeout errors.

atmCellsReceived

Read-only. 64-bit value. The number of ATM cells received.

atmCellsSent

Read-only. 64-bit value. The number of ATM cells sent.

atmCorrectedHcsError
Count

Read-only. 64-bit value. The number of AAL5 frames received with HCS errors that were corrected.

atmIdleCellCount

Read-only. 64-bit value. The number of idle ATM cells sent.

atmOamRxActDeactCC

Read-only. 64-bit value. Number of ATM OAM ActDeact cells transmitted.

atmOamRxBadCells

Read-only. 64-bit value. Number or ATM OAM bad cells received.

atmOamRxBytes

Read-only. 64-bit value. Number of ATM OAM bytes received.

atmOamRxFaultMgmt
AIS

Read-only. 64-bit value. Number of ATM OAM Fault Management AIS cells received.

atmOamRxFaultMgmt
CC

Read-only. 64-bit value. Number of ATM OAM Fault Management CC cells received.

atmOamRxFaultMgmt
LB

Read-only. 64-bit value. Number of ATM OAM Fault Management LB cells received.

Appendix 1 IxTclHAL Commands

– 1304 –

atmOamRxFaultMgmt
RDI

Read-only. 64-bit value. Number of ATM OAM Fault Management RDI cells received.

atmOamRxGoodCells

Read-only. 64-bit value. Number of ATM OAM good cells received.

atmOamTxActDeactCC

Read-only. 64-bit value. Number of ATM OAM ActDeact cells transmitted.

atmOamTxBytes

Read-only. 64-bit value. Number of ATM OAM bytes transmitted.

atmOamTxCells

Read-only. 64-bit value. Number of ATM OAM cells transmitted.

atmOamTxFaultMgmt
AIS

Read-only. 64-bit value. Number of ATM OAM Fault Management AIS cells transmitted.

atmOamTxFaultMgmt
CC

Read-only. 64-bit value. Number of ATM OAM Fault Management CC cells transmitted.

atmOamTxFaultMgmt
LB

Read-only. 64-bit value. Number of ATM OAM Fault Management LB cells transmitted.

atmOamTxFaultMgmt
RDI

Read-only. 64-bit value. Number of ATM OAM Fault Management RDI cells transmitted.

atmScheduledCellsSent

Read-only. 64-bit value. The number of scheduled (non-idle) ATM cells sent.

atmUncorrectedHcs
ErrorCount

Read-only. 64-bit value. The number of AAL5 frames received with HCS errors that were not corrected.

Appendix 1 IxTclHAL Commands

– 1305 –

atmUnregisteredCells
Received

Read-only. 64-bit value. The number of unregistered ATM cells that were received.

background
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the
Background chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

bertAvailableSeconds

Read-only. 64-bit value. For BERT - the number of seconds which have occurred during Available Periods.

bertBackgroundBlock
ErrorRatio

Read-only. For BERT: the ratio of Background Block Errors (BBEs) to the total number of blocks.

bertBackgroundBlock
Errors

Read-only. 64-bit value. For BERT: the number of errored blocks not occurring as part of a Severely
Errored Second.

bertBitErrorRatio

Read-only. For BERT: the ratio of the number of errored bits compared to the total number of bits
transmitted.

bertBitErrorsReceived

Read-only. 64-bit value. For BERT: the total number of bit errors received.

bertBitErrorsSent

Read-only. 64-bit value. For BERT: the total number of bit errors sent.

bertBitsReceived

Read-only. 64-bit value. For BERT: the total number of bits received.

bertBitsSent

Read-only. 64-bit value. For BERT: the total number of bits sent.

bertBlockErrorState

Read-only. For BERT: whether the link is in an available or unavailable state.

Appendix 1 IxTclHAL Commands

– 1306 –

Option Value Usage

statBertUnavailablePeriod 0 Link is currently unavailable.

statBertAvailablePeriod 1 Link is currently available.

bertDeskewPattern
Lock

Read-only. Indicates that the deskew lane has locked onto a known PRBS pattern.

Value Usage

0 Not-locked.

1 Locked.

bertElapsedTestTime

Read-only. 64-bit value. For BERT - the elapsed test time, expressed in seconds in the APIs.

bertErroredBlocks

Read-only. 64-bit value. For BERT - the number of blocks containing at least one errored second.

bertErrorFree
Seconds

Read-only. 64-bit value. For BERT - the number of seconds with no errored blocks or defects.

bertErroredSecond
Ratio

Read-only. For BERT - (ESR); the ratio of Errored Seconds (ES) to the total seconds.

bertErroredSeconds

Read-only. 64-bit value. For BERT - the number of seconds containing at least one errored block or a
defect.

bertLastService
DisruptionTime

Read-only. 64-bit value. For BERT - a service disruption is the period of time during which the service is
unavailable while switching rings. The SONET spec calls for this to be less than 50 ms. This value is the
length of the last service disruption that occurred, expressed in milliseconds

Appendix 1 IxTclHAL Commands

– 1307 –

bertMaxService
DisruptionTime

Read-only. 64-bit value. For BERT - the longest service disruption that occurred, expressed in
milliseconds.

bertMinService
DisruptionTime

Read-only. 64-bit value. For BERT - the shortest service disruption that occurred, expressed in
milliseconds.

bertMismatchedOnes
Ratio

Read-only. The number of expected ones that where received as zeroes.

bertMismatchedZeros
Ratio

Read-only. The ratio of mismatched ones to the total number of bits.

bertNumber
MismatchedOnes

Read-only. 64-bit value. The number of expected zeroes that where received as ones.

bertNumber
MismatchedZeros

Read-only. 64-bit value. The ratio of mismatched zeroes to the total number of bits.

bertRxDeskewBitErrors

Read-only. 64-bit value. The number of incorrect bits received from the deskew lane.

bertRxDeskewErrored
Frames

Read-only. 64-bit value. The number of frames received that have at least one error.

bertRxDeskewError
FreeFrames

Read-only. 64-bit value. The number of deskew frames received that have no errors.

bertRxDeskewLossOf
Frame

Read-only. 64-bit value. The number of times that frame sync was lost and had to be re-acquired.

Appendix 1 IxTclHAL Commands

– 1308 –

bertSeverelyErrored
SecondRatio

Read-only. For BERT - (SESR); the ratio of Severely Errored Seconds (SESs) to the total seconds.

bertServiceDisruption
Cumulative

Read-only. 64-bit value. For BERT - the total service disruption time encountered, expressed in
milliseconds.

bertStatus

Read-only. For BERT - the status of the receive connection. .

Option Value Pattern Locked

statBertNotLocked 0 None.

statBertLockedOnInvertedAllZero 1 Inverted all zeroes.

statBertLockedOnInverted
AlternatingOneZero

2 Inverted alternating one-zero.

statBertLockedOnInverted
UserDefinedPattern

3 Inverted user defined pattern.

statBertLockedOnInverted
2to31powerLinearFeedbackShiftReg

4 Inverted 2**31.

statBertLockedOnInverted
2to11powerLinearFeedbackShiftReg

5 Inverted 2**11.

statBertLockedOnInverted
2to15powerLinearFeedbackShiftReg

6 Inverted 2**15.

statBertLockedOnInverted
2to20powerLinearFeedbackShiftReg

7 Inverted 2**20.

statBertLockedOnInverted
2to23powerLinearFeedbackShiftReg

8 Inverted 2**23.

statBertLockedOnAllZero 9 All zeroes.

statBertLockedOnAlternatingAllZero 10 Alternating one-zero.

statBertLockedOnAlternatingOneZero 11 User defined pattern.

statBertLockedOn
2to31powerLinearFeedbackShiftReg

12 2**31.

Appendix 1 IxTclHAL Commands

– 1309 –

Option Value Pattern Locked

statBertLockedOn
2to11powerLinearFeedbackShiftReg

13 2**11.

statBertLockedOn
2to15powerLinearFeedbackShiftReg

14 2**15.

statBertLockedOn
2to20powerLinearFeedbackShiftReg

15 2**20.

statBertLockedOn
2to23powerLinearFeedbackShiftReg

16 2**23.

bertTimeSinceLast
Error

Read-only. 64-bit value. The elapsed time since the last receive error was detected, expressed in nano-
seconds.

bertTransmitDuration

Read-only. The transmit duration time when port is in BERT mode.

bertTriggerCount

Read-only. 64-bit value. The number of triggers generated.

bertTxDeskewBitErrors

Read-only. 64-bit value. The number of bit errors inserted into the transmitted deskew lane.

bertTxDeskewErrored
Frames

Read-only. 64-bit value. The number of transmitted deskew frames with at least one error inserted.

bertTxDeskewError
FreeFrames

Read-only. 64-bit value. The number of transmitted deskew frames with at no errors inserted.

bertUnavailable
Seconds

Read-only. 64-bit value. For BERT - the number of seconds which have occurred during Unavailable
Periods.

Appendix 1 IxTclHAL Commands

– 1310 –

bertUnframed
DetectedLineRate

Read-only. 64-bit value. For unframed BERT - the detected line rate, in bps.

bertUnframed
OutputSignalStrength

Read-only. DOUBLE value. For unframed BERT - the output signal strength, in db.

bitsReceived

Read-only. 64-bit value. Number of bits received.

bitsSent

Read-only. 64-bit value. Number of bits transmitted.

bpduFramesReceived

Read-only. 64-bit value. Number of bridging protocol data units received.

bpduFramesSent

Read-only. 64-bit value. Number of bridging protocol data units sent.

bytesFrom
Application

Read-only. 64-bit value. On the stream extraction module, number of bytes received from the application
on either port 2 or port 3.

bytesReceived

Read-only. 64-bit value. Number of bytes received.

bytesSent

Read-only. 64-bit value. Number of bytes transmitted.

captureFilter

Read-only. 64-bit value. Number of frames received meeting the capture filter criteria set up using filter
command. This counter is available when stat mode is set to statNormal.

captureState

Read-only. Reflects the current state of capture. The following states can be read:

Appendix 1 IxTclHAL Commands

– 1311 –

Option Value Usage

statIdle 0 capture stopped

statActive 1 port currently capturing

captureTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the
Capture chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

capture1FpgaTemperature

Read-only. 64-bit value. Temperature of the first Capture FPGA chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.
This is applicable for the Lava platform.

capture2FpgaTemperature

Read-Only. 64-bit value. Temperature of the second Capture FPGA chip, if it exists. The
enableTemperatureSensorsStats options must be true for this value to be valid.

captureTrigger

Read-only. 64-bit value. Number of frames received meeting the capture trigger criteria set up using filter
command. This counter is available when stat mode is set to statNormal.

cdlErrorFrames
Received

Read-only. 64-bit value. Number of errored CDL frames received.

cdlGoodFrames
Received

Read-only. 64-bit value. Number of good CDL frames received.

codeError

Read-only. The error codes sent.

codingErrorFrames
Received

Read-only. 64-bit value. The number of frames received with coding errors.

collisionFrames

Read-only. 64-bit value. Number of frames received with collisions.

Appendix 1 IxTclHAL Commands

– 1312 –

collisions

Read-only. 64-bit value. Number of collisions.

customOrderedSet
Received

Read-only. 64-bit value. The number of remote ordered sets received.Ordered sets are part of Link Fault
Signaling, and can be configured with Link Fault Signaling.

customOrderedSetSent

Read-only. 64-bit value. The number of custom ordered sets sent.Ordered sets are part of Link Fault
Signaling, and can be configured with Link Fault Signaling.

dataIntegrityErrors

Read-only. 64-bit value. Number of frames that have data integrity error. (Not available when port is in
PRBS mode.)

dataIntegrityFrames

Read-only. 64-bit value. Number of frames that match data integrity signiture. (Not available when port is
in PRBS mode.)

dcbxIscsiTlvsSent

Read-only. Number of DCBX ISCSI TLVs sent.

dcbxIscsiTlvsReceived

Read-only. Number of DCBX ISCSI TLVs received.

dccBytesReceived

Read-only. 64-bit value. Number of DCC bytes received.

dccBytesSent

Read-only. 64-bit value. Number of DCC bytes sent.

dccCrcErrorsReceived

Read-only. 64-bit value. Number of DCC CRC errors received.

dccFramesReceived

Read-only. 64-bit value. Number of DCC frames received.

dccFramesSent

Read-only. 64-bit value. Number of DCC frames sent.

Appendix 1 IxTclHAL Commands

– 1313 –

dccFramingErrors
Received

Read-only. 64-bit value. Number of DCC framing errors received.

dhcpV4AcksReceived

Read-only. 64-bit value. The number or ACK messages received.

dhcpV4Addresses
Learned

Read-only. 64-bit value. The number of address learned.

dhcpV4Discovered
MessagesSent

Read-only. 64-bit value. The number of Discovered messages sent.

dhcpV4Enabled
Interfaces

Read-only. 64-bit value. The number of enabled interfaces.

dhcpV4NacksReceived

Read-only. 64-bit value. The number of NACK messages received.

dhcpV4OffersReceived

Read-only. 64-bit value. The number of Offer messages received.

dhcpV4ReleasesSent

Read-only. 64-bit value. The number of Release messages sent.

dhcpV4RequestsSent

Read-only. 64-bit value. The number of Request messages sent.

dmaTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the DMA
chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

dribbleErrors

Read-only. 64-bit value. Number of frames received with dribble errors on a 10/100 port.

droppedFrames

Read-only. 64-bit value. The number of dropped frames.

Appendix 1 IxTclHAL Commands

– 1314 –

duplexMode

Read-only. The duplex mode configured for the port.The following states can be read:

Value Usage

0 half duplex

1 full duplex

eErrorCharacterFrames
Received

Read-only. 64-bit value. The number of frames received with DUT labeled errors received.

egressDroppedFrames

Read-only. 64-bit value. The number of frames that get dropped before they are transmitted.

ethernetCrc

Read-only. The ethernet CRC for ATM cards, the CRC counter represents AAL5 CRCs.

excessiveCollision
Frames

Read-only. 64-bit value. Number of frames received with excessive collisions.

fcFlogiSent

Read-only. The Fabric Login (FLOGI) ELS sent.

fcFlogiLsAccReceived

Read-only. The Link Service Accept (LS_ACC) ELS notification received.

fcPlogiSent

Read-only. The PLOGI ELS notification sent.

fcPlogiLsAccReceived

Read-only. The PLOGI Link Service Accept (LS_ACC) ELS notification received.

fcPlogiRequests
Received

Read-only. The PLOGI ELS notification received.

fcFlogoSent

Read-only. The FLOGO notification sent.

Appendix 1 IxTclHAL Commands

– 1315 –

fcPlogoSent

Read-only. The PLOGO notification sent.

Read-only. The PLOGO notification received.

fcFdiscSent

Read-only. The FDISC notification sent.

fcFdiscLsAccReceived

Read-only. The FDISC LS_ACC notification received.

fcNSRegSent

Read-only. The Name Server Registration notification sent.

fcNSRegSuccessful

Read-only. The Name Server Registration notification sent successfully.

fcNxPortsEnabled

Read-only. The Nx port is enabled.

fcNxPortIdsAcquired

Read-only. The ID of Nx port is acquired.

fcoeFdiscLsAcc
Received

Read-only. FCoE Discovery Link Service Accept received.

fcoeFdiscSent

Read-only. FCoE Discovery sent.

fcoeFlogiLsAccReceived

Read-only. FCoE Fabric Login Link Service Accept received.

fcoeFlogiSent

Read-only. FCoE Fabric Login sent.

fcoeFlogoSent

Read-only. FCoE Fabric Logout sent.

fcoeNxPortIdsAcquired

Read-only. FCOE Nx Port IDs Acquired

Appendix 1 IxTclHAL Commands

– 1316 –

fcoeNxPortsEnabled

Read-only. FCOE Nx Ports Enabled

fcoeNSRegSent

Read-only. FCOE Name Server Registration sent

fcoeNSRegSuccessful

Read-only. FCOE Name Server Registration successful

fcoePlogiLsAccReceived

Read-only. FCOE Port Login Link Service Accept received

fcoePlogiRequests
Received

Read-only. FCOE Port Login Requests received

fcoePlogiSent

Read-only. FCOE Port Login sent

fcoePlogoReceived

Read-only. FCOE Port Logout received

fcoePlogoSent

Read-only. FCOE Port Logout sent

fcoeRxSharedStat1

Read-only. The requested FCoE variable is stored here.

fcoeRxSharedStat2

Read-only. The requested FCoE variable is stored here.

fcsErrors

Read-only. 64-bit value. Number of frames received with FCS errors.

fecCorrected0sCount

Read-only. 64-bit value. Number of 0 errors (1s changed to 0s) that have been corrected.

fecCorrected1sCount

Read-only. 64-bit value. Number of 1 errors (0s changed to 1s) that have been corrected.

Appendix 1 IxTclHAL Commands

– 1317 –

fecCorrectedBitsCount

Read-only. 64-bit value. Number of flipped bits errors (0s changed to 1s and vice versa) that have been
corrected.

fecCorrectedBytes
Count

Read-only. 64-bit value. Number of bytes that have had errors corrected.

fecCorrectedCodewords

Read-only. 64-bit value. Maximum number of corrected codewords.

fecFrameLossRatio

Read-only. 64-bit value. Ratio of frame loss.

fecMaxSymbolErrors

Read-only. 64-bit value. Maximum number of corrected symbols.

fecMaxSymbolErrorsBin0

Read-only. 64-bit value. Number of codeword with 0 symbol error.

fecMaxSymbolErrorsBin1

Read-only. 64-bit value. Number of codewords with 1 symbol error.

fecMaxSymbolErrorsBin2

Read-only. 64-bit value. Number of codewords with 2 symbol errors.

fecMaxSymbolErrorsBin3

Read-only. 64-bit value. Number of codewords with 3 symbol errors.

fecMaxSymbolErrorsBin4

Read-only. 64-bit value. Number of codewords with 4 symbol errors.

fecMaxSymbolErrorsBin5

Read-only. 64-bit value. Number of codewords with 5 symbol errors.

fecMaxSymbolErrorsBin6

Read-only. 64-bit value. Number of codewords with 6 symbol errors.

fecMaxSymbolErrorsBin7

Read-only. 64-bit value. Number of codewords with 7 symbol errors.

Appendix 1 IxTclHAL Commands

– 1318 –

fecMaxSymbolErrorsBin8

Read-only. 64-bit value. Number of codewords with 8 symbol errors.

fecMaxSymbolErrorsBin9

Read-only. 64-bit value. Number of codewords with 9 symbol errors.

fecMaxSymbolErrorsBin10

Read-only. 64-bit value. Number of codewords with 10 symbol errors.

fecMaxSymbolErrorsBin11

Read-only. 64-bit value. Number of codewords with 11 symbol errors.

fecMaxSymbolErrorsBin12

Read-only. 64-bit value. Number of codewords with 12 symbol errors.

fecMaxSymbolErrorsBin13

Read-only. 64-bit value. Number of codewords with 13 symbol errors.

fecMaxSymbolErrorsBin14

Read-only. 64-bit value. Number of codewords with 14 symbol errors.

fecMaxSymbolErrorsBin15

Read-only. 64-bit value. Number of codewords with 15 symbol errors.

fecTotalBitErrors

Read-only. 64-bit value. Total number of bit errors.

fecTotalCodewords

Read-only. 64-bit value. Total number of codewords.

fecTranscodingUncorrectableErrors

Read-only. 64-bit value. The number of actual FEC uncorrectable error events detected when both FEC
engines are active.
This statistics disambiguates whether both FEC engines received uncorrectable codewords in parallel or
just one of the two codewords was uncorrectable, and is used to derive the FEC Frame Loss Ratio.

fecUncorrectableSubrowCount

Read-only. 64-bit value. Number of subrows that have uncorrectable errors.

Appendix 1 IxTclHAL Commands

– 1319 –

fecUncorrectableCodewords

Read-only. 64-bit value. Number of codewords with 16 or more errors.

fipDiscoverySolicita-tionsSent

Read-only. Number of FIP Discovery Solicitations that have been sent.

fipDiscoveryAdvertise-mentsReceived

Read-only. Number of FIP Discovery Advertisements that have been received.

fipKeepAlivesSent

Read-only. Number of FIP Keep Alives that have been sent.

fipClearVirtualLinks Received

Read-only. Number of FIP Clear Virtual Links that have been received.

firecodeFecCorrectedErrorBits

Read-only. 64-bit value. Total number of corrected error bits by FC-FEC.

firecodeFecSync

Read-only. 64-bit value. Port is in sync if it successfully negotiates FC-FEC.

Value Usage

Sync Port is in sync, FC-FEC negotiated successfully.

No sync Port is not in sync, FC-FEC not negotiated successfully.

firecodeFecTotalCorrectedBlockCount

Read-only. 64-bit value. Total number of corrected blocks by FC-FEC.

firecodeFecUncorrectedErroredBlockCount

Read-only. 64-bit value. Total number of uncorrected blocks by FC-FEC.

flowControlFrames

Read-only. 64-bit value. Number of flow control frames received.

fobBoardTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Stats. The temperature of the board
of the Fiber optic module. The enableTemperatureSensorsStats options must be true for this value to be
valid.

Appendix 1 IxTclHAL Commands

– 1320 –

fobDeviceInternal
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Stats. The temperature of the FPGA
on the Fiber optic module. The enableTemperatureSensorsStats options must be true for this value to be
valid.

fobPort1Fpga
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Stats. The temperature next to port 1
on the Fiber optic module. The enableTemperatureSensorsStats options must be true for this value to be
valid.

fobPort2Fpga
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Stats. The temperature next to port 2
on the Fiber optic module.

fragments

Read-only. 64-bit value. Number of fragmented frames received.

framerAbort

Read-only. 64-bit value.

framerFCSErrors

Read-only. 64-bit value.

framerMaxLength

Read-only. 64-bit value.

framerMinLength

Read-only. 64-bit value.

framesReceived

Read-only. 64-bit value. Number of frames received.

framesSent

Read-only. 64-bit value. Number of frames transmitted.

Appendix 1 IxTclHAL Commands

– 1321 –

frontEndTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the Front
End chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

gfpIdleFrames

Read-only. 64-bit value. Number of GFP idle frames transmitted.

gfpSyncHunt
Transitions

Read-only. 64-bit value. The number of Sync/Hunt state transition frames received.

gfpeHecErrors

Read-only. 64-bit value. Number of GFP extension header HEC errors detected.

gfpPayloadFcsErrors

Read-only. 64-bit value. Number of payload FCS errors detected.

gfpRxBandwidth

Read-only. 64-bit value. The measured receive GFP bandwidth, in Mbps.

gfpSyncState

Read-only. 64-bit value. The GFP sync state value.

gfptHecErrors

Read-only. 64-bit value. Number of GFP type header HEC errors detected.

inputSignalStrength

Read-only. Monitors receive optical input power.

insertionState

Read-only. The current state of link fault insertion.

Option Value Usage

linkFaultInsertionIdle 0 No error insertion.

linkFaultInsertionInserting 1 In the process of inserting link faults.

ipChecksumErrors

Read-only. 64-bit value. Number of frames transmitted.

Appendix 1 IxTclHAL Commands

– 1322 –

ipPackets

Read-only. 64-bit value. Number of frames transmitted.

invalidEOFCount

Read-only. The count of invalid End of Frames.

lateCollisions

Read-only. 64-bit value. Number of frames received with late collisions.

latencyTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the
Latency chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

latency1FpgaTemperature

Read-Only. 64-bit value. Temperature of the first Latency FPGA chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.
This is applicable for the Lava platform.

latency2FpgaTemperature

Read-Only. 64-bit value. Temperature of the second Latency FPGA chip, if it exists. The
enableTemperatureSensorsStats options must be true for this value to be valid.

lineAis

Read-only. A flag indicating whether any Line Alarm Indication Signal have been received on an OC port
for Packet over Sonet interfaces.

Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

lineAisAlarmSecs

Read-only. 64-bit value. A count of the seconds during which (at any point during the second) at least one
Line layer AIS defect was present.

Appendix 1 IxTclHAL Commands

– 1323 –

lineBip

Read-only. 64-bit value. Number of Line Bit Interleaved Parity errors received on OC ports for POS
interfaces. The enablePosExtendedStats options must be true for this value to be valid.

lineBipErroredSecs

Read-only. 64-bit value. A count of the seconds during which (at any point during the second) at least one
Line layer BIP was detected.

lineRdi

Read-only. 64-bit value. A flag indicating whether any Line Remote Defect Indicators (former FERF: Far
End Receive Failure) have been received on an OC ports for Packet over Sonet interfaces. Contains value
after the class method stat get statAllStats is used:

Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

lineRdiUnavailableSecs

Read-only. 64-bit value. A count of the seconds during which the line is considered unavailable at the far
end.

lineRei

Read-only. 64-bit value. Number of Line Remote Error Indications (former FEBE: Far End Block Error)
received on OC ports for Packet over Sonet interfaces. The enablePosExtendedStats options must be true
for this value to be valid.

lineReiErroredSecs

Read-only. 64-bit value. A count of the seconds during which at least one line BIP error was reported by
the far end.

lineSpeed

Read-only. The speed configured for the port.

link

Read-only. The state of the link. The following states can be read from the port:

Appendix 1 IxTclHAL Commands

– 1324 –

Option Value Usage

linkDown 0 The link on the port is down. This may be because there is no
cable connected to the port or the link on the destination port
may be down. The LED on the card is off when the link is down.
(default)

linkUp 1 the link is up indicated by green LED on the card.

linkLoopback 2 the port has been set to loopback mode. The LED on the card is
off in this mode.

miiWrite 3 the link goes into this state when the configuration of 10/100
port is being written to hardware (applicable to 10/100 only)

restartAuto 4 restarts the auto-negotiation process

autoNegotiating 5 the link is in currently executing the auto-negotiation process

miiFail 6 failed to write into memory for 10/100 ports (applicable to
10/100 only)

noTransceiver 7 No external transceiver detected on Ixia Mii or Rmii port.

invalidAddress 8 No PHY detected at the selected address.

readLinkPartner 9 Auto negotiation state in negotiation process. This is an
intermediate state and should be used for informational
purposes only.

noLinkPartner 10 Auto negotiation state in negotiation process. No link partner
was found. This is an intermediate state and should be used for
informational purposes only

restartAutoEnd 11 Auto negotiation state in negotiation process. This is an
intermediate state and should be used for informational
purposes only.

fpgaDownloadFail 12 Fpga download failure. Port is not be usable.

noGbicModule 13 No GBIC module detected on Ixia GBic port.

fifoReset 14 State in board initialization process. This is an intermediate
state and should be used for informational purposes only.

fifoResetComplete 15 State in board initialization process. This is an intermediate
state and should be used for informational purposes only.

pppOff 16 PPP is disabled. PPP control packets are ignored; PPP link
negotiation is not performed. Does not mean the link is

Appendix 1 IxTclHAL Commands

– 1325 –

Option Value Usage

unusable; it may, for instance, be configured for Cisco/HDLC
and traffic (non-PPP) may still flow.

pppUp 17 The fully operational state when PPP is enabled. PPP link
negotiation has successfully completed and the link is available
for normal data traffic.

pppDow 18 The non-operational state when PPP is enabled. PPP link
negotiation has failed or the link has been administratively
disabled.

pppInit 19 PPP link negotiation state. This is an intermediate state and
should be used for informational purposes only. Initialization
state at the start of the negotiation process.

pppWaitForOpen 20 PPP link negotiation state: Waiting for indication from PPP
controller that auto-negotiation and related PPP control packet
transfers can proceed. This is an intermediate state and should
be used for informational purposes only.

pppAutoNegotiate 21 PPP link negotiation state: In process of exchanging PPP control
packets (for example, LCP and IPCP) to negotiate link
parameters. This is an intermediate state and should be used for
informational purposes only.

pppClose 22 PPP link negotiation state: The PPP session has been terminated.
All data traffic stops.

pppConnect 23 PPP link negotiation state: Negotiation has successfully
completed; the peers are logically connected. Normal data
traffic may flow once the pppUp state is reached. This is an
intermediate state and should be used for informational
purposes only.

lossOfSignal 25 Physical link is down. (for example, loss of signal, loss of frame)

lossOfFramePpp
Disabled

26 PPP link negotiation state: Physical link has gone down and PPP
negotiation has been stopped.

stateMachineFailure 27 Communication with the local processor has failed. Check
Server display and log for possible failure.

pppRestartNegotiation 28 PPP link negotiation state, following explicit request to restart
negotiation process: this state indicates response to
request.This is an intermediate state and should be used for
informational purposes only.

Appendix 1 IxTclHAL Commands

– 1326 –

Option Value Usage

pppRestartInit 29 PPP link negotiation state, following explicit request to restart
negotiation process: the link has or is brought down to begin a
new negotiation cycle. This is an intermediate state and should
be used for informational purposes only.

pppRestartWaitFor
Open

30 PPP link negotiation state, following explicit request to restart
negotiation process: Waiting for indication from PPP controller
that current connection is already down or is in process of being
shut down. This is an intermediate state and should be used for
informational purposes only.

pppRestartWaitFor
Close

31 PPP link negotiation state, following explicit request to restart
negotiation process: Waiting for indication from PPP controller
that shut down of current connection has completed.This is an
intermediate state and should be used for informational
purposes only.

pppRestartFinish 32 PPP link negotiation state, following explicit request to restart
negotiation process: Preparation for restart completed; ready to
begin normal cycle again. This is an intermediate state and
should be used for informational purposes only.

localProcessorDown 33 local processor boot failure

sublayerUnlock 41 Sublayer unlock.

demoMode 42 Server is in demo mode.

waitingForFpga
Download

43 Port is waiting for FPGA (Field Programmable Gate Array)
programming to be downloaded to port.

lossOfCell 44 ATM cell loss.

noXFPModule 45 No XFP module is installed.

moduleNotReady 46 The XFP interface has reported not ready.

noX2Module 48 No X2 module is installed.

lossOfPointer 49 Loss of pointer.

lossOfAligment 50 Loss of alignment.

lossOfMultiframe 51 Loss of multiframe.

gfpOutOfSync 52 GFP out of sync.

Appendix 1 IxTclHAL Commands

– 1327 –

Option Value Usage

lcasSequenceMismatch 53 Lcas sequence mismatch.

ethernetOamLoopback 54 Ethernet OAM Loopback state

linkFaultState

Read-only. The current detected link fault state for the port.

Option Value Usage

noLinkFault 0 No link fault detected.

localLinkFault 1 A local link fault has been detected.

remoteFault 2 A remote link fault has been detected.

localFaults

Read-only. 64-bit value. The number of local link faults detected.

localOrderedSet
Received

Read-only. 64-bit value. The number of local ordered sets received. Ordered sets are part of Link Fault
Signaling.

localOrderedSetSent

Read-only. 64-bit value. The number of local ordered sets sent. Ordered sets are part of Link Fault
Signaling.

misdirectedPackets
Received

Read-only. 64-bit value. The number of misdirected packets received.

misdirectedPackets
Ignored

Read-only. 64-bit value. The number of misdirected packets ignored.

monitorBytesFrom
Port2

Read-only. 64-bit value. On the stream extraction module, the number of bytes from port two to the
monitor port.

Appendix 1 IxTclHAL Commands

– 1328 –

monitorBytesFrom
Port3

Read-only. 64-bit value. On the stream extraction module, the number of bytes from port three to the
monitor port.

monitorPacketsFrom
Port2

Read-only. 64-bit value. On the stream extraction module, the number of packets from port two to the
monitor port.

monitorPacketsFrom
Port3

Read-only. 64-bit value. On the stream extraction module, the number of packets from port three to the
monitor port.

nsQuerySent

Read-only. The name server query sent to the FC port.

nsQuerySuccessful

Read-only. The successful transmission of NS Query.

overlayTemperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the
Overlay chip. The enableTemperatureSensorsStats options must be true for this value to be valid.

oversize

Read-only. 64-bit value. Number of oversized frames received (greater than 1518 bytes).

oversizeAndCrcErrors

Read-only. 64-bit value. Only available for Gigabit modules. Number of frames received with oversize and
CRC errors.

packetsFrom
Application

Read-only. 64-bit value. On the stream extraction module, number of packets received from the
application on either port 2 or port 3.

packetsSkippedIn
PacketGroupMode

Read-only. 64-bit value. The number of packets which were not assigned to a packet group. This can
occur if the packet contains the anticipated packet group signature, but is too short to hold the group ID.

Appendix 1 IxTclHAL Commands

– 1329 –

pathAis

Read-only. A flag indicating whether any Path Alarm Indication Signals have been received on an OC ports
for Packet over Sonet interfaces. Contains a value after the class method stat get statAllStats is used:

Option Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

pathAisErroredSecs

Read-only. 64-bit value. A count of the seconds during which (at any point during the second) at least one
Path AIS error was detected.

pathAisUnavailableSecs

Read-only. 64-bit value. A count of the seconds during which the STS path was considered unavailable.

pathBip

Read-only. 64-bit value. Number of Path Bit Interleaved Parity errors received on OC ports for Packet over
Sonet interfaces. The enablePosExtendedStats options must be true for this value to be valid.

pathBipErroredSecs

Read-only. 64-bit value. A count of the seconds during which (at any point during the second) at least one
Path BIP error was detected.

pathLossOfPointer

Read-only. A flag indicating whether any Path LOP indications have been received on an OC ports for
Packet over Sonet interfaces. Contains a value after the class method stat get statAllStats is used:

Option Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

Appendix 1 IxTclHAL Commands

– 1330 –

pathPlm

Read-only. A flag indicating whether any Path Label Mismatch indications have been received on an OC
ports for Packet over Sonet interfaces. Contains a value after the class method stat get statAllStats is
used:

Option Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

pathRdi

Read-only. A flag indicating whether any Path Remote Defect Indicators (former FERF: Far End Receive
Failure) have been received on an OC ports for Packet over Sonet interfaces. Contains a value after the
class method stat get statAllStats is used:

Option Value Usage

0 no errors

1 alarm

2 not applicable

The enablePosExtendedStats options must be true for this value to be valid.

pathRdiUnavailable
Secs

Read-only. 64-bit value. A count of the seconds during which the STS path was considered unavailable at
the far end.

pathRei

Read-only. 64-bit value. Number of Path Remote Error Indications (former FEBE : Far End Block Error)
received on OC ports for Packet over Sonet interfaces. The enablePosExtendedStats options must be true
for this value to be valid.

pathReiErroredSecs

Read-only. 64-bit value. A count of the seconds during which (at any point during the second) at least one
STS Path error was reported by the far end.

Appendix 1 IxTclHAL Commands

– 1331 –

pauseAcknowledge

Read-only. 64-bit value. For 10Gbe: the number of received pause acknowledge messages.

pauseEndFrames

Read-only. 64-bit value. For 10Gbe: the number of received pause end frame messages.

pauseOverwrite

Read-only. 64-bit value. For 10Gbe: the number of pause frames received while transmit was paused
with a quanta not equal to 0.

pauseState

Read-only. Reflects whether the port is in pause transmit mode. The following states can be read:

Option Value Usage

statIdle 0 transmit pause not enabled

statActive 1 transmit pause enabled

pcpuFpgaTemperature

Read-Only. 64-bit value. Temperature of the port CPU FPGA chip. The enableTemperatureSensorsStats
options must be true for this value to be valid.
This is applicable for the XM100, Flex, Lava, Novus, and other 200G, 400G platforms.

pcsSyncErrorsReceived

Read-only. The number of 64B/66B blocks received with a sync header that does not have a valid value of
either 01 (data) or 10 (control).

pcsIllegalCodes
Received

Read-only. The number of 64B/66B control blocks received with a block type field that is not among one
of the following valid types of 64B/66B Block Formats: 0x1E, 0x78, 0x4B, 0x87, 0x99, 0xAA, 0xB4, 0xCC,
0xD2, 0xE1, 0xFF.

pcsRemoteFaults
Received

Read-only. The number of Remote Fault sequence ordered sets received by the test port.

pcsLocalFaultsReceived

Read-only. The number of Local Fault sequence ordered sets received by the test port.

Appendix 1 IxTclHAL Commands

– 1332 –

pcsIllegalOrderedSet
Received

Read-only. The number of 64B/66B control blocks received with a block type field of 0x4B for Ordered
Sets, and the remainder of the block does not match that of valid ordered set codes (for local fault or
remote fault).

pcsIllegalIdleReceived

Read-only. The number of 64B/66B control blocks received with a block type field of 0x1E, and the
remainder of the block does not contain all valid idle control codes.

pcsIllegalSofReceived

Read-only. The number of 64B/66B control blocks received with a block type field of 0x78 for a Start
code, and the remainder of the block does not match that of a valid preamble (0x55_55_55_55_55_55_
D5). If the port has programmable preamble mode enabled, the remainder of the block is allowed to have
any value, and so no blocks will be counted as Illegal SOF.

pcsOutOfOrderSof
Received

Read-only. The number of SOF control blocks received while in the middle of a frame. In other words, a
64B/66B SOF control block was received (block type field = 0x78) to start a frame, possibly followed by
additional Data blocks, followed by another SOF block prior to having received an EOF control block to
terminate the frame.

pcsOutOfOrderEof
Received

Read-only. The number of EOF control blocks received while not in the middle of a frame. In other words,
an EOF control block was received without having received an SOF control block to start the frame.

pcsOutOfOrderData
Received

Read-only. The number of Data blocks received while not in the middle of a frame. In other words, a Data
block was received without having received an SOF control block to start the frame.

pcsOutOfOrderOrderedSetReceived

Read-only. The number of Ordered Set blocks received while in the middle of a frame. In other words, a
64B/66B SOF control block was received (block type field = 0x78) to start a frame, possibly followed by
additional Data blocks, followed by an ordered set block prior to having received an EOF control block to
terminate the frame.

phyChipTemperature

Read-Only. 64-bit value. Temperature of the PHY chip. The enableTemperatureSensorsStats options
must be true for this value to be valid.

Appendix 1 IxTclHAL Commands

– 1333 –

plmDevice1Internal
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the PLM
measuring device #1 chip. The enableTemperatureSensorsStats options must be true for this value to be
valid.

plmDevice2Internal
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the PLM
measuring device #2 chip. The enableTemperatureSensorsStats options must be true for this value to be
valid.

plmDevice3Internal
Temperature

Read-only. 64-bit value. Part of the OC-192 - Temperature Sensors Statistics. Temperature of the PLM
measuring device #3 chip. The enableTemperatureSensorsStats options must be true for this value to be
valid.

poeActiveInput

Read-only. 64-bit value. Displays the type of PSE in use, Alt. A or Alt B

poeAmplitudeArm
Status

Read-only. The state of poeSignalAcquisition amplitude measurement arming; true = armed and false =
not armed.

poeAmplitudeDone
Status

Read-only. The state of poeSignalAcquisition amplitude measurement; true = measurement has been
taken and false = not taken.

poeAutocalibration

Read-only. The stage in the port diagnostic test.

poeInputCurrent

Read-only. Floating point value. The port's input current.

poeInputPower

Read-only. Floating point value. The port's input power.

Appendix 1 IxTclHAL Commands

– 1334 –

poeInputVoltage

Read-only. Floating point value. The port's input voltage.

poeStatus

Read-only. The state of the Power Over Ethernet port. Possible states:

Option Value Usage

statPoeNoOperation 0 POE no operation

statPoeDetect 1 POE detect

statPoeClassify 2 POE classify

statPoeReady 3 POE ready

statPoeOperate 4 POE operate

statPoePulse 5 POE pulse

statPoeOff 6 POE off

statPoeIdle 7 POE idle

statPoeError 8 POE error

statPoeShutdown 9 POE shutdown

poeTemperature

Read-only. The temperature of the PoE port, in Celsius.

poeTimeArmStatus

Read-only. The state of poeSignalAcquisition time measurement arming; true = armed and false = not
armed.

poeTimeDoneStatus

Read-only. The state of poeSignalAcquisition time measurement trigger; true = triggered and false = not
triggered.

poeTriggerAmplitude
DCAmps

Read-only. Floating point value. The measured DC amps value from a triggered event set up in
poeSignalAcquisition

Appendix 1 IxTclHAL Commands

– 1335 –

poeTriggerAmplitude
DCVolts

Read-only. Floating point value. The measured DC volts value from a triggered event set up in
poeSignalAcquisition

poeTriggerTime

Read-only. Floating point value. The measured time value from a triggered event set up in
poeSignalAcquisition.

portCPUBytesReceived

Read-only. 64-bit value. Number of bytes that are received by port CPU.

portCPUFrames
Received

Read-only. 64-bit value. Number of frames that are received by port CPU.

portCPUFramesSent

Read-only. 64-bit value. The number of frames originating from the port's CPU rather than the stream
engine.

portCpuIngress
DroppedFrames

Read-only. 64-bit value. The number of frames that dropped while coming to the port cpu.

portCpuStatus

Read-only. The state of the port's CPU. One of

Option Value Usage

statCpuNotPresent 0 No CPU is present on this port.

statCpuNotReady 1 The CPU is not ready.

statCpuReady 2 The CPU is ready.

statCpuErrorOsHalt 3 The CPU has encountered an OS error and has halted.

statCpuErrorMemTestFailed 4 The CPU encountered an error during memory tested and
has halted.

statCpuErrorBootFailed 5 The CPU failed to completely boot.

statCpuErrorNotResponding 6 The CPU is not responding.

Appendix 1 IxTclHAL Commands

– 1336 –

portCpuDodStatus

Read-only. The state of the DOD (software download on demand) process. One of

Option Value Usage

statCpuDodNotReady 0 The DOD process has not completed yet.

statCpuDodReady 1 The DOD process has completed.

posK1Byte

Read-only. 64-bit value. The current K1 byte code value being received in the Sonet frame.

posK2Byte

Read-only. 64-bit value. The current K2 byte code value being received in the Sonet frame.

prbsBerRatio

Read-only. 64-bit value. Ratio of PRBS errored bits to bits received.

prbsBitsReceived

Read-only. 64-bit value. Number of PRBS bits received.

prbsErroredBits

Read-only. 64-bit value. Number of PRBS errored bits received.

prbsFramesReceived

Read-only. 64-bit value. Number of PRBS frames received.

prbsHeaderError

Read-only. 64-bit value. Number of PRBS header errors received.

preFecBer

Read-only. 64-bit value. Bit error rate of pre FEC.

PRLISent

Read-only. The Process Login parameters sent by this port.

PRLIReceived

Read-only. The Process Login parameters received by this port.

PRLISuccessful

Read-only. The Process Login parameters successfully sent and received by this port.

Appendix 1 IxTclHAL Commands

– 1337 –

qualityOfService0-7

Read-only. 64-bit value. Number of frames counted by Quality of Service Counter 0 through 7 that meet
the criteria set up using the qos command. This counter is available when stat mode is set to statQos.

remoteFaults

Read-only. 64-bit value. The number of remote link faults detected.

remoteOrderedSet
Received

Read-only. 64-bit value. The number of remote ordered sets received. Ordered sets are part of Link Fault
Signaling.

remoteOrderedSetSent

Read-only. 64-bit value. The number of remote ordered sets sent. Ordered sets are part of Link Fault
Signaling.

rprDiscoveryFrames
Received

Read-only. 64-bit value. The number of RPR discovery frames received.

rprDataFrames
Received

Read-only. 64-bit value. The number of RPR encapsulated data frames received.

rprFairnessFrames
Received

Read-only. 64-bit value. The number of RPR fairness frames received.

rprFairnessFramesSent

Read-only. 64-bit value. The number of RPR fairness frames sent.

rprFairnessTimeouts

Read-only. 64-bit value. The number of timeouts that occurred waiting for RPR fairness frames.

rprHeaderCrcErrors

Read-only. 64-bit value. The number of RPR frames received with header CRC errors.

rprIdleFramesReceived

Read-only. 64-bit value. The number of RPR idle frames received

Appendix 1 IxTclHAL Commands

– 1338 –

rprOamFrames
Received

Read-only. 64-bit value. The number of RPR OAM frames received.

rprPayloadCrcErrors

Read-only. 64-bit value. The number of RPR frames received with payload CRC errors.

rprProtectionFrames
Received

Read-only. 64-bit value. The number of RPR protection frames received.

RRDYsSent

Read-only. Receiver Ready error singal sent.

RRDYsReceived

Read-only. Receiver Ready error singal received.

remoteBBCreditCOunt

Read-only. The count of the number of remote buffers supported by an FC port.

remoteBBCreditValue

Read-only. The credit value of the remote buffers supported by an FC port.

disparityErrors

Read-only. The error that occurs when hardware wrongly selects 10B code for 8B hex value in the frame.
It is 8B10B encoding error and is seen only in 10B encoded data.

RSCNReceived

Read-only. The Registered State Change Notification (RSCN) ELS received.

RSCNAccTransmitted

Read-only. The Registered State Change Notification (RSCN) ELS transmitted.

rsFecCorrectedCodewordCount

Read-only. 64-bit value. Total number of corrected codewords by RS-FEC.

rsFecUncorrectedCodewordCount

Read-only. 64-bit value. Total number of uncorrected codewords by RS-FEC.

Appendix 1 IxTclHAL Commands

– 1339 –

rxFmxFpgaTemperature

Read-Only. 64-bit value. Temperature of the Receive FMX FPGA chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.
This is applicable for the Flex platform.

rxFpgaTemperature

Read-Only. 64-bit value. Temperature of the Receive FPGA chip. The enableTemperatureSensorsStats
options must be true for this value to be valid.
This is applicable for the XM100, Novus, and other 200G, 400G platforms.

RxPausePriorityGroup
0Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 0 frames received.

RxPausePriorityGroup
1Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 1 frames received.

RxPausePriorityGroup
2Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 2 frames received.

RxPausePriorityGroup
3Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 3 frames received.

RxPausePriorityGroup
4Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 4 frames received.

RxPausePriorityGroup
5Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 5 frames received.

RxPausePriorityGroup
6Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 6 frames received.

RxPausePriorityGroup
7Frames

Read-only. 64-bit value. The number of Rx Pause Priority Group 7 frames received.

Appendix 1 IxTclHAL Commands

– 1340 –

scheduledFramesSent

Read-only. 64-bit value. The number of frames transmitted as part of programmed streams.

scheduledTransmitTime

Read-only. 64-bit value. This only applies to ports that support the portFeatureScheduledTxDuration
feature (port isValidFeature). This is the scheduled transmit time associated with the port. This statistic is
also is also available with the getScheduledTransmitTime sub-command of this command.

schedulerTemperature

Read-only. 64-bit value. The temperature at the scheduler chip.

SCRTransmitted

Read-only. The State Change Registration (SCR) ELS transmitted.

SCRReceived

Read-only. The State Change Registration (SCR) ELS received.

sectionBip

Read-only. 64-bit value. Number of section BIP errors received on OC ports for Packet over Sonet
interfaces. The enablePosExtendedStats options must be true for this value to be valid.

sectionBipErroredSecs

Read-only. 64-bit value. A count of the number of seconds during which (at any point during the second)
at least one section layer BIP was detected.

sectionLossOfFrame

Read-only. 64-bit value. Number of section LOF indications received on OC ports for Packet over Sonet
interfaces. The enablePosExtendedStats options must be true for this value to be valid.

sectionLossOfSignal

Read-only. 64-bit value. Number of section LOS indications received on OC ports for Packet over Sonet
interfaces. The enablePosExtendedStats options must be true for this value to be valid.

sectionLossOfSignal
Secs

Read-only. 64-bit value. A count of the number of seconds during which (at any point during the second)
at least one section layer LOS defect was present.

sequenceErrors

Read-only. 64-bit value. Number of sequence errored frames.

Appendix 1 IxTclHAL Commands

– 1341 –

sequenceFrames

Read-only. 64-bit value. Number of signature matched frames.

sonetCircuitType

Read-only. The type of the Sonet Circuit. One of:

statSonetCircuitAsymmetric

statSonetCircuitSts1

statSonetCircuitSts3c

statSonetCircuitSts12c

statSonetCircuitSts48c

statSonetCircuitSts_0

statSonetCircuitStm1

statSonetCircuitStm4

statSonetCircuitStm16

statSonetCircuitSts1Xv

statSonetCircuitSts3cXv

statSonetCircuitSts12cXv

statSonetCircuitVc3Xv

statSonetCircuitVc4Xv

sonetTimeslotLcasSinkState

Read-only. The state of the Sonet Timeslot LCAS Sink. One of:

statSonetTimeslotSinkStop

statSonetTimesloSinkIdle

statSonetTimeslotSinkOk

statSonetTimeslotSinkFail

Appendix 1 IxTclHAL Commands

– 1342 –

sonetTimeslotLcas
SourceState

Read-only. The state of the Sonet Timeslot LCAS Source. One of:

statSonetTimeslotSourceStop

statSonetTimeslotSourceIdle

statSonetTimeslotSourceNorm

statSonetTimeslotSourceDnu

statSonetTimeslotSourceAdd

statSonetTimeslotSourceRemove

srpDataFrames
Received

Read-only. 64-bit value. The number of Data frames received. IPv4 frames fall in this category.

srpDiscoveryFrames
Received

Read-only. 64-bit value. The number of topology discovery frames received.

srpIpsFramesReceived

Read-only. 64-bit value. The number of IPS type frames received.

srpParityErrors

Read-only. 64-bit value. The number of SRP frames received with SRP header parity error. This includes
all frame types.

srpUsageFrames
Received

Read-only. 64-bit value. The number of usage frames received with good CRC, good header parity and
only those that match the MAC address set for the SRP's port. Bad CRC frames, frames with header errors
or those with other MAC addresses are received but not counted.

srpUsageFramesSent

Read-only. 64-bit value. The number of usage frames sent. These are sent periodically to keep the link
alive.

Appendix 1 IxTclHAL Commands

– 1343 –

srpUsageStatus

Read-only. 64-bit value. If the number of consecutive timeouts exceeds the Keep Alive threshold set in
srpUsage this status changes to FAIL. Otherwise shows OK.

srpUsageTimeouts

Read-only. 64-bit value. The number of times a usage frame was not received within the time period set
in the srpUsage

streamTrigger1

Read-only. 64-bit value. User-Defined Statistic counter 5 indicating number of frames received that meet
the filtering criteria set up using the filter command. To use this counter the stat mode has to be set to
statStreamTrigger.

streamTrigger2

Read-only. 64-bit value. User-Defined Statistic counter 6 indicating number of frames received that meet
the filtering criteria set up using the filter command. To use this counter the stat mode has to be set to
statStreamTrigger.

symbolErrorFrames

Read-only. 64-bit value. Number of frames received with symbol errors (gigabit only).

symbolErrors

Read-only. 64-bit value. Number of symbol errors.

synchErrorFrames

Read-only. 64-bit value. Number of frames with synchronized errors (gigabit only).

tcpChecksumErrors

Read-only. 64-bit value.

tcpPackets

Read-only. 64-bit value.

tenGigLanRxFpga
Temperature

Read-only. 64-bit value. For 10Gbe: the temperature at the LAN receive FPGA.

tenGigLanTxFpga
Temperature

Read-only. 64-bit value. For 10Gbe: the temperature at the LAN transmit FPGA.

Appendix 1 IxTclHAL Commands

– 1344 –

transmitDuration

Read-only. 64-bit value. Transmit duration, in nanoseconds.

transmitState

Read-only. Reflects the current state of transmit. The following states can be read:

Option Value Usage

statIdle 0 transmit stopped

statActive 1 port currently transmitting

tx1FpgaTemperature

Read-Only. 64-bit value. Temperature of the first transmit FPGA chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.

tx2FpgaTemperature

Read-Only. 64-bit value. Temperature of the second transmit FPGA chip, if it exists. The
enableTemperatureSensorsStats options must be true for this value to be valid.

txFmxFpgaTemperature

Read-Only. 64-bit value. Temperature of the Transmit FMX FPGA chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.
This is applicable for the Flex, Lava platforms.

txFpgaTemperature

Read-Only. 64-bit value. Temperature of the Transmit FPGA chip. The enableTemperatureSensorsStats
options must be true for this value to be valid.
This is applicable for the XM100, Novus, and other 200G, 400G platforms.

txSchedulerOverlayFpgaTemperature

Read-Only. 64-bit value. Temperature of the scheduler/overlay chip. The
enableTemperatureSensorsStats options must be true for this value to be valid.
This is applicable for the Lava platform.

udpChecksumErrors

Read-only. 64-bit value.

udpPackets

Read-only. 64-bit value.

Appendix 1 IxTclHAL Commands

– 1345 –

undersize

Read-only. 64-bit value. Number of undersized frames (less than 64 bytes) received.

userDefinedStat1

Read-only. 64-bit value. Number of frames counted by User Defined Statistics Counter 1 that meet the
criteria set up using the filter command. This counter is available when stat mode is set to statNormal.

userDefinedStat2

Read-only. 64-bit value. Number of frames counted by User Defined Statistics Counter 2 that meet the
criteria set up using the filter command. This counter is available when stat mode is set to statNormal.

vlanTaggedFramesRx

Read-only. 64-bit value. Number of VLAN Tagged frames received.

userDefinedStatByteCount1

Read-only. 64-bit value. Number of bytes counted by User Defined Statistics Counter 1 that meet the
criteria set up using the filter command. This counter is available when stat mode is set to statNormal.

userDefinedStatByteCount2

Read-only. 64-bit value. Number of bytes counted by User Defined Statistics Counter 2 that meet the
criteria set up using the filter command. This counter is available when stat mode is set to statNormal.

DEPRECATED OPTIONS

enableUsbExtended
Stats true/false

USB support has been removed from IxOS. This option has no effect.

countertype

Deprecated. Use statAllStats.

counterRate

Read-only. 64-bit value. The rate of the value of the statistic counter.

counterVal

Read-only. 64-bit value. The value of the statistic counter.

Appendix 1 IxTclHAL Commands

– 1346 –

usbRxBitStuffing
usbRxBufferOverrun
usbRxCRCError
usbRxDataOverrun
usbRxdataUnderrun
usbRxDeviceNot
Responding
usbRxNoError
usbRxNotAccessed
usbRxPIDCheckFail
usbRxStall
usbRxToggleMismatch
usbRxUnexpectedPID
usbTxBufferUnderrun
usbTxDeviceNot
Responding
usbTxNoError
usbTxNotAccessed
usbTxPIDCheckFail
usbTxStallusbTx
UnexpectedPID

USB support has been removed from IxOS. These options maintains a constant value.

COMMANDS

The stat command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

stat cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the stat command. Specific errors include:

l Invalid statistic for port.

stat clearBertLane chasID cardID portID

Clears all Bert stats for the port, if the card is 40GE LSM XMV or 100GE LSM XMV.

stat config option value

Modify the configuration options of the statistics. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for capture.

stat get statAllStats chasID cardID portID

Gets the statistics counter for all stats. Note that counterType has been deprecated; use statAllStats
instead. statAllStats makes all of the statistics available through the options.

Appendix 1 IxTclHAL Commands

– 1347 –

Specific errors are:

l No connection to a chassis
l Invalid port number
l Additional delay is needed between `gets'
l Network error between client and chassis

stat getBertChannel chasID cardID portID level

For channelized BERT cards, loads the BERT related statistics (with a bert prefix) for the level indicated.
These may then be obtained with normal stat cget commands.

stat getBertChannelRate chasID cardID portID level

For channelized BERT cards, loads the BERT related rate statistics (with a bert prefix) for the level
indicated. These may then be obtained with normal stat cget commands.

stat getBertLane chasID cardID portID laneNumber

If the card is 40GE LSM XMV or 100GE LSM XMV, the laneNumber option is used to specify the BERT lane.

stat getCaptureState chasID cardID portID

Returns the capture state of the port. See the values associated with the captureState standard option.
Specific errors are:

l No connection to a chassis
l Invalid port number
l Network error between client and chassis

stat getLineSpeed chasID cardID portID

Returns the line speed of the port. See the values associated with the lineSpeed standard option.

stat getLinkState chasID cardID portID

Returns the link state of the port. See the values associated with the link standard option.

stat getRate statAllStats chasID cardID portID

Gets the frame rate for all stats. Note that counterType has been deprecated; use statAllStats instead.
statAllStats makes all of the statistics available through the options.

Specific errors are:

l No connection to a chassis
l Invalid port number
l Network error between client and chassis

stat getScheduledTransmitTime chasID cardID portID

Returns the scheduled transmit time of the port. See the values associated with the
scheduledTransmitTime standard option.

stat getSonetCircuit chasID cardID portID circuitID

Appendix 1 IxTclHAL Commands

– 1348 –

Gets all circuit-level statistics for circuit with specified ID.

stat getSonetCircuitRate chasID cardID portID circuitID

Gets all circuit-level statistics that have rates.

stat getSonetSlot chasID cardID portID circuitID timeslot timeslotDirection

Gets all slot-level statistics for slot with specified ID.

stat getSonetSlotRate chasID cardID portID circuitID timeslot timeslotDirection

Gets all slot-level statistics that have rates.

stat getTransmitState chasID cardID portID

Returns the transmit state of the port. See the values associated with the
transmitState standard option.

stat getTxIgnoreLinkState chasID cardID portID

This command works in conjuntion with the getLinkState command to determine physical link when the
port state txIgnoreLinkState is selected on a port.

stat set chasID cardID portID

Sets the configuration of the statistics counters on port portID, card cardID, chassis chasID in IxHAL Note
- if the mode is set to anything other than statNormal, then up to 8 of the hardware counters are reused
for an alternate statistic. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Network error between client and chassis

stat setDefault

Sets the stat mode to default and zeros all stat counters.

statwrite chasID chardID portID

Writes or commits the changes in IxHAL to hardware for port portID, card cardID, chassis chasID. Before
using this command, use the stat set command to configure the stream related options in IxHAL.

EXAMPLES
package require IxTclHal
set host localhost
set username StatExampleUser
ixConnectToChassis $host
Get the chassis ID to use in port lists.
set chas [ixGetChassisID $host]
Assume that there's an ethernet card in this slot with proper

Appendix 1 IxTclHAL Commands

– 1349 –

ethernet connections, with port 1 looped to port 2.
set card 1
set portList [list [list $chas $card 1] [list $chas $card 2]]
Login before taking ownership.
ixLogin $username
if {[ixTakeOwnership $portList]} {
errorMsg "Error taking ownership"
return $::TCL_ERROR
}
Set factory defaults on all ports in portList.
foreach port $portList {
scan $port "%d %d %d" chas card port
if {[setFactoryDefaults $chas $card $port]} {
ixPuts "Error setting factory defaults on port $chas $card $port"
return $::TCL_ERROR
}
}
Commit changes to hardware and verify linkState before continuing.
ixWritePortsToHardware portList
ixCheckLinkState portList
ixClearStats portList
ixStartTransmit portList
Once per second, get some statistics.
Note that stats are only polled by hardware every 200-600ms, depending on the
hardware,
so attempts to retrieve stats more often than 2-3 times per second will only
slow down IxServer in an attempt to service the requests.
for {set i 1} {$i <= 5} {incr i} {
after 1000
foreach port $portList {
scan $port "%d %d %d" chas card port
if {[stat get statAllStats $chas $card $port]} {
ixPuts "Error reading stats on port $chas $card $port"
return $::TCL_ERROR
}
set framesSent [stat cget -framesSent]
set framesRecv [stat cget -framesReceived]
then a getRate for individual rate stats
if {[stat getRate statAllStats $chas $card $port]} {
ixPuts "Error reading stat rate on port $chas $card $port"
return $::TCL_ERROR
}
set framesSentRate [stat cget -framesSent]
set framesRecvRate [stat cget -framesReceived]
ixPuts "Iter $i, Port: $port"
ixPuts "Frames Sent: $framesSent\trate: $framesSentRate"
ixPuts "Frames Rcvd: $framesRecv\trate: $framesRecvRate\n"
}

Appendix 1 IxTclHAL Commands

– 1350 –

}
Also note that the statGroup/statList command pair is not only a better way to
retrieve
stats on multiple ports, it is the recommended method - see section statGroup.
for more details.
ixStopTransmit portList
ixClearOwnership $portList
ixLogout
cleanUp

SEE ALSO

statList, statGroup, statWatch

statAggregator
statAggregator - gets the aggregated statistics on a list of PGIDs.

SYNOPSIS

statAggregator sub-command options

DESCRIPTION

The statAggregator command is used to aggregate statistics for a range or list of ranges. In addition, the
user selects which packetGroupStats to aggregate as well as the type of aggregation.

STANDARD OPTIONS

packetGroup

Specifies packet group statistics.

totalPGIDs

Specifies statistics on all PGIDs.

COMMANDS

The statAggregator command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

statAggregator cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the statAggregator command.

statAggregator calculate option [statList] [fromPgid] [toPgid]

Computes the aggregate statistics for the selected statistics on the selected range of PGIDs. Enter the
option type from a list of options above. Statistics are retrieved and aggregated based on the [statList]
options entered.

Appendix 1 IxTclHAL Commands

– 1351 –

Statistic Description

minLatency Aggregate the minimum latency statistics.

maxLatency Aggregate the maximum latency statistics

maxminInterval Aggregate the interval between the minimum and maximum latency
statistics

averageLatency Aggregate the average latency

totalFrames Aggregate the total number of frames

totalByteCount Aggregate the total number of bytes

smallSequenceError Aggregate small sequence errors

bigSequenceError Aggregate big sequence errors

reverseSequenceError Aggregate reverse errors

totalSequenceError Aggregate the total number of sequence errors

sequenceGaps Aggregate sequence gaps

duplicateFrames Aggregate duplicate frames

What type of aggregation is done is based on an algorithm entered.

Algorithm Description

avg Perform an average calculation on the retrieved statistics.

min Find the minimum value for the retrieved statistics

max Find the maximum value for the retrieved statistics.

total Find the total number for the retrieved statistics.

For example, to aggregate the average number of big sequence errors for packet groups 1 to 5, enter:

statAggregator calculate packetGroup bigSequenceError avg 1 5

More than one statistic and algorithm can be entered per command.

The computation of the aggregated statistics are available until the you either:

l issues a new request for calculate
l calls the setDefault method.

Retrieval of new data by the packetGroupStat get command will not clear existing aggregated statistics
metrics.

Appendix 1 IxTclHAL Commands

– 1352 –

statAggregator setDefault

Resets the statAggregator command to the factory defaults.

EXAMPLES
package req IxTclHal
set hostname loopback
if {[ixConnectToChassis $hostname] == $::TCL_ERROR} {
errorMsg "Error connecting to chassis"
return 1
}
set chasID [chassis cget -id]
set cardID 1
set portID 1
set fromPg 1
set toPg 200
if {[packetGroupStats get $chasID $cardID $portID $fromPg $toPg]} {
errorMsg "Error getting packetGroupStats for $chasID /
$cardID $portID"
return
}
note that these are relative to the get, just like the
getGroup command in packetGroupStats.
set range1 {10 100}
set range2 {150 200}
set pgIdRangeList [list $range1 $range2]
set pgIdRangeList {{10 100} {150 200}}
set statList {{minLatency {min max average}} {maxLatency {max}} / {totalFrames
{total}} }
this does the actual computation on last retrieved stats
statAggregator calculate packetGroup $statList $pgIdRangeList
foreach item [statAggregator cget -packetGroupStats] {
foreach {statName valueList} $item {
puts "Stat: $statName"
foreach value $valueList {
scan $value "%s %d" algorithm metric
puts "\t$algorithm: $metric"
}
}
}
*** Output will look like this:
Stat: minLatency
min: 42
Stat: maxLatency
max: 128
Stat: totalFrames
sum: 12
avg: 6

Appendix 1 IxTclHAL Commands

– 1353 –

min: 5
max: 7
%

SEE ALSO

statList, statWatch, stat

statGroup
statGroup - gets the statistics on a set of ports.

SYNOPSIS

statGroup sub-command options

DESCRIPTION

The statGroup command is used to create a group of ports for the purpose of retrieving all of the statistics
from the group of ports at the same time. Statistics retrieved through the use of the statGroup get sub-
command are accessed through the use of the statList command.

STANDARD OPTIONS

numPorts

Read-only. Indicates the number of ports currently in the list.

COMMANDS

The statGroup command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

statGroup add chassisID cardID portID

Adds the indicated port to the list of ports in the group.

statGroup del chassisID cardID portID

Deletes the indicated port from the list of ports in the group.

statGroup cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the statGroup command.

statGroup get

Gets all of the valid statistics associated with each of the ports in the group. The group is formed by
successive calls to statGroup add. The values of the statistics are available through the use of the statList
command.

statGroup setDefault

Appendix 1 IxTclHAL Commands

– 1354 –

Resets the list to empty.

EXAMPLES
add ports to get stats on
statGroup setDefault
foreach port $portList {
scan $port "%d %d %d" c l p
statGroup add $c $l $p
}
get the stats
if {[statGroup get]} {
ixPuts "Error getting stats for this group"
set retCode 1
}
read stats
statList setDefault
foreach port $portList {
scan $port "%d %d %d" c l p
if {[statList get $c $l $p]} {
continue
}
ixPuts "Frames transmitted: \
[statList cget -framesSent]"
if {[statList getRate $c $l $p]} {
continue
}
ixPuts "Transmit rate: [statList cget -framesSent]"
}

SEE ALSO

statList, statWatch, stat

statList
statList - gets the statistics from ports previously collected with statGroup or statWatch.

SYNOPSIS

statList sub-command options

DESCRIPTION

The statList command is used to get statistics previously read from the ports using the statGroup or
statWatch command. A single call to statList get is used to make all of the valid statistics for a port
available through subsequent calls to statList cget. Similarly, rate statistics are made available through
the use of statList getRate, followed by calls to statList cget.

Appendix 1 IxTclHAL Commands

– 1355 –

Note that the statName used in cgets is formed from the standard option name by prepending stat to the
name and capitalizing the first letter of the option. (Example: for the option framesSent, the statName is
statFramesSent.)

Refer to the Ixia Reference Guide for a list of which statistics are available for particular card modules and
under particular circumstances.

STANDARD OPTIONS

stat

The STANDARD OPTIONS associated with statList are the same as those associated with stat, with the
exception of the enable* and mode options.

COMMANDS

The statList command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

statList cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the stat command.

statList get chasID cardID portID

Makes the statistics associated with a particular port accessible through the use of statList cget -option.
Refer to the Ixia Reference Guide for a list of the statistics names and the cases under which they are
available.

statList getRate chasID cardID portID

Makes the rate statistics associated with a particular port accessible through the use of statList cget -
option. Refer to the Ixia Reference Guide for a list of the statistics names and the cases under which they
are available.

statList setDefault

Clears all of the statistics previously collected with statGroup

EXAMPLES

See examples under statGroup

SEE ALSO

statGroup, statWatch, stat

statWatch
statWatch - automatically get the statistics on a set of ports.

Appendix 1 IxTclHAL Commands

– 1356 –

SYNOPSIS

statWatch sub-command options

DESCRIPTION

The statWatch command is used to create a group of ports and a list of statistics for the purpose of
automatically retrieving all of the statistics in the list from the group of ports at the same time. Statistics
are automatically delivered once per second. Statistics are then read using the statList command.

Multiple stat watches may be created, each with it's own ID. Each stat watch contains a list of ports and a
list of statistics.

Note that the statName used in addStat and delStat is formed from the standard option name by
prepending stat to the name and capitalizing the first letter of the option. (For example, for the option
framesSent, the statName is statFramesSent.)

Refer to the Ixia Reference Guide for a list of which statistics are available for particular card modules and
under particular circumstances.

STANDARD OPTIONS

none

COMMANDS

The statWatch command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

statWatch addPort watchID chassisID cardID portID

Adds the indicated port to the list of ports in the stat watch whose ID is watchID. Specific errors are:

l The stat watch with ID watchID does not exists.
l The port is invalid

statWatch addStat watchID statName

Adds the indicated statistic to the list of statistics in the stat watch whose ID is watchID. Specific errors
are:

l The stat watch with ID watchID does not exists.

statWatch addStatRate watchID statName

Adds the indicated statistic rate to the list of statistics in the stat watch whose ID is watchID. Specific
errors are:

l The stat watch with ID watchID does not exists.

statWatch create watchID

Creates a new stat watch with ID watchID. Specific errors are:

l The stat watch with ID watchID already exists.

Appendix 1 IxTclHAL Commands

– 1357 –

statWatch delPort watchID chassisID cardID portID

Deletes the indicated port from the list of ports in the stat watch whose ID is watchID. Specific errors are:

l The stat watch with ID watchID does not exists.
l The port is invalid

statWatch delStat watchID statName

Deletes the indicated statistic from the list of statistics in the stat watch whose ID is watchID. Specific
errors are:

l The stat watch with ID watchID does not exists.
l The statName is not in the stat watch port list

statWatch delStatRate watchID statName

Deletes the indicated statistic rate from the list of statistics in the stat watch whose ID is watchID. Specific
errors are:

l The stat watch with ID watchID does not exists.
l The statName is not in the stat watch port list

statWatch destroy watchID

Deletes the stat watch with ID watchID. Specific errors are:

l The stat watch with ID watchID does not exists.

statWatch start watchID

Starts watching the stat watch whose ID is watchID. The statistics in the stat watch are regularly
delivered for all of the ports in the stat watch. The individual statistics may be read through use of the
statList command. Specific errors are:

l The stat watch with ID watchID does not exists.

statWatch setDefault

Stops and destroys all of the stat watches.

statWatch stop watchID

Stops watching the stat watch whose ID is watchID. Specific errors are:

l The stat watch with ID watchID does not exists.

EXAMPLES
set portList { {1 1 1} {1 1 2}}
set statList {statFramesSent statFramesReceived}
set watchID 42
statWatch setDefault
Create a watch with $watchID
if [statWatch create $watchID] {
errorMsg "Error creating watch $watchID"

Appendix 1 IxTclHAL Commands

– 1358 –

}
add ports to get stats on
foreach port $portList {
scan $port "%d %d %d" c l p
if [statWatch addPort $watchID $c $l $p] {
errorMsg "Error adding port $c $l $p to statWatch $watchID"
}
}
Add the stats to the watch
foreach statItem $statList {
if [statWatch addStat $watchID $statItem] {
errorMsg "Error adding $statItem to statWatch $watchID"
}
if [statWatch addStatRate $watchID $statItem] {
errorMsg "Error adding $statItem to statWatch $watchID"
}
}
Start the watch with $watchID
if {[statWatch start $watchID]} {
errorMsg "Error watching stats on statWatch $watchID"
}

Look at the statistics once per second
for {set i 0} {$i <= 10} {incr i} {
logMsg "********** Polling $i of 10 ****************"
Read the stats
statList setDefault
foreach port $portList {
scan $port "%d %d %d" c l p
logMsg "Port $c $l $p"
if {[statList get $c $l $p]} {
continue
}
logMsg "\tFrames transmitted: [statList cget -framesSent]"
logMsg "\tFrames received: \
[statList cget -framesReceived]"
if {[statList getRate $c $l $p]} {
continue
}
logMsg "\tTransmit rate: [statList cget -framesSent]"
logMsg "\tReceive rate: [statList cget -framesReceived]"
}
after 1000
}
stop the watch
if [statWatch stop $watchID] {
errorMsg "Error stopping stats on statWatch $watchID"
}

Appendix 1 IxTclHAL Commands

– 1359 –

Destroy the watch
if [statWatch destroy $watchID] {
errorMsg "Error destroying watch $watchID"
}

SEE ALSO

statList, statGroup, stat

stream
stream - configure the streams on a port of a card on a chassis.

SYNOPSIS

stream sub-command options

DESCRIPTION

The stream command is used to set up frames and bursts to be transmitted on a port of a card on a
chassis. The number of streams that a port supports varies; consult the Ixia Hardware Guide for the exact
numbers. A stream consists of bursts of frames separated by inter-frame gap and inter-burst gap (in
nanoseconds). The source and destination MAC addresses, number of frames in a stream, pattern type,
frame size, and inter-stream gap are some of the parameters that can be specified to shape the desired
transmit traffic.

For SONET cards which support DCC operation, the optional sequenceType argument used in many of the
sub-commands indicates whether the sub-command should apply to flows and/or streams. Flows are
used when DCC packets are transmitted at the same time as SPE streams.

For ATM cards, is it necessary to set/get stream data to/from a specific queue with the setQueue and
getQueue sub-commands. General ATM port options are set using the atmPort command, ATM header
options are set using the atmHeader command and the stream queues are managed with the
streamQueueList and streamQueue commands. ATM streams may have incrementing and/or random
frame sizes, but only 16 of either type. All other streams are forced to fixed size.

Some port types support weighted random framesize distributions, as described in
weightedRandomFramesize.

If a Uniform distribution's minimum value is changed and the new minimum value is not already in one of
the distributions, then the distribution is forced to the first random range.

If a Uniform distribution's maximum value is changed and the new minimum/maximum values are not
used in another distribution, then the distribution is forced to the first random range.

The framesize of an ATM packet is set by a combination of the enableCpcsLength and cpcsLength options
in this command and the framesize option in the stream command. If enableCpcsLength is set to true,
then the ATM frame's size is set from the cpcsLength value only. Otherwise, it is set from the stream's
framesize value and the cpcsLength value is calculated from that. Further, the stream getQueue
command resets this command's enableCpcsLength option to false. It is important to correctly set the
stream's framesize value and this command's enableCpcsLength and cpcsLength options after each
stream getQueue command and call atmHeader set before the next stream setQueue command.

Appendix 1 IxTclHAL Commands

– 1360 –

STANDARD OPTIONS

asyncIntEnable
true/false

When this option is set to false, asynchronous transmit events cannot interrupt the stream. The
asynchronous event is logged and is invoked as soon as a synchronous stream permits it. Note that only
one asynchronous event of a type is logged, that is, if the same timer expired twice, only one
asynchronous event is logged due to that counter. (default = false)

adjustMask

The value to adjust Mask. The options include:

Option

gapNone

gapFrame

gapBurst

gapStream

adjustFrameSizeFixed

adjustFrameSizeMin

adjustFrameSizeMax

adjustNumFrames

bpsRate

If rateMode is set to streamRateModeBps, then use this value the desired bits per second. (default =
76190476)

da

Initial destination MAC address assigned to this stream. Specify this address as six hexadecimal numbers
delimited by spaces or colons. For example, the following are valid address formats: {00 01 02 03 04
05} and {00:01:02:03:04:05} . Note that this option will not update the isl encapDA value. (default =
{00 00 00 00 00 00})

Note: The MAC address format is very important. A failure to use one of the two designated
formats results in incorrect script operation.

Appendix 1 IxTclHAL Commands

– 1361 –

daMaskSelect

Selects the bits in the 48-bit destination MAC address that are to be masked by the value set by
daMaskValue. (default = {00 00 00 00 00 00})

daMaskValue

Value of the masked bits selected by daMaskSelect in the destination MAC address. (default = {00 00 00
00 00 00})

daRepeatCounter

Specifies how the destination MAC address is incremented or decremented. Possible values include:

Option Value Usage

increment 0 increment the MAC address for as many numDA specified

contIncrement 1 Continuously increment the MAC address for each frame

decrement 2 decrement the MAC address for as many numDA specified

contDecrement 3 Continuously decrement the MAC address for each frame

idle 4 (default) no change to MAC address regardless of numDA

ctrRandom 5 Generate random destination MAC address for each frame

daArp 6 If an ARP response is received, then the first MAC address from
the ARP table is used as the DA, else the DA field remains
unchanged.

contJitterTestPattern 7 (For 10GE modules only.) The fixed Continuous Jitter Test
Pattern (CJPAT), specified in IETF 802.3ae Annex 48A, is
supplied. The data field may not be edited.

contRandomTestPattern 8 (For 10GE modules only.) The fixed Continuous Random Test
Pattern (CRPAT), specified in IETF 802.3ae Annex 48A, is
supplied. The data field may not be edited.

daStep

If daRepeatCounter is set to increment, contIncrement, decrement, or contDecrement, and the load
module supports an arbitrary step size, then this is the value to increment/decrement the destination
address by for each address repetition. (default = 1)

dataPattern

Sets up the default data pattern to be inserted into the frames of this stream. type may be one of the
following values:

Appendix 1 IxTclHAL Commands

– 1362 –

Option Value Usage

dataPatternRandom -1 the frame contains random data

allOnes 0 the frame contains all 1's

allZeroes 1 the frame contains all 0's

xAAAA 2 the frame contains all A's

x5555 3 the frame contains all 5's

x7777 4 the frame contains all 7's

xDDDD 5 the frame contains all D's

xF0F0 6 the frame contains repeating pattern of F0F0's

x0F0F 7 the frame contains repeating pattern of 0F0F's

xFF00FF00 8 the frame contains repeating pattern of FF00FF00's

x00FF00FF 9 the frame contains repeating pattern of 00FF00FF's

xFFFF0000 10 the frame contains repeating pattern of FFFF0000's

x0000FFFF 11 the frame contains repeating pattern of 00000FFFF's

x00010203 12 (default) the frame contains a pattern of incrementing bytes.

x00010002 13 the frame contains a pattern of incrementing 16-bit words.

xFFFEFDFC 14 the frame contains a pattern on decrementing bytes.

xFFFFFFFE 15 the frame contains a pattern of decrementing 16-bit words.

x7E7E7E7E 16 the frame contains a continuous jitter pattern (CJPAT).

x4747476B 17 the frame contains a continuous random pattern (CRPAT).

userpattern 18 select this type to insert user-defined data pattern in the frame

dma

This determines the behaviour of the stream flow. The mode may be one of the following:

Option Value Usage

contPacket 0 (default) continuously transmit the frames on this stream

Appendix 1 IxTclHAL Commands

– 1363 –

Option Value Usage

contBurst 1 continuously transmit bursts of frames on this stream

stopStream 2 stop all transmission from the port where this stream resides regardless
of existence of other streams on this port

advance 3 after all the frames are sent from the current stream, the frames from
the next stream on the port are transmitted.

gotoFirst 4 the last stream on the port is set to this mode to begin transmission of
frames of the first stream in the list

firstLoopCount 5 the last stream on the port is set to this mode to begin transmission of
the first stream in the list for loopCount intervals

enable true/false

Enable or disable the stream. If disabled, the frames in this stream will not be transmitted along with the
other streams on this port. (default = true)

enableDaContinueFrom
LastValue true/false

If true, then the MAC Destination Address of the stream will not reset when returning to a stream ID, but
continue from the previous stream(default = false)

enableIbg true/false

Enable the inter-burst gap. (default = false)

enableIsg true/false

Enable the inter-stream gap. (default = false)

enableIncrFrameBurstOverride true/false

Enable the packet burst override for increment frame mode. (default = false)

enableSaContinueFrom
LastValue true/false

If true, then the MAC Source Address of the stream will not reset when returning to a stream ID, but
continue from the previous stream(default = false)

enableSourceInterface
true/false

If true, then the MAC address and source IP address associated with an interface is used instead of the sa
value and IP source address. The particular interface to be used is specified in interfaceDescription.

Appendix 1 IxTclHAL Commands

– 1364 –

(default = false)

enableStatistic
true/false

If true, then per-stream transmit statistics are enabled (ATM cards only).
(default = true)

enableSuspend
true/false

If true, then stream suspend command is enabled. (default = false)

enableTimestamp
true/false

If true, 6 bytes of timestamp are inserted before the CRC of the frame. This was previously known as the
fir option, which is now deprecated. (default = false)

enforceMinGap

When a port which supports this feature is in Advanced Scheduler Mode, then this is the minimum gap
that is ever inserted between packets. The smallest value supported is 3. (default = 12)

fcs

The FCS error to be inserted in the frame. One of the following:

Option Value Usage

streamErrorGood 0 (default) a good FCS to be inserted in the frame

streamErrorAlignment 1 an alignment error to be inserted in the frame (only valid for
10/100)

streamErrorDribble 2 dribble error to be inserted in the frame

streamErrorBadCRC 3 a bad FCS error to be inserted in the frame

streamErrorNoCRC 4 no FCS error to be inserted in the frame

floatRate

Read-only. The framerate option expressed as a floating point number.

fpsRate

If rateMode is set to streamRateModeFps, then use this value the desired frames per second. (default =
148810)

Appendix 1 IxTclHAL Commands

– 1365 –

framerate

Read-only. It reflects the actual rate in frames per second that this configured stream transmits at,
expressed as a INT.

framesize

Number of bytes in each frame in the stream. All frames in the stream have the same size. See the note in
the DESCRIPTION section above concerning frame sizes in ATM packets. (default = 64)

frameSizeMAX

The maximum frame size to be used when frame size of type sizeRandom is selected. (default = 1518)

frameSizeMIN

The minimum frame size to be used when frame size of type sizeRandom is selected. (default = 64)

frameSizeStep

If frameSizeType is set to sizeIncr and the load module supports an arbitrary step size, then this is the
value to increment the frame size by for each repetition. (default = 1)

frameSizeType

May assume one of the following values:

Option Value Usage

sizeFixed 0 (default) All frames in the stream where this packet has been defined have
a fixed size specified by framesize option

sizeRandom 1 Frames with random sizes are generated on the stream on which the
frames are defined. Some ports support weighted random framesize
distributions; weightedRandomFramesize and the note at the beginning of
this command.

sizeIncr 2 Every frame generated on the stream has incrementing size.

sizeAuto 3 Frame size is automatically calculated. Used for protocols that have
variable frame lengths such as DHCP.

frameType

The type field in the Ethernet frame, which does not apply to the MAC layer frames. (default = { })

gapUnit

Gap may be one of the following unit values:

Appendix 1 IxTclHAL Commands

– 1366 –

Option Value Usage

gapNanoSeconds 0 (default) Sets units of time for gap to nanoseconds

gapMicroSeconds 1 Sets units of time for gap to microseconds

gapMilliSeconds 2 Sets units of time for gap to milliseconds

gapSeconds 3 Sets units of time for gap to seconds

gapClockTicks 4 Sets units of time for gap to clock ticks of load module card. The
number of clock ticks varies between load modules. Ixia recommends
that you do not use this option. This option is deprecated.

gapBytes 5 Sets units of gap in terms of the time needed to transmit a number of
bytes.

ibg

Inter-Burst Gap is the delay between bursts of frames in clock ticks (see ifg option for definition of clock
ticks). If the IBG is set to 0 then the IBG is equal to the ISG and the IBG becomes disabled. (default =
960.0)

ifg

The inter-frame gap specified in clock ticks (default = 960.0).

ifgMAX

The maximum inter-frame gap in clock ticks to be used when IFG of type gapRandom is selected. (default
= 960.0)

ifgMIN

The minimum inter-frame gap in clock ticks to be used when IFG of type gapRandom is selected. (default
= 960.0)

ifgType

type may be one of the following values:

Option Value Usage

gapFixed 0 (default) the gap between all frames is fixed

gapRandom 1 random size of gap is generated between every frame transmitted (not
supported yet)

Appendix 1 IxTclHAL Commands

– 1367 –

isg

The inter-stream gap is the delay in clock ticks between stream. This delay comes after the receive trigger
is enabled. Setting this option to 0 means no delay. (default = 960.0)

loopCount

Number of times to begin transmission of the first stream in the list when stream config -dma
firstLoopCount is set. (default = 1)

name

User specified name of the stream. (default ="")

numBursts

Number of bursts in the stream. If the option dma is set to contBurst or contPacket this option is ignored.
(default = 1)

numDA

Number of destination MAC addresses the stream is going to be transmitted to. numDA must be > 1 to set
the daRepeatCounter to anything other than idle. (default = 1)

numFrames

Number of maximum frames in the stream. If the option dma is set to contPacket this option is ignored.
(default = 100)

numSA

Number of source MAC addresses on the stream which is going to transmit frames from. numSA must be
> 1 to set the saRepeatCounter to anything other than idle. (default = 1)

packetView

Read-only. Displays the frames as they are going to be transmited. Note: Shows the first frame when the
transmitMode is set to portTxPacketStreams and shows all the frames when transmitMode is set to
portTxPacketFlows. Note that when the enablePreambleView option of the txRxPreamble command is
true, then this string includes the preamble's values as the first 8 characters.

pattern

Specify a user-defined pattern of data to be transmitted on this stream. The dataPattern option must be
set to type userpattern or this pattern is ignored. (default = {00 01 02 03})

patternType

Type of given patterns that is inserted in all the frames transmitted on this stream. type can be one of the
following:

Appendix 1 IxTclHAL Commands

– 1368 –

Option Value Usage

incrByte 0 (default) increment each byte of the frame during
transmission

incrWord 1 increment each word of the frame during transmission

decrByte 2 decrement each byte of the frame during transmission

decrWord 3 decrement each word of the frame during

patternTypeRandom 4 generate random pattern of data during transmission

repeat 5 transmit the same pattern of data in the frame

nonRepeat 6 transmit a fixed pattern of data. Note: Fixed type in
IxExplorer.

continuousJitterTestPattern 7 transmit a CJPAT pattern.

continuousRandomTestPattern 8 transmit a CRPAT pattern.

percentPacketRate

If rateMode is set to usePercentRate, then use this value as a percent of maximum transmit rate for this
stream. This command sets all three gaps: IFG, IBG and ISG. For ATM ports, the streamQueue
percentMaxRate value overrides this value if set after the stream has been configured. (default = 100.0)

phyMode

Read-only. For cards which support both Copper, Fiber and SGMII PHY modes, this command shows the
current PHY mode.

Option Value Usage

portPhyModeCopper 0 Copper

portPhyModeFiber 1 Fiber

portPhyModeSgmii 2 SGMII

preambleData

(10 Gigabit modules only) The 8 bytes in the preamble of the 10 Gigabit Ethernet frame. For SFD Detect
Mode, Bytes 2 through 7 are configurable. For Byte Count Mode, Bytes 2 through 8 are configurable
(default = '55 55 55 55 55 55').

preambleSize

Number of bytes in the preamble field of the frame. Range is between 2 and 255. (default = 8)

Appendix 1 IxTclHAL Commands

– 1369 –

priorityGroup

Specifies the priority group of the stream. (default = 0) Possible values include:

Option Value Usage

priorityGroup0 0 assign priority group 0

priorityGroup1 1 assign priority group 1

priorityGroup2 2 assign priority group 2

priorityGroup3 3 assign priority group 3

priorityGroup4 4 assign priority group 4

priorityGroup5 5 assign priority group 5

priorityGroup6 6 assign priority group 6

priorityGroup7 7 assign priority group 7

priorityGroupControl 15 Does not respond to priority flow control. No incoming priority can
be mapped to PFC Queue Control. So the traffic on PFC Queue
Control cannot be paused/ flow controlled with priority flow
control.

rateMode

Specifies whether to use the ifg or percentPacketRate to calculate stream gap. Possible values include:

Option Value Usage

streamRateModeGap
Deprecated: useGap

0 use ifg

streamRateModePercentRate
Deprecated: usePercentRate

1 (default) use percentPacketRate

streamRateModeFps 2 use fpsRate

streamRateModeBps 3 use bpsRate

region

Reserved for future use and should always be left at its default value of 0. (default = 0)

returnToId streamID

Configures the stream number (streamID) that control loops to. (default = 1)

Appendix 1 IxTclHAL Commands

– 1370 –

rxTriggerEnable
true/false

When set to true, the transmit engine waits for a pulse from the receiver to start the stream. (default =
false)

sa

Initial source MAC address assigned to this stream. Specify this address as six hexadecimal numbers
delimited by spaces or colons. For example, the following are valid address formats: {00 01 02 03 04
05} and {00:01:02:03:04:05} . Note that this option will not update the isl encapSA value. (default =
{00 00 00 00 00 00})

Note: The MAC address format is very important. A failure to use one of the two designated
formats results in incorrect script operation.

saMaskSelect

Selects the bits in the 48-bit source MAC address that are to be masked by the value set by saMaskValue.
(default = {00 00 00 00 00 00})

saMaskValue

Value of the masked bits selected by saMaskSelect in the source MAC address. (default = {00 00 00 00 00
00})

saRepeatCounter

Specifies how the source MAC address is incremented or decremented. Possible values include:

Option Value Usage

increment 0 increment the MAC address for as many numSA specified

contIncrement 1 continuously increment the MAC address for each frame

decrement 2 decrement the MAC address for as many numSA specified

contDecrement 3 continuously decrement the MAC address for each frame

idle 4 (default) no change to MAC address regardless of numSA

ctrRandom 5 generate random source MAC address for each frame

cpeMacAddress 6 for ports operating in USB mode, use the source MAC address
provided by the DUT (customer premise equipment).

contJitterTestPattern 7 generate jitter test pattern

contRandomTest
Pattern

8 generate random test pattern

Appendix 1 IxTclHAL Commands

– 1371 –

saStep

If saRepeatCounter is set to increment, contIncrement, decrement, or contDecrement, and the load
module supports an arbitrary step size, then this is the value to increment/decrement the destination
address by for each address repetition. (default = 1)

sourceInterface
Description

If enableSourceInterface is true, this is the interface's description as set in the description option of the
interfaceEntry command when the interface was defined. (default = "")

startOfDataPattern

(Read-only) Sets the data pattern offset, in bytes.

startOfProtocolPad

(Read-only) Calculates the start offset of protocol pad. To know the starting of protocol pad, first
protocolPad option is enabled and then stream is set in stream object.

endOfProtocolPad

(Read-only) Calculates the length of data bytes of protocol pad.

startTxDelay

Displays whether the start delay has been set.

startTxDelayUnit

Displays the unit used in the stream start delay.

Option

startTxDelayNanoSeconds = 0

startTxDelayMicroSeconds = 1

startTxDelayMilliSeconds = 2

startTxDelaySeconds = 3

startTxDelayBytes = 4

suspendState
true/false

(Read-only) When true, the selected stream is suspended.

Appendix 1 IxTclHAL Commands

– 1372 –

DEPRECATED OPTIONS

fir true/false

(enableTimestamp should be used instead of this option). If Frame Identity Record (FIR) is set to true, 6
bytes of timestamp is inserted before the CRC of the frame.

rateMode

The following rateMode options have been deprecated.

Deprecated Option Value Usage

useGap 0 use ifg

usePercentRate 1 (default) use percentPacketRate

COMMANDS

The stream command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

stream adjust chasID cardID portID streamIdList adjustMask

Adjusts the rates and frame sizes on the specified streams (stream id list) without stopping the
transmission. The corresponding gaps or frame sizes must be configured prior to calling this method using
stream config followed by stream set.

Note: The frameSizeType must be configured and committed prior to adjusting stream frame size.

Note: For a frame size adjustment only the hardware state is modified. The software state is
unmodified and is not reflected if you do a chassis refresh. The only way to see the size change is to
capture the adjusted stream and view the size of the frames in the capture buffer.

The adjustMask options, which can be ORed together, are these:

Option Value Usage

gapFrame 2 frame gap

gapBurst 4 burst gap

gapStream 8 stream gap

adjustFrameSizeFixed 32 frame size fixed

adjustFrameSizeMin 64 frame size minimum

adjustFrameSizeMax 128 frame size maximum

stream cget option

Appendix 1 IxTclHAL Commands

– 1373 –

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the stream command.

stream config option value

Modify the configuration options of the stream. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for stream.

stream export fileName chasID cardID portID [fromStreamID toStreamID sequenceType]

Exports the current stream contents of the port at portID, cardID, chasID into the file named fileName;
fileName may include a full or relative path. The range of streams is expressed by the range of
fromStreamID (default = 1) and toStreamID (default = 0). If fromStreamId is less than or equal to 0 the
first stream is used and if toStreamID is 0, then all streams are exported. The file produced by this
command may be used by the import sub-command. The sequenceType optional argument indicates
whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Specific errors are:

l No connection to a chassis
l Stream IDs are not valid
l Invalid port

stream exportQueue fileName chasID cardID portID queueID [fromStreamID toStreamID]

Exports a particular queue numbered queueId from the current stream contents of the port at portID,
cardID, chasID into the file named fileName; fileName may include a full or relative path. The range of
streams is expressed by the range of fromStreamID (default = 1) and toStreamID (default = 0). If
fromStreamId is less than or equal to 0 the first stream is used and if toStreamID is 0, then all streams
are exported. The file produced by this command may be used by the importQueue sub-command.
Specific errors are:

l No connection to a chassis
l Queue ID is not valid
l Stream IDs are not valid
l Invalid port

stream get chasID cardID portID streamID [sequenceType]

Gets the current configuration of the stream with id streamID on port portID, card cardID, chassis chasID
from its hardware. Call this command before calling stream cget option value to get the value of the

Appendix 1 IxTclHAL Commands

– 1374 –

configuration option. The sequenceType optional argument indicates whether the settings apply to all
modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream getCircuit chasID cardID portID circuitID streamID [sequenceType]

For use with ports in VCAT mode only. Gets the current configuration of the stream with id streamID in
the circuit with circuitID on port portID, card cardID, chassis chasID from its hardware. Call this command
before calling stream cget option value to get the value of the configuration option.

stream getPacketView packetNum

Gets the packetView data for a specified packetNum. The packetView shows the packets that are about to
be transmitted. See packetView in the Options section

stream getQueue chasID cardID portID queueID streamID

For use with ATM ports only. Gets the current configuration of the stream with id streamID in the queue
with queueID on port portID, card cardID, chassis chasID from its hardware. Call this command before
calling stream cget option value to get the value of the configuration option. See the note in the
DESCRIPTION section above concerning frame sizes in ATM packets.

stream import fileName chasID cardID portID [sequenceType]

Imports saved stream contents found in the file fileName into the port at portID, cardID, chassis chasID.
fileName may include a full or relative path. All of the streams found in the file are appended to the
currently defined streams. The file used by this command must have been produced by the export sub-
command. The sequenceType optional argument indicates whether the settings apply to all modes or one
of the modes.

Option Value Usage

streamSequenceTypeAl 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

Specific errors are:

l No connection to a chassis
l Invalid port
l The card is owned by another user

Appendix 1 IxTclHAL Commands

– 1375 –

l fileName does not exist
l fileName does not contain valid data

stream importQueue fileName chasID cardID portID queueID

Imports saved stream contents for a particular queue numbered queueID found in the file fileName into
the port at portID, cardID, chassis chasID. fileName may include a full or relative path. All of the streams
found in the file are appended to the designated queue in the stream. The file used by this command must
have been produced by the exportQueue sub-command. Specific errors are:

l No connection to a chassis
l Invalid port
l Invalid Queue ID
l The card is owned by another user
l fileName does not exist
l fileName does not contain valid data

stream resume chasID cardID portID streamIdList

Resume the transmission of the streams specified in streamIdList. Packet streams (also known as basic or
sequentially scheduled streams) can be suspended and resumed during transmission. When a packet
stream is suspended and then resumed, a persistent UDF continues to count from where it left off when
the stream was suspended.

If a currently active stream is suspended, it runs to completion and not execute again until it is resumed.

stream send chasID cardID portID streamID [sequenceType]

Send a start transmit on one individual stream: streamID to port portID, card cardID, chassis chasID. The
sequenceType optional argument indicates whether the settings apply to all modes or one of the modes.

Stream send uses the protocol server to send out the stream; therefore, the -dma mode setting and -
percentMaxRate setting is not used. Instead, contBurst dma mode is always used with stream send
command. This command is meant to send out frames at a low rate as a debugging tool.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream sendCircuit chasID cardID portID circuitID streamID

For use with ports in VCAT mode only. Sends the current configuration of the stream with id streamID in
the circuit with circuitID on port portID, card cardID, chassis chasID from its hardware.

stream sendQueue chasID cardID portID queueID streamID

Appendix 1 IxTclHAL Commands

– 1376 –

For use with ATM ports only. Sends the current configuration of the stream with id streamID in the queue
with queueID on port portID, card cardID, chassis chasID from its hardware.

See the note in the DESCRIPTION section above concerning frame sizes in ATM packets.

stream set chasID cardID portID streamID [sequenceType]

Sets the configuration of the stream with id streamID on port portID, card cardID, chassis chasID in
IxHAL by reading the configuration option values set by the stream config option value command. The
sequenceType optional argument indicates whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream setCircuit chasID cardID portID circuitID streamID

For use with ports in VCAT mode only. Sets the configuration of the stream with id streamID on its circuit
circuitID on port portID, card cardID, chassis chasID in IxHAL by reading the configuration option values
set by the stream config option value command.

stream setDefault

Sets to IxTclHal default values for all configuration options.

Note: The command stream setDefault also overwrites the udf set command.

stream setFactoryDefaults chasID chardID portID streamID [sequenceType]

Sets factory default values for all configuration options for a particular stream. The sequenceType
optional argument indicates whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream setQueue chasID cardID portID queueID streamID

For use with ATM ports only. Sets the configuration of the stream with id streamID on its queue queueID
on port portID, card cardID, chassis chasID in IxHAL by reading the configuration option values set by the
stream config option value command. See the note in the DESCRIPTION section above concerning frame
sizes in ATM packets.

stream suspend chasID cardID portID streamIdList

Appendix 1 IxTclHAL Commands

– 1377 –

Suspend the transmission of the specified streams (streamIdList). Packet streams (also known as basic or
sequentially scheduled streams) can be suspended and resumed during transmission. When a packet
stream is suspended and then resumed, a persistent UDF continues to count from where it left off when
the stream was suspended.

If a currently active stream is suspended, it runs to completion and not execute again until it is resumed.

streamwrite chasID cardID portID streamID [sequenceType]

Writes or commits the changes in IxHAL to hardware for stream with identification streamID on port
portID, card cardID, chassis chasID. Before using this command, use the stream set command to
configure the stream related options in IxHAL. The sequenceType optional argument indicates whether
the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream remove chasID cardID portID streamID

Removes a stream with identification streamID from port portID, card cardID, chassis chasID.

DEPRECATED
COMMANDS

stream setGaps ifg chasID cardID portID streamID [sequenceType]

A helper command that sets the inter-frame gap, inter-stream gap and inter-burst gap specified by ifg
gap units for the frames in the stream with id streamID on port portID, card cardID, chassis chasID in
IxHAL and then commits to hardware. The sequenceType optional argument indicates whether the
settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream setIFG ifg chasID cardID portID streamID [sequenceType]

A helper command that sets the inter-frame gap specified by ifg gap units for the frames in the stream
with id streamID on port portID, card cardID, chassis chasID in IxHAL and then commits to hardware. The
sequenceType optional argument indicates whether the settings apply to all modes or one of the modes.

Appendix 1 IxTclHAL Commands

– 1378 –

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream setLoopCount loopcount chasID cardID portID streamID [sequenceType]

A helper command that sets the loopcount in the stream with id streamID on port portID, card cardID,
chassis chasID in IxHAL and then commits to hardware. The sequenceType optional argument indicates
whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

stream setNumFrames numFrames chasID cardID portID streamID [sequenceType]

A helper or convenience command that sets the number of frames specified by numFrames in the stream
with id streamID on port portID, card cardID, chassis chasID in IxHAL and then commits to hardware. The
sequenceType optional argument indicates whether the settings apply to all modes or one of the modes.

Option Value Usage

streamSequenceTypeAll 0 (default) apply to flows and streams

streamSequenceTypeStreams 1 apply to streams only

streamSequenceTypeFlows 2 apply to flows only

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 1 IxTclHAL Commands

– 1379 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume a TXS8 card is in slot 4
set card 4
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Check for missing card
if {[card get $chas $card] != 0} {
ixPuts "Card $card does not exist"
exit
}
In this example, we'll set up two streams on the port:
Any parameters not mentioned are factory defaults
#
1) Name = First
Advance to next stream
1000 packets per burst
10 bursts
IPG = 1000ns
IBG = 2000ns
ISG = 3000ns
Data = repeating 55 55
Random frame sizes from 100 - 1000 bytes
DA = Arp table
SA = 04 05 06 07 08 09 incrementing by 2's
2) Name = Last
Return to ID # 1 for a count of 10
5000 packets per burst
1 burst
IPG = 10000ns
Random frame sizes from 100 - 1000 bytes
DA = Arp table
SA = 04 05 06 07 08 09

Appendix 1 IxTclHAL Commands

– 1380 –

Then, we'll do another example for an ATM card.
Two queues are used.
1) Queue 1
Two streams
a) All defaults
b) VPI/VCI = 33
2) Queue 2
One stream
All defaults
Make sure the port is at factory default
port setFactoryDefaults $chas $card $port
Setup stream 1
stream setDefault
stream config -name "First"
stream config -dma advance
stream config -numFrames 1000
stream config -numBursts 10
stream config -gapUnit gapNanoSeconds
stream config -rateMode useGap
stream config -ifg 1000
stream config -ifgType gapFixed
stream config -enableIbg true
stream config -ibg 2000
stream config -enableIsg true
stream config -isg 3000
stream config -patternType repeat
stream config -dataPattern x5555
stream config -frameSizeType sizeRandom
stream config -frameSizeMIN 100
stream config -frameSizeMAX 1000
stream config -daRepeatCounter daArp
stream config -saRepeatCounter increment
stream config -sa {04 05 06 07 08 09}
stream config -saStep 2
if [stream set $chas $card $port 1] {
ixPuts "Can't stream set $chas $card $port 1"
}
For Fixed Count Burst
stream config -dma fixedBurst

Setup stream 2
stream setDefault
stream config -name "Last"
stream config -dma firstLoopCount
stream config -returnToId 1
stream config -loopCount 10
stream config -numFrames 5000
stream config -numBursts 1

Appendix 1 IxTclHAL Commands

– 1381 –

stream config -gapUnit gapNanoSeconds
stream config -rateMode useGap
stream config -ifg 10000
stream config -ifgType gapFixed
stream config -enableIbg false
stream config -enableIsg false
stream config -daRepeatCounter daArp
stream config -saRepeatCounter idle
stream config -sa {04 05 06 07 08 09}
if [stream set $chas $card $port 2] {
ixPuts "Can't stream set $chas $card $port 2"
}
ixWritePortsToHardware portList
###
#
DCC and SPE flows and streams
#
###
Now we'll use an OC192 card with DCC in slot 73
set card 73
set port 1
set portList [list [list $chas $card $port]]
Check for missing card
if {[card get $chas $card] != 0} {
ixPuts "Card $card does not exist"
}
In this example, we'll use an OC192 card with DCC and send
flows on the DCC and normal streams on the SPE
We'll set up one stream on each of DCC and SPE
Any parameters not mentioned are factory defaults
#
Make sure the port is at factory default and then to correct DCC/SPE
Mode
port setFactoryDefaults $chas $card $port
port config -transmitMode portTxModeDccFlowsSpeStreams
port config -receiveMode portCapture
if [port set $chas $card $port] {
ixPuts "Can't port set $chas $card $port"
}
Setup DCC flow
stream setDefault
stream config -name "DCC"
stream config -dma firstLoopCount
stream config -numFrames 1000
stream config -numBursts 10
stream config -gapUnit gapNanoSeconds
stream config -rateMode usePercentRate
stream config -percentPacketRate 100

Appendix 1 IxTclHAL Commands

– 1382 –

stream config -ifg 1000
stream config -ifgType gapFixed
stream config -enableIbg true
stream config -ibg 2000
stream config -enableIsg true
stream config -isg 3000
stream config -patternType repeat
stream config -dataPattern x5555
stream config -frameSizeType sizeRandom
stream config -frameSizeMIN 100
stream config -frameSizeMAX 1000
if [stream set $chas $card $port 1 streamSequenceTypeFlows] {
ixPuts "Can't stream set $chas $card $port 1 streamSequenceTypeFlows"
}
Setup SPE stream
stream setDefault
stream config -name "SPE"
stream config -dma firstLoopCount
stream config -returnToId 1
stream config -loopCount 10
stream config -numFrames 5000
stream config -numBursts 1
stream config -gapUnit gapNanoSeconds
stream config -rateMode usePercentRate
stream config -percentPacketRate 80
stream config -ifg 10000
stream config -ifgType gapFixed
stream config -enableIbg false
stream config -enableIsg false
if [stream set $chas $card $port 1 streamSequenceTypeStreams] {
ixPuts "Can't stream set $chas $card $port 1 streamSequenceTypeStreams"
}
ixWritePortsToHardware portList
##
ATM port
##
Assume an ATM card is in slot 74
set card 74
set port 1
set portList [list [list $chas $card $port]]
Make sure the port is at factory default
port setFactoryDefaults $chas $card $port
Set up port ATM characteristics
atmPort setDefault
atmPort config -interfaceType 0
atmPort config -enableCoset false
atmPort config -fillerCell 0
if [atmPort set $chas $card $port] {

Appendix 1 IxTclHAL Commands

– 1383 –

ixPuts "Can't atmPort set $chas $card $port"
}
ixWritePortsToHardware portList
Clear out all queues and add queue 1
streamQueueList select $chas $card $port
streamQueueList clear
Add Queue 1 to port at 100% of line rate
set queueID 1
streamQueueList add
streamQueue setDefault
streamQueue config -rateMode usePercentRate
streamQueue config -percentMaxRate 100.0
if [streamQueue set $chas $card $port $queueID] {
ixPuts "Can't streamQueue config $chas $card $port"
}
set streamID 1
Setup stream 1 - no changes from default
stream setDefault
Use defaults in ATM header
atmHeader setDefault
atmHeader config -encapsulation atmEncapsulationLLCBridgedEthernetFCS
atmHeader config -genericFlowControl 5
atmHeader config -cellLossPriority 1
if [atmHeader set $chas $card $port] {
ixPuts "Can't atmHeader set $chas $card $port"
}
Set queue 1 stream 1
if [stream setQueue $chas $card $port $queueID $streamID] {
ixPuts "Can't stream setQueue $chas $card $port $queueID $streamID"
}
Setup stream 2 in queue 1
set streamID 2
stream setDefault
change VCI to 33 and set for incrementing 16 times by 1
atmHeader setDefault
atmHeader config -vci 33
if [atmHeader set $chas $card $port] {
ixPuts "Can't atmHeader set $chas $card $port"
}
atmHeaderCounter setDefault
atmHeaderCounter config -type atmCounter
atmHeaderCounter config -mode atmIncrement
atmHeaderCounter config -step 1
atmHeaderCounter config -repeatCount 16
if [atmHeaderCounter set $chas $card $port] {
ixPuts "Can't atmHeaderCounter set $chas $card $port"
}
Set queue 1 stream 2 -

Appendix 1 IxTclHAL Commands

– 1384 –

if [stream setQueue $chas $card $port $queueID $streamID] {
ixPuts "Can't stream setQueue $chas $card $port $queueID $streamID"
}
Add Queue 2 to port at 50% of line rate
set queueID 2
streamQueueList add
streamQueue setDefault
streamQueue config -percentMaxRate 50.0
if [streamQueue set $chas $card $port $queueID] {
ixPuts "Can't streamQueue config $chas $card $port"
}
Now one stream in queue 2
set streamID 1
stream setDefault
Use defaults in ATM header
atmHeader setDefault
if [atmHeader set $chas $card $port] {
ixPuts "Can't atmHeader set $chas $card $port"
}
Set queue 1 stream 1
if [stream setQueue $chas $card $port $queueID $streamID] {
ixPuts "Can't stream setQueue $chas $card $port $queueID $streamID"
}
ixWritePortsToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

port, isl, atmHeader, atmHeaderCounter, atmPort, streamQueue, streamQueueList

streamExtractorFilter
streamExtractorFilter - configures the stream extraction module's filter properties.

SYNOPSIS

streamExtractorFilter sub-command options

DESCRIPTION

The streamExtractorFilter command is used to configure the stream extraction module's filter properties
on the second and third ports.

Appendix 1 IxTclHAL Commands

– 1385 –

STANDARD OPTIONS

destOffset

Sets the offset for the destination address, in bytes.

destOffsetMode

Selects where the offset starts for both the destination address for the filter.

Option Value Usage

streamExtractorFilter
OffsetStartOfFrame

0 (default) start the offset at the beginning of the packet.

streamExtractorFilter
OffsetStartOfIp

1 start the offset at the beginning of the IP header.

destPattern

The destination address pattern to filter for.

enableDest true / false

Enables filtering on the destination address. (default = false)

enableSource
true / false

Enables filtering on the source address. (default = false)

filterType

Selects what address type to filter on.

Option Value Usage

streamExtractorMac 0 Filter on MAC address

streamExtractorIpV4 1 Filter on IPv4 address

streamExtractorIpV6 2 Filter on IPv6 address

streamExtractorTcp 3 Filter on TCP address

streamExtractorUdp 4 Filter on UDP address

matchOperation

Selects the type of matching to be performed, either 'and' or 'or.'

Appendix 1 IxTclHAL Commands

– 1386 –

Option Value Usage

streamExtractorFilterAnd 0 Match both conditions

streamExtractorFilterOr 1 Match either condition

sourceOffset

Sets the offset for the source address, in bytes.

sourceOffsetMode

Selects where the offset starts for both the source address for the filter.

Option Value Usage

streamExtractorFilter
OffsetStartOfFrame

0 (default) start the offset at the beginning of the packet.

streamExtractorFilter
OffsetStartOfIp

1 start the offset at the beginning of the IP header.

sourcePattern

The source address pattern to filter for.

COMMANDS

The streamExtractorFilter command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

streamExtractorFilter cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamExtractorFilter command.

streamExtractorFilter configure option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamExtractorFilter command.

streamExtractorFilter get chasID cardID portID

Gets the current configuration of the streamExtractorFilter for port with id portID on card cardID, chassis
chasID from its hardware.Call this command before calling streamExtractorFilter cget option value to get
the value of the configuration option. Specific errors are:

l No connection to a chassis
l The select sub-command has not been called

streamExtractorFilter set chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1387 –

Gets the current configuration of the streamExtractorFilter for port with id portID on card cardID, chassis
chasID from its hardware.Call this command before calling

streamExtractorFilter setDefault

Sets to IxTclHal default values for all configuration options.

streamExtractorFilter setOffsetDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
if {[isUNIX]} {
if {[ixConnectToTclServer loopback]} {
ixPuts "Error connecting to Tcl Server loopback "
return 1
}
}
ixConnectToChassis {loopback}
set portList {}
set chassis [chassis cget -id]
set card 35
set port 1
Filter configuration for inline port: 2
set inlinePortId 2
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern "22 22 22 22 22 22"
streamExtractorFilter config -sourcePattern "11 11 11 11 11 11"
streamExtractorFilter config -destOffset 0
streamExtractorFilter config -sourceOffset 6
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfFrame
streamExtractorFilter config -sourceOffsetMode
streamExtractorFilterOffsetStartOfFrame
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorMac
streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorMacFiltering
streamExtractorModifier setDefault
streamExtractorModifier config -enable true
streamExtractorModifier config -pattern "01 02 03 04 05 06"
streamExtractorModifier set $chassis $card $port $inlinePortId streamExtractorDestMac
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern "5555:5555:5555:5555:5555:5555:5555:555"
streamExtractorFilter config -sourcePattern "66AA:5555:5555:0:5555:5555:5555:14"
streamExtractorFilter config -destOffset 24

Appendix 1 IxTclHAL Commands

– 1388 –

streamExtractorFilter config -sourceOffset 30
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -sourceOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorIpV6
streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorIpFiltering
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern 42
streamExtractorFilter config -sourcePattern 44
streamExtractorFilter config -destOffset 40
streamExtractorFilter config -sourceOffset 44
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -sourceOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorUdp
streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorProtocolFiltering
Filter configuration for inline port: 3
set inlinePortId 3
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern "22 22 22 22 22 22"
streamExtractorFilter config -sourcePattern "11 11 11 11 11 11"
streamExtractorFilter config -destOffset 0
streamExtractorFilter config -sourceOffset 6
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfFrame
streamExtractorFilter config -sourceOffsetMode
streamExtractorFilterOffsetStartOfFrame
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorMac
streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorMacFiltering
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern "5555:5555:5555:5555:5555:5555:5555:555"
streamExtractorFilter config -sourcePattern "66AA:5555:5555:0:5555:5555:5555:14"
streamExtractorFilter config -destOffset 24
streamExtractorFilter config -sourceOffset 30
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -sourceOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorIpV6

Appendix 1 IxTclHAL Commands

– 1389 –

streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorIpFiltering
streamExtractorFilter setDefault
streamExtractorFilter config -enableDest true
streamExtractorFilter config -enableSource true
streamExtractorFilter config -destPattern 42
streamExtractorFilter config -sourcePattern 44
streamExtractorFilter config -destOffset 40
streamExtractorFilter config -sourceOffset 44
streamExtractorFilter config -destOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -sourceOffsetMode streamExtractorFilterOffsetStartOfIp
streamExtractorFilter config -matchOperation streamExtractorFilterAnd
streamExtractorFilter config -filterType streamExtractorUdp
streamExtractorFilter set $chassis $card $port $inlinePortId
streamExtractorProtocolFiltering
lappend portList [list $chassis $card $port]
ixWritePortsToHardware portList

SEE ALSO

streamExtractorModifier

streamExtractorModifier
streamExtractorModifier - replaces, in real time, UDP Video Client addresses in a monitored flow with the
addresses of a monitoring device.

SYNOPSIS

streamExtractorModifier sub-command options

DESCRIPTION

The streamExtractorModifier command is used to replace, in real time, UDP Video Client addresses in a
monitored flow with the addresses of a monitoring device. The packet modification performed (by
AFM1000 stream extractor module) allows the video monitor to view many different streams, without
ever having to change its addresses.

STANDARD OPTIONS

enable
true | false

This enables packet modification of Dest MAC, IPv4 Dest and UDP Dest ports. (default = false)

To enable a modifier, any one of the the filters must be enabled (MAC address, IP address, or TCP/UDP).

pattern

If enabled, use this pattern in the outgoing packet instead of the original.
(default ="00 00 00 00 00 00")

Appendix 1 IxTclHAL Commands

– 1390 –

COMMANDS

The streamExtractorModifier command is invoked with the following sub-commands. If no sub-command
is specified, returns a list of all sub-commands available.

streamExtractorModifier cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamExtractorModifierer command.

streamExtractorModifier config option

Modify the configuration options of the streamExtractorModifier. If no option is specified, returns a list
describing all of the available options (see STANDARD OPTIONS) for streamExtractorModifierer. Specific
errors are:

l No connection to a chassis
l The port is being used by another user

streamExtractorModifier get chasID cardID portID nlinePortID matcherType

Gets the pattern matcher settings based on the filter direction (inlinePortId) and pattern matcher type
from IxTclHal to local IxHal. Specific errors are:

l No connection to a chassis
l The select sub-command has not been called

streamExtractorModifier set chasID cardID portID inlinePortID matcherType

Sets the pattern matcher settings based on the filter direction (inlinePortId) and pattern matcher type
from IxTclHal to local IxHal.

Matcher type = the destination address type to be modified.

Option Value Usage

streamExtractorDestMac 1 (default) enables the AFM to modify the Destination MAC
Address of the packet.

streamExtractorDestIpV4 2 enables the AFM to modify the IPv4 Destination IP Address of
the packet

streamExtractorDestUdp 3 enables the AFM to modify the UDP Destination Address of the
packet

streamExtractorModifier setDefault

Sets to IxTclHal local defaults.

EXAMPLES

See examples in streamExtractorFilter

Appendix 1 IxTclHAL Commands

– 1391 –

SEE ALSO

streamExtractorFilter

streamQueue
streamQueue - configure an ATM stream queue.

SYNOPSIS

streamQueue sub-command options

DESCRIPTION

The streamQueue command is used to configure the data rate of a stream ueue for an ATM port.

STANDARD OPTIONS

aal5FrameRate

Read-only. The rate for all of the streams in the queue, expressed as an AAL5 frame rate.

aal5PayloadBitRate

Read-only. The rate for all of the streams in the queue, expressed as an AAL5 payload bit rate.

aal5PduBitRate

The rate for all of the streams in the queue, expressed as an AAL5 PDU bit rte. (default = 0.0)

aal5SduBitRate

Read-only. The rate for all of the streams in the queue, expressed as an AAL5 SDU bit rate.

cellBitRate

The rate for all of the streams in the queue, expressed as an cell bit rate. (efault = 0.0)

cellRate

Read-only. The rate for all of the streams in the queue, expressed as an cell rate.

enableInterleave
true | false

If true, then this particular stream queue's cells may be interleaved with all other stream queues. If false,
then all of the cells in the stream queue is transmitted without interleaving from other cells from other
stream queues that have this option also set to false. (default = true)

Appendix 1 IxTclHAL Commands

– 1392 –

percentMaxRate

Sets the rate of all of the streams in a queue as a percentage of the maximum rate. Any individual stream
may set its own rate after this option has been set. This value is automatically changed to reflect the new
average transmit rate. (default = 0.0)

rateMode

The means by which the ATM rate is to be set.

Option Value Usage

usePercentRate 1 (default) Use the value in percentMaxRate to set the ATM
rate.

streamQueueAalPduBitRate 2 Use the value in aal5PduBitRate to set the ATM rate.

streamQueueAalCellBitRate 3 Use the value in cellBitRate to set the ATM rate

DEPRECATED OPTIONS

aal5BitRate

Read-only. The rate for all of the streams in the queue, expressed as an AAL5 bit rate. Same as
aal5PduBitRate.

COMMANDS

The streamQueue command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

streamQueue cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamQueue command.

streamQueue clear chasID cardID portID queueId

Removes all streams from a queue on a port. Specific errors are:

l No connection to a chassis
l Invalid port number
l Invalid queueId number
l The port is being used by another user

streamQueue config option value

Modify the configuration options of the streamQueue. If no option is specified, returns a list describing all
of the available options (see STANDARD OPTIONS) for streamQueue. Specific errors are:

Appendix 1 IxTclHAL Commands

– 1393 –

l No connection to a chassis
l Invalid port number
l Invalid queueId number
l The port is being used by another user

streamQueue get chasID cardID portID queueId

Gets the current configuration of the streamQueue for a queue on a port from its hardware.Call this
command before calling streamQueue cget option value to get the value of the configuration option.

streamQueue set chasID cardID portID queueId

Sets the configuration of the streamQueue in IxHAL for a queue on a port by reading the configuration
option values set by the streamQueue config option value command. Specific errors are:

l No connection to a chassis
l Invalid port number
l Invalid queueId number
l The port is being used by another user
l Configured parameters are not valid for this setting

streamQueue setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples in stream.

SEE ALSO

atmHeader, atmPort, stream, streamQueueList

streamQueueList
streamQueueList - manage the stream queues for ATM ports.

SYNOPSIS

streamQueueList sub-command options

DESCRIPTION

The streamQueueList command is used to manage the stream queues associated with ATM ports. The
select sub-command must be used to select the port before any of the other sub-commands.

Appendix 1 IxTclHAL Commands

– 1394 –

STANDARD OPTIONS

averageCellRate

Read-only. The average cell rate across all queues associated with a port, specified in ATM cells per
second.

averageDataBitRate

Read-only. The average cell rate across all queues associated with a port, specified in data bits per
second.

averageFramerate

Read-only. The average cell rate across all queues associated with a port, specified in frames per second.

averagePercentLoad

Read-only. The average cell rate across all queues associated with a port, specified in a percentage of the
maximum rate.

COMMANDS

The streamQueueList command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

streamQueueList add

Adds an additional stream queue to the port. A queueId is automatically assigned starting from 0. Specific
errors are:

l The select sub-command has not been called
l 15 ports already associated with the port

streamQueueList cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamQueueList command.

streamQueueList clear

All queues are deleted from the port. Specific errors are:

l The select sub-command has not been called

streamQueueList delete queueId

Deletes a queue from the queue list, where queueId is the queue index - starting at 0. All queues below
the deleted queue are renumbered down by one. Specific errors are:

l The select sub-command has not been called
l The queueId does not exist.

streamQueueList get chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1395 –

Gets the current configuration of the streamQueueList for port with id portID on card cardID, chassis
chasID from its hardware.Call this command before calling streamQueueList cget option value to get the
value of the configuration option. Specific errors are:

l No connection to a chassis
l The select sub-command has not been called

streamQueueList select chasID cardID portID

Specifies the port that the other sub-commands and options refers to. Specific errors are:

l No connection to the chassis
l Invalid port specified

streamQueueList setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples in stream

SEE ALSO

atmHeader, atmPort, stream.

streamRegion
streamRegion - manage setting that apply to all streams

SYNOPSIS

streamRegion sub-command options

DESCRIPTION

The streamRegion command is used to manage several properties that apply to all streams.

STANDARD OPTIONS

gapControlMode

For ports that have the portFeatureGapControlMode capability, this controls the manner in which
minimum inter-packet gaps are enforced.

Option Value Usage

streamGapControlFixed 0 (default) All gaps are a minimum of 12 bytes.

streamGapControlAverage 1 The gaps are averaged to 12 bytes in such a way that the
deficit at any point in time is no more than 3 bytes.

Appendix 1 IxTclHAL Commands

– 1396 –

totalAverageBpsRate

Read-only. The calculated total average bits per second rate.

totalAverageFpsRate

Read-only. The calculated total average frames per second rate.

totalAveragePercent
MaxRate

Read-only. The calculated total average percent of maximum bit rate.

COMMANDS

The streamRegion command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

streamRegion cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamRegion command.

streamRegion config option value

Modify the stream region options. If no option is specified, returns a list describing all of the available
options (see STANDARD OPTIONS).

streamRegion enableGenerateWarningList value

If true, enables the validation of all inner stream relationships and generates warnings each time stream
set is called. See generateWarningList, below. If disabled (set to false) both the generation of the warning
list and the validation for the region are disabled. Additionally, stream cget -warnings may not contain the
correct warnings for the region. (default = true)

streamRegion generateWarningList chasID cardID portID

Validates all inner stream relationships AND generates the warning list for each stream, returning in a list
of lists of strings of warnings per each stream.

Regardless of how enableGenerateWarningList is set, this command generates a list of lists of warnings
per each stream. If a stream has no warnings, the list is empty.

Note: If warning generation is disabled (by the command enableGenerate
WarningList = false), you MUST call generateWarningList before committing to hardware,
regardless of whether you care about the warning list or not, because this command validates on all
the streams in the region. Validation is required prior to a write to hardware.

streamRegion get chasID cardID portID

Gets the current configuration of the streamRegion for the indicated port.Call this command before calling
streamRegion cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis

Appendix 1 IxTclHAL Commands

– 1397 –

streamRegion set chasID cardID portID

Sets the configuration of the stream region for the indicated port.

streamRegion setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

SEE ALSO

stream

streamTransmitStats
streamTransmitStats - view per-stream transmit statistics

SYNOPSIS

streamTransmitStats sub-command options

DESCRIPTION

The streamTransmitStats command may be used to retrieve the per-stream transmit statistics. This is
automatically enabled for all ports that support this feature; this may be checked through the use of the
port isValidFeature... portFeaturePerStreamTxStats command.

Per-stream transmit stats are retrieved by the stream id <number> per configuration on the port. They
vary per port per transmit mode. (For example, TXS8 cards are numbered from 1 to 255 for Packet
Stream mode, and 1 to 128 for Advanced Scheduler mode. And for ATM cards, statistics can only be
displayed for 127 streams.)

Statistics for a block of streams are retrieved through the use of the get command. Statistics for disabled
streams are set to 0. Statistics for a particular stream are retrieved into the options of this command
through the use of the getGroup command.

The getGroup command uses a `1' based index into the block of streams fetched in the get command. For
example, if get was used to fetch streams 101 through 200, then the statistics for stream 105 may be
obtained by calling getGroup for index 5.

STANDARD OPTIONS

frameRate

Read-only. 64-bit value. This is the transmit frame rate for the stream, expressed in frames per second.
Note: this value is calculated on the difference between two successive readings; streamTransmitStats
get must be called at least twice before valid values are obtained.

A value of 0 is returned for disabled streams.

Appendix 1 IxTclHAL Commands

– 1398 –

framesSent

Read-only. 64-bit value. This is the number of frames transmitted. A value of 0 is returned for disabled
streams.

numGroups

Read-only. This is the number of stream statistics read by the get command.

readTimeStamp

Read-only. Reads the timestamp from when the statistics of a port stream were obtained. .

lastTimeStamp

Read-only. 64-bit value. The last timestamp of the transmitted packet.

Note: Does not apply to LM622MR load module in ATM mode (only).

theoreticalAverageFrameRate

Read-only. Calculates the long-term average frame rate for each stream, based on current stream
configuration.

COMMANDS

The streamTransmitStats command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

streamTransmitStats cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the streamTransmitStats command.

streamTransmitStats get chasID cardID portID [fromStream] [toStream]

Gets a block of transmit statistics for a range of streams on the indicated port. fromStream starts at '1',
and toStream starts at '1'. If fromStream is omitted,"1" is used. If both fromStream and toStream are
omitted, only the first stream's statistics are retrieved.

Statistics can only be collected for the first 127 streams on an ATM port.

Call this command before calling streamTransmitStats cget option.

streamTransmitStats getCircuit chasID cardID portID circuitID [fromGroupID] [toGroupID]

Gets a block of transmit statistics for a range of Group IDs on the indicated port and circuit. fromGroupID
starts at "1", and toGroupID starts at "1". If fromGroupID is omitted, "1" is used. If both fromGroupID
and toGroupID are omitted, only the first group's statistics is retrieved.

Call this command before calling streamTransmitStats cget option.

streamTransmitStats getgroup index

Appendix 1 IxTclHAL Commands

– 1399 –

Gets the statistics for a particular stream. index is with respect to fromStream used in the last call to get.
That is, if the last call to get were:

streamTransmitStats get $ch $ca $po 10 20

then index should be set to 2 if the statistics for stream 11 is required. Call this command before calling
streamTransmitStats cget option.

streamTransmitStats getQueue chasID cardID portID queueID [fromStream] [toStream]

Gets a block of transmit statistics for a range of streams on the indicated port and queue, for ATM
modules. fromStream starts at "1", and toStream starts at "1". If fromStream is omitted, "1" is used. If
both fromStream and toStream are omitted, only the first stream's statistics is retrieved.

Statistics can only be collected for the first 127 streams on an ATM port.

Call this command before calling streamTransmitStats cget option.

streamTransmitStats setCalculateAverageFrameRate value

Disables the calculation for theoretical average frame rate if value is set to 0. Default value is set to 1.

EXAMPLES
package require IxTclHal
set host woodstock
set retCode "PASS"
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return "FAIL"
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return "FAIL"
}
set maxStreams 255
Get the chassis ID to use in port lists
set chId [chassis cget -id]
set cardId 1
set portId 3
set portList [list [list $chId $cardId $portId]]
logMsg "Building streams..."
Check if the port supports per-stream transmit stats
if {![port isValidFeature $chId $cardId $portId portFeaturePerStreamTxStats]} {
ixPuts "Card $cardId does not support per-stream transmit stats"
return "FAIL"
}

Appendix 1 IxTclHAL Commands

– 1400 –

Remove all the stream on the port
port reset $chId $cardId $portId
Set up test streams
stream setDefault
for {set streamId 1} {$streamId <= $maxStreams} {incr streamId} {
stream config -name "test stream $streamId"
if { $streamId < $maxStreams } {
stream config -dma advance
} else {
stream config -dma firstLoopCount
stream config -loopCount 10000
}
stream config -numFrames 1
stream set $chId $cardId $portId $streamId
}
ixWriteConfigToHardware portList
ixCheckLinkState portList
ixClearStats portList
ixStartTransmit portList
Get all of the stream stats
if [streamTransmitStats get $chId $cardId $portId 1 $maxStreams] {
errorMsg "Error getting streamTransmitStats on port $chId $cardId $portId"
return "FAIL"
}
Get all of the stream stats again for a vaild reading
if [streamTransmitStats get $chId $cardId $portId 1 $maxStreams] {
errorMsg "Error getting streamTransmitStats on port $chId $cardId $portId"
return "FAIL"
}
ixPuts "Read [streamTransmitStats cget -numGroups] streams"
ixPuts "Group\tRate\tFrames Sent"
ixPuts "---------------------------------"
Get data for each stream
for {set streamId 1} {$streamId <= $maxStreams} {incr streamId} {
if [streamTransmitStats getGroup $streamId] {
errorMsg "Error getting group $streamId on port $chId $cardId $portId"
set retCode "FAIL"
break
}
set frameRate [streamTransmitStats cget -frameRate]
set framesSent [streamTransmitStats cget -framesSent]
ixPuts "$streamId\t$frameRate\t$framesSent"
}
ixStopTransmit portList
ixClearStats portList
return $retCode

Appendix 1 IxTclHAL Commands

– 1401 –

SEE ALSO

port, stream

tableUdf
tableUdf - manage table UDFs.

SYNOPSIS

tableUdf sub-command options

DESCRIPTION

The tableUdf command is used to define tables of data that is applied at the same time as other UDFs. The
tableUdf feature is only available for selected ports; the availability of the feature may be tested with the
port isValidFeature... portFeatureTableUDF command.

The feature is enabled with the enable option. Tables consist of rows and columns. Columns define the
locations within a packet that are to be modified, while rows hold the data that is simultaneously applied
at the locations indicated by the columns. Columns are defined with tableUdfColumn; column attributes
include:

l Column name
l Offset and size
l Data format; for example, IPv4 address.

Columns are then added to the table using the addColumn sub-command of this command.

Once columns have been defined, data is added to the table, row by row, using the addRow sub-
command.

Table UDF configurations, including row data, may be saved to disk using the export sub-command; a
comma separated values (csv) file format is used. Table UDF configurations may be retrieved using the
import sub-command.

STANDARD OPTIONS

enable true | false

Enables the table UDF. (default = false)

maxRowSize

Retrieves the maximum size of rows in the table UDF. This command can only be used after the set
command.

maxNumRows

Retrieves the maximum number of rows in the table UDF. This command can only be used after the set
command.

Appendix 1 IxTclHAL Commands

– 1402 –

numColumns

Read-only. The total number of currently defined columns.

numRows

Read-only. The total number of currently defined rows.

COMMANDS

The tableUdf command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

tableUdf addColumn

Adds a table UDF column as defined in the tableUdfColumn command. If a column is added after several
other columns have been added and addRow has been called for those columns, default data for the
existing number of rows for the new column is filled in for the new column. Specific errors are:

l The options in tableUdfColumn are invalid
l The maximum number of columns has been exceeded.

tableUdf addRow rowValueList

Adds a row's worth of data to the tableUdf. rowValueList must contain an entry for each defined column in
the table. Each column must be correctly formatted as per the formatType and customFormat options of
the column in the tableUdfColumn command at the time that the column was defined. Specific errors are:

l Incorrect number of list items. The number of list items must be the same as the number of
columns.

l Data validation failed for one or more columns.
l No columns have been defined.

tableUdf cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the tableUdf command.

tableUdf clearColumns

Deletes all of the column definitions and all row data.

tableUdf clearRows

Deletes all of the row data. Column definitions are not affected.

tableUdf config option value

Modify the table UDF options. If no option is specified, returns a list describing all of the available options
(see STANDARD OPTIONS).

tableUdf delColumn

Deletes the current column selected through calls to getFirstColumn/getNextColumn. Specific errors are:

Appendix 1 IxTclHAL Commands

– 1403 –

l No currently selected column

tableUdf delRow

Deletes the current row selected through calls to getFirstRow/getNextRow. Specific errors are:

l No currently selected row.

tableUdf export filename

Exports the table UDF configuration to the file indicated by filename. Specific errors are:

l Invalid filename.

tableUdf get chasID cardID portID

Gets the current configuration of the tableUdf for port with id portID on card cardID, chassis chasID from
its hardware. Note that stream get must be called before this sub-command. Call this command before
calling tableUdf cget option value to get the value of the configuration option. Specific errors are:

l No connection to a chassis.
l stream get has not been called.

tableUdf getFirstColumn

Finds the first column in the column list and places the values in the options of the tableUdfColumn
command. Specific errors are:

l The list is empty.

tableUdf getFirstRow

Finds the first row in the table and returns a list with the values from the row. Specific errors are:

l The list is empty.

tableUdf getNextColumn

Finds the next column in the column list and places the values in the options of the tableUdfColumn
command. getFirstColumn must have been called before this call. Specific errors are:

l No more columns in the list.

tableUdf getNextRow

Finds the next row in the table and returns a list with the values from the row. getFirstRow must have
been called before this call. Specific errors are:

l No more rows in the list.

tableUdf import filename [chasID cardID portID]

Imports the table UDF configuration from the file indicated by filename. If chasID, cardID and portID are
provided, then this sub-command performs a tableUdf set operation as well, committing the values to the
hardware. Specific errors are:

l Invalid filename.

Appendix 1 IxTclHAL Commands

– 1404 –

tableUdf reserveRows numberOfRows

Reserves a number of rows. This may improve performance by reserving some memory ahead of time so
that the process of adding the rows can run faster.

tableUdf set chasID cardID portID

Sets the configuration of the tableUdf in IxHAL for a port by reading the configuration option values set by
the tableUdf config option value command. Specific errors are:

l No connection to a chassis
l Invalid port specification
l Table UDFs are not supported on this port.
l The port is being used by another user

tableUdf setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package req IxTclHal
set hostname loopback
set retCode "PASS"
if {[ixConnectToChassis $hostname]} {
errorMsg "error connecting $hostname chassis"
return "FAIL"
}
set chassId [chassis cget -id]
set cardId 56
set portId 1
set customFormat "8b;3d;16x"
set columnItemList { \
{"Hex Value" 0 8 formatTypeHex } \
{"Ascii" 20 9 formatTypeAscii} \
{"Mac Address" 40 6 formatTypeMAC } \
{"Binary Value" 55 2 formatTypeBinary} \
{"IPV4 Address" 60 4 formatTypeIPv4 } \
{"Ipv6 Address" 70 16 formatTypeIPv6 } \
{"Decimal" 90 3 formatTypeDecimal} \
{"Custom Field" 100 4 formatTypeCustom }}
set rowValueListArray(1) {{21 11 11 11 11 11 11 12 } hellooooo {12 12 12 12 12 12 }
{00000011 11111111} 1.1.1.2 3A37:3737:373A:3939:3939:3A39:3939:3900 1234
{10000001;4;13DA} }
set rowValueListArray(2) {{31 11 19 99 99 05 00 02 } {arev dzez} {13 13 13 13 13 13 }
{01111111 11111111} 1.1.1.3 3A36:3746:463A:4645:3333:3A31:3233:3400 1235
{10000011;5;CFDF}}
set rowValueListArray(3) {{14 14 14 14 15 15 15 15 } { tgha ari} {00 14 14 14 14 14 }
{00000000 10101010} 1.1.1.4 3A36:3746:463A:4645:3333:3A32:3334:3500 1238
{10000111;6;ABCD}}

Appendix 1 IxTclHAL Commands

– 1405 –

set rowValueListArray(4) {{0A CF DB AB AB AB 00 04 } ..mer))_+ {00 15 15 15 15 15 }
{00011111 11110001} 1.1.1.5 3A36:3746:463A:4645:3333:3A33:3435:3600 1237
{01001111;7;00AB}}
set rowValueListArray(5) {{21 77 77 77 77 77 77 78 } ...kyank= {00 00 16 16 16 16 }
{00111111 00001111} 1.1.1.6 3A36:3746:463A:4645:3333:3A31:3233:3400 1239
{00000000;0;0AAA}}
set portList [list [list $chassId $cardId $portId]]
set numColumns [llength $columnItemList]
set columnIndex 1
tableUdf setDefault
tableUdf clearColumns
tableUdf config -enable $::true
foreach formatItem $columnItemList {
tableUdfColumn setDefault
tableUdfColumn config -name [lindex $formatItem 0]
tableUdfColumn config -offset [lindex $formatItem 1]
tableUdfColumn config -size [lindex $formatItem 2]
tableUdfColumn config -formatType [lindex $formatItem 3]
tableUdfColumn config -customFormat $customFormat
if {[tableUdf addColumn]} {
errorMsg "Error adding a column with formatType: \
[lindex $headerItem 3] : $::ixErrorInfo"
set retCode "FAIL"
break
}
incr columnIndex
}
set rowIndex 1
foreach rowItem [array names rowValueListArray] {
if {[tableUdf addRow $rowValueListArray($rowItem)]} {
errorMsg "Error adding row $rowIndex : $::ixErrorInfo"
set retCode "FAIL"
break
}
}

if { $retCode == "FAIL" } {
return $retCode
}
if {[tableUdf set $chassId $cardId $portId]} {
errorMsg "Error setting tableUdf: $::ixErrorInfo"
return "FAIL"
}
stream setDefault
stream config -name "tableUdfTester"
stream config -framesize 300
if [stream set $chassId $cardId $portId 1] {
errorMsg "Error setting stream on port \

Appendix 1 IxTclHAL Commands

– 1406 –

$chassId $cardId $portId 1"
return "FAIL"
}
if [stream get $chassId $cardId $portId 1] {
errorMsg "Error getting stream on port $chassId $cardId $portId 1"
set retCode "FAIL"
break
}
if [tableUdf get $chassId $cardId $portId] {
errorMsg "Error getting tableUdf: $::ixErrorInfo"
return "FAIL"
}
if {[tableUdf cget -enable] } {
if {[tableUdf cget -enable] } {
ixPuts "tableUdf cget -enable: [tableUdf cget -enable]"
set columnIndex 1
if { ![tableUdf getFirstColumn] } {
ixPuts "***** Column $columnIndex *****"
set fType [tableUdfColumn cget -formatType]
ixPuts "tableUdfColumn cget -formatType: $fType"
if {$fType == $::formatTypeCustom} {
ixPuts "tableUdfColumn cget -customFormat: \
[tableUdfColumn cget -customFormat]"
}
ixPuts "tableUdfColumn cget -name: \
[tableUdfColumn cget -name]"
ixPuts "tableUdfColumn cget -offset: \
[tableUdfColumn cget -offset]"
ixPuts "tableUdfColumn cget -size: \
[tableUdfColumn cget -size]"
while {![tableUdf getNextColumn]} {
incr columnIndex
ixPuts "***** Column $columnIndex *****"
set fType [tableUdfColumn cget -formatType]
ixPuts "tableUdfColumn cget -formatType: $fType"
if {$fType == $::formatTypeCustom} {
ixPuts "tableUdfColumn cget -customFormat: \
[tableUdfColumn cget -customFormat]"
}
ixPuts "tableUdfColumn cget -name: \
[tableUdfColumn cget -name]"
ixPuts "tableUdfColumn cget -offset: \
[tableUdfColumn cget -offset]"
ixPuts "tableUdfColumn cget -size: \
[tableUdfColumn cget -size]"
}
set rowIndex 1
set numRows [tableUdf cget -numRows]

Appendix 1 IxTclHAL Commands

– 1407 –

if {$numRows > 0 } {
set rowValueList [tableUdf getFirstRow]
while {[llength $rowValueList]} {
ixPuts "***** Row $rowIndex *****"
ixPuts "$rowValueList"
set rowValueList [tableUdf getNextRow]
incr rowIndex
}
}
}
}
}

SEE ALSO

udf, tableUdfColumn, stream

tableUdfColumn
tableUdfColumn - manage a table UDF column.

SYNOPSIS

tableUdfColumn sub-command options

DESCRIPTION

The tableUdfCommand command is used columns used in table UDFs. Columns define the locations within
a packet that are to be modified. Columns are defined with the options of this command and then added
to a table using the addColumn sub-command of the tableUdf command. Column attributes include:

l Column name
l Offset and size-data for multiple columns may not overlap
l Data format; for example, IPv4 address.

Column data for existing tables is retrieved with the getFirstColumn and getNextColumn sub-commands
of the tableUdf; the values retrieved are available in this command.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

customFormat

If formatType is set to formatTypeCustom, then this string indicates the type of formatting expected. A
custom format consists of any number of fixed width fields. Each field has a specific format and fields are

Appendix 1 IxTclHAL Commands

– 1408 –

separated by one of a number of pre-defined separators. For example: 8b;3d;16x is a custom format that
requires 8 binary digits, a semi-colon, 3 decimal digits, a semi-colon and 16 hex digits. The possible
format characters are:

Option Usage

a Ascii characters, optionally surrounded by quotes.

b Binary characters (0 or 1).

d Decimal characters (0 through 9).

x Hex characters (0 through 9, a through f, or A through F).

The legal separators are `.', `:', `;', `,', `/', `\' and space. (default = "")

formatType

The expected format of the data in the column. Data is expected and is displayed in this format.

Option Value Usage

formatTypeHex 0 (default) Hex digits, without any leading `0x' or `0X'.

formatTypeAscii 1 Ascii characters. If a space is part of the string, the entire string
should be enclosed in quotes.

formatTypeBinary 2 Binary characters, without any leading `0b' or `0B'.

formatTypeDecimal 3 Decimal characters.

formatTypeMAC 4 A MAC address: 12 hex digits, with or without spaces. If spaces are
used, the entire address should be enclosed in quotes.

formatTypeIPv4 5 An IPv4 IP address: four decimal octets separated by periods (`.').

formatTypeIPv6 6 An IPv6 address.

formatTypeCustom 7 A custom specification, as detailed in customFormat.

name

The name of the column. (default = "New Field")

offset

The offset, in bytes, from the beginning of the packet to the start of the column's data. (default = 0)

size

The size, in bytes, of the column's data. (default = 4)

Appendix 1 IxTclHAL Commands

– 1409 –

COMMANDS

The tableUdfColumn command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

tableUdfColumn cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the tableUdfColumn command.

tableUdfColumn config option value

Modify the table UDF column options. If no option is specified, returns a list describing all of the available
options (see STANDARD OPTIONS).

tableUdfColumn setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

See examples under tableUdf

SEE ALSO

udf, tableUdf, stream

transceiver
transceiver - configure the TCL transceiver parameters for transceivers.

SYNOPSIS

transceiver sub-command options.

DESCRIPTION

The transceiver command is used to configure the TCL transceiver-specific information of the SFPPlus,
CfpQsfp, QSFP, CfpCxp,Cxp, and FCPhy transceivers.

STANDARD OPTIONS

carrierPowerOnProperty

This is a boolean, should be 1 or 0.

enableAutomaticDetectProperty

Indicates whether the AutomaticDetectProperty is enabled.

enableMonitorLosProperty

Indicates whether the MonitorLosProperty is enabled.

Appendix 1 IxTclHAL Commands

– 1410 –

enableMonitorModuleReadySignalProperty

Indicates whether the MonitorModuleReadySignalProperty is enabled.

laneCountProperty

Signifies the number of lanes available for a specific transceiver. Currently only 4 and 10 lines are
supported.

laserOnProperty

Indicates a boolean value. The value should be 1 to enable the laser and 0 to disable the laser.

laneSelectionProperty

Indicates the selection of available lanes. Possible values are the following:

Option Values

kAllLane 0

kLane1

kLane2

kLane3

kLane4

kLane5

kLane6

kLane7

kLane8

kLane9

kLane10

Currently, only 4 and 10 lines are supported. For 4 lines, the valid range is from the following:

Option values

kAllLane 0

kLane1

kLane2

Appendix 1 IxTclHAL Commands

– 1411 –

Option values

kLane3

kLane4

When set, you can use both the number corresponding to the option and the option name.

lockedtypeProperty

Indicates the lockedtype property. Possible values are the following:

Option Vaues Usage

kLimiting 0

kLinear 1

kTwinax 2 Active copper

kPassiveCopper 3 Passive copper

kNotDetected 4

kInvalid 5

When set, you need to use the number corresponding to the desired option.

loopbackModeProperty

Valid values are one of the following:

Option Values

cpfQsfpLoopbackNormal 0

cpfQsfpInternalLoopback 1

cpfQsfpLineLoopback 2

kLane3

kLane4

When set, either value or the option name can be used.

manufacturerProperty

Indicates a string representing the manufacturer name.

Appendix 1 IxTclHAL Commands

– 1412 –

maximum value for txPostTapControlValue

The default recommended value for txPostTapControlValue

modelProperty

Indicates a string representing the model name.

precoderControlValueProperty

Represents an encoding scheme to reduce DFE bit errors. This is similar to FEC in operation. This also
means that both sides of the link must have this enabled for link to up.
The default value is 0.

rxCtleControlValueProperty

Represents the receive sides continuous time linear equalizer. The control is the coefficient for how strong
or weak the equalization should be.
The minimum and maximum values are 0 and 7 respectively. The default value is 7.

Here the values of K400 and T400 cards:

Cardname Minimum value Maximum value Default value

K400 QSFP-DD 0 7 5

T400 QDD 0 31 8

T400 OSFP 0 31 7

rxDspModeControlValueProperty

Represents the digital signal processing modes. The controls are different channel descriptions
corresponding to different operation modes.
The possible values for K400 QSFP-DD are the following:

Option Values

Short non strenuous links 0

Non-strenuous optical links 1

Non-strenuous links w/ strong reflections 2

Non-strenuous optical links w/ strong reflections 3

Strenuous links 4

Strenuous optical links w/ strong reflections 6

For T400 QDD and T400 OSFP, there are two DSP modes:

Appendix 1 IxTclHAL Commands

– 1413 –

l 0 - short channel Rx precoder
l 1 - long channel with Rx precoder

The default value is 0.

rxEqualizerControlValueProperty

Represents the current set value for rxEqualizerControlValue. Valid range is between
rxEqualizerControlValueMinProperty and rxEqualizerControlValueMaxProperty.

rxEqualizerControlValueDefaultProperty

Represents the default recommended value for rxEqualizerControlValue.

rxEqualizerControlValueMaxProperty

Represents the maximum value for rxEqualizerControlValue.

rxEqualizerControlValueMinProperty

Represents the minimum value for rxEqualizerContrlValue.

rxEqualizerTapControlValuePassiveCuLengthProperty

Represents the default recommended values for 1, 3, 5 meter copper for rxEqualizerControlValue.

When reading values from a transceiver that supports multiple lines, the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines (line1 to lineN). Applies only for current values.

rxOutputAmplitudeControlValueProperty

Represents current set value of rxOutputAmplitudeControl. The valid range is between
rxOutputAmplitudeControlValueMinProperty and rxOutputAmplitudeControlValueMaxProperty.

rxOutputAmplitudeControlValueDefaultProperty

Represents default recommended value for rxOutputAmplitudeControl.

rxOutputAmplitudeControlValueMaxProperty

Represents maximum allowed value for rxOutputAmplitudeControl.

rxOutputAmplitudeControlValueMinProperty

Represents minimum allowed value for rxOutputAmplitudeControl.

rxOutputPreTapControlValueProperty

Represents current set value of rxOutputPreTapControl. The valid range is between
rxOutputPreTapControlValueMinProperty and rxOutputPreTapControlValueMaxProperty.

Appendix 1 IxTclHAL Commands

– 1414 –

rxOutputPreTapControlValueDefaultProperty

Represents default recommended value for rxOutputPreTapControl.

rxOutputPreTapControlValueMaxProperty

Represents maximum allowed value for rxOutputPreTapControl.

rxOutputPreTapControlValueMinProperty

Represents minimum allowed value for rxOutputPreTapControl.

rxOutputPostTapControlValueProperty

Represents current set value of rxOutputPostTapControl. The valid range is between
rxOutputPostTapControlValueMinProperty and rxOutputPostTapControlValueMaxProperty.

rxOutputPostTapControlValueDefaultProperty

Represents default recommended value for rxOutputPostTapControl.

rxOutputPostTapControlValueMaxProperty

Represents maximum allowed value for rxOutputPostTapControl.

rxOutputPostTapControlValueMinProperty

Represents minimum allowed value for rxOutputPostTapControl.

txEyeModControlValueProperty

Represents the difference between optical power levels of a digital signal. The control is the coefficient for
how high or low the modulation should be.
The minimum and maximum values are 0 and 16 respectively. The default value is 8.

For K400 QSFP-DD, the default value is 9.

When reading values from a transceiver that supports multiple lines the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4, 8, or 10.

txIcRefControlValueProperty

Represents the output voltage swing of the transmitter. The control is the coefficient for the voltage
swing.
The minimum and maximum values are 0 and 3 respectively. The default value is 0.

txMainTapControlValueProperty

Represents the current set value for txMainTapControl. Valid range is between
txMainTapControlValueMinProperty and txMainTapControlValueMaxProperty.

Appendix 1 IxTclHAL Commands

– 1415 –

txMainTapControlValueDefaultProperty

Represents the default recommended value for txMainTapControl.

txMainTapControlValueMaxProperty

Represents the maximum value for txMainTapControl property.

txMainTapControlValueMinProperty

Represents the minimum value for txMainTapControl property.

txMainTapControlValuePassiveCuLengthProperty

Represents default recommended values for 1, 3, 5 meter copper for txMainTapControl.

When reading values from a transceiver that supports multiple lines the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines(line1 to lineN). Applies only for current values.

txPreTapControlValueProperty

Represents the current set value for txPreTapControlValue. Valid range is between
txPreTapControlValueMinProperty and txPreTapControlValueMaxProperty.

txPreTapControlValueDefaultProperty

The default recommended value for txPreTapControlValue.

txPreTapControlValueMaxProperty

Represents the maximum value for txPreTapControlValue property.

txPreTapControlValueMinProperty

Represents the minimum value for txPreTapControlValue property.

txPreTapControlValuePassiveCuLengthProperty

The default recommended values for 1, 3, 5 meter copper for txPreTapControlValue.

When reading values from a transceiver that supports multiple lines the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines (line1 to lineN). Applies only for current values.

txPostTapControlValueProperty

Represents the current set value for txPostTapControlValue. Valid range is between
txPostTapControlValueMinProperty and txPostTapControlValueMaxProperty.

Appendix 1 IxTclHAL Commands

– 1416 –

txPostTapControlValueMaxProperty

Represents the maximum value for txPostTapControlValue.

txPostTapControlValueMinProperty

Represents the minimum value for txPostTapControlValue.

txPostTapControlValuePassiveCuLengthProperty

The default recommended values for 1, 3, 5 meter copper for txPostTapControlValue.

When reading values from a transceiver that supports multiple lines the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines(line1 to lineN). Applies only for current values.

txRiseFallTimeProperty

Represents the current set value for txRiseFallTime. Valid range is between txRiseFallTimeMinProperty
and txRiseFallTimeMaxProperty.

txRiseFallTimeDefaultProperty

Represents the default recommended value for txRiseFallTime.

txRiseFallTimeMaxProperty

Represents the maximum value for txRiseFallTime.

txRiseFallTimeMinProperty

Represents the minimum value for txRiseFallTime.

txRiseFallTimeTapControlValuePassiveCuLengthProperty

Represents the default recommended values for 1, 3, 5 meter copper for txRiseFallTime.

When reading values from a transceiver that supports multiple lines, the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines (line1 to lineN). Applies only for current values.

txSlewRateProperty

Represents the current set value for txSlewRate. Valid range is between txSlewRateMinProperty and
txSlewRateMaxProperty.

txSlewRateDefaultProperty

Represents the default recommended value for txSlewRate.

Appendix 1 IxTclHAL Commands

– 1417 –

txSlewRateMaxProperty

Represents the maximum value for txSlewRate.

txSlewRateMinProperty

Represents the minimum value for txSlewRate.

txSlewRateTapControlValuePassiveCuLengthProperty

Represents the default recommended values for 1, 3, 5 meter copper for txSlewRate.

When reading values from a transceiver that supports multiple lines, the value will be in the following
format:

:val1:val2:val3:val4...:valN, where N can be 4 or 10. These are the values for the same property but on
different lines (line1 to lineN). Applies only for current values.

typeProperty

Indicates the type of transceiver. Possible values are the following:

Option Values Usage

kLimiting 0

kLinear 1

kTwinax 2 Active copper

kPassiveCopper 3 Passive copper

kNotDetected 4

kInvalid 5

When set, you need to use the number corresponding to the desired option.

COMMANDS

The Transceiver command is invoked with the following sub-commands.

transceiver cget option

This command is automatically generated by TCL parser. Since there are no public members to read
directly from transceiver object, this command is not used to read properties.

It returns the current value of the configuration option given by option. You can get the manufacturer,
model, and serial number of the transceivers using the following options:

l transceiver cget manufacturer
l transceiver cget model

Appendix 1 IxTclHAL Commands

– 1418 –

l transceiver cget serialNumber

transceiverconfigure

This command is automatically generated by TCL parser. Because there are no public members to
configure directly from transceiver object, this command is not used to write properties.

transceiver setDefault chasID cardID portID

Sets a specific transceiver from a specific port in the default state. It is used for initializing the local TCL
transceiver object; this default state is only local and the default values set with this command are not
necessary the same as the ones recovered from default properties (like
txMainTapControlValueDefaultProperty, txPreTapControlValueDefaultProperty,
txPostTapControlValueDefaultProperty, rxEqualizerControlValueDefaultProperty).

transceiver set chasID cardID portID

Moves the information set in the transceiver (with setDefault or setValue) from local TCLHal object to Hal
object, just before calling a write command (writePluginToServer, saveCustomSetting).

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Insufficient memory to add data

transceiver get chasID cardID portID

Gets whatever information was received in the transceiver from IxServer, from loGal Hal object to local
TClHal object, just after calling a read command (getCurrentSettings, getCustomSettings); in case this
command is forgotten, the property's value will not be changed, when using getValue.

transceiver getReadAvailableProps chasID cardID portID

Returns a list of available properties which can be read for a specific transceiver on a specific port.

transceiver getWriteAvailableProps chasID cardID portID

Returns a list of available properties which can be written for a specific transceiver on a specific port.

transceiver getValue option

Returns the current value from TCLHal object for the specific property. See STANDARD OPTIONS for the
available properties.

transceiver setValue option value

Sets the specified value for the specified property. See STANDARD OPTIONS for the available properties.

transceiver getTransceiverType chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1419 –

Returns the transceiver type or unsupported type in case neither transceiver type is supported by that
port.

Possible values:

l cfpQsfpType
l cfpCxpType
l cxpType
l qsfpType
l sfpPlusType
l fcPhyType
l unsuportedType
l cfp4Qsfp28Type

transceiver writePluginToServer chasID cardID portID

Commits whatever information was set in the Hal object to IxServer. In order to save those properties
values, you need to call setValue, set followed by current command.

Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is being used by another user
l The configured parameters are not valid for this port
l Insufficient memory to add data

transceiver saveCustomSetting chasID cardID portID

Triggers a save custom default command which will save whatever information related to TAP is in the Hal
object, into an xml at IxServer level. In order to save those properties values, you need to call setValue,
than set followed by current command.

transceiver applyDefaultSetting chasID cardID portID

This is similar in functionality with the applyDefaultSettings button from IxExplorer. This sets the Tap
properties to the values which those properties had taken before the Ok button was clicked.

transceiver applyCustomSetting chasID cardID portID

Apply the custom settings (if existing) to the current settings; same behavior as the applyCustomSettings
from IxExplorer.

transceiver findCustomSetting chasID cardID portID

Returns if customSettings are available for a specific command (deleteCustom, getCustom, applyCustom,
saveCustom).

transceiver deleteCustomSetting chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1420 –

Removes the existing custom settings from the xml in IxServer; similar behavior as the
deleteCustomSettings button.

transceiver getCurrentSettings

Updates the local hal with a copy of current tap values from IxServer. In order to check the values of
these properties, you need to run the get command followed by getValue.

transceiver getCustomSettings chasID cardID portID

Updates the local hal with a copy of custom tap values from IxServer. In order to check those properties
values you need to run the get command followed by getValue.

transceiver getResponseResult

Return the response to findCustomSetting. Depending on the signature parameter of findCustomSetting,
its values can be :

Option Values

kDefaultResult 0

kTCLApplyCustomSettingSucceded 1

kTCLApplyCustomSettingFailed 2

kTCLSaveCustomSettingSucceded 3

kTCLSaveCustomSettingFailed 4

kTCLDeleteCustomSettingSucceded 5

kTCLDeleteCustomSettingFailed 6

kTCLGetCustomSettingsSucceded 7

kTCLGetCustomSettingsFailed 8

kTCLGetCurrentSettingsSucceded 9

kTCLGetCurrentSettingsFailed 10

EXAMPLES
package require IxTclHal
ixConnectToChassis localhost
set chassisId [chassis cget -id]
set cardId 171
set portId 1
transceiver setDefault $chassisId $cardId $portId
transceiver getCurrentSettings $chassisId $cardId $portId
transceiver get $chassisId $cardId $portId
transceiver cget $manufacturer $model $serialNumber

Appendix 1 IxTclHAL Commands

– 1421 –

set propList [transceiver getReadAvailableProps $chassisId $cardId $portId]
foreach element $propList {
puts $element
puts [transceiver getValue $element]
}
transceiver get $chassisId $cardId $portId
transceiver getWriteAvailableProps $chassisId $cardId $portId
transceiver getValue laserOnProperty
transceiver setValue laserOnProperty 0
transceiver set $chassisId $cardId $portId
transceiver writePluginToServer $chassisId $cardId $portId
transceiver get $chassisId $cardId $portId
transceiver getValue laserOnProperty

SEE ALSO

udf, tableUdf, stream

tcp
tcp - configure the TCP parameters for a port on a card on a chassis.

SYNOPSIS

tcp sub-command options

DESCRIPTION

The tcp command is used to configure the TCP-specific information used when building TCP type packets
if ip config -ipProtocol has been set to Tcp. See RFC 793 for a complete definition of TCP header fields.
Note that stream get must be called before this command's get sub-command.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command are with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

acknowledgement
Number

Next byte that the receiver expects from the sending host. (default = 0)

acknowledgeValid true/false

Indicates whether the acknowledgement number field is valid. (default = false)

Appendix 1 IxTclHAL Commands

– 1422 –

checksum

If useValidChecksum is set to valid or invalid, this is the TCP checksum, following a call to tcp decode.
Note: this field is only valid after a decode operation. (default = 00 00)

If useValidChecksum is set to override, the header checksum is a user-defined 2-byte hex value.

destPort

Protocol source port number. (default = 0)

finished true/false

The sender indicates that this is the last packet it transmits for the connection. (default = false)

offset

Offset from the beginning of the TCP header to the data. (default = 5)

pushFunctionValid
true/false

Request that receiver deliver the packet to the application without buffering. (default = false)

resetConnection
true/false

Reset the connection signal. (default = false)

sequenceNumber

Sequence number used to keep track of each byte of data. (default = 0)

sourcePort

Protocol destination port number. (default = 0)

synchronize true/false

Indicates either a connection request (ACK=0) or a connection accepted (ACK=1) condition. (default =
false)

urgentPointer

Byte offset of the urgat data in the packet. (default = 0)

urgentPointerValid true/false

Indicates whether the urgent point field is valid. (default = false)

Appendix 1 IxTclHAL Commands

– 1423 –

useValidChecksum
valid/invalid/override

If portFeatureTcpIPv4ChecksumOverride = true, then:

Valid: (default) The calculated header checksum is automatically calculated.

Invalid: The calculated header checksum is automatically calculated (with error).

Override: The header checksum can be set to a user-defined, 2-byte hex value.

window

The number of bytes that the recipient may send to the sender, starting at the acknowledge byte. (default
= 0)

DEPRECATED OPTIONS

options

This option has no affect.

COMMANDS

The tcp command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

tcp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the tcp command.

tcp config option value

Modify the TCP configuration options of the port. If no option is specified, returns a list describing all of the
available TCP options (see STANDARD OPTIONS) for port.

tcp decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. tcp cget option command can be used
after decoding to get the option data.

tcp get chasID cardID portID

Gets the current TCP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling tcp
cget option to get the value of the configuration option.

tcp set chasID cardID portID

Sets the TCP configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the tcp config option value command.

tcp setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1424 –

options

Variable length option field in the TCP header. Options may occupy space at the end of the TCP header
and are a multiple of 8 bits in length. (default = { })

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
set portMAC {00 00 00 01 01 01}
set portIP {192.168.18.1}
set portMask {255.255.255.0}
set destMAC {00 00 00 01 01 02}
set destIP {192.168.18.2}
set destMask {255.255.255.0}

port setFactoryDefaults $chas $card $port
port setDefault
Stream: 256 packets

Appendix 1 IxTclHAL Commands

– 1425 –

stream setDefault
stream config -numFrames 256
stream config -sa $portMAC
stream config -da $destMAC
stream config -dma stopStream
Set up IP: lowcost packets
Source address varies by incrementing the network part
Destination address varies by incrementing the host part
ip setDefault
ip config -cost lowCost
ip config -sourceIpAddr $portIP
ip config -sourceIpMask $portMask
ip config -sourceClass classC
ip config -destIpAddr $destIP
ip config -destIpMask $destMask
ip config -destClass classC
ip config -qosMode ipV4ConfigDscp
ip config -dscpMode ipV4DscpClassSelector
ip config -classSelector ipV4DscpClass2
ip set $chas $card $port
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII
tcp setDefault
tcp config -sourcePort 32768
tcp config -destPort 21
tcp set $chas $card $port
stream set $chas $card $port 1
port set $chas $card $port
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, protocol, ip

tcpRoundTripFlow
tcpRoundTripFlow - configure the tcp round trip flow parameters for a port on a card on a chassis

SYNOPSIS

tcpRoundTripFlow sub-command options

Appendix 1 IxTclHAL Commands

– 1426 –

DESCRIPTION

The tcpRoundTripFlow command is used to configure the tcp round trip flow specific information used
when setting the tcp round trip flow on a port.

STANDARD OPTIONS

dataPattern type

Sets up the default data pattern to be inserted into the streams on the port. type may be one of the
following values:

Option Value Usage

allOnes 0 the frame contains all 1's

allZeroes 1 the frame contains all 0's

xAAAA 2 the frame contains all A's

x5555 3 the frame contains all 5's

x7777 4 the frame contains all 7's

xDDDD 5 the frame contains all D's

xF0F0 6 the frame contains repeating pattern of F0F0's

x0F0F 7 the frame contains repeating pattern of 0F0F's

xFF00FF00 8 the frame contains repeating pattern of FF00FF00's

x00FF00FF 9 the frame contains repeating pattern of 00FF00FF's

xFFFF0000 10 the frame contains repeating pattern of FFFF0000's

x0000FFFF 11 the frame contains repeating pattern of 00000FFFF's

x00010203 12 (default) the frame contains repeating pattern of 00010203's

x00010002 13 the frame contains repeating pattern of 00010002's

xFFFEFDFC 14 the frame contains repeating pattern of FFFEFDFC's

xFFFFFFFE 15 the frame contains repeating pattern of FFFFFFFE's

userpattern 16 select this type to insert user-defined data pattern in the frame, as defined
in pattern

forceIpSA true/false

Forces the IP source address in reflected packets, as defined in the ipSA option. (default = false)

Appendix 1 IxTclHAL Commands

– 1427 –

framesize

Number of bytes in each frame in the tcp round trip flow. (default = 64)

gatewayIpAddr

Gateway IP address. (default = 0.0.0.0)

ipSA

IP source address. (default = 0.0.0.0)

macDA

MAC destination address. (default={00 00 00 00 00 00})

macSA

MAC source address. (default={00 00 00 00 00 00})

pattern

Specify a user-defined pattern of data to be transmitted on this stream. The dataPattern option must be
set to type userpattern or this pattern is ignored (default= {00 01 02 03})

patternType type

Type of given patterns that is inserted in all the frames transmitted on the tcp round trip flow stream. type
can be one of the following:

Option Value Usage

incrByte 0 increment each byte of the frame during transmission (default)

incrWord 1 increment each word of the frame during transmission

decrByte 2 decrement each byte of the frame during transmission

decrWord 3 decrement each word of the frame during

patternTypeRandom 4 generate random pattern of data during transmission

repeat 5 transmit the same pattern of data in the frame transmission

nonRepeat 6 transmit a fixed pattern of data. Note: Fixed type in IxExplorer.

useArpTable true/false

Enable ARP Mac destination address option. (default = false)

Appendix 1 IxTclHAL Commands

– 1428 –

COMMANDS

The tcpRoundTripFlow command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

tcpRoundTripFlow cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the tcpRoundTripFlow command.

tcpRoundTripFlow config option value

Modify the tcp round trip flow configuration options of the port. If no option is specified, returns a list
describing all of the available the tcpRoundTripFlow options (see STANDARD OPTIONS) for port.

tcpRoundTripFlow get chasID cardID portID

Gets the current tcp round trip flow configuration of the port with id portID on card cardID, chassis
chasID. Call this command before calling tcpRoundTripFlow cget option to get the value of the
configuration option.

tcpRoundTripFlow set chasID cardID portID

Sets the tcp round trip flow configuration of the port with id portID on card cardID, chassis chasID by
reading the configuration option values set by the tcpRoundTripFlow config option value command.

tcpRoundTripFlow setDefault

Sets to IxTclHal default values for all configuration options.

tcpRoundTripFlow setFactoryDefaults chasID cardID portID

Sets the factory defaults to the tcpRoundTripFlow.

EXAMPLES
package require IxTclHal
In this example, two ports on a 10/100 card are connected through a
simple switch. The first port transmits at 100Mb/s and the second
port transmits at 10Mb/s.
#
The second port uses TCP Round Trip Flows to reflect the received
packets back to port 1, where they are captured and analyzed for
latency using captureBuffer.
Connect to chassis and get chassis ID
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}

Appendix 1 IxTclHAL Commands

– 1429 –

}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assumes that card 1 is a 10/100 card with both ports connected to
a simple L2 switch
set card 1
set txPort 1
set rxPort 2
Useful port lists
set portList [list [list $chas $card $txPort] [list $chas $card $rxPort]]
set txPortList [list [list $chas $card $txPort]]
set rxPortList [list [list $chas $card $rxPort]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Test parameters
MAC addresses
set p1MAC [list 00 00 00 01 01 01]
set p2MAC [list 00 00 00 01 01 02]
IP addresses
set p1IP "192.168.18.1"
set p2IP "192.168.18.2"
Number of frames to transmit
set numFrames 10
Set up Transmit Port
Port 1: 100Mb/s
port setFactoryDefaults $chas $card $txPort
port config -speed 100
port config -advertise100FullDuplex true
port config -advertise100HalfDuplex false
port config -advertise10FullDuplex false
port config -advertise10HalfDuplex false
Stream: 1 stream @ 100%, frame size 100, specific number of frames
Make sure to insert time stamps (fir)
stream setDefault
stream config -enable true

Appendix 1 IxTclHAL Commands

– 1430 –

stream config -dma stopStream
stream config -numBursts 1
stream config -numFrames $numFrames
stream config -rateMode usePercentRate
stream config -percentPacketRate 100
stream config -sa $p1MAC
stream config -a $p2MAC
stream config -framesize 100
stream config -fir true
IP: ethernetII tcp packets from port to port
ip setDefault
ip config -ipProtocol tcp
ip config -sourceIpAddr $p1IP
ip config -sourceIpAddrRepeatCount 1
ip config -sourceIpAddrMode fixed
ip config -destIpAddr $p2IP
ip config -destIpAddrRepeatCount 1
ip config -destIpAddrMode fixed
ip set $chas $card $txPort
tcp setDefault
tcp set $chas $card $txPort
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII
Set the stream and ports
stream set $chas $card $txPort 1
port set $chas $card $txPort
Set up Receive Port
Port 2: 10Mb/s, TCP round trip mode reflects 64 byte packets
port setFactoryDefaults $chas $card $rxPort
port setDefault
port config -speed 10
port config -advertise100FullDuplex false
port config -advertise100HalfDuplex false
port config -advertise10FullDuplex true
port config -advertise10HalfDuplex false
port config -transmitMode portTxPacketFlows
port config -receiveMode portRxTcpRoundTrip
Set up TCP RT for Mac addresses
tcpRoundTripFlow setDefault
tcpRoundTripFlow config -macSA $p2MAC
tcpRoundTripFlow config -macDA $p1MAC
tcpRoundTripFlow set $chas $card $rxPort
Set the port
port set $chas $card $rxPort
ixWritePortsToHardware portList
Wait for changes to take affect
after 1000

Appendix 1 IxTclHAL Commands

– 1431 –

ixCheckLinkState portList
Send the packets and wait for things to be done
ixClearStats txPortList
ixStartCapture txPortList
ixStartTransmit txPortList
after 1000
ixCheckTransmitDone txPortList
Fill the capture buffer with all of the packets
capture get $chas $card $txPort
set numRxFrames [capture cget -nPackets]
if {$numRxFrames != $numFrames} {
ixPuts "$numFrames transmitted, but $numRxFrames received"
}
captureBuffer get $chas $card $txPort 1 [expr $numRxFrames - 1]
Figure out the latency and print it out
captureBuffer getStatistics
captureBuffer getConstraint 1
ixPuts -nonewline "Avg Latency is "
ixPuts -nonewline [captureBuffer cget -averageLatency]
ixPuts -nonewline "ns, min = "
ixPuts -nonewline [captureBuffer cget -minLatency]
ixPuts -nonewline "ns, max = "
ixPuts -nonewline [captureBuffer cget -maxLatency]
ixPuts "ns"
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, ip, tcp

timeServer
timeServer - configure the timing parameters for a chassis.

SYNOPSIS

timeServer sub-command options

DESCRIPTION

The timeServer command is used to manage the timing of the chassis chain. It includes controls and
read-only values for all timing options available on IXIA 100 chassis.

Appendix 1 IxTclHAL Commands

– 1432 –

STANDARD OPTIONS

antennaStatus

Read-only. Possible values include:

Option Value Usage

gpsStateAntennaUnknown 0 antenna status is unknown until status is received from the
GPS unit

gpsStateAntennaOK 1 antenna is connected and working

gpsStateAntennaOpen 2 antenna is not detected

gpsStateAntennaShort 3 antenna is not working

cdmaFrameErrorRate

Read-only. The CDMA frame error rate, expressed in errored frames per second.

cdmaSNR

Read-only. The CDMA signal to noise ratio.

cdmaState

Read-only. The current state of the CDMA unit. Possible values include:

Option Value Usage

cdmaStateUnknown 0 CDMA status is unknown until status is received.

cdmaStateAcquiring 1 acquiring a signal

cmdaStateSignalDetected 2 a CDMA signal has been detected

cdmaStateCodeLocking 3 CDMA code locking in progress

cdmaStateCarrierLocking 4 CDMA carrier locking in progress

cdmaStateLocked 5 CDMA code and carrier are locked; valid times are available

cdmaTime

Read-only. CDMA generated time in seconds.

Appendix 1 IxTclHAL Commands

– 1433 –

enableValidStats
true / false

If set, then timeServer cget -statName calls for statistics invalid for the time source returns an error. If
unset, then all timeServer cget -statName returns without error, but the invalid statistics have default
values. (default = true)

fpgaVersion

Read-only for GPS Receiver only. The version number of the GPS receiver FPGA.

gpsStatus

Read-only. Possible values include:

Option Value Usage

gpsStateGpsUnknown 0 GPS status is unknown until status is received

gpsStateGpsLocked 1 connection to the GPS is established

gpsStateGpsUnlocked 2 connection to the GPS is not established

gpsTime

Read-only. GPS generated time in seconds.

lockStatus

Read-only. For the GPS receiver only, shows the lock status of the chassis. One of.:

Option Value Usage

gpsUnlocked 0 Chassis is not locked to the GPS receiver.

gpsLocked 1 Chassis is locked to the GPS receiver.

positionFix

Read-only for GPS Receiver only. The type of GPS signal received. Possible values include:

Option Value Usage

gpsPositionInvalid 0 No signal

gpsPositionValidSPS 1 SPS

gpsPositionValidDGPS 2 DGPS

gpsPositionValidPPS 3 PPS

Appendix 1 IxTclHAL Commands

– 1434 –

pllStatus

Read-only. Possible values include:

Option Value Usage

gpsStatePLLUnknown 0 PLL status is unknown until status is received

gpsStatePLLOK 1 PLL is locked

gpsStatePLLUnlocked 2 PLL is not synchronized to the satellite

qualityStatus

Read-only. Possible values include:

Option Value Usage

tsTimeQualityInvalid 0 quality invalid until status is received

tsTimeQuality0 1 perfect timing

tsTimeQuality1 2 acceptable timing

tsTimeQuality2 3 not acceptable timing

tsTimeQuality3 4 not acceptable timing

tsTimeQuality4 5 not acceptable timing

satelliteIdRatios

Read-only for GPS Receiver only. The connection ratios of signal to noise for the first four satellites used.

satellitesUsed

Read-only for GPS Receiver only. The number of GPS satellites the receiver is connected to.

sntpClient

The name or IP address of the SNTP server used to obtain time information from. Used when timeSource
is set to sntpClient. (default = "")

state

Read-only. The current state of the GPS unit expressed as a string.

timeSource

Indicates the source for the time server:

Appendix 1 IxTclHAL Commands

– 1435 –

Option Value Usage

tsInternal 0 (default) use internal timing for chassis.

tsGpsServer 1 use the GPS unit.

tsCdma 8 use the CDMA unit

tsGpsAfd1Server 9 use the GPS receiver

utcDate

Read-only for GPS Receiver only. The current date, in UTC form, expressed as a string.

utcTime

Read-only for GPS Receiver only. The current time of day, in UTC form, expressed as a string.

cThe following time source options are changed to tsInternal if used:

Option Value Usage

tsSntpServer 2 use an external SNTP server in sntpClient.

tsPcClock 3 use the clock from the PC associated with the chassis.

tsE1 4 (IxClock only) use the E1 clock input

tsT1 5 (IxClock only) use the E1 clock input

ts1PPS 6 (IxClock only) use the 1PPS clock input

tsStandAlone 7 use stand-along timing for the chassis

DEPRECATED OPTIONS

e1T1Status

Read-only for IxClock only (obsolete). The status of the E1 or T1 signal. Possible values include:

Option Value Usage

ixClockE1T1None 0 no signal is detected

ixClockE1T1Error 1 an error has been detected

ixClockE1T1OK 2 signal is OK

timeOfDay

Read-only for IxClock only (obsolete). The current time of day, expressed as a string.

Appendix 1 IxTclHAL Commands

– 1436 –

COMMANDS

The timeServer command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

timeServer cget option

Returns the current value of the configuration option given by option.

timeServer config option value

Modify the configuration options of the time server. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for timeServer.

timeServer get chasID

Gets the current configuration of the TimeServer for chassis with chassis ID chasID from its hardware.
Call this command before calling timeServer cget option value to get the value of the configuration option.

timeServer get ipAddress

Gets the current configuration of the TimeServer for the chassis whose IP address or hostname is
ipAddress. Call this command before calling timeServer cget option value to get the value of the
configuration option.

timeServer resetGps chasID

Resets the GPS unit in chassis ID chasID.

timeServer set chasID

Sets the time server configuration of the chassis with chassis ID chasID by reading the configuration
option values set by the timeServer config option value command.

timeServer set ipAddress

Sets the time server configuration of the chassis whose IP address or hostname is ipAddress by reading
the configuration option values set by the timeServer config option value command.

timeServer setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
set host cucumber
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}

Appendix 1 IxTclHAL Commands

– 1437 –

}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Get the type of chassis so that we use GPS correctly
chassis get $host
set type [chassis cget -type]
Set the time server selection to the default
timeServer setDefault
timeServer set $chas
chassis writeAll $chas
And check the current settings
timeServer get $chas
set ts [timeServer cget -timeSource]
ixPuts -nonewline "Default time source is: "
switch $ts \
$::tsInternal {ixPuts "internal"} \
$::tsGpsServer {ixPuts "GPS"} \
$::tsSntpServer {ixPuts "SNTP"} \
$::tsStandAlone {ixPuts "stand alone"} \
$::tsCdma {ixPuts "CDMA"}
If the chassis is of a type that has GPS
if {$type == $::ixia100} \
{
Set it to GPS mode
timeServer config -timeSource tsGpsServer
timeServer set $chas
chassis writeAll $chas
Wait for a minute to see if we can achieve good quality
for {set i 0} {$i < 60} {incr i} \
{
after 1000
Get the settings
timeServer get $chas
Get the GPS time quality
set quality [timeServer cget -qualityStatus]
If it's good enough
if {$quality <= $::tsTimeQuality1} \
{
ixPuts "Good GPS quality achieved"
break
}
Otherwise report on all settings
ixPuts "Quality is $quality"

Appendix 1 IxTclHAL Commands

– 1438 –

set quality [timeServer cget -antennaStatus]
ixPuts "Antenna Status is $quality"
set quality [timeServer cget -gpsStatus]
ixPuts "GPS Status is $quality"
set quality [timeServer cget -pllStatus]
ixPuts "PLL Status is $quality"
set quality [timeServer cget -state]
ixPuts "State is $quality"
}
If we achieved lock
if {$i < 60} \
{
Pick up the time setting
set time [timeServer cget -gpsTime]
ixPuts "Current time from GPS is $time"
} \
else \
{
ixPuts "Can't achieve GPS lock"
break
}
}
Now try to set the system to use CDMA
timeServer config -timeSource tsCdma
timeServer set $chas
chassis writeAll $chas

SEE ALSO

chassisChain

txLane
txLane - configures and applies the lane skew configuration to the tx port.

SYNOPSIS

txLane sub-command options

DESCRIPTION

The txLane command is used to configure and apply the lane skew configuration to the tx port.

Users of this api should apply this config by the tcl command:

l ixWriteConfigToHardware

to not disburb the link state of the port on commit to hardware.

Appendix 1 IxTclHAL Commands

– 1439 –

STANDARD OPTIONS

pcsLane

Valid values range 0-19 for 100GB load modules; 0-3 for 40GB and 50GB load modules. Negative testing
is allowed, so the physical lanes might not have a unique value for pcsLane. The method txLane setLane
physicalLane or txLane setLaneList chasID cardID portID overwrites any previously configured pcsLane
setting.

laneMapping

Valid values are the following: (default = 0)

Option Value

DefaultMapping 0

IncrementMapping 1

DecrementMapping 2

RandomMapping 3

CustomMapping 4

skew

Value of the skew; this number is rounded up/down to the nearest actual skew the hardward supports.
(default = 0)

synchronizedLaneSkew

Valid values are either 0 or 1. Value of 0 allows the lanes to have different skew. Value of 1 forces the
lanes to be synchronized in skew. (default = 0)

COMMANDS

The txLane command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

txLane getLane physicalLane

Retrieves one row in the tx lane indexed by the physical lane.

txLane getLaneList chasID cardID portID

Utility method that returns a string, in tcl list form, of all the names of the physical lanes for this port in
this configuration. Specific errors are:

l No connection to a chassis
l Invalid port number

txLane setLane physicalLane

Appendix 1 IxTclHAL Commands

– 1440 –

Updates the row in the tx lane table with the configuration data for that physical lane.

txLane setLaneList chasID cardID portID

Updates all rows in the Tx lane table in IxHal with configured data of physical lanes. Individual lanes are
set in IxHal through txLane setLane.

txLanewriteLaneList chasID cardID portID

Writes all of the Tx lane table to hardware.

txLane select chasID cardID portID

Selects the local IxHAL object with the configured tx lane table. Does not apply directly to hardware;
ixWriteConfigToHardware is required for commit to hardware. Required for any setLane/getLane
operations. setDefault does not affect the selected port value. Specific errors are:

l No connection to a chassis
l Invalid port number

txLane setDefault

Sets to IxTclHal default values for all configuration options.

txLane cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the txLane command.

txLane config option value

Modify the configuration options of the txLane. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for txLane.

CAUTION: 'txLane get' should be called before 'txLane config' in order to maintain consistency between
Tcl Client txLane object and Server txLane object.

EXAMPLES

pcsLaneStatistics

SEE ALSO

pcsLaneStatistics, pcsLaneError

txRxPreamble
txRxPreamble - configure the transmit and received preamble settings for 10GE LAN ports.

SYNOPSIS

txRxPreamble sub-command options

Appendix 1 IxTclHAL Commands

– 1441 –

DESCRIPTION

The txRxPreamble command is used to set the options related to preamble transmit and receive operation
on 10GE ports. Two of the options (enableCiscoCDL and enableCDLStats) apply to the use of the Cisco
Converged Data Layer (CDL) on 10GE ports. The enablePreambleView option controls the ability to view
the preamble in the result of a stream cget -packetView command.

STANDARD OPTIONS

enableCiscoCDL
true | false

This option enables the use of a Cisco CDL preamble to replace the standard Ethernet preamble. This
feature is only available on some ports, which can be checked by a call to port isValidFeature...
portFeatureCiscoCDL. The contents of the preamble are programmed through the use of the cdlPreamble
command. (default = false)

enableCDLStats
true | false

This option enables the generation of preamble statistics and capture. This feature is only available on
some ports, which can be checked by a call to port isValidFeature... portFeaturePreambleCapture. The
statistics are available through the use of the stat command and the captured data is available through
the use of the capture and captureBuffer commands.

enableIncludePreamble
InRxCrc
true | false

This option enables the inclusion of the preamble length in the receive side CRC calculation. (default =
false)

enablePreambleView
true | false

This option enables the inclusion of the preamble in the packetView option of the stream command. This
feature is only available on some ports, which can be checked by a call to port isValidFeature...
portFeaturePreambleView.(default = 0)

rxMode

The receive mode for the port.

Option Value Usage

preambleModeSFDDetect 0 The SFD is the last byte in the preamble (the 8th byte in this
case). This mode checks for the first occurrence of the SFD
byte. The next byte is considered the start of the frame.

preambleByteCount 1 This mode counts the bytes of the preamble (8 bytes in this

Appendix 1 IxTclHAL Commands

– 1442 –

Option Value Usage

case), and considers the next byte (9th) the first byte of the
frame.

preambleSameAsTransmit 2 (default) The Receive side accepts the same choices/entries
that were made for the Transmit side.

txMode

The transmit mode for the port.

Option Value Usage

preambleModeSFDDetect 0 (default) The SFD is the last byte in the preamble (the 8th
byte in this case). This mode checks for the first occurrence of
the SFD byte. The next byte is considered the start of the
frame.

preambleByteCount 1 This mode counts the bytes of the preamble (8 bytes in this
case), and considers the next byte (9th) the first byte of the
frame.

COMMANDS

The txRxPreamble command is invoked with the following sub-commands. If no sub-command is
specified, returns a list of all sub-commands available.

txRxPreamble cget option

Returns the current value of the configuration option txRxPreamble by option. Option may have any of the
values accepted by the txRxPreamble command, subject to the setting of the enableValidStats option.

txRxPreamble config option value

Modify the configuration options of the time server. If no option is specified, returns a list describing all of
the available options (see STANDARD OPTIONS) for txRxPreamble.

txRxPreamble get chasID cardID portID

Gets the current preamble configuration of the port with id portID on card cardID, chassis chasID. Call
this command before calling txRxPreamble cget option to get the value of the configuration option.

txRxPreamble set chasID cardID portID

Sets the preamble configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the txRxPreamble config option value command.

txRxPreamble setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1443 –

EXAMPLES
set chasID 1
set cardID 4
set portID 1
txRxPreamble setDefault
txRxPreamble config -rxMode preambleByteCount
txRxPreamble config -txMode preambleModeSFDDetect
if [port isValidFeature $chasID $cardID $portID /
portFeatureCiscoCDL] {
txRxPreamble config -enableCiscoCDL true
}
if [port isValidFeature chasID cardID portID portFeaturePreambleCapture] {
txRxPreamble config -enableCDLStats true
}
if [port isValidFeature chasID cardID portID portFeaturePreambleView] {
txRxPreamble config -enablePreambleView true
}

SEE ALSO

stream, cdlPreamble

udf
udf - configure the User-Definable Fields in the frames of a stream.

SYNOPSIS

udf sub-command options

DESCRIPTION

User-Definable Fields (UDFs) are counters that can be inserted anywhere in the frame whose data can be
used to represent special purpose patterns. Each of the supported UDFs can be enabled or disabled and
contain 8, 16, 24, or 32 bit counters.

The udf command is used to configure the UDF parameters on a stream of a port. It must be followed by a
call to stream set.

Table UDFs are a type of UDF which allows multiple static values to be placed at multiple locations in a
packet. Table UDFs are enabled and controlled by the tableUdf and tableUdfColumn commands.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command is with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

Appendix 1 IxTclHAL Commands

– 1444 –

STANDARD OPTIONS

bitOffset

Sets the offset of the UDF (in bits). This must be a value from 0-7 and is only supported on certain cards
in certain modes. If this is set to a nonzero value when it is not legal, a 'stream set' error is issued.

cascadeType

Indicates the source of the initial value for the counter. The initial value for the first enabled stream
always comes from the initval option.

Option Value Usage

udfCascadeNone 0 (default) The initial value always comes from initval.

udfCascadeFromPrevious 1 The initial value is derived from the last executed stream
which used this UDF number with cascadeType set to
udfCascadeFromPrevious. An initial
increment/decrement/random operation is applied from the
previous value.

udfCascadeFromSelf 2 The initial value is derived from the last value generated by
this UDF with this stream. An initial
increment/decrement/random operation is applied from the
previous value.

chainFrom

Select what UDF the current UDF should chain from. When this option is employed, the UDF stays in its
initial value until the UDF it is chained from reaches its terminating value. Values: None, UDF1 through
UDF5 depending on the number of UDFs available for the module, and excluding the UDF that is being
configured.:

Option Value Usage

udfNone 0 (default)

udf1 1 chains from UDF1

udf2 2 chains from UDF2

udf3 3 chains from UDF3

udf4 4 chains from UDF4

udfI5 5 chains from UDF5

Appendix 1 IxTclHAL Commands

– 1445 –

continuousCount
true/false

When set to true, the counter increments or decrements the bytes depending on the updown option.
(default = false)

counterMode

The mode of operation of the counter. The following values can be specified for this option:

Option Value Usage

udfCounterMode 0 (default) Normal up-down counter as controlled by
continuousCount, udfSize, initval, maskselect, maskval,
random, repeat, step, updown and cascadeType.

udfRandomMode 1 Generates random values, based on the values in udfSize,
maskselect and maskval

udfValueListMode 2 A list of distinct values, based on the values of udfSize, valueList
and cascadeType.

udfNestedCounterMode 3 Two nested counters may be used to build complex sequences,
based on the values of udfSize, initval, innerLoop, innerRepeat,
innerStep, step, repeat and cascadeType.

udfRangeListMode 4 A list of value ranges, based on udfSize, cascadeType and
ranges. Ranges must be added to the udf command using the
addRange sub-command.

udfIPv4Mode 5 A counter which facilitates generation of IPv4 addresses, based
on initval, innerRepeat, innerStep, continuousCount, repeat,
enableSkipZerosAndOnes and skipMaskBits.

Not all modes are supported by all port types and not all modes are supported by all UDFs on a port. A
stream set fails if any enabled UDF does not support a counterMode. The availability of a particular mode
on a particular UDF can be checked with the port isValidFeature command.

countertype

Earlier values of countertype are still valid but on boards and modes that support it, countertype is
deprecated in favor of udfSize.

Describes the size and shape of this UDF field. Each field consists of 4 8-bit counters; these counters may
be configured as individual counters or in any combination, such as 2 8-bit counters & one 16 bit counter,
2 16-bit counters, or 1 32 bit counter. Note that every 8-bit counter within this field does not have to be
used. The options available for this variable select the size (8, 16, 24 or 32 bits) and configuration; for
example - if the option c8x8x8x8 is selected the counters is configured as 4 independent 8-bit counters. If
the option config8x16 is selected, the counters is configured as one 8-bit counter, one 16-bit counter and
the remaining 8-bits is unused. The following values can be specified for this option:

Appendix 1 IxTclHAL Commands

– 1446 –

Option Value Usage

c8 0 (default) one 8-bit counter

c16 1 one 16 bit counter

c8x8 2 two 8-bit counters

c24 3 one 24-bit counter

c16x8 4 one 16-bit counter followed by a 8-bit counter

c8x16 5 one 8-bit counter followed by a 16-bit counter

c8x8x8 6 three 8-bit counters

c32 7 one 32-bit counter

c24x8 8 one 24-bit counter followed by a 8-bit counter

c16x16 9 two 16-bit counters

c16x8x8 10 one 16-bit counter followed by two 8-bit counters

c8x24 11 one 8-bit counter followed by a 24-bit counter

c8x16x8 12 one 8-bit counter followed by a 16-bit counter followed by another 8-bit
counter

c8x8x16 13 two 8-bit counters followed by a 16-bit counter

c8x8x8x8 14 four 8-bit counters

enable true/false

If this option is set to true, then this UDF counter is inserted into the frame. (default = false)

enableCascade
true/false

If this option is set to true, then the UDF counter is not reset with the start of each stream, but rather
continues counting from the ending value of the previous stream. (default = false)

enableIndexMode

If this option is set to true, the index mode is enabled.

enableKillBitMode

If this option is set to true, enables Kill Bit Mode.

Appendix 1 IxTclHAL Commands

– 1447 –

killBitUDFSize

The Kill Bit UDF size.

enableSkipZeros
AndOnes

If counterMode is udfIPv4Mode and this option is set to true, then values of all 0's and all 1's as masked
by skipMaskBits is skipped when generating values. This normally corresponds to network broadcast
addresses. (default = false)

initval

The initial value of the counter. (default = {08 00})

The default value in Tcl is different than the default value in IxExplorer GUI.

innerLoop

The number of times the inner loop is repeated. Used when counterMode is set to udfNestedCounterMode.
(default = 1)

valueRepeatCount

The repeat count for each valuelist udf entry.

innerRepeat

The number of times each value in the inner loop is repeated. Used when counterMode is set to
udfNestedCounterMode. (default = 1)

innerStep

The steps size between inner loop values. Used when counterMode is set to udfNestedCounterMode.
(default = 1)

linearCoefficientEnable

Enables the linear coefficient.

linearCoefficient

The linear coefficient value.

linearCoefficientLoop
Count0

The value of coefficient loop count is 0.

linearCoefficientLoop
Count2

The value of coefficient loop count is 2.

Appendix 1 IxTclHAL Commands

– 1448 –

tripleNestedLoop0
Increment

The triple nested loop increment value is set to 0.

maskselect

This is a 32-bit mask that enables, on a bit-by-bit basis, use of the absolute counter value bits as defined
by maskval option. (default = {00 00})

maskval

A 32-bit mask of absolute values for this UDF counter. It is used in association with the maskselect; bits
must be set 'on' or the bits in maskselect is ignored. (default = {00 00})

offset

The absolute offset to insert this udf into the frame. Note that DA and SA use the fixed offsets at 0 and 6,
respectively. This option applies to all counterModes. (default = 12)

random true/false

If this object is set to true, then this counter contains random data. The UDFs may not have part counter
and part random data. (default = false)

repeat

The counter is incremented or decremented the number of times based on this option. If continuousCount
option is set then this value is ignored. (default = 1)

skipMaskBits

If counterMode is udfIPv4Mode and enableSkipZerosAndOnes is set to true, this is the number of low
order bits to check when looking for all 0's and all 1's. This normally corresponds to network broadcast
addresses. (default = 8)

step

The step size for counter increment/decrement, if supported by the load module. (default = 1)

udfSize

Sets the UDF field size (in bits). This must be a value from 1-32 and is only supported on certain cards in
certain modes. If this is set to a nonzero value when it is not legal, a 'stream set' error is issued.

updown

This option describes whether each of the 8-bit counters are to be incremented or decremented. If two or
more counters are cascaded together as a larger counter (ie, 16,24 or 32-bit counter), that group of
counters must all be incremented or decremented. Note that the most-significant byte selection takes
precedence if there is a discrepancy. The possible values of this options are:

Appendix 1 IxTclHAL Commands

– 1449 –

Option Value Usage

uuuu 15 (default) all bytes are incrementing

uuud 14 bytes 1,2 and 3 are incrementing and byte 4 is decrementing

uudu 13 bytes 1,2 and 4 are incrementing and byte 3 is decrementing

uudd 12 bytes 1 and 2 are incrementing and bytes 3 and 4 are decrementing

uduu 11 bytes 1,3 and 4 are incrementing and byte 2 is decrementing

udud 10 bytes 1 and 3 are incrementing and bytes 2 and 4 are decrementing

uddu 9 bytes 1 and 4 are incrementing and bytes 2 and 3 are decrementing

uddd 8 byte 1 is incrementing and bytes 2,3 and 4 are decrementing

duuu 7 byte 1 is decrementing and bytes 2,3 and 4 are incrementing

duud 6 bytes 1 and 4 are decrementing and bytes 2 and 3 are incrementing

dudu 5 bytes 1 and 3 are decrementing and bytes 2 and 4 are incrementing

dudd 4 bytes 1,3 and 4 are decrementing and byte 2 is incrementing

dduu 3 bytes 1 and 2 are decrementing and bytes 3 and 4 are incrementing

ddud 2 bytes 1,2 and 4 are decrementing and byte 3 is incrementing

dddu 1 bytes 1,2 and 3 are decrementing and byte 4 is incrementing

dddd 0 all bytes are decrementing

valueList

A list which holds the values to be used when counterMode is set to udfValueListMode. (default = {})

randomType

Select Random type: Random (default), Random with seed or Random with starting value.

Value Usage

0 (default) Random

1 Random with seed

2 Random with starting value

Appendix 1 IxTclHAL Commands

– 1450 –

randomMinval

Minimum value for a random range (default = 0)

randomMaxval

Maximum value for a random range (default = ff)

randomStartval

First value in a random range (default = 1)

randomSeed

Seed to generate random values (default = ff ff ff ff)

skipUdfValue

If this option is enabled, the value configured by randomSkipval will not be included in the generated
random values (dafault = false).

Note: Skip udf setting is available on UDF1, UDF3, UDF5, UDF7 and UDF9.

randomSkipval

Value to be skipped (default = 1).

skipSynchronization

If this option is enabled, even-numbered UDF will be paired with its master UDF (UDF pairs are UDF1 and
UDF2; UDF3 and UDF4; UDF5 and UDF6; UDF7 and UDF8, UDF9 and UDF10) (default = false).

Note: This option is available on UDF2, UDF4, UDF6, UDF8 and UDF10.

sharedValueListCount

This defines the total number of value list entries you want to be get shared. By default, it is set to 1. It
means only first entry of the value list of that particular port and stream will be shared. It can be defined
upto the maximum number of value list entries set in that stream and port. If set to anything above the
maximum value list entries, a warning will be generated.

sharedValueListNestedMode

If set to 1, "Enable Nested Counter Index Mode" will turn on. If set to 0, "Enable Nested Counter Index
Mode" will turn off.

sharedValueListOffset

This defines the offset number from where the value list will be shared. By default it is set to 0. It means
the value list will get shared from the first offset of a particular port and stream.

Appendix 1 IxTclHAL Commands

– 1451 –

sharedValueListPort

This defines the port number from where the value list will be shared.

sharedValueListStream

This defines the stream id of the particular port declared under sharedValueListPort from where the value
list will be shared.

useSharedUDFValueList

If set to 1, "Enable Port Shared Value List" will turn on. If set to 0, "Enable Port Shared Value List" will turn
off.

DEPRECATED OPTIONS

countertype

Earlier values of countertype are still valid but on boards and modes that support it, countertype is
deprecated in favor of udfSize.:

Option Value Usage

c8 0 (default) one 8-bit counter

c16 1 one 16 bit counter

c8x8 2 two 8-bit counters

c24 3 one 24-bit counter

c16x8 4 one 16-bit counter followed by a 8-bit counter

c8x16 5 one 8-bit counter followed by a 16-bit counter

c8x8x8 6 three 8-bit counters

c32 7 one 32-bit counter

c24x8 8 one 24-bit counter followed by a 8-bit counter

c16x16 9 two 16-bit counters

c16x8x8 10 one 16-bit counter followed by two 8-bit counters

c8x24 11 one 8-bit counter followed by a 24-bit counter

c8x16x8 12 one 8-bit counter followed by a 16-bit counter followed by another 8-bit
counter

c8x8x16 13 two 8-bit counters followed by a 16-bit counter

Appendix 1 IxTclHAL Commands

– 1452 –

Option Value Usage

c8x8x8x8 14 four 8-bit counters

COMMANDS

The udf command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

udf addRange

Used when counterMode is set to udfRangeListMode. Adds the values in initVal, repeat and step to the list
of values associated with the UDF. Ranges added to the range list are given an index starting at 1; this is
used in the getRange sub-command. Specific errors are:

l Invalid UDF parameters

udf cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the udf command.

udf clearRangeList

Clears all values in the range list associated with the UDF.

udf config option value

Modify the configuration options of the port. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for port.

udf get udfID

After using stream get command, this command gets the UDF with id udfID.

udf getFirstRange

Finds the first range in the range list and places the values in initval, repeat and step. Specific errors are:

l The list is empty.

udf getNextRange

Finds the next range in the range list and places the values in initval, repeat and step. getFirstRange must
have been called before this call. Specific errors are:

l getFirstRange has not been called.

udf getRange rangeIndex

Finds the range in the range list with index rangeIndex and places the values in initval, repeat and step.
Specific errors are:

l There is no object with this ID.

udf set udfID

Appendix 1 IxTclHAL Commands

– 1453 –

Sets the configuration of the UDF with ID udfID by reading the configuration option values set by the udf
config option value command. stream set must be called after setting this UDF.

Note: The command stream setDefault also overwrites the udf set command.

udf setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use i[ixGetChassisID $host]
Assume card 4 has a TXS4, with every UDF function
set card 68
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Make sure the port is at factory default
port setFactoryDefaults $chas $card $port
stream setDefault
UDF 3: normal counter mode, 8 bits counting up continuously
from 0
udf setDefault
udf config -enable true

Appendix 1 IxTclHAL Commands

– 1454 –

udf config -offset 12
udf config -udfSize c8
udf config -counterMode udfCounterMode
udf config -continuousCount true
udf config -updown uuuu
udf config -initval 00
Set UDF 3
udf set 3
UDF 1: 24-bits at offset 12 in packet
Two ranges: start = 0x4200, increment by 14, repeat 100
start = 0x100000, increment by 100, repeat 2
Remove all existing range list items
udf clearRangeList
udf setDefault
udf config -enable true
udf config -counterMode udfRangeListMode
udf config -offset 12
udf config -udfSize c24
udf config -initval {00 00 42 00}
udf config -repeat 100
udf config -step 14
Add the range to the UDF
udf addRange
udf config -initval {00 10 00 00}
udf config -repeat 2
udf config -step 100
Add the second range to the UDF
udf addRange
Set UDF 1
udf set 1
UDF 2: 8-bits at offset 12 in packet
Value list mode. Values are: 0x01, 0x10, 0x42
udf setDefault
udf config -enable true
udf config -counterMode udfValueListMode
udf config -offset 12
udf config -udfSize c8
udf config -valueList { { 00 00 00 01 } \
{ 00 00 00 10 } \
{ 00 00 00 42 } }
Set UDF 2
udf set 2
#UDF4: 16 bits at offset 12
Nested counters: Outer: start at 0x0100, step by 10,
repeat 100 times
Inner: repeat each value 2 times,
step by 4, repeat 3 times
udf setDefault

Appendix 1 IxTclHAL Commands

– 1455 –

udf config -enable true
udf config -offset 12
udf config -udfSize c16
udf config -counterMode udfNestedCounterMode
udf config -initval {01 00}
udf config -repeat 100
udf config -step 10
udf config -innerRepeat 2
udf config -innerStep 4
udf config -innerLoop 3
Set UDF 4
udf set 4
Make sure to use stream set to set the UDFs
stream set $chas $card $port 1
ixWriteConfigToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Example showing the working of Port Share Value List
udf setDefault
udf config -enable true
udf config -offset 12
udf config -udfSize 8
udf config -counterMode udfValueListMode
udf config -valueList {00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF}
if [udf set 1] {
errorMsg "Error in udf set"
return "FAIL"
}
if [stream set $chas $card $rxPort 1] {
errorMsg "Error in stream set"
return "FAIL"
}
#Enable Port Share Value List
udf setDefault
udf config -enable true
udf config -offset 12
udf config -udfSize 8
udf config -counterMode udfValueListMode
udf config -useSharedUDFValueList 1
udf config -sharedValueListPort 1
udf config -sharedValueListStream 1

Appendix 1 IxTclHAL Commands

– 1456 –

udf config -sharedValueListCount $udfEntries
if [udf set 1] {
errorMsg "Error in udf set"
return "FAIL"
}
if [stream set $chas $card $rxPort 2] {
errorMsg "Error in stream set"
return "FAIL"
}
#Enable Nested Counter Index Mode
udf setDefault
udf config -enable true
udf config -offset 12
udf config -udfSize 8
udf config -counterMode udfValueListMode
udf config -useSharedUDFValueList 1
udf config -sharedValueListNestedMode 1
udf config -sharedValueListPort 1
udf config -sharedValueListStream 1
udf config -sharedValueListOffset 1
udf config -innerLoop 2
udf config -innerStep 2
udf config -repeat 2
udf config -step 2
udf config -innerRepeat 2
udf config -tripleNestedLoop0Increment 2
if [udf set 1] {
errorMsg "Error in udf set"
return "FAIL"
}
if [stream set $chas $card $rxPort 3] {
errorMsg "Error in stream set"
return "FAIL"
}
if [port set $chas $card $rxPort] {
errorMsg "Error in port set"
return "FAIL"
}

SEE ALSO

stream, tableUdf, tableUdfColumn

udp
udp - configure the UDP parameters for a port on a card on a chassis

Appendix 1 IxTclHAL Commands

– 1457 –

SYNOPSIS

DESCRIPTION

The udp command is used to configure the UDP-specific information used when building UDP type packets
if ip config -ipProtocol has been set to Udp. See RFC 768 for a complete definition of UDP header fields.
Note that stream get must be called before this command's get sub-command.

Note that when using ATM ports, different types of ATM encapsulation result in different length headers,
as discussed in atmHeader. The data portion of the packet normally follows the header, except in the case
of the two LLC Bridged Ethernet choices, where 12 octets of MAC address and 2 octets of Ethernet type
follow the header. The offsets used in this command are with respect to the beginning of the AAL5 packet
and must be adjusted by hand to account for the header.

STANDARD OPTIONS

checksum

Value of the checksum in the valid udp stream. Valid only if the stream set is performed and
enableChecksumOverride is true. (default = {00 00})

checksumMode

Indicates whether a valid checksum should be inserted in the packet or not.

Option Value Usage

validChecksum 0 (default) a valid checksum is used

invalidChecksum 1 the checksum indicated in the checksum option is used

destPort

The port of the destination process. Well-known port values include:

Option Value Usage

echoServerPort 7 (default)

discardPacketPort 9

usersServerPort 11

dayAndTimeServerPort 13

quoteOfTheDayServerPort 17

characterGeneratorPort 19

timeServerPort 37

Appendix 1 IxTclHAL Commands

– 1458 –

Option Value Usage

whoIsServerPort 43

domainNameServerPort 53

unassignedPort 63

bootpServerPort 67

bootpClientPort 68

tftpProtocolPort 69

remoteWhoServerPort 513

ripPort 520

ptpEventPort 319

ptpGeneralPort 320

enableChecksum
true/false

If set to true, a valid UDP checksum is calculated for each frame. If set to false, the UDP checksum is
invalid. (default = false)

enableChecksum
Override true/false

If set to true, the calculated checksum is replaced with the value in checksum. (default = false)

length

Length of the datagram including header and the data. (default = 0)

lengthOverride true/false

Allows to change the length in udp header. (default = false)

sourcePort

The port of the sending process. Well-known port values include:

Option Value Usage

echoServerPort 7 (default)

discardPacketPort 9

Appendix 1 IxTclHAL Commands

– 1459 –

Option Value Usage

usersServerPort 11

dayAndTimeServerPort 13

quoteOfTheDayServerPort 17

characterGeneratorPort 19

timeServerPort 37

whoIsServerPort 43

domainNameServerPort 53

unassignedPort 63

bootpServerPort 67

bootpClientPort 68

tftpProtocolPort 69

remoteWhoServerPort 513

ripPort 520

ptpEventPort 319

ptpGeneralPort 320

DEPRECATED OPTIONS

enableChecksum

This option is deprecated.

COMMANDS

The udp command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

udp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the udp command.

udp config option value

Modify the UDP configuration options of the port. If no option is specified, returns a list describing all of
the available UDP options (see STANDARD OPTIONS) for port.

Appendix 1 IxTclHAL Commands

– 1460 –

udp decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. udp cget option command can be
used after decoding to get the option data.

udp get chasID cardID portID

Gets the current UDP configuration of the port with id portID on card cardID, chassis chasID. Note that
stream get must be called before this command's get sub-command. Call this command before calling
udp cget option to get the value of the configuration option.

udp set chasID cardID portID

Sets the UDP configuration of the indicated port by reading the configuration option values set by the udp
config option value command.

udp setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assume card 4 has a TXS4, with every UDF function
set card 68
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {

Appendix 1 IxTclHAL Commands

– 1461 –

ixPuts $::ixErrorInfo
return 1
}
Make sure the port is at factory default
port setFactoryDefaults $chas $card $port
stream setDefault
UDF 3: normal counter mode, 8 bits counting up continuously
from 0
udf setDefault
udf config -enable true
udf config -offset 12
udf config -udfSize c8
udf config -counterMode udfCounterMode
udf config -continuousCount true
udf config -updown uuuu
udf config -initval 00
Set UDF 3
udf set 3
UDF 1: 24-bits at offset 12 in packet
Two ranges: start = 0x4200, increment by 14, repeat 100
start = 0x100000, increment by 100, repeat 2
Remove all existing range list items
udf clearRangeList
udf setDefault
udf config -enable true
udf config -counterMode udfRangeListMode
udf config -offset 12
udf config -udfSize c24
udf config -initval {00 00 42 00}
udf config -repeat 100
udf config -step 14
Add the range to the UDF
udf addRange
udf config -initval {00 10 00 00}
udf config -repeat 2
udf config -step 100
Add the second range to the UDF
udf addRange
Set UDF 1
udf set 1
UDF 2: 8-bits at offset 12 in packet
Value list mode. Values are: 0x01, 0x10, 0x42
udf setDefault
udf config -enable true
udf config -counterMode udfValueListMode
udf config -offset 12
udf config -udfSize c8
udf config -valueList { { 00 00 00 01 } \

Appendix 1 IxTclHAL Commands

– 1462 –

{ 00 00 00 10 } \
{ 00 00 00 42 } }
Set UDF 2
udf set 2
UDF4: 16 bits at offset 12
Nested counters: Outer: start at 0x0100, step by 10,
repeat 100 times
Inner: repeat each value 2 times,
step by 4, repeat 3 times
udf setDefault
udf config -enable true
udf config -offset 12
udf config -udfSize c16
udf config -counterMode udfNestedCounterMode
udf config -initval {01 00}
udf config -repeat 100
udf config -step 10
udf config -innerRepeat 2
udf config -innerStep 4
udf config -innerLoop 3
Set UDF 4
udf set 4
Make sure to use stream set to set the UDFs
stream set $chas $card $port 1
ixWriteConfigToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream, protocol, ip

usb
usb - view the properties of a USB port of a card on a chassis.

Note: THIS COMMAND IS DEPRECATED IN ITS ENTIRETY.

SYNOPSIS

usb sub-command options

Appendix 1 IxTclHAL Commands

– 1463 –

DESCRIPTION

The usb command is used to view the properties of a USB port of a card on a chassis.

STANDARD OPTIONS

cpeMacAddress

Read-only. The MAC address of the CPE (Customer Premise Equipment).

deviceClass

Read-only. Class of the attached device, according to the document: Universal Serial Bus Class
Definitions for Communication Devices Version 1.1 January 19, 1999.

ethernetMaxSegment
Size

Read-only. The maximum Ethernet segment size.

manufacturer

Read-only. Manufacturer of the attached device.

maxUSBPacketSize

Read-only. The maximum size of the USB packets. Either:

In 64 bytes, out 64 bytes (0)

In 32 bytes, out 32 bytes (1)

product

Read-only. The product name of the device which is attached.

productID

Read-only. The product identification number of the attached device.

releaseNumber

Read-only. Release level of USB supported by the attached device.

serialNumber

Read-only. Serial number of the attached device.

vendorID

Read-only. Select this radio button to put this module into USB mode.

Appendix 1 IxTclHAL Commands

– 1464 –

COMMANDS

The usb command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

usb get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID. from its
hardware. Call this command before calling usb cget option value to get the value of the configuration
option. Specific errors are:

l No connection to a chassis
l Invalid port number
l The port is not a Usb port.

usb reset chasID cardID portID

Sends a reset signal to the device on the port with id portID on card cardID, chassis chasID.

usb setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES

SEE ALSO

card, port

version
version - get version information for IxTclHal.

SYNOPSIS

version sub-command options

DESCRIPTION

This command allows to view the version information for IxTclHal. Note that when using TCL from a Unix
system, the version may not be obtained until a connection to the chassis is made, for example through
the use of

STANDARD OPTIONS

companyName

Read-only. The name of company: Ixia Communications

copyright

Read-only. Copyright banner for IxTclHal

Appendix 1 IxTclHAL Commands

– 1465 –

installVersion

Read-only. Installed version of the software.

ixTclHALVersion

Read-only. The version number of ixTclHal.dll file

ixTclProtocolVersion

Read-only. The version of the IxRouter protocol.

productVersion

Read-only. The software version along with build number

COMMANDS

The version command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

version cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the version command.

version config

Modify the version configuration options of the IxTclHal. If no option is specified, returns a list describing
all of the available version options (see STANDARD OPTIONS).

version get

Gets the current version information from HAL. Call this command before calling version cget option to
get the value of the configuration option.

EXAMPLES
package require IxTclHal
version get
ixPuts -nonewline "Company name is "
ixPuts [version cget -companyName]
ixPuts -nonewline "Copyright is "
ixPuts [version cget -copyright]
ixPuts -nonewline "Install Version is "
ixPuts [version cget -installVersion]
ixPuts -nonewline "ixTclHAL Version is "
ixPuts [version cget -ixTclHALVersion]
ixPuts -nonewline "ixTclProtocolVersion is "
ixPuts [version cget -ixTclProtocolVersion]
ixPuts -nonewline "Product Version is "
ixPuts [version cget -productVersion]

Appendix 1 IxTclHAL Commands

– 1466 –

SEE ALSO

VFTHeader
VFTHeader-sets up VFT Header over Fibre Channel.

SYNOPSIS

VFTHeader sub-command options

DESCRIPTION

The Virtual Fabric Tagging Header (VFT Header) allows Fibre Channel frames to be tagged with the Virtual
Fabric Identifier (VF_ID) of the Virtual Fabric to which they belong. Tagged frames, that is frames with a
VFT_Header, belonging to different Virtual Fabrics may be transmitted over the same physical link.

STANDARD OPTIONS

type

Specifies the kind of tagged frame. To use with Fibre Channel, type is set to 0. The use of other values is
beyond the scope of this standard. No device sends a VFT tagged frame with a Type value in the VFT_
Header other than 0h. A device receiving a VFT tagged frame with a Type value in the VFT_Header having
a non-zero value discards the frame.

version

Specifies the version of the VFT Header. The default is 0.

routingControl

The R_CTL field is a one-byte field that contains routing bits and information bits to categorize the frame
function.

The R_CTL is set to the value 50h to identify the VFT Extended Header.

hopCt

The count by which the VFT header packet is forwarded in the stream.

If the Hop Count Valid (HCV) bit is set to one, the Hop Count (Hop_Cnt) field specifies the number of hops
remaining before the frame is discarded.

priority

Specifies the Quality of Service (QoS) value for the frame.

When set to zero, is interpreted to contain management information for the class of service.

Appendix 1 IxTclHAL Commands

– 1467 –

virtualFabricId

The ID of the VFT header. It specifies the Virtual Fabric Identifier of the Virtual Fabric to which the tagged
frame belongs.

COMMANDS

The VFTHeader command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

VFTHeader setDefault

Returns the default settings.

EXAMPLES

See under fibreChannel

SEE ALSO

fibreChannel

vlan
vlan - configure the VLAN parameters for a port on a card on a chassis

SYNOPSIS

vlan sub-command options

DESCRIPTION

The vlan command is used to configure the VLAN-specific information used when building 802.1q-type
packets. See IEEE 802.1p/q for a complete definition of VLAN tag fields. It is enabled using protocol config
-enable802dot1qTag true

STANDARD OPTIONS

cfi

Canonical Format Indicator is a single bit flag value. Options include:

Option Value Usage

resetCFI 0 (default) sets the CFI bit to low

setCFI 1 sets the CFI bit to high

Appendix 1 IxTclHAL Commands

– 1468 –

maskval

When mode is set to vCtrRandom, this option indicates which bits of the VID counter may vary and which
must remain constant. (default = 0000XXXXXXXXXXXX)

mode

Specifies how the vlanID tag is incremented or decremented. Only the top two VLAN elements in a
stacked VLAN may used these values. Possible values include:

Option Value Usage

vIdle 0 (default) No change to VlanID tag regardless of repeat

vIncrement 1 The VlanID tag is incremented by step for repeat number of times.

vDecrement 2 The VlanID tag is decremented by step for repeat number of times.

vContIncrement 3 The VlanID tag is continuously incremented by step.

vContDecrement 4 The VlanID tag is continuously decremented by step.

vCtrRandom 5 Generate random VlanID tag for each frame

vNestedIncrement 100 For the second VLAN in a stackedVlan, this may be used to
performed nested increment with respect to the first stack element.

vNestedDecrement 101 For the second VLAN in a stackedVlan, this may be used to
performed nested decrement with respect to the first stack element.

name

Read-only. The name of the VLAN element, which may have been set in IxExplorer.

protocolTagId

The protocol ID field of the VLAN tag.

Option Value Usage

vlanProtocolTag8100 0x8100 (default)

vlanProtocolTag9100 0x9100

vlanProtocolTag9200 0x9200

vlanProtocolTag88A8 0x88A8

vlanProtocolTag9300 0x9300

Appendix 1 IxTclHAL Commands

– 1469 –

repeat

The number of times the counter is to be repeated with the same value. If the mode option is set to idle
then this value is ignored. Note that the repeat value is a 32-bit signed integer. (default = 10)

step

If mode is set to one of the increment or decrement settings, this is the step size between generated
values. (default = 1)

userPriority

The user priority field is three bits in length, representing eight priority levels, 0 though 7. The use and
interpretation of this field is defined in ISO/IEC 15802-3. (default = 0)

vlanID

The 12-bit VLAN Identifier (VID). (default = 0)

COMMANDS

The vlan command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

vlan cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the vlan command.

vlan config option value

Modify the vlan configuration options of the port. If no option is specified, returns a list describing all of
the available vlan options (see STANDARD OPTIONS) for port.

vlan decode capFrame [chasID cardID portID]

Decodes a captured frame in the capture buffer and updates TclHal. vlan cget option command can be
used after decoding to get the option data.

vlan get chasID cardID portID

Gets the current UDP configuration of the port with id portID on card cardID, chassis chasID. Call this
command before calling vlan cget option to get the value of the configuration option.

vlan set chasID cardID portID

Sets the vlan configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the vlan config option value command.

vlan setDefault

Sets to IxTclHal default values for all configuration options.

EXAMPLES
package require IxTclHal

Appendix 1 IxTclHAL Commands

– 1470 –

set host loopback
Now connect to the chassis
if {[ixConnectToChassis $host]} {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [chassis cget -id]
set card 2
set port 4
set portList [list [list $chas $card $port]]
Case 1: single VLAN
stream setDefault
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII
protocol config -enable802dot1qTag vlanSingle
vlan setDefault
vlan config -vlanID 42
vlan config -mode vIncrement
vlan config -step 4
vlan config -repeat 10
if {[vlan set $chas $card $port]} {
ixPuts $::ixErrorInfo
return 1
}
if {[stream set $chas $card $port 1]} {
ixPuts $::ixErrorInfo
return 1
}
Case 2: stacked VLAN with three elements
stream setDefault
protocol setDefault
protocol config -name ipV4
protocol config -ethernetType ethernetII
protocol config -enable802dot1qTag vlanStacked
stackedVlan setDefault
Top (outer) VLAN element
vlan setDefault
vlan config -vlanID 2
vlan config -userPriority 1
vlan config -cfi resetCFI
vlan config -mode vIncrement
vlan config -repeat 10
vlan config -protocolTagId vlanProtocolTag9200
Top element must be modified by a setVlan
if {[stackedVlan setVlan 1]} {
ixPuts $::ixErrorInfo

Appendix 1 IxTclHAL Commands

– 1471 –

return 1
}
Next (inner) VLAN element
vlan setDefault
vlan config -vlanID 20
vlan config -userPriority 1
vlan config -cfi resetCFI
vlan config -mode vNestedIncrement
vlan config -repeat 100
vlan config -protocolTagId vlanProtocolTag 9200
Second element must be modified by a setVlan
if {[stackedVlan setVlan 2]} {
ixPuts $::ixErrorInfo
return 1
}
Third stack element
vlan setDefault
vlan config -vlanID 42
vlan config -userPriority 2
vlan config -cfi resetCFI
vlan config -protocolTagId vlanProtocolTag 9100
Third element must be added by addValn
if {[stackedVlan addVlan]} {
ixPuts $::ixErrorInfo
return 1
}
if {[stackedVlan set $chas $card $port]} {
ixPuts $::ixErrorInfo
return 1
}
if {[stream set $chas $card $port 2]} {
ixPuts $::ixErrorInfo
return 1
}
ixWriteConfigToHardware portList

SEE ALSO

stream, protocol

vsrError
vsrError - configure the vsrError parameters for a port on a card on a chassis

SYNOPSIS

vsrError sub-command options

Appendix 1 IxTclHAL Commands

– 1472 –

DESCRIPTION

The vsrError command is used to insert deliberate errors in VSR equipped 10Gigabit Ethernet cards.

STANDARD OPTIONS

General Control Options

enableChannelSwap
true | false

If true, enables Channel Swapping. Channels 1-6 are swapped with Channels 7-12, to check for cable
crossover. (default = false)

enableDelimiterInsert
true | false

If true, enables the insertion of frame delimiters. Frame Delimiter Error Checking is also enabled. (default
= true)

enableErrorCorrection
true | false

If true, enables CRC error correction. (default = true)

enableProtectSwitch
true | false

If true, enables the use of Protection Switching. Protection Switching is triggered when there is loss of
synchronization on a single data channel. The data channel can be reconstructed, based on information in
the Protection Channel and the other 9 data channels. This is a feature which is always present in the
transmission, but which is optionally enabled by the receiver. (default = true)

Section BIP Error Insertion

bipErrorFrameCount

Specifies the number of consecutive frames, within a block of 256 frames, into which Section BIP Errors is
injected. The errors repeats every 256 frames. (default = 0)

bipErrorMask

A one-byte mask which indicates which bits in the Section BIP B1 byte to XOR to generate the error.
(default = 0)

bipInsertionMode

The mode in which errors are inserted. Options include:

Appendix 1 IxTclHAL Commands

– 1473 –

Option Value Usage

vsrErrorInsertNone 0 (default) Don't insert any errors.

vsrErrorInsertContinuously 1 Insert errors continuously, until stop is called.

vsrErrorMomentarily 2 Insert errors once.

CRC Error Insertion

crcChannelSelection

Selects which channels to insert errors into. A 12-bit bitmask is used to indicate the channels. A `1'
indicates that errors should be inserted. Channel 1 is the least significant bit. The values ::vsrChannel1
through ::vsrChannel7 can be or'd together to construct a channel mask. (default = 0)

crcErrorBlockCount

The number of consecutive virtual blocks to inject CRC errors into, within a group of 16 virtual blocks. The
errors are repeated every 16 blocks. (default = 0)

crcInsertionMode

The mode in which errors are inserted. Options include:

Option Value Usage

vsrErrorInsertNone 0 (default) Don't insert any errors.

vsrErrorInsertContinuously 1 Insert errors continuously, until stop is called.

vsrErrorMomentarily 2 Insert errors once.

Frame Delimiter Error Insertion

enableControlByte1
true | false

If true, then the inserted value in frameDelimiterControlByte1 is inserted as a control character. (default
= false)

enableControlByte2Ch1To6 true | false

If true, then the inserted value in frameDelimiterControlByte2Ch1To6 is inserted as a control character.
(default = false)

enableControlByte2Ch7To12 true | false

If true, then the inserted value in frameDelimiterControlByte2Ch7To12 is inserted as a control character.
(default = false)

Appendix 1 IxTclHAL Commands

– 1474 –

enableControlByte3
true | false

If true, then the inserted value in frameDelimiterControlByte3 is inserted as a control character. (default
= false)

frameDelimiter
ChannelSelection

Selects which channels to insert errors into. A 12-bit bitmask is used to indicate the channels. A `1'
indicates that errors should be inserted. Channel 1 is the least significant bit. The values ::vsrChannel1
through ::vsrChannel7 can be or'd together to construct a channel mask. (default = 0)

frameDelimiterControl
Byte1

For the first delimiter byte, the 8b injected value. The default value (hex BC) translates to Codeword
K28.5. (default = 0xBC)

frameDelimiterContro
Byte2Ch1To6

For the second delimiter byte, the 8b injected value in channels 1-6. The default value (hex 23) translates
to Codeword D3.1. The delimiter for Channels 1-6 is different from that used for Channels 7-12, so the
polarity of the patchcord / channel order can be detected. (default = 0x23)

frameDelimiterControl
Byte2Ch7To12

For the second delimiter byte, the 8b injected value.in channels 7-12. The default value shown (hex 55)
translates to Codeword D21.2. The delimiter for Channels 0-5 is different from that used for Channels 7-
12, so the polarity of the patchcord/channel order can be detected. (default = 0x55)

frameDelimiterControl
Byte3

For the third delimiter byte, the 8b injected value. The default value (hex BC) translates to Codeword
K28.5. (default = 0xBC)

frameDelimiterError
FrameCount

The number of consecutive frames to inject CRC errors into, within a block of 16 frames. The error is
repeated for each block of 16 frames. If the count = 0, frame delimiter error injection is disabled. (default
= 0)

Appendix 1 IxTclHAL Commands

– 1475 –

frameDelimiterError
Mask

A 3-bit mask of where errors is inserted. The `1' bit corresponds to the B1 byte, the `2' bit corresponds to
the B2 byte and the `4' bit corresponds to the B3 byte. For example, a value of `5' inserts errors into the
B1 and B3 bytes. (default = 0)

frameDelimiter
InsertionMode

The mode in which errors are inserted. Options include:

Option Value Usage

vsrErrorInsertNone 0 (default) Don't insert any errors.

vsrErrorInsertContinuously 1 Insert errors continuously, until stop is called.

vsrErrorMomentarily 2 Insert errors once.

Channel Skew Error Insertion

channelSkew
ChannelSelection

Selects which channels to insert errors into. A 12-bit bitmask is used to indicate the channels. A `1'
indicates that errors should be inserted. Channel 1 is the least significant bit. The values ::vsrChannel1
through ::vsrChannel7 can be or'd together to construct a channel mask. (default = 0)

channelSkew
DelayTime

The number of clock cycles of delay to be applied to the selected channels. (default = 1)

channelSkew
InsertionMode

The mode in which errors is inserted. Options include:

Option Value Usage

vsrErrorInsertNone 0 (default) Don't insert any errors.

vsrErrorInsertContinuously 1 Insert errors continuously, until stop is called.

vsrErrorMomentarily 2 Insert errors once.

channelSkewMod

The skew injection mode. Options include:

Appendix 1 IxTclHAL Commands

– 1476 –

Option Value Usage

vsrErrorSingleChannelMode 0 (default) Only delay a single channel.

vsrErrorMultiChannelMode 1 Each of the selected channels is delayed.

8b/10b Code Word Error Insertion

enableControl
CharCodeWord
true | false

If true, the injected code word is a control character. (default = false)

enableDisparity
ErrorCodeWord
true | false

If true disparity errors are injected. Note: disparity errors may cause codeword violations. (default =
false)

error8b10bChannel
Selection

Selects which channels to insert errors into. A 12-bit bitmask is used to indicate the channels. A `1'
indicates that errors should be inserted. Channel 1 is the least significant bit. The values ::vsrChannel1
through ::vsrChannel7 can be or'd together to construct a channel mask. (default = 0)

error8b10bCodeWord
Count

Specifies the number of consecutive codewords, per block of 16 code words, into which code violations
are injected. This pattern is repeated for every block of 16 codewords. (default = 0)

error8b10bCodeWord
Value

Specifies the 8b value for the code word to be injected. (default = 0)

error8b10bInsertion
Mode

The mode in which errors are inserted. Options include:

Option Value Usage

vsrErrorInsertNone 0 (default) Don't insert any errors.

vsrErrorInsertContinuously 1 Insert errors continuously, until stop is called.

Appendix 1 IxTclHAL Commands

– 1477 –

Option Value Usage

vsrErrorMomentarily 2 Insert errors once.

COMMANDS

The vsrError command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

vsrError cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the vsrError command.

vsrError config option value

Modify the vsrError configuration options of the port. If no option is specified, returns a list describing all
of the available vsrError options (see STANDARD OPTIONS) for port.

vsrError get chasID cardID portID

Gets the current VSR error configuration of the port with id portID on card cardID, chassis chasID. Call
this command before calling vsrError cget option to get the value of the configuration option.

vsrError insertErrorvsrErrorType chasID cardID portID

Insert a single instance of the error indicated in vsrErrorType into the indicated port. The choices of
vsrErrorType are:

Option Value Usage

vsrErrorSectionBip 1 Section BIP errors

vsrErrorCrc 2 CRC errors

vsrErrorFrameDelimiter 3 Frame delimiter errors

vsrErrorChannelSkew 4 Channel skew errors

vsrError8b10bCode 5 8b/10b code word errors

vsrErrorAll 0xEF All errors

vsrErrorStopAll 0xFF Stop all errors

vsrError set chasID cardID portID

Sets the vsrError configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the vsrError config option value command.

vsrError setDefault

Sets to IxTclHal default values for all configuration options.

Appendix 1 IxTclHAL Commands

– 1478 –

vsrError start chasID cardID portID

Insert errors as indicated by the various options into the indicated port. vsrError stop should be used to
stop error insertions if any of the *InsertionMode's are set to vsrErrorInsertContinuously.

vsrError stop chasID cardID portID

Stops all errors insertion on the indicated port.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that a VSR card is in slot 39
set card 39
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
see if the card supports VSR
if {[port isValidFeature portFeatureVsr $chas $card 1] == 0} {
ixPuts "Card $card is not an VSR card"
return 1
}
... Normal port, protocol, stream operations
Insert channel skew on channels 1, 3 and 5 continuously

Appendix 1 IxTclHAL Commands

– 1479 –

vsrError setDefault
vsrError config -channelSkewMode vsrErrorMultiChannelMode
vsrError config -channelSkewChannelSelection 21
vsrError config -channelSkewInsertionMode vsrErrorInsertContinuously
vsrError config -channelSkewDelayTime 1
if [vsrError set $chas $card 1] {
ixPuts "Can't vsrError set $chas:$card:1"
return 1
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

vsrStat

vsrStat
vsrStat - read 10Gigabit VSR statistics

SYNOPSIS

vsrStat sub-command options

DESCRIPTION

The vsrStat command is used to read global and per channel VSR statistics for 10Gigabit Ethernet cards.

STANDARD OPTIONS

Global Statistics

rxChannelProtection
Disabled

Read-Only. True or false, indicating the status of the channel protection on the receiving interface.

rxChannelSkewError

Read-Only. True or false, indicating the status of the channel skew error detection on the receiving
interface.

Appendix 1 IxTclHAL Commands

– 1480 –

rxChannelSkewFirst

Read-Only. Indicates the channel number of the earliest channel to arrive on the receiving interface. If
more than one channel arrives at the same time, Channel #1 has the highest priority and so on.

rxChannelSkewLast

Read-Only. Indicates the channel number of the latest channel to arrive on the receiving interface. If
more than one channel arrives at the same time, Channel #1 has the highest priority, and so on.

rxChannelSkewMax

Read-Only. This counter increments every time the channel skew is equal to or greater than the
maximum channel skew.

rxChannelSwapped

Read-Only. True indicates one or more channel swap errors and false indicates no errors.

rxCodeWordViolation
Error

Read-Only. True indicates one or more 8b/10b code word violation errors and false indicates no errors.

rxCrcCorrectedError
Counter

Read-Only. The number of corrected CRC block errors accumulated on the receiving interface.

rxCrcCorrection
Disabled

Read-Only. True or false, indicating the status of the CRC correction on the receiving interface.

rxCrcError

Read-Only. True indicates one or more detected CRC errors and false indicates no errors.

rxCrcUnCorrectedError
Counter

Read-Only. The number of uncorrected CRC block errors accumulated on the receiving interface.

rxHardwareError

Read-Only. The number of hardware errors detected on the receive side.

Appendix 1 IxTclHAL Commands

– 1481 –

rxLossOf
Synchronization
Counter

Read-Only. Indicates the number of times that a protection channels was in the loss of synchronization
state.

rxMultiLossOf
Synchronization
Counter

Read-Only. Indicates the number of times that two or more data or protection channels were in the Loss
of Synchronization state.

rxMultiLossOf
SynchronizationStatus

Read-Only. True indicates that two or more data or protection channels are in the Loss of Synchronization
state.

rxOutOfFrameCounter

Read-Only. Indicates the number of frame errors for the receiving interface.

rxOutOfFrameStatus

Read-Only. True indicates one or more out of frame errors for the receiving interface and false indicates
no errors.

rxSectionBipError
Counter

Read-Only. The number of Section BIP errors detected on the receiving interface.

txHardwareError

Read-Only. The number of hardware errors detected on the transmit side.

txOutOfFrameCounter

Read-Only. The number of out of frame errors detected on the transmit side.

txOutOfFrameStatus

Read-Only. True indicates one or more out of frame errors for the transmit interface and false indicates no
errors.

Appendix 1 IxTclHAL Commands

– 1482 –

txSectionBipError
Counter

Read-Only. The number of Section Bit Interleaved Parity (BIP) errors which have been detected on the
transmit interface.

Per-Channel Statistics

rxCodeWordViolation
Counter

Read-Only. This per-channel statistic indicates the number of codeword violations detected on the
receiving channel interface. Codeword violations include running disparity errors, undefined codewords,
and any control characters besides K28.5.

rxCrcErrorCounter

Read-Only. This per-channel statistic indicates the number of corrected and uncorrected errors on the
receive interface.

rxLossOf
Synchronization

Read-Only. This per-channel statistic indicates the loss of synchronization status of the receiving interface
as a true or false value.

rxOutOfFrame

Read-Only. This per-channel statistic indicates the out of frame status of the receiving interface for a
particular channel as a true or false value.

COMMANDS

The vsrStat command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

vsrStat cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the vsrStat command.

vsrStat get chasID cardID portID

Gets the current VSR statistics of the indicated. Call this command before calling vsrStat cget option to
get the value of the global statistics. Also call vsrStat getChannel channelID before getting statistics for a
particular channel.

vsrStat getChannel channelID

Gets the statistics for the channel indicated by channelID, which must be a value between 1 and 12. The
per-channel statistics are then available through the use of vsrStat cget option.

vsrStat set chasID cardID portID

Appendix 1 IxTclHAL Commands

– 1483 –

Sets the vsrStat configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the vsrStat config option value command.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that a VSR card is in slot 39
set card 39
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
see if the card supports VSR
if {[port isValidFeature portFeatureVsr $chas $card 1] == 0} {
ixPuts "Card $card is not a VSR card"
return 1
}
... Normal port, protocol, stream operations
ixWriteConfigToHardware portList

Let's get some global stat for port 1
if [vsrStat get $chas $card 1] {
ixPuts "Can't vsrStat get for $chas.$card.1"
return 1

Appendix 1 IxTclHAL Commands

– 1484 –

}
if {[vsrStat cget -rxChannelSkewError]} {
ixPuts "Channel error: "
set first [vsrStat cget -rxChannelSkewFirst]
set latest [vsrStat cget -rxChannelSkewLast]
ixPuts " Channels $first - $latest"
And now some stat for the earliest skewed channel
if [vsrStat getChannel $first] {
ixPuts "Can't vsrStat getChannel $first"
return 1
}
ixPuts -nonewline "Number of Crc Errors on channel $first: "
ixPuts [vsrStat cget -rxCrcErrorCounter]
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

vsrError

weightedRandomFramesize
weightedRandomFramesize - configure weighted random frame sizes

SYNOPSIS

weightedRandomFramesize sub-command options

DESCRIPTION

The weightedRandomFramesize command is used to configure possible different modes of generating
random frame sizes for a particular stream. This command is used for ports which support this feature
and where the port has been programmed for random stream generation with:

stream config -frameSizeType sizeRandom

The availability of this feature on a given port may be tested with the port isValidFeature...
portFeatureRandomFrameSizeWeightedPair.

Four basic types of random streams are available, and are set in the randomType option:

l Uniform: identical to previous implementations of the random framesize feature. A uniform set of
random values between a minimum and maximum value are generated. The min/max values are

Appendix 1 IxTclHAL Commands

– 1485 –

set in the stream command's frameSizeMIN and frameSizeMAX options.
l Pre-programmed: a number of pre-programmed distributions are available, corresponding to
standard traffic models found in various applications. See the randomType option description below.

l Custom: a distribution may be custom programmed for a stream. Pairs of frame size-weights are
added to a list. Frame sizes may be any value valid for the port. Weights may be any value, such
that the total of all of the weights is less than 2048. Pairs are added to the list using the addPair sub-
command.

l Gaussian: up to four gaussian curves may be summed up to generate a random distribution. Each
curve is specified in the center, and widthAtHalf options and set by the updateQuadGaussianCurve
sub-command. The weight option controls the distribution of values among the four curves.

For the pre-programmed and custom choices, the weights for all of the frame sizes are added up. Each
frame size is then given a proportion of the total number of frames as dictated by its weight value. For
example, one of the pre-programmed distributions is (64:7, 594:4, 1518:1). In this case, the total of the
weights is 12 (7+4+1). Frames are randomly generated such that 64-byte frames are 7/12 of the total,
594-byte frames are 4/12 of the total and 1518-byte frames are 1/12 of the total.

Note that stream get must be called before this command's get sub-command.

STANDARD OPTIONS

center

If randomType is set to randomQuadGaussian, then this is used to indicate the center value of the curve,
expressed in framesize. Fractional values are permitted. This and the weight and widthAtHalf options are
associated with one of the four available curves by the updateQuadGaussianCurve sub-command.
(default = 200.0)

pairList

Read-only. After a set operation, this option holds a TCL list with the frame size-weight pairs.

randomType

The type of random weighted frames sizes to be generated.

Option Value Usage

randomUniform 0 (default) A uniform distribution between the min/max values
found in the frameSizeMIN and frameSizeMAX options in the
stream command.

randomWeightedair 1 Custom weighted pairs are used for the distribution. Pairs are
added to the list using the addPair sub-command. The sum of all
of the weights must be less than 2048.

randomQuadGaussian 3 Up to four gaussian curves may be specified in the center,
weight and widthAtHalf options.

randomCisco 4 A pre-programmed distribution is used: 64:7, 594:4 and

Appendix 1 IxTclHAL Commands

– 1486 –

Option Value Usage

1518:1.

randomIMIX 5 A pre-programmed distribution is used: 64:7, 570:4 and
1518:1.

randomTolly 7 A pre-programmed distribution is used: 64:55, 78:5, 576:17,
and 1518: 23.

randomRPRTrimodal 8 A pre-programmed distribution is used: 64:60, 512:20, and
1518:20.

randomRPRQuadmodal 9 A pre-programmed distribution is used: 64:60, 512:20,
1518:20 and 9000:20.

weight

If randomType is set to randomQuadGaussian, then this is used to indicate the relative weight of the
values from this curve with respect to the other three curves. This and the widthAtHalf and center options
are associated with one of the four available curves by the updateQuadGaussianCurve sub-command.
(default = 1)

widthAtHalf

If randomType is set to randomQuadGaussian, then this is used to indicate the width of the curve at its
half-value height, expressed in framesize. Fractional values are permitted. This and the weight and center
options are associated with one of the four available curves by the updateQuadGaussianCurve sub-
command. The valid range is .01 to 30000. (default = 100.0)

COMMANDS

The weightedRandomFramesize command is invoked with the following sub-commands. If no sub-
command is specified, returns a list of all sub-commands available.

weightedRandomFramesize addPair framesize weight

Adds the framesize-weight pair to the pairList. Multiple pairs which use te same framesize have their
weights effectively added together. Specific errors include:

l The value of randomType is not randomWeightedPair
l Memory exceeded

weightedRandomFramesize cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the weightedRandomFramesize command.

weightedRandomFramesize config option value

Appendix 1 IxTclHAL Commands

– 1487 –

Modify the weightedRandomFramesize configuration options of the port. If no option is specified, returns
a list describing all of the available weightedRandomFramesize options (see STANDARD OPTIONS) for
port.

weightedRandomFramesize delPair framesize weight

Deletes the first framesize-weight pair in the pairList. Specific errors include:

l The value of randomType is not randomWeightedPair
l The pair could not be found

weightedRandomFramesize get chasID cardID portID

Gets the current configuration of the port with id portID on card cardID, chassis chasID. Note that stream
get must be called before this command's get sub-command. Call this command before calling
weightedRandomFramesize cget option to get the value of the configuration option.

weightedRandomFramesize retrieveQuadGaussianCurve curveId

Retrieves the values associated with the Gaussian curve specified in curveId and sets them into the
center, widthAtHalf and weight options of this command.

weightedRandomFramesize set chasID cardID portID

Sets the weightedRandomFramesize configuration of the port with id portID on card cardID, chassis
chasID by reading the configuration option values set by the weightedRandomFramesize config option
value command.

weightedRandomFramesize setDefault

Sets to IxTclHal default values for all configuration options.

weightedRandomFramesize updateQuadGaussianCurve curveId

Sets the values associated with the Gaussian curve specified in curveId using the values in the center,
widthAtHalf and weight options of this command.

EXAMPLES
package req IxTclHal
set hostname loopback
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfoF
return 1

Appendix 1 IxTclHAL Commands

– 1488 –

}
Get the chassis ID to use in port lists
set ch [ixGetChassisID $host]
set cd 22
set prt 1
set portList [list [list $ch $cd $prt]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
stream config -frameSizeType sizeRandom
weightedRandomFramesize setDefault
weightedRandomFramesize config -randomType randomWeightedPair
weightedRandomFramesize addPair 100 5
weightedRandomFramesize addPair 200 10
if [weightedRandomFramesize set $ch $cd $prt] {
errorMsg " Error setting weighted 1 on port $ch $cd $prt "
return $::TCL_ERROR
}
if [stream set $ch $cd $prt 1] {
errorMsg " Error setting stream 1 on port $ch $cd $prt "
return $::TCL_ERROR
}
weightedRandomFramesize cget -pairList will return
"{100 5} {200 10}"
weightedRandomFramesize setDefault
weightedRandomFramesize config -randomType randomUniform
if [weightedRandomFramesize set $ch $cd $prt] {
errorMsg " Error setting weighted 1 on port $ch $cd $prt "
return $::TCL_ERROR
}
stream config -frameSizeType sizeRandom
stream config -frameSizeMIN 100
stream config -frameSizeMAX 1000
if [stream set $ch $cd $prt 2] {
errorMsg " Error setting stream 2 on port $ch $cd $prt "
return $::TCL_ERROR
}
weightedRandomFramesize setDefault
weightedRandomFramesize config -randomType randomCisco
if [weightedRandomFramesize set $ch $cd $prt] {
errorMsg " Error setting weighted 1 on port $ch $cd $prt "

Appendix 1 IxTclHAL Commands

– 1489 –

return $::TCL_ERROR
}
if [stream set $ch $cd $prt 3] {
errorMsg " Error setting stream on port $ch $cd $prt "
return $::TCL_ERROR
}
weightedRandomFramesize cget -pairList will return
"{ 64 7 } { 594 4 } { 1518 1 }"
weightedRandomFramesize setDefault
weightedRandomFramesize config -randomType randomQuadGaussian
weightedRandomFramesize config -center 256.0
weightedRandomFramesize config -widthAtHalf 128.0
weightedRandomFramesize config -weight 1
if [weightedRandomFramesize updateQuadGaussianCurve 1] {
ixPuts $::ixErrorInfo
return $::TCL_ERROR
}
weightedRandomFramesize config -center 512.0
weightedRandomFramesize config -widthAtHalf 256.0
weightedRandomFramesize config -weight 4
if [weightedRandomFramesize updateQuadGaussianCurve 2] {
ixPuts $::ixErrorInfo
return $::TCL_ERROR
}
weightedRandomFramesize config -center 1024.0
weightedRandomFramesize config -widthAtHalf 450.0
weightedRandomFramesize config -weight 8
if [weightedRandomFramesize updateQuadGaussianCurve 3] {
ixPuts $::ixErrorInfo
return $::TCL_ERROR
}
weightedRandomFramesize config -center 1500.0
weightedRandomFramesize config -widthAtHalf 12.0
weightedRandomFramesize config -weight 1
if [weightedRandomFramesize updateQuadGaussianCurve 4] {
ixPuts $::ixErrorInfo
return $::TCL_ERROR
}
if [weightedRandomFramesize set $ch $cd $prt] {
ixPuts $::ixErrorInfo
return $::TCL_ERROR
}
if [stream set $ch $cd $prt 4] {
errorMsg " Error setting stream on port $ch $cd $prt "
return $::TCL_ERROR
}
ixWriteConfigToHardware portList
Let go of the ports that we reserved

Appendix 1 IxTclHAL Commands

– 1490 –

ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

stream

xaui
xaui - XAUI power and clock settings

SYNOPSIS

xaui sub-command options

DESCRIPTION

The xaui command is used to change power and clock settings on 10Gigabit XAUI cards.

STANDARD OPTIONS

clockType

Indicates whether the XAUI clock is internally or externally supplied. Options include:

Option Value Usage

xauiClockInternal 0 (default) Timing is supplied by the internally generated clock.

xauiClockExternal 1 Timing is supplied by an externally provided clock.

extraClockExternal1

(default = 1)

extraClockExternal2

(default = 1)

podPower true | false

If true, the card applies 5V power limited to 500ma at pin 5 of the D15 MDIO connector on the front panel.
(default = 0)

Appendix 1 IxTclHAL Commands

– 1491 –

userPower true | false

If true, the card applies 5V power limited to 500ma at pin 4 of the D15 MDIO connector on the front panel.
(default = 1)

COMMANDS

The xaui command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

xaui cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the xaui command.

xaui get chasID cardID portID

Gets the current XAUI configuration of the indicated port. Call this command before calling xaui cget
option.

xaui set chasID cardID portID

Sets the XAUI configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the xaui config option value command.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that a VSR card is in slot 59
set card 59
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo

Appendix 1 IxTclHAL Commands

– 1492 –

return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
see if the card supports XAUI
if {[port isValidFeature portFeatureXaui $chas $card 1] == 0} {
ixPuts "Card $card is not a XAUI card"
return 1
}
Apply pod and user power to MDIO pins 5 and 4, respectively
xaui setDefault
xaui config -podPower true
xaui config -userPower true
if [xaui set $chas $card 1] {
ixPuts "Can't xaui set $chas.$card.1"
return 1
}
ixWritePortsToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

xfp
xfp - UNIPHY-XFP settings

SYNOPSIS

xfp sub-command options

DESCRIPTION

The xfp command is used to change monitor settings for UNIPHY-XFP cards.

Appendix 1 IxTclHAL Commands

– 1493 –

STANDARD OPTIONS

enableMonitorLos
true | false

If true, enables the port to monitor Loss of Signal. In this case, the Loss of Signal status is used to
determine Link State. (default = true)

enableMonitorModule
ReadySignal
true | false

If true, enables the port to monitor whether the module is ready. In this case, no transmit, received or
statistics operations are performed until the module is ready. (default = true)

COMMANDS

The xfp command is invoked with the following sub-commands. If no sub-command is specified, returns a
list of all sub-commands available.

xfp cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the xfp command.

xfp get chasID cardID portID

Gets the current xfp configuration of the indicated port. Call this command before calling xfp cget option.

xfp set chasID cardID portID

Sets the xfp configuration of the port with id portID on card cardID, chassis chasID by reading the
configuration option values set by the xfp config option value command.

EXAMPLES
package require IxTclHal
Connect to chassis and get chassis ID
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1

Appendix 1 IxTclHAL Commands

– 1494 –

}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Assuming that a VSR card is in slot 59
set card 59
set portList [list [list $chas $card 1]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
see if the card supports XAUI
if {[port isValidFeature portFeatureXaui $chas $card 1] == 0} {
ixPuts "Card $card is not a XAUI card"
return 1
}
Disable both monitor settings
xfp config -enableMonitorLos false
xfp config -enableMonitorModuleReadySignal false
if [xfp set $chas $card 1] {
ixPuts "Can't xfp set $chas.$card.1"
return 1
}
ixWritePortsToHardware portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

Appendix 1 IxTclHAL Commands

– 1495 –

This page intentionally left blank.

– 1496 –

APPENDIX 2 Utility Commands

FQPN support
For details on FQPN, see Fully Qualified Port Name.

Following is the list of APIs supporting FQPN:

l calculateFPSPortPath
l calculateGapBytesPortPath
l calculateMaxRatePortPath
l calculatePercentMaxRatePortPath
l enableIntrinsicLatencyAdjustment
l isIntrinsicLatencyAdjustmentEnabled

byte2IpAddr
byte2IpAddr - convert 4 hex bytes into an IP address in dotted notation

SYNOPSIS

byte2IpAddr <hexVal>

DESCRIPTION

The byte2IpAddr command converts 4 hex bytes into an IP address in dotted notation. It can be used in
scripts where IP addresses are read from the capture buffer in hexadecimal format, for example.

EXAMPLE

byte2IpAddr "C0 02 0A 0C"

Returns 192.2.10.12

SEE ALSO

dectohex, hextodec, host2addr

calculateFPS
calculateFPS - calculates the frame rate, in frames/second

– 1497 –

Note: This command has been deprecated. Use calculateMaxRate instead.

SYNOPSIS

calculateMaxRate chassis card port [percentMaxRate frameSize preambleOrAtmEncap]

DESCRIPTION

The calculateFPS command calculates the frame rate for a particular port type based on the percentage of
the maximum rate, frame size and the preamble size.

COMMAND

The calculateFPS command is invoked with the following arguments.

calculateMaxRate chassis card port [percentMaxRate frameSize preambleSize]

where:

chassis, card, port: A port of the type that you wish the frame rate calculated for

percentMaxRate: The percentage of the maximum rate (default = 100)

frameSize: the size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE

calculateMaxRate 1 1 1 80 64 8

Returns 11904.7619048

SEE ALSO

calculateMaxRate, calculatePercentMaxRate

calculateFPSPortPath
calculateFPSPortPath- calculates the frame rate, in frames/second

SYNOPSIS

calculateFPSPortPath FQPN [percentMaxRate frameSize preambleOrAtmEncap]

DESCRIPTION

The calculateFPSPortPath command calculates the frame rate for a particular port type based on the
percentage of the maximum rate, frame size and the preamble size.

Appendix 2 Utility Commands

– 1498 –

COMMAND

The calculateFPSPortPath command is invoked with the following arguments.

calculateFPSPortPath FQPN [percentMaxRate frameSize preambleSize]

where:

FQPN: A port of the type that you wish the frame rate calculated for

percentMaxRate: The percentage of the maximum rate (default = 100)

frameSize: the size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE

calculateFPSPortPath localhost/1/1.1 80 64 8

Returns 11904.7619048

SEE ALSO

calculateMaxRatePortPath, calculatePercentMaxRatePortPath

calculateGapBytes
calculateGapBytes - calculates the inter-frame gap for a port, expressed in equivalent number of data
bytes.

Note: this command has been deprecated. Use calculatePercentMaxRate instead.

SYNOPSIS

calculateGapBytes chassis card port frameRate frameSize preambleSize

DESCRIPTION

The calculateGapBytes command calculates the IFG in terms of the number of data bytes that could fit in
the gap, based on the frame rate, frame size and preamble size.

COMMAND

The calculateGapBytes command is invoked with the following arguments.

calculateGapBytes chassis card port frameRate
[frameSize preambleSize]

where:

chassis, card, port: A port of the type that you wish the gap calculated for

Appendix 2 Utility Commands

– 1499 –

frameRate: The input frame rate in FPS

frameSize: The size of the frame (default = 64)

preambleSize: The size of the preamble (default = 8)

EXAMPLE

calculateGapBytes 1 1 1 1000

Returns 1178

SEE ALSO

calculateMaxRate, calculatePercentMaxRate

calculateGapBytesPortPath
calculateGapBytesPortPath - calculates the inter-frame gap for a port, expressed in equivalent number of
data bytes.

SYNOPSIS

calculateGapBytesPortPath FQPN frameRate frameSize preambleSize

DESCRIPTION

The calculateGapBytesPortPath command calculates the IFG in terms of the number of data bytes that
could fit in the gap, based on the frame rate, frame size and preamble size.

COMMAND

The calculateGapBytesPortPath command is invoked with the following arguments.

calculateGapBytesPortPath FQPN frameRate
[frameSize preambleSize]

where:

FQPN: A port of the type that you wish the gap calculated for

frameRate: The input frame rate in FPS

frameSize: The size of the frame (default = 64)

preambleSize: The size of the preamble (default = 8)

EXAMPLE

calculateGapBytesPortPath localhost/1/1.1 1000

Returns 1178

Appendix 2 Utility Commands

– 1500 –

SEE ALSO

calculateMaxRate, calculatePercentMaxRate

calculateMaxRate
calculateMaxRate - calculates the inter-frame gap for a port

SYNOPSIS

calculateMaxRate chassis card port frameSize preambleOrAtmEncap

DESCRIPTION

The calculateMaxRate command calculates the maximum frame rate for a port, based on the frame size
and preamble size.

COMMAND

The calculateMaxRate command is invoked with the following arguments.

calculateMaxRate chassis card port [frameSize preambleSize]

where:

chassis, card, port: A port of the type that you wish the maximum frame rate calculated for

frameSize: The size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE

calculateMaxRate 1 1 1 1518

Returns 813

SEE ALSO

calculatePercentMaxRate

calculateMaxRatePortPath
calculateMaxRatePortPath - calculates the inter-frame gap for a port

SYNOPSIS

calculateMaxRatePortPath FQPN frameSize preambleOrAtmEncap

Appendix 2 Utility Commands

– 1501 –

DESCRIPTION

The calculateMaxRatePortPath command calculates the maximum frame rate for a port, based on the
frame size and preamble size.

COMMAND

The calculateMaxRatePortPath command is invoked with the following arguments.

calculateMaxRatePortPath FQPN [frameSize preambleSize]

where:

FQPN: A port of the type that you wish the maximum frame rate calculated for

frameSize: The size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE

calculateMaxRatePortPath localhost/1/1.1 1518

Returns 813

SEE ALSO

calculatePercentMaxRatePortPath

calculatePercentMaxRate
calculatePercentMaxRate - calculates what percentage of the maximum rate a particular frame rate is

SYNOPSIS

calculatePercentMaxRate chassis card port frameRate [frameSize preambleOrAtmEncap]

DESCRIPTION

The calculatePercentMaxRate command calculates what percentage of the maximum rate a particular
frame rate is for a particular port type based on the frame size and the preamble size.

COMMAND

The calculatePercentMaxRate command is invoked with the following arguments.

calculatePercentMaxRate chassis card port frameRate
[frameSize preambleSize]

where:

chassis, card, port: A port of the type that you wish the frame rate calculated for

Appendix 2 Utility Commands

– 1502 –

frameRate: The input frame rate in FPS.

frameSize: The size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE
package require IxTclHal
In this example, we'll find all the 10/100/1000 cards
and program their first port to 128,000 FPS for 64 byte packets
and 8 byte preamble
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis' number of cards
chassis getFromID $chas
set ncards [chassis cget -maxCardCount]
ixPuts "Chassis $chas, $ncards cards"

for {set i 1} {$i <= $ncards} {incr i} {
Check for missing card
if {[card get $chas $i] != 0} {
continue
}
set typeName [card cget -typeName]
If the card is a 10/100 RMII, play with its settable parameters
if {[string first "1000" $typeName] != -1} {
ixPuts "Card $i: $typeName"

Appendix 2 Utility Commands

– 1503 –

set portList [list [list $chas $i 1]]
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
port setFactoryDefaults $chas $i 1
port config -speed 1000
port set $chas $i 1
set percentMax [calculatePercentMaxRate $chas $i 1 128000 64 8]
stream config -rateMode usePercentRate
stream config -percentPacketRate $percentMax
###
#
NOTE: in the past, this was done with the CalculateGap
command. For example:
#
set gapTicks [calculateGap 128000 64 8 $card $i 1]
stream config -rateMode useGap
stream config -gapUnit gapClockTicks
stream config -ifg $gapTicks
#
This no longer works for new Ixia cards, since the definition
of a clock tick varies per board. calculatePercentMaxRate
is card independent and works in all cases
#
###
stream setDefault
stream config -framesize 64
stream config -preambleSize 8
if [stream set $chas $i 1 1] {
ixPuts $ixErrorInfo
return 1
}
ixWriteConfigToHardware portList
}
}
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

calculatePercentMaxRatePortPath

Appendix 2 Utility Commands

– 1504 –

calculatePercentMaxRatePortPath
calculatePercentMaxRatePortPath - calculates what percentage of the maximum rate a particular frame
rate is

SYNOPSIS

calculatePercentMaxRatePortPath FQPN frameRate [frameSize preambleOrAtmEncap]

DESCRIPTION

The calculatePercentMaxRatePortPath command calculates what percentage of the maximum rate a
particular frame rate is for a particular port type based on the frame size and the preamble size.

COMMAND

The calculatePercentMaxRatePortPath command is invoked with the following arguments.

calculatePercentMaxRatePortPath FQPN frameRate
[frameSize preambleSize]

where:

FQPN: A port of the type that you wish the frame rate calculated for

frameRate: The input frame rate in FPS.

frameSize: The size of the frame (default = 64)

preambleOrAtmEncap: The size of the preamble, or the ATM encapsulation used for ATM cards. The
values for ATM encapsulation may be found in the encapsulation option of the atmHeader command.
(default = 8)

EXAMPLE
set portlist localhost/1/1.1
calculatePercentMaxRatePortPath $portlist 128000 64 8

For details, see calculatePercentMaxRate Example

SEE ALSO

calculatePercentMaxRate

cleanUp
cleanUp - end a test and cleanup all variables

SYNOPSIS

cleanUp

Appendix 2 Utility Commands

– 1505 –

DESCRIPTION

The cleanUp command reliably terminates a test and resets all important parameters. This includes

l Removing all chassis from the chassis chain
l Disconnects from a TCL Server, if necessary
l Removes the effect of a package require IxTclHal
l Resets all commands back to their default state
l Closes all open files

EXAMPLE

cleanUp

SEE ALSO

clearAllMyOwnership
clearAllMyOwnership - clear all current port ownership

SYNOPSIS

clearAllMyOwnership

DESCRIPTION

The clearAllMyOwnership command releases all port ownership for the currently logged on user.

EXAMPLE

clearAllMyOwnership

SEE ALSO

ixClearOwnership

dectohex
dectohex - convert a decimal number to a hexadecimal number

SYNOPSIS

dectohex <decimal number>

DESCRIPTION

The dectohex command converts a decimal number to a hexadecimal number.

EXAMPLE

dectohex 10

Appendix 2 Utility Commands

– 1506 –

Returns A

SEE ALSO

hextodec, host2addr, byte2IpAddr

disableUdfs
disableUdfs - disables all UDFs in the argument list

SYNOPSIS

disableUdfs udfIDlist

DESCRIPTION

The disableUdfs command cycles through all the UDF numbers in the list argument list and disables them.

COMMAND

The disableUdfs command is invoked with the following arguments.

disableUdfs udfList

where udfList is a list of UDF numbers 1 to 4.

EXAMPLE

disableUdfs {1 3}

SEE ALSO

udf, stream

enableEvents
enableEvents - log errors and warnings to a log file

SYNOPSIS

enableEvents {true | false}

DESCRIPTION

The enableEvents command enables or disables the creation of a log file in the C:\Program Files\Ixia
folder. The log file is named with the creation date and time. This value is true by default for Windows
operating systems and false by default for Unix systems.

COMMAND

The enableEvents command is invoked with the following arguments.

enableEvents true

Appendix 2 Utility Commands

– 1507 –

SEE ALSO

errorMsg
errorMsg - logs text to the error file

SYNOPSIS

errorMsg [-nonewline] arg...

DESCRIPTION

The errorMsg command outputs its arguments to the error file with or without a new line.

ARGUMENTS

-nonewline

If present, suppresses a newline at the end of the output

arg ...

Arguments which are concatenated together and written to the error file.

RETURNS

0

No error; the command was successfully delivered to the IxServer

1

Error; the command was delivered to the IxServer but it could not process the message

EXAMPLE

errorMsg -nonewline "This will write to the errorFile"

SEE ALSO

getErrorString

getErrorString
getErrorString - return an error string corresponding to an error number

SYNOPSIS

getErrorString <error number>

DESCRIPTION

The getErrorString command converts an error number to a text string.

Appendix 2 Utility Commands

– 1508 –

EXAMPLE

% ixUtils getErrorString 1

General Error. Check method parameters.

% ixUtils getErrorString 2

Version mismatch between IxServer and Tcl Client.

SEE ALSO

getStatLabel
getStatLabel - return a statistic value for a statistic.

SYNOPSIS

getStatLabel <string>

DESCRIPTION

The getStatLabel command gets the statistic value for a specified statistic.

EXAMPLE

getStatLabel sArpInstalled

SEE ALSO

hextodec
hextodec - convert a hexadecimal number to a decimal number

SYNOPSIS

hextodec <hex number>

DESCRIPTION

The hextodec command converts a hexadecimal number to a decimal number.

EXAMPLE

hextodec 7a

Returns 122

SEE ALSO

dectohex, host2addr, byte2IpAddr

Appendix 2 Utility Commands

– 1509 –

host2addr
host2addr - convert an IP address in dotted notation to a list of hex bytes

SYNOPSIS

host2addr <IP address>

DESCRIPTION

The host2addr command converts an IP address in dotted notation to a list of hex bytes. This command is
useful in scripts where you specify an IP address in dotted notation and it needs to be converted into 4
hexadecimal byte format to store as a list.

EXAMPLE

host2addr 192.1.10.12

Returns C0 01 0A 0C

SEE ALSO

dectohex, host2addr, byte2IpAddr

logMsg
logMsg - logs text to the log file

SYNOPSIS

logMsg [-nonewline] arg...

DESCRIPTION

The logMsg command outputs its arguments to the log file with or without a new line.

ARGUMENTS

-nonewline

If present, suppresses a newline at the end of the output

arg ...

Arguments which are concatenated together and written to the log file.

RETURNS

0

No error; the command was successfully delivered to the IxServer

Appendix 2 Utility Commands

– 1510 –

1

Error; the command was delivered to the IxServer but it could not process the message

EXAMPLE

logMsg -nonewline "This will write to the logFile"

SEE ALSO

logOn, logOff, ixPuts

logOff
logOn - disables logging.

SYNOPSIS

logOff

DESCRIPTION

The logOff command is used to turn off logging.

STANDARD OPTIONS

None

EXAMPLE

logOff

SEE ALSO

ixProxyConnect, logOn

logOn
logOn - enables logging.

SYNOPSIS

logOn filename

DESCRIPTION

The logOn command is used to turn on logging. The log file is configured with the command.

STANDARD OPTIONS

filename

The filename to log output under.

Appendix 2 Utility Commands

– 1511 –

EXAMPLE

logOn "c:/program files/ixia/log.log"

SEE ALSO

ixProxyConnect, logOff

mpexpr
mpexpr - performs arbitrary precision arithmetic

SYNOPSIS

mpexpr <expression>

DESCRIPTION

mpexpr works much like Tcl's native expr, but does all calculations using an arbitrary precision math
package. mpexpr numbers can be any number of digits, with any decimal precision. Final precision is
controlled by a Tcl variable mp_precision, which can be any reasonable integer, limiting only the number
of digits to the right of the decimal point.

COMMAND

The mpexpr command should be used on all 64-bit values as marked in the citations below.

EXAMPLE

package require Mpexpr

set $::mp_precision 25

set y 42

set eExpY [mpexpr exp($y)]

puts [mpformat %f $eExpY]

SEE ALSO

showCmd
showCmd - show the current value of a TCL API command's values

SYNOPSIS

showCmd <TCL API command>

Appendix 2 Utility Commands

– 1512 –

DESCRIPTION

showCmd is a very useful command that may be used to display the current value of a command's
options. It may be typed into an interactive wish shell or included as a command in a TCL script.

COMMAND

showCmd command

command

The name of any of the command.

EXAMPLE

showCmd port

showCmd rprFairness

SEE ALSO

user
user - configure the user related parameters

SYNOPSIS

user sub-command options

DESCRIPTION

The user command is used to configure user related information. This information is used when the
RFC2544, RFC 2285 and non-RFC tests are executed and results are produced. It helps in the
identification of the user and used for reference.

STANDARD OPTIONS

comments

A comment associated with the test.

productname

Name of the DUT being tested.

version

Version number of the product.

serial#

Serial number of the product.

Appendix 2 Utility Commands

– 1513 –

username

The name of the user running the tests.

COMMAND

The user command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

user cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the user command.

user config option value

Modify the configuration options of the user. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for user.

user setDefault

Sets default values for all configuration options.

EXAMPLES
package require IxTclHal
user setDefault
user config -comments "Special XYZ test"
user config -productname "Super router 2000"
user config -version "0.1"
user config -serial# "1"
user config -username "QA Specialist 14"
ixPuts [user cget -productname]

INTERNAL
COMMANDS

The following commands are internal interfaces, for use only by Ixia. Use of these commands may
produced undesirable results and are not guaranteed to be backward compatible in future releases:

exists, getHelp, getType, getValidRange, getValidValues, getValidateProc

Appendix 2 Utility Commands

– 1514 –

APPENDIX 3 High-Level API
This chapter provides the arguments to set high-level APIs and the list of high-level APIs that are used in
IxOS setup.

Arguments to the high-level APIs are passed in one of the following ways:

l By value: Denoted by (By value) in the description. By value arguments are either a constant or a
$variable reference. For example,{{1 1 1} {1 2 1}} -or- $portList

l By reference: Denoted by (By reference) in the description. By reference arguments must be
references to variables, without the `$'. For example, pl after set pl {{1 1 1} [1 1 2}}.

Almost all commands return a value of 0 on successful operation. This can be symbolically referred to as
$TCL_OK in a global context or $TCL_OK otherwise. In the examples in this section, a value of 0 is used.

Similarly predefined quantities such as one2oneArray are defined in the global context. If your program is
running in other than the global context then it is necessary to include a double colon () before the
constant or variable name. For example, one2oneArray.

FQPN support
For details on FQPN, see Fully Qualified Port Name.

Following is the list of APIs supporting FQPN:

l issuePcpuCommand
l ixAbortPoeArm
l ixAbortPortPoeArm
l ixArmPoeTrigger
l ixArmPortPoeTrigger
l ixCheckLinkState
l ixCheckOwnership
l ixCheckPPPState
l ixCheckPortTransmitDone
l ixCheckTransmitDone
l ixClearArpTable
l ixClearOwnership

– 1515 –

l ixClearPacketGroups
l ixClearPerStreamTxStats
l ixClearPortArpTable
l ixClearPortPacketGroups
l ixClearPortStats
l ixClearScheduledTransmitTime
l ixClearStats
l ixClearTimeStamp
l ixCollectStats
l ixDisableArpResponse
l ixDisablePortArpResponse
l ixEnableArpResponse
l ixEnablePortArpResponse
l ixEnableIntrinsicLatencyAdjustment
l ixEnablePortIntrinsicLatencyAdjustment
l ixGetLineUtilization
l ixIsIntrinsicLatencyAdjustmentEnabled
l ixLoadPoePulse
l ixLoadPortPoePulse
l ixPortClearOwnership
l ixPortTakeOwnership
l ixRequestStats
l ixResetPortSequenceIndex
l ixResetSequenceIndex
l ixRestartAutoNegotiation
l ixRestartPortAutoNegotiation
l ixRestartPortPPPNegotiation
l ixRestartPPPNegotiation
l ixSetAdvancedStreamSchedulerMode
l ixSetAutoDetectInstrumentationMode
l ixSetCaptureMode
l ixSetDataIntegrityMode
l ixSetPacketFlowMode
l ixSetPacketGroupMode
l ixSetPacketStreamMode

Appendix 3 High-Level API

– 1516 –

l ixSetPortAdvancedStreamSchedulerMode
l ixSetPortCaptureMode
l ixSetPortDataIntegrityMode
l ixSetPortPacketFlowMode
l ixSetPortPacketGroupMode
l ixSetPortPacketStreamMode
l ixSetPortSequenceCheckingMode
l ixSetPortTcpRoundTripFlowMode
l ixSetScheduledTransmitTime
l ixSetSequenceCheckingMode
l ixSetTcpRoundTripFlowMode
l ixSimulatePhysicalInterfaceDown
l ixSimulatePhysicalInterfaceUp
l ixSimulatePortPhysicalInterfaceDown
l ixSimulatePortPhysicalInterfaceUp
l ixStartAtmOamTransmit
l ixStartCapture
l ixStartCollisions
l ixStartPacketGroups
l ixStartPortAtmOamTransmit
l ixStartPortCapture
l ixStartPortCollisions
l ixStartPortPacketGroups
l ixStartPortTransmit
l ixStartStaggeredTransmit
l ixStartTransmit
l ixStopAtmOamTransmit
l ixStopCapture
l ixStopCollisions
l ixStopPacketGroups
l ixStopPortAtmOamTransmit
l ixStopPortCapture
l ixStopPortCollisions
l ixStopPortPacketGroups
l ixStopPortTransmit

Appendix 3 High-Level API

– 1517 –

l ixStopTransmit
l ixTakeOwnership
l ixTransmitArpRequest
l ixTransmitPortArpRequest
l ixWriteConfigToHardware
l ixWritePortsToHardware

getAllPorts
getAllPorts - Gets a list of all ports associated with a port map

SYNOPSIS

getAllPorts portList

DESCRIPTION

The getAllPorts returns a list of all ports associated with a port map.

ARGUMENTS

mapName

(By reference) One of the following:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

RETURNS

list

A list of all transmit and receive ports associated with the map. The format of the returned value is a list of
lists, for example, {1 1 1} {1 1 2} {1 1 3} {1 1 4}.

EXAMPLES

SEE ALSO

getRxPorts, getTxPorts, map

getRxPorts
getRxPorts - Gets all receive ports associated with a port map

SYNOPSIS

getRxPorts portList

DESCRIPTION

The getRxPorts returns a list of all receive ports associated with a port map.

Appendix 3 High-Level API

– 1518 –

ARGUMENTS

mapName

(By reference) One of the following:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

RETURNS

list

A list of all receive ports associated with the map. The format of the returned value is a list of lists, for
example, {1 1 1} {1 1 2} {1 1 3} {1 1 4}.

EXAMPLES

SEE ALSO

getAllPorts, getTxPorts, map

getTxPorts
getTxPorts - Gets all transmit ports associated with a port map

SYNOPSIS

getTxPorts portList

DESCRIPTION

The getTxPorts returns a list of all transmit ports associated with a port map.

ARGUMENTS

mapName

(By reference) One of the following:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

RETURNS

list

A list of all transmit ports associated with the map. The format of the returned value is a list of lists, for
example, {1 1 1} {1 1 2} {1 1 3} {1 1 4}.

EXAMPLES

SEE ALSO

getAllPorts, getRxPorts, map

Appendix 3 High-Level API

– 1519 –

issuePcpuCommand
issuePcpuCommand - Execute a command on a list of ports

SYNOPSIS

issuePcpuCommand portList command

DESCRIPTION

The issuePcpuCommand command executes a Linux commands on a set of ports. The result of the
command's execution indicates whether the command was sent to the ports or not. No indication is given
that the ports actually ran successfully on the ports. The individual port by port result of the command can
be retrieved by using the getFirst / getNext functions of pcpuCommandService.

ARGUMENTS

command

The text of the command to be executed, which must use an absolute path. For example, `/bin/ls'. No
filename expansion is performed on the command; that is, `/bin/ls /bin/ix*' finds no matches. This, and
the restriction on absolute path, may be avoided by executing the command through a bash shell, as in:

issuePcpuCommand portList "/bin/bash -c `ls -l /bin/ix*'"

portList

(By reference) The list of ports to execute command on, in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

The commands were sent to the ports.

1

The commands could not be sent to the ports.

EXAMPLES
set host techpubs-400
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"

Appendix 3 High-Level API

– 1520 –

return 1
}
}
package require IxTclServices
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
set portList [list [list 1 1 1] [list 1 1 2]]
set ret [issuePcpuCommand portList "/bin/bash -c 'rm /tmp/hello'"]
ixPuts "Return is $ret"
for {set next [pcpuCommandService getFirst]} \
{$next != $::TCL_ERROR} \
{set next [pcpuCommandService getNext]} {
set chassis [pcpuCommandService cget -chassisID]
set card [pcpuCommandService cget -cardID]
set port [pcpuCommandService cget -portID]
set command [pcpuCommandService cget -command]
set output [pcpuCommandService cget -output]
set result [pcpuCommandService cget -result]
ixPuts "$chassis:$card:$port, cmd: $command, result: $result, output: $output"
}

SEE ALSO

pcpuCommandService.

ixAbortPoeArm
ixAbortPoeArm - abort the arming of a list of PoE ports

SYNOPSIS

ixAbortPoeArm portList

DESCRIPTION

The ixAbortPoeArm command abort the arming of a list of PoE ports.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1521 –

RETURNS

0

Successful.

1

An error occurred.

EXAMPLES

SEE ALSO

ixAbortPortPoeArm, ixArmPoeTrigger, ixArmPortPoeTrigger

ixAbortPortPoeArm
ixAbortPortPoeArm - abort the arming of an individual PoE port

SYNOPSIS

ixAbortPortPoeArm chassisID cardID portID

DESCRIPTION

The ixAbortPortPoeArm command aborts the arming of an individual PoE port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error.

1

Error.

Appendix 3 High-Level API

– 1522 –

EXAMPLES

SEE ALSO

ixAbortPoeArm, ixArmPoeTrigger, ixArmPortPoeTrigger

ixArmPoeTrigger
ixArmPoeTrigger - arm a list of PoE ports for triggering

SYNOPSIS

ixArmPoeTrigger portList

DESCRIPTION

The ixArmPoeTrigger command arms a list of PoE ports for triggering.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

Successful.

1

An error occurred.

EXAMPLES

SEE ALSO

ixAbortPoeArm, ixAbortPortPoeArm, ixArmPortPoeTrigger

ixArmPortPoeTrigger
ixArmPortPoeTrigger - arm an individual PoE port for trigger

SYNOPSIS

ixArmPortPoeTrigger chassisID cardID portID

Appendix 3 High-Level API

– 1523 –

DESCRIPTION

The ixArmPortPoeTrigger command arms an individual PoE port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error.

1

Error.

EXAMPLES

SEE ALSO

ixAbortPoeArm, ixAbortPortPoeArm, ixArmPoeTrigger

ixCheckLinkState
ixCheckLinkState - checks the link state on a group of ports

SYNOPSIS

ixCheckLinkState portList

DESCRIPTION

The ixCheckLinkState command checks the link state on a group of ports. This command must be called in
the beginning of the script to ensure that all links are up before any traffic is transmitted to the DUT.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1524 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

Links on all ports are up.

1

Link on one or more ports is down.

EXAMPLES
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chassis [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chassis $cardA $portA] [list $chassis $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one

Appendix 3 High-Level API

– 1525 –

map config -type one2one
map add $chassis $cardA $portA $chassis $cardB $portB
map add $chassis $cardB $portB $chassis $cardA $portA
port setDefault
port set $chassis $cardA $portA
port set $chassis $cardB $portB
stream setDefault
stream config -dma stopStream
stream config -numFrames 100000
stream set $chassis $cardA $portA 1
stream config -numFrames 200000
stream set $chassis $cardB $portB 1
ixWritePortsToHardware one2oneArray
wait for write ports to have an effect
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "One or more links are down"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixCheckOwnership
ixCheckOwnership - checks the ownership for a list of ports

SYNOPSIS

ixCheckOwnership portList

DESCRIPTION

The ixCheckOwnership command checks the ownership on a list of ports; the port list must be passed by
value. It accepts * as a wild card to indicate all cards or all ports on a card. A wild card cannot be used for
chassis ID. Also, if a combination of a list element containing wild cards and port numbers are passed,
then the port list passed MUST be in a sorted order, otherwise the some of those ports might not make it
in the list.

ARGUMENTS

portList

(By value) The list of ports in one of the following formats:

Appendix 3 High-Level API

– 1526 –

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}
{1,1,* 1,2,1 1,2,2}

RETURNS

0

All of the ports are available for the `taking'.

100

One or more of the ports are owned by someone else.

EXAMPLES
package req IxTclHal
set host galaxy
set username George
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set portListG [list [list $chas 2 2]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portListG force] {
ixPuts $::ixErrorInfo
return 1
}
Login Bill and make a port list for all ports on cards 1 and 2
ixLogin bill
set portListB [list [list $chas 1 *] [list $chas 2 *]]

Appendix 3 High-Level API

– 1527 –

This should fail because 1, 2, 2 is owned by George
if {[ixCheckOwnership $portListB] == 0} {
ixPuts "Ports $portListB are available"
} else {
ixPuts "One or more of $portListB are unavailable"
}
Now we'll avoid that port and express the list a different way
set portListB [list 1,1,* 1,2,1]
if {[ixCheckOwnership $portListB] == 0} {
ixPuts "Ports $portListB are available"
} else {
ixPuts "One or more of $portListB are unavailable"
}
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixClearOwnership, ixLogin, ixLogout, ixPortClearOwnership,ixPortTakeOwnership, ixTakeOwnership

ixCheckPPPState
ixCheckPPPState - checks the PPP state on a group of POS ports

SYNOPSIS

ixCheckPPPState portList [message]

DESCRIPTION

The ixCheckPPPState command checks the PPP state of all PoS ports in a group of ports in parallel and
labels the ones that are down. Then it polls the links that are down for two seconds and returns 1 if any
port is still down and a 0 if all ports are up.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1528 –

message

(By value) (Optional, default = messageOn) Indicates that a message with the ports' state is to be written
to STDOUT or not.

RETURNS

0

Links on all ports are up.

1

Link on one or more ports is down.

EXAMPLES
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chassis [ixGetChassisID $host]
set cardA 2
set portA 1
set cardB 2
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 3 High-Level API

– 1529 –

map new -type one2one
map config -type one2one
map add $chassis $cardA $portA $chassis $cardB $portB
map add $chassis $cardB $portB $chassis $cardA $portA
if {[ixCheckPPPState one2oneArray] != 0} {
ixPuts "PPP is down"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixCheckPortTransmitDone
ixCheckPortTransmitDone - checks whether transmission is done on a port

SYNOPSIS

ixCheckPortTransmitDone chassisID cardID portID

DESCRIPTION

The ixCheckPortTransmitDone command polls the transmit rate statistic counter and returns when
transmission has stopped. Note: This command should be called no earlier than one second after starting
transmit with ixStartTransmit or ixStartPortTransmit.

Note: It should be preceded by an after 1000 statement following the previous command, to allow the
effects of the previous command to have an effect on the port hardware.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

Appendix 3 High-Level API

– 1530 –

RETURNS

0

No frames were sent or the stat get framesSent command failed.

numTxFrames

No Error; number of frames transmitted since the last time statistics were cleared.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 4
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
port setDefault
port set $chas $cardA $portA
stream setDefault
stream config -dma stopStream
stream config -numFrames 100000
stream set $chas $cardA $portA 1

Appendix 3 High-Level API

– 1531 –

ixWritePortsToHardware portList
after 1000
if {[ixCheckLinkState portList] != 0} {
ixPuts "Link is not up"
}
Start transmit and wait a bit
ixStartPortTransmit $chas $cardA $portA
after 1000
Check if the port has stopped
ixCheckPortTransmitDone $chas $cardA $portA
ixPuts "PortA Stopped transmitting"
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixCheckPortTransmitDone

ixCheckTransmitDone
ixCheckTransmitDone - checks whether transmission is done on a group of ports

SYNOPSIS

ixCheckTransmitDone portList

DESCRIPTION

The ixCheckTransmitDone command polls the transmit rate statistic counter and returns when
transmission is stopped. Note: This command should be called no earlier than one second after starting
transmit with ixStartTransmit or ixStartPortTransmit.

Note: It should be preceded by an after 1000 statement following the previous command, to allow the
effects of the previous command to have an effect on the port hardware.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1532 –

RETURNS

0

Success

1

Failure.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList2] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one

Appendix 3 High-Level API

– 1533 –

map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
stream setDefault
stream config -dma stopStream
stream config -numFrames 100000
stream set $chas $cardA $portA 1
stream config -numFrames 200000
stream set $chas $cardB $portB 1
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
Start transmit and wait a bit
ixStartTransmit one2oneArray
after 1000
Check if the first port has stopped
ixCheckTransmitDone portList1
ixPuts "PortA Stopped transmitting"
Check if both ports have stopped
ixCheckTransmitDone portList2
ixPuts "PortA & PortB Stopped transmitting"
ixStartTransmit one2oneArray
after 1000
Check if both ports have stopped, a different way
ixCheckTransmitDone portList3
ixPuts "PortA & PortB Stopped transmitting"
ixStartTransmit one2oneArray
after 1000
Check if both ports have stopped, yet another way
ixCheckTransmitDone portList4
ixPuts "PortA & PortB Stopped transmitting"
ixStartTransmit one2oneArray
after 1000
ixCheckTransmitDone one2oneArray
ixPuts "PortA & PortB Stopped transmitting"
Let go of the ports that we reserved
ixClearOwnership $portList2
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 3 High-Level API

– 1534 –

SEE ALSO

ixCheckPortTransmitDone

ixClearArpTable
ixClearArpTable - clears the ARP table on a group of ports simultaneously

SYNOPSIS

ixClearArpTable portList

DESCRIPTION

The ixClearArpTable command clears the ARP table by the protocol server.

ARGUMENTS

ixClearArpTable

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis

Appendix 3 High-Level API

– 1535 –

if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 2
set portA 1
set cardB 2
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
if {[ixClearArpTable one2oneArray] != 0} {
ixPuts "ARP table could not be cleared"
} else {
ixPuts "ARP table cleared"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixClearPortArpTable

ixClearOwnership
ixClearOwnership - clears ownership of all the ports in the list

Appendix 3 High-Level API

– 1536 –

SYNOPSIS

ixClearOwnership [portList] [takeType]

DESCRIPTION

The ixClearOwnership command clears ownership of all the ports in the list.

ARGUMENTS

portList

(By value) The list of ports in one of the following formats:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}
{1,1,* 1,2,1 1,2,2}

A value of ""(default) clears ownership of all Tcl owned ports.

takeType

(By value) (Optional) Valid values:

force: take regardless of whether the port is owned by someone else

notForce: (default) do not force ownership

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 3 High-Level API

– 1537 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set portList1 {{1 1 1}}
set portList2 {{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
set portList3 {{1 1 *} {1 2 1} {1 2 2}}
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearOwnership $portList1] != 0} {
ixPuts "Could not clear ownership for $portList1\n"
}
if {[ixClearOwnership $portList2] != 0} {
ixPuts "Could not clear ownership for $portList2\n"
}
if {[ixClearOwnership $portList3 notForce] != 0} {
ixPuts "Could not clear ownership for $portList3\n"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixTakeOwnership, ixPortClearOwnership, ixPortTakeOwnership

ixClearPacketGroups
ixClearPacketGroups - clears the packet group statistics of all the ports in the list

SYNOPSIS

ixClearPacketGroups [portList]

DESCRIPTION

The ixClearPacketGroups command clears the packet group statistics of all the ports in the list.

Appendix 3 High-Level API

– 1538 –

ARGUMENTS

portList

(By value) The list of ports in one of the following formats:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}
{1,1,* 1,2,1 1,2,2}

A value of ""(default) clears ownership of all Tcl owned ports.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]

Appendix 3 High-Level API

– 1539 –

set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Try each of the formats
if {[ixClearPacketGroups portList1] != 0} {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPacketGroups portList2] != 0} {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPacketGroups portList3] != 0} {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPacketGroups portList4] != 0} {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPacketGroups one2oneArray] != 0} {
ixPuts $::ixErrorInfo
return 1
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}
return 0

Appendix 3 High-Level API

– 1540 –

SEE ALSO

ixClearPortPacketGroups

ixClearPerStreamTxStats
ixClearPerStreamTxStats - Clear per stream Tx statistics counters on the portList.

SYNOPSIS

ixClearPerStreamTxStats portList

DESCRIPTION

The ixClearPerStreamTxStats command clears the per stream statistics for the specified port.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

Successful.

1

An error occurred.

EXAMPLES

SEE ALSO

ixClearStats, ixClearPortStats

ixClearPortArpTable
ixClearPortArpTable - clears the ARP table on an individual port

SYNOPSIS

ixClearPortArpTable chassisID cardID portID

Appendix 3 High-Level API

– 1541 –

DESCRIPTION

The ixClearPortArpTable command clears the ARP table on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxyset username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {

Appendix 3 High-Level API

– 1542 –

ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPortArpTable $chas $card $port] != 0} {
ixPuts "Could not clear Arp table on $chas:$card:$port"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixClearArpTable

ixClearPortPacketGroups
ixClearPortPacketGroups - zero all packet group counters on an individual port

SYNOPSIS

ixClearPortPacketGroups chassisID cardID portID

DESCRIPTION

The ixClearPortPacketGroups command clears all packet group counters on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

Appendix 3 High-Level API

– 1543 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPortPacketGroups $chas $cardA $portA] != 0} {
ixPuts $::ixErrorInfo
return 1
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using

Appendix 3 High-Level API

– 1544 –

ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}
return 0

SEE ALSO

ixClearPacketGroups

ixClearPortStats
ixClearPortStats - zero all statistic counters on an individual port

SYNOPSIS

ixClearPortStats chassisID cardID portID

DESCRIPTION

The ixClearPortStats command clears all statistic counters on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server

Appendix 3 High-Level API

– 1545 –

which must be running on the chassis
ireturn 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixClearPortStats $chas $cardA $portA] != 0} {
ixPuts "Could not clear time stamp for $chas:$cardA:$portA"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixClearStats

ixClearScheduledTransmitTime
ixClearScheduledTransmitTime - clears the amount of transmit time for a port list

SYNOPSISixClearScheduledTransmitTime portList

DESCRIPTION

Clears the maximum amount of time that a group of ports transmits. This is only valid for ports that
support the portFeatureScheduledTxDuration feature, which may be tested with the port isValidFeature
command.

Appendix 3 High-Level API

– 1546 –

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
set portList {{1 1 1} {1 1 2}}
if [ixClearScheduledTransmitTime portList] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixClearStats
ixClearStats - zero all statistic counters on a group of ports simultaneously

SYNOPSIS

ixClearStats portList

DESCRIPTION

The ixClearStats command clears all statistic counters on a list of ports simultaneously. This command
must be called before the transmission of validation traffic is started so that the proper metrics can be
calculated at the end of transmission.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1547 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the. message

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 3 High-Level API

– 1548 –

Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Try each of the formats
if {[ixClearStats portList1] != 0} {
ixPuts "Could not clear time stamp for $portList1"
}
if {[ixClearStats portList2] != 0} {
ixPuts "Could not clear time stamp for $portList2"
}
if {[ixClearStats portList3] != 0} {
ixPuts "Could not clear time stamp for $portList3"
}
if {[ixClearStats portList4] != 0} {
ixPuts "Could not clear time stamp for $portList4"
}
if {[ixClearStats one2oneArray] != 0} {
ixPuts "Could not clear time stamp for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixClearPortStats

ixClearTimeStamp
ixClearTimeStamp - synchronizes the timestamp value among all chassis

SYNOPSIS

ixClearTimeStamp portList

Appendix 3 High-Level API

– 1549 –

DESCRIPTION

The ixClearTimeStamp command sends a message to the IxServer to synchronize the timestamp on a
group of chassis. This feature is useful for calculating latency on ports across chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

set host galaxy

set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]

Appendix 3 High-Level API

– 1550 –

set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Try each of the formats
if {[ixClearTimeStamp portList1] != 0} {
ixPuts "Could not clear time stamp for $portList1"
}
if {[ixClearTimeStamp portList2] != 0} {
ixPuts "Could not clear time stamp for $portList2"
}
if {[ixClearTimeStamp portList3] != 0} {
ixPuts "Could not clear time stamp for $portList3"
}
if {[ixClearTimeStamp portList4] != 0} {
ixPuts "Could not clear time stamp for $portList4"
}
if {[ixClearTimeStamp one2oneArray] != 0} {
ixPuts "Could not clear time stamp for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixCollectStats
ixCollectStats - collect a particular statistic on a group of ports

Appendix 3 High-Level API

– 1551 –

SYNOPSIS

ixCollectStats rxList statName rxStats totalStats

DESCRIPTION

The ixCollectStats command gathers the same specified statistic from a number of ports and places the
results in a return array.

ARGUMENTS

rxList

(By value) The list of ports in one of the following formats:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}
{1,1,* 1,2,1 1,2,2}

statName

(By value or reference) The name of the statistic to poll. This has to match one of the standard options
defined in the stat command.

rxStats

(By reference) The array containing the returned statistics per port. Each element is accessed with three
comma separated arguments corresponding to the chassis, card and port being accessed. For example,
$rxStats(1, 1, 1)

totalStats

(By reference) The total of the values in RxStats.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis

Appendix 3 High-Level API

– 1552 –

if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Setup start
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
stream setDefault
stream config -dma stopStream
stream config -numFrames 100000
stream set $chas $cardA $portA 1
stream config -numFrames 200000
stream set $chas $cardB $portB 1
Set up the ports
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"

Appendix 3 High-Level API

– 1553 –

exit
}
Clear statistics before starting
if {[ixClearStats portList] != 0} {
ixPuts "Could not clear statistics on $portList"
}
Start transmit and wait a bit
ixStartTransmit one2oneArray
after 1000
Check if the both ports have stopped
ixCheckTransmitDone portList
ixPuts "Ports stopped transmitting"
if {[ixCollectStats $portList framesSent myArray myTotal] != 0} {
ixPuts "Could not collect statistics on $portList"
}
ixPuts "Total number is $myTotal"
foreach p $portList {
scan $p "%d %d %d" ch ca po
ixPuts "Port $p is $myArray($ch,$ca,$po)"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixConnectToChassis
ixConnectToChassis - connects to a list of chassis

SYNOPSIS

ixConnectToChassis chassisList [cableLength]

DESCRIPTION

The ixConnectToChassis command connects to a list of chassis given the hostnames or IP addresses. This
command does a chassis retrieval that is followed by a chassis set with additional information for chassis
chain (although current chassis may not be a part of a chain), if default values are not provided. From this
point of view, this command is not a readonly command. It may also change the chassis chain properties
of that chassis, which includes cable length and sequence id. This behavior is important when connecting
through tcl to a chassis in a chain configured by other clients (like IxNetwork/ IxExplorer/ Tcl), because it
may change the sequence id that results in invalid chain. The proper way to connect to an already existing
chain created by other clients, is to connect to all the chassis in that chain in exactly the same order done

Appendix 3 High-Level API

– 1554 –

by original creator of the chain, with a single command ixConnectToChassis, having all chassis in chain,
all corresponding sequence ids (can be a default value) and, all corresponding cable lengths(can be a
default value).

ARGUMENTS

chassisList

(By value) The list of chassis hostnames or IP addresses, called by value.

cableLength

(By value) (Optional) The length of the sync cable that connects the chain of chassis. Valid values are:

Option Value Usage

cable3feet 0 default

cable6feet 1

cable9feet 2

cable12feet 3

cable15feet 4

cable18feet 5

cable21feet 6

cable24feet 7

RETURNS

0

No Error, connection was established with the IxServer.

1

Error connecting to IxServer; possible causes are invalid hostname or IP address for chassis, IxServer not
running on the chassis, or other network problem.

2

Version mismatch.

3

Timeout connecting to chassis; possible causes are invalid hostname or IP address for chassis, or
IxServer not running on the chassis.

Appendix 3 High-Level API

– 1555 –

EXAMPLES
package require IxTclHal
set host1 localhost
set host2 galaxy
set ret [ixConnectToChassis $host1]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
}
ixDisconnectFromChassis
set pl [list $host1 $host2]
set ret [ixConnectToChassis $pl 1]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
}
ixDisconnectFromChassis

SEE ALSO

ixDisconnectFromChassis, ixConnectToChassis, ixProxyConnect

ixConnectToChassisReadOnly
ixConnectToChassisReadOnly- connects to a single chassis

SYNOPSIS

ixConnectToChassisReadOnly chassisIP

DESCRIPTION

The ixConnectToChassisReadOnly command connects to a single chassis.

ARGUMENTS

chassisIP

(By value) The chassis hostname or IP address.

RETURNS

0

No Error, connection was established with the IxServer.

Appendix 3 High-Level API

– 1556 –

1

Error connecting to IxServer; possible causes are invalid hostname or IP address for chassis, IxServer not
running on the chassis, or other network problem.

2

Version mismatch.

3

Timeout connecting to chassis; possible causes are invalid hostname or IP address for chassis, or
IxServer not running on the chassis.

SEE ALSO

ixConnectToChassis

ixConvertFromSeconds
ixConvertFromSeconds - convert a number of seconds to hours, minutes and seconds

SYNOPSIS

ixConvertFromSeconds time hours minutes seconds

DESCRIPTION

This command converts a number of seconds into hours, minutes and seconds.

ARGUMENTS

time

The time, in seconds, to be converted.

hours

This argument is accessed by reference; that is, the name of a TCL variable. This is the number of hours in
time.

minutes

This argument is accessed by reference; that is, the name of a TCL variable. This is the number of
minutes in time.

seconds

This argument is accessed by reference; that is, the name of a TCL variable. This is the number of
seconds in time.

Appendix 3 High-Level API

– 1557 –

RETURNS

none

EXAMPLE
set time 10000
set hours 0
set minutes 0
set seconds 0
ixConvertFromSeconds $time hours minutes seconds

SEE ALSO

ixConvertToSeconds

ixConnectToTclServer
ixConnectToTclServer - connect a Unix client to the IxTclServer

SYNOPSIS

ixConnectToTclServer serverName

DESCRIPTION

The ixConnectToTclServer command connects a Tcl Client running on a non-Windows workstation to the
IxTclServer running on a chassis or Windows-based system.

ARGUMENTS

serverName

(By value) The name or IP address of the machine running the IxTclServer, called by value.

RETURNS

0

No Error, connection was established with the IxTclServer.

1

Error of any type.

EXAMPLES
package require IxTclHal
set host galaxy
if {[ixConnectToTclServer $host] != 0} {
ixPuts "Could not connect to Tcl Server on $host"
}
ixDisconnectTclServer

Appendix 3 High-Level API

– 1558 –

SEE ALSO

ixConnectToChassis, ixProxyConnect

ixConvertToSeconds
ixConvertToSeconds - convert hours, minutes and seconds to a number of seconds

SYNOPSIS

ixConvertToSeconds hours minutes seconds

DESCRIPTION

This command converts a number hours, minutes and seconds into seconds.

ARGUMENTS

hours

The hours to be converted.

minutes

The minutes to be converted.

seconds

The hours to be converted.

RETURNS

time

The time, in seconds.

EXAMPLE
ixConvertToSeconds 2 46 40

Returns 10000

SEE ALSO

ixConvertFromSeconds

ixCreatePortListWildCard
ixCreatePortListWildCard - creates a port list using wildcard `*' specification for cards and/or ports

SYNOPSIS

ixCreatePortListWildCard portList [excludeList]

Appendix 3 High-Level API

– 1559 –

DESCRIPTION

The ixCreatePortListWildCard command creates a list of ports in a sorted order based on the physical
slots. Both arguments are passed by value. It accepts * as a wild card to indicate all cards or all ports on a
card. A wild card cannot be used for chassis ID. Also, if a combination of a list element containing wild
cards and port numbers is passed, then the port list passed MUST be in a sorted order, otherwise the
some of those ports might not make it in the list.

ARGUMENTS

portList

(By value) The list of ports in one of the following formats:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}
{1,1,* 1,2,1 1,2,2}

excludeList

(By value) The list of ports to exclude in one of the following formats. No wildcard may be used in this list:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}

RETURNS

A list of lists with the expanded port list.

EXAMPLES
package require IxTclHal
set host galaxy
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
set portList { {1 1 *} {1 * 2} }
set excludeList { {1 1 1} {1 1 2} {1 2 2} }

Appendix 3 High-Level API

– 1560 –

set retList [ixCreatePortListWildCard $portList]
ixPuts $retList
set retList [ixCreatePortListWildCard $portList $excludeList]
ixPuts $retList

SEE ALSO

ixCreateSortedPortList

ixCreateSortedPortList
ixCreateSortedPortList - creates a port list for a range of ports, excluding specified ports

SYNOPSIS

ixCreateSortedPortList portFrom portTo excludeList

DESCRIPTION

The ixCreateSortedPortList command creates a sorted list of ports based on the range of ports passed.

ARGUMENTS

portFrom

(By value) The first port number. For example, {1 1 1}.

portTo

(By value) The last port number. For example, {1 5 4}.

excludeList

(By value) A list of lists containing individual ports to be excluded from the list.
For example, {{1 3 1} {1 3 2}}

EXAMPLES
package require IxTclHal
set host galaxy
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1

Appendix 3 High-Level API

– 1561 –

}
set from {1 1 1}
set to {1 2 1}
set ex {{1 1 4}}
set retList [ixCreateSortedPortList $from $to $ex]
ixPuts $retList

RETURNS

A sorted list of lists with the expanded port list.

SEE ALSO

ixCreatePortListWildCard

ixDisableArpResponse
ixDisableArpResponse - Disable ARP response on a set of ports

SYNOPSIS

ixDisableArpResponse portList

DESCRIPTION

The ixDisableArpResponse disables the ARP response engine for the set of ports.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user

Appendix 3 High-Level API

– 1562 –

Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Try each of the formats
if {[ixDisableArpResponse portList1] != 0} {
ixPuts "Could not disable ARP response for $portList1"
}
if {[ixDisableArpResponse portList2] != 0} {
ixPuts "Could not disable ARP response for $portList2"
}
if {[ixDisableArpResponse portList3] != 0} {
ixPuts "Could not disable ARP response for $portList3"

Appendix 3 High-Level API

– 1563 –

}
if {[ixDisableArpResponse portList4] != 0} {
ixPuts "Could not disable ARP response for $portList4"
}
if {[ixDisableArpResponse one2oneArray] != 0} {
ixPuts "Could not disable ARP response for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixDisablePortArpResponse, ixEnableArpResponse, ixEnablePortArpResponse

ixDisablePortArpResponse
ixDisablePortArpResponse - Disable ARP response on a single port

SYNOPSIS

ixDisableArpResponse chassisID cardID portID [write]

DESCRIPTION

The ixDisablePortArpResponse disables the ARP response engine for the port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

Appendix 3 High-Level API

– 1564 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
ip setDefault
ip set $chas $cardA $portA
if {[ixEnablePortArpResponse $::oneIpToOneMAC $chas $cardA $portA] != 0} {
ixPuts "Could not enable ARP response for $chas:$cardA:$portA"
}
Let go of the ports that we reserved
ixClearOwnership $portList

Appendix 3 High-Level API

– 1565 –

Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixDisableArpResponse, ixEnableArpResponse, ixEnablePortArpResponse

ixDisconnectFromChassis
ixDisconnectFromChassis

ixDisconnectFromChassis - disconnects from all chassis connected

SYNOPSIS

ixDisconnectFromChassis [chassis ...]

DESCRIPTION

The ixDisconnectFromChassis command is called at the end of the script which disconnects from all the
chassis that were connected to in the beginning of the script. It also frees any memory allocated by the
Tcl script by calling the cleanUp command.

ARGUMENTS

chassis

(By value) (Optional) A variable number of chassis to disconnect from.

RETURNS

0

No Error, successfully disconnected.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 3 High-Level API

– 1566 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
Disconnect from the chassis we're using
if [ixDisconnectFromChassis $host] {
ixPuts $::ixErrorInfo
}
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixConnectToChassis

ixDisconnectTclServer
ixDisconnectTclServer - Disconnect a Unix client from the IxTclServer

SYNOPSIS

ixDisconnectTclServer serverName

DESCRIPTION

The ixDisconnectTclServer command disconnects a Tcl Client running on a non-Windows workstation to
the IxTclServer running on a chassis or Windows-based system.

ARGUMENTS

serverName

(By value) This argument is no longer used, but must be present.

RETURNS

0

No Error, successfully disconnected

EXAMPLES

See examples in ixConnectToTclServer.

SEE ALSO

ixConnectToTclServer, ixConnectToChassis

Appendix 3 High-Level API

– 1567 –

ixEnableArpResponse
ixEnableArpResponse - enable ARP response on a set of ports

SYNOPSIS

ixEnableArpResponse mapType portList

DESCRIPTION

The ixEnableArpResponse gets the MAC and IP address for a set of ports, sets up the address table and
enables the ARP response engine for the set of ports. IP configuration must have been performed for this
command to succeed.

ARGUMENTS

mapType

(By value) The type of IP to MAC mapping to be used. One of:

Option Value Usage

oneIpToOneMAC 0 Each IP address is mapped to a single MAC address.

manyIpToOneMAC 1 All the IP addresses for a port are mapped to a single MAC address.

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server

Appendix 3 High-Level API

– 1568 –

which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
For different port list formats
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
ip setDefault
ip set 1 1 1
ip set 1 1 2
Try each of the formats
if {[ixEnableArpResponse oneIpToOneMAC portList1] != 0} {
ixPuts "Could not enable ARP response for $portList1"
}
if {[ixEnableArpResponse oneIpToOneMAC portList2] != 0} {
ixPuts "Could not enable ARP response for $portList2"
}
if {[ixEnableArpResponse manyIpToOneMAC portList3] != 0} {

Appendix 3 High-Level API

– 1569 –

ixPuts "Could not enable ARP response for $portList3"
}
if {[ixEnableArpResponse manyIpToOneMAC portList4] != 0} {
ixPuts "Could not enable ARP response for $portList4"
}
if {[ixEnableArpResponse manyIpToOneMAC one2oneArray] != 0} {
ixPuts "Could not enable ARP response for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixDisableArpResponse, ixDisablePortArpResponse, ixEnablePortArpResponse

ixEnablePortArpResponse
ixEnablePortArpResponse - enable ARP response on a single port

SYNOPSIS

ixEnableArpResponse mapType chassisID cardID portID [write]

DESCRIPTION

The ixEnablePortArpResponse gets the MAC and IP address for a single port, sets up the address table
and enables the ARP response engine for the port. IP configuration must have been performed for this
command to succeed.

ARGUMENTS

mapType

(By value) The type of IP to MAC mapping to be used. One of:

Option Value Usage

oneIpToOneMAC 0 Each IP address is mapped to a single MAC address.

manyIpToOneMAC 1 All the IP addresses for a port are mapped to a single MAC address.

chassisID

(By value) The ID number of the chassis.

Appendix 3 High-Level API

– 1570 –

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo

Appendix 3 High-Level API

– 1571 –

return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
ip setDefault
ip set $chas $cardA $portA
if {[ixEnablePortArpResponse $::oneIpToOneMAC $chas $cardA $portA] != 0} {
ixPuts "Could not enable ARP response for $chas:$cardA:$portA"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixDisableArpResponse, ixDisablePortArpResponse, ixEnableArpResponse

ixEnableIntrinsicLatencyAdjustment
ixEnableIntrinsicLatencyAdjustment - enables the Intrinsic Latency Adjustment on the ports that support
the feature

SYNOPSIS

EnableIntrinsicLatencyAdjustment portlist enable write

DESCRIPTION

The ixEnableIntrinsicLatencyAdjustment command enables the Intrinsic Latency Adjustment on the ports
that support the feature.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1572 –

enable

true/false

write

write / nowrite (default = nowrite)

RETURNS

0

OK.

-1

TCL error

-100

Port is not available

-101

Unsupported feature

EXAMPLES

ixEnableIntrinsicLatencyAdjustment portlist true write

SEE ALSO

ixEnablePortIntrinsicLatencyAdjustment

ixIsIntrinsicLatencyAdjustmentEnabled

ixEnablePortIntrinsicLatencyAdjustment
ixEnablePortIntrinsicLatencyAdjustment - enables the Intrinsic Latency Adjustment on the ports that
support the feature

SYNOPSIS

ixEnablePortIntrinsicLatencyAdjustment chasID cardID portID enable write

DESCRIPTION

The ixEnablePortIntrinsicLatencyAdjustment command enables the Intrinsic Latency Adjustment on the
ports that support the feature.

Appendix 3 High-Level API

– 1573 –

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

enable

true/false

write

write / nowrite (default = nowrite)

RETURNS

-0

OK.

-1

TCL error

-100

Port is not available

-101

Unsupported feature

EXAMPLES

ixEnablePortIntrinsicLatencyAdjustment $chassId $cardId $portId true write

SEE ALSO

ixEnableIntrinsicLatencyAdjustment

ixErrorInfo
ixErrorInfo - get the text of the last error

Appendix 3 High-Level API

– 1574 –

SYNOPSIS

$::ixErrorInfo

DESCRIPTION

The ixErrorInfo global variable holds the text of the last error detected.

EXAMPLES
package require IxTclHal
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

SEE ALSO

ixGetChassisID
ixGetChassisID - get the ID of a chassis given its name

SYNOPSIS

ixGetChassisID chassisName

DESCRIPTION

The ixGetChassisID command gets the ID number assigned to a chassis in the chain.

ARGUMENTS

chassisName

(By value) The hostname or IP address of chassis.

RETURNS

-1

The chassisName could not be found.

chassisID

The ID number that was assigned to this chassis when a connection to the IxServer was made.

EXAMPLES
package require IxTclHal
set host galaxy
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis

Appendix 3 High-Level API

– 1575 –

if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
set chas [ixGetChassisID $host]
if {$chas < 0} {
ixPuts "Could not get chassis ID for $host"
} else {
ixPuts "Chassis ID for $host is $chas"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixConnectToChassis

ixGetLineUtilization
ixGetLineUtilization: gets the line utilization in one of two formats

SYNOPSIS

ixGetLineUtilization chasID cardID portID [rateType]

DESCRIPTION

The ixGetLineUtilization command returns the line utilization either as a percentage of the maximum
value or it terms of frames per second.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

Appendix 3 High-Level API

– 1576 –

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

rateType

(By value) The requested return format. One of:

Option Value Usage

typePercentMaxRate 0 (default) Returns the composite percentage of the maximum rate.

typeFpsRate 1 Returns the frames per second rate.

RETURNS

The value indicated by rateType.

EXAMPLES
package require IxTclHal
set fps [ixGetLineUtilization 1 1 1 typeFpsRate]

SEE ALSO

ixUtils

ixGlobalSetDefault
ixGlobalSetDefault: This command calls for the setDefault for all the IxTclHal commands as a form of
initialization.

SYNOPSIS

ixGlobalSetDefault

DESCRIPTION

The ixGlobalSetDefault command sets the default values for all the IxTclHal commands as a form of
initialization.

ARGUMENTS

No arguments for this command.

RETURNS

None

Appendix 3 High-Level API

– 1577 –

EXAMPLES
package require IxTclHal
ixGlobalSetDefault

SEE ALSO

ixInitialize
ixInitialize - connects to a list of chassis, to Tcl Servers for Unix clients and opens log file.

Note: This command is deprecated in favor of the ixConnectToChassis and ixConnectToTclServer
commands, which offer additional functional control.

SYNOPSIS

ixInitialize chassisList [cableLen] [logfilename] [client]

DESCRIPTION

If this command is executed on a Unix machine or the client argument is "tclClient", then ixInitialize
establishes a TCL Server connection with the first of the chassis in chassisList. Use ixConnectToTclServer
and ixConnectToChassis if the TCL Server is on some other host.

IxInitialize then establishes connection with IxServer running on a list of chassis and assigns chassis ID
numbers to the chassis in the chain. The ID numbers are assigned in incrementing order.

In addition, it opens a log file for the script. This command should be the first one in the script file after
the package require IxTclHal.

ARGUMENTS

chassisList

(By value) List of hostname or IP address of chassis in the chain to be connected to.

cableLen

(By value) The length of the sync cable that connects the chain of chassis (Optional). Valid values are:

Option Value Usage

cable3feet 0

cable6feet 1 default

cable9feet 2

cable12feet 3

cable15feet 4

Appendix 3 High-Level API

– 1578 –

Option Value Usage

cable18feet 5

cable21feet 6

cable24feet 7

logfilename

(By value) Name of the log file that is created to store all log messages while the script is running.
(Optional; default = NULL)

client

(By value) The name of the client. (Optional; default = local)

RETURNS

0

No Error, connection was established with the IxServer.

1

Error connecting to IxServer; possible causes are invalid hostname or IP address for chassis, IxServer not
running on the chassis, or other network problem.

2

Version mismatch.

3

Timeout connecting to chassis; possible causes are invalid hostname or IP address for chassis, or
IxServer not running on the chassis.

5

Could not make a Tcl Server connection to the first chassis in the chassisList.

EXAMPLES
package require IxTclHal
set host1 localhost
set host2 galaxy
set ret [ixInitialize $host1]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
5 {ixPuts "Could not connect to Tcl Server"}

Appendix 3 High-Level API

– 1579 –

}
ixDisconnectFromChassis
set pl [list $host1 $host2]
set ret [ixInitialize $pl 1]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
5 {ixPuts "Could not connect to Tcl Server"}
}
ixDisconnectFromChassis

SEE ALSO

ixConnectToChassis, ixDisconnectTclServer, ixProxyConnect

ixIsIntrinsicLatencyAdjustmentEnabled
ixIsIntrinsicLatencyAdjustment Enabled - returns "true" if Intrinsic Latency is enabled

SYNOPSIS

ixIsIntrinsicLatencyAdjustmentEnabled chasID cardID portID

DESCRIPTION

The ixIsIntrinsicLatencyAdjustment Enabled command returns " true" if Intrinsic Latency is enabled;
otherwise returns "false".

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

-0

Not enabled.

-1

Enabled.

Appendix 3 High-Level API

– 1580 –

EXAMPLES

ixIsIntrinsicLatencyAdjustmentEnabled $chassId $cardId $portId

SEE ALSO

ixEnablePortIntrinsicLatencyAdjustment

ixEnableIntrinsicLatencyAdjustment

ixIsOverlappingIpAddress
ixIsOverlappingIpAddress - compares two IP ranges for overlap

SYNOPSIS

ixIsOverlappingIpAddress ipAddress1 count1 ipAddress2 count2

DESCRIPTION

This command compares two IP ranges to determine whether they overlap.

ARGUMENTS

ipAddress1

The first IP address to be compared.

count1

The number of IP addresses in the first range.

ipAddress2

The second IP address to be compared.

count2

The number of IP addresses in the second range.

RETURNS

0

The ranges do not overlap.

1

The ranges overlap.

EXAMPLES
package require IxTclHal

Appendix 3 High-Level API

– 1581 –

set addr1 192.168.1.1
set addr1Num 300
set addr2 192.168.2.1
set addr2Num 20
if [ixIsOverlappingIpAddress $addr1 $addr1Num $addr2 $addr2Num] {
ixPuts "Address ranges overlap"
}

SEE ALSO

ixIsSameSubnet
ixIsSameSubnet - compares two subnets for overlap

SYNOPSIS

ixIsSameSubnet ipAddress1 mask1 ipAddress2 mask2

DESCRIPTION

This command compares two subnets to determine if they are the same.

ARGUMENTS

ipAddress1

The first IP address to be compared.

mask1

The network mask for the first IP address.

ipAddress2

The second IP address to be compared.

mask2

The network mask for the first IP address.

RETURNS

0

The subnets are different.

1

The subnets are the same.

EXAMPLES
package require IxTclHal

Appendix 3 High-Level API

– 1582 –

set ip1 192.168.0.1
set mask1 255.255.255.0
set ip2 192.168.20.1
set mask2 255.255.0.0
if [ixIsSameSubnet $ip1 $mask1 $ip2 $mask2] {
ixPuts "These are the same subnet"
}

SEE ALSO

ixIsValidHost
ixIsValidHost - determines if the host part of a masked address is valid

SYNOPSIS

ixIsValidHost ipAddress mask

DESCRIPTION

This command determines if the host part of the masked address is legal, that is, not all 0's or all 1's.

ARGUMENTS

ipAddress

The IP address.

mask

The network mask for the IP address.

RETURNS

0

The host part is invalid.

1

The host part is valid.

EXAMPLES
package require IxTclHal
set ip1 192.168.0.1
set mask1 255.255.255.0
set ip2 0.1.2.3
set mask2 255.0.0.0
if {[ixIsValidHost $ip1 $mask1] == 0} {
ixPuts "$ip1/$mask1 is not a valid host address"
}

Appendix 3 High-Level API

– 1583 –

if {[ixIsValidHost $ip2 $mask2] == 0} {
ixPuts "$ip2/$mask2 is not a valid host address"
}

SEE ALSO

ixIsValidNetMask
ixIsValidNetMask - determines if a mask is valid

SYNOPSIS

ixIsValidNetMask mask

DESCRIPTION

This command detemines whether a mask is valid; that is, a set of contigous high-order bits set, followed
by a contiguous set of 0's.

ARGUMENTS

mask

The network mask to be checked.

RETURNS

0

The mask is invalid.

1

The mask is valid.

EXAMPLES
package require IxTclHal
set mask1 255.255.255.0
set mask2 0.255.0.0
if {[ixIsValidNetMask $mask1] == 0} {
ixPuts "$mask1 is not a valid mask"
}
if {[ixIsValidNetMask $mask2] == 0} {
ixPuts "$mask2 is not a valid mask"
}

SEE ALSO

ixIsValidUnicastIp
ixIsValidUnicastIp - determines if an IP address is a valid unicast address

Appendix 3 High-Level API

– 1584 –

SYNOPSIS

ixIsValidUnicastIp ipAddress

DESCRIPTION

This command detemines whether an IP address is a valid unicast address. The address must not be
0.0.0.0 or 255.255.255.255 or 127.x.x.x or in the range 224.0.0.0 to 239.255.255.255.

ARGUMENTS

ipAddress

The IP address to be checked.

RETURNS

0

The address is an invalid unicast address.

1

The address is a valid unicast address.

EXAMPLES
package require IxTclHal
set ip1 192.168.1.1
set ip2 240.0.0.1
if {[ixIsValidUnicastIp $ip1] == 0} {
ixPuts "$ip1 is not a valid unicast ip"
}
if {[ixIsValidUnicastIp $ip2] == 0} {
ixPuts "$ip2 is not a valid unicast ip"
}

SEE ALSO

ixLoadPoePulse
ixLoadPoePulse - sends a power pulse to a list of PoE powered devices

SYNOPSIS

ixLoadPoePulse portList [write]

DESCRIPTION

The ixLoadPoePulse command sends a pulse to a list of PoE powered device ports. All ports in the list must
be for PoE load modules. The pulse parameters are set up with the poePoweredDevice command.

Appendix 3 High-Level API

– 1585 –

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES

SEE ALSO

ixLoadPortPoePulse

ixLoadPortPoePulse
ixLoadPortPoePulse - sends a power pulse to a PoE powered devices

SYNOPSIS

ixLoadPortPoePulse chassisID cardID portID [write]

DESCRIPTION

The ixLoadPortPoePulse command sends a pulse to a PoE powered device port. The port must be for PoE
load modules. The pulse parameters are set up with the poePoweredDevice command.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

Appendix 3 High-Level API

– 1586 –

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES

SEE ALSO

ixLoadPoePulse

ixLogin
ixLogin - logs in the user

SYNOPSIS

ixLogin ixiaUser

DESCRIPTION

This command logs a user in, for purposes of port ownership.

ARGUMENTS

ixiaUser

(By value) The name of the user.

Appendix 3 High-Level API

– 1587 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES

package require IxTclHal

if {[ixLogin George] != 0} {
ixPuts "Could not log you in"
}

SEE ALSO

ixLogout, ixTakeOwnership

ixLoginWithPurpose
ixLoginWithPurpose – Logs in the user with usage description and email address.

SYNOPSIS

ixLoginWithPurpose userName purpose userEmail

DESCRIPTION

This command logs a user in with usage description and email address for port ownership.

ARGUMENTS

ixiaUser

(By value) The name of the user.

purpose

(By value) A high-level description of this user’s activity.

userEmail

(By value) The email address of the user.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

Appendix 3 High-Level API

– 1588 –

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES

package require IxTclHal

if {[ixLoginWithPurpose tester “testing the user manual” “tester@keysight.com”] !=
0} {
ixPuts "Could not log you in"
}

SEE ALSO

ixLogout, ixTakeOwnership

ixLogout
ixLogout - logs out the user

SYNOPSIS

ixLogout

DESCRIPTION

The ixLogout command logs out the user.

ARGUMENTS

None

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
if {[ixLogout] != 0} {
ixPuts "Could not log you out"
}

SEE ALSO

ixLogin

Appendix 3 High-Level API

– 1589 –

ixMiiConfig utilities
ixMiiConfig utilities - procedures to configure 10GE SerDes features

SYNOPSIS

ixMiiConfigPreEmphasis chassisID cardID portID peSetting

ixMiiConfigLossOfSignalThrehold chassisID cardID portID threshold

ixMiiConfigXgxsLinkMonitoring chassisID cardID portID enable

ixMiiConfigAlignRxDataClock chassisID cardID portID clock

ixMiiConfigReceiveEqualization chassisID cardID portID equalization

ixMiiConfigXauiOutput chassisID cardID portID enable

ixMiiConfigXauiSerialLoopback chassisID cardID portID enable

ixMiiConfigXgmiiParallelLoopback chassisID cardID portID enable

DESCRIPTION

The following procedures configure the MII registers for 10GE modules:

l ixMiiConfigPreEmphasis: configures output pre-emphasis.
l ixMiiConfigLossOfSignalThrehold: configures the receive loss of signal threshold.
l ixMiiConfigXgxsLinkMonitoring: enables or disables link monitoring.
l ixMiiConfigAlignRxDataClock: aligns the receive clock with the recovered clock or internal reference
clock.

l ixMiiConfigReceiveEqualization: sets the value of the receive equalization.
l ixMiiConfigXauiOutput: for XAUI modules, enables output.
l ixMiiConfigXauiSerialLoopback: for XAUI modules, enables serial loopback.
l ixMiiConfigXgmiiParallelLoopback: for XAUI modules, enables parallel loopback.

ARGUMENTS

cardID

(By value) The ID number of the card.

chassisID

(By value) The ID number of the chassis.

clock

(By value) For use with ixMiiConfigAlignRxDataClock, set the receive clock alignment. One of:

Appendix 3 High-Level API

– 1590 –

Option Value Usage

miiRecoveredClock 0 Use the recovered clock.

miiLocalRefClock 1 Use the local reference clock.

enable true | false

(By value) For use with ixMiiConfigXgxsLinkMonitoring, ixMiiConfigXauiOutput,
ixMiiConfigXauiSerialLoopback or ixMiiConfigXgmiiParallelLoopback. Enables or disables the feature.

equalizationValue

(By value) For use with ixMiiConfigReceiveEqualization, the receive equalization value between 0 and 15.

portID

(By value) The ID number of the port.

peSetting

(By value) For use with ixMiiConfigPreEmphasis, the pre-emphasis setting. One of:

Option Value Usage

miiPreemphasisNone 0 No pre-emphasis.

miiPreemphasis18 1 or 18 A value of 18%.

miiPreemphasis38 2 or 38 A value of 38%.

miiPreemphasis75 3 or 75 A value of 75%.

threshold

(By value) For use with ixMiiConfigLossOfSignalThrehold, the loss of signal threshold setting. One of:

Option Value Usage

miiLossOfSignal160mv 0 or 160 A value of 160mv.

miiLossOfSignal240mv 1 or 240 A value of 240mv.

miiLossOfSignal200mv 2 or 200 A value of 200mv.

miiLossOfSignal120mv 3 or 120 A value of 120mv.

miiLossOfSignal80mv 4 or 80 A value of 80mv.

Appendix 3 High-Level API

– 1591 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error.

EXAMPLES

SEE ALSO

mii

ixPortClearOwnership
ixPortClearOwnership - clears ownership of a single port

SYNOPSIS

ixPortClearOwnership chassisID cardID portID [takeType]

DESCRIPTION

The ixPortClearOwnership command clears ownership of the specified port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

takeType

(By value) (Optional) Valid values:

force - take regardless of whether the port is owned by someone else

RETURNS

0

No error; the command was successfully delivered to the IxServer.

Appendix 3 High-Level API

– 1592 –

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
set chas [ixGetChassisID $host]
set card 1
set port 1
if {[ixPortClearOwnership $chas $card $port] != 0} {
ixPuts "Could not clear ownership for $chas:$card$port"
}
if {[ixPortClearOwnership $chas $card $port force] != 0} {
ixPuts "Could not clear ownership for $chas:$card$port"
}
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixPortTakeOwnership, ixClearOwnership, ixTakeOwnership

ixPortTakeOwnership
ixPortTakeOwnership

ixPortTakeOwnership - takes ownership of a single port

Appendix 3 High-Level API

– 1593 –

SYNOPSIS

ixPortTakeOwnership chassisID cardID portID [takeType]

DESCRIPTION

The ixPortTakeOwnership command takes ownership of the specified port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

takeType

(By value) (Optional) Valid values:

force - take regardless of whether the port is owned by someone else

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLE
package req IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {

Appendix 3 High-Level API

– 1594 –

ixPuts $::ixErrorInfo
return 1
}
set chas [ixGetChassisID $host]
set card 1
set port 1
if {[ixPortTakeOwnership $chas $card $port] != 0} {
ixPuts "Could not Take ownership for $chas:$card$port"
}
if {[ixPortTakeOwnership $chas $card $port force] != 0} {
ixPuts "Could not Take ownership for $chas:$card$port"
}
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixPortClearOwnership, ixClearOwnership, ixTakeOwnership

ixProxyConnect
ixProxyConnect - connects to a list of chassis, to Tcl Servers for Unix clients and opens log file

SYNOPSIS

ixProxyConnect tclSrv chassisList [cableLen] [logfilename]

DESCRIPTION

The ixProxyConnect command establishes connection with IxServer running on a list of chassis and
assigns chassis ID numbers to the chassis in the chain. The ID numbers are assigned in incrementing
order to the primary chassis and secondary chassis with the primary chassis given ID 1. The command
also connects to the Tcl Server on the specified host. Also, it opens a log file for the script.

ARGUMENTS

tclSrv

(By value) The hostname of the computer running the TclServer.

chassisList

(By value) List of hostname or IP address of chassis in the chain to be connected to.

cableLen

(By value) The length of the sync cable that connects the chain of chassis (Optional). Valid values are:

Appendix 3 High-Level API

– 1595 –

Option Value Usage

cable3feet 0 default

cable6feet 1

cable9feet 2

cable12feet 3

cable15feet 4

cable18feet 5

cable21feet 6

cable24feet 7

logfilename

(By value) Name of the log file that is created to store all log messages while the script is running.
(Optional; default = NULL)

RETURNS

0

No Error, connection was established with the IxServer.

1

Error connecting to IxServer; possible causes are invalid hostname or IP address for chassis, IxServer not
running on the chassis, or other network problem.

2

Version mismatch.

3

Timeout connecting to chassis; possible causes are invalid hostname or IP address for chassis, or
IxServer not running on the chassis.

5

Could not make a Tcl Server connection to tclSrv.

EXAMPLES
package require IxTclHal
set host1 localhost
set host2 galaxy

Appendix 3 High-Level API

– 1596 –

set tclServer galaxy
set ret [ixProxyConnect $tclServer $host1]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
5 {ixPuts "Could not connect to Tcl Server"}
}
ixDisconnectFromChassis
ixDisconnectTclServer
set pl [list $host1 $host2]
set ret [ixProxyConnect $tclServer $pl $::cable6feet]
switch $ret {
1 {ixPuts "Error connecting to chassis"}
2 {ixPuts "Version mismatch with chassis"}
3 {ixPuts "Timeout connecting to chassis"}
5 {ixPuts "Could not connect to Tcl Server"}
}
ixDisconnectFromChassis
ixDisconnectTclServer

SEE ALSO

ixConnectToChassis, ixConnectToTclServer, ixDisconnectTclServer

ixPuts
ixPuts - output text to the console.

SYNOPSIS

ixPuts [-nonewline] arg...

DESCRIPTION

The ixPuts command outputs its arguments to the console window with or without a newline.

ARGUMENTS

-nonewline

If present, suppresses a newline at the end of the output.

arg ...

Arguments which are concatenated together and displayed on the console.

Appendix 3 High-Level API

– 1597 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLE
package require IxTclHal
ixPuts "hello"
ixPuts -nonewline "This will "
ixPuts -nonewline "all be displayed "
ixPuts "on the same line"

SEE ALSO

logMsg

ixRequestStats
ixRequestStats - request statistics for a group of ports

SYNOPSIS

ixRequestStats portList

DESCRIPTION

The ixRequestStats command requests that the statistics for a group of ports be retrieved. The statistics
may be read through the use of the statList command.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

Statistics were retrieved.

Appendix 3 High-Level API

– 1598 –

1

An error occurred.

EXAMPLES

SEE ALSO

statList

ixResetPortSequenceIndex
ixResetPortSequenceIndex - reset a port's sequence index

SYNOPSIS

ixResetPortSequenceIndex chassisID cardID portID

DESCRIPTION

The ixResetPortSequenceIndex command sends a message to the IxServer to reset the sequence number
associated with a port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer

1

Error; the command was delivered to the IxServer but it could not process the message

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server

Appendix 3 High-Level API

– 1599 –

which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixResetPortSequenceIndex $chas $cardA $portA] != 0} {
ixPuts "Could not reset port sequence index for $chas:$cardA:$portA"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixResetSequenceIndex

ixResetSequenceIndex
ixResetSequenceIndex - reset a group of ports' sequence index

Appendix 3 High-Level API

– 1600 –

SYNOPSIS

ixResetSequenceIndex portList

DESCRIPTION

The ixResetSequenceIndex command sends a message to the IxServer to reset the sequence index
associated with a group of ports.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1

Appendix 3 High-Level API

– 1601 –

set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Try each of the formats
if {[ixResetSequenceIndex portList1] != 0} {
ixPuts "Could not reset sequence index for $portList1"
}
if {[ixResetSequenceIndex portList2] != 0} {
ixPuts "Could not reset sequence index for $portList2"
}
if {[ixResetSequenceIndex portList3] != 0} {
ixPuts "Could not reset sequence index for $portList3"
}
if {[ixResetSequenceIndex portList4] != 0} {
ixPuts "Could not reset sequence index for $portList4"
}
if {[ixResetSequenceIndex one2oneArray] != 0} {
ixPuts "Could not reset sequence index for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 3 High-Level API

– 1602 –

SEE ALSO

ixResetPortSequenceIndex

ixRestartAutoNegotiation
ixRestartAutoNegotiation - restart auto-negotiation on a set of ports

SYNOPSIS

ixRestartAutoNegotiation portList

DESCRIPTION

The ixRestartAutoNegotiation command sends a message to the IxServer to restart the auto-negotiation
on a group of ports.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
set portList {{1 1 1} {1 1 2}}
if [ixRestartAutoNegotiation portList] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixRestartPortAutoNegotiation

ixRestartPortAutoNegotiation
ixRestartPortAutoNegotiation - restart auto-negotiation on a port

Appendix 3 High-Level API

– 1603 –

SYNOPSIS

ixRestartPortAutoNegotiation chassisID cardID portID

DESCRIPTION

The ixRestartPortAutoNegotiation command sends a message to the IxServer to restart the auto-
negotiation on port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
if [ixRestartPortAutoNegotiation 1 1 1] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixRestartAutoNegotiation

ixRestartPortPPPAutoNegotiation
ixRestartPortPPPAutoNegotiation - restart PPP negotiation on a port

SYNOPSIS

ixRestartPortPPPNegotiation chassisID cardID portID

Appendix 3 High-Level API

– 1604 –

DESCRIPTION

The ixRestartPortPPPAutoNegotiation command sends a message to the IxServer to restart the PPP
negotiation on port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
if [ixRestartPortPPPNegotiation 1 1 1] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixRestartPPPNegotiation

ixRestartPPPNegotiation
ixRestartPPPNegotiation - restart PPP negotiation on a set of ports

SYNOPSIS

ixRestartPPPNegotiation portList

DESCRIPTION

The ixRestartPPPNegotiation command sends a message to the IxServer to restart the PPP negotiation on
a group of ports.

Appendix 3 High-Level API

– 1605 –

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
set portList {{1 1 1} {1 1 2}}
if [ixRestartPPPNegotiation portList] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixRestartPPPNegotiation

ixSetAdvancedStreamSchedulerMode
ixSetAdvancedStreamSchedulerMode - set a group of ports to advanced stream scheduler transmit mode

SYNOPSIS

ixSetAdvancedStreamSchedulerMode portList [write]

DESCRIPTION

The ixSetAdvancedStreamSchedulerMode command sends a message to the IxServer to set the transmit
mode of a group of ports simultaneously to advanced stream scheduler mode. The ports may span
multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1606 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 4
set portA 1
set cardB 4
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]

Appendix 3 High-Level API

– 1607 –

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetAdvancedStreamSchedulerMode pl1 write] != 0} {
puts "Could not set advanced stream scheduler mode for $pl1"
}
if {[ixSetAdvancedStreamSchedulerMode pl2 write] != 0} {
puts "Could not set advanced stream scheduler mode for $pl2"
}
if {[ixSetAdvancedStreamSchedulerMode pl3 write] != 0} {
puts "Could not set advanced stream scheduler mode for $pl3"
}
if {[ixSetAdvancedStreamSchedulerMode pl4 write] != 0} {
puts "Could not set advanced stream scheduler mode for $pl4"
}
if {[ixSetAdvancedStreamSchedulerMode one2oneArray write] != 0} {
puts "Could not set advanced stream scheduler mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortAdvancedStreamSchedulerMode

ixSetAutoDetectInstrumentationMode
ixSetAutoDetectInstrumentationMode - This command sets all the RX ports in the list or array to all the
auto instrumentation modes, that is, Packet Groups, Data Integrity, and Sequence Checking

Appendix 3 High-Level API

– 1608 –

SYNOPSIS

ixSetAutoDetectInstrumentationMode portList [write]

DESCRIPTION

This command allows the receive side of a port to trigger on a set pattern, that can be matched in the
packet. The port looks in Packet Groups, Data Integrity, and Sequence Checking headers, as well as start
at a specific offset (if configured).

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLE

SEE ALSO

ixSetCaptureMode
ixSetCaptureMode - set a group of ports to Capture Receive mode

SYNOPSIS

ixSetCaptureMode portList [write]

Appendix 3 High-Level API

– 1609 –

DESCRIPTION

The ixSetCaptureMode command sends a message to the IxServer to set the receive mode of a group of
ports simultaneously to Capture mode. The ports may span multiple chassis. This mode must be used
when traffic is to be captured in the capture buffer. This mode is mutually exclusive with the Packet Group
receive mode.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo

Appendix 3 High-Level API

– 1610 –

return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetCaptureMode pl1 write] != 0} {
puts "Could not set capture mode for $pl1"
}
if {[ixSetCaptureMode pl2 write] != 0} {
puts "Could not set capture mode for $pl2"
}
if {[ixSetCaptureMode pl3 write] != 0} {
puts "Could not set capture mode for $pl3"
}
if {[ixSetCaptureMode pl4 write] != 0} {
puts "Could not set capture mode for $pl4"
}
if {[ixSetCaptureMode one2oneArray write] != 0} {
puts "Could not set capture mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {

Appendix 3 High-Level API

– 1611 –

ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortCaptureMode

ixSetDataIntegrityMode
ixSetDataIntegrityMode - set a group of ports to Data Integrity Receive mode

SYNOPSIS

ixSetDataIntegrityMode portList [write]

DESCRIPTION

The ixSetDataIntegrityMode command sends a message to the IxServer to set the receive mode of a
group of ports simultaneously to Data Integrity mode. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost

Appendix 3 High-Level API

– 1612 –

set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 4
set portA 1
set cardB 4
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetDataIntegrityMode pl1 write] != 0} {
puts "Could not set data integrity mode for $pl1"
}
if {[ixSetDataIntegrityMode pl2 write] != 0} {
puts "Could not set data integrity mode for $pl2"
}
if {[ixSetDataIntegrityMode pl3 write] != 0} {
puts "Could not set data integrity mode for $pl3"}
if {[ixSetDataIntegrityMode pl4 write] != 0} {
puts "Could not set data integrity mode for $pl4"

Appendix 3 High-Level API

– 1613 –

}
if {[ixSetDataIntegrityMode one2oneArray write] != 0} {
puts "Could not set data integrity mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortDataIntegrityMode

ixSetPacketFlowMode
ixSetPacketFlowMode - set a group of ports to Packet Flow Transmit mode

SYNOPSIS

ixSetPacketFlowMode portList [write]

DESCRIPTION

The ixSetPacketFlowMode command sends a message to the IxServer to set the transmit mode of a group
of ports simultaneously to Packet Flow mode. The ports may span multiple chassis. This mode is mutually
exclusive with the Packet Streams transmit mode.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

Appendix 3 High-Level API

– 1614 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {ixPuts $::ixErrorInfo
return 1
}
map new -type one2onemap config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA

Appendix 3 High-Level API

– 1615 –

if {[ixSetPacketFlowMode pl1 write] != 0} {
puts "Could not set PacketFlow mode for $pl1"
}
if {[ixSetPacketFlowMode pl2 write] != 0} {
puts "Could not set PacketFlow mode for $pl2"
}
if {[ixSetPacketFlowMode pl3 write] != 0} {
puts "Could not set PacketFlow mode for $pl3"
}
if {[ixSetPacketFlowMode pl4 write] != 0} {
puts "Could not set PacketFlow mode for $pl4"
}
if {[ixSetPacketFlowMode one2oneArray write] != 0} {
puts "Could not set PacketFlow mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortPacketFlowMode, ixSetPacketStreamMode, ixSetPortPacketStreamMode

ixSetPacketGroupMode
ixSetPacketGroupMode - set a group of ports to Packet Group Receive mode

SYNOPSIS

ixSetPacketGroupMode portList [write]

DESCRIPTION

The ixSetPacketGroupMode command sends a message to the IxServer to set the receive mode of a
group of ports simultaneously to Packet Group mode. The ports may span multiple chassis. This mode
must be used when real-time latency metrics are to be obtained.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1616 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership

Appendix 3 High-Level API

– 1617 –

if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetPacketGroupMode pl1 write] != 0} {
puts "Could not set PacketGroup mode for $pl1"
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetPacketGroupMode pl1 write] != 0} {
puts "Could not set PacketGroup mode for $pl1"
}
if {[ixSetPacketGroupMode pl2 write] != 0} {
puts "Could not set PacketGroup mode for $pl2"
}
if {[ixSetPacketGroupMode pl3 write] != 0} {
puts "Could not set PacketGroup mode for $pl3"
}
if {[ixSetPacketGroupMode pl4 write] != 0} {
puts "Could not set PacketGroup mode for $pl4"
}
if {[ixSetPacketGroupMode one2oneArray write] != 0} {
puts "Could not set PacketGroup mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortPacketGroupMode

Appendix 3 High-Level API

– 1618 –

ixSetPacketStreamMode
ixSetPacketStreamMode - set a group of ports to Packet Stream Transmit mode

SYNOPSIS

ixSetPacketStreamMode portList [write]

DESCRIPTION

The ixSetPacketStreamMode command sends a message to the IxServer to set the transmit mode of a
group of ports simultaneously to Packet Stream mode. The ports may span multiple chassis. This mode is
mutually exclusive with the Packet Flow transmit mode.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {

Appendix 3 High-Level API

– 1619 –

ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set chas 1
set cardA 1
set portA 1
set cardB 1
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetPacketStreamMode pl1 write] != 0} {
puts "Could not set PacketStream mode for $pl1"
}
if {[ixSetPacketStreamMode pl2 write] != 0} {
puts "Could not set PacketStream mode for $pl2"
}
if {[ixSetPacketStreamMode pl3 write] != 0} {
puts "Could not set PacketStream mode for $pl3"
}
if {[ixSetPacketStreamMode pl4 write] != 0} {
puts "Could not set PacketStream mode for $pl4"
}
if {[ixSetPacketStreamMode one2oneArray write] != 0} {
puts "Could not set PacketStream mode for $one2oneArray"

Appendix 3 High-Level API

– 1620 –

}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortPacketStreamMode

ixSetPortAdvancedStreamSchedulerMode
ixSetPortAdvancedStreamSchedulerMode - set a port to advanced stream scheduler transmit mode

SYNOPSIS

ixSetPortAdvancedStreamSchedulerMode chassisID cardID portID [write]

DESCRIPTION

The ixSetPortAdvancedStreamSchedulerMode command sends a message to the IxServer to set the
transmit mode of a single port to advanced stream scheduler transmit mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

Appendix 3 High-Level API

– 1621 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortAdvancedStreamSchedulerMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to advanced stream scheduler mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host

Appendix 3 High-Level API

– 1622 –

If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetAdvancedStreamSchedulerMode

ixSetPortCaptureMode
ixSetPortCaptureMode - set a port to capture mode

SYNOPSIS

ixSetPortCaptureMode chassisID cardID portID [write]

DESCRIPTION

The ixSetPortCaptureMode command sends a message to the IxServer to set the receive mode of a single
port to Capture mode. This mode must be used when traffic is to be captured in the capture buffer. This
mode is mutually exclusive with the Packet Group receive mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

Appendix 3 High-Level API

– 1623 –

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortCaptureMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to capture mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetCaptureMode

Appendix 3 High-Level API

– 1624 –

ixSetPortDataIntegrityMode
ixSetPortDataIntegrityMode - set a port to data integrity mode

SYNOPSIS

ixSetPortDataIntegrityMode chassisID cardID portID [write]

DESCRIPTION

The ixSetPortDataIntegrityMode command sends a message to the IxServer to set the receive mode of a
single port to Data Integrity mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {

Appendix 3 High-Level API

– 1625 –

if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortDataIntegrityMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to data integrity mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetDataIntegrityMode

ixSetPortPacketFlowMode
ixSetPortPacketFlowMode - set a port to Packet Flow Transmit mode

SYNOPSIS

ixSetPortPacketFlowMode chassisID cardID portID [write]

Appendix 3 High-Level API

– 1626 –

DESCRIPTION

The ixSetPortPacketFlowMode command sends a message to the IxServer to set the transmit mode of a
single port to Packet Flow mode. This mode is mutually exclusive with the Packet Streams transmit mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer

1

Error; the command was delivered to the IxServer but it could not process the message

EXAMPLES
package require IxTclHal
set host galaxy
set chas 1
set card 1
set port 1
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1

Appendix 3 High-Level API

– 1627 –

}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortPacketFlowMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to PacketFlow mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPacketFlowMode

ixSetPortPacketGroupMode
ixSetPortPacketGroupMode - set a port to Packet Group Receive mode

SYNOPSIS

ixSetPortPacketGroupMode chassisID cardID portID [write]

Appendix 3 High-Level API

– 1628 –

DESCRIPTION

The ixSetPortPacketGroupMode command sends a message to the IxServer to set the receive mode of a
single port to Packet Group mode. This mode must be used when real-time latency metrics are to be
obtained.

ARGUMENTS

chassisID

(By value) The ID number of the chassis

cardID

(By value) The ID number of the card

portID

(By value) The ID number of the port

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set chas 1
set card 1
set port 1
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"

Appendix 3 High-Level API

– 1629 –

return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortPacketGroupMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to PacketGroup mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortPacketGroupMode

ixSetPortPacketStreamMode
ixSetPortPacketStreamMode - set a port to Packet Stream Transmit mode

SYNOPSIS

ixSetPortPacketStreamMode chassisID cardID portID [write]

Appendix 3 High-Level API

– 1630 –

DESCRIPTION

The ixSetPortPacketStreamMode command sends a message to the IxServer to set the transmit mode of
a single port to Packet Stream mode. This mode is mutually exclusive with the Packet Flow transmit
mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {

Appendix 3 High-Level API

– 1631 –

ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortPacketStreamMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to PacketStream mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPacketStreamMode, ixSetPacketFlowMode, ixSetPortPacketFlowMode

ixSetPortSequenceCheckingMode
ixSetPortSequenceCheckingMode - set a port to sequence checking mode

SYNOPSIS

ixSetPortSequenceCheckingMode chassisID cardID portID [write]

DESCRIPTION

The ixSetPortSequenceCheckingMode command sends a message to the IxServer to set the receive mode
of a single port to sequence checking mode.

Appendix 3 High-Level API

– 1632 –

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Appendix 3 High-Level API

– 1633 –

set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortSequenceCheckingMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to sequence checking mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetSequenceCheckingMode

ixSetPortTcpRoundTripFlowMode
ixSetPortTcpRoundTripFlowMode - set a port to TCP Round Trip Flow mode

SYNOPSIS

ixSetPortTcpRoundTripFlowMode chassisID cardID portID [write]

DESCRIPTION

The ixSetPortTcpRoundTripFlowMode command sends a message to the IxServer to set the transmit
mode of a single port to TCP Round Trip Flow mode.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

Appendix 3 High-Level API

– 1634 –

portID

(By value) The ID number of the port.

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use

Appendix 3 High-Level API

– 1635 –

if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
if {[ixSetPortTcpRoundTripFlowMode $chas $card $port write] != 0} {
ixPuts "Could not set port $chas:$card:$port to TcpRoundTripFlow mode"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetTcpRoundTripFlowMode

ixSetScheduledTransmitTime
ixSetScheduledTransmitTime - set the amount of transmit time for a port list

SYNOPSIS

ixSetScheduledTransmitTime portList duration

DESCRIPTION

Sets the maximum amount of time that a group of ports transmits. This is only valid for ports that support
the portFeatureScheduledTxDuration feature, which may be tested with the port isValidFeature
command.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

duration

(By value) The duration, in seconds, of the transmit time.

Appendix 3 High-Level API

– 1636 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
set portList {{1 1 1} {1 1 2}}
if [ixSetScheduledTransmitTime portList 20] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixSetSequenceCheckingMode
ixSetSequenceCheckingMode - set a group of ports to Sequence Checking Receive mode

SYNOPSIS

ixSetSequenceCheckingMode portList [write]

DESCRIPTION

The ixSetSequenceCheckingMode command sends a message to the IxServer to set the receive mode of a
group of ports simultaneously to Sequence Checking mode. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

Appendix 3 High-Level API

– 1637 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host localhost
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 4
set portA 1
set cardB 4
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one

Appendix 3 High-Level API

– 1638 –

map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetSequenceCheckingMode pl1 write] != 0} {
puts "Could not set sequence checking mode for $pl1"
}
if {[ixSetSequenceCheckingMode pl2 write] != 0} {
puts "Could not set sequence checking mode for $pl2"
}
if {[ixSetSequenceCheckingMode pl3 write] != 0} {
puts "Could not set sequence checking mode for $pl3"
}
if {[ixSetSequenceCheckingMode pl4 write] != 0} {
puts "Could not set sequence checking mode for $pl4"
}
if {[ixSetSequenceCheckingMode one2oneArray write] != 0} {
puts "Could not set sequence checking mode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortSequenceCheckingMode

ixSetTcpRoundTripFlowMode
ixSetTcpRoundTripFlowMode - set a group of ports to TCP Round Trip Flow mode

SYNOPSIS

ixSetTcpRoundTripFlowMode portList [write]

DESCRIPTION

The ixSetTcpRoundTripFlowMode command sends a message to the IxServer to set the flow mode of a
group of ports simultaneously to TCP Round Trip mode. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1639 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

write

(By value) (Optional) Valid values:

write: the action is committed to hardware

noWrite: the action is not committed to hardware but just set in IxHAL (default)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set pl1 [list 1,$cardA,$portA]
set pl2 [list 1,$cardA,$portA 1,$cardB,$portB]
set pl3 [list [list $chas $cardA $portA] [list 1 $cardB $portB]]
set pl4 [list [list 1,$cardA,$portA] [list 1,$cardB,$portB]]
Login before taking ownership

Appendix 3 High-Level API

– 1640 –

if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $pl4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add 1 $cardA $portA 1 $cardB $portB
map add 1 $cardB $portB 1 $cardA $portA
if {[ixSetTcpRoundTripFlowMode pl1 write] != 0} {
puts "Could not set PacketFlowMode for $pl1"
}
if {[ixSetTcpRoundTripFlowMode pl2 write] != 0} {
puts "Could not set PacketFlowMode for $pl2"
}
if {[ixSetTcpRoundTripFlowMode pl3 write] != 0} {
puts "Could not set PacketFlowMode for $pl3"
}
if {[ixSetTcpRoundTripFlowMode pl4 write] != 0} {
puts "Could not set PacketFlowMode for $pl4"
}
if {[ixSetTcpRoundTripFlowMode one2oneArray write] != 0} {
puts "Could not set PacketFlowMode for $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $pl4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixSetPortTcpRoundTripFlowMode

ixSimulatePhysicalInterfaceDown
ixSimulatePhysicalInterfaceDown - This command simulates physical interface down on a port list

SYNOPSIS

ixSimulatePhysicalInterfaceDown TxRxArray

Appendix 3 High-Level API

– 1641 –

DESCRIPTION

The ixSimulatePhysicalInterfaceDown command simulates that the status of physical interfaces in a port
list is down.

ARGUMENTS

TxRxArray

Either list of ports or array of ports.

RETURNS

Code

The return code from simulatePhysicalInterfaceDown.

EXAMPLES
proc ixSimulatePhysicalInterfaceDown {TxRxArray} \
{
upvar $TxRxArray txRxArray
return [simulatePhysicalInterfaceDown txRxArray]
}

SEE ALSO

ixSimulatePhysicalInterfaceUp
ixSimulatePhysicalInterfaceUp - This command simulates physical interface up on a port list

SYNOPSIS

ixSimulatePhysicalInterfaceUp TxRxArray

DESCRIPTION

The ixSimulatePhysicalInterfaceUp command simulates that the status of physical interfaces in a port list
is up.

ARGUMENTS

TxRxArray

Either list of ports or array of ports.

RETURNS

Code

The return code from simulatePhysicalInterfaceUp.

Appendix 3 High-Level API

– 1642 –

EXAMPLES
proc ixSimulatePhysicalInterfaceUp {TxRxArray} \
{
upvar $TxRxArray txRxArray
return [simulatePhysicalInterfaceUp txRxArray]
}

SEE ALSO

ixSimulatePortPhysicalInterfaceDown
ixSimulatePortPhysicalInterfaceDown - This command simulates physical interface down on a single port.

SYNOPSIS

ixSimulatePortPhysicalInterfaceDown chassisID cardID portID

DESCRIPTION

The ixSimulatePortPhysicalInterfaceDown command simulates that the status of single physical port is
down.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

Code

The return code from simulatePortPhysicalInterfaceDown.

EXAMPLES
set retCode $::TCL_OK
return [ixSimulatePortPhysicalInterfaceDown $chassis $lm $port]

SEE ALSO

ixSimulatePortPhysicalInterfaceUp
ixSimulatePortPhysicalInterfaceUp - This command simulates physical interface up on a single port.

Appendix 3 High-Level API

– 1643 –

SYNOPSIS

ixSimulatePortPhysicalInterfaceUp chassisID cardID portID

DESCRIPTION

The ixSimulatePortPhysicalInterfaceUp command simulates that the status of single physical port is Up.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

Code

The return code from simulatePortPhysicalInterfaceUp.

EXAMPLES
set retCode $::TCL_OK
return [ixSimulatePortPhysicalInterfaceUp $chassis $lm $port]

SEE ALSO

ixSource
ixSource - recursive source

SYNOPSIS

ixSource dirFileName

DESCRIPTION

The ixSource command sources all the files in a particular folder and if there are sub-directories under the
folder that are passed as an argument, it sources all the files under that sub-folder as well.

Appendix 3 High-Level API

– 1644 –

ARGUMENTS

dirFileName

(By value) Any number of files to be sourced or a folder name where all the files under that folder are
going to be sourced.

RETURNS

None

EXAMPLES
ixSource test.tcl
ixSource "c:/myTclProgs"

SEE ALSO

ixStartAtmOamTransmit
ixStartAtmOamTransmit - start ATM OAM transmit on a group of ports simultaneously

SYNOPSIS

ixStartAtmOamTransmit portList

DESCRIPTION

The ixStartAtmOamTransmit command sends a message to the IxServer to start ATM OAM message
transmit on a group of ports simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

Appendix 3 High-Level API

– 1645 –

EXAMPLES
if [ixStartAtmOamTransmit portList] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixStartPortAtmOamTransmit, ixStartAtmOamTransmit, ixStopPortAtmOamTransmit

ixStartCapture
ixStartCapture - start capture on a group of ports simultaneously

SYNOPSIS

ixStartCapture portList

DESCRIPTION

The ixStartCapture command sends a message to the IxServer to start capture on a group of ports
simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {

Appendix 3 High-Level API

– 1646 –

if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
if {[ixStartCapture portList1] != 0} {
ixPuts "Could not start capture on $portList1"
}
if {[ixStartCapture portList2] != 0} {
ixPuts "Could not start capture on $portList2"

Appendix 3 High-Level API

– 1647 –

}
if {[ixStartCapture portList3] != 0} {
ixPuts "Could not start capture on $portList3"
}
if {[ixStartCapture portList4] != 0} {
ixPuts "Could not start capture on $portList4"
}
if {[ixStartCapture one2oneArray] != 0} {
ixPuts "Could not start capture on $one2oneArray"
}
Start transmit and wait a bit
ixStartTransmit one2oneArray
after 1000
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartPortCapture, ixStopCapture, ixStopPortCapture

ixStartCollisions
ixStartCollisions - start collision on a group of ports simultaneously

SYNOPSIS

ixStartCollisions portList

DESCRIPTION

The ixStartCollisions command sends a message to the IxServer to start collisions on a group of ports
simultaneously. The ports may span multiple chassis. The ports must have been previously set-up for
collisions by the forceCollisions command.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1648 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up mapping
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA

Appendix 3 High-Level API

– 1649 –

Set up ports to 10Mbps and half duplex
port setDefault
port config -autonegotiate false
port config -duplex half
port config -speed 10
port set $chas $cardA $portA
port set $chas $cardB $portB
Configure forced collisions
forcedCollisions setDefault
forcedCollisions config -enable 1
forcedCollisions config -consecutiveNonCollidingPackets 9
forcedCollisions set 1 $cardA $portA
forcedCollisions set 1 $cardB $portB
Configure the streams to transmit at 50%
stream setDefault
stream config -percentPacketRate 50
stream config -rateMode usePercentRate
stream set $chas $cardA $portA 1
stream set $chas $cardB $portB 1
Write config to hardware, check the link state and clear statistics
Error checking omitted for brevity
ixWritePortsToHardware one2oneArray
after 1000
ixCheckLinkState one2oneArray
ixClearStats one2oneArray
ixPuts "Starting Transmit.."
ixStartStaggeredTransmit one2oneArray
ixPuts "Sleeping for 5 seconds"
after 5000
ixPuts "Awake. Now going to attempt to start collisions"
if {[ixStartCollisions ::one2oneArray] != 0} {
ixPuts "Could not start collisions on $::one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartPortCollisions, ixStopCollisions, ixStopPortCollisions

ixStartPacketGroups
ixStartPacketGroups - start calculating real-time latency on a group of ports simultaneously

Appendix 3 High-Level API

– 1650 –

SYNOPSIS

ixStartPacketGroups portList

DESCRIPTION

The ixStartPacketGroups command sends a message to the IxServer to start calculating real-time latency
metrics on a group of ports simultaneously. The minimum, maximum and average latencies are
calculated for each packet group ID (PGID). The ports may span multiple chassis. Ensure to clear
timestamps on all send and receive ports before starting latency measurements.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists

Appendix 3 High-Level API

– 1651 –

set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up port for loopback and packet group mode
port setDefault
port config -loopback true
port config -receiveMode portPacketGroup
port set $chas $card $port
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupIdOffset 52
packetGroup config -latencyControl cutThrough
packetGroup config -preambleSize 8
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setRx $chas $card $port
Configure fir (Frame Identification Record) for stream
stream setDefault
stream config -fir true
Set UDF 1 to count up the packet group
udf setDefault
udf config -enable true
udf config -continuousCount false
udf config -countertype c16
udf config -initval {00 00}
udf config -offset 52
udf config -repeat 10
udf config -updown uuuu
udf set 1
Write config to stream
stream set $chas $card $port 1
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupId 1
packetGroup config -groupIdOffset 52
packetGroup config -insertSignature true
packetGroup config -signature {08 71 18 05}

Appendix 3 High-Level API

– 1652 –

packetGroup config -signatureOffset 48
packetGroup setTx $chas $card $port 1
Write config to hardware, error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
Start packet group operation
if {[ixStartPacketGroups portList] != 0} {
ixPuts "Could not start packet groups on $portList"
}
And then transmit
ixStartTransmit portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartPortPacketGroups, ixStopPortPacketGroups, ixStopPacketGroups

ixStartPortAtmOamTransmit
ixStartPortAtmOamTransmit - start ATM OAM transmit on an individual port

SYNOPSIS

ixStartPortAtmOamTransmit chassisID cardID portID

DESCRIPTION

The ixStartPortAtmOamTransmit command starts ATM OAM transmit on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

Appendix 3 High-Level API

– 1653 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
if [ixStartPortAtmOamTransmit 1 2 1[{
ixPuts $::ixErrorInfo
}

SEE ALSO

ixStartAtmOamTransmit, ixStopAtmOamTransmit, ixStopPortAtmOamTransmit

ixStartPortCapture
ixStartPortCapture - start capture on an individual port

SYNOPSIS

ixStartPortCapture chassisID cardID portID

DESCRIPTION

The ixStartPortCapture command starts capture on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

Appendix 3 High-Level API

– 1654 –

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set loopback on port
port setDefault
port config -loopback true
port set $chas $card $port
Set up stream to defaults
stream setDefault
stream set $chas $card $port 1
Write config to hardware and check link state
Error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList

Appendix 3 High-Level API

– 1655 –

ixStartPortTransmit $chas $card $port
if {[ixStartPortCapture $chas $card $port] != 0} {
ixPuts "Could not start port capture on $chas:$card:$port"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartCapture, ixStopCapture, ixStopPortCapture

ixStartPortCollisions
ixStartPortCollisions - start collisions on an individual port

SYNOPSIS

ixStartPortCollisions chassisID cardID portID

DESCRIPTION

The ixStartPortCollisions command starts collisions on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer

1

Error; the command was delivered to the IxServer but it could not process the message

Appendix 3 High-Level API

– 1656 –

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardb $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up mapping array
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Set up ports to 10Mbps and half duplex
port setDefault
port config -autonegotiate false
port config -duplex half
port config -speed 10
port set $chas $cardA $portA
port set $chas $cardB $portB
Configure forced collisions

Appendix 3 High-Level API

– 1657 –

forcedCollisions setDefault
forcedCollisions config -enable 1
forcedCollisions config -consecutiveNonCollidingPackets 9
forcedCollisions set $chas $cardA $portA
forcedCollisions set $chas $cardB $portB
Configure the streams to transmit at 50%
stream setDefault
stream config -percentPacketRate 50
stream config -rateMode usePercentRate
stream set $chas $cardA $portA 1
stream set $chas $cardB $portB 1
Write config to hardware, check the link state and clear statistics
Error checking omitted for brevity
ixWritePortsToHardware one2oneArray
after 1000
ixCheckLinkState one2oneArray
ixClearStats one2oneArray
ixPuts "Starting Transmit.."
ixStartStaggeredTransmit one2oneArray
ixPuts "Sleeping for 5 seconds"
after 5000
ixPuts "Awake. Now going to attempt to start collisions"
if {[ixStartPortCollisions $chas $cardA $portA] != 0} {
ixPuts "Could not start collisions on $chas:$card:$port"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartCollisions, ixStopCollisions, ixStopPortCollisions

ixStartPortPacketGroups
ixStartPortPacketGroups - start packet group operations on an individual port

SYNOPSIS

ixStartPortPacketGroups chassisID cardID portID

Appendix 3 High-Level API

– 1658 –

DESCRIPTION

The ixStartPortPacketGroups command sends a message to the IxServer to start calculating real-time
latency metrics on a single port. The minimum, maximum and average latencies are calculated for each
packet group ID (PGID).

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1

Appendix 3 High-Level API

– 1659 –

set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up port for loopback and packet group mode
port setDefault
port config -loopback true
port config -receiveMode portPacketGroup
port set $chas $card $port
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupIdOffset 52
packetGroup config -latencyControl cutThrough
packetGroup config -preambleSize 8
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setRx $chas $card $port
Configure fir (Frame Identification Record) for stream
stream setDefault
stream config -fir true
Set UDF 1 to count up the packet group
udf setDefault
udf config -enable true
udf config -continuousCount false
udf config -countertype c16
udf config -initval {00 00}
udf config -offset 52
udf config -repeat 10
udf config -updown uuuu
udf set 1
Write config to stream
stream set $chas $card $port 1
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupId 1
packetGroup config -groupIdOffset 52
packetGroup config -insertSignature true
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setTx $chas $card $port 1

Appendix 3 High-Level API

– 1660 –

Write config to hardware, error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
Start packet group operation
if {[ixStartPortPacketGroups $chas $card $port] != 0} {
ixPuts "Could not start packet groups on $chas:$card:$port"
}
And then transmit
ixStartTransmit portList
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartPacketGroups, ixStopPacketGroups, ixStopPortPacketGroups

ixStartPortTransmit
ixStartPortTransmit - start transmission on an individual port

SYNOPSIS

ixStartPortTransmit chassisID cardID portID

DESCRIPTION

The ixStartPortTransmit command starts transmission on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

Appendix 3 High-Level API

– 1661 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set loopback on port
port setDefault
port config -loopback true
port set $chas $card $port
Set up stream to defaults
stream setDefault
stream set $chas $card $port 1

Appendix 3 High-Level API

– 1662 –

Write config to hardware and check link state
Error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
if {[ixStartPortTransmit $chas $card $port] != 0} {
ixPuts "Could not start port transmit on $chas:$card:$port"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartTransmit, ixStopTransmit.

ixStartStaggeredTransmit
ixStartStaggeredTransmit - start transmission on a group of ports in sequence

SYNOPSIS

ixStartStaggeredTransmit portList

DESCRIPTION

The ixStartStaggeredTransmit command sends a message to the IxServer to start transmission on a
group of ports in sequence. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

Appendix 3 High-Level API

– 1663 –

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB

Appendix 3 High-Level API

– 1664 –

ixWritePortsToHardware one2oneArray
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
if {[ixStartStaggeredTransmit portList2] != 0} {
ixPuts "Could not start StaggeredTransmit on $portList2"
}
if {[ixStartStaggeredTransmit portList3] != 0} {
ixPuts "Could not start StaggeredTransmit on $portList3"
}
if {[ixStartStaggeredTransmit portList4] != 0} {
ixPuts "Could not start StaggeredTransmit on $portList4"
}
if {[ixStartStaggeredTransmit one2oneArray] != 0} {
ixPuts "Could not start StaggeredTransmit on $one2oneArray"
}
after 1000
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartTransmit, ixStopTransmit, ixStartPortTransmit, ixStopPortTransmit

ixStartTransmit
ixStartTransmit - start transmission on a group of ports simultaneously

SYNOPSIS

ixStartTransmit portList

DESCRIPTION

The ixStartTransmit command sends a message to the IxServer to start transmission on a group of ports
simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Appendix 3 High-Level API

– 1665 –

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {

Appendix 3 High-Level API

– 1666 –

ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
ixWritePortsToHardware one2oneArray
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up\n"
exit
}
if {[ixStartTransmit portList1] != 0} {
ixPuts "Could not start Transmit on $portList1"
}
if {[ixStartTransmit portList2] != 0} {
ixPuts "Could not start Transmit on $portList2"
}
if {[ixStartTransmit portList3] != 0} {
ixPuts "Could not start Transmit on $portList3"
}
if {[ixStartTransmit portList4] != 0} {
ixPuts "Could not start Transmit on $portList4"
}
if {[ixStartTransmit one2oneArray] != 0} {
ixPuts "Could not start Transmit on $one2oneArray"
}
after 1000
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStopTransmit, ixStartPortTransmit, ixStopPortTransmit

ixStopAtmOamTransmit
ixStopAtmOamTransmit - stop ATM OAM transmit on a group of ports simultaneously

Appendix 3 High-Level API

– 1667 –

SYNOPSIS

ixStopAtmOamTransmit portList

DESCRIPTION

The ixStopAtmOamTransmit command sends a message to the IxServer to stop ATM OAM message
transmit on a group of ports simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
if [ixStopAtmOamTransmit portList] {
ixPuts $::ixErrorInfo
}

SEE ALSO

ixStartPortAtmOamTransmit, ixStopAtmOamTransmit, ixStopPortAtmOamTransmit

ixStopCapture
ixStopCapture - stop capture on a group of ports simultaneously

SYNOPSIS

ixStopCapture portList

DESCRIPTION

The ixStopCapture command sends a message to the IxServer to stop capture on a group of ports
simultaneously. The ports may span multiple chassis.

Appendix 3 High-Level API

– 1668 –

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]

Appendix 3 High-Level API

– 1669 –

Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
if {[ixStopCapture portList1] != 0} {
ixPuts "Could not Stop capture on $portList1"
}
if {[ixStopCapture portList2] != 0} {
ixPuts "Could not Stop capture on $portList2"
}
if {[ixStopCapture portList3] != 0} {
ixPuts "Could not Stop capture on $portList3"
}
if {[ixStopCapture portList4] != 0} {
ixPuts "Could not Stop capture on $portList4"
}
if {[ixStopCapture one2oneArray] != 0} {
ixPuts "Could not Stop capture on $one2oneArray"
}
Stop transmit and wait a bit
ixStopTransmit one2oneArray
after 1000
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 3 High-Level API

– 1670 –

SEE ALSO

ixStartCapture, ixStartPortCapture, ixStopPortCapture

ixStopCollisions
ixStopCollisions - stop collisions on a group of ports simultaneously

SYNOPSIS

ixStopCollisions portList

DESCRIPTION

The ixStopCollisions command sends a message to the IxServer to stop collisions on a group of ports
simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}

Appendix 3 High-Level API

– 1671 –

Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up mapping
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Set up ports to 10Mbps and half duplex
port setDefault
port config -autonegotiate false
port config -duplex half
port config -speed 10
port set $chas $cardA $portA
port set $chas $cardB $portB
Configure forced collisions
forcedCollisions setDefault
forcedCollisions config -enable 1
forcedCollisions config -consecutiveNonCollidingPackets 9
forcedCollisions set 1 $cardA $portA
forcedCollisions set 1 $cardB $portB
Configure the streams to transmit at 50%
stream setDefault
stream config -percentPacketRate 50
stream config -rateMode usePercentRate
stream set $chas $cardA $portA 1
stream set $chas $cardB $portB 1
Write config to hardware, check the link state and clear statistics
Error checking omitted for brevity

Appendix 3 High-Level API

– 1672 –

ixWritePortsToHardware one2oneArray
after 1000
ixCheckLinkState one2oneArray
ixClearStats one2oneArray
ixStartStaggeredTransmit one2oneArray
after 1000
ixStartCollisions one2oneArray
after 1000
if {[ixStopCollisions one2oneArray] != 0} {
ixPuts "Could not stop collisions on $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartCollisions, ixStartPortCollisions, ixStopPortCollisions

ixStopPacketGroups
ixStopPacketGroups - stop calculating real-time latency on a group of ports simultaneously

SYNOPSIS

ixStopPacketGroups portList

DESCRIPTION

The ixStopPacketGroups command sends a message to the IxServer to stop calculating real-time latency
metrics on a group of ports simultaneously. The ports may span multiple chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

Appendix 3 High-Level API

– 1673 –

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the mesage.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up port for loopback and packet group mode
port setDefault
port config -loopback true
port config -receiveMode portPacketGroup
port set $chas $card $port
Set up packet group configuration
packetGroup setDefault

Appendix 3 High-Level API

– 1674 –

packetGroup config -groupIdOffset 52
packetGroup config -latencyControl cutThrough
packetGroup config -preambleSize 8
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setRx $chas $card $port
Configure fir (Frame Identification Record) for stream
stream setDefault
stream config -fir true
Set UDF 1 to count up the packet group
udf setDefault
udf config -enable true
udf config -continuousCount false
udf config -countertype c16
udf config -initval {00 00}
udf config -offset 52
udf config -repeat 10
udf config -updown uuuu
udf set 1
Write config to stream
stream set $chas $card $port 1
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupId 1
packetGroup config -groupIdOffset 52
packetGroup config -insertSignature true
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setTx $chas $card $port 1# Write config to hardware, error checking
omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
Start packet group operation
ixStartPacketGroups portList
And then transmit
ixStartTransmit portList
after 10000
if {[ixStopPacketGroups portList] != 0} {
ixPuts "Can't stop packet group operation on $portList"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host

Appendix 3 High-Level API

– 1675 –

}

SEE ALSO

ixStartPacketGroups, ixStartPortPacketGroups, ixStopPortPacketGroups

ixStopPortAtmOamTransmit
ixStopPortAtmOamTransmit - stop ATM OAM transmit on an individual port

SYNOPSIS

ixStopPortAtmOamTransmit chassisID cardID portID

DESCRIPTION

The ixStopPortAtmOamTransmit command stops ATM OAM transmit on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
if [ixStopPortAtmOamTransmit 1 2 1[{
ixPuts $::ixErrorInfo
}

SEE ALSO

ixStartAtmOamTransmit, ixStopAtmOamTransmit,ixStartPortAtmOamTransmit

Appendix 3 High-Level API

– 1676 –

ixStopPortCapture
ixStopPortCapture - stop capture on an individual port

SYNOPSIS

ixStopPortCapture chassisID cardID portID [groupId] [create] [destroy]

DESCRIPTION

The ixStopPortCapture command stops capture on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

groupId

(By value) The group number to be used in the join message. If omitted, the default value of 101064 is
used.

create

(By value) Create a new port group (create) or not (nocreate). (default = create)

destroy

(By value) Clean up a created port group when command completes (destroy) or not (nodestroy).
(default = destroy)

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal

Appendix 3 High-Level API

– 1677 –

set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
if {[ixStartCapture one2oneArray] != 0} {
ixPuts "Could not start capture on $one2oneArray"
}
Start transmit and wait a bit

Appendix 3 High-Level API

– 1678 –

ixStartTransmit one2oneArray
after 1000
if {[ixStopPortCapture $chas $cardA $portA] != 0} {
ixPuts "Could not stop capture on $chas:$cardA:$portA"
}
if {[ixStopPortCapture $chas $cardB $portB] != 0} {
ixPuts "Could not stop capture on $chas:$cardB:$portB"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartCapture, ixStopCapture, ixStartPortCapture

ixStopPortCollisions
ixStopPortCollisions - stop collisions on an individual port

SYNOPSIS

ixStopPortCollisions chassisID cardID portID

DESCRIPTION

The ixStopPortCollisions command stops collisions on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

Appendix 3 High-Level API

– 1679 –

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up mapping
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Set up ports to 10Mbps and half duplex
port setDefault
port config -autonegotiate false
port config -duplex half
port config -speed 10

Appendix 3 High-Level API

– 1680 –

port set $chas $cardA $portA
port set $chas $cardB $portB
Configure forced collisions
forcedCollisions setDefault
forcedCollisions config -enable 1
forcedCollisions config -consecutiveNonCollidingPackets 9
forcedCollisions set $chas $cardA $portA
forcedCollisions set $chas $cardB $portB
Configure the streams to transmit at 50%
stream setDefault
stream config -percentPacketRate 50
stream config -rateMode usePercentRate
stream set $chas $cardA $portA 1
stream set $chas $cardB $portB 1
Write config to hardware, check the link state and clear statistics
Error checking omitted for brevity
ixWritePortsToHardware one2oneArray
after 1000
ixCheckLinkState one2oneArray
ixClearStats one2oneArray
ixStartStaggeredTransmit one2oneArray
after 1000
ixStartCollisions ::one2oneArray
after 1000
if {[ixStopPortCollisions $chas $cardA $portA] != 0} {
ixPuts "Could not stop collisions on $chas:$cardA:$portA"
}
if {[ixStopPortCollisions $chas $cardB $portB] != 0} {
ixPuts "Could not stop collisions on $chas:$cardB:$portB"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartCollisions, ixStopCollisions, ixStartPortCollisions

ixStopPortPacketGroups
ixStopPortPacketGroups - stop packet group operations on an individual port

Appendix 3 High-Level API

– 1681 –

SYNOPSIS

ixStopPortPacketGroups chassisID cardID portID

DESCRIPTION

The ixStopPortPacketGroups command sends a message to the IxServer to stop calculating real-time
latency metrics on a single port. The minimum, maximum and average latencies are calculated for each
packet group ID (PGID).

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 3 High-Level API

– 1682 –

Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $cardA $portA]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Set up port for loopback and packet group mode
port setDefault
port config -loopback true
port config -receiveMode portPacketGroup
port set $chas $card $port
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupIdOffset 52
packetGroup config -latencyControl cutThrough
packetGroup config -preambleSize 8
packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setRx $chas $card $port
Configure fir (Frame Identification Record) for stream
stream setDefault
stream config -fir true
Set UDF 1 to count up the packet group
udf setDefault
udf config -enable true
udf config -continuousCount false
udf config -countertype c16
udf config -initval {00 00}
udf config -offset 52
udf config -repeat 10
udf config -updown uuuu
udf set 1
Write config to stream
stream set $chas $card $port 1
Set up packet group configuration
packetGroup setDefault
packetGroup config -groupId 1
packetGroup config -groupIdOffset 52
packetGroup config -insertSignature true

Appendix 3 High-Level API

– 1683 –

packetGroup config -signature {08 71 18 05}
packetGroup config -signatureOffset 48
packetGroup setTx $chas $card $port 1
Write config to hardware, error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
Start packet group operation
ixStartPortPacketGroups $chas $cardA $portA
ixStartPortPacketGroups $chas $cardB $portB
And then transmit
ixStartTransmit portList
after 10000
if {[ixStopPortPacketGroups $chas $cardA $portA] != 0} {
ixPuts "Can't stop packet group operation on $chas:$cardA:$portA"
}
if {[ixStopPortPacketGroups $chas $cardB $portB] != 0} {
ixPuts "Can't stop packet group operation on $chas:$cardB:$portB"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartPacketGroups, ixStopPacketGroups, ixStartPortPacketGroups

ixStopPortTransmit
ixStopPortTransmit - stop transmission on an individual port

SYNOPSIS

ixStopPortTransmit chassisID cardID portID

DESCRIPTION

The ixStopPortTransmit command stops transmission on a single port.

ARGUMENTS

chassisID

(By value) The ID number of the chassis.

Appendix 3 High-Level API

– 1684 –

cardID

(By value) The ID number of the card.

portID

(By value) The ID number of the port.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set card 1
set port 1
set portList [list [list $chas $card $port]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1

Appendix 3 High-Level API

– 1685 –

}
Set loopback on port
port setDefault
port config -loopback true
port set $chas $card $port
Set up stream to defaults
stream setDefault
stream set $chas $card $port 1
Write config to hardware and check link state
Error checking omitted for brevity
ixWritePortsToHardware portList
after 1000
ixCheckLinkState portList
if {[ixStartPortTransmit $chas $card $port] != 0} {
ixPuts "Could not start port transmit on $chas:$card:$port"
}
after 1000
if {[ixStopPortTransmit $chas $card $port] != 0} {
ixPuts "Could not stop port transmit on $chas:$card:$port"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixStartTransmit, ixStopTransmit, ixStopPortTransmit

ixStopTransmit
ixStopTransmit - stop transmission on a group of ports simultaneously

SYNOPSIS

ixStopTransmit portList

DESCRIPTION

The ixStopTransmit command stops transmission on a single port.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

Appendix 3 High-Level API

– 1686 –

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}

Appendix 3 High-Level API

– 1687 –

Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
ixWritePortsToHardware one2oneArray
after 1000
if {[ixCheckLinkState one2oneArray] != 0} {
ixPuts "Link is not up"
}
ixStartTransmit portList1
after 5000
if {[ixStopTransmit portList1] != 0} {
ixPuts "Could not stop Transmit on $portList1"
}
ixStartTransmit portList2
after 5000
if {[ixStopTransmit portList2] != 0} {
ixPuts "Could not stop Transmit on $portList2"
}
ixStartTransmit portList3
after 5000
if {[ixStopTransmit portList3] != 0} {
ixPuts "Could not stop Transmit on $portList3"
}
ixStartTransmit portList4
after 5000
if {[ixStopTransmit portList4] != 0} {
ixPuts "Could not stop Transmit on $portList4"
}
ixStartTransmit ::one2oneArray
after 5000
if {[ixStopTransmit one2oneArray] != 0} {
ixPuts "Could not stop Transmit on $one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {

Appendix 3 High-Level API

– 1688 –

ixDisconnectTclServer $host
}

SEE ALSO

ixStopTransmit, ixStartPortTransmit, ixStopPortTransmit

ixTakeOwnership
ixTakeOwnership - takes ownership of all the ports in the list

SYNOPSIS

ixTakeOwnership portList [takeType]

DESCRIPTION

The ixTakeOwnership command takes ownership of all the ports in the list.

When a list of ports is supplied to ixTakeOwnership and one of the ports does not exist, the command
takes ownership where it can, and prints a message line for the port that it cannot take ownership, and
returns a 0. The port for which ownership cannot be taken is removed from the list, and the process
continues.

This message is posted:

Port [getPortId $c $l $p] is not available, removing port from the list.

A value of 1 is returned when ixTakeOwnership is given just one, non-existent port as a parameter.

ARGUMENTS

portList

(By value) The list of ports in one of the following formats:

One of the following literal strings, or a reference to a variable with the $ (for example, $pl after set pl ...)
{{1 1 1}}
{{1 1 1} {1 1 2} {1 1 3} {1 1 4}}
{{1 1 *} {1 2 1} {1 2 2}}

takeType

(By value) (Optional) Valid values:

force: take regardless of whether the port is owned by someone else

notForce: do not force ownership

Appendix 3 High-Level API

– 1689 –

RETURNS

0

No error; the command was successfully delivered to the IxServer. Ownership of at least one port (in the
list) was successfully acquired.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set portsToOwn {{$chas 1 *} {$chas 2 1} {$chas 2 2}}
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portsToOwn force] {
ixPuts $::ixErrorInfo
return 1
}

SEE ALSO

ixClearOwnership, ixPortClearOwnership, ixPortTakeOwnership

ixTransmitArpRequest
ixTransmitArpRequest - transmit ARP requests on a group of ports simultaneously

Appendix 3 High-Level API

– 1690 –

SYNOPSIS

ixTransmitArpRequest portList

DESCRIPTION

The ixTransmitArpRequest command sends a message to the IxServer to start transmission of ARP
requests on a group of ports simultaneously using the protocol server. The ports may span multiple
chassis.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]

Appendix 3 High-Level API

– 1691 –

set cardA 1
set portA 1
set cardB 1
set portB 2
Four different port list formats
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
Need to set up IP for ARP
ip setDefault
ip set 1 1 1
ip set 1 1 2
Try each of the formats
if {[ixTransmitArpRequest portList1] != 0} {
ixPuts "Could not transmit ARP request for $portList1\n"
}
if {[ixTransmitArpRequest portList2] != 0} {
ixPuts "Could not transmit ARP request for $portList2\n"
}
if {[ixTransmitArpRequest portList3] != 0} {
ixPuts "Could not transmit ARP request for $portList3\n"
}
if {[ixTransmitArpRequest portList4] != 0} {
ixPuts "Could not transmit ARP request for $portList4\n"
}
if {[ixTransmitArpRequest one2oneArray] != 0} {
ixPuts "Could not transmit ARP request for $one2oneArray\n"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server

Appendix 3 High-Level API

– 1692 –

if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixTransmitPortArpRequest

ixTransmitPortArpRequest
ixTransmitPortArpRequest - transmit ARP requests on an individual port

SYNOPSIS

ixTransmitPortArpRequest chassisID cardID portID

DESCRIPTION

The ixTransmitPortArpRequest command sends a message to the IxServer to start transmission of ARP
requests on a single port using the protocol server.

ARGUMENTS

chassisID

(By value) The ID number of the chassis

cardID

(By value) The ID number of the card

portID

(By value) The ID number of the port

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {

Appendix 3 High-Level API

– 1693 –

if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host] {
ixPuts $::ixErrorInfo
return 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1
set portA 1
set cardB 1
set portB 2
set portList [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList] {
ixPuts $::ixErrorInfo
return 1
}
Need to set up IP for ARP
ip setDefault
ip set $chas $cardA $portA
ip set $chas $cardB $portB
if {[ixTransmitPortArpRequest $chas $cardA $portA] != 0} {
ixPuts "Could not transmit ARP request for $chas:$cardA:$cardB"
}
if {[ixTransmitPortArpRequest $chas $cardB $portB] != 0} {
ixPuts "Could not transmit ARP request for $chas:$cardB:$cardB"
}
Let go of the ports that we reserved
ixClearOwnership $portList
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

SEE ALSO

ixTransmitArpRequest

Appendix 3 High-Level API

– 1694 –

ixUtils
ixUtils - determine whether optional software components are installed

SYNOPSIS

ixUtils sub-command

DESCRIPTION

The ixUtils sub-commands allow for the determination whether optional software has been installed.

COMMANDS

The ixUtils command is invoked with the following sub-commands. If no sub-command is specified,
returns a list of all sub-commands available.

Each of the ixUtils sub-commands are available as separate commands. The following table indicates the
equivalence.

ixUtils sub-command High-Level API command

ixUtils calculateMaxRate calculateMaxRate

ixUtils calculatePercentMaxRate calculatePercentMaxRate

ixUtils getErrorString getErrorString

EXAMPLES

See examples under calculateMaxRate, calculatePercentMaxRate.

SEE ALSO

calculateMaxRate, calculatePercentMaxRate, getErrorString

ixWriteConfigToHardware
ixWriteConfigToHardware - writes streams, filters, protocol configuration on ports in hardware

SYNOPSIS

ixWriteConfigToHardware portList [-verbose | -noVerbose]
[-writeProtocolServer | -noProtocolServer]

DESCRIPTION

The ixWriteConfigToHardware command commits the configuration of streams, filters, and protocol
information on a group of ports to hardware. This command is useful when a large number of ports are
involved.

Appendix 3 High-Level API

– 1695 –

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

-verbose | -noVerbose

(Optional). Either noVerbose (default) or verbose, which appends a status message to the log file.

-writeProtocolServer | -noProtocolServer

(Optional) -writeProtocolServer stops the protocol server and writes all associated objects (default). -
noProtocolServer has no effect on the protocol server and does not update any protocol server objects.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

EXAMPLES
package require IxTclHal
set host galaxy
set username user
Check if we're running on UNIX - connect to the TCL Server
which must be running on the chassis
if [isUNIX] {
if [ixConnectToTclServer $host] {
ixPuts "Could not connect to $host"
return 1
}
}
Now connect to the chassis
if [ixConnectToChassis $host]
{
ixPuts $::ixErrorInforeturn 1
}
Get the chassis ID to use in port lists
set chas [ixGetChassisID $host]
set cardA 1

Appendix 3 High-Level API

– 1696 –

set portA 1
set cardB 1
set portB 2
Examples of four ways to make a port list
set portList1 [list $chas,$cardA,$portA]
set portList2 [list $chas,$cardA,$portA $chas,$cardB,$portB]
set portList3 [list [list $chas $cardA $portA] [list $chas $cardB $portB]]
set portList4 [list [list $chas,$cardA,$portA] [list $chas,$cardB,$portB]]
Login before taking ownership
if [ixLogin $username] {
ixPuts $::ixErrorInfo
return 1
}
Take ownership of the ports we'll use
if [ixTakeOwnership $portList4] {
ixPuts $::ixErrorInfo
return 1
}
map new -type one2one
map config -type one2one
map add $chas $cardA $portA $chas $cardB $portB
map add $chas $cardB $portB $chas $cardA $portA
port setDefault
port set $chas $cardA $portA
port set $chas $cardB $portB
if {[ixWriteConfigToHardware portList1] != 0} {
ixPuts "Could not write config to $portList1"
}
if {[ixWriteConfigToHardware portList2] != 0} {
ixPuts "Could not write config to $portList2"
}
if {[ixWriteConfigToHardware portList3] != 0} {
ixPuts "Could not write config to $portList3"
}
if {[ixWriteConfigToHardware portList4] != 0} {
ixPuts "Could not write config to $portList4"
}
if {[ixWriteConfigToHardware one2oneArray] != 0} {
ixPuts "Could not write config to one2oneArray"
}
Let go of the ports that we reserved
ixClearOwnership $portList4
Disconnect from the chassis we're using
ixDisconnectFromChassis $host
If we're running on UNIX, disconnect from the TCL Server
if [isUNIX] {
ixDisconnectTclServer $host
}

Appendix 3 High-Level API

– 1697 –

SEE ALSO

ixWritePortsToHardware

ixWritePortsToHardware
ixWritePortsToHardware - writes port properties in hardware

SYNOPSIS

ixWritePortsToHardware portList [-verbose | -noverbose]
[-writeProtocolServer | -noProtocolServer]

DESCRIPTION

The ixWritePortsToHardware command commits the configuration such as Mii properties on 10/100
interface (such as speed, duplex modes, auto negotiation), port properties on Gigabit interfaces, and PPP
parameters on Packet over Sonet interfaces on a group of ports to hardware. It also performs all of the
functions of ixWriteConfigToHardware. This command is useful when a large number of ports are
involved. Note, this command may result in a loss of link, depending on the changes that have been
made.

ARGUMENTS

portList

(By reference) The list of ports in one of the following formats:

one2oneArray, one2manyArray, many2oneArray, many2manyArray

Or a reference to a list. For example, pl after
set pl {{1 1 1} {1 1 2} {1 1 3} {1 1 4}} -or-
set pl {1,1,1 1,1,2 1,1,3 1,1,4}

-verbose | -noVerbose

(Optional). Either noVerbose (default) or verbose, which appends a status message to the log file.

-writeProtocolServer | -noProtocolServer

(Optional) -writeProtocolServer stops the protocol server and writes all associated objects (default). -
noProtocolServer has no effect on the protocol server and does not update any protocol server objects.

RETURNS

0

No error; the command was successfully delivered to the IxServer.

1

Error; the command was delivered to the IxServer but it could not process the message.

Appendix 3 High-Level API

– 1698 –

EXAMPLES

See the example under ixStartTransmit.

SEE ALSO

ixWriteConfigToHardware

map
map - configure traffic map.

SYNOPSIS

map sub-command options

DESCRIPTION

The map command is used to set the direction of traffic flow between ports on same or different cards on
same or different chassis. There are four types of mappings available - one2one, one2many, many2one
and many2many.

The one2one mapping sets up one transmit and one receive port for traffic flow. The transmit/receive port
pair that has been configured once cannot be used in a different port pair. That is, each port pair is
mutually exclusive. The one2many mapping sets up one transmit port and multiple receive ports. Each
group of transmit and its multiple receive ports is mutually exclusive with other groups. The many2one
mapping sets up multiple transmit ports and one receive port. Each group of multiple transmit ports and
its receive port is mutually exclusive with other groups. The many2many mapping sets up multiple
transmit ports and multiple receive ports. Any port may transmit and receive to any other port in any
group of ports.

STANDARD OPTIONS

type maptype

maptype may be one of:

one2one

one2many

many2one

many2many

COMMAND

The map command is invoked with the following sub-commands. If no sub-command is specified, returns
a list of all sub-commands available.

map add txChassis txLm txPort rxChassis rxLm rxPort

Appendix 3 High-Level API

– 1699 –

Creates a map from Tx ports txPort on card txLm, chassis txChassis to Rx port rxPort on card rxLm,
chassis rxChassis.

map cget option

Returns the current value of the configuration option given by option. Option may have any of the values
accepted by the map command.

map config option value

Modify the configuration options of the map. If no option is specified, returns a list describing all of the
available options (see STANDARD OPTIONS) for map.

map del txChassis txLm txPort rxChassis rxLm rxPort

Deletes a map from Tx ports txPort on card txLm, chassis txChassis to Rx port rxPort on card rxLm,
chassis rxChassis.

map new -type type

Clears the current map of type one2one, one2many, many2one, or many2many.

map setDefault

Sets default values for all configuration options.

map show

Displays the current settings of the current map.

EXAMPLES
package require IxTclHal
set chassis 1
set fromCard 1
set toCard 2
map setDefault
map config -type one2many
map new -type one2many
map add $chassis $fromCard 1 $chassis $toCard 1
map add $chassis $fromCard 1 $chassis $toCard 2
map add $chassis $fromCard 2 $chassis $toCard 3
map add $chassis $fromCard 3 $chassis $toCard 4
map show

INTERNAL
COMMANDS

The following commands are internal interfaces, for use only by Ixia. Use of these commands may
produced undesirable results and are not guaranteed to be backward compatible in future releases:

exists, getHelp, getType, getValidRange, getValidValues, getValidateProc

Appendix 3 High-Level API

– 1700 –

SEE ALSO

getAllPorts, getRxPorts, getTxPorts

Appendix 3 High-Level API

– 1701 –

This page intentionally left blank.

– 1702 –

APPENDIX 4 IxTcl Server Usage

IxTcl Server
The IxTcl Server is a software module which implements an intermediate process needed to support non-
Windows (Unix) ScriptMate, Tcl and other clients. The version of IxTcl Server must match the version of
ScriptMate, Tcl or other clients.

It may either reside on an Ixia chassis or on an intermediate Windows based system between the Unix
system and the Ixia chassis. Figure: Initial IxTcl Server Screen illustrates the former case.

Figure: IxTcl Server with Connection illustrates the latter case.

This last case has the advantage that TclServer runs on a different processor than the chassis itself –
allowing the chassis to run faster.

Installation and Invocation
IxTcl Server is installed on an Ixia chassis or Windows host using the standard Ixia installation methods.
See the Ixia Quick Start Guide for a further discussion. The IxTcl Server is listed among the optional
components.

When IxTcl Server is installed, it is automatically included in the All Users Startup group so that the IxTcl
Server will automatically start up when any user logs in. If it is necessary to restart IxTcl Server, then the
icon which has been placed on the desktop can be used. The icon is shown below.

IxTcl Server Usage
Normally IxTcl Server requires no user interaction. In day-to-day usage, it may be safely minimized.

Several options, however, are available for troubleshooting. The initial IxTcl Server screen, before any
connections from any clients, is shown in Figure: Initial IxTcl Server Screen.

Figure: Initial IxTcl Server Screen

– 1703 –

The two lines in the main window indicate that the server is ‘listening’ for connections from clients on two
ports:

l Port 4555–this is the default port used by ScriptMate and by Tcl programs which use the Ixia Tcl
APIs. All standard connections will be visible in the tree beneath this node.

l Port 4500–this port is used internally by several Ixia products for rapid file transfer.

Port 4500–this port is used internally by several Ixia products for rapid file transfer.

Connections are reflected within the tree once they have been made as shown in Figure: IxTcl Server with
Connection.

Figure: IxTcl Server with Connection

The menus available in this window are:

Table:IxTcl Server Menus

Menu Usage

File Contains a single 'exit' option.

IxTcl Server Allows for the creation of additional ports on which IxTcl Server will listen for
connections. Advanced Usage for a further discussion.

Tcl
Interpreter

The Show option opens a separate window which displays the commands that are sent
through IxTcl Server as well as the results received from the chassis. The contents of
this screen are controlled by the Tools..Optionsmenu. This menu option is only active
when a IxTcl Server connection is selected. The same window may be opened by right-
clicking on a connection and choosing Show.

Tools Contains a single Options dialog, discussed in Advanced Usage.

Appendix 4 IxTcl Server Usage

– 1704 –

Menu Usage

Help Contains a single choice 'About IxTcl Server...'. When invoked, a dialog is presented
with the version number of IxTcl Server.

Options
The options available with IxTcl Server available by selecting Tools..Options from the IxTcl Server
window. The dialog is shown in Figure: IxTcl Server Options.

Figure: IxTcl Server Options

The options available in this dialog are:

Table:IxTcl Server Options

Category Option Usage

Output
Options

Output Tcl
commands in
treeview

The last Tcl command executed for a IxTcl Server connection is shown
in the tree view. For example, in Figure: IxTcl Server with Connection
the phrase: Tcl Interpreter last cmd: session logout.

Output Tcl
commands in
TclInterpreter
window

If a Tcl Interpreter window has been opened with the Tcl
Interpreter..Showmenu choice, then this option indicates that Tcl
commands passed through IxTcl Server should be displayed in this
window.

Return Tcl
command
standard output

Advanced Usage for a description of this option.

Logging
Options

Log Tcl
commands

If selected, then a log file is created in the Ixia installation directory
(usually C:\Program Files\Ixia). Each connection creates a separate

Appendix 4 IxTcl Server Usage

– 1705 –

Category Option Usage

log file whose name includes the year, month, day and seconds since
midnight.

Log Tcl
command
return values

If selected, return values from the Tcl commands are included in the
log.

Note: If either of the Logging Options is enabled, additional CPU time is consumed creating and
saving the logged data. This may slow down the execution of your test. A warning is added to the
IxTcl Server window when one of these options is turned on, as shown in IxTcl Server Windows with
Logging Enabled.

Figure: IxTcl Server Windows with Logging Enabled

Advanced Usage
Additional means of connecting to IxTcl Server are provided through the IxTcl Servermenu. The options
for this menu choice are:

Table:IxTcl Server Menu Options

Option Usage

Add Socket
Listener...

IxTcl Server's socket interface can 'listen' to ports other than the default port 4555. This
option adds another listener at another port.

Add Serial
Listener...

IxTcl Server can also listen on one of the host's communications ports. The options
associated with this type of connection are shown in Figure: Serial Port Characteristics.
The port should be one of the available ports: COM1, COM2, etc. that is not in use by
another application. Specify the port as COMx where x is the port number.

Add Telnet
Listener...

IxTcl Server can also listen on a port using the Telnet protocol. A dialog allows the port
to be selected.

Delete This option deletes the currently selected connection in the main window and all
associated Tcl Interpreters shown a child nodes.

Figure: Serial Port Characteristics

Appendix 4 IxTcl Server Usage

– 1706 –

The serial connection and telnet connections are different from the socket listener connection in that they
‘speak’ Tcl. That is, an external program of any type may make a serial or telnet connection to IxTcl
Server and send it Ixia Tcl commands which will be executed on the Ixia chassis. The results of the
commands’ execution are sent back to the external program. If the Return Tcl command standard output
option was checked in the Tools..Options dialog, then any output that the command produced would also
be sent to the external program.

Appendix 4 IxTcl Server Usage

– 1707 –

This page intentionally left blank.

– 1708 –

APPENDIX 5 Reserved Keywords
This chapter provides the keywords that are used in IxOS setup. These keywords should not be used as
variable names in customer scripts, failing which they will conflict with code execution and exhibit
unwanted behavior.

The keywords are listed as follows:

l bgpOriginIGP
l bgpOriginEGP
l bgpOriginIncomplete
l bgpRouteAsPathNoInclude
l bgpRouteAsPathIncludeAsSeq
l bgpRouteAsPathIncludeAsSet
l bgpRouteAsPathIncludeAsSeqConf
l bgpRouteAsPathIncludeAsSetConf
l bgpRouteAsPathPrependAs
l bgpRouteNextHopSetManually
l bgpRouteNextHopSetSameAsLocalIp
l bgpRouteNextHopFixed
l bgpRouteNextHopIncrement
l bgpRouteNextHopIncrementPerPrefix
l bgpCommunityNoExport
l bgpCommunityNoAdvertise
l bgpCommunityExportSubconfed
l bgpSegmentUnknown
l bgpSegmentAsSet
l bgpSegmentAsSequence
l bgpSegmentAsConfedSet
l bgpSegmentAsConfedSequence
l bgpOurIP
l bgpPeerIP
l bgpOurAS

– 1709 –

l bgpPeerAS
l bgpOurId
l bgpPeerId
l bgpPeerHoldTimer
l bgpHoldTimer
l bgpMessageSent
l bgpMessageReceived
l bgpUpdateSent
l bgpUpdateReceived
l bgpRoutesAdvertised
l bgpRoutesWithdrawn
l bgpRoutesAdvertisedReceived
l bgpRoutesWithdrawnReceived
l bgpRoutesPerSecondSent
l bgpRoutesPerSecondReceived
l bgpOpenSent
l bgpOpenReceived
l bgpKeepAliveSent
l bgpKeepAliveReceived
l bgpNotificationSent
l bgpNotificationReceived
l bgpCeaseSent
l bgpCeaseReceived
l bgpStateMachineErrorSent
l bgpStateMachineErrorReceived
l bgpHoldTimeExpiredSen
l bgpHoldTimeExpiredReceived
l bgpInvalidOpenSent
l bgpInvalidOpenReceived
l bgpLastErrorReceived
l bgpLastErrorSent
l bgpnvalidOpenUnsupportVersion
l bgpInvalidOpenUnsupportVersion
l bgpInvalidOpenBadPeerAS
l bgpInvalidOpenBadBGPId
l bgpInvalidOpenUnsupportParm

Appendix 5 Reserved Keywords

– 1710 –

l bgpInvalidOpenAuthenticationFail
l bgpInvalidOpenUnacceptHoldTime
l bgpInvalidOpenSubUnspecified
l bgpUpdateErrorSent
l bgpUpdateErrorReceived
l bgpUpdateErrorAttribListError
l bgpUpdateErrorUnknownWellKnownAttrib
l bgpUpdateErrorMissingWellKnownAttrib
l bgpUpdateErrorAttribFlagError
l bgpUpdateErrorAttribLengthError
l bgpUpdateErrorOriginAttribInvalid
l bgpUpdateErrorASRoutingLoop
l bgpUpdateErrorNextHopAttribInvalid
l bgpUpdateErrorOptionalAttribError
l bgpUpdateErrorNetworkFieldInvalid
l bgpUpdateErrorAsPathInvalid
l bgpUpdateErrorSubUnspecified
l bgpHeaderErrorSent
l bgpHeaderErrorReceived
l bgpHeaderErrorConnNotSyncron
l bgpHeaderErrorBadMsgLength
l bgpHeaderErrorBadMsgType
l bgpHeaderErrorSubUnspecified
l bgpUnspecifiedErrorSent
l bgpUnspecifiedErrorReceived
l bgpActiveOn
l bgpStartsOccured
l bgpStateMachineState
l bgpExternalConnectsReceived
l bgpExternalConnectsAccepted
l bgpGracefulRestartsAttempted
l bgpGracefulRestartsFailed
l bgpRoutesReceivedBeforeStaleTimerExpired
l ospfRouteOriginArea
l ospfRouteOriginExternal

Appendix 5 Reserved Keywords

– 1711 –

l ospfRouteOriginExternalType2
l ospfRouteOriginNSSA
l ospfRouteOriginSameArea
l ospfOptionBitTypeOfService
l ospfOptionBitExternalRouting
l ospfOptionBitMulticast
l ospfOptionBitNSSACapability
l ospfOptionBitExternalAttributes
l ospfOptionBitDemandCircuit
l ospfOptionBitLSANoForward
l ospfOptionBitUnused
l ospfBroadcast
l ospfPointToPoint
l ospfPointToMultipoint
l ospfInterfaceLinkPointToPoint
l ospfInterfaceLinkTransit
l ospfInterfaceLinkStub
l ospfInterfaceAuthenticationNull
l ospfInterfaceAuthenticationPassword
l ospfInterfaceAuthenticationMD5
l ospfLinkPointToPoint
l ospfLinkTransit
l ospfLinkStub
l ospfLinkVirtual,
l ospfTlvLinkPointToPoint
l ospfTlvLinkMultiAccess
l ospfBBit
l ospfEBit
l ospfVBit
l ospfExteralMetricType1
l ospfExteralMetricType2
l ospfRouterTlv
l ospfLinkTlv
l ospfLsaRouter
l ospfLsaNetwork
l ospfLsaSummaryIp

Appendix 5 Reserved Keywords

– 1712 –

l ospfLsaSummaryAs
l ospfLsaExternal
l ospfLsaOpaqueLocal
l ospfLsaOpaqueArea
l ospfLsaOpaqueDomain
l ospfLsaNSSA
l isisL3Routing
l dceIsis
l spbIsis
l trillIsis
l isisNormalRouter
l isisRestartingRouter
l isisStartingRouter
l isisHelperRouter
l isisDraftVersion3
l isisDraftVersion4
l isisAuthTypeNone
l isisAuthTypePassword
l isisAuthTypeMD5
l fullyMeshedMapping
l oneToOneMapping
l manualMapping
l isisRouteInternal
l isisRouteExternal
l isisBroadcast
l isisPointToPoint
l isisLevel1
l isisLevel2
l isisLevel1Level2
l isisVLANTypeSingleVLAN
l isisVLANTypeStackedVLANQinQ
l isisUnicast
l isisMulticast
l isisType1
l isisType2

Appendix 5 Reserved Keywords

– 1713 –

l isisType3
l isisType4
l isisType5
l isisType6
l isisType7
l isisType8
l isisType9
l isisType10
l isisType11
l isisType12
l isisType13
l isisType14
l isisType15
l isisType16
l isisECTAlgorithmC201
l isisECTAlgorithmC202
l isisECTAlgorithmC203
l isisECTAlgorithmC204
l isisECTAlgorithmC205
l isisECTAlgorithmC206
l isisECTAlgorithmC207
l isisECTAlgorithmC209
l isisECTAlgorithmC210
l isisECTAlgorithmC211
l isisTransmissionTypeUnicsat
l isisTransmissionTypeMulticast
l isisNodeVLANTypeSingleVLAN
l isisNodeVLANTypeStackedVLANQinQ isisNodeVLANTypeStackedVLANQinQ
l rsvpNone
l rsvpPrependLoose
l rsvpPrependStrict
l rsvpIngress
l rsvpEgress
l rsvpTrafficEndPoint
l rsvpTunnelEndPoint
l rsvpFF

Appendix 5 Reserved Keywords

– 1714 –

l rsvpSE
l rsvpEgressAlwaysUseConfiguredStyle
l rsvpEgressAlwaysUseConfiguredStyle
l rsvpEgressUseSEIfInAttribute
l rsvpLabelValueExplicitNull
l rsvpLabelValueRouterAlert
l rsvpLabelValueIPv6ExplicitNull
l rsvpLabelValueImplicitNull
l rsvpTrafficEndpoint
l rsvpTunnelEndpoint
l rsvpP2MPTunnelEndPoint
l rsvpEroIpV4
l rsvpAs
l rsvpRroIpV4
l rsvpLabel
l ripMulticast
l ripBroadcastV1
l ripBroadcastV2
l ripInvalidVersion
l ripReceiveVersion1
l ripReceiveVersion2
l ripReceiveVersion1And2
l ripDefault
l ripSplitHorizon
l ripPoisonReverse
l ripSplitHorizonSpaceSaver
l ripSilent
l ospfNetworkRangeLinkBroadcast
l ospfNetworkRangeLinkPointToPoint
l ospfNetworkRangeLinkPointToPoint
l ldpInterfaceDownstreamUnsolicited
l ldpInterfaceDownstreamOnDemand
l ldpInterfaceDownstreamOnDemand
l ldpInterfaceIndependent
l ldpInterfaceBasic

Appendix 5 Reserved Keywords

– 1715 –

l ldpInterfaceExtended
l ldpInterfaceExtendedMartini
l atmVcUnidirectional
l atmVcBidirectional
l ldpInterfaceNULL
l ldpInterfaceMD5
l ldpAdvertiseFecRangeNone
l ldpAdvertiseFecRangeFixed
l ldpAdvertiseFecRangeIncrement
l ldpTargetPeerNULL
l ldpTargetPeerMD5
l l2VpnInterfaceFrameRelay
l l2VpnInterfaceATMAAL5
l l2VpnInterfaceATMXCell
l l2VpnInterfaceVLAN
l l2VpnInterfaceEthernet
l l2VpnInterfaceHDLC
l l2VpnInterfacePPP
l l2VpnInterfaceCEM
l l2VpnInterfaceATMVCC
l l2VpnInterfaceATMVPC
l l2VpnInterfaceEthernetVPLS
l l2VpnInterfaceCEIP
l l2VpnInterfaceSatopE1
l l2VpnInterfaceSatopT1
l l2VpnInterfaceSatopE3
l l2VpnInterfaceSatopT3
l l2VpnInterfaceCesoPsnBasic
l l2VpnInterfaceCesoPsnCas
l l2VpnInterfaceFrameRelayRFC4619
l l2VpnInterfaceFrameRelayRFC4619
l ldpL2VpnVcFixedLabel
l ldpL2VpnVcIncrementLabel
l ldpL2VpnPwIdFec
l ldpL2VpnGeneralizedIdFecVpls
l ldpL2VpnVcModelManualConfiguration

Appendix 5 Reserved Keywords

– 1716 –

l ldpL2VpnVcModelManualConfiguration
l ldpL2VpnVcModelBgpAutoDiscovery
l ldpL2VpnVcModelBgpAutoDiscovery
l ldpL2VpnVcVplsTypeAsNumber
l ldpL2VpnVcVplsTypeIpAddress
l ldpL2VpnVcSrcAiiTypeNumber
l ldpL2VpnVcSrcAiiTypeIpAddress
l ldpL2VpnVcTargetAiiTypeNumber
l ldpL2VpnVcTargetAiiTypeNumber
l ldpL2VpnVcTargetAiiTypeIpAddress
l ldpL2VpnVcTargetAiiTypeIpAddress
l ldpL2VpnVcAbsolute
l ldpL2VpnVcDifferential
l ldpL2VpnVcE1Trunk
l ldpL2VpnVcT1ESFTrunk
l ldpL2VpnVcT1SFTrunk
l ldpL2VpnVcHexVal1
l ldpL2VpnVcHexVal2
l ldpL2VpnVcHexVal3
l ldpL2VpnVcHexVal4
l ldpMulticstP2MPLSP
l ldpMulticstMP2MPLSP
l bgp4NeighborInternal
l bgp4NeighborExternal
l bgp4AsNumModeFixed
l bgp4AsNumModeIncrement
l bgp4MD5", (long) bgp4MD5, 0, 0, 0}
l bgp4NULL", (long) bgp4NULL, 0, 0, 0}
l kTunnelTypePimGreRosenDraft
l kTunnelTypeRSVPP2MP
l kTunnelTypeMLDPP2MP
l bgp4VpnFixedLabel
l bgp4VpnIncrementLabel
l vpnDistinguisherIncrementGlobalPart
l vpnDistinguisherIncrementGlobalPart

Appendix 5 Reserved Keywords

– 1717 –

l vpnDistinguisherIncrementLocalPart
l vpnDistinguisherIncrementLocalPart
l bgp4DistinguisherTypeAS
l bgp4DistinguisherTypeAS
l bgp4DistinguisherTypeIP
l bgp4Distinguisher2OctetMaxAssignedNumber
l bgp4Distinguisher2OctetMaxAssignedNumber
l bgp4TargetTypeAS
l bgp4TargetTypeIP
l bgp4UmhSelectionFixedLabel
l bgp4UmhSelectionIncrementLabel
l umhSelectionDistinguisherIncrementGlobalPart
l umhSelectionDistinguisherIncrementGlobalPart
l umhSelectionDistinguisherIncrementLocalPart
l umhSelectionDistinguisherIncrementLocalPart
l sourceTreeJoin
l sharedTreeJoin
l recvAddressFamilyIpv4
l recvAddressFamilyIpv6
l recvFullyMeshed
l recvOneToOne
l recvAsDistinguisherType
l recvIpDistinguisherType
l recvAs4BytesDistinguisherType
l kTunnelTypeMulticastRSVPP2MP
l kTunnelTypeMulticastMLDPP2MP
l kTunnelTypeMulticastMLDPP2MP
l sndrAddressFamilyIpv4
l sndrAddressFamilyIpv6
l sndrFullyMeshed
l sndrOneToOne
l sndrDistinguisherTypeAs
l sndrDistinguisherTypeIp
l sndrDistinguisherTypeAs4Byte
l bgpAdVplsRtTypeAsNumber
l bgpAdVplsRtTypeIpAddress

Appendix 5 Reserved Keywords

– 1718 –

l bgpAdVplsVplsIdTypeAsNumber
l bgpAdVplsVplsIdTypeIpAddress
l bgpAdVplsRdTypeAsNumber
l bgpAdVplsRdTypeIpAddress
l bgpAdVplsVsiIdPeAddress
l bgpAdVplsVsiIdAssignedNumber
l ripngIgnore
l ripngStore
l ripngSplitHorizon
l ripngNoSplitHorizon
l ripngPoisonReverse
l bgp4FamilyInvalidId
l bgp4FamilyIpV4Unicast
l bgp4FamilyIpV4Multicast
l bgp4FamilyIpV4Mpls
l bgp4FamilyIpV4MplsVpn
l bgp4FamilyIpV6Unicast
l bgp4FamilyIpV6Multicast
l bgp4FamilyIpV6Mpls
l bgp4FamilyIpV6MplsVpn
l bgp4FamilyUserDefined
l bgp4FamilyIpVpls
l bgp4FamilyIpV4MulticastVpn
l bgp4FamilyIpV6MulticastVpn
l bgp4FamilyIpAdVpls
l bgp4FamilyIpV4MulticastMplsVpn
l bgp4FamilyIpV4MulticastMplsVpn
l bgp4FamilyIpV6MulticastMplsVpn
l bgp4FamilyIpV6MulticastMplsVpn
l mldQuerierVersion1
l mldQuerierVersion2
l mldVersion1
l mldVersion2
l MLD_GROUPMODE_INCLUDE
l MLD_GROUPMODE_EXCLUDE

Appendix 5 Reserved Keywords

– 1719 –

l MLD_GROUPMODE_EXCLUDE
l multicastSourceModeInclude
l multicastSourceModeExclude
l igmpHostVersion1
l igmpHostVersion2
l igmpHostVersion3
l igmpVersion1
l igmpVersion2
l igmpVersion3
l igmpQuerierVersion1
l igmpQuerierVersion2
l igmpQuerierVersion3
l INCLUDE
l EXCLUDE
l IGMPV1
l IGMPV2
l IGMPV3
l softwareRestart
l softwareReloadOrUpgrade
l switchToRedundantControlProcessor
l switchToRedundantControlProcessor
l unknown
l ospfV3InterfaceOptionDCBit
l ospfV3InterfaceOptionRBit
l ospfV3InterfaceOptionNBit
l ospfV3InterfaceOptionMCBit
l ospfV3InterfaceOptionEBit
l ospfV3InterfaceOptionV6Bit
l ospfV3InterfacePointToPoint
l ospfV3InterfaceBroadcast
l ospfV3RouteOriginAnotherArea
l ospfV3RouteOriginExternalType1
l ospfV3RouteOriginExternalType2
l ospfV3RouteOriginSameArea
l unicastAddress
l multicastAddress

Appendix 5 Reserved Keywords

– 1720 –

l ospfV3LsaRouter
l ospfV3LsaNetwork
l ospfV3LsaInterAreaPrefix
l ospfV3LsaInterAreaRouter
l ospfV3LsaAsExternal
l ospfV3LsaLink
l ospfV3LsaIntraAreaPrefix
l ospfV3LsaOptionV6Bit
l ospfV3LsaOptionEBit
l ospfV3LsaOptionMCBit
l ospfV3LsaOptionNBit
l ospfV3LsaOptionRBit
l ospfV3LsaOptionDCBit
l ospfV3PrefixOptionPBit
l ospfV3PrefixOptionMCBit
l ospfV3PrefixOptionLABit
l ospfV3PrefixOptionNUBit
l ospfV3LsaRouterInterfacePointToPoint
l ospfV3LsaRouterInterfacePointToPoint
l ospfV3LsaRouterInterfaceTransit
l ospfV3LsaRouterInterfaceVirtual
l ospfV3NetworkRangeLinkBroadcast
l ospfV3NetworkRangeLinkBroadcast
l ospfV3NetworkRangeLinkPointToPoint
l pimsmNoDataMdt
l pimsmDataMdtIpv4
l pimsmGenerationIdModeIncremental
l pimsmGenerationIdModeIncremental
l pimsmGenerationIdModeRandom
l pimsmGenerationIdModeConstant
l pimsmMappingFullyMeshed
l pimsmMappingOneToOne
l pimsmJoinsPrunesTypeRP
l pimsmJoinsPrunesTypeG
l pimsmJoinsPrunesTypeSG

Appendix 5 Reserved Keywords

– 1721 –

l pimsmJoinsPrunesTypeSPTSwitchOver
l pimsmJoinsPrunesTypeSPTSwitchOver
l pimsmJoinsPrunesTypeRegisterTriggeredSG
l pimsmJoinsPrunesTypeRegisterTriggeredSG
l pimsmCRPMeshingTypeFull
l pimsmCRPMeshingTypeOneToOne
l pimsmCRPPriorityTypeSame
l pimsmCRPPriorityTypeIncremental
l pimsmCRPPriorityTypeRandom
l pimsmAll
l pimsmFromSource
l pimsmFromGroup
l isisGridLinkPointToPoint
l isisGridLinkBroadcast
l protocolServerStreamReplace
l protocolServerStreamAppend
l addressTypeIpV4
l addressTypeIpV6
l transmitIgmpJoin
l startIgmp
l transmitIgmpLeave
l startBgp4
l stopBgp4
l startOspf
l stopOspf
l startIsis
l stopIsis
l startRsvp
l stopRsvp
l startRip
l stopRip
l startLdp
l stopLdp
l startRipng
l stopRipng
l startPimsm

Appendix 5 Reserved Keywords

– 1722 –

l stopPimsm
l startMld
l stopMld
l startOspfV3
l stopOspfV3
l stopIgmp
l startStp
l stopStp
l startEigrp
l stopEigrp
l startBfd
l stopBfd
l startCfm
l stopCfm
l startLacp
l stopLacp
l startOam
l stopOam
l startMplsTp
l stopMplsTp
l startMplsOam
l stopMplsOam
l startElmi
l stopElmi
l igmpReportToOneWhenQueried
l igmpReportToAllWhenQueried
l igmpReportToAllUnsolicited
l stpInterfacePointToPoint
l stpInterfaceShared
l bridgeStp
l bridgeRstp
l bridgeMstp
l bridgePvst
l bridgeRpvst
l bridgePvstp

Appendix 5 Reserved Keywords

– 1723 –

l stp
l rstp
l bridges
l providerBridges
l stpInterfaceRoleDisabled
l stpInterfaceRoleRoot
l stpInterfaceRoleDesignated
l stpInterfaceRoleAlternate
l stpInterfaceRoleBackup
l stpInterfaceStateDiscarding
l stpInterfaceStateLearning
l stpInterfaceStateForwarding
l eigrpIGRP
l eigrpEnhancedIGRP
l eigrpStatic
l eigrpRIP
l eigrpHelloeigrpOSPF", (long) eigrpOSPF, 0, 0, 0},
l eigrpISIS
l eigrpEGP
l eigrpBGP
l eigrpIDRP
l eigrpConnected
l eigrpExternalRoute
l eigrpCandidateDefault
l eigrpExternal
l eigrpInternal
l bfd1HopSess
l bfdMultihopSess
l kDetectMultiplierMin
l kDetectMultiplierMax
l kMinDesiredMinRxIntv
l kMinDesiredTxIntv
l kMinEchoRxIntv
l kMinEchoTxIntv
l kMinEchoTimeOutIntv
l cfmMIP

Appendix 5 Reserved Keywords

– 1724 –

l cfmMEP
l cfmPrimaryVid
l cfmCharacterString
l cfmTwoOctet
l cfmRfc2685VpnId
l cfmIccBasedFormat
l cci3msec
l cci10msec
l cci100msec
l cci1sec
l cci10sec
l cci1min
l cci10min
l chassisComponent
l interfaceAlias
l portComponent
l chassisMacAddress
l networkAddress
l interfaceName
l locallyAssigned
l rdiModeAuto
l rdiModeOn
l rdiModeOff
l dmMethodTwoWay
l dmMethodOneWay
l aisModeAuto", (long) aisModeAuto, 0, 0, 0},
l aisModeStart", (long) aisModeStart, 0, 0, 0},
l aisModeStop", (long) aisModeStop, 0, 0, 0},
l ais1sec", (long) ais1sec, 0, 0, 0},
l ais1min", (long) ais1min, 0, 0, 0},
l lckModeAuto", (long) lckModeAuto, 0, 0, 0},
l lckModeStart", (long) lckModeStart, 0, 0, 0},
l lckModeStop", (long) lckModeStop, 0, 0, 0},
l lck1sec", (long) lck1sec, 0, 0, 0},
l lck1min", (long) lck1min, 0, 0, 0},

Appendix 5 Reserved Keywords

– 1725 –

l tstModeStart", (long) tstModeStart, 0, 0, 0},
l tstModeStop", (long) tstModeStop, 0, 0, 0},
l tstPatternNullSignalWithoutCrc32
l tstPatternNullSignalWithCrc32
l tstPatternPrbs2311WithoutCrc32
l tstPatternPrbs2311WithCrc32
l tstTestTypeInService
l tstTestTypeOutOfService
l lmMethodSingleEnded
l lmMethodDualEnded
l cfmBroadCastLink
l cfmPointToPointLink
l singleVlan
l stackedVlan
l cfmNoNamePresent
l cfmDomainNameString
l cfmMACAddressPlus2OctetInt
l cfmMANNameCharString
l cfm
l y1731
l pbbTe
l ethernet
l llcSnap
l oneSec
l oneMin
l noVlanId
l vlanId
l allVlanId
l unicast
l multicast
l allFormats
l primaryVid
l characterString
l twoOctetInteger
l rfc2685VpnId
l dm

Appendix 5 Reserved Keywords

– 1726 –

l dvm
l zeroMd
l oneMd
l twoMd
l threeMd
l fourMd
l fiveMd
l sixMd
l sevenMd
l allMd
l mepMac
l mepId
l mepMacAll
l mepIdAll
l linkTrace
l loopback
l delayMeasurement
l lossMeasurement
l manual
l oneToOne
l oneToAll
l allToOne
l allToAll
l fastInterval
l slowInterval
l autoInterval
l defaultInterval
l shortTimeOut
l longTimeOut
l autoTimeout
l defaultTimeOut
l active
l passive
l defaultActivity
l fixedMode

Appendix 5 Reserved Keywords

– 1727 –

l randomMode
l defaultRequestMode
l markerFreequencyValueMin
l markerFreequencyValueMax
l markerFreequencyValueDefault
l markerFreequencyLowerValueMin
l markerFreequencyLowerValueMax
l markerFreequencyLowerValueMax
l markerFreequencyLowerValueDefault
l markerFreequencyLowerValueDefault
l markerFreequencyUpperValueMin
l markerFreequencyUpperValueMax
l markerFreequencyUpperValueDefault
l markerFreequencyUpperValueDefault
l disableFlag
l enableFlag
l defaultFlag
l activeMode
l passiveMode
l single
l periodic
l disableLoopback
l enableLoopback
l noIncrement
l parallelIncrement
l innerFirst
l outerFirst
l icc
l ietf
l apsIetf
l apsY1731
l lsp
l pw
l nestedLspPw
l rangeRoleNone
l rangeRoleWorking

Appendix 5 Reserved Keywords

– 1728 –

l rangeRoleProtect
l cccvBfdCv
l cccvBfdCc
l cccvY1731
l cccvNone
l alarmTypeIetf
l alarmTypeY1731
l dmTypeIetf
l dmTypeY1731
l lmTypeIetf
l lmTypeY1731
l onePlusOneUnidirectional
l oneIstoOneBidirectional
l onePlusOneBidirectional
l dmTimeFormatIeee
l dmTimeFormatNtp
l lmCounterType32Bit
l lmCounterType64Bit
l srcVplsIdTypeAsNumber
l srcVplsIdTypeIpAddress
l srcVplsIdTypeasNumber4Bytes
l destVplsIdTypeAsNumber
l destVplsIdTypeIpAddress
l destVplsIdTypeasNumber4Bytes
l cccvPauseTriggerOptionTx
l cccvPauseTriggerOptionRx
l cccvPauseTriggerOptionTxRx
l cccvResumeTriggerOptionTx
l cccvResumeTriggerOptionRx
l cccvResumeTriggerOptionTxRx
l apsTriggerTypeClear
l apsTriggerTypeForcedSwitch
l apsTriggerTypeManualSwitchToProtect
l apsTriggerTypeManualSwitchToProtect
l apsTriggerTypeManualSwitchToWorking

Appendix 5 Reserved Keywords

– 1729 –

l apsTriggerTypeManualSwitchToWorking
l apsTriggerTypeLockout
l apsTriggerTypeExercise
l apsTriggerTypeFreeze
l alarmTriggerTypeIetf
l alarmTriggerTypeY1731
l dmTriggerTypeIetf
l dmTriggerTypeY1731
l counterType32Bit
l counterType64Bit
l alarmTriggerClear
l alarmTriggerStart
l dmModeNoResponseExpected
l dmModeResponseExpected
l dmTriggerTimeFormatIeee
l dmTriggerTimeFormatNtp
l lmTriggerTypeIetf
l lmTriggerTypeY1731,
l lmModeResponseExpected
l lmModeNoResponseExpected
l pwStatusCodePwNotForwarding
l pwStatusCodeLocalAcRxFault
l pwStatusCodeLocalAcTxFault
l pwStatusCodeLocalPsnFacingPwRxFault
l pwStatusCodeLocalPsnFacingPwRxFault
l pwStatusCodeLocalPsnFacingPwTxFault
l pwStatusCodeLocalPsnFacingPwTxFault
l lspPingEncasulationTypeGach
l lspPingEncasulationTypeUDPIPGach
l lspPingEncasulationTypeUDPIPGach
l lspTraceRouteEncasulationTypeGach
l lspTraceRouteEncasulationTypeGach
l lspTraceRouteEncasulationTypeUDPIPGach
l lspTraceRouteEncasulationTypeUDPIPGach
l minRxInterval_10
l minRxInterval_100

Appendix 5 Reserved Keywords

– 1730 –

l minRxInterval_1000
l minRxInterval_10000
l minRxInterval_3_33
l minRxInterval_60000
l minRxInterval_600000
l minTxInterval_10
l minTxInterval_100
l minTxInterval_1000
l minTxInterval_10000
l minTxInterval_3_33
l minTxInterval_60000
l minTxInterval_600000
l unexpectedMepId
l unexpectedYourDiscriminator
l onDemandCvPadTlv_drop
l onDemandCvPadTlv_copy
l onDemandCvPadTlv_none
l onDemandCvDownstreamAddressType_ipv4Numbered
l onDemandCvDownstreamAddressType_ipv4Numbered
l onDemandCvDownstreamAddressType_ipv4Unnumbered
l onDemandCvDownstreamAddressType_ipv4Unnumbered
l onDemandCvDownstreamAddressType_nonIp
l onDemandCvDownstreamAddressType_nonIp
l doNotReply
l replyViaIpv4Ipv6UdpPacket
l replyViaIpv4Ipv6UdpPacketWithRouterAlert
l replyViaIpv4Ipv6UdpPacketWithRouterAlert
l replyViaApplicationLevelControlChannel
l replyViaApplicationLevelControlChannel
l dropPadTlvFromReply
l copyPadTlvToReply
l controlChannelRouterAlert
l controlChannelPwAch
l bfdCvTypeIpUdp
l bfdCvTypePwAch

Appendix 5 Reserved Keywords

– 1731 –

l ipv4NumberedDownStreamAddressType
l ipv4NumberedDownStreamAddressType
l ipv4UnNumberedDownStreamAddressType
l ipv4UnNumberedDownStreamAddressType
l ipv6NumberedDownStreamAddressType
l ipv6NumberedDownStreamAddressType
l ipv6UnNumberedDownStreamAddressType
l ipv6UnNumberedDownStreamAddressType
l triggerDropPadTlvFromReply
l triggerCopyPadTlvToReply
l pause
l resume
l resetToNormalReply
l forceReplyCode
l noReturnCode
l malformedEchoRequestReceived
l oneOrMoreOfTheTlvsWasNotUnderstood
l oneOrMoreOfTheTlvsWasNotUnderstood
l replyingRouterIsAnEgressForTheFecAtStackDepthRsc
l replyingRouterIsAnEgressForTheFecAtStackDepthRsc
l replyingRouterHasNoMappingForTheFecAtStackDepthRsc
l replyingRouterHasNoMappingForTheFecAtStackDepthRsc
l downstreamMappingMismatch
l upstreamInterfaceIndexUnknown
l lspPingReserved
l labelSwitchedAtStackDepthRsc
l labelSwitchedButNoMplsForwardingAtStackDepthRsc
l labelSwitchedButNoMplsForwardingAtStackDepthRsc
l mappingForThisFecIsNotTheGivenLabelAtStackDepthRsc
l mappingForThisFecIsNotTheGivenLabelAtStackDepthRsc
l noLabelEntryAtStackDepthRsc", (long) noLabelEntryAtStackDepthRsc
l protocolNotAssociatedWithInterfaceatFecStackDepthRsc
l protocolNotAssociatedWithInterfaceatFecStackDepthRsc
l prematureTerminationOfPingDueToLabelStackShrinkingToSingleLabel
l bfdPduOptionsPause
l bfdPduOptionsResume

Appendix 5 Reserved Keywords

– 1732 –

l tx
l rx
l txRx
l triggerDoNotReply", (long) triggerDoNotReply
l triggerReplyViaIpv4Ipv6UdpPacket
l triggerReplyViaIpv4Ipv6UdpPacket
l triggerReplyViaIpv4Ipv6UdpPacketWithRouterAlert
l triggerReplyViaIpv4Ipv6UdpPacketWithRouterAlert
l triggerReplyViaApplicationLevelControlChannel
l triggerReplyViaApplicationLevelControlChannel
l ipv4Numbered_downstreamAddressType
l ipv4Numbered_downstreamAddressType
l ipv4UnNumbered_downstreamAddressType
l ipv4UnNumbered_downstreamAddressType
l uniC
l uniN
l elmiAllToOne
l elmiNoBundling
l elmiBundling
l p2p
l mp2mp
l elmiNotActive
l elmiNewNNotActive
l elmiNewNActive
l elmiActiveve
l elmiPartiallyActive
l elmiNewNPartiallyActive

Appendix 5 Reserved Keywords

– 1733 –

This page intentionally left blank.

– 1734 –

IN
D
EX

1

10/100 Mii 74

10GE 78, 106

A

Advanced Scheduler 75

advertise100FullDuplex 76

advertise100HalfDuplex 76

advertise10FullDuplex 76

advertise10HalflDuplex 76

advertiseAbilities 76

API Structure and Conventions 57

aremovedvertise1000Full 76

ARP 135

atmFilter 160, 178, 196, 214, 232, 250,
268, 286, 304, 322, 340, 358, 376,
394, 412, 430

atmStat 168, 186, 204, 222, 240, 258, 276,
294, 312, 330, 348, 366, 384, 402,
420, 438

B

BERT 74-75

bertErrorGeneration 94

Bit Error Rate Testing 75

broadcastTopology 72

byte2IpAddr 47

C

calculateMaxRate 46

Calculation Utilities 46

Capture 75

Capture Data 50

captureBuffer 157, 174, 192, 210, 228, 246,
264, 282, 300, 318, 336, 354, 372,
390, 408, 426

Cards 69

CDMA Server 72

cget 57

Chassis 69

config 57

Console Output 53

converting FQPN to legacy port format 19

converting legacy port format to FQPN 19

customer assistance iii

D

Data Capture 47, 153, 170, 188, 206, 224,
242, 260, 278, 296, 314, 332, 350,
368, 386, 404, 422

Data Integrity 75

Data Link Layer 131

– 1735 –

Data Transmission 41, 114

dcc 84

DCC 75, 84, 119

decode 58

dectohex 47

dhcp 147

disableUdfs 44

documentation conventions iv

E

errorMsg 53

F

Features 1100

filter config 64

filterPallette 155, 173, 190, 208, 226, 244, 262,
280, 298, 316, 334, 352, 370, 388, 406, 424

filterPallette config 64

First Time Stamp 75

Flows 114

forcedCollisions 129

FQPN supported APIs 19

Frame Data 121

fully qualified port name 15

G

General Purpose Commands 39

get 57

GPS Server 72

H

handling FQPN in Tcl APIs 16

hextodec 47

host2addr 47

I

Interface Table 441, 453

IP 451

IP address table 453

ip config 63

ipAddressTable 451

IPX 134

ixCheckOwnership 40

ixCheckPortTransmitDone 45

ixCheckTransmitDone 45

ixClearArpTable 52

ixClearOwnership 41

ixClearPacketGroups 50

ixClearPortArpTable 52

ixClearStats 49

ixDisablePortArpResponse 52

ixDisconnectFromChassis 38

ixEnablePortArpResponse 52

IXIA 100 69

ixLogin 40

ixLogout 40

ixPortClearOwnership 41

ixPortTakeOwnership 41

ixPuts 53

ixRequestStats 51

ixResetPortSequenceIndex 50

ixResetSequenceIndex 50

ixRestartAutoNegotiation 44

INDEX

– 1736 –

ixSetAdvancedStreamSchedulerMode 43

ixSetCaptureMode 48

ixSetDataIntegrityMode 49

ixSetPacketFlowMode 43

ixSetPacketGroupMode 48

ixSetPacketStreamMode 43

ixSetPortCaptureMode 48

ixSetPortDataIntegrityMode 49

ixSetPortPacketFlowMode 43

ixSetPortSequenceCheckingMode 49

ixSetPortTcpRoundTripFlowMode 43

ixSetScheduledTransmitTime 46

ixSetSequenceCheckingMode 49

ixSetTcpRoundTripFlowMode 43

ixStartAtmOamTransmit 46

ixStartCapture 50

ixStartCollisions 45

ixStartPacketGroups 51

ixStartPortCollisions 45

ixStartPortPacketGroups 51

ixStartTransmit 44

ixStopAtmOamTransmit 46

ixStopCapture 50

ixStopCollisions 45

ixStopPacketGroups 51

ixStopPortAtmOamTransmit 46

ixStopPortCapture 50

ixStopPortCollisions 45

ixStopPortPacketGroups 51

ixStopPortTransmit 44

ixStopTransmit 44

ixTakeOwnership 41

IxTclHAL 1

ixTransmitArpRequest 52

K

keyboard interactions iv

L

Link Fault Signaling 106

Logging 53-54

logOff 54

logOn 54

M

Many-to-many mapping 34

Many-to-One mapping 34

many2manyArray 35

many2oneArray 35, 65

map 61

mapping 61

mouse interactions iv

O

One-to-Many mapping 34

one2manyArray 35, 65

one2oneArray 35

P

Packet flow 75

Packet over Sonet 74

Packet stream 75

packetGroup 125

INDEX

– 1737 –

PacketGroup 75

port config 62

Port Ownership 40

portFeatureDualPgidStatMode 1100

Ports 69

POS 74

pppStatus 91

PRBS packets 75

product support iii

Protocol Server 440

protocolOffset 131

protocolServer 440

R

Resilient Packet Ring 84

S

Sequence Checking 75, 129

set 57

setDefault 58, 78

SNTP Server 72

sonet 81

SONET 75

SONET DCC 75

SPE 75, 119

Start Transmit 44

startTime 72

statGroup 162, 180, 198, 216, 234, 252, 270, 288,
306, 324, 342, 360, 378, 396, 414, 432

Statistics 47, 51, 153, 170, 188, 206, 224, 242,
260, 278, 296, 314, 332, 350, 368, 386, 404,
422

statWatch 162, 180, 198, 216, 234, 252, 270, 288,
306, 324, 342, 360, 378, 396, 414, 432

stream config 63

support services iii

T

TCP Round Trip 75

TCP Round Trips 75

tcpRoundTripFlows 125

technical support iii

The 134

timeServer 69

touch interactions iv

transceiver 1410

U

UDF Cascade 122

udf config 64

udp 143

user 39

User Defined Fields 121

V

vlan 132

W

Wide packet group 75

write 57

INDEX

– 1738 –

Keysight Technologies, Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1738

www.keysight.com

© Keysight Technologies, 2022

http://www.keysight.com/

	Contacting Us
	Documentation conventions
	About this Guide
	Purpose
	Manual Content
	Related Documentation
	Technical Support

	Chapter 1 Tcl API Overview
	ScriptGen
	What’s New in Version 9.24?
	All Deprecated Commands and Options
	Fully Qualified Port Name
	Handling FQPN in Tcl APIs
	FQPN supported APIs
	Convert FQPN to Legacy Port Format
	Convert Legacy Port Format to FQPN

	Chapter 2 Quick Start
	Installing the IxOS Tcl Client
	About IxOS Native TCL Console for Linux
	UNIX Environment
	UNIX Installation Notes

	Windows Environment
	IxSampleTcl Test Program

	Chapter 3 High-Level and Utility API Description
	Initialization, Setup and Cleanup
	Mapping and Port Lists
	Including Source Code
	Chassis and TclServer Connection
	General Purpose Commands
	cleanUp

	Port Ownership
	ixLogin / ixLoginWithPurpose / ixLogout
	ixCheckOwnership
	ixPortTakeOwnership / ixTakeOwnership / ixPortClearOwnership / ixClearOwnership

	Data Transmission
	Setup
	Negotiation
	Start Transmit
	Calculation Utilities

	Data Capture and Statistics
	Setup
	Capture Data
	Statistics

	ARP
	ixEnableArpResponse / ixEnablePortArpResponse
	ixDisableArpResponse / ixDisablePortArpResponse
	ixClearPortArpTable / ixClearArpTable
	ixTransmitPortArpRequest / ixTransmitArpRequest

	Console Output and Logging
	Error messages
	Console Output
	Logging

	Port CPU Control
	Issue Port CPU Commands

	Miscellaneous Commands

	Chapter 4 Programming
	API Structure and Conventions
	Standard Sub-Commands
	Standard Return Codes

	Sequence of Steps
	How to write efficient scripts
	Multi-Client Usage
	Mpexpr versus Expr

	Chapter 5 IxTclHal API Description
	Chassis, Cards and Ports
	session
	version
	chassisChain
	timeServer
	chassis
	card
	port
	Circuit
	10GE

	Data Transmission
	Streams and Flows
	Frame Data

	Data Capture and Statistics
	filter
	filterPallette
	capture
	captureBuffer
	qos
	atmReassembly
	atmFilter
	stat
	statGroup, statList and statWatch
	packetGroupStats
	vsrStat
	vsrError
	atmStat
	streamTransmitStats
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics
	Data Capture and Statistics

	Interface Table
	protocolServer
	Interface Table
	Using DHCP with Interfaces
	Using DHCPv6 with Interfaces
	Using PTP with Interfaces
	Using Fibre Channel and FCoE
	IP
	Interface Table versus IP Address Table
	sfpPlus

	Port CPU Control
	Port CPU Control
	Issue Port CPU Command
	serviceManager

	Appendix 1 IxTclHAL Commands
	FQPN support
	arp
	associationHeader
	atmFilter
	atmHeader
	atmHeaderCounter
	atmOam
	atmOamActDeact
	atmOamAis
	atmOamFaultManagementCC
	atmOamFaultManagementLB
	atmOamRdi
	atmOamTrace
	atmPort
	atmReassembly
	atmStat
	autoDetectInstrumentation
	basicLinkServices
	bert
	bertErrorGeneration
	bertUnframed
	capture
	captureBuffer
	card
	cdlPreamble
	cfpPort
	chassis
	chassisChain
	collisionBackoff
	conditionalStats
	conditionalTable
	customOrderedSet
	dataIntegrity
	dcc
	dhcp
	dhcpV4DiscoveredInfo
	dhcpV4Properties
	dhcpV4Tlv
	dhcpV6DiscoveredInfo
	dhcpV6Properties
	dhcpV6Tlv
	discoveredAddress
	discoveredList
	discoveredNeighbor
	encHeader
	espHeader
	extendedLinkServices
	fcEOF
	fcNameServer
	fcNameServerQuery
	fcoe
	fcoeDiscoveredInfo
	fcoeNameServer
	fcPlogi
	fcoePlogi
	fcoeProperties
	fcPort
	fcProperties
	fcSOF
	fecError
	fibreChannel
	filter
	filterPallette
	fipTlv
	flexibleTimestamp
	forcedCollisions
	frameRelay
	gfp
	gfpOverhead
	gre
	hdlc
	icmp
	icmpV6
	icmpV6Error
	icmpV6Informational
	icmpV6MulticastListener
	icmpV6NeighborDiscovery
	icmpV6OptionLinkLayerDestination
	icmpV6OptionLinkLayerSource
	icmpV6OptionMaxTransmissionUnit
	icmpV6OptionPrefixInformation
	icmpV6OptionRedirectedHeader
	icmpV6OptionUserDefine
	icmpV6UserDefine
	IFRHeader
	igmp
	igmpGroupRecord
	interfaceEntry
	interfaceIpV4
	interfaceIpV6
	interfaceTable
	ip
	ipAddressTable
	ipAddressTableItem
	ipV6
	ipV6Address
	ipV6Authentication
	ipV6Destination
	ipV6Fragment
	ipV6HopByHop
	ipV6OptionPAD1
	ipV6OptionPADN
	ipV6OptionJumbo
	ipV6OptionRouterAlert
	ipV6OptionBindingUpdate
	ipV6OptionBindingAck
	ipV6OptionHomeAddress
	ipV6OptionBindingRequest
	ipV6OptionMIpV6UniqueIdSub
	ipV6OptionMIpV6AlternativeCoaSub
	ipV6OptionUserDefine
	ipV6Routing
	ipx
	isl
	kp4FecError
	lasi
	latencyBin
	lcas
	linkFaultSignaling
	macSecChannel
	macSecRx
	macSecTag
	macSecTx
	mii
	miiae
	mmd
	mmdRegister
	mpls
	mplsLabel
	networkHeader
	npivProperties
	oamEventNotification
	oamEventOrgTlv
	oamFrameTlv
	oamFramePeriodTlv
	oamHeader
	oamInformation
	oamLocalInformationTlv
	oamLoopbackControl
	oamOrganizationSpecific
	oamOrganizationSpecificTlv
	oamPort
	oamRemoteInformationTlv
	oamStatus
	oamSummaryTlv
	oamSymbolPeriodTlv
	oamVariableRequest
	oamVariableRequestTlv
	oamVariableResponse
	oamVariableResponseTlv
	opticalDigitalWrapper
	packetGroup
	packetGroupStats
	packetGroupThresholdList
	packetLengthInsertion
	pauseControl
	pcsLaneError
	pcsLaneStatistics
	pcpuCommandService
	poeAutoCalibration
	poePoweredDevice
	poeSignalAcquisition
	port
	portCpu
	portGroup
	ppp
	pppStatus
	prbsCapture
	protocol
	protocolOffset
	protocolServer
	protocolPad
	ptp
	ptpAnnounce
	ptpDelayRequest
	ptpDelayResponse
	ptpDiscoveredInfo
	ptpFollowUp
	ptpProperties
	ptpSync
	qos
	resourceGroupEx
	rip
	ripRoute
	rprFairness
	rprOam
	rprProtection
	rprRingControl
	rprTlvBandwidthPair
	rprTlvIndividualBandwidth
	rprTlvNeighborAddress
	rprTlvStationName
	rprTlvTotalBandwidth
	rprTlvVendorSpecific
	rprTlvWeight
	rprTopology
	rxLaneDiag
	sequenceNumberUdf
	serviceManager
	session
	sfpPlus
	sonet
	sonetCircuit
	sonetCircuitList
	sonetCircuitProperties
	sonetError
	sonetOverhead
	splitPacketGroup
	srpArp
	srpDiscovery
	srpIps
	srpMacBinding
	srpUsage
	stackedVlan
	stat
	statAggregator
	statGroup
	statList
	statWatch
	stream
	streamExtractorFilter
	streamExtractorModifier
	streamQueue
	streamQueueList
	streamRegion
	streamTransmitStats
	tableUdf
	tableUdfColumn
	transceiver
	tcp
	tcpRoundTripFlow
	timeServer
	txLane
	txRxPreamble
	udf
	udp
	usb
	version
	VFTHeader
	vlan
	vsrError
	vsrStat
	weightedRandomFramesize
	xaui
	xfp

	Appendix 2 Utility Commands
	FQPN support
	byte2IpAddr
	calculateFPS
	calculateFPSPortPath
	calculateGapBytes
	calculateGapBytesPortPath
	calculateMaxRate
	calculateMaxRatePortPath
	calculatePercentMaxRate
	calculatePercentMaxRatePortPath
	cleanUp
	clearAllMyOwnership
	dectohex
	disableUdfs
	enableEvents
	errorMsg
	getErrorString
	getStatLabel
	hextodec
	host2addr
	logMsg
	logOff
	logOn
	mpexpr
	showCmd
	user

	Appendix 3 High-Level API
	FQPN support
	getAllPorts
	getRxPorts
	getTxPorts
	issuePcpuCommand
	ixAbortPoeArm
	ixAbortPortPoeArm
	ixArmPoeTrigger
	ixArmPortPoeTrigger
	ixCheckLinkState
	ixCheckOwnership
	ixCheckPPPState
	ixCheckPortTransmitDone
	ixCheckTransmitDone
	ixClearArpTable
	ixClearOwnership
	ixClearPacketGroups
	ixClearPerStreamTxStats
	ixClearPortArpTable
	ixClearPortPacketGroups
	ixClearPortStats
	ixClearScheduledTransmitTime
	ixClearStats
	ixClearTimeStamp
	ixCollectStats
	ixConnectToChassis
	ixConnectToChassisReadOnly
	ixConvertFromSeconds
	ixConnectToTclServer
	ixConvertToSeconds
	ixCreatePortListWildCard
	ixCreateSortedPortList
	ixDisableArpResponse
	ixDisablePortArpResponse
	ixDisconnectFromChassis
	ixDisconnectTclServer
	ixEnableArpResponse
	ixEnablePortArpResponse
	ixEnableIntrinsicLatencyAdjustment
	ixEnablePortIntrinsicLatencyAdjustment
	ixErrorInfo
	ixGetChassisID
	ixGetLineUtilization
	ixGlobalSetDefault
	ixInitialize
	ixIsIntrinsicLatencyAdjustmentEnabled
	ixIsOverlappingIpAddress
	ixIsSameSubnet
	ixIsValidHost
	ixIsValidNetMask
	ixIsValidUnicastIp
	ixLoadPoePulse
	ixLoadPortPoePulse
	ixLogin
	ixLoginWithPurpose
	ixLogout
	ixMiiConfig utilities
	ixPortClearOwnership
	ixPortTakeOwnership
	ixProxyConnect
	ixPuts
	ixRequestStats
	ixResetPortSequenceIndex
	ixResetSequenceIndex
	ixRestartAutoNegotiation
	ixRestartPortAutoNegotiation
	ixRestartPortPPPAutoNegotiation
	ixRestartPPPNegotiation
	ixSetAdvancedStreamSchedulerMode
	ixSetAutoDetectInstrumentationMode
	ixSetCaptureMode
	ixSetDataIntegrityMode
	ixSetPacketFlowMode
	ixSetPacketGroupMode
	ixSetPacketStreamMode
	ixSetPortAdvancedStreamSchedulerMode
	ixSetPortCaptureMode
	ixSetPortDataIntegrityMode
	ixSetPortPacketFlowMode
	ixSetPortPacketGroupMode
	ixSetPortPacketStreamMode
	ixSetPortSequenceCheckingMode
	ixSetPortTcpRoundTripFlowMode
	ixSetScheduledTransmitTime
	ixSetSequenceCheckingMode
	ixSetTcpRoundTripFlowMode
	ixSimulatePhysicalInterfaceDown
	ixSimulatePhysicalInterfaceUp
	ixSimulatePortPhysicalInterfaceDown
	ixSimulatePortPhysicalInterfaceUp
	ixSource
	ixStartAtmOamTransmit
	ixStartCapture
	ixStartCollisions
	ixStartPacketGroups
	ixStartPortAtmOamTransmit
	ixStartPortCapture
	ixStartPortCollisions
	ixStartPortPacketGroups
	ixStartPortTransmit
	ixStartStaggeredTransmit
	ixStartTransmit
	ixStopAtmOamTransmit
	ixStopCapture
	ixStopCollisions
	ixStopPacketGroups
	ixStopPortAtmOamTransmit
	ixStopPortCapture
	ixStopPortCollisions
	ixStopPortPacketGroups
	ixStopPortTransmit
	ixStopTransmit
	ixTakeOwnership
	ixTransmitArpRequest
	ixTransmitPortArpRequest
	ixUtils
	ixWriteConfigToHardware
	ixWritePortsToHardware
	map

	Appendix 4 IxTcl Server Usage
	IxTcl Server
	Installation and Invocation
	IxTcl Server Usage
	Options
	Advanced Usage

	Appendix 5 Reserved Keywords
	INDEX

